xref: /openbmc/linux/net/sunrpc/auth_gss/auth_gss.c (revision df388556)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 
55 static const struct rpc_authops authgss_ops;
56 
57 static const struct rpc_credops gss_credops;
58 static const struct rpc_credops gss_nullops;
59 
60 #ifdef RPC_DEBUG
61 # define RPCDBG_FACILITY	RPCDBG_AUTH
62 #endif
63 
64 #define GSS_CRED_SLACK		1024
65 /* length of a krb5 verifier (48), plus data added before arguments when
66  * using integrity (two 4-byte integers): */
67 #define GSS_VERF_SLACK		100
68 
69 struct gss_auth {
70 	struct kref kref;
71 	struct rpc_auth rpc_auth;
72 	struct gss_api_mech *mech;
73 	enum rpc_gss_svc service;
74 	struct rpc_clnt *client;
75 	/*
76 	 * There are two upcall pipes; dentry[1], named "gssd", is used
77 	 * for the new text-based upcall; dentry[0] is named after the
78 	 * mechanism (for example, "krb5") and exists for
79 	 * backwards-compatibility with older gssd's.
80 	 */
81 	struct dentry *dentry[2];
82 };
83 
84 /* pipe_version >= 0 if and only if someone has a pipe open. */
85 static int pipe_version = -1;
86 static atomic_t pipe_users = ATOMIC_INIT(0);
87 static DEFINE_SPINLOCK(pipe_version_lock);
88 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
89 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
90 
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops_v0;
93 static struct rpc_pipe_ops gss_upcall_ops_v1;
94 
95 static inline struct gss_cl_ctx *
96 gss_get_ctx(struct gss_cl_ctx *ctx)
97 {
98 	atomic_inc(&ctx->count);
99 	return ctx;
100 }
101 
102 static inline void
103 gss_put_ctx(struct gss_cl_ctx *ctx)
104 {
105 	if (atomic_dec_and_test(&ctx->count))
106 		gss_free_ctx(ctx);
107 }
108 
109 /* gss_cred_set_ctx:
110  * called by gss_upcall_callback and gss_create_upcall in order
111  * to set the gss context. The actual exchange of an old context
112  * and a new one is protected by the inode->i_lock.
113  */
114 static void
115 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
116 {
117 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
118 
119 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
120 		return;
121 	gss_get_ctx(ctx);
122 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
123 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
124 	smp_mb__before_clear_bit();
125 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
126 }
127 
128 static const void *
129 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
130 {
131 	const void *q = (const void *)((const char *)p + len);
132 	if (unlikely(q > end || q < p))
133 		return ERR_PTR(-EFAULT);
134 	memcpy(res, p, len);
135 	return q;
136 }
137 
138 static inline const void *
139 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
140 {
141 	const void *q;
142 	unsigned int len;
143 
144 	p = simple_get_bytes(p, end, &len, sizeof(len));
145 	if (IS_ERR(p))
146 		return p;
147 	q = (const void *)((const char *)p + len);
148 	if (unlikely(q > end || q < p))
149 		return ERR_PTR(-EFAULT);
150 	dest->data = kmemdup(p, len, GFP_NOFS);
151 	if (unlikely(dest->data == NULL))
152 		return ERR_PTR(-ENOMEM);
153 	dest->len = len;
154 	return q;
155 }
156 
157 static struct gss_cl_ctx *
158 gss_cred_get_ctx(struct rpc_cred *cred)
159 {
160 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
161 	struct gss_cl_ctx *ctx = NULL;
162 
163 	rcu_read_lock();
164 	if (gss_cred->gc_ctx)
165 		ctx = gss_get_ctx(gss_cred->gc_ctx);
166 	rcu_read_unlock();
167 	return ctx;
168 }
169 
170 static struct gss_cl_ctx *
171 gss_alloc_context(void)
172 {
173 	struct gss_cl_ctx *ctx;
174 
175 	ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
176 	if (ctx != NULL) {
177 		ctx->gc_proc = RPC_GSS_PROC_DATA;
178 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
179 		spin_lock_init(&ctx->gc_seq_lock);
180 		atomic_set(&ctx->count,1);
181 	}
182 	return ctx;
183 }
184 
185 #define GSSD_MIN_TIMEOUT (60 * 60)
186 static const void *
187 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
188 {
189 	const void *q;
190 	unsigned int seclen;
191 	unsigned int timeout;
192 	u32 window_size;
193 	int ret;
194 
195 	/* First unsigned int gives the lifetime (in seconds) of the cred */
196 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
197 	if (IS_ERR(p))
198 		goto err;
199 	if (timeout == 0)
200 		timeout = GSSD_MIN_TIMEOUT;
201 	ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
202 	/* Sequence number window. Determines the maximum number of simultaneous requests */
203 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
204 	if (IS_ERR(p))
205 		goto err;
206 	ctx->gc_win = window_size;
207 	/* gssd signals an error by passing ctx->gc_win = 0: */
208 	if (ctx->gc_win == 0) {
209 		/* in which case, p points to  an error code which we ignore */
210 		p = ERR_PTR(-EACCES);
211 		goto err;
212 	}
213 	/* copy the opaque wire context */
214 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
215 	if (IS_ERR(p))
216 		goto err;
217 	/* import the opaque security context */
218 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
219 	if (IS_ERR(p))
220 		goto err;
221 	q = (const void *)((const char *)p + seclen);
222 	if (unlikely(q > end || q < p)) {
223 		p = ERR_PTR(-EFAULT);
224 		goto err;
225 	}
