1 /*
2  * COPYRIGHT (c) 2008
3  * The Regents of the University of Michigan
4  * ALL RIGHTS RESERVED
5  *
6  * Permission is granted to use, copy, create derivative works
7  * and redistribute this software and such derivative works
8  * for any purpose, so long as the name of The University of
9  * Michigan is not used in any advertising or publicity
10  * pertaining to the use of distribution of this software
11  * without specific, written prior authorization.  If the
12  * above copyright notice or any other identification of the
13  * University of Michigan is included in any copy of any
14  * portion of this software, then the disclaimer below must
15  * also be included.
16  *
17  * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
18  * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
19  * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
20  * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
21  * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
23  * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
24  * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
25  * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
26  * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
27  * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGES.
29  */
30 
31 #include <linux/types.h>
32 #include <linux/jiffies.h>
33 #include <linux/sunrpc/gss_krb5.h>
34 #include <linux/random.h>
35 #include <linux/pagemap.h>
36 #include <linux/crypto.h>
37 
38 #ifdef RPC_DEBUG
39 # define RPCDBG_FACILITY	RPCDBG_AUTH
40 #endif
41 
42 static inline int
43 gss_krb5_padding(int blocksize, int length)
44 {
45 	return blocksize - (length % blocksize);
46 }
47 
48 static inline void
49 gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize)
50 {
51 	int padding = gss_krb5_padding(blocksize, buf->len - offset);
52 	char *p;
53 	struct kvec *iov;
54 
55 	if (buf->page_len || buf->tail[0].iov_len)
56 		iov = &buf->tail[0];
57 	else
58 		iov = &buf->head[0];
59 	p = iov->iov_base + iov->iov_len;
60 	iov->iov_len += padding;
61 	buf->len += padding;
62 	memset(p, padding, padding);
63 }
64 
65 static inline int
66 gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize)
67 {
68 	u8 *ptr;
69 	u8 pad;
70 	size_t len = buf->len;
71 
72 	if (len <= buf->head[0].iov_len) {
73 		pad = *(u8 *)(buf->head[0].iov_base + len - 1);
74 		if (pad > buf->head[0].iov_len)
75 			return -EINVAL;
76 		buf->head[0].iov_len -= pad;
77 		goto out;
78 	} else
79 		len -= buf->head[0].iov_len;
80 	if (len <= buf->page_len) {
81 		unsigned int last = (buf->page_base + len - 1)
82 					>>PAGE_CACHE_SHIFT;
83 		unsigned int offset = (buf->page_base + len - 1)
84 					& (PAGE_CACHE_SIZE - 1);
85 		ptr = kmap_atomic(buf->pages[last]);
86 		pad = *(ptr + offset);
87 		kunmap_atomic(ptr);
88 		goto out;
89 	} else
90 		len -= buf->page_len;
91 	BUG_ON(len > buf->tail[0].iov_len);
92 	pad = *(u8 *)(buf->tail[0].iov_base + len - 1);
93 out:
94 	/* XXX: NOTE: we do not adjust the page lengths--they represent
95 	 * a range of data in the real filesystem page cache, and we need
96 	 * to know that range so the xdr code can properly place read data.
97 	 * However adjusting the head length, as we do above, is harmless.
98 	 * In the case of a request that fits into a single page, the server
99 	 * also uses length and head length together to determine the original
100 	 * start of the request to copy the request for deferal; so it's
101 	 * easier on the server if we adjust head and tail length in tandem.
102 	 * It's not really a problem that we don't fool with the page and
103 	 * tail lengths, though--at worst badly formed xdr might lead the
104 	 * server to attempt to parse the padding.
