xref: /openbmc/linux/net/sunrpc/cache.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
58 						struct cache_head *key,
59 						int hash)
60 {
61 	struct hlist_head *head = &detail->hash_table[hash];
62 	struct cache_head *tmp;
63 
64 	rcu_read_lock();
65 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
66 		if (detail->match(tmp, key)) {
67 			if (cache_is_expired(detail, tmp))
68 				continue;
69 			tmp = cache_get_rcu(tmp);
70 			rcu_read_unlock();
71 			return tmp;
72 		}
73 	}
74 	rcu_read_unlock();
75 	return NULL;
76 }
77 
78 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
79 						 struct cache_head *key,
80 						 int hash)
81 {
82 	struct cache_head *new, *tmp, *freeme = NULL;
83 	struct hlist_head *head = &detail->hash_table[hash];
84 
85 	new = detail->alloc();
86 	if (!new)
87 		return NULL;
88 	/* must fully initialise 'new', else
89 	 * we might get lose if we need to
90 	 * cache_put it soon.
91 	 */
92 	cache_init(new, detail);
93 	detail->init(new, key);
94 
95 	spin_lock(&detail->hash_lock);
96 
97 	/* check if entry appeared while we slept */
98 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
99 		if (detail->match(tmp, key)) {
100 			if (cache_is_expired(detail, tmp)) {
101 				hlist_del_init_rcu(&tmp->cache_list);
102 				detail->entries --;
103 				freeme = tmp;
104 				break;
105 			}
106 			cache_get(tmp);
107 			spin_unlock(&detail->hash_lock);
108 			cache_put(new, detail);
109 			return tmp;
110 		}
111 	}
112 
113 	hlist_add_head_rcu(&new->cache_list, head);
114 	detail->entries++;
115 	cache_get(new);
116 	spin_unlock(&detail->hash_lock);
117 
118 	if (freeme)
119 		cache_put(freeme, detail);
120 	return new;
121 }
122 
123 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
124 					   struct cache_head *key, int hash)
125 {
126 	struct cache_head *ret;
127 
128 	ret = sunrpc_cache_find_rcu(detail, key, hash);
129 	if (ret)
130 		return ret;
131 	/* Didn't find anything, insert an empty entry */
132 	return sunrpc_cache_add_entry(detail, key, hash);
133 }
134 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
135 
136 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
137 
138 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
139 			       struct cache_detail *detail)
140 {
141 	time_t now = seconds_since_boot();
142 	if (now <= detail->flush_time)
143 		/* ensure it isn't immediately treated as expired */
144 		now = detail->flush_time + 1;
145 	head->expiry_time = expiry;
146 	head->last_refresh = now;
147 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
148 	set_bit(CACHE_VALID, &head->flags);
149 }
150 
151 static void cache_fresh_unlocked(struct cache_head *head,
152 				 struct cache_detail *detail)
153 {
154 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
155 		cache_revisit_request(head);
156 		cache_dequeue(detail, head);
157 	}
158 }
159 
160 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
161 				       struct cache_head *new, struct cache_head *old, int hash)
162 {
163 	/* The 'old' entry is to be replaced by 'new'.
164 	 * If 'old' is not VALID, we update it directly,
165 	 * otherwise we need to replace it
166 	 */
167 	struct cache_head *tmp;
168 
169 	if (!test_bit(CACHE_VALID, &old->flags)) {
170 		spin_lock(&detail->hash_lock);
171 		if (!test_bit(CACHE_VALID, &old->flags)) {
172 			if (test_bit(CACHE_NEGATIVE, &new->flags))
173 				set_bit(CACHE_NEGATIVE, &old->flags);
174 			else
175 				detail->update(old, new);
176 			cache_fresh_locked(old, new->expiry_time, detail);
177 			spin_unlock(&detail->hash_lock);
178 			cache_fresh_unlocked(old, detail);
179 			return old;
180 		}
181 		spin_unlock(&detail->hash_lock);
182 	}
183 	/* We need to insert a new entry */
184 	tmp = detail->alloc();
185 	if (!tmp) {
186 		cache_put(old, detail);
187 		return NULL;
188 	}
189 	cache_init(tmp, detail);
190 	detail->init(tmp, old);
191 
192 	spin_lock(&detail->hash_lock);
193 	if (test_bit(CACHE_NEGATIVE, &new->flags))
194 		set_bit(CACHE_NEGATIVE, &tmp->flags);
195 	else
196 		detail->update(tmp, new);
197 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
198 	detail->entries++;
199 	cache_get(tmp);
200 	cache_fresh_locked(tmp, new->expiry_time, detail);
201 	cache_fresh_locked(old, 0, detail);
202 	spin_unlock(&detail->hash_lock);
203 	cache_fresh_unlocked(tmp, detail);
204 	cache_fresh_unlocked(old, detail);
205 	cache_put(old, detail);
206 	return tmp;
207 }
208 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
209 
210 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
211 {
212 	if (cd->cache_upcall)
213 		return cd->cache_upcall(cd, h);
214 	return sunrpc_cache_pipe_upcall(cd, h);
215 }
216 
217 static inline int cache_is_valid(struct cache_head *h)
218 {
219 	if (!test_bit(CACHE_VALID, &h->flags))
220 		return -EAGAIN;
221 	else {
222 		/* entry is valid */
223 		if (test_bit(CACHE_NEGATIVE, &h->flags))
224 			return -ENOENT;
225 		else {
226 			/*
227 			 * In combination with write barrier in
228 			 * sunrpc_cache_update, ensures that anyone
229 			 * using the cache entry after this sees the
230 			 * updated contents:
231 			 */
232 			smp_rmb();
233 			return 0;
234 		}
235 	}
236 }
237 
238 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
239 {
240 	int rv;
241 
242 	spin_lock(&detail->hash_lock);
243 	rv = cache_is_valid(h);
244 	if (rv == -EAGAIN) {
245 		set_bit(CACHE_NEGATIVE, &h->flags);
246 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
247 				   detail);
248 		rv = -ENOENT;
249 	}
250 	spin_unlock(&detail->hash_lock);
251 	cache_fresh_unlocked(h, detail);
252 	return rv;
253 }
254 
255 /*
256  * This is the generic cache management routine for all
257  * the authentication caches.
258  * It checks the currency of a cache item and will (later)
259  * initiate an upcall to fill it if needed.
260  *
261  *
262  * Returns 0 if the cache_head can be used, or cache_puts it and returns
263  * -EAGAIN if upcall is pending and request has been queued
264  * -ETIMEDOUT if upcall failed or request could not be queue or
265  *           upcall completed but item is still invalid (implying that
266  *           the cache item has been replaced with a newer one).
