1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * $Id$ 38 */ 39 40 41 #include <linux/module.h> 42 #include <linux/init.h> 43 #include <linux/types.h> 44 #include <linux/slab.h> 45 #include <linux/sched.h> 46 #include <linux/pagemap.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/auth.h> 49 #include <linux/sunrpc/auth_gss.h> 50 #include <linux/sunrpc/svcauth_gss.h> 51 #include <linux/sunrpc/gss_err.h> 52 #include <linux/workqueue.h> 53 #include <linux/sunrpc/rpc_pipe_fs.h> 54 #include <linux/sunrpc/gss_api.h> 55 #include <asm/uaccess.h> 56 57 static const struct rpc_authops authgss_ops; 58 59 static const struct rpc_credops gss_credops; 60 static const struct rpc_credops gss_nullops; 61 62 #ifdef RPC_DEBUG 63 # define RPCDBG_FACILITY RPCDBG_AUTH 64 #endif 65 66 #define NFS_NGROUPS 16 67 68 #define GSS_CRED_SLACK 1024 /* XXX: unused */ 69 /* length of a krb5 verifier (48), plus data added before arguments when 70 * using integrity (two 4-byte integers): */ 71 #define GSS_VERF_SLACK 100 72 73 /* XXX this define must match the gssd define 74 * as it is passed to gssd to signal the use of 75 * machine creds should be part of the shared rpc interface */ 76 77 #define CA_RUN_AS_MACHINE 0x00000200 78 79 /* dump the buffer in `emacs-hexl' style */ 80 #define isprint(c) ((c > 0x1f) && (c < 0x7f)) 81 82 struct gss_auth { 83 struct kref kref; 84 struct rpc_auth rpc_auth; 85 struct gss_api_mech *mech; 86 enum rpc_gss_svc service; 87 struct rpc_clnt *client; 88 struct dentry *dentry; 89 }; 90 91 static void gss_free_ctx(struct gss_cl_ctx *); 92 static struct rpc_pipe_ops gss_upcall_ops; 93 94 static inline struct gss_cl_ctx * 95 gss_get_ctx(struct gss_cl_ctx *ctx) 96 { 97 atomic_inc(&ctx->count); 98 return ctx; 99 } 100 101 static inline void 102 gss_put_ctx(struct gss_cl_ctx *ctx) 103 { 104 if (atomic_dec_and_test(&ctx->count)) 105 gss_free_ctx(ctx); 106 } 107 108 /* gss_cred_set_ctx: 109 * called by gss_upcall_callback and gss_create_upcall in order 110 * to set the gss context. The actual exchange of an old context 111 * and a new one is protected by the inode->i_lock. 112 */ 113 static void 114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 115 { 116 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 117 struct gss_cl_ctx *old; 118 119 old = gss_cred->gc_ctx; 120 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 121 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 122 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 123 if (old) 124 gss_put_ctx(old); 125 } 126 127 static int 128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred) 129 { 130 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 131 int res = 0; 132 133 rcu_read_lock(); 134 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx) 135 res = 1; 136 rcu_read_unlock(); 137 return res; 138 } 139 140 static const void * 141 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 142 { 143 const void *q = (const void *)((const char *)p + len); 144 if (unlikely(q > end || q < p)) 145 return ERR_PTR(-EFAULT); 146 memcpy(res, p, len); 147 return q; 148 } 149 150 static inline const void * 151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 152 { 153 const void *q; 154 unsigned int len; 155 156 p = simple_get_bytes(p, end, &len, sizeof(len)); 157 if (IS_ERR(p)) 158 return p; 159 q = (const void *)((const char *)p + len); 160 if (unlikely(q > end || q < p)) 161 return ERR_PTR(-EFAULT); 162 dest->data = kmemdup(p, len, GFP_KERNEL); 163 if (unlikely(dest->data == NULL)) 164 return ERR_PTR(-ENOMEM); 165 dest->len = len; 166 return q; 167 } 168 169 static struct gss_cl_ctx * 170 gss_cred_get_ctx(struct rpc_cred *cred) 171 { 172 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 173 struct gss_cl_ctx *ctx = NULL; 174 175 rcu_read_lock(); 176 if (gss_cred->gc_ctx) 177 ctx = gss_get_ctx(gss_cred->gc_ctx); 178 rcu_read_unlock(); 179 return ctx; 180 } 181 182 static struct gss_cl_ctx * 183 gss_alloc_context(void) 184 { 185 struct gss_cl_ctx *ctx; 186 187 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 188 if (ctx != NULL) { 189 ctx->gc_proc = RPC_GSS_PROC_DATA; 190 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 191 spin_lock_init(&ctx->gc_seq_lock); 192 atomic_set(&ctx->count,1); 193 } 194 return ctx; 195 } 196 197 #define GSSD_MIN_TIMEOUT (60 * 60) 198 static const void * 199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 200 { 201 const void *q; 202 unsigned int seclen; 203 unsigned int timeout; 204 u32 window_size; 205 int ret; 206 207 /* First unsigned int gives the lifetime (in seconds) of the cred */ 208 