1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/sched.h> 44 #include <linux/pagemap.h> 45 #include <linux/sunrpc/clnt.h> 46 #include <linux/sunrpc/auth.h> 47 #include <linux/sunrpc/auth_gss.h> 48 #include <linux/sunrpc/svcauth_gss.h> 49 #include <linux/sunrpc/gss_err.h> 50 #include <linux/workqueue.h> 51 #include <linux/sunrpc/rpc_pipe_fs.h> 52 #include <linux/sunrpc/gss_api.h> 53 #include <linux/uaccess.h> 54 #include <linux/hashtable.h> 55 56 #include "../netns.h" 57 58 static const struct rpc_authops authgss_ops; 59 60 static const struct rpc_credops gss_credops; 61 static const struct rpc_credops gss_nullops; 62 63 #define GSS_RETRY_EXPIRED 5 64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 65 66 #define GSS_KEY_EXPIRE_TIMEO 240 67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_AUTH 71 #endif 72 73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 74 /* length of a krb5 verifier (48), plus data added before arguments when 75 * using integrity (two 4-byte integers): */ 76 #define GSS_VERF_SLACK 100 77 78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 79 static DEFINE_SPINLOCK(gss_auth_hash_lock); 80 81 struct gss_pipe { 82 struct rpc_pipe_dir_object pdo; 83 struct rpc_pipe *pipe; 84 struct rpc_clnt *clnt; 85 const char *name; 86 struct kref kref; 87 }; 88 89 struct gss_auth { 90 struct kref kref; 91 struct hlist_node hash; 92 struct rpc_auth rpc_auth; 93 struct gss_api_mech *mech; 94 enum rpc_gss_svc service; 95 struct rpc_clnt *client; 96 struct net *net; 97 /* 98 * There are two upcall pipes; dentry[1], named "gssd", is used 99 * for the new text-based upcall; dentry[0] is named after the 100 * mechanism (for example, "krb5") and exists for 101 * backwards-compatibility with older gssd's. 102 */ 103 struct gss_pipe *gss_pipe[2]; 104 const char *target_name; 105 }; 106 107 /* pipe_version >= 0 if and only if someone has a pipe open. */ 108 static DEFINE_SPINLOCK(pipe_version_lock); 109 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 111 static void gss_put_auth(struct gss_auth *gss_auth); 112 113 static void gss_free_ctx(struct gss_cl_ctx *); 114 static const struct rpc_pipe_ops gss_upcall_ops_v0; 115 static const struct rpc_pipe_ops gss_upcall_ops_v1; 116 117 static inline struct gss_cl_ctx * 118 gss_get_ctx(struct gss_cl_ctx *ctx) 119 { 120 refcount_inc(&ctx->count); 121 return ctx; 122 } 123 124 static inline void 125 gss_put_ctx(struct gss_cl_ctx *ctx) 126 { 127 if (refcount_dec_and_test(&ctx->count)) 128 gss_free_ctx(ctx); 129 } 130 131 /* gss_cred_set_ctx: 132 * called by gss_upcall_callback and gss_create_upcall in order 133 * to set the gss context. The actual exchange of an old context 134 * and a new one is protected by the pipe->lock. 135 */ 136 static void 137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 138 { 139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 140 141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 142 return; 143 gss_get_ctx(ctx); 144 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 146 smp_mb__before_atomic(); 147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 148 } 149 150 static const void * 151 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 152 { 153 const void *q = (const void *)((const char *)p + len); 154 if (unlikely(q > end || q < p)) 155 return ERR_PTR(-EFAULT); 156 memcpy(res, p, len); 157 return q; 158 } 159 160 static inline const void * 161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 162 { 163 const void *q; 164 unsigned int len; 165 166 p = simple_get_bytes(p, end, &len, sizeof(len)); 167 if (IS_ERR(p)) 168 return p; 169 q = (const void *)((const char *)p + len); 170 if (unlikely(q > end || q < p)) 171 return ERR_PTR(-EFAULT); 172 dest->data = kmemdup(p, len, GFP_NOFS); 173 if (unlikely(dest->data == NULL)) 174 return ERR_PTR(-ENOMEM); 175 dest->len = len; 176 return q; 177 } 178 179 static struct gss_cl_ctx * 180 gss_cred_get_ctx(struct rpc_cred *cred) 181 { 182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 183 struct gss_cl_ctx *ctx = NULL; 184 185 rcu_read_lock(); 186 ctx = rcu_dereference(gss_cred->gc_ctx); 187 if (ctx) 188 gss_get_ctx(ctx); 189 rcu_read_unlock(); 190 return ctx; 191 } 192 193 static struct gss_cl_ctx * 194 gss_alloc_context(void) 195 { 196 struct gss_cl_ctx *ctx; 197 198 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 199 if (ctx != NULL) { 200 ctx->gc_proc = RPC_GSS_PROC_DATA; 201 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 202 spin_lock_init(&ctx->gc_seq_lock); 203 refcount_set(&ctx->count,1); 204 } 205 return ctx; 206 } 207 208 #define GSSD_MIN_TIMEOUT (60 * 60) 209 static const void * 210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 211 { 212 const void *q; 213 unsigned int seclen; 214 unsigned int timeout; 215 unsigned long now = jiffies; 216 u32 window_size; 217 int ret; 218 219 /* First unsigned int gives the remaining lifetime in seconds of the 220 * credential - e.g. the remaining TGT lifetime for Kerberos or 221 * the -t value passed to GSSD. 222 */ 223 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 224 if (IS_ERR(p)) 225 goto err; 226 if (timeout == 0) 227 timeout = GSSD_MIN_TIMEOUT; 228 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 229 /* Sequence number window. Determines the maximum number of 230 * simultaneous requests 231 */ 232 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 233 if (IS_ERR(p)) 234 goto err; 235 ctx->gc_win = window_size; 236 /* gssd signals an error by passing ctx->gc_win = 0: */ 237 if (ctx->gc_win == 0) { 238 /* 239 * in which case, p points to an error code. Anything other 240 * than -EKEYEXPIRED gets converted to -EACCES. 241 */ 242 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 243 if (!IS_ERR(p)) 244 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 245 ERR_PTR(-EACCES); 246 goto err; 247 } 248 /* copy the opaque wire context */ 249 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 250 if (IS_ERR(p)) 251 goto err; 252 /* import the opaque security context */ 253 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 254 if (IS_ERR(p)) 255 goto err; 256 q = (const void *)((const char *)p + seclen); 257 if (unlikely(q > end || q < p)) { 258 p = ERR_PTR(-EFAULT); 259 goto err; 260 } 261 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); 262 if (ret < 0) { 263 p = ERR_PTR(ret); 264 goto err; 265 } 266 267 /* is there any trailing data? */ 268 if (q == end) { 269 p = q; 270 goto done; 271 } 272 273 /* pull in acceptor name (if there is one) */ 274 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 275 if (IS_ERR(p)) 276 goto err; 277 done: 278 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n", 279 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len, 280 ctx->gc_acceptor.data); 281 return p; 282 err: 283 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p)); 284 return p; 285 } 286 287 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small. 288 * Is user space expecting no more than UPCALL_BUF_LEN bytes? 289 * Note that there are now _two_ NI_MAXHOST sized data items 290 * being passed in this string. 