226 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
227 	if (ret < 0) {
228 		p = ERR_PTR(ret);
229 		goto err;
230 	}
231 	return q;
232 err:
233 	dprintk("RPC:       gss_fill_context returning %ld\n", -PTR_ERR(p));
234 	return p;
235 }
236 
237 #define UPCALL_BUF_LEN 128
238 
239 struct gss_upcall_msg {
240 	atomic_t count;
241 	uid_t	uid;
242 	struct rpc_pipe_msg msg;
243 	struct list_head list;
244 	struct gss_auth *auth;
245 	struct rpc_inode *inode;
246 	struct rpc_wait_queue rpc_waitqueue;
247 	wait_queue_head_t waitqueue;
248 	struct gss_cl_ctx *ctx;
249 	char databuf[UPCALL_BUF_LEN];
250 };
251 
252 static int get_pipe_version(void)
253 {
254 	int ret;
255 
256 	spin_lock(&pipe_version_lock);
257 	if (pipe_version >= 0) {
258 		atomic_inc(&pipe_users);
259 		ret = pipe_version;
260 	} else
261 		ret = -EAGAIN;
262 	spin_unlock(&pipe_version_lock);
263 	return ret;
264 }
265 
266 static void put_pipe_version(void)
267 {
268 	if (atomic_dec_and_lock(&pipe_users, &pipe_version_lock)) {
269 		pipe_version = -1;
270 		spin_unlock(&pipe_version_lock);
271 	}
272 }
273 
274 static void
275 gss_release_msg(struct gss_upcall_msg *gss_msg)
276 {
277 	if (!atomic_dec_and_test(&gss_msg->count))
278 		return;
279 	put_pipe_version();
280 	BUG_ON(!list_empty(&gss_msg->list));
281 	if (gss_msg->ctx != NULL)
282 		gss_put_ctx(gss_msg->ctx);
283 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
284 	kfree(gss_msg);
285 }
286 
287 static struct gss_upcall_msg *
288 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
289 {
290 	struct gss_upcall_msg *pos;
291 	list_for_each_entry(pos, &rpci->in_downcall, list) {
292 		if (pos->uid != uid)
293 			continue;
294 		atomic_inc(&pos->count);
295 		dprintk("RPC:       gss_find_upcall found msg %p\n", pos);
296 		return pos;
297 	}
298 	dprintk("RPC:       gss_find_upcall found nothing\n");
299 	return NULL;
300 }
301 
302 /* Try to add an upcall to the pipefs queue.
303  * If an upcall owned by our uid already exists, then we return a reference
304  * to that upcall instead of adding the new upcall.
305  */
306 static inline struct gss_upcall_msg *
307 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
308 {
309 	struct rpc_inode *rpci = gss_msg->inode;
310 	struct inode *inode = &rpci->vfs_inode;
311 	struct gss_upcall_msg *old;
312 
313 	spin_lock(&inode->i_lock);
314 	old = __gss_find_upcall(rpci, gss_msg->uid);
315 	if (old == NULL) {
316 		atomic_inc(&gss_msg->count);
317 		list_add(&gss_msg->list, &rpci->in_downcall);
318 	} else
319 		gss_msg = old;
320 	spin_unlock(&inode->i_lock);
321 	return gss_msg;
322 }
323 
324 static void
325 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
326 {
327 	list_del_init(&gss_msg->list);
328 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
329 	wake_up_all(&gss_msg->waitqueue);
330 	atomic_dec(&gss_msg->count);
331 }
332 
333 static void
334 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
335 {
336 	struct inode *inode = &gss_msg->inode->vfs_inode;
337 
338 	if (list_empty(&gss_msg->list))
339 		return;
340 	spin_lock(&inode->i_lock);
341 	if (!list_empty(&gss_msg->list))
342 		__gss_unhash_msg(gss_msg);
343 	spin_unlock(&inode->i_lock);
344 }
345 
346 static void
347 gss_upcall_callback(struct rpc_task *task)
348 {
349 	struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
350 			struct gss_cred, gc_base);
351 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
352 	struct inode *inode = &gss_msg->inode->vfs_inode;
353 
354 	spin_lock(&inode->i_lock);
355 	if (gss_msg->ctx)
356 		gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx);
357 	else
358 		task->tk_status = gss_msg->msg.errno;
359 	gss_cred->gc_upcall = NULL;
360 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
361 	spin_unlock(&inode->i_lock);
362 	gss_release_msg(gss_msg);
363 }
364 
365 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
366 {
367 	gss_msg->msg.data = &gss_msg->uid;
368 	gss_msg->msg.len = sizeof(gss_msg->uid);
369 }
370 
371 static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
372 				struct rpc_clnt *clnt, int machine_cred)
373 {
374 	char *p = gss_msg->databuf;
375 	int len = 0;
376 
377 	gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ",
378 				   gss_msg->auth->mech->gm_name,
379 				   gss_msg->uid);
380 	p += gss_msg->msg.len;
381 	if (clnt->cl_principal) {
382 		len = sprintf(p, "target=%s ", clnt->cl_principal);
383 		p += len;
384 		gss_msg->msg.len += len;
385 	}
386 	if (machine_cred) {
387 		len = sprintf(p, "service=* ");
388 		p += len;
389 		gss_msg->msg.len += len;
390 	} else if (!strcmp(clnt->cl_program->name, "nfs4_cb")) {
391 		len = sprintf(p, "service=nfs ");
392 		p += len;
393 		gss_msg->msg.len += len;
394 	}
395 	len = sprintf(p, "\n");
396 	gss_msg->msg.len += len;
397 
398 	gss_msg->msg.data = gss_msg->databuf;
399 	BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN);
400 }
401 
402 static void gss_encode_msg(struct gss_upcall_msg *gss_msg,
403 				struct rpc_clnt *clnt, int machine_cred)
404 {
405 	if (pipe_version == 0)
406 		gss_encode_v0_msg(gss_msg);
407 	else /* pipe_version == 1 */
408 		gss_encode_v1_msg(gss_msg, clnt, machine_cred);
409 }
410 
411 static inline struct gss_upcall_msg *