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 209 if (IS_ERR(p)) 210 goto err; 211 if (timeout == 0) 212 timeout = GSSD_MIN_TIMEOUT; 213 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4; 214 /* Sequence number window. Determines the maximum number of simultaneous requests */ 215 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 216 if (IS_ERR(p)) 217 goto err; 218 ctx->gc_win = window_size; 219 /* gssd signals an error by passing ctx->gc_win = 0: */ 220 if (ctx->gc_win == 0) { 221 /* in which case, p points to an error code which we ignore */ 222 p = ERR_PTR(-EACCES); 223 goto err; 224 } 225 /* copy the opaque wire context */ 226 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 227 if (IS_ERR(p)) 228 goto err; 229 /* import the opaque security context */ 230 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 231 if (IS_ERR(p)) 232 goto err; 233 q = (const void *)((const char *)p + seclen); 234 if (unlikely(q > end || q < p)) { 235 p = ERR_PTR(-EFAULT); 236 goto err; 237 } 238 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx); 239 if (ret < 0) { 240 p = ERR_PTR(ret); 241 goto err; 242 } 243 return q; 244 err: 245 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p)); 246 return p; 247 } 248 249 250 struct gss_upcall_msg { 251 atomic_t count; 252 uid_t uid; 253 struct rpc_pipe_msg msg; 254 struct list_head list; 255 struct gss_auth *auth; 256 struct rpc_wait_queue rpc_waitqueue; 257 wait_queue_head_t waitqueue; 258 struct gss_cl_ctx *ctx; 259 }; 260 261 static void 262 gss_release_msg(struct gss_upcall_msg *gss_msg) 263 { 264 if (!atomic_dec_and_test(&gss_msg->count)) 265 return; 266 BUG_ON(!list_empty(&gss_msg->list)); 267 if (gss_msg->ctx != NULL) 268 gss_put_ctx(gss_msg->ctx); 269 kfree(gss_msg); 270 } 271 272 static struct gss_upcall_msg * 273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid) 274 { 275 struct gss_upcall_msg *pos; 276 list_for_each_entry(pos, &rpci->in_downcall, list) { 277 if (pos->uid != uid) 278 continue; 279 atomic_inc(&pos->count); 280 dprintk("RPC: gss_find_upcall found msg %p\n", pos); 281 return pos; 282 } 283 dprintk("RPC: gss_find_upcall found nothing\n"); 284 return NULL; 285 } 286 287 /* Try to add a upcall to the pipefs queue. 288 * If an upcall owned by our uid already exists, then we return a reference 289 * to that upcall instead of adding the new upcall. 290 */ 291 static inline struct gss_upcall_msg * 292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg) 293 { 294 struct inode *inode = gss_auth->dentry->d_inode; 295 struct rpc_inode *rpci = RPC_I(inode); 296 struct gss_upcall_msg *old; 297 298 spin_lock(&inode->i_lock); 299 old = __gss_find_upcall(rpci, gss_msg->uid); 300 if (old == NULL) { 301 atomic_inc(&gss_msg->count); 302 list_add(&gss_msg->list, &rpci->in_downcall); 303 } else 304 gss_msg = old; 305 spin_unlock(&inode->i_lock); 306 return gss_msg; 307 } 308 309 static void 310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 311 { 312 list_del_init(&gss_msg->list); 313 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 314 wake_up_all(&gss_msg->waitqueue); 315 atomic_dec(&gss_msg->count); 316 } 317 318 static void 319 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 320 { 321 struct gss_auth *gss_auth = gss_msg->auth; 322 struct inode *inode = gss_auth->dentry->d_inode; 323 324 if (list_empty(&gss_msg->list)) 325 return; 326 spin_lock(&inode->i_lock); 327 if (!list_empty(&gss_msg->list)) 328 __gss_unhash_msg(gss_msg); 329 spin_unlock(&inode->i_lock); 330 } 331 332 static void 333 gss_upcall_callback(struct rpc_task *task) 334 { 335 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred, 336 struct gss_cred, gc_base); 337 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 338 struct inode *inode = gss_msg->auth->dentry->d_inode; 339 340 spin_lock(&inode->i_lock); 341 if (gss_msg->ctx) 342 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx)); 343 else 344 task->tk_status = gss_msg->msg.errno; 345 gss_cred->gc_upcall = NULL; 346 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 347 spin_unlock(&inode->i_lock); 348 gss_release_msg(gss_msg); 349 } 350 351 static inline struct gss_upcall_msg * 352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid) 353 { 354 struct gss_upcall_msg *gss_msg; 355 356 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL); 357 if (gss_msg != NULL) { 358 INIT_LIST_HEAD(&gss_msg->list); 359 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 360 init_waitqueue_head(&gss_msg->waitqueue); 361 atomic_set(&gss_msg->count, 1); 362 gss_msg->msg.data = &gss_msg->uid; 363 gss_msg->msg.len = sizeof(gss_msg->uid); 