xref: /openbmc/linux/net/sunrpc/cache.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time64_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (!detail->match(tmp, key))
69 			continue;
70 		if (test_bit(CACHE_VALID, &tmp->flags) &&
71 		    cache_is_expired(detail, tmp))
72 			continue;
73 		tmp = cache_get_rcu(tmp);
74 		rcu_read_unlock();
75 		return tmp;
76 	}
77 	rcu_read_unlock();
78 	return NULL;
79 }
80 
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 					    struct cache_detail *cd)
83 {
84 	/* Must be called under cd->hash_lock */
85 	hlist_del_init_rcu(&ch->cache_list);
86 	set_bit(CACHE_CLEANED, &ch->flags);
87 	cd->entries --;
88 }
89 
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 					  struct cache_detail *cd)
92 {
93 	cache_fresh_unlocked(ch, cd);
94 	cache_put(ch, cd);
95 }
96 
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 						 struct cache_head *key,
99 						 int hash)
100 {
101 	struct cache_head *new, *tmp, *freeme = NULL;
102 	struct hlist_head *head = &detail->hash_table[hash];
103 
104 	new = detail->alloc();
105 	if (!new)
106 		return NULL;
107 	/* must fully initialise 'new', else
108 	 * we might get lose if we need to
109 	 * cache_put it soon.
110 	 */
111 	cache_init(new, detail);
112 	detail->init(new, key);
113 
114 	spin_lock(&detail->hash_lock);
115 
116 	/* check if entry appeared while we slept */
117 	hlist_for_each_entry_rcu(tmp, head, cache_list,
118 				 lockdep_is_held(&detail->hash_lock)) {
119 		if (!detail->match(tmp, key))
120 			continue;
121 		if (test_bit(CACHE_VALID, &tmp->flags) &&
122 		    cache_is_expired(detail, tmp)) {
123 			sunrpc_begin_cache_remove_entry(tmp, detail);
124 			trace_cache_entry_expired(detail, tmp);
125 			freeme = tmp;
126 			break;
127 		}
128 		cache_get(tmp);
129 		spin_unlock(&detail->hash_lock);
130 		cache_put(new, detail);
131 		return tmp;
132 	}
133 
134 	hlist_add_head_rcu(&new->cache_list, head);
135 	detail->entries++;
136 	cache_get(new);
137 	spin_unlock(&detail->hash_lock);
138 
139 	if (freeme)
140 		sunrpc_end_cache_remove_entry(freeme, detail);
141 	return new;
142 }
143 
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 					   struct cache_head *key, int hash)
146 {
147 	struct cache_head *ret;
148 
149 	ret = sunrpc_cache_find_rcu(detail, key, hash);
150 	if (ret)
151 		return ret;
152 	/* Didn't find anything, insert an empty entry */
153 	return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156 
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158 
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 			       struct cache_detail *detail)
161 {
162 	time64_t now = seconds_since_boot();
163 	if (now <= detail->flush_time)
164 		/* ensure it isn't immediately treated as expired */
165 		now = detail->flush_time + 1;
166 	head->expiry_time = expiry;
167 	head->last_refresh = now;
168 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 	set_bit(CACHE_VALID, &head->flags);
170 }
171 
172 static void cache_fresh_unlocked(struct cache_head *head,
173 				 struct cache_detail *detail)
174 {
175 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 		cache_revisit_request(head);
177 		cache_dequeue(detail, head);
178 	}
179 }
180 
181 static void cache_make_negative(struct cache_detail *detail,
182 				struct cache_head *h)
183 {
184 	set_bit(CACHE_NEGATIVE, &h->flags);
185 	trace_cache_entry_make_negative(detail, h);
186 }
187 
188 static void cache_entry_update(struct cache_detail *detail,
189 			       struct cache_head *h,
190 			       struct cache_head *new)
191 {
192 	if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 		detail->update(h, new);
194 		trace_cache_entry_update(detail, h);
195 	} else {
196 		cache_make_negative(detail, h);
197 	}
198 }
199 
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 				       struct cache_head *new, struct cache_head *old, int hash)
202 {
203 	/* The 'old' entry is to be replaced by 'new'.
204 	 * If 'old' is not VALID, we update it directly,
205 	 * otherwise we need to replace it
206 	 */
207 	struct cache_head *tmp;
208 
209 	if (!test_bit(CACHE_VALID, &old->flags)) {
210 		spin_lock(&detail->hash_lock);
211 		if (!test_bit(CACHE_VALID, &old->flags)) {
212 			cache_entry_update(detail, old, new);
213 			cache_fresh_locked(old, new->expiry_time, detail);
214 			spin_unlock(&detail->hash_lock);
215 			cache_fresh_unlocked(old, detail);
216 			return old;
217 		}
218 		spin_unlock(&detail->hash_lock);
219 	}
220 	/* We need to insert a new entry */
221 	tmp = detail->alloc();
222 	if (!tmp) {
223 		cache_put(old, detail);
224 		return NULL;
225 	}
226 	cache_init(tmp, detail);
227 	detail->init(tmp, old);
228 
229 	spin_lock(&detail->hash_lock);
230 	cache_entry_update(detail, tmp, new);
231 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 	detail->entries++;
233 	cache_get(tmp);
234 	cache_fresh_locked(tmp, new->expiry_time, detail);
235 	cache_fresh_locked(old, 0, detail);
236 	spin_unlock(&detail->hash_lock);
237 	cache_fresh_unlocked(tmp, detail);
238 	cache_fresh_unlocked(old, detail);
239 	cache_put(old, detail);
240 	return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243 
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246 	if (!test_bit(CACHE_VALID, &h->flags))
247 		return -EAGAIN;
248 	else {
249 		/* entry is valid */
250 		if (test_bit(CACHE_NEGATIVE, &h->flags))
251 			return -ENOENT;
252 		else {
253 			/*
254 			 * In combination with write barrier in
255 			 * sunrpc_cache_update, ensures that anyone
256 			 * using the cache entry after this sees the
257 			 * updated contents:
258 			 */
259 			smp_rmb();
260 			return 0;
261 		}
262 	}
263 }
264 
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267 	int rv;
268 
269 	spin_lock(&detail->hash_lock);
270 	rv = cache_is_valid(h);
271 	if (rv == -EAGAIN) {
272 		cache_make_negative(detail, h);
273 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 				   detail);
275 		rv = -ENOENT;
276 	}
277 	spin_unlock(&detail->hash_lock);
278 	cache_fresh_unlocked(h, detail);
279 	return rv;
280 }
281 
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297 		    struct cache_head *h, struct cache_req *rqstp)
298 {
299 	int rv;