267  * -ENOENT if cache entry was negative
268  */
269 int cache_check(struct cache_detail *detail,
270 		    struct cache_head *h, struct cache_req *rqstp)
271 {
272 	int rv;
273 	long refresh_age, age;
274 
275 	/* First decide return status as best we can */
276 	rv = cache_is_valid(h);
277 
278 	/* now see if we want to start an upcall */
279 	refresh_age = (h->expiry_time - h->last_refresh);
280 	age = seconds_since_boot() - h->last_refresh;
281 
282 	if (rqstp == NULL) {
283 		if (rv == -EAGAIN)
284 			rv = -ENOENT;
285 	} else if (rv == -EAGAIN ||
286 		   (h->expiry_time != 0 && age > refresh_age/2)) {
287 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
288 				refresh_age, age);
289 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
290 			switch (cache_make_upcall(detail, h)) {
291 			case -EINVAL:
292 				rv = try_to_negate_entry(detail, h);
293 				break;
294 			case -EAGAIN:
295 				cache_fresh_unlocked(h, detail);
296 				break;
297 			}
298 		}
299 	}
300 
301 	if (rv == -EAGAIN) {
302 		if (!cache_defer_req(rqstp, h)) {
303 			/*
304 			 * Request was not deferred; handle it as best
305 			 * we can ourselves:
306 			 */
307 			rv = cache_is_valid(h);
308 			if (rv == -EAGAIN)
309 				rv = -ETIMEDOUT;
310 		}
311 	}
312 	if (rv)
313 		cache_put(h, detail);
314 	return rv;
315 }
316 EXPORT_SYMBOL_GPL(cache_check);
317 
318 /*
319  * caches need to be periodically cleaned.
320  * For this we maintain a list of cache_detail and
321  * a current pointer into that list and into the table
322  * for that entry.
323  *
324  * Each time cache_clean is called it finds the next non-empty entry
325  * in the current table and walks the list in that entry
326  * looking for entries that can be removed.
327  *
328  * An entry gets removed if:
329  * - The expiry is before current time
330  * - The last_refresh time is before the flush_time for that cache
331  *
332  * later we might drop old entries with non-NEVER expiry if that table
333  * is getting 'full' for some definition of 'full'
334  *
335  * The question of "how often to scan a table" is an interesting one
336  * and is answered in part by the use of the "nextcheck" field in the
337  * cache_detail.
338  * When a scan of a table begins, the nextcheck field is set to a time
339  * that is well into the future.
340  * While scanning, if an expiry time is found that is earlier than the
341  * current nextcheck time, nextcheck is set to that expiry time.
342  * If the flush_time is ever set to a time earlier than the nextcheck
343  * time, the nextcheck time is then set to that flush_time.
344  *
345  * A table is then only scanned if the current time is at least
346  * the nextcheck time.
347  *
348  */
349 
350 static LIST_HEAD(cache_list);
351 static DEFINE_SPINLOCK(cache_list_lock);
352 static struct cache_detail *current_detail;
353 static int current_index;
354 
355 static void do_cache_clean(struct work_struct *work);
356 static struct delayed_work cache_cleaner;
357 
358 void sunrpc_init_cache_detail(struct cache_detail *cd)
359 {
360 	spin_lock_init(&cd->hash_lock);
361 	INIT_LIST_HEAD(&cd->queue);
362 	spin_lock(&cache_list_lock);
363 	cd->nextcheck = 0;
364 	cd->entries = 0;
365 	atomic_set(&cd->readers, 0);
366 	cd->last_close = 0;
367 	cd->last_warn = -1;
368 	list_add(&cd->others, &cache_list);
369 	spin_unlock(&cache_list_lock);
370 
371 	/* start the cleaning process */
372 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
373 }
374 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
375 
376 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
377 {
378 	cache_purge(cd);
379 	spin_lock(&cache_list_lock);
380 	spin_lock(&cd->hash_lock);
381 	if (current_detail == cd)
382 		current_detail = NULL;
383 	list_del_init(&cd->others);
384 	spin_unlock(&cd->hash_lock);
385 	spin_unlock(&cache_list_lock);
386 	if (list_empty(&cache_list)) {
387 		/* module must be being unloaded so its safe to kill the worker */
388 		cancel_delayed_work_sync(&cache_cleaner);
389 	}
390 }
391 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
392 
393 /* clean cache tries to find something to clean
394  * and cleans it.
395  * It returns 1 if it cleaned something,
396  *            0 if it didn't find anything this time
397  *           -1 if it fell off the end of the list.
398  */
399 static int cache_clean(void)
400 {
401 	int rv = 0;
402 	struct list_head *next;
403 
404 	spin_lock(&cache_list_lock);
405 
406 	/* find a suitable table if we don't already have one */
407 	while (current_detail == NULL ||
408 	    current_index >= current_detail->hash_size) {
409 		if (current_detail)
410 			next = current_detail->others.next;
411 		else
412 			next = cache_list.next;
413 		if (next == &cache_list) {
414 			current_detail = NULL;
415 			spin_unlock(&cache_list_lock);
416 			return -1;
417 		}
418 		current_detail = list_entry(next, struct cache_detail, others);
419 		if (current_detail->nextcheck > seconds_since_boot())
420 			current_index = current_detail->hash_size;
421 		else {
422 			current_index = 0;
423 			current_detail->nextcheck = seconds_since_boot()+30*60;
424 		}
425 	}
426 
427 	/* find a non-empty bucket in the table */
428 	while (current_detail &&
429 	       current_index < current_detail->hash_size &&
430 	       hlist_empty(&current_detail->hash_table[current_index]))
431 		current_index++;
432 
433 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
434 
435 	if (current_detail && current_index < current_detail->hash_size) {
436 		struct cache_head *ch = NULL;
437 		struct cache_detail *d;
438 		struct hlist_head *head;
439 		struct hlist_node *tmp;
440 
441 		spin_lock(&current_detail->hash_lock);
442 
443 		/* Ok, now to clean this strand */
444 
445 		head = &current_detail->hash_table[current_index];
446 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
447 			if (current_detail->nextcheck > ch->expiry_time)
448 				current_detail->nextcheck = ch->expiry_time+1;
449 			if (!cache_is_expired(current_detail, ch))
450 				continue;
451 
452 			hlist_del_init_rcu(&ch->cache_list);
453 			current_detail->entries--;
454 			rv = 1;
455 			break;
456 		}
457 
458 		spin_unlock(&current_detail->hash_lock);
459 		d = current_detail;
460 		if (!ch)
461 			current_index ++;
462 		spin_unlock(&cache_list_lock);
463 		if (ch) {
464 			set_bit(CACHE_CLEANED, &ch->flags);
465 			cache_fresh_unlocked(ch, d);
466 			cache_put(ch, d);
467 		}
468 	} else
469 		spin_unlock(&cache_list_lock);
470 
471 	return rv;
472 }
473 
474 /*
475  * We want to regularly clean the cache, so we need to schedule some work ...
