xref: /openbmc/linux/net/sunrpc/cache.c (revision 151f4e2b)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 static bool cache_listeners_exist(struct cache_detail *detail);
44 
45 static void cache_init(struct cache_head *h, struct cache_detail *detail)
46 {
47 	time_t now = seconds_since_boot();
48 	INIT_HLIST_NODE(&h->cache_list);
49 	h->flags = 0;
50 	kref_init(&h->ref);
51 	h->expiry_time = now + CACHE_NEW_EXPIRY;
52 	if (now <= detail->flush_time)
53 		/* ensure it isn't already expired */
54 		now = detail->flush_time + 1;
55 	h->last_refresh = now;
56 }
57 
58 static inline int cache_is_valid(struct cache_head *h);
59 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
60 				struct cache_detail *detail);
61 static void cache_fresh_unlocked(struct cache_head *head,
62 				struct cache_detail *detail);
63 
64 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
65 						struct cache_head *key,
66 						int hash)
67 {
68 	struct hlist_head *head = &detail->hash_table[hash];
69 	struct cache_head *tmp;
70 
71 	rcu_read_lock();
72 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
73 		if (detail->match(tmp, key)) {
74 			if (cache_is_expired(detail, tmp))
75 				continue;
76 			tmp = cache_get_rcu(tmp);
77 			rcu_read_unlock();
78 			return tmp;
79 		}
80 	}
81 	rcu_read_unlock();
82 	return NULL;
83 }
84 
85 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
86 						 struct cache_head *key,
87 						 int hash)
88 {
89 	struct cache_head *new, *tmp, *freeme = NULL;
90 	struct hlist_head *head = &detail->hash_table[hash];
91 
92 	new = detail->alloc();
93 	if (!new)
94 		return NULL;
95 	/* must fully initialise 'new', else
96 	 * we might get lose if we need to
97 	 * cache_put it soon.
98 	 */
99 	cache_init(new, detail);
100 	detail->init(new, key);
101 
102 	spin_lock(&detail->hash_lock);
103 
104 	/* check if entry appeared while we slept */
105 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
106 		if (detail->match(tmp, key)) {
107 			if (cache_is_expired(detail, tmp)) {
108 				hlist_del_init_rcu(&tmp->cache_list);
109 				detail->entries --;
110 				if (cache_is_valid(tmp) == -EAGAIN)
111 					set_bit(CACHE_NEGATIVE, &tmp->flags);
112 				cache_fresh_locked(tmp, 0, detail);
113 				freeme = tmp;
114 				break;
115 			}
116 			cache_get(tmp);
117 			spin_unlock(&detail->hash_lock);
118 			cache_put(new, detail);
119 			return tmp;
120 		}
121 	}
122 
123 	hlist_add_head_rcu(&new->cache_list, head);
124 	detail->entries++;
125 	cache_get(new);
126 	spin_unlock(&detail->hash_lock);
127 
128 	if (freeme) {
129 		cache_fresh_unlocked(freeme, detail);
130 		cache_put(freeme, detail);
131 	}
132 	return new;
133 }
134 
135 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
136 					   struct cache_head *key, int hash)
137 {
138 	struct cache_head *ret;
139 
140 	ret = sunrpc_cache_find_rcu(detail, key, hash);
141 	if (ret)
142 		return ret;
143 	/* Didn't find anything, insert an empty entry */
144 	return sunrpc_cache_add_entry(detail, key, hash);
145 }
146 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
147 
148 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
149 
150 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
151 			       struct cache_detail *detail)
152 {
153 	time_t now = seconds_since_boot();
154 	if (now <= detail->flush_time)
155 		/* ensure it isn't immediately treated as expired */
156 		now = detail->flush_time + 1;
157 	head->expiry_time = expiry;
158 	head->last_refresh = now;
159 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
160 	set_bit(CACHE_VALID, &head->flags);
161 }
162 
163 static void cache_fresh_unlocked(struct cache_head *head,
164 				 struct cache_detail *detail)
165 {
166 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
167 		cache_revisit_request(head);
168 		cache_dequeue(detail, head);
169 	}
170 }
171 
172 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
173 				       struct cache_head *new, struct cache_head *old, int hash)
174 {
175 	/* The 'old' entry is to be replaced by 'new'.
176 	 * If 'old' is not VALID, we update it directly,
177 	 * otherwise we need to replace it
178 	 */
179 	struct cache_head *tmp;
180 
181 	if (!test_bit(CACHE_VALID, &old->flags)) {
182 		spin_lock(&detail->hash_lock);
183 		if (!test_bit(CACHE_VALID, &old->flags)) {
184 			if (test_bit(CACHE_NEGATIVE, &new->flags))
185 				set_bit(CACHE_NEGATIVE, &old->flags);
186 			else
187 				detail->update(old, new);
188 			cache_fresh_locked(old, new->expiry_time, detail);
189 			spin_unlock(&detail->hash_lock);
190 			cache_fresh_unlocked(old, detail);
191 			return old;
192 		}
193 		spin_unlock(&detail->hash_lock);
194 	}
195 	/* We need to insert a new entry */
196 	tmp = detail->alloc();
197 	if (!tmp) {
198 		cache_put(old, detail);
199 		return NULL;
200 	}
201 	cache_init(tmp, detail);
202 	detail->init(tmp, old);
203 
204 	spin_lock(&detail->hash_lock);
205 	if (test_bit(CACHE_NEGATIVE, &new->flags))
206 		set_bit(CACHE_NEGATIVE, &tmp->flags);
207 	else
208 		detail->update(tmp, new);
209 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
210 	detail->entries++;
211 	cache_get(tmp);
212 	cache_fresh_locked(tmp, new->expiry_time, detail);
213 	cache_fresh_locked(old, 0, detail);
214 	spin_unlock(&detail->hash_lock);
215 	cache_fresh_unlocked(tmp, detail);
216 	cache_fresh_unlocked(old, detail);
217 	cache_put(old, detail);
218 	return tmp;
219 }
220 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
221 
222 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
223 {
224 	if (cd->cache_upcall)
225 		return cd->cache_upcall(cd, h);
226 	return sunrpc_cache_pipe_upcall(cd, h);
227 }
228 
229 static inline int cache_is_valid(struct cache_head *h)
230 {
231 	if (!test_bit(CACHE_VALID, &h->flags))
232 		return -EAGAIN;
233 	else {
234 		/* entry is valid */
235 		if (test_bit(CACHE_NEGATIVE, &h->flags))
236 			return -ENOENT;
237 		else {
238 			/*
239 			 * In combination with write barrier in
240 			 * sunrpc_cache_update, ensures that anyone
241 			 * using the cache entry after this sees the
242 			 * updated contents:
243 			 */
244 			smp_rmb();
245 			return 0;
246 		}
247 	}
248 }
249 
250 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
251 {
252 	int rv;
253 
254 	spin_lock(&detail->hash_lock);
255 	rv = cache_is_valid(h);
256 	if (rv == -EAGAIN) {
257 		set_bit(CACHE_NEGATIVE, &h->flags);
258 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
259 				   detail);
260 		rv = -ENOENT;
261 	}
262 	spin_unlock(&detail->hash_lock);
263 	cache_fresh_unlocked(h, detail);
264 	return rv;
265 }
266 
267 /*
268  * This is the generic cache management routine for all
269  * the authentication caches.