300 	time64_t refresh_age, age;
301 
302 	/* First decide return status as best we can */
303 	rv = cache_is_valid(h);
304 
305 	/* now see if we want to start an upcall */
306 	refresh_age = (h->expiry_time - h->last_refresh);
307 	age = seconds_since_boot() - h->last_refresh;
308 
309 	if (rqstp == NULL) {
310 		if (rv == -EAGAIN)
311 			rv = -ENOENT;
312 	} else if (rv == -EAGAIN ||
313 		   (h->expiry_time != 0 && age > refresh_age/2)) {
314 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315 				refresh_age, age);
316 		switch (detail->cache_upcall(detail, h)) {
317 		case -EINVAL:
318 			rv = try_to_negate_entry(detail, h);
319 			break;
320 		case -EAGAIN:
321 			cache_fresh_unlocked(h, detail);
322 			break;
323 		}
324 	}
325 
326 	if (rv == -EAGAIN) {
327 		if (!cache_defer_req(rqstp, h)) {
328 			/*
329 			 * Request was not deferred; handle it as best
330 			 * we can ourselves:
331 			 */
332 			rv = cache_is_valid(h);
333 			if (rv == -EAGAIN)
334 				rv = -ETIMEDOUT;
335 		}
336 	}
337 	if (rv)
338 		cache_put(h, detail);
339 	return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342 
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374 
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379 
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382 
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385 	spin_lock_init(&cd->hash_lock);
386 	INIT_LIST_HEAD(&cd->queue);
387 	spin_lock(&cache_list_lock);
388 	cd->nextcheck = 0;
389 	cd->entries = 0;
390 	atomic_set(&cd->writers, 0);
391 	cd->last_close = 0;
392 	cd->last_warn = -1;
393 	list_add(&cd->others, &cache_list);
394 	spin_unlock(&cache_list_lock);
395 
396 	/* start the cleaning process */
397 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400 
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403 	cache_purge(cd);
404 	spin_lock(&cache_list_lock);
405 	spin_lock(&cd->hash_lock);
406 	if (current_detail == cd)
407 		current_detail = NULL;
408 	list_del_init(&cd->others);
409 	spin_unlock(&cd->hash_lock);
410 	spin_unlock(&cache_list_lock);
411 	if (list_empty(&cache_list)) {
412 		/* module must be being unloaded so its safe to kill the worker */
413 		cancel_delayed_work_sync(&cache_cleaner);
414 	}
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417 
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426 	int rv = 0;
427 	struct list_head *next;
428 
429 	spin_lock(&cache_list_lock);
430 
431 	/* find a suitable table if we don't already have one */
432 	while (current_detail == NULL ||
433 	    current_index >= current_detail->hash_size) {
434 		if (current_detail)
435 			next = current_detail->others.next;
436 		else
437 			next = cache_list.next;
438 		if (next == &cache_list) {
439 			current_detail = NULL;
440 			spin_unlock(&cache_list_lock);
441 			return -1;
442 		}
443 		current_detail = list_entry(next, struct cache_detail, others);
444 		if (current_detail->nextcheck > seconds_since_boot())
445 			current_index = current_detail->hash_size;
446 		else {
447 			current_index = 0;
448 			current_detail->nextcheck = seconds_since_boot()+30*60;
449 		}
450 	}
451 
452 	/* find a non-empty bucket in the table */
453 	while (current_detail &&
454 	       current_index < current_detail->hash_size &&
455 	       hlist_empty(&current_detail->hash_table[current_index]))
456 		current_index++;
457 
458 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
459 
460 	if (current_detail && current_index < current_detail->hash_size) {
461 		struct cache_head *ch = NULL;
462 		struct cache_detail *d;
463 		struct hlist_head *head;
464 		struct hlist_node *tmp;
465 
466 		spin_lock(&current_detail->hash_lock);
467 
468 		/* Ok, now to clean this strand */
469 
470 		head = &current_detail->hash_table[current_index];
471 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 			if (current_detail->nextcheck > ch->expiry_time)
473 				current_detail->nextcheck = ch->expiry_time+1;
474 			if (!cache_is_expired(current_detail, ch))
475 				continue;
476 
477 			sunrpc_begin_cache_remove_entry(ch, current_detail);
478 			trace_cache_entry_expired(current_detail, ch);
479 			rv = 1;
480 			break;
481 		}
482 
483 		spin_unlock(&current_detail->hash_lock);
484 		d = current_detail;
485 		if (!ch)
486 			current_index ++;
487 		spin_unlock(&cache_list_lock);
488 		if (ch)
489 			sunrpc_end_cache_remove_entry(ch, d);
490 	} else
491 		spin_unlock(&cache_list_lock);
492 
493 	return rv;
494 }
495 
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501 	int delay;
502 
503 	if (list_empty(&cache_list))
504 		return;
505 
506 	if (cache_clean() == -1)
507 		delay = round_jiffies_relative(30*HZ);
508 	else
509 		delay = 5;
510 
511 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
512 }
513 
514 
515 /*
516  * Clean all caches promptly.  This just calls cache_clean
517  * repeatedly until we are sure that every cache has had a chance to
518  * be fully cleaned
519  */
520 void cache_flush(void)
521 {
522 	while (cache_clean() != -1)
523 		cond_resched();
524 	while (cache_clean() != -1)
525 		cond_resched();
526 }
527 EXPORT_SYMBOL_GPL(cache_flush);
528 
529 void cache_purge(struct cache_detail *detail)
530 {
531 	struct cache_head *ch = NULL;
532 	struct hlist_head *head = NULL;
533 	int i = 0;
534 
535 	spin_lock(&detail->hash_lock);
536 	if (!detail->entries) {
537 		spin_unlock(&detail->hash_lock);
538 		return;
539 	}
540 
541 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542 	for (i = 0; i < detail->hash_size; i++) {
543 		head = &detail->hash_table[i];
544 		while (!hlist_empty(head)) {
545 			ch = hlist_entry(head->first, struct cache_head,
546 					 cache_list);
547 			sunrpc_begin_cache_remove_entry(ch, detail);
548 			spin_unlock(&detail->hash_lock);
549 			sunrpc_end_cache_remove_entry(ch, detail);
550 			spin_lock(&detail->hash_lock);
551 		}
552 	}
553 	spin_unlock(&detail->hash_lock);
554 }
555 EXPORT_SYMBOL_GPL(cache_purge);
556 
557 
558 /*
559  * Deferral and Revisiting of Requests.
560  *
561  * If a cache lookup finds a pending entry, we
562  * need to defer the request and revisit it later.
563  * All deferred requests are stored in a hash table,
564  * indexed by "struct cache_head *".
