1 /*
2  *  linux/net/sunrpc/gss_krb5_crypto.c
3  *
4  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
5  *  All rights reserved.
6  *
7  *  Andy Adamson   <andros@umich.edu>
8  *  Bruce Fields   <bfields@umich.edu>
9  */
10 
11 /*
12  * Copyright (C) 1998 by the FundsXpress, INC.
13  *
14  * All rights reserved.
15  *
16  * Export of this software from the United States of America may require
17  * a specific license from the United States Government.  It is the
18  * responsibility of any person or organization contemplating export to
19  * obtain such a license before exporting.
20  *
21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22  * distribute this software and its documentation for any purpose and
23  * without fee is hereby granted, provided that the above copyright
24  * notice appear in all copies and that both that copyright notice and
25  * this permission notice appear in supporting documentation, and that
26  * the name of FundsXpress. not be used in advertising or publicity pertaining
27  * to distribution of the software without specific, written prior
28  * permission.  FundsXpress makes no representations about the suitability of
29  * this software for any purpose.  It is provided "as is" without express
30  * or implied warranty.
31  *
32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35  */
36 
37 #include <crypto/hash.h>
38 #include <crypto/skcipher.h>
39 #include <linux/err.h>
40 #include <linux/types.h>
41 #include <linux/mm.h>
42 #include <linux/scatterlist.h>
43 #include <linux/highmem.h>
44 #include <linux/pagemap.h>
45 #include <linux/random.h>
46 #include <linux/sunrpc/gss_krb5.h>
47 #include <linux/sunrpc/xdr.h>
48 
49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50 # define RPCDBG_FACILITY        RPCDBG_AUTH
51 #endif
52 
53 u32
54 krb5_encrypt(
55 	struct crypto_skcipher *tfm,
56 	void * iv,
57 	void * in,
58 	void * out,
59 	int length)
60 {
61 	u32 ret = -EINVAL;
62 	struct scatterlist sg[1];
63 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
64 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
65 
66 	if (length % crypto_skcipher_blocksize(tfm) != 0)
67 		goto out;
68 
69 	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
70 		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
71 			crypto_skcipher_ivsize(tfm));
72 		goto out;
73 	}
74 
75 	if (iv)
76 		memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
77 
78 	memcpy(out, in, length);
79 	sg_init_one(sg, out, length);
80 
81 	skcipher_request_set_callback(req, 0, NULL, NULL);
82 	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
83 
84 	ret = crypto_skcipher_encrypt(req);
85 	skcipher_request_zero(req);
86 out:
87 	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
88 	return ret;
89 }
90 
91 u32
92 krb5_decrypt(
93      struct crypto_skcipher *tfm,
94      void * iv,
95      void * in,
96      void * out,
97      int length)
98 {
99 	u32 ret = -EINVAL;
100 	struct scatterlist sg[1];
101 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
102 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
103 
104 	if (length % crypto_skcipher_blocksize(tfm) != 0)
105 		goto out;
106 
107 	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
108 		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
109 			crypto_skcipher_ivsize(tfm));
110 		goto out;
111 	}
112 	if (iv)
113 		memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
114 
115 	memcpy(out, in, length);
116 	sg_init_one(sg, out, length);
117 
118 	skcipher_request_set_callback(req, 0, NULL, NULL);
119 	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
120 
121 	ret = crypto_skcipher_decrypt(req);
122 	skcipher_request_zero(req);
123 out:
124 	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
125 	return ret;
126 }
127 
128 static int
129 checksummer(struct scatterlist *sg, void *data)
130 {