476  */
477 static void do_cache_clean(struct work_struct *work)
478 {
479 	int delay = 5;
480 	if (cache_clean() == -1)
481 		delay = round_jiffies_relative(30*HZ);
482 
483 	if (list_empty(&cache_list))
484 		delay = 0;
485 
486 	if (delay)
487 		queue_delayed_work(system_power_efficient_wq,
488 				   &cache_cleaner, delay);
489 }
490 
491 
492 /*
493  * Clean all caches promptly.  This just calls cache_clean
494  * repeatedly until we are sure that every cache has had a chance to
495  * be fully cleaned
496  */
497 void cache_flush(void)
498 {
499 	while (cache_clean() != -1)
500 		cond_resched();
501 	while (cache_clean() != -1)
502 		cond_resched();
503 }
504 EXPORT_SYMBOL_GPL(cache_flush);
505 
506 void cache_purge(struct cache_detail *detail)
507 {
508 	struct cache_head *ch = NULL;
509 	struct hlist_head *head = NULL;
510 	struct hlist_node *tmp = NULL;
511 	int i = 0;
512 
513 	spin_lock(&detail->hash_lock);
514 	if (!detail->entries) {
515 		spin_unlock(&detail->hash_lock);
516 		return;
517 	}
518 
519 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
520 	for (i = 0; i < detail->hash_size; i++) {
521 		head = &detail->hash_table[i];
522 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
523 			hlist_del_init_rcu(&ch->cache_list);
524 			detail->entries--;
525 
526 			set_bit(CACHE_CLEANED, &ch->flags);
527 			spin_unlock(&detail->hash_lock);
528 			cache_fresh_unlocked(ch, detail);
529 			cache_put(ch, detail);
530 			spin_lock(&detail->hash_lock);
531 		}
532 	}
533 	spin_unlock(&detail->hash_lock);
534 }
535 EXPORT_SYMBOL_GPL(cache_purge);
536 
537 
538 /*
539  * Deferral and Revisiting of Requests.
540  *
541  * If a cache lookup finds a pending entry, we
542  * need to defer the request and revisit it later.
543  * All deferred requests are stored in a hash table,
544  * indexed by "struct cache_head *".
545  * As it may be wasteful to store a whole request
546  * structure, we allow the request to provide a
547  * deferred form, which must contain a
548  * 'struct cache_deferred_req'
549  * This cache_deferred_req contains a method to allow
550  * it to be revisited when cache info is available
551  */
552 
553 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
554 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
555 
556 #define	DFR_MAX	300	/* ??? */
557 
558 static DEFINE_SPINLOCK(cache_defer_lock);
559 static LIST_HEAD(cache_defer_list);
560 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
561 static int cache_defer_cnt;
562 
563 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
564 {
565 	hlist_del_init(&dreq->hash);
566 	if (!list_empty(&dreq->recent)) {
567 		list_del_init(&dreq->recent);
568 		cache_defer_cnt--;
569 	}
570 }
571 
572 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
573 {
574 	int hash = DFR_HASH(item);
575 
576 	INIT_LIST_HEAD(&dreq->recent);
577 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
578 }
579 
580 static void setup_deferral(struct cache_deferred_req *dreq,
581 			   struct cache_head *item,
582 			   int count_me)
583 {
584 
585 	dreq->item = item;
586 
587 	spin_lock(&cache_defer_lock);
588 
589 	__hash_deferred_req(dreq, item);
590 
591 	if (count_me) {
592 		cache_defer_cnt++;
593 		list_add(&dreq->recent, &cache_defer_list);
594 	}
595 
596 	spin_unlock(&cache_defer_lock);
597 
598 }
599 
600 struct thread_deferred_req {
601 	struct cache_deferred_req handle;
602 	struct completion completion;
603 };
604 
605 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
606 {
607 	struct thread_deferred_req *dr =
608 		container_of(dreq, struct thread_deferred_req, handle);
609 	complete(&dr->completion);
610 }
611 
612 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
613 {
614 	struct thread_deferred_req sleeper;
615 	struct cache_deferred_req *dreq = &sleeper.handle;
616 
617 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
618 	dreq->revisit = cache_restart_thread;
619 
620 	setup_deferral(dreq, item, 0);
621 
622 	if (!test_bit(CACHE_PENDING, &item->flags) ||
623 	    wait_for_completion_interruptible_timeout(
624 		    &sleeper.completion, req->thread_wait) <= 0) {
625 		/* The completion wasn't completed, so we need
626 		 * to clean up
627 		 */
628 		spin_lock(&cache_defer_lock);
629 		if (!hlist_unhashed(&sleeper.handle.hash)) {
630 			__unhash_deferred_req(&sleeper.handle);
631 			spin_unlock(&cache_defer_lock);
632 		} else {
633 			/* cache_revisit_request already removed
634 			 * this from the hash table, but hasn't
635 			 * called ->revisit yet.  It will very soon
636 			 * and we need to wait for it.
637 			 */
638 			spin_unlock(&cache_defer_lock);
639 			wait_for_completion(&sleeper.completion);
640 		}
641 	}
642 }
643 
644 static void cache_limit_defers(void)
645 {
646 	/* Make sure we haven't exceed the limit of allowed deferred
647 	 * requests.
648 	 */
649 	struct cache_deferred_req *discard = NULL;
650 
651 	if (cache_defer_cnt <= DFR_MAX)
652 		return;
653 
654 	spin_lock(&cache_defer_lock);
655 
656 	/* Consider removing either the first or the last */
657 	if (cache_defer_cnt > DFR_MAX) {
658 		if (prandom_u32() & 1)
659 			discard = list_entry(cache_defer_list.next,
660 					     struct cache_deferred_req, recent);
661 		else
662 			discard = list_entry(cache_defer_list.prev,
663 					     struct cache_deferred_req, recent);
664 		__unhash_deferred_req(discard);
665 	}
666 	spin_unlock(&cache_defer_lock);
667 	if (discard)
668 		discard->revisit(discard, 1);
669 }
670 
671 /* Return true if and only if a deferred request is queued. */
672 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
673 {
674 	struct cache_deferred_req *dreq;
675 
676 	if (req->thread_wait) {
677 		cache_wait_req(req, item);
678 		if (!test_bit(CACHE_PENDING, &item->flags))
679 			return false;
680 	}
681 	dreq = req->defer(req);
682 	if (dreq == NULL)
683 		return false;
684 	setup_deferral(dreq, item, 1);
685 	if (!test_bit(CACHE_PENDING, &item->flags))
686 		/* Bit could have been cleared before we managed to
687 		 * set up the deferral, so need to revisit just in case
688 		 */
689 		cache_revisit_request(item);
690 
691 	cache_limit_defers();
692 	return true;
693 }
694 
695 static void cache_revisit_request(struct cache_head *item)
696 {
697 	struct cache_deferred_req *dreq;
698 	struct list_head pending;
699 	struct hlist_node *tmp;
700 	int hash = DFR_HASH(item);
701 
702 	INIT_LIST_HEAD(&pending);
703 	spin_lock(&cache_defer_lock);
704 
705 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
706 		if (dreq->item == item) {
707 			__unhash_deferred_req(dreq);
708 			list_add(&dreq->recent, &pending);
709 		}
710 
711 	spin_unlock(&cache_defer_lock);
712 
713 	while (!list_empty(&pending)) {
714 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
715 		list_del_init(&dreq->recent);
716 		dreq->revisit(dreq, 0);
717 	}
718 }
719 
720 void cache_clean_deferred(void *owner)
721 {
722 	struct cache_deferred_req *dreq, *tmp;
723 	struct list_head pending;
724 
725 
726 	INIT_LIST_HEAD(&pending);
727 	spin_lock(&cache_defer_lock);
728 
729 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
730 		if (dreq->owner == owner) {
731 			__unhash_deferred_req(dreq);
732 			list_add(&dreq->recent, &pending);
733 		}
734 	}
735 	spin_unlock(&cache_defer_lock);
736 
737 	while (!list_empty(&pending)) {
738 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
739 		list_del_init(&dreq->recent);
740 		dreq->revisit(dreq, 1);
741 	}
742 }
743 
744 /*
745  * communicate with user-space
746  *
747  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
748  * On read, you get a full request, or block.