565  * As it may be wasteful to store a whole request
566  * structure, we allow the request to provide a
567  * deferred form, which must contain a
568  * 'struct cache_deferred_req'
569  * This cache_deferred_req contains a method to allow
570  * it to be revisited when cache info is available
571  */
572 
573 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
574 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
575 
576 #define	DFR_MAX	300	/* ??? */
577 
578 static DEFINE_SPINLOCK(cache_defer_lock);
579 static LIST_HEAD(cache_defer_list);
580 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
581 static int cache_defer_cnt;
582 
583 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
584 {
585 	hlist_del_init(&dreq->hash);
586 	if (!list_empty(&dreq->recent)) {
587 		list_del_init(&dreq->recent);
588 		cache_defer_cnt--;
589 	}
590 }
591 
592 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
593 {
594 	int hash = DFR_HASH(item);
595 
596 	INIT_LIST_HEAD(&dreq->recent);
597 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
598 }
599 
600 static void setup_deferral(struct cache_deferred_req *dreq,
601 			   struct cache_head *item,
602 			   int count_me)
603 {
604 
605 	dreq->item = item;
606 
607 	spin_lock(&cache_defer_lock);
608 
609 	__hash_deferred_req(dreq, item);
610 
611 	if (count_me) {
612 		cache_defer_cnt++;
613 		list_add(&dreq->recent, &cache_defer_list);
614 	}
615 
616 	spin_unlock(&cache_defer_lock);
617 
618 }
619 
620 struct thread_deferred_req {
621 	struct cache_deferred_req handle;
622 	struct completion completion;
623 };
624 
625 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
626 {
627 	struct thread_deferred_req *dr =
628 		container_of(dreq, struct thread_deferred_req, handle);
629 	complete(&dr->completion);
630 }
631 
632 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
633 {
634 	struct thread_deferred_req sleeper;
635 	struct cache_deferred_req *dreq = &sleeper.handle;
636 
637 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
638 	dreq->revisit = cache_restart_thread;
639 
640 	setup_deferral(dreq, item, 0);
641 
642 	if (!test_bit(CACHE_PENDING, &item->flags) ||
643 	    wait_for_completion_interruptible_timeout(
644 		    &sleeper.completion, req->thread_wait) <= 0) {
645 		/* The completion wasn't completed, so we need
646 		 * to clean up
647 		 */
648 		spin_lock(&cache_defer_lock);
649 		if (!hlist_unhashed(&sleeper.handle.hash)) {
650 			__unhash_deferred_req(&sleeper.handle);
651 			spin_unlock(&cache_defer_lock);
652 		} else {
653 			/* cache_revisit_request already removed
654 			 * this from the hash table, but hasn't
655 			 * called ->revisit yet.  It will very soon
656 			 * and we need to wait for it.
657 			 */
658 			spin_unlock(&cache_defer_lock);
659 			wait_for_completion(&sleeper.completion);
660 		}
661 	}
662 }
663 
664 static void cache_limit_defers(void)
665 {
666 	/* Make sure we haven't exceed the limit of allowed deferred
667 	 * requests.
668 	 */
669 	struct cache_deferred_req *discard = NULL;
670 
671 	if (cache_defer_cnt <= DFR_MAX)
672 		return;
673 
674 	spin_lock(&cache_defer_lock);
675 
676 	/* Consider removing either the first or the last */
677 	if (cache_defer_cnt > DFR_MAX) {
678 		if (prandom_u32() & 1)
679 			discard = list_entry(cache_defer_list.next,
680 					     struct cache_deferred_req, recent);
681 		else
682 			discard = list_entry(cache_defer_list.prev,
683 					     struct cache_deferred_req, recent);
684 		__unhash_deferred_req(discard);
685 	}
686 	spin_unlock(&cache_defer_lock);
687 	if (discard)
688 		discard->revisit(discard, 1);
689 }
690 
691 /* Return true if and only if a deferred request is queued. */
692 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
693 {
694 	struct cache_deferred_req *dreq;
695 
696 	if (req->thread_wait) {
697 		cache_wait_req(req, item);
698 		if (!test_bit(CACHE_PENDING, &item->flags))
699 			return false;
700 	}
701 	dreq = req->defer(req);
702 	if (dreq == NULL)
703 		return false;
704 	setup_deferral(dreq, item, 1);
705 	if (!test_bit(CACHE_PENDING, &item->flags))
706 		/* Bit could have been cleared before we managed to
707 		 * set up the deferral, so need to revisit just in case
708 		 */
709 		cache_revisit_request(item);
710 
711 	cache_limit_defers();
712 	return true;
713 }
714 
715 static void cache_revisit_request(struct cache_head *item)
716 {
717 	struct cache_deferred_req *dreq;
718 	struct list_head pending;
719 	struct hlist_node *tmp;
720 	int hash = DFR_HASH(item);
721 
722 	INIT_LIST_HEAD(&pending);
723 	spin_lock(&cache_defer_lock);
724 
725 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
726 		if (dreq->item == item) {
727 			__unhash_deferred_req(dreq);
728 			list_add(&dreq->recent, &pending);
729 		}
730 
731 	spin_unlock(&cache_defer_lock);
732 
733 	while (!list_empty(&pending)) {
734 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
735 		list_del_init(&dreq->recent);
736 		dreq->revisit(dreq, 0);
737 	}
738 }
739 
740 void cache_clean_deferred(void *owner)
741 {
742 	struct cache_deferred_req *dreq, *tmp;
743 	struct list_head pending;
744 
745 
746 	INIT_LIST_HEAD(&pending);
747 	spin_lock(&cache_defer_lock);
748 
749 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
750 		if (dreq->owner == owner) {
751 			__unhash_deferred_req(dreq);
752 			list_add(&dreq->recent, &pending);
753 		}
754 	}
755 	spin_unlock(&cache_defer_lock);
756 
757 	while (!list_empty(&pending)) {
758 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
759 		list_del_init(&dreq->recent);
760 		dreq->revisit(dreq, 1);
761 	}
762 }
763 
764 /*
765  * communicate with user-space
766  *
767  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
768  * On read, you get a full request, or block.
769  * On write, an update request is processed.
770  * Poll works if anything to read, and always allows write.
771  *
772  * Implemented by linked list of requests.  Each open file has
773  * a ->private that also exists in this list.  New requests are added
774  * to the end and may wakeup and preceding readers.
775  * New readers are added to the head.  If, on read, an item is found with
776  * CACHE_UPCALLING clear, we free it from the list.