131 	struct ahash_request *req = data;
132 
133 	ahash_request_set_crypt(req, sg, NULL, sg->length);
134 
135 	return crypto_ahash_update(req);
136 }
137 
138 static int
139 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
140 {
141 	unsigned int ms_usage;
142 
143 	switch (usage) {
144 	case KG_USAGE_SIGN:
145 		ms_usage = 15;
146 		break;
147 	case KG_USAGE_SEAL:
148 		ms_usage = 13;
149 		break;
150 	default:
151 		return -EINVAL;
152 	}
153 	salt[0] = (ms_usage >> 0) & 0xff;
154 	salt[1] = (ms_usage >> 8) & 0xff;
155 	salt[2] = (ms_usage >> 16) & 0xff;
156 	salt[3] = (ms_usage >> 24) & 0xff;
157 
158 	return 0;
159 }
160 
161 static u32
162 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
163 		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
164 		       unsigned int usage, struct xdr_netobj *cksumout)
165 {
166 	struct scatterlist              sg[1];
167 	int err;
168 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
169 	u8 rc4salt[4];
170 	struct crypto_ahash *md5;
171 	struct crypto_ahash *hmac_md5;
172 	struct ahash_request *req;
173 
174 	if (cksumkey == NULL)
175 		return GSS_S_FAILURE;
176 
177 	if (cksumout->len < kctx->gk5e->cksumlength) {
178 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
179 			__func__, cksumout->len, kctx->gk5e->name);
180 		return GSS_S_FAILURE;
181 	}
182 
183 	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
184 		dprintk("%s: invalid usage value %u\n", __func__, usage);
185 		return GSS_S_FAILURE;
186 	}
187 
188 	md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
189 	if (IS_ERR(md5))
190 		return GSS_S_FAILURE;
191 
192 	hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
193 				      CRYPTO_ALG_ASYNC);
194 	if (IS_ERR(hmac_md5)) {
195 		crypto_free_ahash(md5);
196 		return GSS_S_FAILURE;
197 	}
198 
199 	req = ahash_request_alloc(md5, GFP_KERNEL);
200 	if (!req) {
201 		crypto_free_ahash(hmac_md5);
202 		crypto_free_ahash(md5);
203 		return GSS_S_FAILURE;
204 	}
205 
206 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
207 
208 	err = crypto_ahash_init(req);
209 	if (err)
210 		goto out;
211 	sg_init_one(sg, rc4salt, 4);
212 	ahash_request_set_crypt(req, sg, NULL, 4);
213 	err = crypto_ahash_update(req);
214 	if (err)
215 		goto out;
216 
217 	sg_init_one(sg, header, hdrlen);
218 	ahash_request_set_crypt(req, sg, NULL, hdrlen);
219 	err = crypto_ahash_update(req);
220 	if (err)
221 		goto out;
222 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
223 			      checksummer, req);
224 	if (err)
225 		goto out;
226 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
227 	err = crypto_ahash_final(req);
228 	if (err)
229 		goto out;
230 
231 	ahash_request_free(req);
232 	req = ahash_request_alloc(hmac_md5, GFP_KERNEL);
233 	if (!req) {
234 		crypto_free_ahash(hmac_md5);
235 		crypto_free_ahash(md5);
236 		return GSS_S_FAILURE;
237 	}
238 
239 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
240 
241 	err = crypto_ahash_init(req);
242 	if (err)
243 		goto out;
244 	err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
245 	if (err)
246 		goto out;
247 
248 	sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
249 	ahash_request_set_crypt(req, sg, checksumdata,
250 				crypto_ahash_digestsize(md5));
251 	err = crypto_ahash_digest(req);
252 	if (err)
253 		goto out;
254 
255 	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
256 	cksumout->len = kctx->gk5e->cksumlength;
257 out:
258 	ahash_request_free(req);
259 	crypto_free_ahash(md5);
260 	crypto_free_ahash(hmac_md5);
261 	return err ? GSS_S_FAILURE : 0;
262 }
263 
264 /*
265  * checksum the plaintext data and hdrlen bytes of the token header
266  * The checksum is performed over the first 8 bytes of the
267  * gss token header and then over the data body
268  */
269 u32
270 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
271 	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
