1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/sched.h> 44 #include <linux/pagemap.h> 45 #include <linux/sunrpc/clnt.h> 46 #include <linux/sunrpc/auth.h> 47 #include <linux/sunrpc/auth_gss.h> 48 #include <linux/sunrpc/svcauth_gss.h> 49 #include <linux/sunrpc/gss_err.h> 50 #include <linux/workqueue.h> 51 #include <linux/sunrpc/rpc_pipe_fs.h> 52 #include <linux/sunrpc/gss_api.h> 53 #include <asm/uaccess.h> 54 #include <linux/hashtable.h> 55 56 #include "../netns.h" 57 58 static const struct rpc_authops authgss_ops; 59 60 static const struct rpc_credops gss_credops; 61 static const struct rpc_credops gss_nullops; 62 63 #define GSS_RETRY_EXPIRED 5 64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 65 66 #define GSS_KEY_EXPIRE_TIMEO 240 67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_AUTH 71 #endif 72 73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 74 /* length of a krb5 verifier (48), plus data added before arguments when 75 * using integrity (two 4-byte integers): */ 76 #define GSS_VERF_SLACK 100 77 78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 79 static DEFINE_SPINLOCK(gss_auth_hash_lock); 80 81 struct gss_pipe { 82 struct rpc_pipe_dir_object pdo; 83 struct rpc_pipe *pipe; 84 struct rpc_clnt *clnt; 85 const char *name; 86 struct kref kref; 87 }; 88 89 struct gss_auth { 90 struct kref kref; 91 struct hlist_node hash; 92 struct rpc_auth rpc_auth; 93 struct gss_api_mech *mech; 94 enum rpc_gss_svc service; 95 struct rpc_clnt *client; 96 struct net *net; 97 /* 98 * There are two upcall pipes; dentry[1], named "gssd", is used 99 * for the new text-based upcall; dentry[0] is named after the 100 * mechanism (for example, "krb5") and exists for 101 * backwards-compatibility with older gssd's. 102 */ 103 struct gss_pipe *gss_pipe[2]; 104 const char *target_name; 105 }; 106 107 /* pipe_version >= 0 if and only if someone has a pipe open. */ 108 static DEFINE_SPINLOCK(pipe_version_lock); 109 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 111 static void gss_put_auth(struct gss_auth *gss_auth); 112 113 static void gss_free_ctx(struct gss_cl_ctx *); 114 static const struct rpc_pipe_ops gss_upcall_ops_v0; 115 static const struct rpc_pipe_ops gss_upcall_ops_v1; 116 117 static inline struct gss_cl_ctx * 118 gss_get_ctx(struct gss_cl_ctx *ctx) 119 { 120 atomic_inc(&ctx->count); 121 return ctx; 122 } 123 124 static inline void 125 gss_put_ctx(struct gss_cl_ctx *ctx) 126 { 127 if (atomic_dec_and_test(&ctx->count)) 128 gss_free_ctx(ctx); 129 } 130 131 /* gss_cred_set_ctx: 132 * called by gss_upcall_callback and gss_create_upcall in order 133 * to set the gss context. The actual exchange of an old context 134 * and a new one is protected by the pipe->lock. 135 */ 136 static void 137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 138 { 139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 140 141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 142 return; 143 gss_get_ctx(ctx); 144 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 146 smp_mb__before_atomic(); 147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 148 } 149 150 static const void * 151 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 152 { 153 const void *q = (const void *)((const char *)p + len); 154 if (unlikely(q > end || q < p)) 155 return ERR_PTR(-EFAULT); 156 memcpy(res, p, len); 157 return q; 158 } 159 160 static inline const void * 161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 162 { 163 const void *q; 164 unsigned int len; 165 166 p = simple_get_bytes(p, end, &len, sizeof(len)); 167 if (IS_ERR(p)) 168 return p; 169 q = (const void *)((const char *)p + len); 170 if (unlikely(q > end || q < p)) 171 return ERR_PTR(-EFAULT); 172 dest->data = kmemdup(p, len, GFP_NOFS); 173 if (unlikely(dest->data == NULL)) 174 return ERR_PTR(-ENOMEM); 175 dest->len = len; 176 return q; 177 } 178 179 static struct gss_cl_ctx * 180 gss_cred_get_ctx(struct rpc_cred *cred) 181 { 182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 183 struct gss_cl_ctx *ctx = NULL; 184 185 rcu_read_lock(); 186 ctx = rcu_dereference(gss_cred->gc_ctx); 187 if (ctx) 188 gss_get_ctx(ctx); 189 rcu_read_unlock(); 190 return ctx; 191 } 192 193 static struct gss_cl_ctx * 194 gss_alloc_context(void) 195 { 196 struct gss_cl_ctx *ctx; 197 198 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 199 if (ctx != NULL) { 200 ctx->gc_proc = RPC_GSS_PROC_DATA; 201 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 202 spin_lock_init(&ctx->gc_seq_lock); 203 atomic_set(&ctx->count,1); 204 } 205 return ctx; 206 } 207 208 #define GSSD_MIN_TIMEOUT (60 * 60) 209 static const void * 210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 211 { 212 const void *q; 213 unsigned int seclen; 214 unsigned int timeout; 215 unsigned long now = jiffies; 216 u32 window_size; 217 int ret; 218 219 /* First unsigned int gives the remaining lifetime in seconds of the 220 * credential - e.g. the remaining TGT lifetime for Kerberos or 221 * the -t value passed to GSSD. 222 */ 223 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 224 if (IS_ERR(p)) 225 goto err; 226 if (timeout == 0) 227 timeout = GSSD_MIN_TIMEOUT; 228 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 229 /* Sequence number window. Determines the maximum number of 230 * simultaneous requests 231 */ 232 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 233 if (IS_ERR(p)) 234 goto err; 235 ctx->gc_win = window_size; 236 /* gssd signals an error by passing ctx->gc_win = 0: */ 237 if (ctx->gc_win == 0) { 238 /* 239 * in which case, p points to an error code. Anything other 240 * than -EKEYEXPIRED gets converted to -EACCES. 241 */ 242 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 243 if (!IS_ERR(p)) 244 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 245 ERR_PTR(-EACCES); 246 goto err; 247 } 248 /* copy the opaque wire context */ 249 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 250 if (IS_ERR(p)) 251 goto err; 252 /* import the opaque security context */ 253 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 254 if (IS_ERR(p)) 255 goto err; 256 q = (const void *)((const char *)p + seclen); 257 if (unlikely(q > end || q < p)) { 258 p = ERR_PTR(-EFAULT); 259 goto err; 260 } 261 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); 262 if (ret < 0) { 263 p = ERR_PTR(ret); 264 goto err; 265 } 266 267 /* is there any trailing data? */ 268 if (q == end) { 269 p = q; 270 goto done; 271 } 272 273 /* pull in acceptor name (if there is one) */ 274 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 275 if (IS_ERR(p)) 276 goto err; 277 done: 278 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n", 279 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len, 280 ctx->gc_acceptor.data); 281 return p; 282 err: 283 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p)); 284 return p; 285 } 286 287 #define UPCALL_BUF_LEN 128 288 289 struct gss_upcall_msg { 290 atomic_t count; 291 kuid_t uid; 292 struct rpc_pipe_msg msg; 293 struct list_head list; 294 struct gss_auth *auth; 295 struct rpc_pipe *pipe; 296 struct rpc_wait_queue rpc_waitqueue; 297 wait_queue_head_t waitqueue; 298 struct gss_cl_ctx *ctx; 299 char databuf[UPCALL_BUF_LEN]; 300 }; 301 302 static int get_pipe_version(struct net *net) 303 { 304 