412 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid, struct rpc_clnt *clnt,
413 		int machine_cred)
414 {
415 	struct gss_upcall_msg *gss_msg;
416 	int vers;
417 
418 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
419 	if (gss_msg == NULL)
420 		return ERR_PTR(-ENOMEM);
421 	vers = get_pipe_version();
422 	if (vers < 0) {
423 		kfree(gss_msg);
424 		return ERR_PTR(vers);
425 	}
426 	gss_msg->inode = RPC_I(gss_auth->dentry[vers]->d_inode);
427 	INIT_LIST_HEAD(&gss_msg->list);
428 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
429 	init_waitqueue_head(&gss_msg->waitqueue);
430 	atomic_set(&gss_msg->count, 1);
431 	gss_msg->uid = uid;
432 	gss_msg->auth = gss_auth;
433 	gss_encode_msg(gss_msg, clnt, machine_cred);
434 	return gss_msg;
435 }
436 
437 static struct gss_upcall_msg *
438 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
439 {
440 	struct gss_cred *gss_cred = container_of(cred,
441 			struct gss_cred, gc_base);
442 	struct gss_upcall_msg *gss_new, *gss_msg;
443 	uid_t uid = cred->cr_uid;
444 
445 	gss_new = gss_alloc_msg(gss_auth, uid, clnt, gss_cred->gc_machine_cred);
446 	if (IS_ERR(gss_new))
447 		return gss_new;
448 	gss_msg = gss_add_msg(gss_auth, gss_new);
449 	if (gss_msg == gss_new) {
450 		struct inode *inode = &gss_new->inode->vfs_inode;
451 		int res = rpc_queue_upcall(inode, &gss_new->msg);
452 		if (res) {
453 			gss_unhash_msg(gss_new);
454 			gss_msg = ERR_PTR(res);
455 		}
456 	} else
457 		gss_release_msg(gss_new);
458 	return gss_msg;
459 }
460 
461 static void warn_gssd(void)
462 {
463 	static unsigned long ratelimit;
464 	unsigned long now = jiffies;
465 
466 	if (time_after(now, ratelimit)) {
467 		printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
468 				"Please check user daemon is running.\n");
469 		ratelimit = now + 15*HZ;
470 	}
471 }
472 
473 static inline int
474 gss_refresh_upcall(struct rpc_task *task)
475 {
476 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
477 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
478 			struct gss_auth, rpc_auth);
479 	struct gss_cred *gss_cred = container_of(cred,
480 			struct gss_cred, gc_base);
481 	struct gss_upcall_msg *gss_msg;
482 	struct inode *inode;
483 	int err = 0;
484 
485 	dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
486 								cred->cr_uid);
487 	gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
488 	if (IS_ERR(gss_msg) == -EAGAIN) {
489 		/* XXX: warning on the first, under the assumption we
490 		 * shouldn't normally hit this case on a refresh. */
491 		warn_gssd();
492 		task->tk_timeout = 15*HZ;
493 		rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
494 		return 0;
495 	}
496 	if (IS_ERR(gss_msg)) {
497 		err = PTR_ERR(gss_msg);
498 		goto out;
499 	}
500 	inode = &gss_msg->inode->vfs_inode;
501 	spin_lock(&inode->i_lock);
502 	if (gss_cred->gc_upcall != NULL)
503 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
504 	else if (gss_msg->ctx != NULL) {
505 		gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx);
506 		gss_cred->gc_upcall = NULL;
507 		rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
508 	} else if (gss_msg->msg.errno >= 0) {
509 		task->tk_timeout = 0;
510 		gss_cred->gc_upcall = gss_msg;
511 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
512 		atomic_inc(&gss_msg->count);
513 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
514 	} else
515 		err = gss_msg->msg.errno;
516 	spin_unlock(&inode->i_lock);
517 	gss_release_msg(gss_msg);
518 out:
519 	dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
520 			task->tk_pid, cred->cr_uid, err);
521 	return err;
522 }
523 
524 static inline int
525 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
526 {
527 	struct inode *inode;
528 	struct rpc_cred *cred = &gss_cred->gc_base;
529 	struct gss_upcall_msg *gss_msg;
530 	DEFINE_WAIT(wait);
531 	int err = 0;
532 
533 	dprintk("RPC:       gss_upcall for uid %u\n", cred->cr_uid);
534 retry:
535 	gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
536 	if (PTR_ERR(gss_msg) == -EAGAIN) {
537 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
538 				pipe_version >= 0, 15*HZ);
539 		if (err)
540 			goto out;
541 		if (pipe_version < 0)
542 			warn_gssd();
543 		goto retry;
544 	}
545 	if (IS_ERR(gss_msg)) {
546 		err = PTR_ERR(gss_msg);
547 		goto out;
548 	}
549 	inode = &gss_msg->inode->vfs_inode;
550 	for (;;) {
551 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
552 		spin_lock(&inode->i_lock);
553 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
554 			break;
555 		}
556 		spin_unlock(&inode->i_lock);
557 		if (signalled()) {
558 			err = -ERESTARTSYS;
559 			goto out_intr;
560 		}
561 		schedule();
562 	}
563 	if (gss_msg->ctx)
564 		gss_cred_set_ctx(cred, gss_msg->ctx);
565 	else
566 		err = gss_msg->msg.errno;
567 	spin_unlock(&inode->i_lock);
568 out_intr:
569 	finish_wait(&gss_msg->waitqueue, &wait);
570 	gss_release_msg(gss_msg);
571 out:
572 	dprintk("RPC:       gss_create_upcall for uid %u result %d\n",
573 			cred->cr_uid, err);
574 	return err;
575 }
576 
577 static ssize_t
578 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
579 		char __user *dst, size_t buflen)
580 {
581 	char *data = (char *)msg->data + msg->copied;
582 	size_t mlen = min(msg->len, buflen);