272 	      unsigned int usage, struct xdr_netobj *cksumout)
273 {
274 	struct crypto_ahash *tfm;
275 	struct ahash_request *req;
276 	struct scatterlist              sg[1];
277 	int err;
278 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
279 	unsigned int checksumlen;
280 
281 	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
282 		return make_checksum_hmac_md5(kctx, header, hdrlen,
283 					      body, body_offset,
284 					      cksumkey, usage, cksumout);
285 
286 	if (cksumout->len < kctx->gk5e->cksumlength) {
287 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
288 			__func__, cksumout->len, kctx->gk5e->name);
289 		return GSS_S_FAILURE;
290 	}
291 
292 	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
293 	if (IS_ERR(tfm))
294 		return GSS_S_FAILURE;
295 
296 	req = ahash_request_alloc(tfm, GFP_KERNEL);
297 	if (!req) {
298 		crypto_free_ahash(tfm);
299 		return GSS_S_FAILURE;
300 	}
301 
302 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
303 
304 	checksumlen = crypto_ahash_digestsize(tfm);
305 
306 	if (cksumkey != NULL) {
307 		err = crypto_ahash_setkey(tfm, cksumkey,
308 					  kctx->gk5e->keylength);
309 		if (err)
310 			goto out;
311 	}
312 
313 	err = crypto_ahash_init(req);
314 	if (err)
315 		goto out;
316 	sg_init_one(sg, header, hdrlen);
317 	ahash_request_set_crypt(req, sg, NULL, hdrlen);
318 	err = crypto_ahash_update(req);
319 	if (err)
320 		goto out;
321 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
322 			      checksummer, req);
323 	if (err)
324 		goto out;
325 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
326 	err = crypto_ahash_final(req);
327 	if (err)
328 		goto out;
329 
330 	switch (kctx->gk5e->ctype) {
331 	case CKSUMTYPE_RSA_MD5:
332 		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
333 					  checksumdata, checksumlen);
334 		if (err)
335 			goto out;
336 		memcpy(cksumout->data,
337 		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
338 		       kctx->gk5e->cksumlength);
339 		break;
340 	case CKSUMTYPE_HMAC_SHA1_DES3:
341 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
342 		break;
343 	default:
344 		BUG();
345 		break;
346 	}
347 	cksumout->len = kctx->gk5e->cksumlength;
348 out:
349 	ahash_request_free(req);
350 	crypto_free_ahash(tfm);
351 	return err ? GSS_S_FAILURE : 0;
352 }
353 
354 /*
355  * checksum the plaintext data and hdrlen bytes of the token header
356  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
357  * body then over the first 16 octets of the MIC token
358  * Inclusion of the header data in the calculation of the
359  * checksum is optional.
360  */
361 u32
362 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
363 		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
364 		 unsigned int usage, struct xdr_netobj *cksumout)
365 {
366 	struct crypto_ahash *tfm;
367 	struct ahash_request *req;
368 	struct scatterlist sg[1];
369 	int err;
370 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
371 	unsigned int checksumlen;
372 
373 	if (kctx->gk5e->keyed_cksum == 0) {
374 		dprintk("%s: expected keyed hash for %s\n",
375 			__func__, kctx->gk5e->name);
376 		return GSS_S_FAILURE;
377 	}
378 	if (cksumkey == NULL) {
379 		dprintk("%s: no key supplied for %s\n",
380 			__func__, kctx->gk5e->name);
381 		return GSS_S_FAILURE;
382 	}
383 
384 	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
385 	if (IS_ERR(tfm))
386 		return GSS_S_FAILURE;
387 	checksumlen = crypto_ahash_digestsize(tfm);
388 
389 	req = ahash_request_alloc(tfm, GFP_KERNEL);
390 	if (!req) {
391 		crypto_free_ahash(tfm);
392 		return GSS_S_FAILURE;
393 	}
394 
395 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
396 
397 	err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
398 	if (err)
399 		goto out;
400 
401 	err = crypto_ahash_init(req);
402 	if (err)
403 		goto out;