749  * On write, an update request is processed.
750  * Poll works if anything to read, and always allows write.
751  *
752  * Implemented by linked list of requests.  Each open file has
753  * a ->private that also exists in this list.  New requests are added
754  * to the end and may wakeup and preceding readers.
755  * New readers are added to the head.  If, on read, an item is found with
756  * CACHE_UPCALLING clear, we free it from the list.
757  *
758  */
759 
760 static DEFINE_SPINLOCK(queue_lock);
761 static DEFINE_MUTEX(queue_io_mutex);
762 
763 struct cache_queue {
764 	struct list_head	list;
765 	int			reader;	/* if 0, then request */
766 };
767 struct cache_request {
768 	struct cache_queue	q;
769 	struct cache_head	*item;
770 	char			* buf;
771 	int			len;
772 	int			readers;
773 };
774 struct cache_reader {
775 	struct cache_queue	q;
776 	int			offset;	/* if non-0, we have a refcnt on next request */
777 };
778 
779 static int cache_request(struct cache_detail *detail,
780 			       struct cache_request *crq)
781 {
782 	char *bp = crq->buf;
783 	int len = PAGE_SIZE;
784 
785 	detail->cache_request(detail, crq->item, &bp, &len);
786 	if (len < 0)
787 		return -EAGAIN;
788 	return PAGE_SIZE - len;
789 }
790 
791 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
792 			  loff_t *ppos, struct cache_detail *cd)
793 {
794 	struct cache_reader *rp = filp->private_data;
795 	struct cache_request *rq;
796 	struct inode *inode = file_inode(filp);
797 	int err;
798 
799 	if (count == 0)
800 		return 0;
801 
802 	inode_lock(inode); /* protect against multiple concurrent
803 			      * readers on this file */
804  again:
805 	spin_lock(&queue_lock);
806 	/* need to find next request */
807 	while (rp->q.list.next != &cd->queue &&
808 	       list_entry(rp->q.list.next, struct cache_queue, list)
809 	       ->reader) {
810 		struct list_head *next = rp->q.list.next;
811 		list_move(&rp->q.list, next);
812 	}
813 	if (rp->q.list.next == &cd->queue) {
814 		spin_unlock(&queue_lock);
815 		inode_unlock(inode);
816 		WARN_ON_ONCE(rp->offset);
817 		return 0;
818 	}
819 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
820 	WARN_ON_ONCE(rq->q.reader);
821 	if (rp->offset == 0)
822 		rq->readers++;
823 	spin_unlock(&queue_lock);
824 
825 	if (rq->len == 0) {
826 		err = cache_request(cd, rq);
827 		if (err < 0)
828 			goto out;
829 		rq->len = err;
830 	}
831 
832 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
833 		err = -EAGAIN;
834 		spin_lock(&queue_lock);
835 		list_move(&rp->q.list, &rq->q.list);
836 		spin_unlock(&queue_lock);
837 	} else {
838 		if (rp->offset + count > rq->len)
839 			count = rq->len - rp->offset;
840 		err = -EFAULT;
841 		if (copy_to_user(buf, rq->buf + rp->offset, count))
842 			goto out;
843 		rp->offset += count;
844 		if (rp->offset >= rq->len) {
845 			rp->offset = 0;
846 			spin_lock(&queue_lock);
847 			list_move(&rp->q.list, &rq->q.list);
848 			spin_unlock(&queue_lock);
849 		}
850 		err = 0;
851 	}
852  out:
853 	if (rp->offset == 0) {
854 		/* need to release rq */
855 		spin_lock(&queue_lock);
856 		rq->readers--;
857 		if (rq->readers == 0 &&
858 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
859 			list_del(&rq->q.list);
860 			spin_unlock(&queue_lock);
861 			cache_put(rq->item, cd);
862 			kfree(rq->buf);
863 			kfree(rq);
864 		} else
865 			spin_unlock(&queue_lock);
866 	}
867 	if (err == -EAGAIN)
868 		goto again;
869 	inode_unlock(inode);
870 	return err ? err :  count;
871 }
872 
873 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
874 				 size_t count, struct cache_detail *cd)
875 {
876 	ssize_t ret;
877 
878 	if (count == 0)
879 		return -EINVAL;
880 	if (copy_from_user(kaddr, buf, count))
881 		return -EFAULT;
882 	kaddr[count] = '\0';
883 	ret = cd->cache_parse(cd, kaddr, count);
884 	if (!ret)
885 		ret = count;
886 	return ret;
887 }
888 
889 static ssize_t cache_slow_downcall(const char __user *buf,
890 				   size_t count, struct cache_detail *cd)
891 {
892 	static char write_buf[8192]; /* protected by queue_io_mutex */
893 	ssize_t ret = -EINVAL;
894 
895 	if (count >= sizeof(write_buf))
896 		goto out;
897 	mutex_lock(&queue_io_mutex);
898 	ret = cache_do_downcall(write_buf, buf, count, cd);
899 	mutex_unlock(&queue_io_mutex);
900 out:
901 	return ret;
902 }
903 
904 static ssize_t cache_downcall(struct address_space *mapping,
905 			      const char __user *buf,
906 			      size_t count, struct cache_detail *cd)
907 {
908 	struct page *page;
909 	char *kaddr;
910 	ssize_t ret = -ENOMEM;
911 
912 	if (count >= PAGE_SIZE)
913 		goto out_slow;
914 
915 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
916 	if (!page)
917 		goto out_slow;
918 
919 	kaddr = kmap(page);
920 	ret = cache_do_downcall(kaddr, buf, count, cd);
921 	kunmap(page);
922 	unlock_page(page);
923 	put_page(page);
924 	return ret;
925 out_slow:
926 	return cache_slow_downcall(buf, count, cd);
927 }
928 
929 static ssize_t cache_write(struct file *filp, const char __user *buf,
930 			   size_t count, loff_t *ppos,
931 			   struct cache_detail *cd)
932 {
933 	struct address_space *mapping = filp->f_mapping;
934 	struct inode *inode = file_inode(filp);
935 	ssize_t ret = -EINVAL;
936 
937 	if (!cd->cache_parse)
938 		goto out;
939 
940 	inode_lock(inode);
941 	ret = cache_downcall(mapping, buf, count, cd);
942 	inode_unlock(inode);
943 out:
944 	return ret;
945 }
946 
947 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
948 
949 static __poll_t cache_poll(struct file *filp, poll_table *wait,
950 			       struct cache_detail *cd)
951 {
952 	__poll_t mask;
953 	struct cache_reader *rp = filp->private_data;
954 	struct cache_queue *cq;
955 
956 	poll_wait(filp, &queue_wait, wait);
957 
958 	/* alway allow write */
959 	mask = EPOLLOUT | EPOLLWRNORM;
960 
961 	if (!rp)