583 	unsigned long left;
584 
585 	left = copy_to_user(dst, data, mlen);
586 	if (left == mlen) {
587 		msg->errno = -EFAULT;
588 		return -EFAULT;
589 	}
590 
591 	mlen -= left;
592 	msg->copied += mlen;
593 	msg->errno = 0;
594 	return mlen;
595 }
596 
597 #define MSG_BUF_MAXSIZE 1024
598 
599 static ssize_t
600 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
601 {
602 	const void *p, *end;
603 	void *buf;
604 	struct gss_upcall_msg *gss_msg;
605 	struct inode *inode = filp->f_path.dentry->d_inode;
606 	struct gss_cl_ctx *ctx;
607 	uid_t uid;
608 	ssize_t err = -EFBIG;
609 
610 	if (mlen > MSG_BUF_MAXSIZE)
611 		goto out;
612 	err = -ENOMEM;
613 	buf = kmalloc(mlen, GFP_NOFS);
614 	if (!buf)
615 		goto out;
616 
617 	err = -EFAULT;
618 	if (copy_from_user(buf, src, mlen))
619 		goto err;
620 
621 	end = (const void *)((char *)buf + mlen);
622 	p = simple_get_bytes(buf, end, &uid, sizeof(uid));
623 	if (IS_ERR(p)) {
624 		err = PTR_ERR(p);
625 		goto err;
626 	}
627 
628 	err = -ENOMEM;
629 	ctx = gss_alloc_context();
630 	if (ctx == NULL)
631 		goto err;
632 
633 	err = -ENOENT;
634 	/* Find a matching upcall */
635 	spin_lock(&inode->i_lock);
636 	gss_msg = __gss_find_upcall(RPC_I(inode), uid);
637 	if (gss_msg == NULL) {
638 		spin_unlock(&inode->i_lock);
639 		goto err_put_ctx;
640 	}
641 	list_del_init(&gss_msg->list);
642 	spin_unlock(&inode->i_lock);
643 
644 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
645 	if (IS_ERR(p)) {
646 		err = PTR_ERR(p);
647 		gss_msg->msg.errno = (err == -EAGAIN) ? -EAGAIN : -EACCES;
648 		goto err_release_msg;
649 	}
650 	gss_msg->ctx = gss_get_ctx(ctx);
651 	err = mlen;
652 
653 err_release_msg:
654 	spin_lock(&inode->i_lock);
655 	__gss_unhash_msg(gss_msg);
656 	spin_unlock(&inode->i_lock);
657 	gss_release_msg(gss_msg);
658 err_put_ctx:
659 	gss_put_ctx(ctx);
660 err:
661 	kfree(buf);
662 out:
663 	dprintk("RPC:       gss_pipe_downcall returning %Zd\n", err);
664 	return err;
665 }
666 
667 static int gss_pipe_open(struct inode *inode, int new_version)
668 {
669 	int ret = 0;
670 
671 	spin_lock(&pipe_version_lock);
672 	if (pipe_version < 0) {
673 		/* First open of any gss pipe determines the version: */
674 		pipe_version = new_version;
675 		rpc_wake_up(&pipe_version_rpc_waitqueue);
676 		wake_up(&pipe_version_waitqueue);
677 	} else if (pipe_version != new_version) {
678 		/* Trying to open a pipe of a different version */
679 		ret = -EBUSY;
680 		goto out;
681 	}
682 	atomic_inc(&pipe_users);
683 out:
684 	spin_unlock(&pipe_version_lock);
685 	return ret;
686 
687 }
688 
689 static int gss_pipe_open_v0(struct inode *inode)
690 {
691 	return gss_pipe_open(inode, 0);
692 }
693 
694 static int gss_pipe_open_v1(struct inode *inode)
695 {
696 	return gss_pipe_open(inode, 1);
697 }
698 
699 static void
700 gss_pipe_release(struct inode *inode)
701 {
702 	struct rpc_inode *rpci = RPC_I(inode);
703 	struct gss_upcall_msg *gss_msg;
704 
705 	spin_lock(&inode->i_lock);
706 	while (!list_empty(&rpci->in_downcall)) {
707 
708 		gss_msg = list_entry(rpci->in_downcall.next,
709 				struct gss_upcall_msg, list);
710 		gss_msg->msg.errno = -EPIPE;
711 		atomic_inc(&gss_msg->count);
712 		__gss_unhash_msg(gss_msg);
713 		spin_unlock(&inode->i_lock);
714 		gss_release_msg(gss_msg);
715 		spin_lock(&inode->i_lock);
716 	}
717 	spin_unlock(&inode->i_lock);
718 
719 	put_pipe_version();
720 }
721 
722 static void
723 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
724 {
725 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
726 
727 	if (msg->errno < 0) {
728 		dprintk("RPC:       gss_pipe_destroy_msg releasing msg %p\n",
729 				gss_msg);
730 		atomic_inc(&gss_msg->count);
731 		gss_unhash_msg(gss_msg);
732 		if (msg->errno == -ETIMEDOUT)
733 			warn_gssd();
734 		gss_release_msg(gss_msg);
735 	}
736 }
737 
738 /*
739  * NOTE: we have the opportunity to use different
740  * parameters based on the input flavor (which must be a pseudoflavor)
741  */
742 static struct rpc_auth *
743 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
744 {
745 	struct gss_auth *gss_auth;
746 	struct rpc_auth * auth;
747 	int err = -ENOMEM; /* XXX? */
748 
749 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
750 
751 	if (!try_module_get(THIS_MODULE))
752 		return ERR_PTR(err);
753 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
754 		goto out_dec;
755 	gss_auth->client = clnt;
756 	err = -EINVAL;
757 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
758 	if (!gss_auth->mech) {
759 		printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
760 				__func__, flavor);
761 		goto err_free;
762 	}
763 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
764 	if (gss_auth->service == 0)
765 		goto err_put_mech;
766 	auth = &gss_auth->rpc_auth;
767 	auth->au_cslack = GSS_CRED_SLACK >> 2;
768 	auth->au_rslack = GSS_VERF_SLACK >> 2;
769 	auth->au_ops = &authgss_ops;
770 	auth->au_flavor = flavor;
771 	atomic_set(&auth->au_count, 1);
772 	kref_init(&gss_auth->kref);
773 
774 	/*
775 	 * Note: if we created the old pipe first, then someone who
776 	 * examined the directory at the right moment might conclude
777 	 * that we supported only the old pipe.  So we instead create
778 	 * the new pipe first.