291 */ 292 #define UPCALL_BUF_LEN 256 293 294 struct gss_upcall_msg { 295 refcount_t count; 296 kuid_t uid; 297 struct rpc_pipe_msg msg; 298 struct list_head list; 299 struct gss_auth *auth; 300 struct rpc_pipe *pipe; 301 struct rpc_wait_queue rpc_waitqueue; 302 wait_queue_head_t waitqueue; 303 struct gss_cl_ctx *ctx; 304 char databuf[UPCALL_BUF_LEN]; 305 }; 306 307 static int get_pipe_version(struct net *net) 308 { 309 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 310 int ret; 311 312 spin_lock(&pipe_version_lock); 313 if (sn->pipe_version >= 0) { 314 atomic_inc(&sn->pipe_users); 315 ret = sn->pipe_version; 316 } else 317 ret = -EAGAIN; 318 spin_unlock(&pipe_version_lock); 319 return ret; 320 } 321 322 static void put_pipe_version(struct net *net) 323 { 324 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 325 326 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 327 sn->pipe_version = -1; 328 spin_unlock(&pipe_version_lock); 329 } 330 } 331 332 static void 333 gss_release_msg(struct gss_upcall_msg *gss_msg) 334 { 335 struct net *net = gss_msg->auth->net; 336 if (!refcount_dec_and_test(&gss_msg->count)) 337 return; 338 put_pipe_version(net); 339 BUG_ON(!list_empty(&gss_msg->list)); 340 if (gss_msg->ctx != NULL) 341 gss_put_ctx(gss_msg->ctx); 342 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 343 gss_put_auth(gss_msg->auth); 344 kfree(gss_msg); 345 } 346 347 static struct gss_upcall_msg * 348 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 349 { 350 struct gss_upcall_msg *pos; 351 list_for_each_entry(pos, &pipe->in_downcall, list) { 352 if (!uid_eq(pos->uid, uid)) 353 continue; 354 if (auth && pos->auth->service != auth->service) 355 continue; 356 refcount_inc(&pos->count); 357 dprintk("RPC: %s found msg %p\n", __func__, pos); 358 return pos; 359 } 360 dprintk("RPC: %s found nothing\n", __func__); 361 return NULL; 362 } 363 364 /* Try to add an upcall to the pipefs queue. 365 * If an upcall owned by our uid already exists, then we return a reference 366 * to that upcall instead of adding the new upcall. 367 */ 368 static inline struct gss_upcall_msg * 369 gss_add_msg(struct gss_upcall_msg *gss_msg) 370 { 371 struct rpc_pipe *pipe = gss_msg->pipe; 372 struct gss_upcall_msg *old; 373 374 spin_lock(&pipe->lock); 375 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 376 if (old == NULL) { 377 refcount_inc(&gss_msg->count); 378 list_add(&gss_msg->list, &pipe->in_downcall); 379 } else 380 gss_msg = old; 381 spin_unlock(&pipe->lock); 382 return gss_msg; 383 } 384 385 static void 386 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 387 { 388 list_del_init(&gss_msg->list); 389 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 390 wake_up_all(&gss_msg->waitqueue); 391 refcount_dec(&gss_msg->count); 392 } 393 394 static void 395 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 396 { 397 struct rpc_pipe *pipe = gss_msg->pipe; 398 399 if (list_empty(&gss_msg->list)) 400 return; 401 spin_lock(&pipe->lock); 402 if (!list_empty(&gss_msg->list)) 403 __gss_unhash_msg(gss_msg); 404 spin_unlock(&pipe->lock); 405 } 406 407 static void 408 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 409 { 410 switch (gss_msg->msg.errno) { 411 case 0: 412 if (gss_msg->ctx == NULL) 413 break; 414 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 415 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 416 break; 417 case -EKEYEXPIRED: 418 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 419 } 420 gss_cred->gc_upcall_timestamp = jiffies; 421 gss_cred->gc_upcall = NULL; 422 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 423 } 424 425 static void 426 gss_upcall_callback(struct rpc_task *task) 427 { 428 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 429 struct gss_cred, gc_base); 430 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 431 struct rpc_pipe *pipe = gss_msg->pipe; 432 433 spin_lock(&pipe->lock); 434 gss_handle_downcall_result(gss_cred, gss_msg); 435 spin_unlock(&pipe->lock); 436 task->tk_status = gss_msg->msg.errno; 437 gss_release_msg(gss_msg); 438 } 439 440 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg) 441 { 442 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid); 443 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 444 gss_msg->msg.data = gss_msg->databuf; 445 gss_msg->msg.len = sizeof(uid); 446 447 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 448 } 449 450 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 451 const char *service_name, 452 const char *target_name) 453 { 454 struct gss_api_mech *mech = gss_msg->auth->mech; 455 char *p = gss_msg->databuf; 456 size_t buflen = sizeof(gss_msg->databuf); 457 int len; 458 459 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name, 460 from_kuid(&init_user_ns, gss_msg->uid)); 461 buflen -= len; 462 p += len; 463 gss_msg->msg.len = len; 464 465 /* 466 * target= is a full service principal that names the remote 467 * identity that we are authenticating to. 468 */ 469 if (target_name) { 470 len = scnprintf(p, buflen, "target=%s ", target_name); 471 buflen -= len; 472 p += len; 473 gss_msg->msg.len += len; 474 } 475 476 /* 477 * gssd uses service= and srchost= to select a matching key from 478 * the system's keytab to use as the source principal. 479 * 480 * service= is the service name part of the source principal, 481 * or "*" (meaning choose any). 482 * 483 * srchost= is the hostname part of the source principal. When 484 * not provided, gssd uses the local hostname. 485 */ 486 if (service_name) { 487 char *c = strchr(service_name, '@'); 488 489 if (!c) 490 len = scnprintf(p, buflen, "service=%s ", 491 service_name); 492 else 493 len = scnprintf(p, buflen, 494 "service=%.*s srchost=%s ", 495 (int)(c - service_name), 496 service_name, c + 1); 497 buflen -= len; 498 p += len; 499 gss_msg->msg.len += len; 500 } 501 502 if (mech->gm_upcall_enctypes) { 503 len = scnprintf(p, buflen, "enctypes=%s ", 504 mech->gm_upcall_enctypes); 505 buflen -= len; 506 p += len; 507 gss_msg->msg.len += len; 508 } 509 len = scnprintf(p, buflen, "\n"); 510 if (len == 0) 511 goto out_overflow; 512 gss_msg->msg.len += len; 513 514 gss_msg->msg.data = gss_msg->databuf; 515 return 0; 516 out_overflow: 517 WARN_ON_ONCE(1); 518 return -ENOMEM; 519 } 520 521 static struct gss_upcall_msg * 522 gss_alloc_msg(struct gss_auth *gss_auth, 523 kuid_t uid, const char *service_name) 524 { 525 struct gss_upcall_msg *gss_msg; 526 int vers; 527 int err = -ENOMEM; 528 529 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 530 if (gss_msg == NULL) 531 goto err; 532 vers = get_pipe_version(gss_auth->net); 533 err = vers; 534 if (err < 0) 535 goto err_free_msg; 536 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 537 INIT_LIST_HEAD(&gss_msg->list); 538 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 539 init_waitqueue_head(&gss_msg->waitqueue); 540 refcount_set(&gss_msg->count, 1); 541 gss_msg->uid = uid; 542 gss_msg->auth = gss_auth; 543 switch (vers) { 544 case 0: 545 gss_encode_v0_msg(gss_msg); 546 break; 547 default: 548 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name); 549 if (err) 550 goto err_put_pipe_version; 551 } 552 kref_get(&gss_auth->kref); 553 return gss_msg; 554 err_put_pipe_version: 555 put_pipe_version(gss_auth->net); 556 err_free_msg: 557 kfree(gss_msg); 558 err: 559 return ERR_PTR(err); 560 } 561 562 static struct gss_upcall_msg * 563 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 564 { 565 struct gss_cred *gss_cred = container_of(cred, 566 struct gss_cred, gc_base); 567 struct gss_upcall_msg *gss_new, *gss_msg; 568 kuid_t uid = cred->cr_uid; 569 570 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 571 if (IS_ERR(gss_new)) 572 return gss_new; 573 gss_msg = gss_add_msg(gss_new); 