105 	 * XXX: Document all these weird requirements for gss mechanism
106 	 * wrap/unwrap functions. */
107 	if (pad > blocksize)
108 		return -EINVAL;
109 	if (buf->len > pad)
110 		buf->len -= pad;
111 	else
112 		return -EINVAL;
113 	return 0;
114 }
115 
116 void
117 gss_krb5_make_confounder(char *p, u32 conflen)
118 {
119 	static u64 i = 0;
120 	u64 *q = (u64 *)p;
121 
122 	/* rfc1964 claims this should be "random".  But all that's really
123 	 * necessary is that it be unique.  And not even that is necessary in
124 	 * our case since our "gssapi" implementation exists only to support
125 	 * rpcsec_gss, so we know that the only buffers we will ever encrypt
126 	 * already begin with a unique sequence number.  Just to hedge my bets
127 	 * I'll make a half-hearted attempt at something unique, but ensuring
128 	 * uniqueness would mean worrying about atomicity and rollover, and I
129 	 * don't care enough. */
130 
131 	/* initialize to random value */
132 	if (i == 0) {
133 		i = random32();
134 		i = (i << 32) | random32();
135 	}
136 
137 	switch (conflen) {
138 	case 16:
139 		*q++ = i++;
140 		/* fall through */
141 	case 8:
142 		*q++ = i++;
143 		break;
144 	default:
145 		BUG();
146 	}
147 }
148 
149 /* Assumptions: the head and tail of inbuf are ours to play with.
150  * The pages, however, may be real pages in the page cache and we replace
151  * them with scratch pages from **pages before writing to them. */
152 /* XXX: obviously the above should be documentation of wrap interface,
153  * and shouldn't be in this kerberos-specific file. */
154 
155 /* XXX factor out common code with seal/unseal. */
156 
157 static u32
158 gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset,
159 		struct xdr_buf *buf, struct page **pages)
160 {
161 	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
162 	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
163 					    .data = cksumdata};
164 	int			blocksize = 0, plainlen;
165 	unsigned char		*ptr, *msg_start;
166 	s32			now;
167 	int			headlen;
168 	struct page		**tmp_pages;
169 	u32			seq_send;
170 	u8			*cksumkey;
171 	u32			conflen = kctx->gk5e->conflen;
172 
173 	dprintk("RPC:       %s\n", __func__);
174 
175 	now = get_seconds();
176 
177 	blocksize = crypto_blkcipher_blocksize(kctx->enc);
178 	gss_krb5_add_padding(buf, offset, blocksize);
179 	BUG_ON((buf->len - offset) % blocksize);
180 	plainlen = conflen + buf->len - offset;
181 
182 	headlen = g_token_size(&kctx->mech_used,
183 		GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) -
184 		(buf->len - offset);
185 
186 	ptr = buf->head[0].iov_base + offset;
187 	/* shift data to make room for header. */
188 	xdr_extend_head(buf, offset, headlen);
189 
190 	/* XXX Would be cleverer to encrypt while copying. */
191 	BUG_ON((buf->len - offset - headlen) % blocksize);
192 
193 	g_make_token_header(&kctx->mech_used,
194 				GSS_KRB5_TOK_HDR_LEN +
195 				kctx->gk5e->cksumlength + plainlen, &ptr);
196 
197 
198 	/* ptr now at header described in rfc 1964, section 1.2.1: */
199 	ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff);
200 	ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff);
201 
202 	msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength;
203 
204 	*(__be16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg);
205 	memset(ptr + 4, 0xff, 4);
206 	*(__be16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg);
207 
208 	gss_krb5_make_confounder(msg_start, conflen);
209 
210 	if (kctx->gk5e->keyed_cksum)
211 		cksumkey = kctx->cksum;
212 	else
213 		cksumkey = NULL;
214 
215 	/* XXXJBF: UGH!: */
216 	tmp_pages = buf->pages;
217 	buf->pages = pages;
218 	if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen,
219 					cksumkey, KG_USAGE_SEAL, &md5cksum))
220 		return GSS_S_FAILURE;
221 	buf->pages = tmp_pages;
222 