404 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
405 			      checksummer, req);
406 	if (err)
407 		goto out;
408 	if (header != NULL) {
409 		sg_init_one(sg, header, hdrlen);
410 		ahash_request_set_crypt(req, sg, NULL, hdrlen);
411 		err = crypto_ahash_update(req);
412 		if (err)
413 			goto out;
414 	}
415 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
416 	err = crypto_ahash_final(req);
417 	if (err)
418 		goto out;
419 
420 	cksumout->len = kctx->gk5e->cksumlength;
421 
422 	switch (kctx->gk5e->ctype) {
423 	case CKSUMTYPE_HMAC_SHA1_96_AES128:
424 	case CKSUMTYPE_HMAC_SHA1_96_AES256:
425 		/* note that this truncates the hash */
426 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
427 		break;
428 	default:
429 		BUG();
430 		break;
431 	}
432 out:
433 	ahash_request_free(req);
434 	crypto_free_ahash(tfm);
435 	return err ? GSS_S_FAILURE : 0;
436 }
437 
438 struct encryptor_desc {
439 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
440 	struct skcipher_request *req;
441 	int pos;
442 	struct xdr_buf *outbuf;
443 	struct page **pages;
444 	struct scatterlist infrags[4];
445 	struct scatterlist outfrags[4];
446 	int fragno;
447 	int fraglen;
448 };
449 
450 static int
451 encryptor(struct scatterlist *sg, void *data)
452 {
453 	struct encryptor_desc *desc = data;
454 	struct xdr_buf *outbuf = desc->outbuf;
455 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
456 	struct page *in_page;
457 	int thislen = desc->fraglen + sg->length;
458 	int fraglen, ret;
459 	int page_pos;
460 
461 	/* Worst case is 4 fragments: head, end of page 1, start
462 	 * of page 2, tail.  Anything more is a bug. */
463 	BUG_ON(desc->fragno > 3);
464 
465 	page_pos = desc->pos - outbuf->head[0].iov_len;
466 	if (page_pos >= 0 && page_pos < outbuf->page_len) {
467 		/* pages are not in place: */
468 		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
469 		in_page = desc->pages[i];
470 	} else {
471 		in_page = sg_page(sg);
472 	}
473 	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
474 		    sg->offset);
475 	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
476 		    sg->offset);
477 	desc->fragno++;
478 	desc->fraglen += sg->length;
479 	desc->pos += sg->length;
480 
481 	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
482 	thislen -= fraglen;
483 
484 	if (thislen == 0)
485 		return 0;
486 
487 	sg_mark_end(&desc->infrags[desc->fragno - 1]);
488 	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
489 
490 	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
491 				   thislen, desc->iv);
492 
493 	ret = crypto_skcipher_encrypt(desc->req);
494 	if (ret)
495 		return ret;
496 
497 	sg_init_table(desc->infrags, 4);
498 	sg_init_table(desc->outfrags, 4);
499 
500 	if (fraglen) {
501 		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
502 				sg->offset + sg->length - fraglen);
503 		desc->infrags[0] = desc->outfrags[0];
504 		sg_assign_page(&desc->infrags[0], in_page);
505 		desc->fragno = 1;
506 		desc->fraglen = fraglen;
507 	} else {
508 		desc->fragno = 0;
509 		desc->fraglen = 0;
510 	}
511 	return 0;
512 }
513 
514 int
515 gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
516 		    int offset, struct page **pages)
517 {
518 	int ret;
519 	struct encryptor_desc desc;
520 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
521 
522 	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
523 
524 	skcipher_request_set_tfm(req, tfm);
525 	skcipher_request_set_callback(req, 0, NULL, NULL);
526 
527 	memset(desc.iv, 0, sizeof(desc.iv));
528 	desc.req = req;
529 	desc.pos = offset;
530 	desc.outbuf = buf;
531 	desc.pages = pages;
532 	desc.fragno = 0;
533 	desc.fraglen = 0;
534 
535 	sg_init_table(desc.infrags, 4);
536 	sg_init_table(desc.outfrags, 4);
537 
538 	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
539 	skcipher_request_zero(req);
540 	return ret;
541 }
542 
543 struct decryptor_desc {