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 305 int ret; 306 307 spin_lock(&pipe_version_lock); 308 if (sn->pipe_version >= 0) { 309 atomic_inc(&sn->pipe_users); 310 ret = sn->pipe_version; 311 } else 312 ret = -EAGAIN; 313 spin_unlock(&pipe_version_lock); 314 return ret; 315 } 316 317 static void put_pipe_version(struct net *net) 318 { 319 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 320 321 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 322 sn->pipe_version = -1; 323 spin_unlock(&pipe_version_lock); 324 } 325 } 326 327 static void 328 gss_release_msg(struct gss_upcall_msg *gss_msg) 329 { 330 struct net *net = gss_msg->auth->net; 331 if (!atomic_dec_and_test(&gss_msg->count)) 332 return; 333 put_pipe_version(net); 334 BUG_ON(!list_empty(&gss_msg->list)); 335 if (gss_msg->ctx != NULL) 336 gss_put_ctx(gss_msg->ctx); 337 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 338 gss_put_auth(gss_msg->auth); 339 kfree(gss_msg); 340 } 341 342 static struct gss_upcall_msg * 343 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 344 { 345 struct gss_upcall_msg *pos; 346 list_for_each_entry(pos, &pipe->in_downcall, list) { 347 if (!uid_eq(pos->uid, uid)) 348 continue; 349 if (auth && pos->auth->service != auth->service) 350 continue; 351 atomic_inc(&pos->count); 352 dprintk("RPC: %s found msg %p\n", __func__, pos); 353 return pos; 354 } 355 dprintk("RPC: %s found nothing\n", __func__); 356 return NULL; 357 } 358 359 /* Try to add an upcall to the pipefs queue. 360 * If an upcall owned by our uid already exists, then we return a reference 361 * to that upcall instead of adding the new upcall. 362 */ 363 static inline struct gss_upcall_msg * 364 gss_add_msg(struct gss_upcall_msg *gss_msg) 365 { 366 struct rpc_pipe *pipe = gss_msg->pipe; 367 struct gss_upcall_msg *old; 368 369 spin_lock(&pipe->lock); 370 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 371 if (old == NULL) { 372 atomic_inc(&gss_msg->count); 373 list_add(&gss_msg->list, &pipe->in_downcall); 374 } else 375 gss_msg = old; 376 spin_unlock(&pipe->lock); 377 return gss_msg; 378 } 379 380 static void 381 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 382 { 383 list_del_init(&gss_msg->list); 384 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 385 wake_up_all(&gss_msg->waitqueue); 386 atomic_dec(&gss_msg->count); 387 } 388 389 static void 390 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 391 { 392 struct rpc_pipe *pipe = gss_msg->pipe; 393 394 if (list_empty(&gss_msg->list)) 395 return; 396 spin_lock(&pipe->lock); 397 if (!list_empty(&gss_msg->list)) 398 __gss_unhash_msg(gss_msg); 399 spin_unlock(&pipe->lock); 400 } 401 402 static void 403 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 404 { 405 switch (gss_msg->msg.errno) { 406 case 0: 407 if (gss_msg->ctx == NULL) 408 break; 409 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 410 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 411 break; 412 case -EKEYEXPIRED: 413 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 414 } 415 gss_cred->gc_upcall_timestamp = jiffies; 416 gss_cred->gc_upcall = NULL; 417 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 418 } 419 420 static void 421 gss_upcall_callback(struct rpc_task *task) 422 { 423 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 424 struct gss_cred, gc_base); 425 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 426 struct rpc_pipe *pipe = gss_msg->pipe; 427 428 spin_lock(&pipe->lock); 429 gss_handle_downcall_result(gss_cred, gss_msg); 430 spin_unlock(&pipe->lock); 431 task->tk_status = gss_msg->msg.errno; 432 gss_release_msg(gss_msg); 433 } 434 435 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg) 436 { 437 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid); 438 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 439 gss_msg->msg.data = gss_msg->databuf; 440 gss_msg->msg.len = sizeof(uid); 441 442 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 443 } 444 445 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 446 const char *service_name, 447 const char *target_name) 448 { 449 struct gss_api_mech *mech = gss_msg->auth->mech; 450 char *p = gss_msg->databuf; 451 size_t buflen = sizeof(gss_msg->databuf); 452 int len; 453 454 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name, 455 from_kuid(&init_user_ns, gss_msg->uid)); 456 buflen -= len; 457 p += len; 458 gss_msg->msg.len = len; 459 if (target_name) { 460 len = scnprintf(p, buflen, "target=%s ", target_name); 461 buflen -= len; 462 p += len; 463 gss_msg->msg.len += len; 464 } 465 if (service_name != NULL) { 466 len = scnprintf(p, buflen, "service=%s ", service_name); 467 buflen -= len; 468 p += len; 469 gss_msg->msg.len += len; 470 } 471 if (mech->gm_upcall_enctypes) { 472 len = scnprintf(p, buflen, "enctypes=%s ", 473 mech->gm_upcall_enctypes); 474 buflen -= len; 475 p += len; 476 gss_msg->msg.len += len; 477 } 478 len = scnprintf(p, buflen, "\n"); 479 if (len == 0) 480 goto out_overflow; 481 gss_msg->msg.len += len; 482 483 gss_msg->msg.data = gss_msg->databuf; 484 return 0; 485 out_overflow: 486 WARN_ON_ONCE(1); 487 return -ENOMEM; 488 } 489 490 static struct gss_upcall_msg * 491 gss_alloc_msg(struct gss_auth *gss_auth, 492 kuid_t uid, const char *service_name) 493 { 494 struct gss_upcall_msg *gss_msg; 495 int vers; 496 int err = -ENOMEM; 497 498 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 499 if (gss_msg == NULL) 500 goto err; 501 vers = get_pipe_version(gss_auth->net); 502 err = vers; 503 if (err < 0) 504 goto err_free_msg; 505 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 506 INIT_LIST_HEAD(&gss_msg->list); 507 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 508 init_waitqueue_head(&gss_msg->waitqueue); 509 atomic_set(&gss_msg->count, 1); 510 gss_msg->uid = uid; 511 gss_msg->auth = gss_auth; 512 switch (vers) { 513 case 0: 514 gss_encode_v0_msg(gss_msg); 515 break; 516 default: 517 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name); 518 if (err) 519 goto err_put_pipe_version; 520 }; 521 kref_get(&gss_auth->kref); 522 return gss_msg; 523 err_put_pipe_version: 524 put_pipe_version(gss_auth->net); 525 err_free_msg: 526 kfree(gss_msg); 527 err: 528 return ERR_PTR(err); 529 } 530 531 static struct gss_upcall_msg * 532 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 533 { 534 struct gss_cred *gss_cred = container_of(cred, 535 struct gss_cred, gc_base); 536 struct gss_upcall_msg *gss_new, *gss_msg; 537 kuid_t uid = cred->cr_uid; 538 539 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 540 if (IS_ERR(gss_new)) 541 return gss_new; 542 gss_msg = gss_add_msg(gss_new); 543 if (gss_msg == gss_new) { 544 int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 545 if (res) { 546 gss_unhash_msg(gss_new); 547 gss_msg = ERR_PTR(res); 548 } 549 } else 550 gss_release_msg(gss_new); 551 return gss_msg; 552 } 553 554 static void warn_gssd(void) 555 { 556 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 557 } 558 559 static inline int 560 gss_refresh_upcall(struct rpc_task *task) 561 { 562 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 563 struct gss_auth *gss_auth = container_of(cred->cr_auth, 564 struct gss_auth, rpc_auth); 565 struct gss_cred *gss_cred = container_of(cred, 566 struct gss_cred, gc_base); 