270  * It checks the currency of a cache item and will (later)
271  * initiate an upcall to fill it if needed.
272  *
273  *
274  * Returns 0 if the cache_head can be used, or cache_puts it and returns
275  * -EAGAIN if upcall is pending and request has been queued
276  * -ETIMEDOUT if upcall failed or request could not be queue or
277  *           upcall completed but item is still invalid (implying that
278  *           the cache item has been replaced with a newer one).
279  * -ENOENT if cache entry was negative
280  */
281 int cache_check(struct cache_detail *detail,
282 		    struct cache_head *h, struct cache_req *rqstp)
283 {
284 	int rv;
285 	long refresh_age, age;
286 
287 	/* First decide return status as best we can */
288 	rv = cache_is_valid(h);
289 
290 	/* now see if we want to start an upcall */
291 	refresh_age = (h->expiry_time - h->last_refresh);
292 	age = seconds_since_boot() - h->last_refresh;
293 
294 	if (rqstp == NULL) {
295 		if (rv == -EAGAIN)
296 			rv = -ENOENT;
297 	} else if (rv == -EAGAIN ||
298 		   (h->expiry_time != 0 && age > refresh_age/2)) {
299 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
300 				refresh_age, age);
301 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
302 			switch (cache_make_upcall(detail, h)) {
303 			case -EINVAL:
304 				rv = try_to_negate_entry(detail, h);
305 				break;
306 			case -EAGAIN:
307 				cache_fresh_unlocked(h, detail);
308 				break;
309 			}
310 		} else if (!cache_listeners_exist(detail))
311 			rv = try_to_negate_entry(detail, h);
312 	}
313 
314 	if (rv == -EAGAIN) {
315 		if (!cache_defer_req(rqstp, h)) {
316 			/*
317 			 * Request was not deferred; handle it as best
318 			 * we can ourselves:
319 			 */
320 			rv = cache_is_valid(h);
321 			if (rv == -EAGAIN)
322 				rv = -ETIMEDOUT;
323 		}
324 	}
325 	if (rv)
326 		cache_put(h, detail);
327 	return rv;
328 }
329 EXPORT_SYMBOL_GPL(cache_check);
330 
331 /*
332  * caches need to be periodically cleaned.
333  * For this we maintain a list of cache_detail and
334  * a current pointer into that list and into the table
335  * for that entry.
336  *
337  * Each time cache_clean is called it finds the next non-empty entry
338  * in the current table and walks the list in that entry
339  * looking for entries that can be removed.
340  *
341  * An entry gets removed if:
342  * - The expiry is before current time
343  * - The last_refresh time is before the flush_time for that cache
344  *
345  * later we might drop old entries with non-NEVER expiry if that table
346  * is getting 'full' for some definition of 'full'
347  *
348  * The question of "how often to scan a table" is an interesting one
349  * and is answered in part by the use of the "nextcheck" field in the
350  * cache_detail.
351  * When a scan of a table begins, the nextcheck field is set to a time
352  * that is well into the future.
353  * While scanning, if an expiry time is found that is earlier than the
354  * current nextcheck time, nextcheck is set to that expiry time.
355  * If the flush_time is ever set to a time earlier than the nextcheck
356  * time, the nextcheck time is then set to that flush_time.
357  *
358  * A table is then only scanned if the current time is at least
359  * the nextcheck time.
360  *
361  */
362 
363 static LIST_HEAD(cache_list);
364 static DEFINE_SPINLOCK(cache_list_lock);
365 static struct cache_detail *current_detail;
366 static int current_index;
367 
368 static void do_cache_clean(struct work_struct *work);
369 static struct delayed_work cache_cleaner;
370 
371 void sunrpc_init_cache_detail(struct cache_detail *cd)
372 {
373 	spin_lock_init(&cd->hash_lock);
374 	INIT_LIST_HEAD(&cd->queue);
375 	spin_lock(&cache_list_lock);
376 	cd->nextcheck = 0;
377 	cd->entries = 0;
378 	atomic_set(&cd->readers, 0);
379 	cd->last_close = 0;
380 	cd->last_warn = -1;
381 	list_add(&cd->others, &cache_list);
382 	spin_unlock(&cache_list_lock);
383 
384 	/* start the cleaning process */
385 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
386 }
387 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
388 
389 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
390 {
391 	cache_purge(cd);
392 	spin_lock(&cache_list_lock);
393 	spin_lock(&cd->hash_lock);
394 	if (current_detail == cd)
395 		current_detail = NULL;
396 	list_del_init(&cd->others);
397 	spin_unlock(&cd->hash_lock);
398 	spin_unlock(&cache_list_lock);
399 	if (list_empty(&cache_list)) {
400 		/* module must be being unloaded so its safe to kill the worker */
401 		cancel_delayed_work_sync(&cache_cleaner);
402 	}
403 }
404 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
405 
406 /* clean cache tries to find something to clean
407  * and cleans it.
408  * It returns 1 if it cleaned something,
409  *            0 if it didn't find anything this time
410  *           -1 if it fell off the end of the list.
411  */
412 static int cache_clean(void)
413 {
414 	int rv = 0;
415 	struct list_head *next;
416 
417 	spin_lock(&cache_list_lock);
418 
419 	/* find a suitable table if we don't already have one */
420 	while (current_detail == NULL ||
421 	    current_index >= current_detail->hash_size) {
422 		if (current_detail)
423 			next = current_detail->others.next;
424 		else
425 			next = cache_list.next;
426 		if (next == &cache_list) {
427 			current_detail = NULL;
428 			spin_unlock(&cache_list_lock);
429 			return -1;
430 		}
431 		current_detail = list_entry(next, struct cache_detail, others);
432 		if (current_detail->nextcheck > seconds_since_boot())
433 			current_index = current_detail->hash_size;
434 		else {
435 			current_index = 0;
436 			current_detail->nextcheck = seconds_since_boot()+30*60;
437 		}
438 	}
439 
440 	/* find a non-empty bucket in the table */
441 	while (current_detail &&
442 	       current_index < current_detail->hash_size &&
443 	       hlist_empty(&current_detail->hash_table[current_index]))
444 		current_index++;
445 
446 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
447 
448 	if (current_detail && current_index < current_detail->hash_size) {
449 		struct cache_head *ch = NULL;
450 		struct cache_detail *d;
451 		struct hlist_head *head;
452 		struct hlist_node *tmp;
453 
454 		spin_lock(&current_detail->hash_lock);
455 
456 		/* Ok, now to clean this strand */
457 
458 		head = &current_detail->hash_table[current_index];
459 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
460 			if (current_detail->nextcheck > ch->expiry_time)
461 				current_detail->nextcheck = ch->expiry_time+1;
462 			if (!cache_is_expired(current_detail, ch))
463 				continue;
464 
465 			hlist_del_init_rcu(&ch->cache_list);
466 			current_detail->entries--;
467 			rv = 1;
468 			break;
469 		}
470 
471 		spin_unlock(&current_detail->hash_lock);
472 		d = current_detail;
473 		if (!ch)
474 			current_index ++;
475 		spin_unlock(&cache_list_lock);
476 		if (ch) {
477 			set_bit(CACHE_CLEANED, &ch->flags);
478 			cache_fresh_unlocked(ch, d);
479 			cache_put(ch, d);
480 		}
481 	} else
482 		spin_unlock(&cache_list_lock);
483 
484 	return rv;
485 }
486 
487 /*
488  * We want to regularly clean the cache, so we need to schedule some work ...