364 gss_msg->uid = uid; 365 gss_msg->auth = gss_auth; 366 } 367 return gss_msg; 368 } 369 370 static struct gss_upcall_msg * 371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred) 372 { 373 struct gss_upcall_msg *gss_new, *gss_msg; 374 375 gss_new = gss_alloc_msg(gss_auth, cred->cr_uid); 376 if (gss_new == NULL) 377 return ERR_PTR(-ENOMEM); 378 gss_msg = gss_add_msg(gss_auth, gss_new); 379 if (gss_msg == gss_new) { 380 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg); 381 if (res) { 382 gss_unhash_msg(gss_new); 383 gss_msg = ERR_PTR(res); 384 } 385 } else 386 gss_release_msg(gss_new); 387 return gss_msg; 388 } 389 390 static inline int 391 gss_refresh_upcall(struct rpc_task *task) 392 { 393 struct rpc_cred *cred = task->tk_msg.rpc_cred; 394 struct gss_auth *gss_auth = container_of(cred->cr_auth, 395 struct gss_auth, rpc_auth); 396 struct gss_cred *gss_cred = container_of(cred, 397 struct gss_cred, gc_base); 398 struct gss_upcall_msg *gss_msg; 399 struct inode *inode = gss_auth->dentry->d_inode; 400 int err = 0; 401 402 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid, 403 cred->cr_uid); 404 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred); 405 if (IS_ERR(gss_msg)) { 406 err = PTR_ERR(gss_msg); 407 goto out; 408 } 409 spin_lock(&inode->i_lock); 410 if (gss_cred->gc_upcall != NULL) 411 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL); 412 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 413 task->tk_timeout = 0; 414 gss_cred->gc_upcall = gss_msg; 415 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 416 atomic_inc(&gss_msg->count); 417 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL); 418 } else 419 err = gss_msg->msg.errno; 420 spin_unlock(&inode->i_lock); 421 gss_release_msg(gss_msg); 422 out: 423 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n", 424 task->tk_pid, cred->cr_uid, err); 425 return err; 426 } 427 428 static inline int 429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 430 { 431 struct inode *inode = gss_auth->dentry->d_inode; 432 struct rpc_cred *cred = &gss_cred->gc_base; 433 struct gss_upcall_msg *gss_msg; 434 DEFINE_WAIT(wait); 435 int err = 0; 436 437 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid); 438 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred); 439 if (IS_ERR(gss_msg)) { 440 err = PTR_ERR(gss_msg); 441 goto out; 442 } 443 for (;;) { 444 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE); 445 spin_lock(&inode->i_lock); 446 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 447 break; 448 } 449 spin_unlock(&inode->i_lock); 450 if (signalled()) { 451 err = -ERESTARTSYS; 452 goto out_intr; 453 } 454 schedule(); 455 } 456 if (gss_msg->ctx) 457 gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx)); 458 else 459 err = gss_msg->msg.errno; 460 spin_unlock(&inode->i_lock); 461 out_intr: 462 finish_wait(&gss_msg->waitqueue, &wait); 463 gss_release_msg(gss_msg); 464 out: 465 dprintk("RPC: gss_create_upcall for uid %u result %d\n", 466 cred->cr_uid, err); 467 return err; 468 } 469 470 static ssize_t 471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg, 472 char __user *dst, size_t buflen) 473 { 474 char *data = (char *)msg->data + msg->copied; 475 ssize_t mlen = msg->len; 476 ssize_t left; 477 478 if (mlen > buflen) 479 mlen = buflen; 480 left = copy_to_user(dst, data, mlen); 481 if (left < 0) { 482 msg->errno = left; 483 return left; 484 } 485 mlen -= left; 486 msg->copied += mlen; 487 msg->errno = 0; 488 return mlen; 489 } 490 491 #define MSG_BUF_MAXSIZE 1024 492 493 static ssize_t 494 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 495 { 496 const void *p, *end; 497 void *buf; 498 struct rpc_clnt *clnt; 499 struct gss_upcall_msg *gss_msg; 500 struct inode *inode = filp->f_path.dentry->d_inode; 501 struct gss_cl_ctx *ctx; 502 uid_t uid; 503 ssize_t err = -EFBIG; 504 505 if (mlen > MSG_BUF_MAXSIZE) 506 goto out; 507 err = -ENOMEM; 508 buf = kmalloc(mlen, GFP_KERNEL); 509 if (!buf) 510 goto out; 511 512 clnt = RPC_I(inode)->private; 513 err = -EFAULT; 514 if (copy_from_user(buf, src, mlen)) 515 goto err; 516 517 end = (const void *)((char *)buf + mlen); 518 p = simple_get_bytes(buf, end, &uid, sizeof(uid)); 519 if (IS_ERR(p)) { 520 err = PTR_ERR(p); 521 goto err; 522 } 523 524 err = -ENOMEM; 525 ctx = gss_alloc_context(); 526 if (ctx == NULL) 527 goto err; 528 529 err = -ENOENT; 530 /* Find a matching upcall */ 531 spin_lock(&inode->i_lock); 532 gss_msg = __gss_find_upcall(RPC_I(inode), uid); 533 if (gss_msg == NULL) { 534 spin_unlock(&inode->i_lock); 535 goto err_put_ctx; 536 } 537 list_del_init(&gss_msg->list); 