567 struct gss_upcall_msg *gss_msg; 568 struct rpc_pipe *pipe; 569 int err = 0; 570 571 dprintk("RPC: %5u %s for uid %u\n", 572 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid)); 573 gss_msg = gss_setup_upcall(gss_auth, cred); 574 if (PTR_ERR(gss_msg) == -EAGAIN) { 575 /* XXX: warning on the first, under the assumption we 576 * shouldn't normally hit this case on a refresh. */ 577 warn_gssd(); 578 task->tk_timeout = 15*HZ; 579 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL); 580 return -EAGAIN; 581 } 582 if (IS_ERR(gss_msg)) { 583 err = PTR_ERR(gss_msg); 584 goto out; 585 } 586 pipe = gss_msg->pipe; 587 spin_lock(&pipe->lock); 588 if (gss_cred->gc_upcall != NULL) 589 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 590 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 591 task->tk_timeout = 0; 592 gss_cred->gc_upcall = gss_msg; 593 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 594 atomic_inc(&gss_msg->count); 595 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 596 } else { 597 gss_handle_downcall_result(gss_cred, gss_msg); 598 err = gss_msg->msg.errno; 599 } 600 spin_unlock(&pipe->lock); 601 gss_release_msg(gss_msg); 602 out: 603 dprintk("RPC: %5u %s for uid %u result %d\n", 604 task->tk_pid, __func__, 605 from_kuid(&init_user_ns, cred->cr_uid), err); 606 return err; 607 } 608 609 static inline int 610 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 611 { 612 struct net *net = gss_auth->net; 613 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 614 struct rpc_pipe *pipe; 615 struct rpc_cred *cred = &gss_cred->gc_base; 616 struct gss_upcall_msg *gss_msg; 617 DEFINE_WAIT(wait); 618 int err; 619 620 dprintk("RPC: %s for uid %u\n", 621 __func__, from_kuid(&init_user_ns, cred->cr_uid)); 622 retry: 623 err = 0; 624 /* if gssd is down, just skip upcalling altogether */ 625 if (!gssd_running(net)) { 626 warn_gssd(); 627 return -EACCES; 628 } 629 gss_msg = gss_setup_upcall(gss_auth, cred); 630 if (PTR_ERR(gss_msg) == -EAGAIN) { 631 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 632 sn->pipe_version >= 0, 15 * HZ); 633 if (sn->pipe_version < 0) { 634 warn_gssd(); 635 err = -EACCES; 636 } 637 if (err < 0) 638 goto out; 639 goto retry; 640 } 641 if (IS_ERR(gss_msg)) { 642 err = PTR_ERR(gss_msg); 643 goto out; 644 } 645 pipe = gss_msg->pipe; 646 for (;;) { 647 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 648 spin_lock(&pipe->lock); 649 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 650 break; 651 } 652 spin_unlock(&pipe->lock); 653 if (fatal_signal_pending(current)) { 654 err = -ERESTARTSYS; 655 goto out_intr; 656 } 657 schedule(); 658 } 659 if (gss_msg->ctx) 660 gss_cred_set_ctx(cred, gss_msg->ctx); 661 else 662 err = gss_msg->msg.errno; 663 spin_unlock(&pipe->lock); 664 out_intr: 665 finish_wait(&gss_msg->waitqueue, &wait); 666 gss_release_msg(gss_msg); 667 out: 668 dprintk("RPC: %s for uid %u result %d\n", 669 __func__, from_kuid(&init_user_ns, cred->cr_uid), err); 670 return err; 671 } 672 673 #define MSG_BUF_MAXSIZE 1024 674 675 static ssize_t 676 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 677 { 678 const void *p, *end; 679 void *buf; 680 struct gss_upcall_msg *gss_msg; 681 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 682 struct gss_cl_ctx *ctx; 683 uid_t id; 684 kuid_t uid; 685 ssize_t err = -EFBIG; 686 687 if (mlen > MSG_BUF_MAXSIZE) 688 goto out; 689 err = -ENOMEM; 690 buf = kmalloc(mlen, GFP_NOFS); 691 if (!buf) 692 goto out; 693 694 err = -EFAULT; 695 if (copy_from_user(buf, src, mlen)) 696 goto err; 697 698 end = (const void *)((char *)buf + mlen); 699 p = simple_get_bytes(buf, end, &id, sizeof(id)); 700 if (IS_ERR(p)) { 701 err = PTR_ERR(p); 702 goto err; 703 } 704 705 uid = make_kuid(&init_user_ns, id); 706 if (!uid_valid(uid)) { 707 err = -EINVAL; 708 goto err; 709 } 710 711 err = -ENOMEM; 712 ctx = gss_alloc_context(); 713 if (ctx == NULL) 714 goto err; 715 716 err = -ENOENT; 717 /* Find a matching upcall */ 718 spin_lock(&pipe->lock); 719 gss_msg = __gss_find_upcall(pipe, uid, NULL); 720 if (gss_msg == NULL) { 721 spin_unlock(&pipe->lock); 722 goto err_put_ctx; 723 } 724 list_del_init(&gss_msg->list); 725 spin_unlock(&pipe->lock); 726 727 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 728 if (IS_ERR(p)) { 729 err = PTR_ERR(p); 730 switch (err) { 731 case -EACCES: 732 case -EKEYEXPIRED: 733 gss_msg->msg.errno = err; 734 err = mlen; 735 break; 736 case -EFAULT: 737 case -ENOMEM: 738 case -EINVAL: 739 case -ENOSYS: 740 gss_msg->msg.errno = -EAGAIN; 741 break; 742 default: 743 printk(KERN_CRIT "%s: bad return from " 744 "gss_fill_context: %zd\n", __func__, err); 745 gss_msg->msg.errno = -EIO; 746 } 747 goto err_release_msg; 748 } 749 gss_msg->ctx = gss_get_ctx(ctx); 750 err = mlen; 751 752 err_release_msg: 753 spin_lock(&pipe->lock); 754 __gss_unhash_msg(gss_msg); 755 spin_unlock(&pipe->lock); 756 gss_release_msg(gss_msg); 757 err_put_ctx: 758 gss_put_ctx(ctx); 759 err: 760 kfree(buf); 761 out: 762 dprintk("RPC: %s returning %Zd\n", __func__, err); 763 return err; 764 } 765 766 static int gss_pipe_open(struct inode *inode, int new_version) 767 { 768 struct net *net = inode->i_sb->s_fs_info; 769 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 770 int ret = 0; 771 772 spin_lock(&pipe_version_lock); 773 if (sn->pipe_version < 0) { 774 /* First open of any gss pipe determines the version: */ 775 sn->pipe_version = new_version; 776 rpc_wake_up(&pipe_version_rpc_waitqueue); 777 wake_up(&pipe_version_waitqueue); 778 } else if (sn->pipe_version != new_version) { 779 /* Trying to open a pipe of a different version */ 780 ret = -EBUSY; 781 goto out; 782 } 783 atomic_inc(&sn->pipe_users); 784 out: 785 spin_unlock(&pipe_version_lock); 786 return ret; 787 788 } 789 790 static int gss_pipe_open_v0(struct inode *inode) 791 { 792 return gss_pipe_open(inode, 0); 793 } 794 795 static int gss_pipe_open_v1(struct inode *inode) 796 { 797 return gss_pipe_open(inode, 1); 798 } 799 800 static void 801 gss_pipe_release(struct inode *inode) 802 { 803 struct net *net = inode->i_sb->s_fs_info; 804 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 805 struct gss_upcall_msg *gss_msg; 806 807 restart: 808 spin_lock(&pipe->lock); 809 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 810 811 if (!list_empty(&gss_msg->msg.list)) 812 continue; 813 gss_msg->msg.errno = -EPIPE; 814 atomic_inc(&gss_msg->count); 815 __gss_unhash_msg(gss_msg); 816 spin_unlock(&pipe->lock); 817 gss_release_msg(gss_msg); 818 goto restart; 819 } 820 spin_unlock(&pipe->lock); 821 822 put_pipe_version(net); 823 } 824 825 static void 826 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 827 { 828 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 829 830 if (msg->errno < 0) { 831 dprintk("RPC: %s releasing msg %p\n", 832 __func__, gss_msg); 833 atomic_inc(&gss_msg->count); 834 gss_unhash_msg(gss_msg); 835 if (msg->errno == -ETIMEDOUT) 836 warn_gssd(); 837 gss_release_msg(gss_msg); 838 } 839 } 840 841 static void gss_pipe_dentry_destroy(struct dentry *dir, 842 struct rpc_pipe_dir_object *pdo) 843 { 844 struct gss_pipe *gss_pipe = pdo->pdo_data; 845 struct rpc_pipe *pipe = gss_pipe->pipe; 846 847 if (pipe->dentry != NULL) { 848 rpc_unlink(pipe->dentry); 849 pipe->dentry = NULL; 850 } 851 } 852 