489  */
490 static void do_cache_clean(struct work_struct *work)
491 {
492 	int delay = 5;
493 	if (cache_clean() == -1)
494 		delay = round_jiffies_relative(30*HZ);
495 
496 	if (list_empty(&cache_list))
497 		delay = 0;
498 
499 	if (delay)
500 		queue_delayed_work(system_power_efficient_wq,
501 				   &cache_cleaner, delay);
502 }
503 
504 
505 /*
506  * Clean all caches promptly.  This just calls cache_clean
507  * repeatedly until we are sure that every cache has had a chance to
508  * be fully cleaned
509  */
510 void cache_flush(void)
511 {
512 	while (cache_clean() != -1)
513 		cond_resched();
514 	while (cache_clean() != -1)
515 		cond_resched();
516 }
517 EXPORT_SYMBOL_GPL(cache_flush);
518 
519 void cache_purge(struct cache_detail *detail)
520 {
521 	struct cache_head *ch = NULL;
522 	struct hlist_head *head = NULL;
523 	struct hlist_node *tmp = NULL;
524 	int i = 0;
525 
526 	spin_lock(&detail->hash_lock);
527 	if (!detail->entries) {
528 		spin_unlock(&detail->hash_lock);
529 		return;
530 	}
531 
532 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
533 	for (i = 0; i < detail->hash_size; i++) {
534 		head = &detail->hash_table[i];
535 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
536 			hlist_del_init_rcu(&ch->cache_list);
537 			detail->entries--;
538 
539 			set_bit(CACHE_CLEANED, &ch->flags);
540 			spin_unlock(&detail->hash_lock);
541 			cache_fresh_unlocked(ch, detail);
542 			cache_put(ch, detail);
543 			spin_lock(&detail->hash_lock);
544 		}
545 	}
546 	spin_unlock(&detail->hash_lock);
547 }
548 EXPORT_SYMBOL_GPL(cache_purge);
549 
550 
551 /*
552  * Deferral and Revisiting of Requests.
553  *
554  * If a cache lookup finds a pending entry, we
555  * need to defer the request and revisit it later.
556  * All deferred requests are stored in a hash table,
557  * indexed by "struct cache_head *".
558  * As it may be wasteful to store a whole request
559  * structure, we allow the request to provide a
560  * deferred form, which must contain a
561  * 'struct cache_deferred_req'
562  * This cache_deferred_req contains a method to allow
563  * it to be revisited when cache info is available
564  */
565 
566 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
567 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
568 
569 #define	DFR_MAX	300	/* ??? */
570 
571 static DEFINE_SPINLOCK(cache_defer_lock);
572 static LIST_HEAD(cache_defer_list);
573 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
574 static int cache_defer_cnt;
575 
576 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
577 {
578 	hlist_del_init(&dreq->hash);
579 	if (!list_empty(&dreq->recent)) {
580 		list_del_init(&dreq->recent);
581 		cache_defer_cnt--;
582 	}
583 }
584 
585 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
586 {
587 	int hash = DFR_HASH(item);
588 
589 	INIT_LIST_HEAD(&dreq->recent);
590 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
591 }
592 
593 static void setup_deferral(struct cache_deferred_req *dreq,
594 			   struct cache_head *item,
595 			   int count_me)
596 {
597 
598 	dreq->item = item;
599 
600 	spin_lock(&cache_defer_lock);
601 
602 	__hash_deferred_req(dreq, item);
603 
604 	if (count_me) {
605 		cache_defer_cnt++;
606 		list_add(&dreq->recent, &cache_defer_list);
607 	}
608 
609 	spin_unlock(&cache_defer_lock);
610 
611 }
612 
613 struct thread_deferred_req {
614 	struct cache_deferred_req handle;
615 	struct completion completion;
616 };
617 
618 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
619 {
620 	struct thread_deferred_req *dr =
621 		container_of(dreq, struct thread_deferred_req, handle);
622 	complete(&dr->completion);
623 }
624 
625 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
626 {
627 	struct thread_deferred_req sleeper;
628 	struct cache_deferred_req *dreq = &sleeper.handle;
629 
630 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
631 	dreq->revisit = cache_restart_thread;
632 
633 	setup_deferral(dreq, item, 0);
634 
635 	if (!test_bit(CACHE_PENDING, &item->flags) ||
636 	    wait_for_completion_interruptible_timeout(
637 		    &sleeper.completion, req->thread_wait) <= 0) {
638 		/* The completion wasn't completed, so we need
639 		 * to clean up
640 		 */
641 		spin_lock(&cache_defer_lock);
642 		if (!hlist_unhashed(&sleeper.handle.hash)) {
643 			__unhash_deferred_req(&sleeper.handle);
644 			spin_unlock(&cache_defer_lock);
645 		} else {
646 			/* cache_revisit_request already removed
647 			 * this from the hash table, but hasn't
648 			 * called ->revisit yet.  It will very soon
649 			 * and we need to wait for it.
650 			 */
651 			spin_unlock(&cache_defer_lock);
652 			wait_for_completion(&sleeper.completion);
653 		}
654 	}
655 }
656 
657 static void cache_limit_defers(void)
658 {
659 	/* Make sure we haven't exceed the limit of allowed deferred
660 	 * requests.
661 	 */
662 	struct cache_deferred_req *discard = NULL;
663 
664 	if (cache_defer_cnt <= DFR_MAX)
665 		return;
666 
667 	spin_lock(&cache_defer_lock);
668 
669 	/* Consider removing either the first or the last */
670 	if (cache_defer_cnt > DFR_MAX) {
671 		if (prandom_u32() & 1)
672 			discard = list_entry(cache_defer_list.next,
673 					     struct cache_deferred_req, recent);
674 		else
675 			discard = list_entry(cache_defer_list.prev,
676 					     struct cache_deferred_req, recent);
677 		__unhash_deferred_req(discard);
678 	}
679 	spin_unlock(&cache_defer_lock);
680 	if (discard)
681 		discard->revisit(discard, 1);
682 }
683 
684 /* Return true if and only if a deferred request is queued. */
685 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
686 {
687 	struct cache_deferred_req *dreq;
688 
689 	if (req->thread_wait) {
690 		cache_wait_req(req, item);
691 		if (!test_bit(CACHE_PENDING, &item->flags))
692 			return false;
693 	}
694 	dreq = req->defer(req);
695 	if (dreq == NULL)
696 		return false;
697 	setup_deferral(dreq, item, 1);
698 	if (!test_bit(CACHE_PENDING, &item->flags))
699 		/* Bit could have been cleared before we managed to
700 		 * set up the deferral, so need to revisit just in case
701 		 */
702 		cache_revisit_request(item);
703 
704 	cache_limit_defers();
705 	return true;
706 }
707 
708 static void cache_revisit_request(struct cache_head *item)
709 {
710 	struct cache_deferred_req *dreq;
711 	struct list_head pending;
712 	struct hlist_node *tmp;
713 	int hash = DFR_HASH(item);
714 
715 	INIT_LIST_HEAD(&pending);
716 	spin_lock(&cache_defer_lock);
717 
718 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
719 		if (dreq->item == item) {
720 			__unhash_deferred_req(dreq);
721 			list_add(&dreq->recent, &pending);
722 		}
723 
724 	spin_unlock(&cache_defer_lock);
725 
726 	while (!list_empty(&pending)) {
727 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
728 		list_del_init(&dreq->recent);
729 		dreq->revisit(dreq, 0);
730 	}
731 }
732 
733 void cache_clean_deferred(void *owner)
734 {
735 	struct cache_deferred_req *dreq, *tmp;
736 	struct list_head pending;
737 
738 
739 	INIT_LIST_HEAD(&pending);
740 	spin_lock(&cache_defer_lock);
741 
742 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
743 		if (dreq->owner == owner) {
744 			__unhash_deferred_req(dreq);
745 			list_add(&dreq->recent, &pending);
746 		}
747 	}
748 	spin_unlock(&cache_defer_lock);
749 
750 	while (!list_empty(&pending)) {
751 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
752 		list_del_init(&dreq->recent);
753 		dreq->revisit(dreq, 1);
754 	}
755 }
756 
757 /*
758  * communicate with user-space
759  *
760  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
761  * On read, you get a full request, or block.