544 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
545 	struct skcipher_request *req;
546 	struct scatterlist frags[4];
547 	int fragno;
548 	int fraglen;
549 };
550 
551 static int
552 decryptor(struct scatterlist *sg, void *data)
553 {
554 	struct decryptor_desc *desc = data;
555 	int thislen = desc->fraglen + sg->length;
556 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
557 	int fraglen, ret;
558 
559 	/* Worst case is 4 fragments: head, end of page 1, start
560 	 * of page 2, tail.  Anything more is a bug. */
561 	BUG_ON(desc->fragno > 3);
562 	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
563 		    sg->offset);
564 	desc->fragno++;
565 	desc->fraglen += sg->length;
566 
567 	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
568 	thislen -= fraglen;
569 
570 	if (thislen == 0)
571 		return 0;
572 
573 	sg_mark_end(&desc->frags[desc->fragno - 1]);
574 
575 	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
576 				   thislen, desc->iv);
577 
578 	ret = crypto_skcipher_decrypt(desc->req);
579 	if (ret)
580 		return ret;
581 
582 	sg_init_table(desc->frags, 4);
583 
584 	if (fraglen) {
585 		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
586 				sg->offset + sg->length - fraglen);
587 		desc->fragno = 1;
588 		desc->fraglen = fraglen;
589 	} else {
590 		desc->fragno = 0;
591 		desc->fraglen = 0;
592 	}
593 	return 0;
594 }
595 
596 int
597 gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
598 		    int offset)
599 {
600 	int ret;
601 	struct decryptor_desc desc;
602 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
603 
604 	/* XXXJBF: */
605 	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
606 
607 	skcipher_request_set_tfm(req, tfm);
608 	skcipher_request_set_callback(req, 0, NULL, NULL);
609 
610 	memset(desc.iv, 0, sizeof(desc.iv));
611 	desc.req = req;
612 	desc.fragno = 0;
613 	desc.fraglen = 0;
614 
615 	sg_init_table(desc.frags, 4);
616 
617 	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
618 	skcipher_request_zero(req);
619 	return ret;
620 }
621 
622 /*
623  * This function makes the assumption that it was ultimately called
624  * from gss_wrap().
625  *
626  * The client auth_gss code moves any existing tail data into a
627  * separate page before calling gss_wrap.
628  * The server svcauth_gss code ensures that both the head and the
629  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
630  *
631  * Even with that guarantee, this function may be called more than
632  * once in the processing of gss_wrap().  The best we can do is
633  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
634  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
635  * At run-time we can verify that a single invocation of this
636  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
637  */
638 
639 int
640 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
641 {
642 	u8 *p;
643 
644 	if (shiftlen == 0)
645 		return 0;
646 
647 	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
648 	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
649 
650 	p = buf->head[0].iov_base + base;
651 
652 	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
653 
654 	buf->head[0].iov_len += shiftlen;
655 	buf->len += shiftlen;
656 
657 	return 0;
658 }
659 
660 static u32
661 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
662 		   u32 offset, u8 *iv, struct page **pages, int encrypt)
663 {
664 	u32 ret;
665 	struct scatterlist sg[1];
666 	SKCIPHER_REQUEST_ON_STACK(req, cipher);
667 	u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
668 	struct page **save_pages;
669 	u32 len = buf->len - offset;
670 
671 	if (len > ARRAY_SIZE(data)) {
672 		WARN_ON(0);
673 		return -ENOMEM;
674 	}
675 
676 	/*
677 	 * For encryption, we want to read from the cleartext
678 	 * page cache pages, and write the encrypted data to
679 	 * the supplied xdr_buf pages.