779 	 */
780 	gss_auth->dentry[1] = rpc_mkpipe(clnt->cl_dentry,
781 					 "gssd",
782 					 clnt, &gss_upcall_ops_v1,
783 					 RPC_PIPE_WAIT_FOR_OPEN);
784 	if (IS_ERR(gss_auth->dentry[1])) {
785 		err = PTR_ERR(gss_auth->dentry[1]);
786 		goto err_put_mech;
787 	}
788 
789 	gss_auth->dentry[0] = rpc_mkpipe(clnt->cl_dentry,
790 					 gss_auth->mech->gm_name,
791 					 clnt, &gss_upcall_ops_v0,
792 					 RPC_PIPE_WAIT_FOR_OPEN);
793 	if (IS_ERR(gss_auth->dentry[0])) {
794 		err = PTR_ERR(gss_auth->dentry[0]);
795 		goto err_unlink_pipe_1;
796 	}
797 	err = rpcauth_init_credcache(auth);
798 	if (err)
799 		goto err_unlink_pipe_0;
800 
801 	return auth;
802 err_unlink_pipe_0:
803 	rpc_unlink(gss_auth->dentry[0]);
804 err_unlink_pipe_1:
805 	rpc_unlink(gss_auth->dentry[1]);
806 err_put_mech:
807 	gss_mech_put(gss_auth->mech);
808 err_free:
809 	kfree(gss_auth);
810 out_dec:
811 	module_put(THIS_MODULE);
812 	return ERR_PTR(err);
813 }
814 
815 static void
816 gss_free(struct gss_auth *gss_auth)
817 {
818 	rpc_unlink(gss_auth->dentry[1]);
819 	rpc_unlink(gss_auth->dentry[0]);
820 	gss_mech_put(gss_auth->mech);
821 
822 	kfree(gss_auth);
823 	module_put(THIS_MODULE);
824 }
825 
826 static void
827 gss_free_callback(struct kref *kref)
828 {
829 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
830 
831 	gss_free(gss_auth);
832 }
833 
834 static void
835 gss_destroy(struct rpc_auth *auth)
836 {
837 	struct gss_auth *gss_auth;
838 
839 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
840 			auth, auth->au_flavor);
841 
842 	rpcauth_destroy_credcache(auth);
843 
844 	gss_auth = container_of(auth, struct gss_auth, rpc_auth);
845 	kref_put(&gss_auth->kref, gss_free_callback);
846 }
847 
848 /*
849  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
850  * to the server with the GSS control procedure field set to
851  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
852  * all RPCSEC_GSS state associated with that context.
853  */
854 static int
855 gss_destroying_context(struct rpc_cred *cred)
856 {
857 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
858 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
859 	struct rpc_task *task;
860 
861 	if (gss_cred->gc_ctx == NULL ||
862 	    test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
863 		return 0;
864 
865 	gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
866 	cred->cr_ops = &gss_nullops;
867 
868 	/* Take a reference to ensure the cred will be destroyed either
869 	 * by the RPC call or by the put_rpccred() below */
870 	get_rpccred(cred);
871 
872 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
873 	if (!IS_ERR(task))
874 		rpc_put_task(task);
875 
876 	put_rpccred(cred);
877 	return 1;
878 }
879 
880 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
881  * to create a new cred or context, so they check that things have been
882  * allocated before freeing them. */
883 static void
884 gss_do_free_ctx(struct gss_cl_ctx *ctx)
885 {
886 	dprintk("RPC:       gss_free_ctx\n");
887 
888 	kfree(ctx->gc_wire_ctx.data);
889 	kfree(ctx);
890 }
891 
892 static void
893 gss_free_ctx_callback(struct rcu_head *head)
894 {
895 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
896 	gss_do_free_ctx(ctx);
897 }
898 
899 static void
900 gss_free_ctx(struct gss_cl_ctx *ctx)
901 {
902 	struct gss_ctx *gc_gss_ctx;
903 
904 	gc_gss_ctx = rcu_dereference(ctx->gc_gss_ctx);
905 	rcu_assign_pointer(ctx->gc_gss_ctx, NULL);
906 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
907 	if (gc_gss_ctx)
908 		gss_delete_sec_context(&gc_gss_ctx);
909 }
910 
911 static void
912 gss_free_cred(struct gss_cred *gss_cred)
913 {
914 	dprintk("RPC:       gss_free_cred %p\n", gss_cred);
915 	kfree(gss_cred);
916 }
917 
918 static void
919 gss_free_cred_callback(struct rcu_head *head)
920 {
921 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
922 	gss_free_cred(gss_cred);
923 }
924 
925 static void
926 gss_destroy_nullcred(struct rpc_cred *cred)
927 {
928 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
929 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
930 	struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
931 
932 	rcu_assign_pointer(gss_cred->gc_ctx, NULL);
933 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
934 	if (ctx)
935 		gss_put_ctx(ctx);
936 	kref_put(&gss_auth->kref, gss_free_callback);
937 }
938 
939 static void
940 gss_destroy_cred(struct rpc_cred *cred)
941 {
942 
943 	if (gss_destroying_context(cred))
944 		return;
945 	gss_destroy_nullcred(cred);
946 }
947 
948 /*
949  * Lookup RPCSEC_GSS cred for the current process
950  */
951 static struct rpc_cred *
952 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
953 {
954 	return rpcauth_lookup_credcache(auth, acred, flags);
955 }
956 
957 static struct rpc_cred *
958 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
959 {
960 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
961 	struct gss_cred	*cred = NULL;
962 	int err = -ENOMEM;
963 
964 	dprintk("RPC:       gss_create_cred for uid %d, flavor %d\n",
965 		acred->uid, auth->au_flavor);
966 
967 	if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
968 		goto out_err;
969 
970 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
971 	/*
972 	 * Note: in order to force a call to call_refresh(), we deliberately
973 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
974 	 */
975 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
976 	cred->gc_service = gss_auth->service;
977 	cred->gc_machine_cred = acred->machine_cred;
978 	kref_get(&gss_auth->kref);
979 	return &cred->gc_base;
980 
981 out_err:
982 	dprintk("RPC:       gss_create_cred failed with error %d\n", err);
983 	return ERR_PTR(err);
984 }
985 
986 static int
987 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
988 {
989 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
990 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
991 	int err;
992 
993 	do {
994 		err = gss_create_upcall(gss_auth, gss_cred);
995 	} while (err == -EAGAIN);
996 	return err;
997 }
998 
999 static int
1000 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1001 {
1002 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1003 
1004 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1005 		goto out;
1006 	/* Don't match with creds that have expired. */
1007 	if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1008 		return 0;
1009 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1010 		return 0;
1011 out:
1012 	if (acred->machine_cred != gss_cred->gc_machine_cred)
1013 		return 0;
1014 	return (rc->cr_uid == acred->uid);
1015 }
1016 
1017 /*
1018 * Marshal credentials.