777  *
778  */
779 
780 static DEFINE_SPINLOCK(queue_lock);
781 static DEFINE_MUTEX(queue_io_mutex);
782 
783 struct cache_queue {
784 	struct list_head	list;
785 	int			reader;	/* if 0, then request */
786 };
787 struct cache_request {
788 	struct cache_queue	q;
789 	struct cache_head	*item;
790 	char			* buf;
791 	int			len;
792 	int			readers;
793 };
794 struct cache_reader {
795 	struct cache_queue	q;
796 	int			offset;	/* if non-0, we have a refcnt on next request */
797 };
798 
799 static int cache_request(struct cache_detail *detail,
800 			       struct cache_request *crq)
801 {
802 	char *bp = crq->buf;
803 	int len = PAGE_SIZE;
804 
805 	detail->cache_request(detail, crq->item, &bp, &len);
806 	if (len < 0)
807 		return -EAGAIN;
808 	return PAGE_SIZE - len;
809 }
810 
811 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
812 			  loff_t *ppos, struct cache_detail *cd)
813 {
814 	struct cache_reader *rp = filp->private_data;
815 	struct cache_request *rq;
816 	struct inode *inode = file_inode(filp);
817 	int err;
818 
819 	if (count == 0)
820 		return 0;
821 
822 	inode_lock(inode); /* protect against multiple concurrent
823 			      * readers on this file */
824  again:
825 	spin_lock(&queue_lock);
826 	/* need to find next request */
827 	while (rp->q.list.next != &cd->queue &&
828 	       list_entry(rp->q.list.next, struct cache_queue, list)
829 	       ->reader) {
830 		struct list_head *next = rp->q.list.next;
831 		list_move(&rp->q.list, next);
832 	}
833 	if (rp->q.list.next == &cd->queue) {
834 		spin_unlock(&queue_lock);
835 		inode_unlock(inode);
836 		WARN_ON_ONCE(rp->offset);
837 		return 0;
838 	}
839 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
840 	WARN_ON_ONCE(rq->q.reader);
841 	if (rp->offset == 0)
842 		rq->readers++;
843 	spin_unlock(&queue_lock);
844 
845 	if (rq->len == 0) {
846 		err = cache_request(cd, rq);
847 		if (err < 0)
848 			goto out;
849 		rq->len = err;
850 	}
851 
852 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
853 		err = -EAGAIN;
854 		spin_lock(&queue_lock);
855 		list_move(&rp->q.list, &rq->q.list);
856 		spin_unlock(&queue_lock);
857 	} else {
858 		if (rp->offset + count > rq->len)
859 			count = rq->len - rp->offset;
860 		err = -EFAULT;
861 		if (copy_to_user(buf, rq->buf + rp->offset, count))
862 			goto out;
863 		rp->offset += count;
864 		if (rp->offset >= rq->len) {
865 			rp->offset = 0;
866 			spin_lock(&queue_lock);
867 			list_move(&rp->q.list, &rq->q.list);
868 			spin_unlock(&queue_lock);
869 		}
870 		err = 0;
871 	}
872  out:
873 	if (rp->offset == 0) {
874 		/* need to release rq */
875 		spin_lock(&queue_lock);
876 		rq->readers--;
877 		if (rq->readers == 0 &&
878 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
879 			list_del(&rq->q.list);
880 			spin_unlock(&queue_lock);
881 			cache_put(rq->item, cd);
882 			kfree(rq->buf);
883 			kfree(rq);
884 		} else
885 			spin_unlock(&queue_lock);
886 	}
887 	if (err == -EAGAIN)
888 		goto again;
889 	inode_unlock(inode);
890 	return err ? err :  count;
891 }
892 
893 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
894 				 size_t count, struct cache_detail *cd)
895 {
896 	ssize_t ret;
897 
898 	if (count == 0)
899 		return -EINVAL;
900 	if (copy_from_user(kaddr, buf, count))
901 		return -EFAULT;
902 	kaddr[count] = '\0';
903 	ret = cd->cache_parse(cd, kaddr, count);
904 	if (!ret)
905 		ret = count;
906 	return ret;
907 }
908 
909 static ssize_t cache_slow_downcall(const char __user *buf,
910 				   size_t count, struct cache_detail *cd)
911 {
912 	static char write_buf[32768]; /* protected by queue_io_mutex */
913 	ssize_t ret = -EINVAL;
914 
915 	if (count >= sizeof(write_buf))
916 		goto out;
917 	mutex_lock(&queue_io_mutex);
918 	ret = cache_do_downcall(write_buf, buf, count, cd);
919 	mutex_unlock(&queue_io_mutex);
920 out:
921 	return ret;
922 }
923 
924 static ssize_t cache_downcall(struct address_space *mapping,
925 			      const char __user *buf,
926 			      size_t count, struct cache_detail *cd)
927 {
928 	struct page *page;
929 	char *kaddr;
930 	ssize_t ret = -ENOMEM;
931 
932 	if (count >= PAGE_SIZE)
933 		goto out_slow;
934 
935 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
936 	if (!page)
937 		goto out_slow;
938 
939 	kaddr = kmap(page);
940 	ret = cache_do_downcall(kaddr, buf, count, cd);
941 	kunmap(page);
942 	unlock_page(page);
943 	put_page(page);
944 	return ret;
945 out_slow:
946 	return cache_slow_downcall(buf, count, cd);
947 }
948 
949 static ssize_t cache_write(struct file *filp, const char __user *buf,
950 			   size_t count, loff_t *ppos,
951 			   struct cache_detail *cd)
952 {
953 	struct address_space *mapping = filp->f_mapping;
954 	struct inode *inode = file_inode(filp);
955 	ssize_t ret = -EINVAL;
956 
957 	if (!cd->cache_parse)
958 		goto out;
959 
960 	inode_lock(inode);
961 	ret = cache_downcall(mapping, buf, count, cd);
962 	inode_unlock(inode);
963 out:
964 	return ret;
965 }
966 
967 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
968 
969 static __poll_t cache_poll(struct file *filp, poll_table *wait,
970 			       struct cache_detail *cd)
971 {
972 	__poll_t mask;
973 	struct cache_reader *rp = filp->private_data;
974 	struct cache_queue *cq;
975 
976 	poll_wait(filp, &queue_wait, wait);
977 
978 	/* alway allow write */
979 	mask = EPOLLOUT | EPOLLWRNORM;
980 
981 	if (!rp)
982 		return mask;
983 
984 	spin_lock(&queue_lock);
985 
986 	for (cq= &rp->q; &cq->list != &cd->queue;
987 	     cq = list_entry(cq->list.next, struct cache_queue, list))
988 		if (!cq->reader) {
989 			mask |= EPOLLIN | EPOLLRDNORM;
990 			break;
991 		}
992 	spin_unlock(&queue_lock);
993 	return mask;
994 }
995 
996 static int cache_ioctl(struct inode *ino, struct file *filp,
997 		       unsigned int cmd, unsigned long arg,
998 		       struct cache_detail *cd)
999 {
1000 	int len = 0;
1001 	struct cache_reader *rp = filp->private_data;
1002 	struct cache_queue *cq;
1003 
1004 	if (cmd != FIONREAD || !rp)
1005 		return -EINVAL;
1006 
1007 	spin_lock(&queue_lock);
1008 
1009 	/* only find the length remaining in current request,
1010 	 * or the length of the next request
1011 	 */
1012 	for (cq= &rp->q; &cq->list != &cd->queue;
1013 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1014 		if (!cq->reader) {
1015 			struct cache_request *cr =
1016 				container_of(cq, struct cache_request, q);
1017 			len = cr->len - rp->offset;
1018 			break;
1019 		}
1020 	spin_unlock(&queue_lock);
1021 
1022 	return put_user(len, (int __user *)arg);
1023 }
1024 
1025 static int cache_open(struct inode *inode, struct file *filp,
1026 		      struct cache_detail *cd)