574 if (gss_msg == gss_new) { 575 int res; 576 refcount_inc(&gss_msg->count); 577 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 578 if (res) { 579 gss_unhash_msg(gss_new); 580 refcount_dec(&gss_msg->count); 581 gss_release_msg(gss_new); 582 gss_msg = ERR_PTR(res); 583 } 584 } else 585 gss_release_msg(gss_new); 586 return gss_msg; 587 } 588 589 static void warn_gssd(void) 590 { 591 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 592 } 593 594 static inline int 595 gss_refresh_upcall(struct rpc_task *task) 596 { 597 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 598 struct gss_auth *gss_auth = container_of(cred->cr_auth, 599 struct gss_auth, rpc_auth); 600 struct gss_cred *gss_cred = container_of(cred, 601 struct gss_cred, gc_base); 602 struct gss_upcall_msg *gss_msg; 603 struct rpc_pipe *pipe; 604 int err = 0; 605 606 dprintk("RPC: %5u %s for uid %u\n", 607 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid)); 608 gss_msg = gss_setup_upcall(gss_auth, cred); 609 if (PTR_ERR(gss_msg) == -EAGAIN) { 610 /* XXX: warning on the first, under the assumption we 611 * shouldn't normally hit this case on a refresh. */ 612 warn_gssd(); 613 task->tk_timeout = 15*HZ; 614 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL); 615 return -EAGAIN; 616 } 617 if (IS_ERR(gss_msg)) { 618 err = PTR_ERR(gss_msg); 619 goto out; 620 } 621 pipe = gss_msg->pipe; 622 spin_lock(&pipe->lock); 623 if (gss_cred->gc_upcall != NULL) 624 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 625 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 626 task->tk_timeout = 0; 627 gss_cred->gc_upcall = gss_msg; 628 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 629 refcount_inc(&gss_msg->count); 630 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 631 } else { 632 gss_handle_downcall_result(gss_cred, gss_msg); 633 err = gss_msg->msg.errno; 634 } 635 spin_unlock(&pipe->lock); 636 gss_release_msg(gss_msg); 637 out: 638 dprintk("RPC: %5u %s for uid %u result %d\n", 639 task->tk_pid, __func__, 640 from_kuid(&init_user_ns, cred->cr_uid), err); 641 return err; 642 } 643 644 static inline int 645 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 646 { 647 struct net *net = gss_auth->net; 648 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 649 struct rpc_pipe *pipe; 650 struct rpc_cred *cred = &gss_cred->gc_base; 651 struct gss_upcall_msg *gss_msg; 652 DEFINE_WAIT(wait); 653 int err; 654 655 dprintk("RPC: %s for uid %u\n", 656 __func__, from_kuid(&init_user_ns, cred->cr_uid)); 657 retry: 658 err = 0; 659 /* if gssd is down, just skip upcalling altogether */ 660 if (!gssd_running(net)) { 661 warn_gssd(); 662 return -EACCES; 663 } 664 gss_msg = gss_setup_upcall(gss_auth, cred); 665 if (PTR_ERR(gss_msg) == -EAGAIN) { 666 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 667 sn->pipe_version >= 0, 15 * HZ); 668 if (sn->pipe_version < 0) { 669 warn_gssd(); 670 err = -EACCES; 671 } 672 if (err < 0) 673 goto out; 674 goto retry; 675 } 676 if (IS_ERR(gss_msg)) { 677 err = PTR_ERR(gss_msg); 678 goto out; 679 } 680 pipe = gss_msg->pipe; 681 for (;;) { 682 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 683 spin_lock(&pipe->lock); 684 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 685 break; 686 } 687 spin_unlock(&pipe->lock); 688 if (fatal_signal_pending(current)) { 689 err = -ERESTARTSYS; 690 goto out_intr; 691 } 692 schedule(); 693 } 694 if (gss_msg->ctx) 695 gss_cred_set_ctx(cred, gss_msg->ctx); 696 else 697 err = gss_msg->msg.errno; 698 spin_unlock(&pipe->lock); 699 out_intr: 700 finish_wait(&gss_msg->waitqueue, &wait); 701 gss_release_msg(gss_msg); 702 out: 703 dprintk("RPC: %s for uid %u result %d\n", 704 __func__, from_kuid(&init_user_ns, cred->cr_uid), err); 705 return err; 706 } 707 708 #define MSG_BUF_MAXSIZE 1024 709 710 static ssize_t 711 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 712 { 713 const void *p, *end; 714 void *buf; 715 struct gss_upcall_msg *gss_msg; 716 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 717 struct gss_cl_ctx *ctx; 718 uid_t id; 719 kuid_t uid; 720 ssize_t err = -EFBIG; 721 722 if (mlen > MSG_BUF_MAXSIZE) 723 goto out; 724 err = -ENOMEM; 725 buf = kmalloc(mlen, GFP_NOFS); 726 if (!buf) 727 goto out; 728 729 err = -EFAULT; 730 if (copy_from_user(buf, src, mlen)) 731 goto err; 732 733 end = (const void *)((char *)buf + mlen); 734 p = simple_get_bytes(buf, end, &id, sizeof(id)); 735 if (IS_ERR(p)) { 736 err = PTR_ERR(p); 737 goto err; 738 } 739 740 uid = make_kuid(&init_user_ns, id); 741 if (!uid_valid(uid)) { 742 err = -EINVAL; 743 goto err; 744 } 745 746 err = -ENOMEM; 747 ctx = gss_alloc_context(); 748 if (ctx == NULL) 749 goto err; 750 751 err = -ENOENT; 752 /* Find a matching upcall */ 753 spin_lock(&pipe->lock); 754 gss_msg = __gss_find_upcall(pipe, uid, NULL); 755 if (gss_msg == NULL) { 756 spin_unlock(&pipe->lock); 757 goto err_put_ctx; 758 } 759 list_del_init(&gss_msg->list); 760 spin_unlock(&pipe->lock); 761 762 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 763 if (IS_ERR(p)) { 764 err = PTR_ERR(p); 765 switch (err) { 766 case -EACCES: 767 case -EKEYEXPIRED: 768 gss_msg->msg.errno = err; 769 err = mlen; 770 break; 771 case -EFAULT: 772 case -ENOMEM: 773 case -EINVAL: 774 case -ENOSYS: 775 gss_msg->msg.errno = -EAGAIN; 776 break; 777 default: 778 printk(KERN_CRIT "%s: bad return from " 779 "gss_fill_context: %zd\n", __func__, err); 780 gss_msg->msg.errno = -EIO; 781 } 782 goto err_release_msg; 783 } 784 gss_msg->ctx = gss_get_ctx(ctx); 785 err = mlen; 786 787 err_release_msg: 788 spin_lock(&pipe->lock); 789 __gss_unhash_msg(gss_msg); 790 spin_unlock(&pipe->lock); 791 gss_release_msg(gss_msg); 792 err_put_ctx: 793 gss_put_ctx(ctx); 794 err: 795 kfree(buf); 796 out: 797 dprintk("RPC: %s returning %zd\n", __func__, err); 798 return err; 799 } 800 801 static int gss_pipe_open(struct inode *inode, int new_version) 802 { 803 struct net *net = inode->i_sb->s_fs_info; 804 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 805 int ret = 0; 806 807 spin_lock(&pipe_version_lock); 808 if (sn->pipe_version < 0) { 809 /* First open of any gss pipe determines the version: */ 810 sn->pipe_version = new_version; 811 rpc_wake_up(&pipe_version_rpc_waitqueue); 812 wake_up(&pipe_version_waitqueue); 813 } else if (sn->pipe_version != new_version) { 814 /* Trying to open a pipe of a different version */ 815 ret = -EBUSY; 816 goto out; 817 } 818 atomic_inc(&sn->pipe_users); 819 out: 820 spin_unlock(&pipe_version_lock); 821 return ret; 822 823 } 824 825 static int gss_pipe_open_v0(struct inode *inode) 826 { 827 return gss_pipe_open(inode, 0); 828 } 829 830 static int gss_pipe_open_v1(struct inode *inode) 831 { 832 return gss_pipe_open(inode, 1); 833 } 834 835 static void 836 gss_pipe_release(struct inode *inode) 837 { 838 struct net *net = inode->i_sb->s_fs_info; 839 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 840 struct gss_upcall_msg *gss_msg; 841 842 restart: 843 spin_lock(&pipe->lock); 844 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 845 846 if (!list_empty(&gss_msg->msg.list)) 847 continue; 848 gss_msg->msg.errno = -EPIPE; 849 refcount_inc(&gss_msg->count); 850 __gss_unhash_msg(gss_msg); 851 spin_unlock(&pipe->lock); 852 gss_release_msg(gss_msg); 853 goto restart; 854 } 855 spin_unlock(&pipe->lock); 856 857 put_pipe_version(net); 858 } 859 860 static void 861 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 862 { 