962 		return mask;
963 
964 	spin_lock(&queue_lock);
965 
966 	for (cq= &rp->q; &cq->list != &cd->queue;
967 	     cq = list_entry(cq->list.next, struct cache_queue, list))
968 		if (!cq->reader) {
969 			mask |= EPOLLIN | EPOLLRDNORM;
970 			break;
971 		}
972 	spin_unlock(&queue_lock);
973 	return mask;
974 }
975 
976 static int cache_ioctl(struct inode *ino, struct file *filp,
977 		       unsigned int cmd, unsigned long arg,
978 		       struct cache_detail *cd)
979 {
980 	int len = 0;
981 	struct cache_reader *rp = filp->private_data;
982 	struct cache_queue *cq;
983 
984 	if (cmd != FIONREAD || !rp)
985 		return -EINVAL;
986 
987 	spin_lock(&queue_lock);
988 
989 	/* only find the length remaining in current request,
990 	 * or the length of the next request
991 	 */
992 	for (cq= &rp->q; &cq->list != &cd->queue;
993 	     cq = list_entry(cq->list.next, struct cache_queue, list))
994 		if (!cq->reader) {
995 			struct cache_request *cr =
996 				container_of(cq, struct cache_request, q);
997 			len = cr->len - rp->offset;
998 			break;
999 		}
1000 	spin_unlock(&queue_lock);
1001 
1002 	return put_user(len, (int __user *)arg);
1003 }
1004 
1005 static int cache_open(struct inode *inode, struct file *filp,
1006 		      struct cache_detail *cd)
1007 {
1008 	struct cache_reader *rp = NULL;
1009 
1010 	if (!cd || !try_module_get(cd->owner))
1011 		return -EACCES;
1012 	nonseekable_open(inode, filp);
1013 	if (filp->f_mode & FMODE_READ) {
1014 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1015 		if (!rp) {
1016 			module_put(cd->owner);
1017 			return -ENOMEM;
1018 		}
1019 		rp->offset = 0;
1020 		rp->q.reader = 1;
1021 		atomic_inc(&cd->readers);
1022 		spin_lock(&queue_lock);
1023 		list_add(&rp->q.list, &cd->queue);
1024 		spin_unlock(&queue_lock);
1025 	}
1026 	filp->private_data = rp;
1027 	return 0;
1028 }
1029 
1030 static int cache_release(struct inode *inode, struct file *filp,
1031 			 struct cache_detail *cd)
1032 {
1033 	struct cache_reader *rp = filp->private_data;
1034 
1035 	if (rp) {
1036 		spin_lock(&queue_lock);
1037 		if (rp->offset) {
1038 			struct cache_queue *cq;
1039 			for (cq= &rp->q; &cq->list != &cd->queue;
1040 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1041 				if (!cq->reader) {
1042 					container_of(cq, struct cache_request, q)
1043 						->readers--;
1044 					break;
1045 				}
1046 			rp->offset = 0;
1047 		}
1048 		list_del(&rp->q.list);
1049 		spin_unlock(&queue_lock);
1050 
1051 		filp->private_data = NULL;
1052 		kfree(rp);
1053 
1054 		cd->last_close = seconds_since_boot();
1055 		atomic_dec(&cd->readers);
1056 	}
1057 	module_put(cd->owner);
1058 	return 0;
1059 }
1060 
1061 
1062 
1063 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1064 {
1065 	struct cache_queue *cq, *tmp;
1066 	struct cache_request *cr;
1067 	struct list_head dequeued;
1068 
1069 	INIT_LIST_HEAD(&dequeued);
1070 	spin_lock(&queue_lock);
1071 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1072 		if (!cq->reader) {
1073 			cr = container_of(cq, struct cache_request, q);
1074 			if (cr->item != ch)
1075 				continue;
1076 			if (test_bit(CACHE_PENDING, &ch->flags))
1077 				/* Lost a race and it is pending again */
1078 				break;
1079 			if (cr->readers != 0)
1080 				continue;
1081 			list_move(&cr->q.list, &dequeued);
1082 		}
1083 	spin_unlock(&queue_lock);
1084 	while (!list_empty(&dequeued)) {
1085 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1086 		list_del(&cr->q.list);
1087 		cache_put(cr->item, detail);
1088 		kfree(cr->buf);
1089 		kfree(cr);
1090 	}
1091 }
1092 
1093 /*
1094  * Support routines for text-based upcalls.
1095  * Fields are separated by spaces.
1096  * Fields are either mangled to quote space tab newline slosh with slosh
1097  * or a hexified with a leading \x
1098  * Record is terminated with newline.
1099  *
1100  */
1101 
1102 void qword_add(char **bpp, int *lp, char *str)
1103 {
1104 	char *bp = *bpp;
1105 	int len = *lp;
1106 	int ret;
1107 
1108 	if (len < 0) return;
1109 
1110 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1111 	if (ret >= len) {
1112 		bp += len;
1113 		len = -1;
1114 	} else {
1115 		bp += ret;
1116 		len -= ret;
1117 		*bp++ = ' ';
1118 		len--;
1119 	}
1120 	*bpp = bp;
1121 	*lp = len;
1122 }
1123 EXPORT_SYMBOL_GPL(qword_add);
1124 
1125 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1126 {
1127 	char *bp = *bpp;
1128 	int len = *lp;
1129 
1130 	if (len < 0) return;
1131 
1132 	if (len > 2) {
1133 		*bp++ = '\\';
1134 		*bp++ = 'x';
1135 		len -= 2;
1136 		while (blen && len >= 2) {
1137 			bp = hex_byte_pack(bp, *buf++);
1138 			len -= 2;
1139 			blen--;
1140 		}
1141 	}
1142 	if (blen || len<1) len = -1;
1143 	else {
1144 		*bp++ = ' ';
1145 		len--;
1146 	}
1147 	*bpp = bp;
1148 	*lp = len;
1149 }
1150 EXPORT_SYMBOL_GPL(qword_addhex);
1151 
1152 static void warn_no_listener(struct cache_detail *detail)
1153 {
1154 	if (detail->last_warn != detail->last_close) {
1155 		detail->last_warn = detail->last_close;
1156 		if (detail->warn_no_listener)
1157 			detail->warn_no_listener(detail, detail->last_close != 0);
1158 	}
1159 }
1160 
1161 static bool cache_listeners_exist(struct cache_detail *detail)
1162 {
1163 	if (atomic_read(&detail->readers))
1164 		return true;
1165 	if (detail->last_close == 0)
1166 		/* This cache was never opened */
1167 		return false;
1168 	if (detail->last_close < seconds_since_boot() - 30)
1169 		/*
1170 		 * We allow for the possibility that someone might
1171 		 * restart a userspace daemon without restarting the
1172 		 * server; but after 30 seconds, we give up.
1173 		 */
1174 		 return false;
1175 	return true;
1176 }
1177 
1178 /*
1179  * register an upcall request to user-space and queue it up for read() by the
1180  * upcall daemon.
1181  *
1182  * Each request is at most one page long.