1027 {
1028 	struct cache_reader *rp = NULL;
1029 
1030 	if (!cd || !try_module_get(cd->owner))
1031 		return -EACCES;
1032 	nonseekable_open(inode, filp);
1033 	if (filp->f_mode & FMODE_READ) {
1034 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1035 		if (!rp) {
1036 			module_put(cd->owner);
1037 			return -ENOMEM;
1038 		}
1039 		rp->offset = 0;
1040 		rp->q.reader = 1;
1041 
1042 		spin_lock(&queue_lock);
1043 		list_add(&rp->q.list, &cd->queue);
1044 		spin_unlock(&queue_lock);
1045 	}
1046 	if (filp->f_mode & FMODE_WRITE)
1047 		atomic_inc(&cd->writers);
1048 	filp->private_data = rp;
1049 	return 0;
1050 }
1051 
1052 static int cache_release(struct inode *inode, struct file *filp,
1053 			 struct cache_detail *cd)
1054 {
1055 	struct cache_reader *rp = filp->private_data;
1056 
1057 	if (rp) {
1058 		spin_lock(&queue_lock);
1059 		if (rp->offset) {
1060 			struct cache_queue *cq;
1061 			for (cq= &rp->q; &cq->list != &cd->queue;
1062 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1063 				if (!cq->reader) {
1064 					container_of(cq, struct cache_request, q)
1065 						->readers--;
1066 					break;
1067 				}
1068 			rp->offset = 0;
1069 		}
1070 		list_del(&rp->q.list);
1071 		spin_unlock(&queue_lock);
1072 
1073 		filp->private_data = NULL;
1074 		kfree(rp);
1075 
1076 	}
1077 	if (filp->f_mode & FMODE_WRITE) {
1078 		atomic_dec(&cd->writers);
1079 		cd->last_close = seconds_since_boot();
1080 	}
1081 	module_put(cd->owner);
1082 	return 0;
1083 }
1084 
1085 
1086 
1087 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1088 {
1089 	struct cache_queue *cq, *tmp;
1090 	struct cache_request *cr;
1091 	struct list_head dequeued;
1092 
1093 	INIT_LIST_HEAD(&dequeued);
1094 	spin_lock(&queue_lock);
1095 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1096 		if (!cq->reader) {
1097 			cr = container_of(cq, struct cache_request, q);
1098 			if (cr->item != ch)
1099 				continue;
1100 			if (test_bit(CACHE_PENDING, &ch->flags))
1101 				/* Lost a race and it is pending again */
1102 				break;
1103 			if (cr->readers != 0)
1104 				continue;
1105 			list_move(&cr->q.list, &dequeued);
1106 		}
1107 	spin_unlock(&queue_lock);
1108 	while (!list_empty(&dequeued)) {
1109 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1110 		list_del(&cr->q.list);
1111 		cache_put(cr->item, detail);
1112 		kfree(cr->buf);
1113 		kfree(cr);
1114 	}
1115 }
1116 
1117 /*
1118  * Support routines for text-based upcalls.
1119  * Fields are separated by spaces.
1120  * Fields are either mangled to quote space tab newline slosh with slosh
1121  * or a hexified with a leading \x
1122  * Record is terminated with newline.
1123  *
1124  */
1125 
1126 void qword_add(char **bpp, int *lp, char *str)
1127 {
1128 	char *bp = *bpp;
1129 	int len = *lp;
1130 	int ret;
1131 
1132 	if (len < 0) return;
1133 
1134 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1135 	if (ret >= len) {
1136 		bp += len;
1137 		len = -1;
1138 	} else {
1139 		bp += ret;
1140 		len -= ret;
1141 		*bp++ = ' ';
1142 		len--;
1143 	}
1144 	*bpp = bp;
1145 	*lp = len;
1146 }
1147 EXPORT_SYMBOL_GPL(qword_add);
1148 
1149 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1150 {
1151 	char *bp = *bpp;
1152 	int len = *lp;
1153 
1154 	if (len < 0) return;
1155 
1156 	if (len > 2) {
1157 		*bp++ = '\\';
1158 		*bp++ = 'x';
1159 		len -= 2;
1160 		while (blen && len >= 2) {
1161 			bp = hex_byte_pack(bp, *buf++);
1162 			len -= 2;
1163 			blen--;
1164 		}
1165 	}
1166 	if (blen || len<1) len = -1;
1167 	else {
1168 		*bp++ = ' ';
1169 		len--;
1170 	}
1171 	*bpp = bp;
1172 	*lp = len;
1173 }
1174 EXPORT_SYMBOL_GPL(qword_addhex);
1175 
1176 static void warn_no_listener(struct cache_detail *detail)
1177 {
1178 	if (detail->last_warn != detail->last_close) {
1179 		detail->last_warn = detail->last_close;
1180 		if (detail->warn_no_listener)
1181 			detail->warn_no_listener(detail, detail->last_close != 0);
1182 	}
1183 }
1184 
1185 static bool cache_listeners_exist(struct cache_detail *detail)
1186 {
1187 	if (atomic_read(&detail->writers))
1188 		return true;
1189 	if (detail->last_close == 0)
1190 		/* This cache was never opened */
1191 		return false;
1192 	if (detail->last_close < seconds_since_boot() - 30)
1193 		/*
1194 		 * We allow for the possibility that someone might
1195 		 * restart a userspace daemon without restarting the
1196 		 * server; but after 30 seconds, we give up.
1197 		 */
1198 		 return false;
1199 	return true;
1200 }
1201 
1202 /*
1203  * register an upcall request to user-space and queue it up for read() by the
1204  * upcall daemon.
1205  *
1206  * Each request is at most one page long.
1207  */
1208 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1209 {
1210 	char *buf;
1211 	struct cache_request *crq;
1212 	int ret = 0;
1213 
1214 	if (test_bit(CACHE_CLEANED, &h->flags))
1215 		/* Too late to make an upcall */
1216 		return -EAGAIN;
1217 
1218 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1219 	if (!buf)
1220 		return -EAGAIN;
1221 
1222 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1223 	if (!crq) {
1224 		kfree(buf);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	crq->q.reader = 0;
1229 	crq->buf = buf;
1230 	crq->len = 0;
1231 	crq->readers = 0;
1232 	spin_lock(&queue_lock);
1233 	if (test_bit(CACHE_PENDING, &h->flags)) {
1234 		crq->item = cache_get(h);
1235 		list_add_tail(&crq->q.list, &detail->queue);
1236 		trace_cache_entry_upcall(detail, h);
1237 	} else
1238 		/* Lost a race, no longer PENDING, so don't enqueue */
1239 		ret = -EAGAIN;
1240 	spin_unlock(&queue_lock);
1241 	wake_up(&queue_wait);
1242 	if (ret == -EAGAIN) {
1243 		kfree(buf);
1244 		kfree(crq);
1245 	}
1246 	return ret;
1247 }
1248 
1249 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1250 {
1251 	if (test_and_set_bit(CACHE_PENDING, &h->flags))
1252 		return 0;
1253 	return cache_pipe_upcall(detail, h);
1254 }
1255 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1256 
1257 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1258 				     struct cache_head *h)
1259 {
1260 	if (!cache_listeners_exist(detail)) {
1261 		warn_no_listener(detail);
1262 		trace_cache_entry_no_listener(detail, h);
1263 		return -EINVAL;
1264 	}
1265 	return sunrpc_cache_pipe_upcall(detail, h);
1266 }
1267 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1268 
1269 /*
1270  * parse a message from user-space and pass it
1271  * to an appropriate cache
1272  * Messages are, like requests, separated into fields by
1273  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1274  *
1275  * Message is
1276  *   reply cachename expiry key ... content....