863 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 864 865 if (msg->errno < 0) { 866 dprintk("RPC: %s releasing msg %p\n", 867 __func__, gss_msg); 868 refcount_inc(&gss_msg->count); 869 gss_unhash_msg(gss_msg); 870 if (msg->errno == -ETIMEDOUT) 871 warn_gssd(); 872 gss_release_msg(gss_msg); 873 } 874 gss_release_msg(gss_msg); 875 } 876 877 static void gss_pipe_dentry_destroy(struct dentry *dir, 878 struct rpc_pipe_dir_object *pdo) 879 { 880 struct gss_pipe *gss_pipe = pdo->pdo_data; 881 struct rpc_pipe *pipe = gss_pipe->pipe; 882 883 if (pipe->dentry != NULL) { 884 rpc_unlink(pipe->dentry); 885 pipe->dentry = NULL; 886 } 887 } 888 889 static int gss_pipe_dentry_create(struct dentry *dir, 890 struct rpc_pipe_dir_object *pdo) 891 { 892 struct gss_pipe *p = pdo->pdo_data; 893 struct dentry *dentry; 894 895 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 896 if (IS_ERR(dentry)) 897 return PTR_ERR(dentry); 898 p->pipe->dentry = dentry; 899 return 0; 900 } 901 902 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 903 .create = gss_pipe_dentry_create, 904 .destroy = gss_pipe_dentry_destroy, 905 }; 906 907 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 908 const char *name, 909 const struct rpc_pipe_ops *upcall_ops) 910 { 911 struct gss_pipe *p; 912 int err = -ENOMEM; 913 914 p = kmalloc(sizeof(*p), GFP_KERNEL); 915 if (p == NULL) 916 goto err; 917 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 918 if (IS_ERR(p->pipe)) { 919 err = PTR_ERR(p->pipe); 920 goto err_free_gss_pipe; 921 } 922 p->name = name; 923 p->clnt = clnt; 924 kref_init(&p->kref); 925 rpc_init_pipe_dir_object(&p->pdo, 926 &gss_pipe_dir_object_ops, 927 p); 928 return p; 929 err_free_gss_pipe: 930 kfree(p); 931 err: 932 return ERR_PTR(err); 933 } 934 935 struct gss_alloc_pdo { 936 struct rpc_clnt *clnt; 937 const char *name; 938 const struct rpc_pipe_ops *upcall_ops; 939 }; 940 941 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 942 { 943 struct gss_pipe *gss_pipe; 944 struct gss_alloc_pdo *args = data; 945 946 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 947 return 0; 948 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 949 if (strcmp(gss_pipe->name, args->name) != 0) 950 return 0; 951 if (!kref_get_unless_zero(&gss_pipe->kref)) 952 return 0; 953 return 1; 954 } 955 956 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 957 { 958 struct gss_pipe *gss_pipe; 959 struct gss_alloc_pdo *args = data; 960 961 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 962 if (!IS_ERR(gss_pipe)) 963 return &gss_pipe->pdo; 964 return NULL; 965 } 966 967 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 968 const char *name, 969 const struct rpc_pipe_ops *upcall_ops) 970 { 971 struct net *net = rpc_net_ns(clnt); 972 struct rpc_pipe_dir_object *pdo; 973 struct gss_alloc_pdo args = { 974 .clnt = clnt, 975 .name = name, 976 .upcall_ops = upcall_ops, 977 }; 978 979 pdo = rpc_find_or_alloc_pipe_dir_object(net, 980 &clnt->cl_pipedir_objects, 981 gss_pipe_match_pdo, 982 gss_pipe_alloc_pdo, 983 &args); 984 if (pdo != NULL) 985 return container_of(pdo, struct gss_pipe, pdo); 986 return ERR_PTR(-ENOMEM); 987 } 988 989 static void __gss_pipe_free(struct gss_pipe *p) 990 { 991 struct rpc_clnt *clnt = p->clnt; 992 struct net *net = rpc_net_ns(clnt); 993 994 rpc_remove_pipe_dir_object(net, 995 &clnt->cl_pipedir_objects, 996 &p->pdo); 997 rpc_destroy_pipe_data(p->pipe); 998 kfree(p); 999 } 1000 1001 static void __gss_pipe_release(struct kref *kref) 1002 { 1003 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 1004 1005 __gss_pipe_free(p); 1006 } 1007 1008 static void gss_pipe_free(struct gss_pipe *p) 1009 { 1010 if (p != NULL) 1011 kref_put(&p->kref, __gss_pipe_release); 1012 } 1013 1014 /* 1015 * NOTE: we have the opportunity to use different 1016 * parameters based on the input flavor (which must be a pseudoflavor) 1017 */ 1018 static struct gss_auth * 1019 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1020 { 1021 rpc_authflavor_t flavor = args->pseudoflavor; 1022 struct gss_auth *gss_auth; 1023 struct gss_pipe *gss_pipe; 1024 struct rpc_auth * auth; 1025 int err = -ENOMEM; /* XXX? */ 1026 1027 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 1028 1029 if (!try_module_get(THIS_MODULE)) 1030 return ERR_PTR(err); 1031 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 1032 goto out_dec; 1033 INIT_HLIST_NODE(&gss_auth->hash); 1034 gss_auth->target_name = NULL; 1035 if (args->target_name) { 1036 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1037 if (gss_auth->target_name == NULL) 1038 goto err_free; 1039 } 1040 gss_auth->client = clnt; 1041 gss_auth->net = get_net(rpc_net_ns(clnt)); 1042 err = -EINVAL; 1043 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1044 if (!gss_auth->mech) { 1045 dprintk("RPC: Pseudoflavor %d not found!\n", flavor); 1046 goto err_put_net; 1047 } 1048 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1049 if (gss_auth->service == 0) 1050 goto err_put_mech; 1051 if (!gssd_running(gss_auth->net)) 1052 goto err_put_mech; 1053 auth = &gss_auth->rpc_auth; 1054 auth->au_cslack = GSS_CRED_SLACK >> 2; 1055 auth->au_rslack = GSS_VERF_SLACK >> 2; 1056 auth->au_flags = 0; 1057 auth->au_ops = &authgss_ops; 1058 auth->au_flavor = flavor; 1059 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1060 auth->au_flags |= RPCAUTH_AUTH_DATATOUCH; 1061 atomic_set(&auth->au_count, 1); 1062 kref_init(&gss_auth->kref); 1063 1064 err = rpcauth_init_credcache(auth); 1065 if (err) 1066 goto err_put_mech; 1067 /* 1068 * Note: if we created the old pipe first, then someone who 1069 * examined the directory at the right moment might conclude 1070 * that we supported only the old pipe. So we instead create 1071 * the new pipe first. 1072 */ 1073 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1074 if (IS_ERR(gss_pipe)) { 1075 err = PTR_ERR(gss_pipe); 1076 goto err_destroy_credcache; 1077 } 1078 gss_auth->gss_pipe[1] = gss_pipe; 1079 1080 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1081 &gss_upcall_ops_v0); 1082 if (IS_ERR(gss_pipe)) { 1083 err = PTR_ERR(gss_pipe); 1084 goto err_destroy_pipe_1; 1085 } 1086 gss_auth->gss_pipe[0] = gss_pipe; 1087 1088 return gss_auth; 1089 err_destroy_pipe_1: 1090 gss_pipe_free(gss_auth->gss_pipe[1]); 1091 err_destroy_credcache: 1092 rpcauth_destroy_credcache(auth); 1093 err_put_mech: 1094 gss_mech_put(gss_auth->mech); 1095 err_put_net: 1096 put_net(gss_auth->net); 1097 err_free: 1098 kfree(gss_auth->target_name); 1099 kfree(gss_auth); 1100 out_dec: 1101 module_put(THIS_MODULE); 1102 return ERR_PTR(err); 1103 } 1104 1105 static void 1106 gss_free(struct gss_auth *gss_auth) 1107 { 1108 gss_pipe_free(gss_auth->gss_pipe[0]); 1109 gss_pipe_free(gss_auth->gss_pipe[1]); 1110 gss_mech_put(gss_auth->mech); 1111 put_net(gss_auth->net); 1112 kfree(gss_auth->target_name); 1113 1114 kfree(gss_auth); 1115 module_put(THIS_MODULE); 1116 } 1117 1118 static void 1119 gss_free_callback(struct kref *kref) 1120 { 1121 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1122 1123 gss_free(gss_auth); 1124 } 1125 1126 static void 1127 gss_put_auth(struct gss_auth *gss_auth) 1128 { 1129 kref_put(&gss_auth->kref, gss_free_callback); 1130 } 1131 1132 static void 1133 gss_destroy(struct rpc_auth *auth) 1134 { 1135 struct gss_auth *gss_auth = container_of(auth, 1136 struct gss_auth, rpc_auth); 1137 1138 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 1139 auth, auth->au_flavor); 1140 1141 if (hash_hashed(&gss_auth->hash)) { 1142 spin_lock(&gss_auth_hash_lock); 1143 hash_del(&gss_auth->hash); 1144 spin_unlock(&gss_auth_hash_lock); 1145 } 1146 1147 gss_pipe_free(gss_auth->gss_pipe[0]); 1148 gss_auth->gss_pipe[0] = NULL; 1149 gss_pipe_free(gss_auth->gss_pipe[1]); 1150 gss_auth->gss_pipe[1] = NULL; 1151 rpcauth_destroy_credcache(auth); 1152 1153 gss_put_auth(gss_auth); 1154 } 1155 1156 /* 1157 * Auths may be shared between rpc clients that were cloned from a 1158 * common client with the same xprt, if they also share the flavor and 1159 * target_name. 1160 * 1161 * The auth is looked up from the oldest parent sharing the same 1162 * cl_xprt, and the auth itself references only that common parent 1163 * (which is guaranteed to last as long as any of its descendants). 