223 	memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len);
224 
225 	spin_lock(&krb5_seq_lock);
226 	seq_send = kctx->seq_send++;
227 	spin_unlock(&krb5_seq_lock);
228 
229 	/* XXX would probably be more efficient to compute checksum
230 	 * and encrypt at the same time: */
231 	if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff,
232 			       seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8)))
233 		return GSS_S_FAILURE;
234 
235 	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
236 		struct crypto_blkcipher *cipher;
237 		int err;
238 		cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0,
239 						CRYPTO_ALG_ASYNC);
240 		if (IS_ERR(cipher))
241 			return GSS_S_FAILURE;
242 
243 		krb5_rc4_setup_enc_key(kctx, cipher, seq_send);
244 
245 		err = gss_encrypt_xdr_buf(cipher, buf,
246 					  offset + headlen - conflen, pages);
247 		crypto_free_blkcipher(cipher);
248 		if (err)
249 			return GSS_S_FAILURE;
250 	} else {
251 		if (gss_encrypt_xdr_buf(kctx->enc, buf,
252 					offset + headlen - conflen, pages))
253 			return GSS_S_FAILURE;
254 	}
255 
256 	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
257 }
258 
259 static u32
260 gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
261 {
262 	int			signalg;
263 	int			sealalg;
264 	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
265 	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
266 					    .data = cksumdata};
267 	s32			now;
268 	int			direction;
269 	s32			seqnum;
270 	unsigned char		*ptr;
271 	int			bodysize;
272 	void			*data_start, *orig_start;
273 	int			data_len;
274 	int			blocksize;
275 	u32			conflen = kctx->gk5e->conflen;
276 	int			crypt_offset;
277 	u8			*cksumkey;
278 
279 	dprintk("RPC:       gss_unwrap_kerberos\n");
280 
281 	ptr = (u8 *)buf->head[0].iov_base + offset;
282 	if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr,
283 					buf->len - offset))
284 		return GSS_S_DEFECTIVE_TOKEN;
285 
286 	if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) ||
287 	    (ptr[1] !=  (KG_TOK_WRAP_MSG & 0xff)))
288 		return GSS_S_DEFECTIVE_TOKEN;
289 
290 	/* XXX sanity-check bodysize?? */
291 
292 	/* get the sign and seal algorithms */
293 
294 	signalg = ptr[2] + (ptr[3] << 8);
295 	if (signalg != kctx->gk5e->signalg)
296 		return GSS_S_DEFECTIVE_TOKEN;
297 
298 	sealalg = ptr[4] + (ptr[5] << 8);
299 	if (sealalg != kctx->gk5e->sealalg)
300 		return GSS_S_DEFECTIVE_TOKEN;
301 
302 	if ((ptr[6] != 0xff) || (ptr[7] != 0xff))
303 		return GSS_S_DEFECTIVE_TOKEN;
304 
305 	/*
306 	 * Data starts after token header and checksum.  ptr points
307 	 * to the beginning of the token header
308 	 */
309 	crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) -
310 					(unsigned char *)buf->head[0].iov_base;
311 
312 	/*
313 	 * Need plaintext seqnum to derive encryption key for arcfour-hmac
314 	 */
315 	if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN,
316 			     ptr + 8, &direction, &seqnum))
317 		return GSS_S_BAD_SIG;
318 
319 	if ((kctx->initiate && direction != 0xff) ||
320 	    (!kctx->initiate && direction != 0))
321 		return GSS_S_BAD_SIG;
322 
323 	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
324 		struct crypto_blkcipher *cipher;
325 		int err;
326 
327 		cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0,
328 						CRYPTO_ALG_ASYNC);
329 		if (IS_ERR(cipher))
330 			return GSS_S_FAILURE;
331 
332 		krb5_rc4_setup_enc_key(kctx, cipher, seqnum);
333 
334 		err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset);
335 		crypto_free_blkcipher(cipher);
336 		if (err)
337 			return GSS_S_DEFECTIVE_TOKEN;
338 	} else {
339 		if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset))
340 			return GSS_S_DEFECTIVE_TOKEN;
341 	}
342 
343 	if (kctx->gk5e->keyed_cksum)
344 		cksumkey = kctx->cksum;
345 	else
346 		cksumkey = NULL;
347 