1277  *
1278  * key and content are both parsed by cache
1279  */
1280 
1281 int qword_get(char **bpp, char *dest, int bufsize)
1282 {
1283 	/* return bytes copied, or -1 on error */
1284 	char *bp = *bpp;
1285 	int len = 0;
1286 
1287 	while (*bp == ' ') bp++;
1288 
1289 	if (bp[0] == '\\' && bp[1] == 'x') {
1290 		/* HEX STRING */
1291 		bp += 2;
1292 		while (len < bufsize - 1) {
1293 			int h, l;
1294 
1295 			h = hex_to_bin(bp[0]);
1296 			if (h < 0)
1297 				break;
1298 
1299 			l = hex_to_bin(bp[1]);
1300 			if (l < 0)
1301 				break;
1302 
1303 			*dest++ = (h << 4) | l;
1304 			bp += 2;
1305 			len++;
1306 		}
1307 	} else {
1308 		/* text with \nnn octal quoting */
1309 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1310 			if (*bp == '\\' &&
1311 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1312 			    isodigit(bp[2]) &&
1313 			    isodigit(bp[3])) {
1314 				int byte = (*++bp -'0');
1315 				bp++;
1316 				byte = (byte << 3) | (*bp++ - '0');
1317 				byte = (byte << 3) | (*bp++ - '0');
1318 				*dest++ = byte;
1319 				len++;
1320 			} else {
1321 				*dest++ = *bp++;
1322 				len++;
1323 			}
1324 		}
1325 	}
1326 
1327 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1328 		return -1;
1329 	while (*bp == ' ') bp++;
1330 	*bpp = bp;
1331 	*dest = '\0';
1332 	return len;
1333 }
1334 EXPORT_SYMBOL_GPL(qword_get);
1335 
1336 
1337 /*
1338  * support /proc/net/rpc/$CACHENAME/content
1339  * as a seqfile.
1340  * We call ->cache_show passing NULL for the item to
1341  * get a header, then pass each real item in the cache
1342  */
1343 
1344 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1345 {
1346 	loff_t n = *pos;
1347 	unsigned int hash, entry;
1348 	struct cache_head *ch;
1349 	struct cache_detail *cd = m->private;
1350 
1351 	if (!n--)
1352 		return SEQ_START_TOKEN;
1353 	hash = n >> 32;
1354 	entry = n & ((1LL<<32) - 1);
1355 
1356 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1357 		if (!entry--)
1358 			return ch;
1359 	n &= ~((1LL<<32) - 1);
1360 	do {
1361 		hash++;
1362 		n += 1LL<<32;
1363 	} while(hash < cd->hash_size &&
1364 		hlist_empty(&cd->hash_table[hash]));
1365 	if (hash >= cd->hash_size)
1366 		return NULL;
1367 	*pos = n+1;
1368 	return hlist_entry_safe(rcu_dereference_raw(
1369 				hlist_first_rcu(&cd->hash_table[hash])),
1370 				struct cache_head, cache_list);
1371 }
1372 
1373 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1374 {
1375 	struct cache_head *ch = p;
1376 	int hash = (*pos >> 32);
1377 	struct cache_detail *cd = m->private;
1378 
1379 	if (p == SEQ_START_TOKEN)
1380 		hash = 0;
1381 	else if (ch->cache_list.next == NULL) {
1382 		hash++;
1383 		*pos += 1LL<<32;
1384 	} else {
1385 		++*pos;
1386 		return hlist_entry_safe(rcu_dereference_raw(
1387 					hlist_next_rcu(&ch->cache_list)),
1388 					struct cache_head, cache_list);
1389 	}
1390 	*pos &= ~((1LL<<32) - 1);
1391 	while (hash < cd->hash_size &&
1392 	       hlist_empty(&cd->hash_table[hash])) {
1393 		hash++;
1394 		*pos += 1LL<<32;
1395 	}
1396 	if (hash >= cd->hash_size)
1397 		return NULL;
1398 	++*pos;
1399 	return hlist_entry_safe(rcu_dereference_raw(
1400 				hlist_first_rcu(&cd->hash_table[hash])),
1401 				struct cache_head, cache_list);
1402 }
1403 
1404 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1405 	__acquires(RCU)
1406 {
1407 	rcu_read_lock();
1408 	return __cache_seq_start(m, pos);
1409 }
1410 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1411 
1412 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1413 {
1414 	return cache_seq_next(file, p, pos);
1415 }
1416 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1417 
1418 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1419 	__releases(RCU)
1420 {
1421 	rcu_read_unlock();
1422 }
1423 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1424 
1425 static int c_show(struct seq_file *m, void *p)
1426 {
1427 	struct cache_head *cp = p;
1428 	struct cache_detail *cd = m->private;
1429 
1430 	if (p == SEQ_START_TOKEN)
1431 		return cd->cache_show(m, cd, NULL);
1432 
1433 	ifdebug(CACHE)
1434 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1435 			   convert_to_wallclock(cp->expiry_time),
1436 			   kref_read(&cp->ref), cp->flags);
1437 	cache_get(cp);
1438 	if (cache_check(cd, cp, NULL))
1439 		/* cache_check does a cache_put on failure */
1440 		seq_puts(m, "# ");
1441 	else {
1442 		if (cache_is_expired(cd, cp))
1443 			seq_puts(m, "# ");
1444 		cache_put(cp, cd);
1445 	}
1446 
1447 	return cd->cache_show(m, cd, cp);
1448 }
1449 
1450 static const struct seq_operations cache_content_op = {
1451 	.start	= cache_seq_start_rcu,
1452 	.next	= cache_seq_next_rcu,
1453 	.stop	= cache_seq_stop_rcu,
1454 	.show	= c_show,
1455 };
1456 
1457 static int content_open(struct inode *inode, struct file *file,
1458 			struct cache_detail *cd)
1459 {
1460 	struct seq_file *seq;
1461 	int err;
1462 
1463 	if (!cd || !try_module_get(cd->owner))
1464 		return -EACCES;
1465 
1466 	err = seq_open(file, &cache_content_op);
1467 	if (err) {
1468 		module_put(cd->owner);
1469 		return err;
1470 	}
1471 
1472 	seq = file->private_data;
1473 	seq->private = cd;
1474 	return 0;
1475 }
1476 
1477 static int content_release(struct inode *inode, struct file *file,
1478 		struct cache_detail *cd)
1479 {
1480 	int ret = seq_release(inode, file);
1481 	module_put(cd->owner);
1482 	return ret;
1483 }
1484 
1485 static int open_flush(struct inode *inode, struct file *file,
1486 			struct cache_detail *cd)
1487 {
1488 	if (!cd || !try_module_get(cd->owner))
1489 		return -EACCES;
1490 	return nonseekable_open(inode, file);
1491 }
1492 
1493 static int release_flush(struct inode *inode, struct file *file,
1494 			struct cache_detail *cd)
1495 {
1496 	module_put(cd->owner);
1497 	return 0;
1498 }
1499 
1500 static ssize_t read_flush(struct file *file, char __user *buf,
1501 			  size_t count, loff_t *ppos,
1502 			  struct cache_detail *cd)
1503 {
1504 	char tbuf[22];
1505 	size_t len;
1506 
1507 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1508 			convert_to_wallclock(cd->flush_time));
1509 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1510 }
1511 
1512 static ssize_t write_flush(struct file *file, const char __user *buf,
1513 			   size_t count, loff_t *ppos,
1514 			   struct cache_detail *cd)
1515 {
1516 	char tbuf[20];
1517 	char *ep;
1518 	time64_t now;
1519 
1520 	if (*ppos || count > sizeof(tbuf)-1)
1521 		return -EINVAL;
1522 	if (copy_from_user(tbuf, buf, count))
1523 		return -EFAULT;
1524 	tbuf[count] = 0;
1525 	simple_strtoul(tbuf, &ep, 0);
1526 	if (*ep && *ep != '\n')
1527 		return -EINVAL;
1528 	/* Note that while we check that 'buf' holds a valid number,
1529 	 * we always ignore the value and just flush everything.