1164 */ 1165 static struct gss_auth * 1166 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args, 1167 struct rpc_clnt *clnt, 1168 struct gss_auth *new) 1169 { 1170 struct gss_auth *gss_auth; 1171 unsigned long hashval = (unsigned long)clnt; 1172 1173 spin_lock(&gss_auth_hash_lock); 1174 hash_for_each_possible(gss_auth_hash_table, 1175 gss_auth, 1176 hash, 1177 hashval) { 1178 if (gss_auth->client != clnt) 1179 continue; 1180 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1181 continue; 1182 if (gss_auth->target_name != args->target_name) { 1183 if (gss_auth->target_name == NULL) 1184 continue; 1185 if (args->target_name == NULL) 1186 continue; 1187 if (strcmp(gss_auth->target_name, args->target_name)) 1188 continue; 1189 } 1190 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1191 continue; 1192 goto out; 1193 } 1194 if (new) 1195 hash_add(gss_auth_hash_table, &new->hash, hashval); 1196 gss_auth = new; 1197 out: 1198 spin_unlock(&gss_auth_hash_lock); 1199 return gss_auth; 1200 } 1201 1202 static struct gss_auth * 1203 gss_create_hashed(const struct rpc_auth_create_args *args, 1204 struct rpc_clnt *clnt) 1205 { 1206 struct gss_auth *gss_auth; 1207 struct gss_auth *new; 1208 1209 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1210 if (gss_auth != NULL) 1211 goto out; 1212 new = gss_create_new(args, clnt); 1213 if (IS_ERR(new)) 1214 return new; 1215 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1216 if (gss_auth != new) 1217 gss_destroy(&new->rpc_auth); 1218 out: 1219 return gss_auth; 1220 } 1221 1222 static struct rpc_auth * 1223 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1224 { 1225 struct gss_auth *gss_auth; 1226 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1227 1228 while (clnt != clnt->cl_parent) { 1229 struct rpc_clnt *parent = clnt->cl_parent; 1230 /* Find the original parent for this transport */ 1231 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1232 break; 1233 clnt = parent; 1234 } 1235 1236 gss_auth = gss_create_hashed(args, clnt); 1237 if (IS_ERR(gss_auth)) 1238 return ERR_CAST(gss_auth); 1239 return &gss_auth->rpc_auth; 1240 } 1241 1242 /* 1243 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 1244 * to the server with the GSS control procedure field set to 1245 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1246 * all RPCSEC_GSS state associated with that context. 1247 */ 1248 static int 1249 gss_destroying_context(struct rpc_cred *cred) 1250 { 1251 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1252 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1253 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1254 struct rpc_task *task; 1255 1256 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0) 1257 return 0; 1258 1259 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1260 cred->cr_ops = &gss_nullops; 1261 1262 /* Take a reference to ensure the cred will be destroyed either 1263 * by the RPC call or by the put_rpccred() below */ 1264 get_rpccred(cred); 1265 1266 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT); 1267 if (!IS_ERR(task)) 1268 rpc_put_task(task); 1269 1270 put_rpccred(cred); 1271 return 1; 1272 } 1273 1274 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1275 * to create a new cred or context, so they check that things have been 1276 * allocated before freeing them. */ 1277 static void 1278 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1279 { 1280 dprintk("RPC: %s\n", __func__); 1281 1282 gss_delete_sec_context(&ctx->gc_gss_ctx); 1283 kfree(ctx->gc_wire_ctx.data); 1284 kfree(ctx->gc_acceptor.data); 1285 kfree(ctx); 1286 } 1287 1288 static void 1289 gss_free_ctx_callback(struct rcu_head *head) 1290 { 1291 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1292 gss_do_free_ctx(ctx); 1293 } 1294 1295 static void 1296 gss_free_ctx(struct gss_cl_ctx *ctx) 1297 { 1298 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1299 } 1300 1301 static void 1302 gss_free_cred(struct gss_cred *gss_cred) 1303 { 1304 dprintk("RPC: %s cred=%p\n", __func__, gss_cred); 1305 kfree(gss_cred); 1306 } 1307 1308 static void 1309 gss_free_cred_callback(struct rcu_head *head) 1310 { 1311 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1312 gss_free_cred(gss_cred); 1313 } 1314 1315 static void 1316 gss_destroy_nullcred(struct rpc_cred *cred) 1317 { 1318 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1319 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1320 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1321 1322 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1323 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1324 if (ctx) 1325 gss_put_ctx(ctx); 1326 gss_put_auth(gss_auth); 1327 } 1328 1329 static void 1330 gss_destroy_cred(struct rpc_cred *cred) 1331 { 1332 1333 if (gss_destroying_context(cred)) 1334 return; 1335 gss_destroy_nullcred(cred); 1336 } 1337 1338 static int 1339 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1340 { 1341 return hash_64(from_kuid(&init_user_ns, acred->uid), hashbits); 1342 } 1343 1344 /* 1345 * Lookup RPCSEC_GSS cred for the current process 1346 */ 1347 static struct rpc_cred * 1348 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1349 { 1350 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS); 1351 } 1352 1353 static struct rpc_cred * 1354 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1355 { 1356 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1357 struct gss_cred *cred = NULL; 1358 int err = -ENOMEM; 1359 1360 dprintk("RPC: %s for uid %d, flavor %d\n", 1361 __func__, from_kuid(&init_user_ns, acred->uid), 1362 auth->au_flavor); 1363 1364 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1365 goto out_err; 1366 1367 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1368 /* 1369 * Note: in order to force a call to call_refresh(), we deliberately 1370 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1371 */ 1372 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1373 cred->gc_service = gss_auth->service; 1374 cred->gc_principal = NULL; 1375 if (acred->machine_cred) 1376 cred->gc_principal = acred->principal; 1377 kref_get(&gss_auth->kref); 1378 return &cred->gc_base; 1379 1380 out_err: 1381 dprintk("RPC: %s failed with error %d\n", __func__, err); 1382 return ERR_PTR(err); 1383 } 1384 1385 static int 1386 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1387 { 1388 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1389 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1390 int err; 1391 1392 do { 1393 err = gss_create_upcall(gss_auth, gss_cred); 1394 } while (err == -EAGAIN); 1395 return err; 1396 } 1397 1398 static char * 1399 gss_stringify_acceptor(struct rpc_cred *cred) 1400 { 1401 char *string = NULL; 1402 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1403 struct gss_cl_ctx *ctx; 1404 unsigned int len; 1405 struct xdr_netobj *acceptor; 1406 1407 rcu_read_lock(); 1408 ctx = rcu_dereference(gss_cred->gc_ctx); 1409 if (!ctx) 1410 goto out; 1411 1412 len = ctx->gc_acceptor.len; 1413 rcu_read_unlock(); 1414 1415 /* no point if there's no string */ 1416 if (!len) 1417 return NULL; 1418 realloc: 1419 string = kmalloc(len + 1, GFP_KERNEL); 1420 if (!string) 1421 return NULL; 1422 1423 rcu_read_lock(); 1424 ctx = rcu_dereference(gss_cred->gc_ctx); 1425 1426 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1427 if (!ctx || !ctx->gc_acceptor.len) { 1428 kfree(string); 1429 string = NULL; 1430 goto out; 1431 } 1432 1433 acceptor = &ctx->gc_acceptor; 1434 1435 /* 1436 * Did we find a new acceptor that's longer than the original? Allocate 1437 * a longer buffer and try again. 