348 	if (make_checksum(kctx, ptr, 8, buf, crypt_offset,
349 					cksumkey, KG_USAGE_SEAL, &md5cksum))
350 		return GSS_S_FAILURE;
351 
352 	if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN,
353 						kctx->gk5e->cksumlength))
354 		return GSS_S_BAD_SIG;
355 
356 	/* it got through unscathed.  Make sure the context is unexpired */
357 
358 	now = get_seconds();
359 
360 	if (now > kctx->endtime)
361 		return GSS_S_CONTEXT_EXPIRED;
362 
363 	/* do sequencing checks */
364 
365 	/* Copy the data back to the right position.  XXX: Would probably be
366 	 * better to copy and encrypt at the same time. */
367 
368 	blocksize = crypto_blkcipher_blocksize(kctx->enc);
369 	data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) +
370 					conflen;
371 	orig_start = buf->head[0].iov_base + offset;
372 	data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start;
373 	memmove(orig_start, data_start, data_len);
374 	buf->head[0].iov_len -= (data_start - orig_start);
375 	buf->len -= (data_start - orig_start);
376 
377 	if (gss_krb5_remove_padding(buf, blocksize))
378 		return GSS_S_DEFECTIVE_TOKEN;
379 
380 	return GSS_S_COMPLETE;
381 }
382 
383 /*
384  * We cannot currently handle tokens with rotated data.  We need a
385  * generalized routine to rotate the data in place.  It is anticipated
386  * that we won't encounter rotated data in the general case.
387  */
388 static u32
389 rotate_left(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf, u16 rrc)
390 {
391 	unsigned int realrrc = rrc % (buf->len - offset - GSS_KRB5_TOK_HDR_LEN);
392 
393 	if (realrrc == 0)
394 		return 0;
395 
396 	dprintk("%s: cannot process token with rotated data: "
397 		"rrc %u, realrrc %u\n", __func__, rrc, realrrc);
398 	return 1;
399 }
400 
401 static u32
402 gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset,
403 		     struct xdr_buf *buf, struct page **pages)
404 {
405 	int		blocksize;
406 	u8		*ptr, *plainhdr;
407 	s32		now;
408 	u8		flags = 0x00;
409 	__be16		*be16ptr, ec = 0;
410 	__be64		*be64ptr;
411 	u32		err;
412 
413 	dprintk("RPC:       %s\n", __func__);
414 
415 	if (kctx->gk5e->encrypt_v2 == NULL)
416 		return GSS_S_FAILURE;
417 
418 	/* make room for gss token header */
419 	if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN))
420 		return GSS_S_FAILURE;
421 
422 	/* construct gss token header */
423 	ptr = plainhdr = buf->head[0].iov_base + offset;
424 	*ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff);
425 	*ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff);
426 
427 	if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0)
428 		flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR;
429 	if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0)
430 		flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY;
431 	/* We always do confidentiality in wrap tokens */
432 	flags |= KG2_TOKEN_FLAG_SEALED;
433 
434 	*ptr++ = flags;
435 	*ptr++ = 0xff;
436 	be16ptr = (__be16 *)ptr;
437 
438 	blocksize = crypto_blkcipher_blocksize(kctx->acceptor_enc);
439 	*be16ptr++ = cpu_to_be16(ec);
440 	/* "inner" token header always uses 0 for RRC */
441 	*be16ptr++ = cpu_to_be16(0);
442 
443 	be64ptr = (__be64 *)be16ptr;
444 	spin_lock(&krb5_seq_lock);
445 	*be64ptr = cpu_to_be64(kctx->seq_send64++);
446 	spin_unlock(&krb5_seq_lock);
447 
448 	err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, ec, pages);
449 	if (err)
450 		return err;
451 
452 	now = get_seconds();
453 	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
454 }
455 
456 static u32
457 gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
458 {
459 	s32		now;
460 	u64		seqnum;
461 	u8		*ptr;
462 	u8		flags = 0x00;
463 	u16		ec, rrc;
464 	int		err;
465 	u32		headskip, tailskip;
466 	u8		decrypted_hdr[GSS_KRB5_TOK_HDR_LEN];
467 	unsigned int	movelen;
468 
469 