1530 	 * Making use of the number leads to races.
1531 	 */
1532 
1533 	now = seconds_since_boot();
1534 	/* Always flush everything, so behave like cache_purge()
1535 	 * Do this by advancing flush_time to the current time,
1536 	 * or by one second if it has already reached the current time.
1537 	 * Newly added cache entries will always have ->last_refresh greater
1538 	 * that ->flush_time, so they don't get flushed prematurely.
1539 	 */
1540 
1541 	if (cd->flush_time >= now)
1542 		now = cd->flush_time + 1;
1543 
1544 	cd->flush_time = now;
1545 	cd->nextcheck = now;
1546 	cache_flush();
1547 
1548 	if (cd->flush)
1549 		cd->flush();
1550 
1551 	*ppos += count;
1552 	return count;
1553 }
1554 
1555 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1556 				 size_t count, loff_t *ppos)
1557 {
1558 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1559 
1560 	return cache_read(filp, buf, count, ppos, cd);
1561 }
1562 
1563 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1564 				  size_t count, loff_t *ppos)
1565 {
1566 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567 
1568 	return cache_write(filp, buf, count, ppos, cd);
1569 }
1570 
1571 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1572 {
1573 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1574 
1575 	return cache_poll(filp, wait, cd);
1576 }
1577 
1578 static long cache_ioctl_procfs(struct file *filp,
1579 			       unsigned int cmd, unsigned long arg)
1580 {
1581 	struct inode *inode = file_inode(filp);
1582 	struct cache_detail *cd = PDE_DATA(inode);
1583 
1584 	return cache_ioctl(inode, filp, cmd, arg, cd);
1585 }
1586 
1587 static int cache_open_procfs(struct inode *inode, struct file *filp)
1588 {
1589 	struct cache_detail *cd = PDE_DATA(inode);
1590 
1591 	return cache_open(inode, filp, cd);
1592 }
1593 
1594 static int cache_release_procfs(struct inode *inode, struct file *filp)
1595 {
1596 	struct cache_detail *cd = PDE_DATA(inode);
1597 
1598 	return cache_release(inode, filp, cd);
1599 }
1600 
1601 static const struct proc_ops cache_channel_proc_ops = {
1602 	.proc_lseek	= no_llseek,
1603 	.proc_read	= cache_read_procfs,
1604 	.proc_write	= cache_write_procfs,
1605 	.proc_poll	= cache_poll_procfs,
1606 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1607 	.proc_open	= cache_open_procfs,
1608 	.proc_release	= cache_release_procfs,
1609 };
1610 
1611 static int content_open_procfs(struct inode *inode, struct file *filp)
1612 {
1613 	struct cache_detail *cd = PDE_DATA(inode);
1614 
1615 	return content_open(inode, filp, cd);
1616 }
1617 
1618 static int content_release_procfs(struct inode *inode, struct file *filp)
1619 {
1620 	struct cache_detail *cd = PDE_DATA(inode);
1621 
1622 	return content_release(inode, filp, cd);
1623 }
1624 
1625 static const struct proc_ops content_proc_ops = {
1626 	.proc_open	= content_open_procfs,
1627 	.proc_read	= seq_read,
1628 	.proc_lseek	= seq_lseek,
1629 	.proc_release	= content_release_procfs,
1630 };
1631 
1632 static int open_flush_procfs(struct inode *inode, struct file *filp)
1633 {
1634 	struct cache_detail *cd = PDE_DATA(inode);
1635 
1636 	return open_flush(inode, filp, cd);
1637 }
1638 
1639 static int release_flush_procfs(struct inode *inode, struct file *filp)
1640 {
1641 	struct cache_detail *cd = PDE_DATA(inode);
1642 
1643 	return release_flush(inode, filp, cd);
1644 }
1645 
1646 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1647 			    size_t count, loff_t *ppos)
1648 {
1649 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1650 
1651 	return read_flush(filp, buf, count, ppos, cd);
1652 }
1653 
1654 static ssize_t write_flush_procfs(struct file *filp,
1655 				  const char __user *buf,
1656 				  size_t count, loff_t *ppos)
1657 {
1658 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1659 
1660 	return write_flush(filp, buf, count, ppos, cd);
1661 }
1662 
1663 static const struct proc_ops cache_flush_proc_ops = {
1664 	.proc_open	= open_flush_procfs,
1665 	.proc_read	= read_flush_procfs,
1666 	.proc_write	= write_flush_procfs,
1667 	.proc_release	= release_flush_procfs,
1668 	.proc_lseek	= no_llseek,
1669 };
1670 
1671 static void remove_cache_proc_entries(struct cache_detail *cd)
1672 {
1673 	if (cd->procfs) {
1674 		proc_remove(cd->procfs);
1675 		cd->procfs = NULL;
1676 	}
1677 }
1678 
1679 #ifdef CONFIG_PROC_FS
1680 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1681 {
1682 	struct proc_dir_entry *p;
1683 	struct sunrpc_net *sn;
1684 
1685 	sn = net_generic(net, sunrpc_net_id);
1686 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1687 	if (cd->procfs == NULL)
1688 		goto out_nomem;
1689 
1690 	p = proc_create_data("flush", S_IFREG | 0600,
1691 			     cd->procfs, &cache_flush_proc_ops, cd);
1692 	if (p == NULL)
1693 		goto out_nomem;
1694 
1695 	if (cd->cache_request || cd->cache_parse) {
1696 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1697 				     &cache_channel_proc_ops, cd);
1698 		if (p == NULL)
1699 			goto out_nomem;
1700 	}
1701 	if (cd->cache_show) {
1702 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1703 				     &content_proc_ops, cd);
1704 		if (p == NULL)
1705 			goto out_nomem;
1706 	}
1707 	return 0;
1708 out_nomem:
1709 	remove_cache_proc_entries(cd);
1710 	return -ENOMEM;
1711 }
1712 #else /* CONFIG_PROC_FS */
1713 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1714 {
1715 	return 0;
1716 }
1717 #endif
1718 
1719 void __init cache_initialize(void)
1720 {
1721 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1722 }
1723 
1724 int cache_register_net(struct cache_detail *cd, struct net *net)