1019 * Maybe we should keep a cached credential for performance reasons.
1020 */
1021 static __be32 *
1022 gss_marshal(struct rpc_task *task, __be32 *p)
1023 {
1024 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1025 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1026 						 gc_base);
1027 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1028 	__be32		*cred_len;
1029 	struct rpc_rqst *req = task->tk_rqstp;
1030 	u32             maj_stat = 0;
1031 	struct xdr_netobj mic;
1032 	struct kvec	iov;
1033 	struct xdr_buf	verf_buf;
1034 
1035 	dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
1036 
1037 	*p++ = htonl(RPC_AUTH_GSS);
1038 	cred_len = p++;
1039 
1040 	spin_lock(&ctx->gc_seq_lock);
1041 	req->rq_seqno = ctx->gc_seq++;
1042 	spin_unlock(&ctx->gc_seq_lock);
1043 
1044 	*p++ = htonl((u32) RPC_GSS_VERSION);
1045 	*p++ = htonl((u32) ctx->gc_proc);
1046 	*p++ = htonl((u32) req->rq_seqno);
1047 	*p++ = htonl((u32) gss_cred->gc_service);
1048 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1049 	*cred_len = htonl((p - (cred_len + 1)) << 2);
1050 
1051 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1052 	 * starting with the xid and ending at the end of the credential: */
1053 	iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
1054 					req->rq_snd_buf.head[0].iov_base);
1055 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1056 	xdr_buf_from_iov(&iov, &verf_buf);
1057 
1058 	/* set verifier flavor*/
1059 	*p++ = htonl(RPC_AUTH_GSS);
1060 
1061 	mic.data = (u8 *)(p + 1);
1062 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1063 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1064 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1065 	} else if (maj_stat != 0) {
1066 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1067 		goto out_put_ctx;
1068 	}
1069 	p = xdr_encode_opaque(p, NULL, mic.len);
1070 	gss_put_ctx(ctx);
1071 	return p;
1072 out_put_ctx:
1073 	gss_put_ctx(ctx);
1074 	return NULL;
1075 }
1076 
1077 static int gss_renew_cred(struct rpc_task *task)
1078 {
1079 	struct rpc_cred *oldcred = task->tk_msg.rpc_cred;
1080 	struct gss_cred *gss_cred = container_of(oldcred,
1081 						 struct gss_cred,
1082 						 gc_base);
1083 	struct rpc_auth *auth = oldcred->cr_auth;
1084 	struct auth_cred acred = {
1085 		.uid = oldcred->cr_uid,
1086 		.machine_cred = gss_cred->gc_machine_cred,
1087 	};
1088 	struct rpc_cred *new;
1089 
1090 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1091 	if (IS_ERR(new))
1092 		return PTR_ERR(new);
1093 	task->tk_msg.rpc_cred = new;
1094 	put_rpccred(oldcred);
1095 	return 0;
1096 }
1097 
1098 /*
1099 * Refresh credentials. XXX - finish
1100 */
1101 static int
1102 gss_refresh(struct rpc_task *task)
1103 {
1104 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1105 	int ret = 0;
1106 
1107 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1108 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1109 		ret = gss_renew_cred(task);
1110 		if (ret < 0)
1111 			goto out;
1112 		cred = task->tk_msg.rpc_cred;
1113 	}
1114 
1115 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1116 		ret = gss_refresh_upcall(task);
1117 out:
1118 	return ret;
1119 }
1120 
1121 /* Dummy refresh routine: used only when destroying the context */
1122 static int
1123 gss_refresh_null(struct rpc_task *task)
1124 {
1125 	return -EACCES;
1126 }
1127 
1128 static __be32 *
1129 gss_validate(struct rpc_task *task, __be32 *p)
1130 {
1131 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1132 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1133 	__be32		seq;
1134 	struct kvec	iov;
1135 	struct xdr_buf	verf_buf;
1136 	struct xdr_netobj mic;
1137 	u32		flav,len;
1138 	u32		maj_stat;
1139 
1140 	dprintk("RPC: %5u gss_validate\n", task->tk_pid);
1141 
1142 	flav = ntohl(*p++);
1143 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1144 		goto out_bad;
1145 	if (flav != RPC_AUTH_GSS)
1146 		goto out_bad;
1147 	seq = htonl(task->tk_rqstp->rq_seqno);
1148 	iov.iov_base = &seq;
1149 	iov.iov_len = sizeof(seq);
1150 	xdr_buf_from_iov(&iov, &verf_buf);
1151 	mic.data = (u8 *)p;
1152 	mic.len = len;
1153 
1154 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1155 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1156 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1157 	if (maj_stat) {
1158 		dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
1159 				"error 0x%08x\n", task->tk_pid, maj_stat);
1160 		goto out_bad;
1161 	}
1162 	/* We leave it to unwrap to calculate au_rslack. For now we just
1163 	 * calculate the length of the verifier: */
1164 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1165 	gss_put_ctx(ctx);
1166 	dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
1167 			task->tk_pid);
1168 	return p + XDR_QUADLEN(len);
1169 out_bad:
1170 	gss_put_ctx(ctx);
1171 	dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
1172 	return NULL;
1173 }
1174 
1175 static inline int
1176 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1177 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1178 {
1179 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1180 	struct xdr_buf	integ_buf;
1181 	__be32          *integ_len = NULL;
1182 	struct xdr_netobj mic;