1183  */
1184 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1185 {
1186 
1187 	char *buf;
1188 	struct cache_request *crq;
1189 	int ret = 0;
1190 
1191 	if (!detail->cache_request)
1192 		return -EINVAL;
1193 
1194 	if (!cache_listeners_exist(detail)) {
1195 		warn_no_listener(detail);
1196 		return -EINVAL;
1197 	}
1198 	if (test_bit(CACHE_CLEANED, &h->flags))
1199 		/* Too late to make an upcall */
1200 		return -EAGAIN;
1201 
1202 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1203 	if (!buf)
1204 		return -EAGAIN;
1205 
1206 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1207 	if (!crq) {
1208 		kfree(buf);
1209 		return -EAGAIN;
1210 	}
1211 
1212 	crq->q.reader = 0;
1213 	crq->buf = buf;
1214 	crq->len = 0;
1215 	crq->readers = 0;
1216 	spin_lock(&queue_lock);
1217 	if (test_bit(CACHE_PENDING, &h->flags)) {
1218 		crq->item = cache_get(h);
1219 		list_add_tail(&crq->q.list, &detail->queue);
1220 	} else
1221 		/* Lost a race, no longer PENDING, so don't enqueue */
1222 		ret = -EAGAIN;
1223 	spin_unlock(&queue_lock);
1224 	wake_up(&queue_wait);
1225 	if (ret == -EAGAIN) {
1226 		kfree(buf);
1227 		kfree(crq);
1228 	}
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1232 
1233 /*
1234  * parse a message from user-space and pass it
1235  * to an appropriate cache
1236  * Messages are, like requests, separated into fields by
1237  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1238  *
1239  * Message is
1240  *   reply cachename expiry key ... content....
1241  *
1242  * key and content are both parsed by cache
1243  */
1244 
1245 int qword_get(char **bpp, char *dest, int bufsize)
1246 {
1247 	/* return bytes copied, or -1 on error */
1248 	char *bp = *bpp;
1249 	int len = 0;
1250 
1251 	while (*bp == ' ') bp++;
1252 
1253 	if (bp[0] == '\\' && bp[1] == 'x') {
1254 		/* HEX STRING */
1255 		bp += 2;
1256 		while (len < bufsize - 1) {
1257 			int h, l;
1258 
1259 			h = hex_to_bin(bp[0]);
1260 			if (h < 0)
1261 				break;
1262 
1263 			l = hex_to_bin(bp[1]);
1264 			if (l < 0)
1265 				break;
1266 
1267 			*dest++ = (h << 4) | l;
1268 			bp += 2;
1269 			len++;
1270 		}
1271 	} else {
1272 		/* text with \nnn octal quoting */
1273 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1274 			if (*bp == '\\' &&
1275 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1276 			    isodigit(bp[2]) &&
1277 			    isodigit(bp[3])) {
1278 				int byte = (*++bp -'0');
1279 				bp++;
1280 				byte = (byte << 3) | (*bp++ - '0');
1281 				byte = (byte << 3) | (*bp++ - '0');
1282 				*dest++ = byte;
1283 				len++;
1284 			} else {
1285 				*dest++ = *bp++;
1286 				len++;
1287 			}
1288 		}
1289 	}
1290 
1291 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1292 		return -1;
1293 	while (*bp == ' ') bp++;
1294 	*bpp = bp;
1295 	*dest = '\0';
1296 	return len;
1297 }
1298 EXPORT_SYMBOL_GPL(qword_get);
1299 
1300 
1301 /*
1302  * support /proc/net/rpc/$CACHENAME/content
1303  * as a seqfile.
1304  * We call ->cache_show passing NULL for the item to
1305  * get a header, then pass each real item in the cache
1306  */
1307 
1308 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1309 {
1310 	loff_t n = *pos;
1311 	unsigned int hash, entry;
1312 	struct cache_head *ch;
1313 	struct cache_detail *cd = m->private;
1314 
1315 	if (!n--)
1316 		return SEQ_START_TOKEN;
1317 	hash = n >> 32;
1318 	entry = n & ((1LL<<32) - 1);
1319 
1320 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1321 		if (!entry--)
1322 			return ch;
1323 	n &= ~((1LL<<32) - 1);
1324 	do {
1325 		hash++;
1326 		n += 1LL<<32;
1327 	} while(hash < cd->hash_size &&
1328 		hlist_empty(&cd->hash_table[hash]));
1329 	if (hash >= cd->hash_size)
1330 		return NULL;
1331 	*pos = n+1;
1332 	return hlist_entry_safe(rcu_dereference_raw(
1333 				hlist_first_rcu(&cd->hash_table[hash])),
1334 				struct cache_head, cache_list);
1335 }
1336 
1337 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1338 {
1339 	struct cache_head *ch = p;
1340 	int hash = (*pos >> 32);
1341 	struct cache_detail *cd = m->private;
1342 
1343 	if (p == SEQ_START_TOKEN)
1344 		hash = 0;
1345 	else if (ch->cache_list.next == NULL) {
1346 		hash++;
1347 		*pos += 1LL<<32;
1348 	} else {
1349 		++*pos;
1350 		return hlist_entry_safe(rcu_dereference_raw(
1351 					hlist_next_rcu(&ch->cache_list)),
1352 					struct cache_head, cache_list);
1353 	}
1354 	*pos &= ~((1LL<<32) - 1);
1355 	while (hash < cd->hash_size &&
1356 	       hlist_empty(&cd->hash_table[hash])) {
1357 		hash++;
1358 		*pos += 1LL<<32;
1359 	}
1360 	if (hash >= cd->hash_size)
1361 		return NULL;
1362 	++*pos;
1363 	return hlist_entry_safe(rcu_dereference_raw(
1364 				hlist_first_rcu(&cd->hash_table[hash])),
1365 				struct cache_head, cache_list);
1366 }
1367 EXPORT_SYMBOL_GPL(cache_seq_next);
1368 
1369 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1370 	__acquires(RCU)
1371 {
1372 	rcu_read_lock();
1373 	return __cache_seq_start(m, pos);
1374 }
1375 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1376 
1377 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1378 {
1379 	return cache_seq_next(file, p, pos);
1380 }
1381 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1382 
1383 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1384 	__releases(RCU)
1385 {
1386 	rcu_read_unlock();
1387 }
1388 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1389 
1390 static int c_show(struct seq_file *m, void *p)
1391 {
1392 	struct cache_head *cp = p;
1393 	struct cache_detail *cd = m->private;
1394 
1395 	if (p == SEQ_START_TOKEN)
1396 		return cd->cache_show(m, cd, NULL);
1397 
1398 	ifdebug(CACHE)
1399 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1400 			   convert_to_wallclock(cp->expiry_time),
1401 			   kref_read(&cp->ref), cp->flags);
1402 	cache_get(cp);
1403 	if (cache_check(cd, cp, NULL))
1404 		/* cache_check does a cache_put on failure */
1405 		seq_printf(m, "# ");
1406 	else {
1407 		if (cache_is_expired(cd, cp))
1408 			seq_printf(m, "# ");
1409 		cache_put(cp, cd);
1410 	}
1411 
1412 	return cd->cache_show(m, cd, cp);
1413 }
1414 
1415 static const struct seq_operations cache_content_op = {
1416 	.start	= cache_seq_start_rcu,
1417 	.next	= cache_seq_next_rcu,
1418 	.stop	= cache_seq_stop_rcu,
1419 	.show	= c_show,
1420 };
1421 
1422 static int content_open(struct inode *inode, struct file *file,
1423 			struct cache_detail *cd)
1424 {
1425 	struct seq_file *seq;
1426 	int err;
1427 
1428 	if (!cd || !try_module_get(cd->owner))