762  * On write, an update request is processed.
763  * Poll works if anything to read, and always allows write.
764  *
765  * Implemented by linked list of requests.  Each open file has
766  * a ->private that also exists in this list.  New requests are added
767  * to the end and may wakeup and preceding readers.
768  * New readers are added to the head.  If, on read, an item is found with
769  * CACHE_UPCALLING clear, we free it from the list.
770  *
771  */
772 
773 static DEFINE_SPINLOCK(queue_lock);
774 static DEFINE_MUTEX(queue_io_mutex);
775 
776 struct cache_queue {
777 	struct list_head	list;
778 	int			reader;	/* if 0, then request */
779 };
780 struct cache_request {
781 	struct cache_queue	q;
782 	struct cache_head	*item;
783 	char			* buf;
784 	int			len;
785 	int			readers;
786 };
787 struct cache_reader {
788 	struct cache_queue	q;
789 	int			offset;	/* if non-0, we have a refcnt on next request */
790 };
791 
792 static int cache_request(struct cache_detail *detail,
793 			       struct cache_request *crq)
794 {
795 	char *bp = crq->buf;
796 	int len = PAGE_SIZE;
797 
798 	detail->cache_request(detail, crq->item, &bp, &len);
799 	if (len < 0)
800 		return -EAGAIN;
801 	return PAGE_SIZE - len;
802 }
803 
804 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
805 			  loff_t *ppos, struct cache_detail *cd)
806 {
807 	struct cache_reader *rp = filp->private_data;
808 	struct cache_request *rq;
809 	struct inode *inode = file_inode(filp);
810 	int err;
811 
812 	if (count == 0)
813 		return 0;
814 
815 	inode_lock(inode); /* protect against multiple concurrent
816 			      * readers on this file */
817  again:
818 	spin_lock(&queue_lock);
819 	/* need to find next request */
820 	while (rp->q.list.next != &cd->queue &&
821 	       list_entry(rp->q.list.next, struct cache_queue, list)
822 	       ->reader) {
823 		struct list_head *next = rp->q.list.next;
824 		list_move(&rp->q.list, next);
825 	}
826 	if (rp->q.list.next == &cd->queue) {
827 		spin_unlock(&queue_lock);
828 		inode_unlock(inode);
829 		WARN_ON_ONCE(rp->offset);
830 		return 0;
831 	}
832 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
833 	WARN_ON_ONCE(rq->q.reader);
834 	if (rp->offset == 0)
835 		rq->readers++;
836 	spin_unlock(&queue_lock);
837 
838 	if (rq->len == 0) {
839 		err = cache_request(cd, rq);
840 		if (err < 0)
841 			goto out;
842 		rq->len = err;
843 	}
844 
845 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
846 		err = -EAGAIN;
847 		spin_lock(&queue_lock);
848 		list_move(&rp->q.list, &rq->q.list);
849 		spin_unlock(&queue_lock);
850 	} else {
851 		if (rp->offset + count > rq->len)
852 			count = rq->len - rp->offset;
853 		err = -EFAULT;
854 		if (copy_to_user(buf, rq->buf + rp->offset, count))
855 			goto out;
856 		rp->offset += count;
857 		if (rp->offset >= rq->len) {
858 			rp->offset = 0;
859 			spin_lock(&queue_lock);
860 			list_move(&rp->q.list, &rq->q.list);
861 			spin_unlock(&queue_lock);
862 		}
863 		err = 0;
864 	}
865  out:
866 	if (rp->offset == 0) {
867 		/* need to release rq */
868 		spin_lock(&queue_lock);
869 		rq->readers--;
870 		if (rq->readers == 0 &&
871 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
872 			list_del(&rq->q.list);
873 			spin_unlock(&queue_lock);
874 			cache_put(rq->item, cd);
875 			kfree(rq->buf);
876 			kfree(rq);
877 		} else
878 			spin_unlock(&queue_lock);
879 	}
880 	if (err == -EAGAIN)
881 		goto again;
882 	inode_unlock(inode);
883 	return err ? err :  count;
884 }
885 
886 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
887 				 size_t count, struct cache_detail *cd)
888 {
889 	ssize_t ret;
890 
891 	if (count == 0)
892 		return -EINVAL;
893 	if (copy_from_user(kaddr, buf, count))
894 		return -EFAULT;
895 	kaddr[count] = '\0';
896 	ret = cd->cache_parse(cd, kaddr, count);
897 	if (!ret)
898 		ret = count;
899 	return ret;
900 }
901 
902 static ssize_t cache_slow_downcall(const char __user *buf,
903 				   size_t count, struct cache_detail *cd)
904 {
905 	static char write_buf[8192]; /* protected by queue_io_mutex */
906 	ssize_t ret = -EINVAL;
907 
908 	if (count >= sizeof(write_buf))
909 		goto out;
910 	mutex_lock(&queue_io_mutex);
911 	ret = cache_do_downcall(write_buf, buf, count, cd);
912 	mutex_unlock(&queue_io_mutex);
913 out:
914 	return ret;
915 }
916 
917 static ssize_t cache_downcall(struct address_space *mapping,
918 			      const char __user *buf,
919 			      size_t count, struct cache_detail *cd)
920 {
921 	struct page *page;
922 	char *kaddr;
923 	ssize_t ret = -ENOMEM;
924 
925 	if (count >= PAGE_SIZE)
926 		goto out_slow;
927 
928 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
929 	if (!page)
930 		goto out_slow;
931 
932 	kaddr = kmap(page);
933 	ret = cache_do_downcall(kaddr, buf, count, cd);
934 	kunmap(page);
935 	unlock_page(page);
936 	put_page(page);
937 	return ret;
938 out_slow:
939 	return cache_slow_downcall(buf, count, cd);
940 }
941 
942 static ssize_t cache_write(struct file *filp, const char __user *buf,
943 			   size_t count, loff_t *ppos,
944 			   struct cache_detail *cd)
945 {
946 	struct address_space *mapping = filp->f_mapping;
947 	struct inode *inode = file_inode(filp);
948 	ssize_t ret = -EINVAL;
949 
950 	if (!cd->cache_parse)
951 		goto out;
952 
953 	inode_lock(inode);
954 	ret = cache_downcall(mapping, buf, count, cd);
955 	inode_unlock(inode);
956 out:
957 	return ret;
958 }
959 
960 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
961 
962 static __poll_t cache_poll(struct file *filp, poll_table *wait,
963 			       struct cache_detail *cd)
964 {
965 	__poll_t mask;
966 	struct cache_reader *rp = filp->private_data;
967 	struct cache_queue *cq;
968 
969 	poll_wait(filp, &queue_wait, wait);