853 static int gss_pipe_dentry_create(struct dentry *dir, 854 struct rpc_pipe_dir_object *pdo) 855 { 856 struct gss_pipe *p = pdo->pdo_data; 857 struct dentry *dentry; 858 859 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 860 if (IS_ERR(dentry)) 861 return PTR_ERR(dentry); 862 p->pipe->dentry = dentry; 863 return 0; 864 } 865 866 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 867 .create = gss_pipe_dentry_create, 868 .destroy = gss_pipe_dentry_destroy, 869 }; 870 871 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 872 const char *name, 873 const struct rpc_pipe_ops *upcall_ops) 874 { 875 struct gss_pipe *p; 876 int err = -ENOMEM; 877 878 p = kmalloc(sizeof(*p), GFP_KERNEL); 879 if (p == NULL) 880 goto err; 881 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 882 if (IS_ERR(p->pipe)) { 883 err = PTR_ERR(p->pipe); 884 goto err_free_gss_pipe; 885 } 886 p->name = name; 887 p->clnt = clnt; 888 kref_init(&p->kref); 889 rpc_init_pipe_dir_object(&p->pdo, 890 &gss_pipe_dir_object_ops, 891 p); 892 return p; 893 err_free_gss_pipe: 894 kfree(p); 895 err: 896 return ERR_PTR(err); 897 } 898 899 struct gss_alloc_pdo { 900 struct rpc_clnt *clnt; 901 const char *name; 902 const struct rpc_pipe_ops *upcall_ops; 903 }; 904 905 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 906 { 907 struct gss_pipe *gss_pipe; 908 struct gss_alloc_pdo *args = data; 909 910 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 911 return 0; 912 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 913 if (strcmp(gss_pipe->name, args->name) != 0) 914 return 0; 915 if (!kref_get_unless_zero(&gss_pipe->kref)) 916 return 0; 917 return 1; 918 } 919 920 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 921 { 922 struct gss_pipe *gss_pipe; 923 struct gss_alloc_pdo *args = data; 924 925 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 926 if (!IS_ERR(gss_pipe)) 927 return &gss_pipe->pdo; 928 return NULL; 929 } 930 931 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 932 const char *name, 933 const struct rpc_pipe_ops *upcall_ops) 934 { 935 struct net *net = rpc_net_ns(clnt); 936 struct rpc_pipe_dir_object *pdo; 937 struct gss_alloc_pdo args = { 938 .clnt = clnt, 939 .name = name, 940 .upcall_ops = upcall_ops, 941 }; 942 943 pdo = rpc_find_or_alloc_pipe_dir_object(net, 944 &clnt->cl_pipedir_objects, 945 gss_pipe_match_pdo, 946 gss_pipe_alloc_pdo, 947 &args); 948 if (pdo != NULL) 949 return container_of(pdo, struct gss_pipe, pdo); 950 return ERR_PTR(-ENOMEM); 951 } 952 953 static void __gss_pipe_free(struct gss_pipe *p) 954 { 955 struct rpc_clnt *clnt = p->clnt; 956 struct net *net = rpc_net_ns(clnt); 957 958 rpc_remove_pipe_dir_object(net, 959 &clnt->cl_pipedir_objects, 960 &p->pdo); 961 rpc_destroy_pipe_data(p->pipe); 962 kfree(p); 963 } 964 965 static void __gss_pipe_release(struct kref *kref) 966 { 967 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 968 969 __gss_pipe_free(p); 970 } 971 972 static void gss_pipe_free(struct gss_pipe *p) 973 { 974 if (p != NULL) 975 kref_put(&p->kref, __gss_pipe_release); 976 } 977 978 /* 979 * NOTE: we have the opportunity to use different 980 * parameters based on the input flavor (which must be a pseudoflavor) 981 */ 982 static struct gss_auth * 983 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 984 { 985 rpc_authflavor_t flavor = args->pseudoflavor; 986 struct gss_auth *gss_auth; 987 struct gss_pipe *gss_pipe; 988 struct rpc_auth * auth; 989 int err = -ENOMEM; /* XXX? */ 990 991 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 992 993 if (!try_module_get(THIS_MODULE)) 994 return ERR_PTR(err); 995 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 996 goto out_dec; 997 INIT_HLIST_NODE(&gss_auth->hash); 998 gss_auth->target_name = NULL; 999 if (args->target_name) { 1000 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1001 if (gss_auth->target_name == NULL) 1002 goto err_free; 1003 } 1004 gss_auth->client = clnt; 1005 gss_auth->net = get_net(rpc_net_ns(clnt)); 1006 err = -EINVAL; 1007 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1008 if (!gss_auth->mech) { 1009 dprintk("RPC: Pseudoflavor %d not found!\n", flavor); 1010 goto err_put_net; 1011 } 1012 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1013 if (gss_auth->service == 0) 1014 goto err_put_mech; 1015 if (!gssd_running(gss_auth->net)) 1016 goto err_put_mech; 1017 auth = &gss_auth->rpc_auth; 1018 auth->au_cslack = GSS_CRED_SLACK >> 2; 1019 auth->au_rslack = GSS_VERF_SLACK >> 2; 1020 auth->au_flags = 0; 1021 auth->au_ops = &authgss_ops; 1022 auth->au_flavor = flavor; 1023 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1024 auth->au_flags |= RPCAUTH_AUTH_DATATOUCH; 1025 atomic_set(&auth->au_count, 1); 1026 kref_init(&gss_auth->kref); 1027 1028 err = rpcauth_init_credcache(auth); 1029 if (err) 1030 goto err_put_mech; 1031 /* 1032 * Note: if we created the old pipe first, then someone who 1033 * examined the directory at the right moment might conclude 1034 * that we supported only the old pipe. So we instead create 1035 * the new pipe first. 1036 */ 1037 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1038 if (IS_ERR(gss_pipe)) { 1039 err = PTR_ERR(gss_pipe); 1040 goto err_destroy_credcache; 1041 } 1042 gss_auth->gss_pipe[1] = gss_pipe; 1043 1044 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1045 &gss_upcall_ops_v0); 1046 if (IS_ERR(gss_pipe)) { 1047 err = PTR_ERR(gss_pipe); 1048 goto err_destroy_pipe_1; 1049 } 1050 gss_auth->gss_pipe[0] = gss_pipe; 1051 1052 return gss_auth; 1053 err_destroy_pipe_1: 1054 gss_pipe_free(gss_auth->gss_pipe[1]); 1055 err_destroy_credcache: 1056 rpcauth_destroy_credcache(auth); 1057 err_put_mech: 1058 gss_mech_put(gss_auth->mech); 1059 err_put_net: 1060 put_net(gss_auth->net); 1061 err_free: 1062 kfree(gss_auth->target_name); 1063 kfree(gss_auth); 1064 out_dec: 1065 module_put(THIS_MODULE); 1066 return ERR_PTR(err); 1067 } 1068 1069 static void 1070 gss_free(struct gss_auth *gss_auth) 1071 { 1072 gss_pipe_free(gss_auth->gss_pipe[0]); 1073 gss_pipe_free(gss_auth->gss_pipe[1]); 1074 gss_mech_put(gss_auth->mech); 1075 put_net(gss_auth->net); 1076 kfree(gss_auth->target_name); 1077 1078 kfree(gss_auth); 1079 module_put(THIS_MODULE); 1080 } 1081 1082 static void 1083 gss_free_callback(struct kref *kref) 1084 { 1085 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1086 1087 gss_free(gss_auth); 1088 } 1089 1090 static void 1091 gss_put_auth(struct gss_auth *gss_auth) 1092 { 1093 kref_put(&gss_auth->kref, gss_free_callback); 1094 } 1095 1096 static void 1097 gss_destroy(struct rpc_auth *auth) 1098 { 1099 struct gss_auth *gss_auth = container_of(auth, 1100 struct gss_auth, rpc_auth); 1101 1102 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 1103 auth, auth->au_flavor); 1104 1105 if (hash_hashed(&gss_auth->hash)) { 1106 spin_lock(&gss_auth_hash_lock); 1107 hash_del(&gss_auth->hash); 1108 spin_unlock(&gss_auth_hash_lock); 1109 } 1110 1111 gss_pipe_free(gss_auth->gss_pipe[0]); 1112 gss_auth->gss_pipe[0] = NULL; 1113 gss_pipe_free(gss_auth->gss_pipe[1]); 1114 gss_auth->gss_pipe[1] = NULL; 1115 rpcauth_destroy_credcache(auth); 1116 1117 gss_put_auth(gss_auth); 1118 } 1119 1120 /* 1121 * Auths may be shared between rpc clients that were cloned from a 1122 * common client with the same xprt, if they also share the flavor and 1123 * target_name. 1124 * 1125 * The auth is looked up from the oldest parent sharing the same 1126 * cl_xprt, and the auth itself references only that common parent 1127 * (which is guaranteed to last as long as any of its descendants). 