1183 	u32		offset;
1184 	__be32		*q;
1185 	struct kvec	*iov;
1186 	u32             maj_stat = 0;
1187 	int		status = -EIO;
1188 
1189 	integ_len = p++;
1190 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1191 	*p++ = htonl(rqstp->rq_seqno);
1192 
1193 	status = encode(rqstp, p, obj);
1194 	if (status)
1195 		return status;
1196 
1197 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1198 				offset, snd_buf->len - offset))
1199 		return status;
1200 	*integ_len = htonl(integ_buf.len);
1201 
1202 	/* guess whether we're in the head or the tail: */
1203 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1204 		iov = snd_buf->tail;
1205 	else
1206 		iov = snd_buf->head;
1207 	p = iov->iov_base + iov->iov_len;
1208 	mic.data = (u8 *)(p + 1);
1209 
1210 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1211 	status = -EIO; /* XXX? */
1212 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1213 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1214 	else if (maj_stat)
1215 		return status;
1216 	q = xdr_encode_opaque(p, NULL, mic.len);
1217 
1218 	offset = (u8 *)q - (u8 *)p;
1219 	iov->iov_len += offset;
1220 	snd_buf->len += offset;
1221 	return 0;
1222 }
1223 
1224 static void
1225 priv_release_snd_buf(struct rpc_rqst *rqstp)
1226 {
1227 	int i;
1228 
1229 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1230 		__free_page(rqstp->rq_enc_pages[i]);
1231 	kfree(rqstp->rq_enc_pages);
1232 }
1233 
1234 static int
1235 alloc_enc_pages(struct rpc_rqst *rqstp)
1236 {
1237 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1238 	int first, last, i;
1239 
1240 	if (snd_buf->page_len == 0) {
1241 		rqstp->rq_enc_pages_num = 0;
1242 		return 0;
1243 	}
1244 
1245 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1246 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1247 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1248 	rqstp->rq_enc_pages
1249 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1250 				GFP_NOFS);
1251 	if (!rqstp->rq_enc_pages)
1252 		goto out;
1253 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1254 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1255 		if (rqstp->rq_enc_pages[i] == NULL)
1256 			goto out_free;
1257 	}
1258 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1259 	return 0;
1260 out_free:
1261 	for (i--; i >= 0; i--) {
1262 		__free_page(rqstp->rq_enc_pages[i]);
1263 	}
1264 out:
1265 	return -EAGAIN;
1266 }
1267 
1268 static inline int
1269 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1270 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1271 {
1272 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1273 	u32		offset;
1274 	u32             maj_stat;
1275 	int		status;
1276 	__be32		*opaque_len;
1277 	struct page	**inpages;
1278 	int		first;
1279 	int		pad;
1280 	struct kvec	*iov;
1281 	char		*tmp;
1282 
1283 	opaque_len = p++;
1284 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1285 	*p++ = htonl(rqstp->rq_seqno);
1286 
1287 	status = encode(rqstp, p, obj);
1288 	if (status)
1289 		return status;
1290 
1291 	status = alloc_enc_pages(rqstp);
1292 	if (status)
1293 		return status;
1294 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1295 	inpages = snd_buf->pages + first;
1296 	snd_buf->pages = rqstp->rq_enc_pages;
1297 	snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1298 	/* Give the tail its own page, in case we need extra space in the
1299 	 * head when wrapping: */
1300 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1301 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1302 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1303 		snd_buf->tail[0].iov_base = tmp;
1304 	}
1305 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1306 	/* RPC_SLACK_SPACE should prevent this ever happening: */
1307 	BUG_ON(snd_buf->len > snd_buf->buflen);
1308 	status = -EIO;
1309 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1310 	 * done anyway, so it's safe to put the request on the wire: */
1311 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1312 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1313 	else if (maj_stat)
1314 		return status;
1315 
1316 	*opaque_len = htonl(snd_buf->len - offset);
1317 	/* guess whether we're in the head or the tail: */
1318 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1319 		iov = snd_buf->tail;
1320 	else
1321 		iov = snd_buf->head;
1322 	p = iov->iov_base + iov->iov_len;
1323 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1324 	memset(p, 0, pad);
1325 	iov->iov_len += pad;
1326 	snd_buf->len += pad;
1327 
1328 	return 0;
1329 }
1330 
1331 static int
1332 gss_wrap_req(struct rpc_task *task,
1333 	     kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1334 {
1335 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1336 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1337 			gc_base);
1338 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1339 	int             status = -EIO;
1340 
1341 	dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1342 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1343 		/* The spec seems a little ambiguous here, but I think that not
1344 		 * wrapping context destruction requests makes the most sense.