970 
971 	/* alway allow write */
972 	mask = EPOLLOUT | EPOLLWRNORM;
973 
974 	if (!rp)
975 		return mask;
976 
977 	spin_lock(&queue_lock);
978 
979 	for (cq= &rp->q; &cq->list != &cd->queue;
980 	     cq = list_entry(cq->list.next, struct cache_queue, list))
981 		if (!cq->reader) {
982 			mask |= EPOLLIN | EPOLLRDNORM;
983 			break;
984 		}
985 	spin_unlock(&queue_lock);
986 	return mask;
987 }
988 
989 static int cache_ioctl(struct inode *ino, struct file *filp,
990 		       unsigned int cmd, unsigned long arg,
991 		       struct cache_detail *cd)
992 {
993 	int len = 0;
994 	struct cache_reader *rp = filp->private_data;
995 	struct cache_queue *cq;
996 
997 	if (cmd != FIONREAD || !rp)
998 		return -EINVAL;
999 
1000 	spin_lock(&queue_lock);
1001 
1002 	/* only find the length remaining in current request,
1003 	 * or the length of the next request
1004 	 */
1005 	for (cq= &rp->q; &cq->list != &cd->queue;
1006 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1007 		if (!cq->reader) {
1008 			struct cache_request *cr =
1009 				container_of(cq, struct cache_request, q);
1010 			len = cr->len - rp->offset;
1011 			break;
1012 		}
1013 	spin_unlock(&queue_lock);
1014 
1015 	return put_user(len, (int __user *)arg);
1016 }
1017 
1018 static int cache_open(struct inode *inode, struct file *filp,
1019 		      struct cache_detail *cd)
1020 {
1021 	struct cache_reader *rp = NULL;
1022 
1023 	if (!cd || !try_module_get(cd->owner))
1024 		return -EACCES;
1025 	nonseekable_open(inode, filp);
1026 	if (filp->f_mode & FMODE_READ) {
1027 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1028 		if (!rp) {
1029 			module_put(cd->owner);
1030 			return -ENOMEM;
1031 		}
1032 		rp->offset = 0;
1033 		rp->q.reader = 1;
1034 		atomic_inc(&cd->readers);
1035 		spin_lock(&queue_lock);
1036 		list_add(&rp->q.list, &cd->queue);
1037 		spin_unlock(&queue_lock);
1038 	}
1039 	filp->private_data = rp;
1040 	return 0;
1041 }
1042 
1043 static int cache_release(struct inode *inode, struct file *filp,
1044 			 struct cache_detail *cd)
1045 {
1046 	struct cache_reader *rp = filp->private_data;
1047 
1048 	if (rp) {
1049 		spin_lock(&queue_lock);
1050 		if (rp->offset) {
1051 			struct cache_queue *cq;
1052 			for (cq= &rp->q; &cq->list != &cd->queue;
1053 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1054 				if (!cq->reader) {
1055 					container_of(cq, struct cache_request, q)
1056 						->readers--;
1057 					break;
1058 				}
1059 			rp->offset = 0;
1060 		}
1061 		list_del(&rp->q.list);
1062 		spin_unlock(&queue_lock);
1063 
1064 		filp->private_data = NULL;
1065 		kfree(rp);
1066 
1067 		cd->last_close = seconds_since_boot();
1068 		atomic_dec(&cd->readers);
1069 	}
1070 	module_put(cd->owner);
1071 	return 0;
1072 }
1073 
1074 
1075 
1076 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1077 {
1078 	struct cache_queue *cq, *tmp;
1079 	struct cache_request *cr;
1080 	struct list_head dequeued;
1081 
1082 	INIT_LIST_HEAD(&dequeued);
1083 	spin_lock(&queue_lock);
1084 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1085 		if (!cq->reader) {
1086 			cr = container_of(cq, struct cache_request, q);
1087 			if (cr->item != ch)
1088 				continue;
1089 			if (test_bit(CACHE_PENDING, &ch->flags))
1090 				/* Lost a race and it is pending again */
1091 				break;
1092 			if (cr->readers != 0)
1093 				continue;
1094 			list_move(&cr->q.list, &dequeued);
1095 		}
1096 	spin_unlock(&queue_lock);
1097 	while (!list_empty(&dequeued)) {
1098 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1099 		list_del(&cr->q.list);
1100 		cache_put(cr->item, detail);
1101 		kfree(cr->buf);
1102 		kfree(cr);
1103 	}
1104 }
1105 
1106 /*
1107  * Support routines for text-based upcalls.
1108  * Fields are separated by spaces.
1109  * Fields are either mangled to quote space tab newline slosh with slosh
1110  * or a hexified with a leading \x
1111  * Record is terminated with newline.
1112  *
1113  */
1114 
1115 void qword_add(char **bpp, int *lp, char *str)
1116 {
1117 	char *bp = *bpp;
1118 	int len = *lp;
1119 	int ret;
1120 
1121 	if (len < 0) return;
1122 
1123 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1124 	if (ret >= len) {
1125 		bp += len;
1126 		len = -1;
1127 	} else {
1128 		bp += ret;
1129 		len -= ret;
1130 		*bp++ = ' ';
1131 		len--;
1132 	}
1133 	*bpp = bp;
1134 	*lp = len;
1135 }
1136 EXPORT_SYMBOL_GPL(qword_add);
1137 
1138 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1139 {
1140 	char *bp = *bpp;
1141 	int len = *lp;
1142 
1143 	if (len < 0) return;
1144 
1145 	if (len > 2) {
1146 		*bp++ = '\\';
1147 		*bp++ = 'x';
1148 		len -= 2;
1149 		while (blen && len >= 2) {
1150 			bp = hex_byte_pack(bp, *buf++);
1151 			len -= 2;
1152 			blen--;
1153 		}
1154 	}
1155 	if (blen || len<1) len = -1;
1156 	else {
1157 		*bp++ = ' ';
1158 		len--;
1159 	}
1160 	*bpp = bp;
1161 	*lp = len;
1162 }
1163 EXPORT_SYMBOL_GPL(qword_addhex);
1164 
1165 static void warn_no_listener(struct cache_detail *detail)
1166 {
1167 	if (detail->last_warn != detail->last_close) {
1168 		detail->last_warn = detail->last_close;
1169 		if (detail->warn_no_listener)
1170 			detail->warn_no_listener(detail, detail->last_close != 0);
1171 	}
1172 }
1173 
1174 static bool cache_listeners_exist(struct cache_detail *detail)
1175 {
1176 	if (atomic_read(&detail->readers))
1177 		return true;
1178 	if (detail->last_close == 0)
1179 		/* This cache was never opened */
1180 		return false;
1181 	if (detail->last_close < seconds_since_boot() - 30)
1182 		/*
1183 		 * We allow for the possibility that someone might
1184 		 * restart a userspace daemon without restarting the
1185 		 * server; but after 30 seconds, we give up.