1128 */ 1129 static struct gss_auth * 1130 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args, 1131 struct rpc_clnt *clnt, 1132 struct gss_auth *new) 1133 { 1134 struct gss_auth *gss_auth; 1135 unsigned long hashval = (unsigned long)clnt; 1136 1137 spin_lock(&gss_auth_hash_lock); 1138 hash_for_each_possible(gss_auth_hash_table, 1139 gss_auth, 1140 hash, 1141 hashval) { 1142 if (gss_auth->client != clnt) 1143 continue; 1144 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1145 continue; 1146 if (gss_auth->target_name != args->target_name) { 1147 if (gss_auth->target_name == NULL) 1148 continue; 1149 if (args->target_name == NULL) 1150 continue; 1151 if (strcmp(gss_auth->target_name, args->target_name)) 1152 continue; 1153 } 1154 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1155 continue; 1156 goto out; 1157 } 1158 if (new) 1159 hash_add(gss_auth_hash_table, &new->hash, hashval); 1160 gss_auth = new; 1161 out: 1162 spin_unlock(&gss_auth_hash_lock); 1163 return gss_auth; 1164 } 1165 1166 static struct gss_auth * 1167 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1168 { 1169 struct gss_auth *gss_auth; 1170 struct gss_auth *new; 1171 1172 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1173 if (gss_auth != NULL) 1174 goto out; 1175 new = gss_create_new(args, clnt); 1176 if (IS_ERR(new)) 1177 return new; 1178 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1179 if (gss_auth != new) 1180 gss_destroy(&new->rpc_auth); 1181 out: 1182 return gss_auth; 1183 } 1184 1185 static struct rpc_auth * 1186 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1187 { 1188 struct gss_auth *gss_auth; 1189 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1190 1191 while (clnt != clnt->cl_parent) { 1192 struct rpc_clnt *parent = clnt->cl_parent; 1193 /* Find the original parent for this transport */ 1194 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1195 break; 1196 clnt = parent; 1197 } 1198 1199 gss_auth = gss_create_hashed(args, clnt); 1200 if (IS_ERR(gss_auth)) 1201 return ERR_CAST(gss_auth); 1202 return &gss_auth->rpc_auth; 1203 } 1204 1205 /* 1206 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 1207 * to the server with the GSS control procedure field set to 1208 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1209 * all RPCSEC_GSS state associated with that context. 1210 */ 1211 static int 1212 gss_destroying_context(struct rpc_cred *cred) 1213 { 1214 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1215 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1216 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1217 struct rpc_task *task; 1218 1219 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0) 1220 return 0; 1221 1222 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1223 cred->cr_ops = &gss_nullops; 1224 1225 /* Take a reference to ensure the cred will be destroyed either 1226 * by the RPC call or by the put_rpccred() below */ 1227 get_rpccred(cred); 1228 1229 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT); 1230 if (!IS_ERR(task)) 1231 rpc_put_task(task); 1232 1233 put_rpccred(cred); 1234 return 1; 1235 } 1236 1237 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1238 * to create a new cred or context, so they check that things have been 1239 * allocated before freeing them. */ 1240 static void 1241 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1242 { 1243 dprintk("RPC: %s\n", __func__); 1244 1245 gss_delete_sec_context(&ctx->gc_gss_ctx); 1246 kfree(ctx->gc_wire_ctx.data); 1247 kfree(ctx->gc_acceptor.data); 1248 kfree(ctx); 1249 } 1250 1251 static void 1252 gss_free_ctx_callback(struct rcu_head *head) 1253 { 1254 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1255 gss_do_free_ctx(ctx); 1256 } 1257 1258 static void 1259 gss_free_ctx(struct gss_cl_ctx *ctx) 1260 { 1261 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1262 } 1263 1264 static void 1265 gss_free_cred(struct gss_cred *gss_cred) 1266 { 1267 dprintk("RPC: %s cred=%p\n", __func__, gss_cred); 1268 kfree(gss_cred); 1269 } 1270 1271 static void 1272 gss_free_cred_callback(struct rcu_head *head) 1273 { 1274 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1275 gss_free_cred(gss_cred); 1276 } 1277 1278 static void 1279 gss_destroy_nullcred(struct rpc_cred *cred) 1280 { 1281 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1282 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1283 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1284 1285 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1286 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1287 if (ctx) 1288 gss_put_ctx(ctx); 1289 gss_put_auth(gss_auth); 1290 } 1291 1292 static void 1293 gss_destroy_cred(struct rpc_cred *cred) 1294 { 1295 1296 if (gss_destroying_context(cred)) 1297 return; 1298 gss_destroy_nullcred(cred); 1299 } 1300 1301 static int 1302 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1303 { 1304 return hash_64(from_kuid(&init_user_ns, acred->uid), hashbits); 1305 } 1306 1307 /* 1308 * Lookup RPCSEC_GSS cred for the current process 1309 */ 1310 static struct rpc_cred * 1311 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1312 { 1313 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS); 1314 } 1315 1316 static struct rpc_cred * 1317 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1318 { 1319 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1320 struct gss_cred *cred = NULL; 1321 int err = -ENOMEM; 1322 1323 dprintk("RPC: %s for uid %d, flavor %d\n", 1324 __func__, from_kuid(&init_user_ns, acred->uid), 1325 auth->au_flavor); 1326 1327 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1328 goto out_err; 1329 1330 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1331 /* 1332 * Note: in order to force a call to call_refresh(), we deliberately 1333 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1334 */ 1335 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1336 cred->gc_service = gss_auth->service; 1337 cred->gc_principal = NULL; 1338 if (acred->machine_cred) 1339 cred->gc_principal = acred->principal; 1340 kref_get(&gss_auth->kref); 1341 return &cred->gc_base; 1342 1343 out_err: 1344 dprintk("RPC: %s failed with error %d\n", __func__, err); 1345 return ERR_PTR(err); 1346 } 1347 1348 static int 1349 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1350 { 1351 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1352 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1353 int err; 1354 1355 do { 1356 err = gss_create_upcall(gss_auth, gss_cred); 1357 } while (err == -EAGAIN); 1358 return err; 1359 } 1360 1361 static char * 1362 gss_stringify_acceptor(struct rpc_cred *cred) 1363 { 1364 char *string = NULL; 1365 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1366 struct gss_cl_ctx *ctx; 1367 unsigned int len; 1368 struct xdr_netobj *acceptor; 1369 1370 rcu_read_lock(); 1371 ctx = rcu_dereference(gss_cred->gc_ctx); 1372 if (!ctx) 1373 goto out; 1374 1375 len = ctx->gc_acceptor.len; 1376 rcu_read_unlock(); 1377 1378 /* no point if there's no string */ 1379 if (!len) 1380 return NULL; 1381 realloc: 1382 string = kmalloc(len + 1, GFP_KERNEL); 1383 if (!string) 1384 return NULL; 1385 1386 rcu_read_lock(); 1387 ctx = rcu_dereference(gss_cred->gc_ctx); 1388 1389 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1390 if (!ctx || !ctx->gc_acceptor.len) { 1391 kfree(string); 1392 string = NULL; 1393 goto out; 1394 } 1395 1396 acceptor = &ctx->gc_acceptor; 1397 1398 /* 1399 * Did we find a new acceptor that's longer than the original? Allocate 1400 * a longer buffer and try again. 