1429 		return -EACCES;
1430 
1431 	err = seq_open(file, &cache_content_op);
1432 	if (err) {
1433 		module_put(cd->owner);
1434 		return err;
1435 	}
1436 
1437 	seq = file->private_data;
1438 	seq->private = cd;
1439 	return 0;
1440 }
1441 
1442 static int content_release(struct inode *inode, struct file *file,
1443 		struct cache_detail *cd)
1444 {
1445 	int ret = seq_release(inode, file);
1446 	module_put(cd->owner);
1447 	return ret;
1448 }
1449 
1450 static int open_flush(struct inode *inode, struct file *file,
1451 			struct cache_detail *cd)
1452 {
1453 	if (!cd || !try_module_get(cd->owner))
1454 		return -EACCES;
1455 	return nonseekable_open(inode, file);
1456 }
1457 
1458 static int release_flush(struct inode *inode, struct file *file,
1459 			struct cache_detail *cd)
1460 {
1461 	module_put(cd->owner);
1462 	return 0;
1463 }
1464 
1465 static ssize_t read_flush(struct file *file, char __user *buf,
1466 			  size_t count, loff_t *ppos,
1467 			  struct cache_detail *cd)
1468 {
1469 	char tbuf[22];
1470 	size_t len;
1471 
1472 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1473 			convert_to_wallclock(cd->flush_time));
1474 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1475 }
1476 
1477 static ssize_t write_flush(struct file *file, const char __user *buf,
1478 			   size_t count, loff_t *ppos,
1479 			   struct cache_detail *cd)
1480 {
1481 	char tbuf[20];
1482 	char *ep;
1483 	time_t now;
1484 
1485 	if (*ppos || count > sizeof(tbuf)-1)
1486 		return -EINVAL;
1487 	if (copy_from_user(tbuf, buf, count))
1488 		return -EFAULT;
1489 	tbuf[count] = 0;
1490 	simple_strtoul(tbuf, &ep, 0);
1491 	if (*ep && *ep != '\n')
1492 		return -EINVAL;
1493 	/* Note that while we check that 'buf' holds a valid number,
1494 	 * we always ignore the value and just flush everything.
1495 	 * Making use of the number leads to races.
1496 	 */
1497 
1498 	now = seconds_since_boot();
1499 	/* Always flush everything, so behave like cache_purge()
1500 	 * Do this by advancing flush_time to the current time,
1501 	 * or by one second if it has already reached the current time.
1502 	 * Newly added cache entries will always have ->last_refresh greater
1503 	 * that ->flush_time, so they don't get flushed prematurely.
1504 	 */
1505 
1506 	if (cd->flush_time >= now)
1507 		now = cd->flush_time + 1;
1508 
1509 	cd->flush_time = now;
1510 	cd->nextcheck = now;
1511 	cache_flush();
1512 
1513 	*ppos += count;
1514 	return count;
1515 }
1516 
1517 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1518 				 size_t count, loff_t *ppos)
1519 {
1520 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1521 
1522 	return cache_read(filp, buf, count, ppos, cd);
1523 }
1524 
1525 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1526 				  size_t count, loff_t *ppos)
1527 {
1528 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1529 
1530 	return cache_write(filp, buf, count, ppos, cd);
1531 }
1532 
1533 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1534 {
1535 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1536 
1537 	return cache_poll(filp, wait, cd);
1538 }
1539 
1540 static long cache_ioctl_procfs(struct file *filp,
1541 			       unsigned int cmd, unsigned long arg)
1542 {
1543 	struct inode *inode = file_inode(filp);
1544 	struct cache_detail *cd = PDE_DATA(inode);
1545 
1546 	return cache_ioctl(inode, filp, cmd, arg, cd);
1547 }
1548 
1549 static int cache_open_procfs(struct inode *inode, struct file *filp)
1550 {
1551 	struct cache_detail *cd = PDE_DATA(inode);
1552 
1553 	return cache_open(inode, filp, cd);
1554 }
1555 
1556 static int cache_release_procfs(struct inode *inode, struct file *filp)
1557 {
1558 	struct cache_detail *cd = PDE_DATA(inode);
1559 
1560 	return cache_release(inode, filp, cd);
1561 }
1562 
1563 static const struct file_operations cache_file_operations_procfs = {
1564 	.owner		= THIS_MODULE,
1565 	.llseek		= no_llseek,
1566 	.read		= cache_read_procfs,
1567 	.write		= cache_write_procfs,
1568 	.poll		= cache_poll_procfs,
1569 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1570 	.open		= cache_open_procfs,
1571 	.release	= cache_release_procfs,
1572 };
1573 
1574 static int content_open_procfs(struct inode *inode, struct file *filp)
1575 {
1576 	struct cache_detail *cd = PDE_DATA(inode);
1577 
1578 	return content_open(inode, filp, cd);
1579 }
1580 
1581 static int content_release_procfs(struct inode *inode, struct file *filp)
1582 {
1583 	struct cache_detail *cd = PDE_DATA(inode);
1584 
1585 	return content_release(inode, filp, cd);
1586 }
1587 
1588 static const struct file_operations content_file_operations_procfs = {
1589 	.open		= content_open_procfs,
1590 	.read		= seq_read,
1591 	.llseek		= seq_lseek,
1592 	.release	= content_release_procfs,
1593 };
1594 
1595 static int open_flush_procfs(struct inode *inode, struct file *filp)
1596 {
1597 	struct cache_detail *cd = PDE_DATA(inode);
1598 
1599 	return open_flush(inode, filp, cd);
1600 }
1601 
1602 static int release_flush_procfs(struct inode *inode, struct file *filp)
1603 {
1604 	struct cache_detail *cd = PDE_DATA(inode);
1605 
1606 	return release_flush(inode, filp, cd);
1607 }
1608 
1609 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1610 			    size_t count, loff_t *ppos)
1611 {
1612 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1613 
1614 	return read_flush(filp, buf, count, ppos, cd);
1615 }
1616 
1617 static ssize_t write_flush_procfs(struct file *filp,
1618 				  const char __user *buf,
1619 				  size_t count, loff_t *ppos)
1620 {
1621 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1622 
1623 	return write_flush(filp, buf, count, ppos, cd);
1624 }
1625 
1626 static const struct file_operations cache_flush_operations_procfs = {
1627 	.open		= open_flush_procfs,
1628 	.read		= read_flush_procfs,
1629 	.write		= write_flush_procfs,
1630 	.release	= release_flush_procfs,
1631 	.llseek		= no_llseek,
1632 };
1633 
1634 static void remove_cache_proc_entries(struct cache_detail *cd)
1635 {
1636 	if (cd->procfs) {
1637 		proc_remove(cd->procfs);
1638 		cd->procfs = NULL;
1639 	}
1640 }
1641 
1642 #ifdef CONFIG_PROC_FS
1643 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1644 {
1645 	struct proc_dir_entry *p;
1646 	struct sunrpc_net *sn;
1647 
1648 	sn = net_generic(net, sunrpc_net_id);
1649 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1650 	if (cd->procfs == NULL)
1651 		goto out_nomem;
1652 
1653 	p = proc_create_data("flush", S_IFREG | 0600,