1186 		 */
1187 		 return false;
1188 	return true;
1189 }
1190 
1191 /*
1192  * register an upcall request to user-space and queue it up for read() by the
1193  * upcall daemon.
1194  *
1195  * Each request is at most one page long.
1196  */
1197 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1198 {
1199 
1200 	char *buf;
1201 	struct cache_request *crq;
1202 	int ret = 0;
1203 
1204 	if (!detail->cache_request)
1205 		return -EINVAL;
1206 
1207 	if (!cache_listeners_exist(detail)) {
1208 		warn_no_listener(detail);
1209 		return -EINVAL;
1210 	}
1211 	if (test_bit(CACHE_CLEANED, &h->flags))
1212 		/* Too late to make an upcall */
1213 		return -EAGAIN;
1214 
1215 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1216 	if (!buf)
1217 		return -EAGAIN;
1218 
1219 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1220 	if (!crq) {
1221 		kfree(buf);
1222 		return -EAGAIN;
1223 	}
1224 
1225 	crq->q.reader = 0;
1226 	crq->buf = buf;
1227 	crq->len = 0;
1228 	crq->readers = 0;
1229 	spin_lock(&queue_lock);
1230 	if (test_bit(CACHE_PENDING, &h->flags)) {
1231 		crq->item = cache_get(h);
1232 		list_add_tail(&crq->q.list, &detail->queue);
1233 	} else
1234 		/* Lost a race, no longer PENDING, so don't enqueue */
1235 		ret = -EAGAIN;
1236 	spin_unlock(&queue_lock);
1237 	wake_up(&queue_wait);
1238 	if (ret == -EAGAIN) {
1239 		kfree(buf);
1240 		kfree(crq);
1241 	}
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1245 
1246 /*
1247  * parse a message from user-space and pass it
1248  * to an appropriate cache
1249  * Messages are, like requests, separated into fields by
1250  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1251  *
1252  * Message is
1253  *   reply cachename expiry key ... content....
1254  *
1255  * key and content are both parsed by cache
1256  */
1257 
1258 int qword_get(char **bpp, char *dest, int bufsize)
1259 {
1260 	/* return bytes copied, or -1 on error */
1261 	char *bp = *bpp;
1262 	int len = 0;
1263 
1264 	while (*bp == ' ') bp++;
1265 
1266 	if (bp[0] == '\\' && bp[1] == 'x') {
1267 		/* HEX STRING */
1268 		bp += 2;
1269 		while (len < bufsize - 1) {
1270 			int h, l;
1271 
1272 			h = hex_to_bin(bp[0]);
1273 			if (h < 0)
1274 				break;
1275 
1276 			l = hex_to_bin(bp[1]);
1277 			if (l < 0)
1278 				break;
1279 
1280 			*dest++ = (h << 4) | l;
1281 			bp += 2;
1282 			len++;
1283 		}
1284 	} else {
1285 		/* text with \nnn octal quoting */
1286 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1287 			if (*bp == '\\' &&
1288 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1289 			    isodigit(bp[2]) &&
1290 			    isodigit(bp[3])) {
1291 				int byte = (*++bp -'0');
1292 				bp++;
1293 				byte = (byte << 3) | (*bp++ - '0');
1294 				byte = (byte << 3) | (*bp++ - '0');
1295 				*dest++ = byte;
1296 				len++;
1297 			} else {
1298 				*dest++ = *bp++;
1299 				len++;
1300 			}
1301 		}
1302 	}
1303 
1304 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1305 		return -1;
1306 	while (*bp == ' ') bp++;
1307 	*bpp = bp;
1308 	*dest = '\0';
1309 	return len;
1310 }
1311 EXPORT_SYMBOL_GPL(qword_get);
1312 
1313 
1314 /*
1315  * support /proc/net/rpc/$CACHENAME/content
1316  * as a seqfile.
1317  * We call ->cache_show passing NULL for the item to
1318  * get a header, then pass each real item in the cache
1319  */
1320 
1321 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1322 {
1323 	loff_t n = *pos;
1324 	unsigned int hash, entry;
1325 	struct cache_head *ch;
1326 	struct cache_detail *cd = m->private;
1327 
1328 	if (!n--)
1329 		return SEQ_START_TOKEN;
1330 	hash = n >> 32;
1331 	entry = n & ((1LL<<32) - 1);
1332 
1333 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1334 		if (!entry--)
1335 			return ch;
1336 	n &= ~((1LL<<32) - 1);
1337 	do {
1338 		hash++;
1339 		n += 1LL<<32;
1340 	} while(hash < cd->hash_size &&
1341 		hlist_empty(&cd->hash_table[hash]));
1342 	if (hash >= cd->hash_size)
1343 		return NULL;
1344 	*pos = n+1;
1345 	return hlist_entry_safe(rcu_dereference_raw(
1346 				hlist_first_rcu(&cd->hash_table[hash])),
1347 				struct cache_head, cache_list);
1348 }
1349 
1350 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1351 {
1352 	struct cache_head *ch = p;
1353 	int hash = (*pos >> 32);
1354 	struct cache_detail *cd = m->private;
1355 
1356 	if (p == SEQ_START_TOKEN)
1357 		hash = 0;
1358 	else if (ch->cache_list.next == NULL) {
1359 		hash++;
1360 		*pos += 1LL<<32;
1361 	} else {
1362 		++*pos;
1363 		return hlist_entry_safe(rcu_dereference_raw(
1364 					hlist_next_rcu(&ch->cache_list)),
1365 					struct cache_head, cache_list);
1366 	}
1367 	*pos &= ~((1LL<<32) - 1);
1368 	while (hash < cd->hash_size &&
1369 	       hlist_empty(&cd->hash_table[hash])) {
1370 		hash++;
1371 		*pos += 1LL<<32;
1372 	}
1373 	if (hash >= cd->hash_size)
1374 		return NULL;
1375 	++*pos;
1376 	return hlist_entry_safe(rcu_dereference_raw(
1377 				hlist_first_rcu(&cd->hash_table[hash])),
1378 				struct cache_head, cache_list);
1379 }
1380 EXPORT_SYMBOL_GPL(cache_seq_next);
1381 
1382 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1383 	__acquires(RCU)
1384 {
1385 	rcu_read_lock();
1386 	return __cache_seq_start(m, pos);
1387 }
1388 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1389 
1390 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1391 {
1392 	return cache_seq_next(file, p, pos);
1393 }
1394 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1395 
1396 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1397 	__releases(RCU)
1398 {
1399 	rcu_read_unlock();
1400 }
1401 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1402 
1403 static int c_show(struct seq_file *m, void *p)
1404 {
1405 	struct cache_head *cp = p;
1406 	struct cache_detail *cd = m->private;
1407 
1408 	if (p == SEQ_START_TOKEN)
1409 		return cd->cache_show(m, cd, NULL);
1410 
1411 	ifdebug(CACHE)
1412 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1413 			   convert_to_wallclock(cp->expiry_time),
1414 			   kref_read(&cp->ref), cp->flags);
1415 	cache_get(cp);
1416 	if (cache_check(cd, cp, NULL))
1417 		/* cache_check does a cache_put on failure */
1418 		seq_printf(m, "# ");
1419 	else {
1420 		if (cache_is_expired(cd, cp))
1421 			seq_printf(m, "# ");
1422 		cache_put(cp, cd);
1423 	}
1424 
1425 	return cd->cache_show(m, cd, cp);
1426 }
1427 
1428 static const struct seq_operations cache_content_op = {
1429 	.start	= cache_seq_start_rcu,
1430 	.next	= cache_seq_next_rcu,
1431 	.stop	= cache_seq_stop_rcu,
1432 	.show	= c_show,
1433 };
1434 
1435 static int content_open(struct inode *inode, struct file *file,