1401 */ 1402 if (len < acceptor->len) { 1403 len = acceptor->len; 1404 rcu_read_unlock(); 1405 kfree(string); 1406 goto realloc; 1407 } 1408 1409 memcpy(string, acceptor->data, acceptor->len); 1410 string[acceptor->len] = '\0'; 1411 out: 1412 rcu_read_unlock(); 1413 return string; 1414 } 1415 1416 /* 1417 * Returns -EACCES if GSS context is NULL or will expire within the 1418 * timeout (miliseconds) 1419 */ 1420 static int 1421 gss_key_timeout(struct rpc_cred *rc) 1422 { 1423 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1424 struct gss_cl_ctx *ctx; 1425 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1426 int ret = 0; 1427 1428 rcu_read_lock(); 1429 ctx = rcu_dereference(gss_cred->gc_ctx); 1430 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1431 ret = -EACCES; 1432 rcu_read_unlock(); 1433 1434 return ret; 1435 } 1436 1437 static int 1438 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1439 { 1440 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1441 struct gss_cl_ctx *ctx; 1442 int ret; 1443 1444 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1445 goto out; 1446 /* Don't match with creds that have expired. */ 1447 rcu_read_lock(); 1448 ctx = rcu_dereference(gss_cred->gc_ctx); 1449 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1450 rcu_read_unlock(); 1451 return 0; 1452 } 1453 rcu_read_unlock(); 1454 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1455 return 0; 1456 out: 1457 if (acred->principal != NULL) { 1458 if (gss_cred->gc_principal == NULL) 1459 return 0; 1460 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1461 goto check_expire; 1462 } 1463 if (gss_cred->gc_principal != NULL) 1464 return 0; 1465 ret = uid_eq(rc->cr_uid, acred->uid); 1466 1467 check_expire: 1468 if (ret == 0) 1469 return ret; 1470 1471 /* Notify acred users of GSS context expiration timeout */ 1472 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) && 1473 (gss_key_timeout(rc) != 0)) { 1474 /* test will now be done from generic cred */ 1475 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags); 1476 /* tell NFS layer that key will expire soon */ 1477 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags); 1478 } 1479 return ret; 1480 } 1481 1482 /* 1483 * Marshal credentials. 1484 * Maybe we should keep a cached credential for performance reasons. 1485 */ 1486 static __be32 * 1487 gss_marshal(struct rpc_task *task, __be32 *p) 1488 { 1489 struct rpc_rqst *req = task->tk_rqstp; 1490 struct rpc_cred *cred = req->rq_cred; 1491 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1492 gc_base); 1493 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1494 __be32 *cred_len; 1495 u32 maj_stat = 0; 1496 struct xdr_netobj mic; 1497 struct kvec iov; 1498 struct xdr_buf verf_buf; 1499 1500 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1501 1502 *p++ = htonl(RPC_AUTH_GSS); 1503 cred_len = p++; 1504 1505 spin_lock(&ctx->gc_seq_lock); 1506 req->rq_seqno = ctx->gc_seq++; 1507 spin_unlock(&ctx->gc_seq_lock); 1508 1509 *p++ = htonl((u32) RPC_GSS_VERSION); 1510 *p++ = htonl((u32) ctx->gc_proc); 1511 *p++ = htonl((u32) req->rq_seqno); 1512 *p++ = htonl((u32) gss_cred->gc_service); 1513 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1514 *cred_len = htonl((p - (cred_len + 1)) << 2); 1515 1516 /* We compute the checksum for the verifier over the xdr-encoded bytes 1517 * starting with the xid and ending at the end of the credential: */ 1518 iov.iov_base = xprt_skip_transport_header(req->rq_xprt, 1519 req->rq_snd_buf.head[0].iov_base); 1520 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1521 xdr_buf_from_iov(&iov, &verf_buf); 1522 1523 /* set verifier flavor*/ 1524 *p++ = htonl(RPC_AUTH_GSS); 1525 1526 mic.data = (u8 *)(p + 1); 1527 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1528 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 1529 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1530 } else if (maj_stat != 0) { 1531 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 1532 goto out_put_ctx; 1533 } 1534 p = xdr_encode_opaque(p, NULL, mic.len); 1535 gss_put_ctx(ctx); 1536 return p; 1537 out_put_ctx: 1538 gss_put_ctx(ctx); 1539 return NULL; 1540 } 1541 1542 static int gss_renew_cred(struct rpc_task *task) 1543 { 1544 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1545 struct gss_cred *gss_cred = container_of(oldcred, 1546 struct gss_cred, 1547 gc_base); 1548 struct rpc_auth *auth = oldcred->cr_auth; 1549 struct auth_cred acred = { 1550 .uid = oldcred->cr_uid, 1551 .principal = gss_cred->gc_principal, 1552 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0), 1553 }; 1554 struct rpc_cred *new; 1555 1556 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1557 if (IS_ERR(new)) 1558 return PTR_ERR(new); 1559 task->tk_rqstp->rq_cred = new; 1560 put_rpccred(oldcred); 1561 return 0; 1562 } 1563 1564 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1565 { 1566 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1567 unsigned long now = jiffies; 1568 unsigned long begin, expire; 1569 struct gss_cred *gss_cred; 1570 1571 gss_cred = container_of(cred, struct gss_cred, gc_base); 1572 begin = gss_cred->gc_upcall_timestamp; 1573 expire = begin + gss_expired_cred_retry_delay * HZ; 1574 1575 if (time_in_range_open(now, begin, expire)) 1576 return 1; 1577 } 1578 return 0; 1579 } 1580 1581 /* 1582 * Refresh credentials. XXX - finish 1583 */ 1584 static int 1585 gss_refresh(struct rpc_task *task) 1586 { 1587 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1588 int ret = 0; 1589 1590 if (gss_cred_is_negative_entry(cred)) 1591 return -EKEYEXPIRED; 1592 1593 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1594 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1595 ret = gss_renew_cred(task); 1596 if (ret < 0) 1597 goto out; 1598 cred = task->tk_rqstp->rq_cred; 1599 } 1600 1601 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1602 ret = gss_refresh_upcall(task); 1603 out: 1604 return ret; 1605 } 1606 1607 /* Dummy refresh routine: used only when destroying the context */ 1608 static int 1609 gss_refresh_null(struct rpc_task *task) 1610 { 1611 return 0; 1612 } 1613 1614 static __be32 * 1615 gss_validate(struct rpc_task *task, __be32 *p) 1616 { 1617 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1618 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1619 __be32 *seq = NULL; 1620 struct kvec iov; 1621 struct xdr_buf verf_buf; 1622 struct xdr_netobj mic; 1623 u32 flav,len; 1624 u32 maj_stat; 1625 __be32 *ret = ERR_PTR(-EIO); 1626 1627 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1628 1629 flav = ntohl(*p++); 1630 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 1631 goto out_bad; 1632 if (flav != RPC_AUTH_GSS) 