680 	 */
681 	save_pages = buf->pages;
682 	if (encrypt)
683 		buf->pages = pages;
684 
685 	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
686 	buf->pages = save_pages;
687 	if (ret)
688 		goto out;
689 
690 	sg_init_one(sg, data, len);
691 
692 	skcipher_request_set_tfm(req, cipher);
693 	skcipher_request_set_callback(req, 0, NULL, NULL);
694 	skcipher_request_set_crypt(req, sg, sg, len, iv);
695 
696 	if (encrypt)
697 		ret = crypto_skcipher_encrypt(req);
698 	else
699 		ret = crypto_skcipher_decrypt(req);
700 
701 	skcipher_request_zero(req);
702 
703 	if (ret)
704 		goto out;
705 
706 	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
707 
708 out:
709 	return ret;
710 }
711 
712 u32
713 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
714 		     struct xdr_buf *buf, struct page **pages)
715 {
716 	u32 err;
717 	struct xdr_netobj hmac;
718 	u8 *cksumkey;
719 	u8 *ecptr;
720 	struct crypto_skcipher *cipher, *aux_cipher;
721 	int blocksize;
722 	struct page **save_pages;
723 	int nblocks, nbytes;
724 	struct encryptor_desc desc;
725 	u32 cbcbytes;
726 	unsigned int usage;
727 
728 	if (kctx->initiate) {
729 		cipher = kctx->initiator_enc;
730 		aux_cipher = kctx->initiator_enc_aux;
731 		cksumkey = kctx->initiator_integ;
732 		usage = KG_USAGE_INITIATOR_SEAL;
733 	} else {
734 		cipher = kctx->acceptor_enc;
735 		aux_cipher = kctx->acceptor_enc_aux;
736 		cksumkey = kctx->acceptor_integ;
737 		usage = KG_USAGE_ACCEPTOR_SEAL;
738 	}
739 	blocksize = crypto_skcipher_blocksize(cipher);
740 
741 	/* hide the gss token header and insert the confounder */
742 	offset += GSS_KRB5_TOK_HDR_LEN;
743 	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
744 		return GSS_S_FAILURE;
745 	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
746 	offset -= GSS_KRB5_TOK_HDR_LEN;
747 
748 	if (buf->tail[0].iov_base != NULL) {
749 		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
750 	} else {
751 		buf->tail[0].iov_base = buf->head[0].iov_base
752 							+ buf->head[0].iov_len;
753 		buf->tail[0].iov_len = 0;
754 		ecptr = buf->tail[0].iov_base;
755 	}
756 
757 	/* copy plaintext gss token header after filler (if any) */
758 	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
759 	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
760 	buf->len += GSS_KRB5_TOK_HDR_LEN;
761 
762 	/* Do the HMAC */
763 	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
764 	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
765 
766 	/*
767 	 * When we are called, pages points to the real page cache
768 	 * data -- which we can't go and encrypt!  buf->pages points
769 	 * to scratch pages which we are going to send off to the
770 	 * client/server.  Swap in the plaintext pages to calculate
771 	 * the hmac.