538 spin_unlock(&inode->i_lock); 539 540 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 541 if (IS_ERR(p)) { 542 err = PTR_ERR(p); 543 gss_msg->msg.errno = (err == -EACCES) ? -EACCES : -EAGAIN; 544 goto err_release_msg; 545 } 546 gss_msg->ctx = gss_get_ctx(ctx); 547 err = mlen; 548 549 err_release_msg: 550 spin_lock(&inode->i_lock); 551 __gss_unhash_msg(gss_msg); 552 spin_unlock(&inode->i_lock); 553 gss_release_msg(gss_msg); 554 err_put_ctx: 555 gss_put_ctx(ctx); 556 err: 557 kfree(buf); 558 out: 559 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err); 560 return err; 561 } 562 563 static void 564 gss_pipe_release(struct inode *inode) 565 { 566 struct rpc_inode *rpci = RPC_I(inode); 567 struct gss_upcall_msg *gss_msg; 568 569 spin_lock(&inode->i_lock); 570 while (!list_empty(&rpci->in_downcall)) { 571 572 gss_msg = list_entry(rpci->in_downcall.next, 573 struct gss_upcall_msg, list); 574 gss_msg->msg.errno = -EPIPE; 575 atomic_inc(&gss_msg->count); 576 __gss_unhash_msg(gss_msg); 577 spin_unlock(&inode->i_lock); 578 gss_release_msg(gss_msg); 579 spin_lock(&inode->i_lock); 580 } 581 spin_unlock(&inode->i_lock); 582 } 583 584 static void 585 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 586 { 587 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 588 static unsigned long ratelimit; 589 590 if (msg->errno < 0) { 591 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n", 592 gss_msg); 593 atomic_inc(&gss_msg->count); 594 gss_unhash_msg(gss_msg); 595 if (msg->errno == -ETIMEDOUT) { 596 unsigned long now = jiffies; 597 if (time_after(now, ratelimit)) { 598 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n" 599 "Please check user daemon is running!\n"); 600 ratelimit = now + 15*HZ; 601 } 602 } 603 gss_release_msg(gss_msg); 604 } 605 } 606 607 /* 608 * NOTE: we have the opportunity to use different 609 * parameters based on the input flavor (which must be a pseudoflavor) 610 */ 611 static struct rpc_auth * 612 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 613 { 614 struct gss_auth *gss_auth; 615 struct rpc_auth * auth; 616 int err = -ENOMEM; /* XXX? */ 617 618 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 619 620 if (!try_module_get(THIS_MODULE)) 621 return ERR_PTR(err); 622 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 623 goto out_dec; 624 gss_auth->client = clnt; 625 err = -EINVAL; 626 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 627 if (!gss_auth->mech) { 628 printk(KERN_WARNING "%s: Pseudoflavor %d not found!", 629 __FUNCTION__, flavor); 630 goto err_free; 631 } 632 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 633 if (gss_auth->service == 0) 634 goto err_put_mech; 635 auth = &gss_auth->rpc_auth; 636 auth->au_cslack = GSS_CRED_SLACK >> 2; 637 auth->au_rslack = GSS_VERF_SLACK >> 2; 638 auth->au_ops = &authgss_ops; 639 auth->au_flavor = flavor; 640 atomic_set(&auth->au_count, 1); 641 kref_init(&gss_auth->kref); 642 643 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name, 644 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 645 if (IS_ERR(gss_auth->dentry)) { 646 err = PTR_ERR(gss_auth->dentry); 647 goto err_put_mech; 648 } 649 650 err = rpcauth_init_credcache(auth); 651 if (err) 652 goto err_unlink_pipe; 653 654 return auth; 655 err_unlink_pipe: 656 rpc_unlink(gss_auth->dentry); 657 err_put_mech: 658 gss_mech_put(gss_auth->mech); 659 err_free: 660 kfree(gss_auth); 661 out_dec: 662 module_put(THIS_MODULE); 663 return ERR_PTR(err); 664 } 665 666 static void 667 gss_free(struct gss_auth *gss_auth) 668 { 669 rpc_unlink(gss_auth->dentry); 670 gss_auth->dentry = NULL; 671 gss_mech_put(gss_auth->mech); 672 673 kfree(gss_auth); 674 module_put(THIS_MODULE); 675 } 676 677 static void 678 gss_free_callback(struct kref *kref) 679 { 680 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 681 682 gss_free(gss_auth); 683 } 684 685 static void 686 gss_destroy(struct rpc_auth *auth) 687 { 688 struct gss_auth *gss_auth; 689 690 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 691 auth, auth->au_flavor); 692 693 rpcauth_destroy_credcache(auth); 694 695 gss_auth = container_of(auth, struct gss_auth, rpc_auth); 696 kref_put(&gss_auth->kref, gss_free_callback); 697 } 698 699 /* 700 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 701 * to the server with the GSS control procedure field set to 702 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 703 * all RPCSEC_GSS state associated with that context. 