1633 goto out_bad; 1634 seq = kmalloc(4, GFP_NOFS); 1635 if (!seq) 1636 goto out_bad; 1637 *seq = htonl(task->tk_rqstp->rq_seqno); 1638 iov.iov_base = seq; 1639 iov.iov_len = 4; 1640 xdr_buf_from_iov(&iov, &verf_buf); 1641 mic.data = (u8 *)p; 1642 mic.len = len; 1643 1644 ret = ERR_PTR(-EACCES); 1645 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1646 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1647 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1648 if (maj_stat) { 1649 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n", 1650 task->tk_pid, __func__, maj_stat); 1651 goto out_bad; 1652 } 1653 /* We leave it to unwrap to calculate au_rslack. For now we just 1654 * calculate the length of the verifier: */ 1655 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1656 gss_put_ctx(ctx); 1657 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n", 1658 task->tk_pid, __func__); 1659 kfree(seq); 1660 return p + XDR_QUADLEN(len); 1661 out_bad: 1662 gss_put_ctx(ctx); 1663 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__, 1664 PTR_ERR(ret)); 1665 kfree(seq); 1666 return ret; 1667 } 1668 1669 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp, 1670 __be32 *p, void *obj) 1671 { 1672 struct xdr_stream xdr; 1673 1674 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p); 1675 encode(rqstp, &xdr, obj); 1676 } 1677 1678 static inline int 1679 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1680 kxdreproc_t encode, struct rpc_rqst *rqstp, 1681 __be32 *p, void *obj) 1682 { 1683 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1684 struct xdr_buf integ_buf; 1685 __be32 *integ_len = NULL; 1686 struct xdr_netobj mic; 1687 u32 offset; 1688 __be32 *q; 1689 struct kvec *iov; 1690 u32 maj_stat = 0; 1691 int status = -EIO; 1692 1693 integ_len = p++; 1694 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1695 *p++ = htonl(rqstp->rq_seqno); 1696 1697 gss_wrap_req_encode(encode, rqstp, p, obj); 1698 1699 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1700 offset, snd_buf->len - offset)) 1701 return status; 1702 *integ_len = htonl(integ_buf.len); 1703 1704 /* guess whether we're in the head or the tail: */ 1705 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1706 iov = snd_buf->tail; 1707 else 1708 iov = snd_buf->head; 1709 p = iov->iov_base + iov->iov_len; 1710 mic.data = (u8 *)(p + 1); 1711 1712 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1713 status = -EIO; /* XXX? */ 1714 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1715 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1716 else if (maj_stat) 1717 return status; 1718 q = xdr_encode_opaque(p, NULL, mic.len); 1719 1720 offset = (u8 *)q - (u8 *)p; 1721 iov->iov_len += offset; 1722 snd_buf->len += offset; 1723 return 0; 1724 } 1725 1726 static void 1727 priv_release_snd_buf(struct rpc_rqst *rqstp) 1728 { 1729 int i; 1730 1731 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1732 __free_page(rqstp->rq_enc_pages[i]); 1733 kfree(rqstp->rq_enc_pages); 1734 } 1735 1736 static int 1737 alloc_enc_pages(struct rpc_rqst *rqstp) 1738 { 1739 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1740 int first, last, i; 1741 1742 if (snd_buf->page_len == 0) { 1743 rqstp->rq_enc_pages_num = 0; 1744 return 0; 1745 } 1746 1747 first = snd_buf->page_base >> PAGE_SHIFT; 1748 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1749 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1750 rqstp->rq_enc_pages 1751 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), 1752 GFP_NOFS); 1753 if (!rqstp->rq_enc_pages) 1754 goto out; 1755 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1756 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1757 if (rqstp->rq_enc_pages[i] == NULL) 1758 goto out_free; 1759 } 1760 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1761 return 0; 1762 out_free: 1763 rqstp->rq_enc_pages_num = i; 1764 priv_release_snd_buf(rqstp); 1765 out: 1766 return -EAGAIN; 1767 } 1768 1769 static inline int 1770 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1771 kxdreproc_t encode, struct rpc_rqst *rqstp, 1772 __be32 *p, void *obj) 1773 { 1774 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1775 u32 offset; 1776 u32 maj_stat; 1777 int status; 1778 __be32 *opaque_len; 1779 struct page **inpages; 1780 int first; 1781 int pad; 1782 struct kvec *iov; 1783 char *tmp; 1784 1785 opaque_len = p++; 1786 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1787 *p++ = htonl(rqstp->rq_seqno); 1788 1789 gss_wrap_req_encode(encode, rqstp, p, obj); 1790 1791 status = alloc_enc_pages(rqstp); 1792 if (status) 1793 return status; 1794 first = snd_buf->page_base >> PAGE_SHIFT; 1795 inpages = snd_buf->pages + first; 1796 snd_buf->pages = rqstp->rq_enc_pages; 1797 snd_buf->page_base -= first << PAGE_SHIFT; 1798 /* 1799 * Give the tail its own page, in case we need extra space in the 1800 * head when wrapping: 1801 * 1802 * call_allocate() allocates twice the slack space required 1803 * by the authentication flavor to rq_callsize. 1804 * For GSS, slack is GSS_CRED_SLACK. 1805 */ 1806 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1807 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1808 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1809 snd_buf->tail[0].iov_base = tmp; 1810 } 1811 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1812 /* slack space should prevent this ever happening: */ 1813 BUG_ON(snd_buf->len > snd_buf->buflen); 1814 status = -EIO; 1815 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1816 * done anyway, so it's safe to put the request on the wire: */ 1817 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1818 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1819 else if (maj_stat) 1820 return status; 1821 1822 *opaque_len = htonl(snd_buf->len - offset); 1823 /* guess whether we're in the head or the tail: */ 1824 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1825 iov = snd_buf->tail; 1826 else 1827 iov = snd_buf->head; 1828 p = iov->iov_base + iov->iov_len; 1829 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1830 memset(p, 0, pad); 1831 iov->iov_len += pad; 1832 snd_buf->len += pad; 1833 1834 return 0; 1835 } 1836 1837 static int 1838 gss_wrap_req(struct rpc_task *task, 1839 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj) 1840 { 1841 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1842 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1843 gc_base); 1844 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1845 int status = -EIO; 1846 1847 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1848 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1849 /* The spec seems a little ambiguous here, but I think that not 1850 * wrapping context destruction requests makes the most sense. 