1438 */ 1439 if (len < acceptor->len) { 1440 len = acceptor->len; 1441 rcu_read_unlock(); 1442 kfree(string); 1443 goto realloc; 1444 } 1445 1446 memcpy(string, acceptor->data, acceptor->len); 1447 string[acceptor->len] = '\0'; 1448 out: 1449 rcu_read_unlock(); 1450 return string; 1451 } 1452 1453 /* 1454 * Returns -EACCES if GSS context is NULL or will expire within the 1455 * timeout (miliseconds) 1456 */ 1457 static int 1458 gss_key_timeout(struct rpc_cred *rc) 1459 { 1460 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1461 struct gss_cl_ctx *ctx; 1462 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1463 int ret = 0; 1464 1465 rcu_read_lock(); 1466 ctx = rcu_dereference(gss_cred->gc_ctx); 1467 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1468 ret = -EACCES; 1469 rcu_read_unlock(); 1470 1471 return ret; 1472 } 1473 1474 static int 1475 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1476 { 1477 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1478 struct gss_cl_ctx *ctx; 1479 int ret; 1480 1481 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1482 goto out; 1483 /* Don't match with creds that have expired. */ 1484 rcu_read_lock(); 1485 ctx = rcu_dereference(gss_cred->gc_ctx); 1486 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1487 rcu_read_unlock(); 1488 return 0; 1489 } 1490 rcu_read_unlock(); 1491 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1492 return 0; 1493 out: 1494 if (acred->principal != NULL) { 1495 if (gss_cred->gc_principal == NULL) 1496 return 0; 1497 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1498 goto check_expire; 1499 } 1500 if (gss_cred->gc_principal != NULL) 1501 return 0; 1502 ret = uid_eq(rc->cr_uid, acred->uid); 1503 1504 check_expire: 1505 if (ret == 0) 1506 return ret; 1507 1508 /* Notify acred users of GSS context expiration timeout */ 1509 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) && 1510 (gss_key_timeout(rc) != 0)) { 1511 /* test will now be done from generic cred */ 1512 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags); 1513 /* tell NFS layer that key will expire soon */ 1514 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags); 1515 } 1516 return ret; 1517 } 1518 1519 /* 1520 * Marshal credentials. 1521 * Maybe we should keep a cached credential for performance reasons. 1522 */ 1523 static __be32 * 1524 gss_marshal(struct rpc_task *task, __be32 *p) 1525 { 1526 struct rpc_rqst *req = task->tk_rqstp; 1527 struct rpc_cred *cred = req->rq_cred; 1528 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1529 gc_base); 1530 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1531 __be32 *cred_len; 1532 u32 maj_stat = 0; 1533 struct xdr_netobj mic; 1534 struct kvec iov; 1535 struct xdr_buf verf_buf; 1536 1537 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1538 1539 *p++ = htonl(RPC_AUTH_GSS); 1540 cred_len = p++; 1541 1542 spin_lock(&ctx->gc_seq_lock); 1543 req->rq_seqno = ctx->gc_seq++; 1544 spin_unlock(&ctx->gc_seq_lock); 1545 1546 *p++ = htonl((u32) RPC_GSS_VERSION); 1547 *p++ = htonl((u32) ctx->gc_proc); 1548 *p++ = htonl((u32) req->rq_seqno); 1549 *p++ = htonl((u32) gss_cred->gc_service); 1550 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1551 *cred_len = htonl((p - (cred_len + 1)) << 2); 1552 1553 /* We compute the checksum for the verifier over the xdr-encoded bytes 1554 * starting with the xid and ending at the end of the credential: */ 1555 iov.iov_base = xprt_skip_transport_header(req->rq_xprt, 1556 req->rq_snd_buf.head[0].iov_base); 1557 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1558 xdr_buf_from_iov(&iov, &verf_buf); 1559 1560 /* set verifier flavor*/ 1561 *p++ = htonl(RPC_AUTH_GSS); 1562 1563 mic.data = (u8 *)(p + 1); 1564 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1565 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 1566 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1567 } else if (maj_stat != 0) { 1568 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 1569 goto out_put_ctx; 1570 } 1571 p = xdr_encode_opaque(p, NULL, mic.len); 1572 gss_put_ctx(ctx); 1573 return p; 1574 out_put_ctx: 1575 gss_put_ctx(ctx); 1576 return NULL; 1577 } 1578 1579 static int gss_renew_cred(struct rpc_task *task) 1580 { 1581 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1582 struct gss_cred *gss_cred = container_of(oldcred, 1583 struct gss_cred, 1584 gc_base); 1585 struct rpc_auth *auth = oldcred->cr_auth; 1586 struct auth_cred acred = { 1587 .uid = oldcred->cr_uid, 1588 .principal = gss_cred->gc_principal, 1589 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0), 1590 }; 1591 struct rpc_cred *new; 1592 1593 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1594 if (IS_ERR(new)) 1595 return PTR_ERR(new); 1596 task->tk_rqstp->rq_cred = new; 1597 put_rpccred(oldcred); 1598 return 0; 1599 } 1600 1601 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1602 { 1603 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1604 unsigned long now = jiffies; 1605 unsigned long begin, expire; 1606 struct gss_cred *gss_cred; 1607 1608 gss_cred = container_of(cred, struct gss_cred, gc_base); 1609 begin = gss_cred->gc_upcall_timestamp; 1610 expire = begin + gss_expired_cred_retry_delay * HZ; 1611 1612 if (time_in_range_open(now, begin, expire)) 1613 return 1; 1614 } 1615 return 0; 1616 } 1617 1618 /* 1619 * Refresh credentials. XXX - finish 1620 */ 1621 static int 1622 gss_refresh(struct rpc_task *task) 1623 { 1624 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1625 int ret = 0; 1626 1627 if (gss_cred_is_negative_entry(cred)) 1628 return -EKEYEXPIRED; 1629 1630 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1631 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1632 ret = gss_renew_cred(task); 1633 if (ret < 0) 1634 goto out; 1635 cred = task->tk_rqstp->rq_cred; 1636 } 1637 1638 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1639 ret = gss_refresh_upcall(task); 1640 out: 1641 return ret; 1642 } 1643 1644 /* Dummy refresh routine: used only when destroying the context */ 1645 static int 1646 gss_refresh_null(struct rpc_task *task) 1647 { 1648 return 0; 1649 } 1650 1651 static __be32 * 1652 gss_validate(struct rpc_task *task, __be32 *p) 1653 { 1654 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1655 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1656 __be32 *seq = NULL; 1657 struct kvec iov; 1658 struct xdr_buf verf_buf; 1659 struct xdr_netobj