704 */ 705 static int 706 gss_destroying_context(struct rpc_cred *cred) 707 { 708 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 709 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 710 struct rpc_task *task; 711 712 if (gss_cred->gc_ctx == NULL || 713 gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY) 714 return 0; 715 716 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY; 717 cred->cr_ops = &gss_nullops; 718 719 /* Take a reference to ensure the cred will be destroyed either 720 * by the RPC call or by the put_rpccred() below */ 721 get_rpccred(cred); 722 723 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC); 724 if (!IS_ERR(task)) 725 rpc_put_task(task); 726 727 put_rpccred(cred); 728 return 1; 729 } 730 731 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 732 * to create a new cred or context, so they check that things have been 733 * allocated before freeing them. */ 734 static void 735 gss_do_free_ctx(struct gss_cl_ctx *ctx) 736 { 737 dprintk("RPC: gss_free_ctx\n"); 738 739 if (ctx->gc_gss_ctx) 740 gss_delete_sec_context(&ctx->gc_gss_ctx); 741 742 kfree(ctx->gc_wire_ctx.data); 743 kfree(ctx); 744 } 745 746 static void 747 gss_free_ctx_callback(struct rcu_head *head) 748 { 749 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 750 gss_do_free_ctx(ctx); 751 } 752 753 static void 754 gss_free_ctx(struct gss_cl_ctx *ctx) 755 { 756 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 757 } 758 759 static void 760 gss_free_cred(struct gss_cred *gss_cred) 761 { 762 dprintk("RPC: gss_free_cred %p\n", gss_cred); 763 kfree(gss_cred); 764 } 765 766 static void 767 gss_free_cred_callback(struct rcu_head *head) 768 { 769 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 770 gss_free_cred(gss_cred); 771 } 772 773 static void 774 gss_destroy_cred(struct rpc_cred *cred) 775 { 776 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 777 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 778 struct gss_cl_ctx *ctx = gss_cred->gc_ctx; 779 780 if (gss_destroying_context(cred)) 781 return; 782 rcu_assign_pointer(gss_cred->gc_ctx, NULL); 783 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 784 if (ctx) 785 gss_put_ctx(ctx); 786 kref_put(&gss_auth->kref, gss_free_callback); 787 } 788 789 /* 790 * Lookup RPCSEC_GSS cred for the current process 791 */ 792 static struct rpc_cred * 793 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 794 { 795 return rpcauth_lookup_credcache(auth, acred, flags); 796 } 797 798 static struct rpc_cred * 799 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 800 { 801 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 802 struct gss_cred *cred = NULL; 803 int err = -ENOMEM; 804 805 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n", 806 acred->uid, auth->au_flavor); 807 808 if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL))) 809 goto out_err; 810 811 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 812 /* 813 * Note: in order to force a call to call_refresh(), we deliberately 814 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 815 */ 816 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 817 cred->gc_service = gss_auth->service; 818 kref_get(&gss_auth->kref); 819 return &cred->gc_base; 820 821 out_err: 822 dprintk("RPC: gss_create_cred failed with error %d\n", err); 823 return ERR_PTR(err); 824 } 825 826 static int 827 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 828 { 829 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 830 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 831 int err; 832 833 do { 834 err = gss_create_upcall(gss_auth, gss_cred); 835 } while (err == -EAGAIN); 836 return err; 837 } 838 839 static int 840 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 841 { 842 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 843 844 /* 845 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then 846 * we don't really care if the credential has expired or not, 847 * since the caller should be prepared to reinitialise it. 848 */ 849 if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 850 goto out; 851 /* Don't match with creds that have expired. */ 852 if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry)) 853 return 0; 854 out: 855 return (rc->cr_uid == acred->uid); 856 } 857 858 /* 859 * Marshal credentials. 860 * Maybe we should keep a cached credential for performance reasons. 