1851 */ 1852 gss_wrap_req_encode(encode, rqstp, p, obj); 1853 status = 0; 1854 goto out; 1855 } 1856 switch (gss_cred->gc_service) { 1857 case RPC_GSS_SVC_NONE: 1858 gss_wrap_req_encode(encode, rqstp, p, obj); 1859 status = 0; 1860 break; 1861 case RPC_GSS_SVC_INTEGRITY: 1862 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj); 1863 break; 1864 case RPC_GSS_SVC_PRIVACY: 1865 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj); 1866 break; 1867 } 1868 out: 1869 gss_put_ctx(ctx); 1870 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status); 1871 return status; 1872 } 1873 1874 static inline int 1875 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1876 struct rpc_rqst *rqstp, __be32 **p) 1877 { 1878 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1879 struct xdr_buf integ_buf; 1880 struct xdr_netobj mic; 1881 u32 data_offset, mic_offset; 1882 u32 integ_len; 1883 u32 maj_stat; 1884 int status = -EIO; 1885 1886 integ_len = ntohl(*(*p)++); 1887 if (integ_len & 3) 1888 return status; 1889 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1890 mic_offset = integ_len + data_offset; 1891 if (mic_offset > rcv_buf->len) 1892 return status; 1893 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1894 return status; 1895 1896 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1897 mic_offset - data_offset)) 1898 return status; 1899 1900 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1901 return status; 1902 1903 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1904 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1905 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1906 if (maj_stat != GSS_S_COMPLETE) 1907 return status; 1908 return 0; 1909 } 1910 1911 static inline int 1912 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1913 struct rpc_rqst *rqstp, __be32 **p) 1914 { 1915 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1916 u32 offset; 1917 u32 opaque_len; 1918 u32 maj_stat; 1919 int status = -EIO; 1920 1921 opaque_len = ntohl(*(*p)++); 1922 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1923 if (offset + opaque_len > rcv_buf->len) 1924 return status; 1925 /* remove padding: */ 1926 rcv_buf->len = offset + opaque_len; 1927 1928 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1929 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1930 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1931 if (maj_stat != GSS_S_COMPLETE) 1932 return status; 1933 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1934 return status; 1935 1936 return 0; 1937 } 1938 1939 static int 1940 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp, 1941 __be32 *p, void *obj) 1942 { 1943 struct xdr_stream xdr; 1944 1945 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p); 1946 return decode(rqstp, &xdr, obj); 1947 } 1948 1949 static int 1950 gss_unwrap_resp(struct rpc_task *task, 1951 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj) 1952 { 1953 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1954 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1955 gc_base); 1956 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1957 __be32 *savedp = p; 1958 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1959 int savedlen = head->iov_len; 1960 int status = -EIO; 1961 1962 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 1963 goto out_decode; 1964 switch (gss_cred->gc_service) { 1965 case RPC_GSS_SVC_NONE: 1966 break; 1967 case RPC_GSS_SVC_INTEGRITY: 1968 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 1969 if (status) 1970 goto out; 1971 break; 1972 case RPC_GSS_SVC_PRIVACY: 1973 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 1974 if (status) 1975 goto out; 1976 break; 1977 } 1978 /* take into account extra slack for integrity and privacy cases: */ 1979 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 1980 + (savedlen - head->iov_len); 1981 out_decode: 1982 status = gss_unwrap_req_decode(decode, rqstp, p, obj); 1983 out: 1984 gss_put_ctx(ctx); 1985 dprintk("RPC: %5u %s returning %d\n", 1986 task->tk_pid, __func__, status); 1987 return status; 1988 } 1989 1990 static const struct rpc_authops authgss_ops = { 1991 .owner = THIS_MODULE, 1992 .au_flavor = RPC_AUTH_GSS, 1993 .au_name = "RPCSEC_GSS", 1994 .create = gss_create, 1995 .destroy = gss_destroy, 1996 .hash_cred = gss_hash_cred, 1997 .lookup_cred = gss_lookup_cred, 1998 .crcreate = gss_create_cred, 1999 .list_pseudoflavors = gss_mech_list_pseudoflavors, 2000 .info2flavor = gss_mech_info2flavor, 2001 .flavor2info = gss_mech_flavor2info, 2002 }; 2003 2004 static const struct rpc_credops gss_credops = { 2005 .cr_name = "AUTH_GSS", 2006 .crdestroy = gss_destroy_cred, 2007 .cr_init = gss_cred_init, 2008 .crbind = rpcauth_generic_bind_cred, 2009 .crmatch = gss_match, 2010 .crmarshal = gss_marshal, 2011 .crrefresh = gss_refresh, 2012 .crvalidate = gss_validate, 2013 .crwrap_req = gss_wrap_req, 2014 .crunwrap_resp = gss_unwrap_resp, 2015 .crkey_timeout = gss_key_timeout, 2016 .crstringify_acceptor = gss_stringify_acceptor, 2017 }; 2018 2019 static const struct rpc_credops gss_nullops = { 2020 .cr_name = "AUTH_GSS", 2021 .crdestroy = gss_destroy_nullcred, 2022 .crbind = rpcauth_generic_bind_cred, 2023 .crmatch = gss_match, 2024 .crmarshal = gss_marshal, 2025 .crrefresh = gss_refresh_null, 2026 .crvalidate = gss_validate, 2027 .crwrap_req = gss_wrap_req, 2028 .crunwrap_resp = gss_unwrap_resp, 2029 .crstringify_acceptor = gss_stringify_acceptor, 2030 }; 2031 2032 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2033 .upcall = rpc_pipe_generic_upcall, 2034 .downcall = gss_pipe_downcall, 2035 .destroy_msg = gss_pipe_destroy_msg, 2036 .open_pipe = gss_pipe_open_v0, 2037 .release_pipe = gss_pipe_release, 2038 }; 2039 2040 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2041 .upcall = rpc_pipe_generic_upcall, 2042 .downcall = gss_pipe_downcall, 2043 .destroy_msg = gss_pipe_destroy_msg, 2044 .open_pipe = gss_pipe_open_v1, 2045 .release_pipe = gss_pipe_release, 2046 }; 2047 2048 static __net_init int rpcsec_gss_init_net(struct net *net) 2049 { 2050 return gss_svc_init_net(net); 2051 } 2052 2053 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2054 { 2055 gss_svc_shutdown_net(net); 2056 } 2057 2058 static struct pernet_operations rpcsec_gss_net_ops = { 2059 .init = rpcsec_gss_init_net, 2060 .exit = rpcsec_gss_exit_net, 2061 }; 2062 2063 /* 2064 * Initialize RPCSEC_GSS module 2065 */ 2066 static int __init init_rpcsec_gss(void) 2067 { 2068 int err = 0; 2069 2070 err = rpcauth_register(&authgss_ops); 2071 if (err) 2072 goto out; 2073 err = gss_svc_init(); 2074 if (err) 2075 goto out_unregister; 2076 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2077 if (err) 2078 goto out_svc_exit; 2079 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2080 return 0; 2081 out_svc_exit: 2082 gss_svc_shutdown(); 2083 out_unregister: 2084 rpcauth_unregister(&authgss_ops); 2085 out: 2086 return err; 2087 } 2088 2089 static void __exit exit_rpcsec_gss(void) 2090 { 2091 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2092 gss_svc_shutdown(); 2093 rpcauth_unregister(&authgss_ops); 2094 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2095 } 2096 2097 MODULE_ALIAS("rpc-auth-6"); 2098 MODULE_LICENSE("GPL"); 2099 module_param_named(expired_cred_retry_delay, 2100 gss_expired_cred_retry_delay, 2101 uint, 0644); 2102 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2103 "the RPC engine retries an expired credential"); 2104 2105 module_param_named(key_expire_timeo, 2106 gss_key_expire_timeo, 2107 uint, 0644); 2108 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2109 "credential keys lifetime where the NFS layer cleans up " 2110 "prior to key expiration"); 2111 2112 module_init(init_rpcsec_gss) 2113 module_exit(exit_rpcsec_gss) 2114