1436 			struct cache_detail *cd)
1437 {
1438 	struct seq_file *seq;
1439 	int err;
1440 
1441 	if (!cd || !try_module_get(cd->owner))
1442 		return -EACCES;
1443 
1444 	err = seq_open(file, &cache_content_op);
1445 	if (err) {
1446 		module_put(cd->owner);
1447 		return err;
1448 	}
1449 
1450 	seq = file->private_data;
1451 	seq->private = cd;
1452 	return 0;
1453 }
1454 
1455 static int content_release(struct inode *inode, struct file *file,
1456 		struct cache_detail *cd)
1457 {
1458 	int ret = seq_release(inode, file);
1459 	module_put(cd->owner);
1460 	return ret;
1461 }
1462 
1463 static int open_flush(struct inode *inode, struct file *file,
1464 			struct cache_detail *cd)
1465 {
1466 	if (!cd || !try_module_get(cd->owner))
1467 		return -EACCES;
1468 	return nonseekable_open(inode, file);
1469 }
1470 
1471 static int release_flush(struct inode *inode, struct file *file,
1472 			struct cache_detail *cd)
1473 {
1474 	module_put(cd->owner);
1475 	return 0;
1476 }
1477 
1478 static ssize_t read_flush(struct file *file, char __user *buf,
1479 			  size_t count, loff_t *ppos,
1480 			  struct cache_detail *cd)
1481 {
1482 	char tbuf[22];
1483 	size_t len;
1484 
1485 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1486 			convert_to_wallclock(cd->flush_time));
1487 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1488 }
1489 
1490 static ssize_t write_flush(struct file *file, const char __user *buf,
1491 			   size_t count, loff_t *ppos,
1492 			   struct cache_detail *cd)
1493 {
1494 	char tbuf[20];
1495 	char *ep;
1496 	time_t now;
1497 
1498 	if (*ppos || count > sizeof(tbuf)-1)
1499 		return -EINVAL;
1500 	if (copy_from_user(tbuf, buf, count))
1501 		return -EFAULT;
1502 	tbuf[count] = 0;
1503 	simple_strtoul(tbuf, &ep, 0);
1504 	if (*ep && *ep != '\n')
1505 		return -EINVAL;
1506 	/* Note that while we check that 'buf' holds a valid number,
1507 	 * we always ignore the value and just flush everything.
1508 	 * Making use of the number leads to races.
1509 	 */
1510 
1511 	now = seconds_since_boot();
1512 	/* Always flush everything, so behave like cache_purge()
1513 	 * Do this by advancing flush_time to the current time,
1514 	 * or by one second if it has already reached the current time.
1515 	 * Newly added cache entries will always have ->last_refresh greater
1516 	 * that ->flush_time, so they don't get flushed prematurely.
1517 	 */
1518 
1519 	if (cd->flush_time >= now)
1520 		now = cd->flush_time + 1;
1521 
1522 	cd->flush_time = now;
1523 	cd->nextcheck = now;
1524 	cache_flush();
1525 
1526 	*ppos += count;
1527 	return count;
1528 }
1529 
1530 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1531 				 size_t count, loff_t *ppos)
1532 {
1533 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1534 
1535 	return cache_read(filp, buf, count, ppos, cd);
1536 }
1537 
1538 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1539 				  size_t count, loff_t *ppos)
1540 {
1541 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1542 
1543 	return cache_write(filp, buf, count, ppos, cd);
1544 }
1545 
1546 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1547 {
1548 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1549 
1550 	return cache_poll(filp, wait, cd);
1551 }
1552 
1553 static long cache_ioctl_procfs(struct file *filp,
1554 			       unsigned int cmd, unsigned long arg)
1555 {
1556 	struct inode *inode = file_inode(filp);
1557 	struct cache_detail *cd = PDE_DATA(inode);
1558 
1559 	return cache_ioctl(inode, filp, cmd, arg, cd);
1560 }
1561 
1562 static int cache_open_procfs(struct inode *inode, struct file *filp)
1563 {
1564 	struct cache_detail *cd = PDE_DATA(inode);
1565 
1566 	return cache_open(inode, filp, cd);
1567 }
1568 
1569 static int cache_release_procfs(struct inode *inode, struct file *filp)
1570 {
1571 	struct cache_detail *cd = PDE_DATA(inode);
1572 
1573 	return cache_release(inode, filp, cd);
1574 }
1575 
1576 static const struct file_operations cache_file_operations_procfs = {
1577 	.owner		= THIS_MODULE,
1578 	.llseek		= no_llseek,
1579 	.read		= cache_read_procfs,
1580 	.write		= cache_write_procfs,
1581 	.poll		= cache_poll_procfs,
1582 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1583 	.open		= cache_open_procfs,
1584 	.release	= cache_release_procfs,
1585 };
1586 
1587 static int content_open_procfs(struct inode *inode, struct file *filp)
1588 {
1589 	struct cache_detail *cd = PDE_DATA(inode);
1590 
1591 	return content_open(inode, filp, cd);
1592 }
1593 
1594 static int content_release_procfs(struct inode *inode, struct file *filp)
1595 {
1596 	struct cache_detail *cd = PDE_DATA(inode);
1597 
1598 	return content_release(inode, filp, cd);
1599 }
1600 
1601 static const struct file_operations content_file_operations_procfs = {
1602 	.open		= content_open_procfs,
1603 	.read		= seq_read,
1604 	.llseek		= seq_lseek,
1605 	.release	= content_release_procfs,
1606 };
1607 
1608 static int open_flush_procfs(struct inode *inode, struct file *filp)
1609 {
1610 	struct cache_detail *cd = PDE_DATA(inode);
1611 
1612 	return open_flush(inode, filp, cd);
1613 }
1614 
1615 static int release_flush_procfs(struct inode *inode, struct file *filp)
1616 {
1617 	struct cache_detail *cd = PDE_DATA(inode);
1618 
1619 	return release_flush(inode, filp, cd);
1620 }
1621 
1622 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1623 			    size_t count, loff_t *ppos)
1624 {
1625 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1626 
1627 	return read_flush(filp, buf, count, ppos, cd);
1628 }
1629 
1630 static ssize_t write_flush_procfs(struct file *filp,
1631 				  const char __user *buf,
1632 				  size_t count, loff_t *ppos)
1633 {
1634 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1635 
1636 	return write_flush(filp, buf, count, ppos, cd);
1637 }
1638 
1639 static const struct file_operations cache_flush_operations_procfs = {
1640 	.open		= open_flush_procfs,
1641 	.read		= read_flush_procfs,
1642 	.write		= write_flush_procfs,
1643 	.release	= release_flush_procfs,
1644 	.llseek		= no_llseek,
1645 };
1646 
1647 static void remove_cache_proc_entries(struct cache_detail *cd)
1648 {
1649 	if (cd->procfs) {
1650 		proc_remove(cd->procfs);
1651 		cd->procfs = NULL;
1652 	}
1653 }
1654 
1655 #ifdef CONFIG_PROC_FS
1656 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1657 {
1658 	struct proc_dir_entry *p;
1659 	struct sunrpc_net *sn;
1660 
1661 	sn = net_generic(net, sunrpc_net_id);
1662 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1663 	if (cd->procfs == NULL)
1664 		goto out_nomem;