1654 			     cd->procfs, &cache_flush_operations_procfs, cd);
1655 	if (p == NULL)
1656 		goto out_nomem;
1657 
1658 	if (cd->cache_request || cd->cache_parse) {
1659 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1660 				     &cache_file_operations_procfs, cd);
1661 		if (p == NULL)
1662 			goto out_nomem;
1663 	}
1664 	if (cd->cache_show) {
1665 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1666 				     &content_file_operations_procfs, cd);
1667 		if (p == NULL)
1668 			goto out_nomem;
1669 	}
1670 	return 0;
1671 out_nomem:
1672 	remove_cache_proc_entries(cd);
1673 	return -ENOMEM;
1674 }
1675 #else /* CONFIG_PROC_FS */
1676 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1677 {
1678 	return 0;
1679 }
1680 #endif
1681 
1682 void __init cache_initialize(void)
1683 {
1684 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1685 }
1686 
1687 int cache_register_net(struct cache_detail *cd, struct net *net)
1688 {
1689 	int ret;
1690 
1691 	sunrpc_init_cache_detail(cd);
1692 	ret = create_cache_proc_entries(cd, net);
1693 	if (ret)
1694 		sunrpc_destroy_cache_detail(cd);
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(cache_register_net);
1698 
1699 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1700 {
1701 	remove_cache_proc_entries(cd);
1702 	sunrpc_destroy_cache_detail(cd);
1703 }
1704 EXPORT_SYMBOL_GPL(cache_unregister_net);
1705 
1706 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1707 {
1708 	struct cache_detail *cd;
1709 	int i;
1710 
1711 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1712 	if (cd == NULL)
1713 		return ERR_PTR(-ENOMEM);
1714 
1715 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1716 				 GFP_KERNEL);
1717 	if (cd->hash_table == NULL) {
1718 		kfree(cd);
1719 		return ERR_PTR(-ENOMEM);
1720 	}
1721 
1722 	for (i = 0; i < cd->hash_size; i++)
1723 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1724 	cd->net = net;
1725 	return cd;
1726 }
1727 EXPORT_SYMBOL_GPL(cache_create_net);
1728 
1729 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1730 {
1731 	kfree(cd->hash_table);
1732 	kfree(cd);
1733 }
1734 EXPORT_SYMBOL_GPL(cache_destroy_net);
1735 
1736 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1737 				 size_t count, loff_t *ppos)
1738 {
1739 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1740 
1741 	return cache_read(filp, buf, count, ppos, cd);
1742 }
1743 
1744 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1745 				  size_t count, loff_t *ppos)
1746 {
1747 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1748 
1749 	return cache_write(filp, buf, count, ppos, cd);
1750 }
1751 
1752 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1753 {
1754 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1755 
1756 	return cache_poll(filp, wait, cd);
1757 }
1758 
1759 static long cache_ioctl_pipefs(struct file *filp,
1760 			      unsigned int cmd, unsigned long arg)
1761 {
1762 	struct inode *inode = file_inode(filp);
1763 	struct cache_detail *cd = RPC_I(inode)->private;
1764 
1765 	return cache_ioctl(inode, filp, cmd, arg, cd);
1766 }
1767 
1768 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1769 {
1770 	struct cache_detail *cd = RPC_I(inode)->private;
1771 
1772 	return cache_open(inode, filp, cd);
1773 }
1774 
1775 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1776 {
1777 	struct cache_detail *cd = RPC_I(inode)->private;
1778 
1779 	return cache_release(inode, filp, cd);
1780 }
1781 
1782 const struct file_operations cache_file_operations_pipefs = {
1783 	.owner		= THIS_MODULE,
1784 	.llseek		= no_llseek,
1785 	.read		= cache_read_pipefs,
1786 	.write		= cache_write_pipefs,
1787 	.poll		= cache_poll_pipefs,
1788 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1789 	.open		= cache_open_pipefs,
1790 	.release	= cache_release_pipefs,
1791 };
1792 
1793 static int content_open_pipefs(struct inode *inode, struct file *filp)
1794 {
1795 	struct cache_detail *cd = RPC_I(inode)->private;
1796 
1797 	return content_open(inode, filp, cd);
1798 }
1799 
1800 static int content_release_pipefs(struct inode *inode, struct file *filp)
1801 {
1802 	struct cache_detail *cd = RPC_I(inode)->private;
1803 
1804 	return content_release(inode, filp, cd);
1805 }
1806 
1807 const struct file_operations content_file_operations_pipefs = {
1808 	.open		= content_open_pipefs,
1809 	.read		= seq_read,
1810 	.llseek		= seq_lseek,
1811 	.release	= content_release_pipefs,
1812 };
1813 
1814 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1815 {
1816 	struct cache_detail *cd = RPC_I(inode)->private;
1817 
1818 	return open_flush(inode, filp, cd);
1819 }
1820 
1821 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1822 {
1823 	struct cache_detail *cd = RPC_I(inode)->private;
1824 
1825 	return release_flush(inode, filp, cd);
1826 }
1827 
1828 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1829 			    size_t count, loff_t *ppos)
1830 {
1831 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1832 
1833 	return read_flush(filp, buf, count, ppos, cd);
1834 }
1835 
1836 static ssize_t write_flush_pipefs(struct file *filp,
1837 				  const char __user *buf,
1838 				  size_t count, loff_t *ppos)
1839 {
1840 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1841 
1842 	return write_flush(filp, buf, count, ppos, cd);
1843 }
1844 
1845 const struct file_operations cache_flush_operations_pipefs = {
1846 	.open		= open_flush_pipefs,
1847 	.read		= read_flush_pipefs,
1848 	.write		= write_flush_pipefs,
1849 	.release	= release_flush_pipefs,
1850 	.llseek		= no_llseek,
1851 };
1852 
1853 int sunrpc_cache_register_pipefs(struct dentry *parent,
1854 				 const char *name, umode_t umode,
1855 				 struct cache_detail *cd)
1856 {
1857 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1858 	if (IS_ERR(dir))
1859 		return PTR_ERR(dir);
1860 	cd->pipefs = dir;
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1864 
1865 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1866 {
1867 	if (cd->pipefs) {
1868 		rpc_remove_cache_dir(cd->pipefs);
1869 		cd->pipefs = NULL;
1870 	}
1871 }
1872 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1873 
1874 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1875 {
1876 	spin_lock(&cd->hash_lock);
1877 	if (!hlist_unhashed(&h->cache_list)){
1878 		hlist_del_init_rcu(&h->cache_list);
1879 		cd->entries--;
1880 		spin_unlock(&cd->hash_lock);
1881 		cache_put(h, cd);
1882 	} else
1883 		spin_unlock(&cd->hash_lock);
1884 }
1885 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1886