1345 		 */
1346 		status = encode(rqstp, p, obj);
1347 		goto out;
1348 	}
1349 	switch (gss_cred->gc_service) {
1350 		case RPC_GSS_SVC_NONE:
1351 			status = encode(rqstp, p, obj);
1352 			break;
1353 		case RPC_GSS_SVC_INTEGRITY:
1354 			status = gss_wrap_req_integ(cred, ctx, encode,
1355 								rqstp, p, obj);
1356 			break;
1357 		case RPC_GSS_SVC_PRIVACY:
1358 			status = gss_wrap_req_priv(cred, ctx, encode,
1359 					rqstp, p, obj);
1360 			break;
1361 	}
1362 out:
1363 	gss_put_ctx(ctx);
1364 	dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1365 	return status;
1366 }
1367 
1368 static inline int
1369 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1370 		struct rpc_rqst *rqstp, __be32 **p)
1371 {
1372 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1373 	struct xdr_buf integ_buf;
1374 	struct xdr_netobj mic;
1375 	u32 data_offset, mic_offset;
1376 	u32 integ_len;
1377 	u32 maj_stat;
1378 	int status = -EIO;
1379 
1380 	integ_len = ntohl(*(*p)++);
1381 	if (integ_len & 3)
1382 		return status;
1383 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1384 	mic_offset = integ_len + data_offset;
1385 	if (mic_offset > rcv_buf->len)
1386 		return status;
1387 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1388 		return status;
1389 
1390 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1391 				mic_offset - data_offset))
1392 		return status;
1393 
1394 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1395 		return status;
1396 
1397 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1398 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1399 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1400 	if (maj_stat != GSS_S_COMPLETE)
1401 		return status;
1402 	return 0;
1403 }
1404 
1405 static inline int
1406 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1407 		struct rpc_rqst *rqstp, __be32 **p)
1408 {
1409 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1410 	u32 offset;
1411 	u32 opaque_len;
1412 	u32 maj_stat;
1413 	int status = -EIO;
1414 
1415 	opaque_len = ntohl(*(*p)++);
1416 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1417 	if (offset + opaque_len > rcv_buf->len)
1418 		return status;
1419 	/* remove padding: */
1420 	rcv_buf->len = offset + opaque_len;
1421 
1422 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1423 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1424 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1425 	if (maj_stat != GSS_S_COMPLETE)
1426 		return status;
1427 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1428 		return status;
1429 
1430 	return 0;
1431 }
1432 
1433 
1434 static int
1435 gss_unwrap_resp(struct rpc_task *task,
1436 		kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1437 {
1438 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1439 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1440 			gc_base);
1441 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1442 	__be32		*savedp = p;
1443 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1444 	int		savedlen = head->iov_len;
1445 	int             status = -EIO;
1446 
1447 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1448 		goto out_decode;
1449 	switch (gss_cred->gc_service) {
1450 		case RPC_GSS_SVC_NONE:
1451 			break;
1452 		case RPC_GSS_SVC_INTEGRITY:
1453 			status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1454 			if (status)
1455 				goto out;
1456 			break;
1457 		case RPC_GSS_SVC_PRIVACY:
1458 			status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1459 			if (status)
1460 				goto out;
1461 			break;
1462 	}
1463 	/* take into account extra slack for integrity and privacy cases: */
1464 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1465 						+ (savedlen - head->iov_len);
1466 out_decode:
1467 	status = decode(rqstp, p, obj);
1468 out:
1469 	gss_put_ctx(ctx);
1470 	dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1471 			status);
1472 	return status;
1473 }
1474 
1475 static const struct rpc_authops authgss_ops = {
1476 	.owner		= THIS_MODULE,
1477 	.au_flavor	= RPC_AUTH_GSS,
1478 	.au_name	= "RPCSEC_GSS",
1479 	.create		= gss_create,
1480 	.destroy	= gss_destroy,
1481 	.lookup_cred	= gss_lookup_cred,
1482 	.crcreate	= gss_create_cred
1483 };
1484 
1485 static const struct rpc_credops gss_credops = {
1486 	.cr_name	= "AUTH_GSS",
1487 	.crdestroy	= gss_destroy_cred,
1488 	.cr_init	= gss_cred_init,
1489 	.crbind		= rpcauth_generic_bind_cred,
1490 	.crmatch	= gss_match,
1491 	.crmarshal	= gss_marshal,
1492 	.crrefresh	= gss_refresh,
1493 	.crvalidate	= gss_validate,
1494 	.crwrap_req	= gss_wrap_req,
1495 	.crunwrap_resp	= gss_unwrap_resp,
1496 };
1497 
1498 static const struct rpc_credops gss_nullops = {
1499 	.cr_name	= "AUTH_GSS",
1500 	.crdestroy	= gss_destroy_nullcred,
1501 	.crbind		= rpcauth_generic_bind_cred,
1502 	.crmatch	= gss_match,
1503 	.crmarshal	= gss_marshal,
1504 	.crrefresh	= gss_refresh_null,
1505 	.crvalidate	= gss_validate,
1506 	.crwrap_req	= gss_wrap_req,
1507 	.crunwrap_resp	= gss_unwrap_resp,
1508 };
1509 
1510 static struct rpc_pipe_ops gss_upcall_ops_v0 = {
1511 	.upcall		= gss_pipe_upcall,
1512 	.downcall	= gss_pipe_downcall,
1513 	.destroy_msg	= gss_pipe_destroy_msg,
1514 	.open_pipe	= gss_pipe_open_v0,
1515 	.release_pipe	= gss_pipe_release,
1516 };
1517 
1518 static struct rpc_pipe_ops gss_upcall_ops_v1 = {
1519 	.upcall		= gss_pipe_upcall,
1520 	.downcall	= gss_pipe_downcall,
1521 	.destroy_msg	= gss_pipe_destroy_msg,
1522 	.open_pipe	= gss_pipe_open_v1,
1523 	.release_pipe	= gss_pipe_release,
1524 };
1525 
1526 /*
1527  * Initialize RPCSEC_GSS module
1528  */
1529 static int __init init_rpcsec_gss(void)
1530 {
1531 	int err = 0;
1532 
1533 	err = rpcauth_register(&authgss_ops);
1534 	if (err)
1535 		goto out;
1536 	err = gss_svc_init();
1537 	if (err)
1538 		goto out_unregister;
1539 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1540 	return 0;
1541 out_unregister:
1542 	rpcauth_unregister(&authgss_ops);
1543 out:
1544 	return err;
1545 }
1546 
1547 static void __exit exit_rpcsec_gss(void)
1548 {
1549 	gss_svc_shutdown();
1550 	rpcauth_unregister(&authgss_ops);
1551 }
1552 
1553 MODULE_LICENSE("GPL");
1554 module_init(init_rpcsec_gss)
1555 module_exit(exit_rpcsec_gss)
1556