861 */ 862 static __be32 * 863 gss_marshal(struct rpc_task *task, __be32 *p) 864 { 865 struct rpc_cred *cred = task->tk_msg.rpc_cred; 866 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 867 gc_base); 868 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 869 __be32 *cred_len; 870 struct rpc_rqst *req = task->tk_rqstp; 871 u32 maj_stat = 0; 872 struct xdr_netobj mic; 873 struct kvec iov; 874 struct xdr_buf verf_buf; 875 876 dprintk("RPC: %5u gss_marshal\n", task->tk_pid); 877 878 *p++ = htonl(RPC_AUTH_GSS); 879 cred_len = p++; 880 881 spin_lock(&ctx->gc_seq_lock); 882 req->rq_seqno = ctx->gc_seq++; 883 spin_unlock(&ctx->gc_seq_lock); 884 885 *p++ = htonl((u32) RPC_GSS_VERSION); 886 *p++ = htonl((u32) ctx->gc_proc); 887 *p++ = htonl((u32) req->rq_seqno); 888 *p++ = htonl((u32) gss_cred->gc_service); 889 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 890 *cred_len = htonl((p - (cred_len + 1)) << 2); 891 892 /* We compute the checksum for the verifier over the xdr-encoded bytes 893 * starting with the xid and ending at the end of the credential: */ 894 iov.iov_base = xprt_skip_transport_header(task->tk_xprt, 895 req->rq_snd_buf.head[0].iov_base); 896 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 897 xdr_buf_from_iov(&iov, &verf_buf); 898 899 /* set verifier flavor*/ 900 *p++ = htonl(RPC_AUTH_GSS); 901 902 mic.data = (u8 *)(p + 1); 903 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 904 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 905 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 906 } else if (maj_stat != 0) { 907 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 908 goto out_put_ctx; 909 } 910 p = xdr_encode_opaque(p, NULL, mic.len); 911 gss_put_ctx(ctx); 912 return p; 913 out_put_ctx: 914 gss_put_ctx(ctx); 915 return NULL; 916 } 917 918 /* 919 * Refresh credentials. XXX - finish 920 */ 921 static int 922 gss_refresh(struct rpc_task *task) 923 { 924 925 if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred)) 926 return gss_refresh_upcall(task); 927 return 0; 928 } 929 930 /* Dummy refresh routine: used only when destroying the context */ 931 static int 932 gss_refresh_null(struct rpc_task *task) 933 { 934 return -EACCES; 935 } 936 937 static __be32 * 938 gss_validate(struct rpc_task *task, __be32 *p) 939 { 940 struct rpc_cred *cred = task->tk_msg.rpc_cred; 941 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 942 __be32 seq; 943 struct kvec iov; 944 struct xdr_buf verf_buf; 945 struct xdr_netobj mic; 946 u32 flav,len; 947 u32 maj_stat; 948 949 dprintk("RPC: %5u gss_validate\n", task->tk_pid); 950 951 flav = ntohl(*p++); 952 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 953 goto out_bad; 954 if (flav != RPC_AUTH_GSS) 955 goto out_bad; 956 seq = htonl(task->tk_rqstp->rq_seqno); 957 iov.iov_base = &seq; 958 iov.iov_len = sizeof(seq); 959 xdr_buf_from_iov(&iov, &verf_buf); 960 mic.data = (u8 *)p; 961 mic.len = len; 962 963 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 964 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 965 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 966 if (maj_stat) { 967 dprintk("RPC: %5u gss_validate: gss_verify_mic returned" 968 "error 0x%08x\n", task->tk_pid, maj_stat); 969 goto out_bad; 970 } 971 /* We leave it to unwrap to calculate au_rslack. For now we just 972 * calculate the length of the verifier: */ 973 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 974 gss_put_ctx(ctx); 975 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n", 976 task->tk_pid); 977 return p + XDR_QUADLEN(len); 978 out_bad: 979 gss_put_ctx(ctx); 980 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid); 981 return NULL; 982 } 983 984 static inline int 985 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 986 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 987 { 988 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 989 struct xdr_buf integ_buf; 990 __be32 *integ_len = NULL; 991 struct xdr_netobj mic; 992 u32 offset; 993 __be32 *q; 994 struct kvec *iov; 995 u32 maj_stat = 0; 996 int status = -EIO; 997 998 integ_len = p++; 999 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1000 *p++ = htonl(rqstp->rq_seqno); 1001 1002 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1003 if (status) 1004 return status; 1005 1006 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1007 offset, snd_buf->len - offset)) 1008 return status; 1009 *integ_len = htonl(integ_buf.len); 1010 1011 /* guess whether we're in the head or the tail: */ 1012 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1013 iov = snd_buf->tail; 1014 else 1015 iov = snd_buf->head; 1016 p = iov->iov_base + iov->iov_len; 1017 mic.data = (u8 *)(p + 1); 1018 1019 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1020 status = -EIO; /* XXX? */ 1021 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1022 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1023 else if (maj_stat) 1024 return status; 1025 q = xdr_encode_opaque(p, NULL, mic.len); 1026 1027 offset = (u8 *)q - (u8 *)p; 1028 iov->iov_len += offset; 1029 snd_buf->len += offset; 1030 return 0; 1031 } 1032 1033 static void 1034 priv_release_snd_buf(struct rpc_rqst *rqstp) 1035 { 1036 int i; 1037 1038 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1039 __free_page(rqstp->rq_enc_pages[i]); 1040 kfree(rqstp->rq_enc_pages); 1041 } 1042 1043 static int 1044 alloc_enc_pages(struct rpc_rqst *rqstp) 1045 { 1046 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1047 int first, last, i; 1048 1049 if (snd_buf->page_len == 0) { 1050 rqstp->rq_enc_pages_num = 0; 1051 return 0; 1052 } 1053 1054 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1055 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT; 1056 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1057 rqstp->rq_enc_pages 1058 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), 1059 GFP_NOFS); 1060 if (!rqstp->rq_enc_pages) 1061 goto out; 1062 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1063 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1064 if (rqstp->rq_enc_pages[i] == NULL) 1065 goto out_free; 1066 } 1067 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1068 return 0; 1069 out_free: 1070 for (i--; i >= 0; i--) { 1071 __free_page(rqstp->rq_enc_pages[i]); 1072 } 1073 out: 1074 return -EAGAIN; 1075 } 1076 1077 static inline int 1078 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1079 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 1080 { 1081 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1082 u32 offset; 1083 u32 maj_stat; 1084 int status; 1085 __be32 *opaque_len; 1086 struct page **inpages; 1087 int first; 1088 int pad; 1089 struct kvec *iov; 1090 char *tmp; 1091 1092 opaque_len = p++; 1093 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1094 *p++ = htonl(rqstp->rq_seqno); 1095 1096 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1097 if (status) 1098 return status; 1099 1100 status = alloc_enc_pages(rqstp); 1101 if (status) 1102 return status; 1103 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1104 inpages = snd_buf->pages + first; 1105 snd_buf->pages = rqstp->rq_enc_pages; 1106 snd_buf->page_base -= first << PAGE_CACHE_SHIFT; 1107 /* Give the tail its own page, in case we need extra space in the 1108 * head when wrapping: */ 1109 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1110 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1111 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1112 snd_buf->tail[0].iov_base = tmp; 1113 } 1114 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1115 /* RPC_SLACK_SPACE should prevent this ever happening: */ 1116 BUG_ON(snd_buf->len > snd_buf->buflen); 1117 status = -EIO; 1118 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1119 * done anyway, so it's safe to put the request on the wire: */ 1120 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1121 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1122 else if (maj_stat) 1123 return status; 1124 1125 *opaque_len = htonl(snd_buf->len - offset); 1126 /* guess whether we're in the head or the tail: */ 1127 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1128 iov = snd_buf->tail; 1129 else 1130 iov = snd_buf->head; 1131 p = iov->iov_base + iov->iov_len; 1132 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1133 memset(p, 0, pad); 1134 iov->iov_len += pad; 1135 snd_buf->len += pad; 1136 1137 return 0; 1138 } 1139 1140 static int 1141 gss_wrap_req(struct rpc_task *task, 1142 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj) 1143 { 1144 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1145 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1146 gc_base); 1147 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1148 int status = -EIO; 1149 1150 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid); 1151 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1152 /* The spec seems a little ambiguous here, but I think that not 1153 * wrapping context destruction requests makes the most sense. 