mic; 1660 u32 flav,len; 1661 u32 maj_stat; 1662 __be32 *ret = ERR_PTR(-EIO); 1663 1664 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1665 1666 flav = ntohl(*p++); 1667 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 1668 goto out_bad; 1669 if (flav != RPC_AUTH_GSS) 1670 goto out_bad; 1671 seq = kmalloc(4, GFP_NOFS); 1672 if (!seq) 1673 goto out_bad; 1674 *seq = htonl(task->tk_rqstp->rq_seqno); 1675 iov.iov_base = seq; 1676 iov.iov_len = 4; 1677 xdr_buf_from_iov(&iov, &verf_buf); 1678 mic.data = (u8 *)p; 1679 mic.len = len; 1680 1681 ret = ERR_PTR(-EACCES); 1682 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1683 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1684 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1685 if (maj_stat) { 1686 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n", 1687 task->tk_pid, __func__, maj_stat); 1688 goto out_bad; 1689 } 1690 /* We leave it to unwrap to calculate au_rslack. For now we just 1691 * calculate the length of the verifier: */ 1692 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1693 gss_put_ctx(ctx); 1694 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n", 1695 task->tk_pid, __func__); 1696 kfree(seq); 1697 return p + XDR_QUADLEN(len); 1698 out_bad: 1699 gss_put_ctx(ctx); 1700 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__, 1701 PTR_ERR(ret)); 1702 kfree(seq); 1703 return ret; 1704 } 1705 1706 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp, 1707 __be32 *p, void *obj) 1708 { 1709 struct xdr_stream xdr; 1710 1711 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p); 1712 encode(rqstp, &xdr, obj); 1713 } 1714 1715 static inline int 1716 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1717 kxdreproc_t encode, struct rpc_rqst *rqstp, 1718 __be32 *p, void *obj) 1719 { 1720 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1721 struct xdr_buf integ_buf; 1722 __be32 *integ_len = NULL; 1723 struct xdr_netobj mic; 1724 u32 offset; 1725 __be32 *q; 1726 struct kvec *iov; 1727 u32 maj_stat = 0; 1728 int status = -EIO; 1729 1730 integ_len = p++; 1731 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1732 *p++ = htonl(rqstp->rq_seqno); 1733 1734 gss_wrap_req_encode(encode, rqstp, p, obj); 1735 1736 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1737 offset, snd_buf->len - offset)) 1738 return status; 1739 *integ_len = htonl(integ_buf.len); 1740 1741 /* guess whether we're in the head or the tail: */ 1742 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1743 iov = snd_buf->tail; 1744 else 1745 iov = snd_buf->head; 1746 p = iov->iov_base + iov->iov_len; 1747 mic.data = (u8 *)(p + 1); 1748 1749 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1750 status = -EIO; /* XXX? */ 1751 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1752 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1753 else if (maj_stat) 1754 return status; 1755 q = xdr_encode_opaque(p, NULL, mic.len); 1756 1757 offset = (u8 *)q - (u8 *)p; 1758 iov->iov_len += offset; 1759 snd_buf->len += offset; 1760 return 0; 1761 } 1762 1763 static void 1764 priv_release_snd_buf(struct rpc_rqst *rqstp) 1765 { 1766 int i; 1767 1768 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1769 __free_page(rqstp->rq_enc_pages[i]); 1770 kfree(rqstp->rq_enc_pages); 1771 } 1772 1773 static int 1774 alloc_enc_pages(struct rpc_rqst *rqstp) 1775 { 1776 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1777 int first, last, i; 1778 1779 if (snd_buf->page_len == 0) { 1780 rqstp->rq_enc_pages_num = 0; 1781 return 0; 1782 } 1783 1784 first = snd_buf->page_base >> PAGE_SHIFT; 1785 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1786 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1787 rqstp->rq_enc_pages 1788 = kmalloc_array(rqstp->rq_enc_pages_num, 1789 sizeof(struct page *), 1790 GFP_NOFS); 1791 if (!rqstp->rq_enc_pages) 1792 goto out; 1793 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1794 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1795 if (rqstp->rq_enc_pages[i] == NULL) 1796 goto out_free; 1797 } 1798 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1799 return 0; 1800 out_free: 1801 rqstp->rq_enc_pages_num = i; 1802 priv_release_snd_buf(rqstp); 1803 out: 1804 return -EAGAIN; 1805 } 1806 1807 static inline int 1808 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1809 kxdreproc_t encode, struct rpc_rqst *rqstp, 1810 __be32 *p, void *obj) 1811 { 1812 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1813 u32 offset; 1814 u32 maj_stat; 1815 int status; 1816 __be32 *opaque_len; 1817 struct page **inpages; 1818 int first; 1819 int pad; 1820 struct kvec *iov; 1821 char *tmp; 1822 1823 opaque_len = p++; 1824 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1825 *p++ = htonl(rqstp->rq_seqno); 1826 1827 gss_wrap_req_encode(encode, rqstp, p, obj); 1828 1829 status = alloc_enc_pages(rqstp); 1830 if (status) 1831 return status; 1832 first = snd_buf->page_base >> PAGE_SHIFT; 1833 inpages = snd_buf->pages + first; 1834 snd_buf->pages = rqstp->rq_enc_pages; 1835 snd_buf->page_base -= first << PAGE_SHIFT; 1836 /* 1837 * Give the tail its own page, in case we need extra space in the 1838 * head when wrapping: 1839 * 1840 * call_allocate() allocates twice the slack space required 1841 * by the authentication flavor to rq_callsize. 1842 * For GSS, slack is GSS_CRED_SLACK. 1843 */ 1844 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1845 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1846 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1847 snd_buf->tail[0].iov_base = tmp; 1848 } 1849 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1850 /* slack space should prevent this ever happening: */ 1851 BUG_ON(snd_buf->len > snd_buf->buflen); 1852 status = -EIO; 1853 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1854 * done anyway, so it's safe to put the request on the wire: */ 1855 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1856 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1857 else if (maj_stat) 1858 return status; 1859 1860 *opaque_len = htonl(snd_buf->len - offset); 1861 /* guess whether we're in the head or the tail: */ 1862 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1863 iov = snd_buf->tail; 1864 else 1865 iov = snd_buf->head; 1866 p = iov->iov_base + iov->iov_len; 1867 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1868 memset(p, 0, pad); 1869 iov->iov_len += pad; 1870 snd_buf->len += pad; 1871 1872 return 0; 1873 } 1874 1875 static int 1876 gss_wrap_req(struct rpc_task *task, 1877 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj) 1878 { 1879 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1880 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1881 gc_base); 1882 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1883 int status = -EIO; 1884 1885 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1886 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1887 /* The spec seems a little ambiguous here, but I think that not 1888 * wrapping context destruction requests makes the most sense. 