772 	 */
773 	save_pages = buf->pages;
774 	buf->pages = pages;
775 
776 	err = make_checksum_v2(kctx, NULL, 0, buf,
777 			       offset + GSS_KRB5_TOK_HDR_LEN,
778 			       cksumkey, usage, &hmac);
779 	buf->pages = save_pages;
780 	if (err)
781 		return GSS_S_FAILURE;
782 
783 	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
784 	nblocks = (nbytes + blocksize - 1) / blocksize;
785 	cbcbytes = 0;
786 	if (nblocks > 2)
787 		cbcbytes = (nblocks - 2) * blocksize;
788 
789 	memset(desc.iv, 0, sizeof(desc.iv));
790 
791 	if (cbcbytes) {
792 		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
793 
794 		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
795 		desc.fragno = 0;
796 		desc.fraglen = 0;
797 		desc.pages = pages;
798 		desc.outbuf = buf;
799 		desc.req = req;
800 
801 		skcipher_request_set_tfm(req, aux_cipher);
802 		skcipher_request_set_callback(req, 0, NULL, NULL);
803 
804 		sg_init_table(desc.infrags, 4);
805 		sg_init_table(desc.outfrags, 4);
806 
807 		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
808 				      cbcbytes, encryptor, &desc);
809 		skcipher_request_zero(req);
810 		if (err)
811 			goto out_err;
812 	}
813 
814 	/* Make sure IV carries forward from any CBC results. */
815 	err = gss_krb5_cts_crypt(cipher, buf,
816 				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
817 				 desc.iv, pages, 1);
818 	if (err) {
819 		err = GSS_S_FAILURE;
820 		goto out_err;
821 	}
822 
823 	/* Now update buf to account for HMAC */
824 	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
825 	buf->len += kctx->gk5e->cksumlength;
826 
827 out_err:
828 	if (err)
829 		err = GSS_S_FAILURE;
830 	return err;
831 }
832 
833 u32
834 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
835 		     u32 *headskip, u32 *tailskip)
836 {
837 	struct xdr_buf subbuf;
838 	u32 ret = 0;
839 	u8 *cksum_key;
840 	struct crypto_skcipher *cipher, *aux_cipher;
841 	struct xdr_netobj our_hmac_obj;
842 	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
843 	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
844 	int nblocks, blocksize, cbcbytes;
845 	struct decryptor_desc desc;
846 	unsigned int usage;
847 
848 	if (kctx->initiate) {
849 		cipher = kctx->acceptor_enc;
850 		aux_cipher = kctx->acceptor_enc_aux;
851 		cksum_key = kctx->acceptor_integ;
852 		usage = KG_USAGE_ACCEPTOR_SEAL;
853 	} else {
854 		cipher = kctx->initiator_enc;
855 		aux_cipher = kctx->initiator_enc_aux;
856 		cksum_key = kctx->initiator_integ;
857 		usage = KG_USAGE_INITIATOR_SEAL;
858 	}
859 	blocksize = crypto_skcipher_blocksize(cipher);
860 
861 
862 	/* create a segment skipping the header and leaving out the checksum */
863 	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
864 				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
865 				     kctx->gk5e->cksumlength));
866 
867 	nblocks = (subbuf.len + blocksize - 1) / blocksize;
868 
869 	cbcbytes = 0;
870 	if (nblocks > 2)
871 		cbcbytes = (nblocks - 2) * blocksize;
872 
873 	memset(desc.iv, 0, sizeof(desc.iv));
874 
875 	if (cbcbytes) {
876 		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
877 
878 		desc.fragno = 0;
879 		desc.fraglen = 0;
880 		desc.req = req;
881 
882 		skcipher_request_set_tfm(req, aux_cipher);
883 		skcipher_request_set_callback(req, 0, NULL, NULL);
884 
885 		sg_init_table(desc.frags, 4);
886 
887 		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
888 		skcipher_request_zero(req);
889 		if (ret)
890 			goto out_err;
891 	}
892 
893 	/* Make sure IV carries forward from any CBC results. */
894 	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
895 	if (ret)
896 		goto out_err;
897 
898 
899 	/* Calculate our hmac over the plaintext data */
900 	our_hmac_obj.len = sizeof(our_hmac);
901 	our_hmac_obj.data = our_hmac;
902 
903 	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
904 			       cksum_key, usage, &our_hmac_obj);
905 	if (ret)
906 		goto out_err;
907 
908 	/* Get the packet's hmac value */
909 	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
910 				      pkt_hmac, kctx->gk5e->cksumlength);
911 	if (ret)
912 		goto out_err;
913 
914 	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
915 		ret = GSS_S_BAD_SIG;
916 		goto out_err;
917 	}
918 	*headskip = kctx->gk5e->conflen;
919 	*tailskip = kctx->gk5e->cksumlength;
920 out_err:
921 	if (ret && ret != GSS_S_BAD_SIG)
922 		ret = GSS_S_FAILURE;
923 	return ret;
924 }
925 
926 /*
927  * Compute Kseq given the initial session key and the checksum.