1665 
1666 	p = proc_create_data("flush", S_IFREG | 0600,
1667 			     cd->procfs, &cache_flush_operations_procfs, cd);
1668 	if (p == NULL)
1669 		goto out_nomem;
1670 
1671 	if (cd->cache_request || cd->cache_parse) {
1672 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1673 				     &cache_file_operations_procfs, cd);
1674 		if (p == NULL)
1675 			goto out_nomem;
1676 	}
1677 	if (cd->cache_show) {
1678 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1679 				     &content_file_operations_procfs, cd);
1680 		if (p == NULL)
1681 			goto out_nomem;
1682 	}
1683 	return 0;
1684 out_nomem:
1685 	remove_cache_proc_entries(cd);
1686 	return -ENOMEM;
1687 }
1688 #else /* CONFIG_PROC_FS */
1689 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1690 {
1691 	return 0;
1692 }
1693 #endif
1694 
1695 void __init cache_initialize(void)
1696 {
1697 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1698 }
1699 
1700 int cache_register_net(struct cache_detail *cd, struct net *net)
1701 {
1702 	int ret;
1703 
1704 	sunrpc_init_cache_detail(cd);
1705 	ret = create_cache_proc_entries(cd, net);
1706 	if (ret)
1707 		sunrpc_destroy_cache_detail(cd);
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(cache_register_net);
1711 
1712 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1713 {
1714 	remove_cache_proc_entries(cd);
1715 	sunrpc_destroy_cache_detail(cd);
1716 }
1717 EXPORT_SYMBOL_GPL(cache_unregister_net);
1718 
1719 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1720 {
1721 	struct cache_detail *cd;
1722 	int i;
1723 
1724 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1725 	if (cd == NULL)
1726 		return ERR_PTR(-ENOMEM);
1727 
1728 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1729 				 GFP_KERNEL);
1730 	if (cd->hash_table == NULL) {
1731 		kfree(cd);
1732 		return ERR_PTR(-ENOMEM);
1733 	}
1734 
1735 	for (i = 0; i < cd->hash_size; i++)
1736 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1737 	cd->net = net;
1738 	return cd;
1739 }
1740 EXPORT_SYMBOL_GPL(cache_create_net);
1741 
1742 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1743 {
1744 	kfree(cd->hash_table);
1745 	kfree(cd);
1746 }
1747 EXPORT_SYMBOL_GPL(cache_destroy_net);
1748 
1749 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1750 				 size_t count, loff_t *ppos)
1751 {
1752 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1753 
1754 	return cache_read(filp, buf, count, ppos, cd);
1755 }
1756 
1757 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1758 				  size_t count, loff_t *ppos)
1759 {
1760 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1761 
1762 	return cache_write(filp, buf, count, ppos, cd);
1763 }
1764 
1765 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1766 {
1767 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1768 
1769 	return cache_poll(filp, wait, cd);
1770 }
1771 
1772 static long cache_ioctl_pipefs(struct file *filp,
1773 			      unsigned int cmd, unsigned long arg)
1774 {
1775 	struct inode *inode = file_inode(filp);
1776 	struct cache_detail *cd = RPC_I(inode)->private;
1777 
1778 	return cache_ioctl(inode, filp, cmd, arg, cd);
1779 }
1780 
1781 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1782 {
1783 	struct cache_detail *cd = RPC_I(inode)->private;
1784 
1785 	return cache_open(inode, filp, cd);
1786 }
1787 
1788 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1789 {
1790 	struct cache_detail *cd = RPC_I(inode)->private;
1791 
1792 	return cache_release(inode, filp, cd);
1793 }
1794 
1795 const struct file_operations cache_file_operations_pipefs = {
1796 	.owner		= THIS_MODULE,
1797 	.llseek		= no_llseek,
1798 	.read		= cache_read_pipefs,
1799 	.write		= cache_write_pipefs,
1800 	.poll		= cache_poll_pipefs,
1801 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1802 	.open		= cache_open_pipefs,
1803 	.release	= cache_release_pipefs,
1804 };
1805 
1806 static int content_open_pipefs(struct inode *inode, struct file *filp)
1807 {
1808 	struct cache_detail *cd = RPC_I(inode)->private;
1809 
1810 	return content_open(inode, filp, cd);
1811 }
1812 
1813 static int content_release_pipefs(struct inode *inode, struct file *filp)
1814 {
1815 	struct cache_detail *cd = RPC_I(inode)->private;
1816 
1817 	return content_release(inode, filp, cd);
1818 }
1819 
1820 const struct file_operations content_file_operations_pipefs = {
1821 	.open		= content_open_pipefs,
1822 	.read		= seq_read,
1823 	.llseek		= seq_lseek,
1824 	.release	= content_release_pipefs,
1825 };
1826 
1827 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1828 {
1829 	struct cache_detail *cd = RPC_I(inode)->private;
1830 
1831 	return open_flush(inode, filp, cd);
1832 }
1833 
1834 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1835 {
1836 	struct cache_detail *cd = RPC_I(inode)->private;
1837 
1838 	return release_flush(inode, filp, cd);
1839 }
1840 
1841 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1842 			    size_t count, loff_t *ppos)
1843 {
1844 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1845 
1846 	return read_flush(filp, buf, count, ppos, cd);
1847 }
1848 
1849 static ssize_t write_flush_pipefs(struct file *filp,
1850 				  const char __user *buf,
1851 				  size_t count, loff_t *ppos)
1852 {
1853 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1854 
1855 	return write_flush(filp, buf, count, ppos, cd);
1856 }
1857 
1858 const struct file_operations cache_flush_operations_pipefs = {
1859 	.open		= open_flush_pipefs,
1860 	.read		= read_flush_pipefs,
1861 	.write		= write_flush_pipefs,
1862 	.release	= release_flush_pipefs,
1863 	.llseek		= no_llseek,
1864 };
1865 
1866 int sunrpc_cache_register_pipefs(struct dentry *parent,
1867 				 const char *name, umode_t umode,
1868 				 struct cache_detail *cd)
1869 {
1870 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1871 	if (IS_ERR(dir))
1872 		return PTR_ERR(dir);
1873 	cd->pipefs = dir;
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1877 
1878 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1879 {
1880 	if (cd->pipefs) {
1881 		rpc_remove_cache_dir(cd->pipefs);
1882 		cd->pipefs = NULL;
1883 	}
1884 }
1885 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1886 
1887 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1888 {
1889 	spin_lock(&cd->hash_lock);
1890 	if (!hlist_unhashed(&h->cache_list)){
1891 		hlist_del_init_rcu(&h->cache_list);
1892 		cd->entries--;
1893 		spin_unlock(&cd->hash_lock);
1894 		cache_put(h, cd);
1895 	} else
1896 		spin_unlock(&cd->hash_lock);
1897 }
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1899