470 	dprintk("RPC:       %s\n", __func__);
471 
472 	if (kctx->gk5e->decrypt_v2 == NULL)
473 		return GSS_S_FAILURE;
474 
475 	ptr = buf->head[0].iov_base + offset;
476 
477 	if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP)
478 		return GSS_S_DEFECTIVE_TOKEN;
479 
480 	flags = ptr[2];
481 	if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) ||
482 	    (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)))
483 		return GSS_S_BAD_SIG;
484 
485 	if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) {
486 		dprintk("%s: token missing expected sealed flag\n", __func__);
487 		return GSS_S_DEFECTIVE_TOKEN;
488 	}
489 
490 	if (ptr[3] != 0xff)
491 		return GSS_S_DEFECTIVE_TOKEN;
492 
493 	ec = be16_to_cpup((__be16 *)(ptr + 4));
494 	rrc = be16_to_cpup((__be16 *)(ptr + 6));
495 
496 	seqnum = be64_to_cpup((__be64 *)(ptr + 8));
497 
498 	if (rrc != 0) {
499 		err = rotate_left(kctx, offset, buf, rrc);
500 		if (err)
501 			return GSS_S_FAILURE;
502 	}
503 
504 	err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf,
505 					&headskip, &tailskip);
506 	if (err)
507 		return GSS_S_FAILURE;
508 
509 	/*
510 	 * Retrieve the decrypted gss token header and verify
511 	 * it against the original
512 	 */
513 	err = read_bytes_from_xdr_buf(buf,
514 				buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip,
515 				decrypted_hdr, GSS_KRB5_TOK_HDR_LEN);
516 	if (err) {
517 		dprintk("%s: error %u getting decrypted_hdr\n", __func__, err);
518 		return GSS_S_FAILURE;
519 	}
520 	if (memcmp(ptr, decrypted_hdr, 6)
521 				|| memcmp(ptr + 8, decrypted_hdr + 8, 8)) {
522 		dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__);
523 		return GSS_S_FAILURE;
524 	}
525 
526 	/* do sequencing checks */
527 
528 	/* it got through unscathed.  Make sure the context is unexpired */
529 	now = get_seconds();
530 	if (now > kctx->endtime)
531 		return GSS_S_CONTEXT_EXPIRED;
532 
533 	/*
534 	 * Move the head data back to the right position in xdr_buf.
535 	 * We ignore any "ec" data since it might be in the head or
536 	 * the tail, and we really don't need to deal with it.
537 	 * Note that buf->head[0].iov_len may indicate the available
538 	 * head buffer space rather than that actually occupied.
539 	 */
540 	movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len);
541 	movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip;
542 	BUG_ON(offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen >
543 							buf->head[0].iov_len);
544 	memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen);
545 	buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip;
546 	buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip;
547 
548 	return GSS_S_COMPLETE;
549 }
550 
551 u32
552 gss_wrap_kerberos(struct gss_ctx *gctx, int offset,
553 		  struct xdr_buf *buf, struct page **pages)
554 {
555 	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
556 
557 	switch (kctx->enctype) {
558 	default:
559 		BUG();
560 	case ENCTYPE_DES_CBC_RAW:
561 	case ENCTYPE_DES3_CBC_RAW:
562 	case ENCTYPE_ARCFOUR_HMAC:
563 		return gss_wrap_kerberos_v1(kctx, offset, buf, pages);
564 	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
565 	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
566 		return gss_wrap_kerberos_v2(kctx, offset, buf, pages);
567 	}
568 }
569 
570 u32
571 gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf)
572 {
573 	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
574 
575 	switch (kctx->enctype) {
576 	default:
577 		BUG();
578 	case ENCTYPE_DES_CBC_RAW:
579 	case ENCTYPE_DES3_CBC_RAW:
580 	case ENCTYPE_ARCFOUR_HMAC:
581 		return gss_unwrap_kerberos_v1(kctx, offset, buf);
582 	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
583 	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
584 		return gss_unwrap_kerberos_v2(kctx, offset, buf);
585 	}
586 }
587 
588