928  * Set the key of the given cipher.
929  */
930 int
931 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
932 		       unsigned char *cksum)
933 {
934 	struct crypto_shash *hmac;
935 	struct shash_desc *desc;
936 	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
937 	u32 zeroconstant = 0;
938 	int err;
939 
940 	dprintk("%s: entered\n", __func__);
941 
942 	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
943 	if (IS_ERR(hmac)) {
944 		dprintk("%s: error %ld, allocating hash '%s'\n",
945 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
946 		return PTR_ERR(hmac);
947 	}
948 
949 	desc = kmalloc(sizeof(*desc), GFP_KERNEL);
950 	if (!desc) {
951 		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
952 			__func__, kctx->gk5e->cksum_name);
953 		crypto_free_shash(hmac);
954 		return -ENOMEM;
955 	}
956 
957 	desc->tfm = hmac;
958 	desc->flags = 0;
959 
960 	/* Compute intermediate Kseq from session key */
961 	err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
962 	if (err)
963 		goto out_err;
964 
965 	err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
966 	if (err)
967 		goto out_err;
968 
969 	/* Compute final Kseq from the checksum and intermediate Kseq */
970 	err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
971 	if (err)
972 		goto out_err;
973 
974 	err = crypto_shash_digest(desc, cksum, 8, Kseq);
975 	if (err)
976 		goto out_err;
977 
978 	err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
979 	if (err)
980 		goto out_err;
981 
982 	err = 0;
983 
984 out_err:
985 	kzfree(desc);
986 	crypto_free_shash(hmac);
987 	dprintk("%s: returning %d\n", __func__, err);
988 	return err;
989 }
990 
991 /*
992  * Compute Kcrypt given the initial session key and the plaintext seqnum.
993  * Set the key of cipher kctx->enc.
994  */
995 int
996 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
997 		       s32 seqnum)
998 {
999 	struct crypto_shash *hmac;
1000 	struct shash_desc *desc;
1001 	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1002 	u8 zeroconstant[4] = {0};
1003 	u8 seqnumarray[4];
1004 	int err, i;
1005 
1006 	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1007 
1008 	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1009 	if (IS_ERR(hmac)) {
1010 		dprintk("%s: error %ld, allocating hash '%s'\n",
1011 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1012 		return PTR_ERR(hmac);
1013 	}
1014 
1015 	desc = kmalloc(sizeof(*desc), GFP_KERNEL);
1016 	if (!desc) {
1017 		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1018 			__func__, kctx->gk5e->cksum_name);
1019 		crypto_free_shash(hmac);
1020 		return -ENOMEM;
1021 	}
1022 
1023 	desc->tfm = hmac;
1024 	desc->flags = 0;
1025 
1026 	/* Compute intermediate Kcrypt from session key */
1027 	for (i = 0; i < kctx->gk5e->keylength; i++)
1028 		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1029 
1030 	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1031 	if (err)
1032 		goto out_err;
1033 
1034 	err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1035 	if (err)
1036 		goto out_err;
1037 
1038 	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1039 	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1040 	if (err)
1041 		goto out_err;
1042 
1043 	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1044 	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1045 	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1046 	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1047 
1048 	err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1049 	if (err)
1050 		goto out_err;
1051 
1052 	err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1053 	if (err)
1054 		goto out_err;
1055 
1056 	err = 0;
1057 
1058 out_err:
1059 	kzfree(desc);
1060 	crypto_free_shash(hmac);
1061 	dprintk("%s: returning %d\n", __func__, err);
1062 	return err;
1063 }
1064 
1065