1889 */ 1890 gss_wrap_req_encode(encode, rqstp, p, obj); 1891 status = 0; 1892 goto out; 1893 } 1894 switch (gss_cred->gc_service) { 1895 case RPC_GSS_SVC_NONE: 1896 gss_wrap_req_encode(encode, rqstp, p, obj); 1897 status = 0; 1898 break; 1899 case RPC_GSS_SVC_INTEGRITY: 1900 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj); 1901 break; 1902 case RPC_GSS_SVC_PRIVACY: 1903 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj); 1904 break; 1905 } 1906 out: 1907 gss_put_ctx(ctx); 1908 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status); 1909 return status; 1910 } 1911 1912 static inline int 1913 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1914 struct rpc_rqst *rqstp, __be32 **p) 1915 { 1916 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1917 struct xdr_buf integ_buf; 1918 struct xdr_netobj mic; 1919 u32 data_offset, mic_offset; 1920 u32 integ_len; 1921 u32 maj_stat; 1922 int status = -EIO; 1923 1924 integ_len = ntohl(*(*p)++); 1925 if (integ_len & 3) 1926 return status; 1927 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1928 mic_offset = integ_len + data_offset; 1929 if (mic_offset > rcv_buf->len) 1930 return status; 1931 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1932 return status; 1933 1934 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1935 mic_offset - data_offset)) 1936 return status; 1937 1938 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1939 return status; 1940 1941 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1942 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1943 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1944 if (maj_stat != GSS_S_COMPLETE) 1945 return status; 1946 return 0; 1947 } 1948 1949 static inline int 1950 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1951 struct rpc_rqst *rqstp, __be32 **p) 1952 { 1953 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1954 u32 offset; 1955 u32 opaque_len; 1956 u32 maj_stat; 1957 int status = -EIO; 1958 1959 opaque_len = ntohl(*(*p)++); 1960 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1961 if (offset + opaque_len > rcv_buf->len) 1962 return status; 1963 /* remove padding: */ 1964 rcv_buf->len = offset + opaque_len; 1965 1966 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1967 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1968 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1969 if (maj_stat != GSS_S_COMPLETE) 1970 return status; 1971 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1972 return status; 1973 1974 return 0; 1975 } 1976 1977 static int 1978 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp, 1979 __be32 *p, void *obj) 1980 { 1981 struct xdr_stream xdr; 1982 1983 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p); 1984 return decode(rqstp, &xdr, obj); 1985 } 1986 1987 static int 1988 gss_unwrap_resp(struct rpc_task *task, 1989 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj) 1990 { 1991 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1992 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1993 gc_base); 1994 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1995 __be32 *savedp = p; 1996 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1997 int savedlen = head->iov_len; 1998 int status = -EIO; 1999 2000 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 2001 goto out_decode; 2002 switch (gss_cred->gc_service) { 2003 case RPC_GSS_SVC_NONE: 2004 break; 2005 case RPC_GSS_SVC_INTEGRITY: 2006 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 2007 if (status) 2008 goto out; 2009 break; 2010 case RPC_GSS_SVC_PRIVACY: 2011 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 2012 if (status) 2013 goto out; 2014 break; 2015 } 2016 /* take into account extra slack for integrity and privacy cases: */ 2017 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 2018 + (savedlen - head->iov_len); 2019 out_decode: 2020 status = gss_unwrap_req_decode(decode, rqstp, p, obj); 2021 out: 2022 gss_put_ctx(ctx); 2023 dprintk("RPC: %5u %s returning %d\n", 2024 task->tk_pid, __func__, status); 2025 return status; 2026 } 2027 2028 static const struct rpc_authops authgss_ops = { 2029 .owner = THIS_MODULE, 2030 .au_flavor = RPC_AUTH_GSS, 2031 .au_name = "RPCSEC_GSS", 2032 .create = gss_create, 2033 .destroy = gss_destroy, 2034 .hash_cred = gss_hash_cred, 2035 .lookup_cred = gss_lookup_cred, 2036 .crcreate = gss_create_cred, 2037 .list_pseudoflavors = gss_mech_list_pseudoflavors, 2038 .info2flavor = gss_mech_info2flavor, 2039 .flavor2info = gss_mech_flavor2info, 2040 }; 2041 2042 static const struct rpc_credops gss_credops = { 2043 .cr_name = "AUTH_GSS", 2044 .crdestroy = gss_destroy_cred, 2045 .cr_init = gss_cred_init, 2046 .crbind = rpcauth_generic_bind_cred, 2047 .crmatch = gss_match, 2048 .crmarshal = gss_marshal, 2049 .crrefresh = gss_refresh, 2050 .crvalidate = gss_validate, 2051 .crwrap_req = gss_wrap_req, 2052 .crunwrap_resp = gss_unwrap_resp, 2053 .crkey_timeout = gss_key_timeout, 2054 .crstringify_acceptor = gss_stringify_acceptor, 2055 }; 2056 2057 static const struct rpc_credops gss_nullops = { 2058 .cr_name = "AUTH_GSS", 2059 .crdestroy = gss_destroy_nullcred, 2060 .crbind = rpcauth_generic_bind_cred, 2061 .crmatch = gss_match, 2062 .crmarshal = gss_marshal, 2063 .crrefresh = gss_refresh_null, 2064 .crvalidate = gss_validate, 2065 .crwrap_req = gss_wrap_req, 2066 .crunwrap_resp = gss_unwrap_resp, 2067 .crstringify_acceptor = gss_stringify_acceptor, 2068 }; 2069 2070 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2071 .upcall = rpc_pipe_generic_upcall, 2072 .downcall = gss_pipe_downcall, 2073 .destroy_msg = gss_pipe_destroy_msg, 2074 .open_pipe = gss_pipe_open_v0, 2075 .release_pipe = gss_pipe_release, 2076 }; 2077 2078 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2079 .upcall = rpc_pipe_generic_upcall, 2080 .downcall = gss_pipe_downcall, 2081 .destroy_msg = gss_pipe_destroy_msg, 2082 .open_pipe = gss_pipe_open_v1, 2083 .release_pipe = gss_pipe_release, 2084 }; 2085 2086 static __net_init int rpcsec_gss_init_net(struct net *net) 2087 { 2088 return gss_svc_init_net(net); 2089 } 2090 2091 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2092 { 2093 gss_svc_shutdown_net(net); 2094 } 2095 2096 static struct pernet_operations rpcsec_gss_net_ops = { 2097 .init = rpcsec_gss_init_net, 2098 .exit = rpcsec_gss_exit_net, 2099 }; 2100 2101 /* 2102 * Initialize RPCSEC_GSS module 2103 */ 2104 static int __init init_rpcsec_gss(void) 2105 { 2106 int err = 0; 2107 2108 err = rpcauth_register(&authgss_ops); 2109 if (err) 2110 goto out; 2111 err = gss_svc_init(); 2112 if (err) 2113 goto out_unregister; 2114 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2115 if (err) 2116 goto out_svc_exit; 2117 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2118 return 0; 2119 out_svc_exit: 2120 gss_svc_shutdown(); 2121 out_unregister: 2122 rpcauth_unregister(&authgss_ops); 2123 out: 2124 return err; 2125 } 2126 2127 static void __exit exit_rpcsec_gss(void) 2128 { 2129 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2130 gss_svc_shutdown(); 2131 rpcauth_unregister(&authgss_ops); 2132 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2133 } 2134 2135 MODULE_ALIAS("rpc-auth-6"); 2136 MODULE_LICENSE("GPL"); 2137 module_param_named(expired_cred_retry_delay, 2138 gss_expired_cred_retry_delay, 2139 uint, 0644); 2140 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2141 "the RPC engine retries an expired credential"); 2142 2143 module_param_named(key_expire_timeo, 2144 gss_key_expire_timeo, 2145 uint, 0644); 2146 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2147 "credential keys lifetime where the NFS layer cleans up " 2148 "prior to key expiration"); 2149 2150 module_init(init_rpcsec_gss) 2151 module_exit(exit_rpcsec_gss) 2152