1725 {
1726 	int ret;
1727 
1728 	sunrpc_init_cache_detail(cd);
1729 	ret = create_cache_proc_entries(cd, net);
1730 	if (ret)
1731 		sunrpc_destroy_cache_detail(cd);
1732 	return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(cache_register_net);
1735 
1736 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1737 {
1738 	remove_cache_proc_entries(cd);
1739 	sunrpc_destroy_cache_detail(cd);
1740 }
1741 EXPORT_SYMBOL_GPL(cache_unregister_net);
1742 
1743 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1744 {
1745 	struct cache_detail *cd;
1746 	int i;
1747 
1748 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1749 	if (cd == NULL)
1750 		return ERR_PTR(-ENOMEM);
1751 
1752 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1753 				 GFP_KERNEL);
1754 	if (cd->hash_table == NULL) {
1755 		kfree(cd);
1756 		return ERR_PTR(-ENOMEM);
1757 	}
1758 
1759 	for (i = 0; i < cd->hash_size; i++)
1760 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1761 	cd->net = net;
1762 	return cd;
1763 }
1764 EXPORT_SYMBOL_GPL(cache_create_net);
1765 
1766 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1767 {
1768 	kfree(cd->hash_table);
1769 	kfree(cd);
1770 }
1771 EXPORT_SYMBOL_GPL(cache_destroy_net);
1772 
1773 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1774 				 size_t count, loff_t *ppos)
1775 {
1776 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1777 
1778 	return cache_read(filp, buf, count, ppos, cd);
1779 }
1780 
1781 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1782 				  size_t count, loff_t *ppos)
1783 {
1784 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1785 
1786 	return cache_write(filp, buf, count, ppos, cd);
1787 }
1788 
1789 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1790 {
1791 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1792 
1793 	return cache_poll(filp, wait, cd);
1794 }
1795 
1796 static long cache_ioctl_pipefs(struct file *filp,
1797 			      unsigned int cmd, unsigned long arg)
1798 {
1799 	struct inode *inode = file_inode(filp);
1800 	struct cache_detail *cd = RPC_I(inode)->private;
1801 
1802 	return cache_ioctl(inode, filp, cmd, arg, cd);
1803 }
1804 
1805 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1806 {
1807 	struct cache_detail *cd = RPC_I(inode)->private;
1808 
1809 	return cache_open(inode, filp, cd);
1810 }
1811 
1812 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1813 {
1814 	struct cache_detail *cd = RPC_I(inode)->private;
1815 
1816 	return cache_release(inode, filp, cd);
1817 }
1818 
1819 const struct file_operations cache_file_operations_pipefs = {
1820 	.owner		= THIS_MODULE,
1821 	.llseek		= no_llseek,
1822 	.read		= cache_read_pipefs,
1823 	.write		= cache_write_pipefs,
1824 	.poll		= cache_poll_pipefs,
1825 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1826 	.open		= cache_open_pipefs,
1827 	.release	= cache_release_pipefs,
1828 };
1829 
1830 static int content_open_pipefs(struct inode *inode, struct file *filp)
1831 {
1832 	struct cache_detail *cd = RPC_I(inode)->private;
1833 
1834 	return content_open(inode, filp, cd);
1835 }
1836 
1837 static int content_release_pipefs(struct inode *inode, struct file *filp)
1838 {
1839 	struct cache_detail *cd = RPC_I(inode)->private;
1840 
1841 	return content_release(inode, filp, cd);
1842 }
1843 
1844 const struct file_operations content_file_operations_pipefs = {
1845 	.open		= content_open_pipefs,
1846 	.read		= seq_read,
1847 	.llseek		= seq_lseek,
1848 	.release	= content_release_pipefs,
1849 };
1850 
1851 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1852 {
1853 	struct cache_detail *cd = RPC_I(inode)->private;
1854 
1855 	return open_flush(inode, filp, cd);
1856 }
1857 
1858 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1859 {
1860 	struct cache_detail *cd = RPC_I(inode)->private;
1861 
1862 	return release_flush(inode, filp, cd);
1863 }
1864 
1865 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1866 			    size_t count, loff_t *ppos)
1867 {
1868 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1869 
1870 	return read_flush(filp, buf, count, ppos, cd);
1871 }
1872 
1873 static ssize_t write_flush_pipefs(struct file *filp,
1874 				  const char __user *buf,
1875 				  size_t count, loff_t *ppos)
1876 {
1877 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1878 
1879 	return write_flush(filp, buf, count, ppos, cd);
1880 }
1881 
1882 const struct file_operations cache_flush_operations_pipefs = {
1883 	.open		= open_flush_pipefs,
1884 	.read		= read_flush_pipefs,
1885 	.write		= write_flush_pipefs,
1886 	.release	= release_flush_pipefs,
1887 	.llseek		= no_llseek,
1888 };
1889 
1890 int sunrpc_cache_register_pipefs(struct dentry *parent,
1891 				 const char *name, umode_t umode,
1892 				 struct cache_detail *cd)
1893 {
1894 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1895 	if (IS_ERR(dir))
1896 		return PTR_ERR(dir);
1897 	cd->pipefs = dir;
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1901 
1902 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1903 {
1904 	if (cd->pipefs) {
1905 		rpc_remove_cache_dir(cd->pipefs);
1906 		cd->pipefs = NULL;
1907 	}
1908 }
1909 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1910 
1911 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1912 {
1913 	spin_lock(&cd->hash_lock);
1914 	if (!hlist_unhashed(&h->cache_list)){
1915 		sunrpc_begin_cache_remove_entry(h, cd);
1916 		spin_unlock(&cd->hash_lock);
1917 		sunrpc_end_cache_remove_entry(h, cd);
1918 	} else
1919 		spin_unlock(&cd->hash_lock);
1920 }
1921 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1922