1154 */ 1155 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1156 goto out; 1157 } 1158 switch (gss_cred->gc_service) { 1159 case RPC_GSS_SVC_NONE: 1160 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1161 break; 1162 case RPC_GSS_SVC_INTEGRITY: 1163 status = gss_wrap_req_integ(cred, ctx, encode, 1164 rqstp, p, obj); 1165 break; 1166 case RPC_GSS_SVC_PRIVACY: 1167 status = gss_wrap_req_priv(cred, ctx, encode, 1168 rqstp, p, obj); 1169 break; 1170 } 1171 out: 1172 gss_put_ctx(ctx); 1173 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status); 1174 return status; 1175 } 1176 1177 static inline int 1178 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1179 struct rpc_rqst *rqstp, __be32 **p) 1180 { 1181 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1182 struct xdr_buf integ_buf; 1183 struct xdr_netobj mic; 1184 u32 data_offset, mic_offset; 1185 u32 integ_len; 1186 u32 maj_stat; 1187 int status = -EIO; 1188 1189 integ_len = ntohl(*(*p)++); 1190 if (integ_len & 3) 1191 return status; 1192 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1193 mic_offset = integ_len + data_offset; 1194 if (mic_offset > rcv_buf->len) 1195 return status; 1196 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1197 return status; 1198 1199 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1200 mic_offset - data_offset)) 1201 return status; 1202 1203 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1204 return status; 1205 1206 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1207 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1208 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1209 if (maj_stat != GSS_S_COMPLETE) 1210 return status; 1211 return 0; 1212 } 1213 1214 static inline int 1215 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1216 struct rpc_rqst *rqstp, __be32 **p) 1217 { 1218 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1219 u32 offset; 1220 u32 opaque_len; 1221 u32 maj_stat; 1222 int status = -EIO; 1223 1224 opaque_len = ntohl(*(*p)++); 1225 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1226 if (offset + opaque_len > rcv_buf->len) 1227 return status; 1228 /* remove padding: */ 1229 rcv_buf->len = offset + opaque_len; 1230 1231 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1232 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1233 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1234 if (maj_stat != GSS_S_COMPLETE) 1235 return status; 1236 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1237 return status; 1238 1239 return 0; 1240 } 1241 1242 1243 static int 1244 gss_unwrap_resp(struct rpc_task *task, 1245 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj) 1246 { 1247 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1248 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1249 gc_base); 1250 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1251 __be32 *savedp = p; 1252 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1253 int savedlen = head->iov_len; 1254 int status = -EIO; 1255 1256 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 1257 goto out_decode; 1258 switch (gss_cred->gc_service) { 1259 case RPC_GSS_SVC_NONE: 1260 break; 1261 case RPC_GSS_SVC_INTEGRITY: 1262 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 1263 if (status) 1264 goto out; 1265 break; 1266 case RPC_GSS_SVC_PRIVACY: 1267 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 1268 if (status) 1269 goto out; 1270 break; 1271 } 1272 /* take into account extra slack for integrity and privacy cases: */ 1273 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 1274 + (savedlen - head->iov_len); 1275 out_decode: 1276 status = rpc_call_xdrproc(decode, rqstp, p, obj); 1277 out: 1278 gss_put_ctx(ctx); 1279 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid, 1280 status); 1281 return status; 1282 } 1283 1284 static const struct rpc_authops authgss_ops = { 1285 .owner = THIS_MODULE, 1286 .au_flavor = RPC_AUTH_GSS, 1287 #ifdef RPC_DEBUG 1288 .au_name = "RPCSEC_GSS", 1289 #endif 1290 .create = gss_create, 1291 .destroy = gss_destroy, 1292 .lookup_cred = gss_lookup_cred, 1293 .crcreate = gss_create_cred 1294 }; 1295 1296 static const struct rpc_credops gss_credops = { 1297 .cr_name = "AUTH_GSS", 1298 .crdestroy = gss_destroy_cred, 1299 .cr_init = gss_cred_init, 1300 .crmatch = gss_match, 1301 .crmarshal = gss_marshal, 1302 .crrefresh = gss_refresh, 1303 .crvalidate = gss_validate, 1304 .crwrap_req = gss_wrap_req, 1305 .crunwrap_resp = gss_unwrap_resp, 1306 }; 1307 1308 static const struct rpc_credops gss_nullops = { 1309 .cr_name = "AUTH_GSS", 1310 .crdestroy = gss_destroy_cred, 1311 .crmatch = gss_match, 1312 .crmarshal = gss_marshal, 1313 .crrefresh = gss_refresh_null, 1314 .crvalidate = gss_validate, 1315 .crwrap_req = gss_wrap_req, 1316 .crunwrap_resp = gss_unwrap_resp, 1317 }; 1318 1319 static struct rpc_pipe_ops gss_upcall_ops = { 1320 .upcall = gss_pipe_upcall, 1321 .downcall = gss_pipe_downcall, 1322 .destroy_msg = gss_pipe_destroy_msg, 1323 .release_pipe = gss_pipe_release, 1324 }; 1325 1326 /* 1327 * Initialize RPCSEC_GSS module 1328 */ 1329 static int __init init_rpcsec_gss(void) 1330 { 1331 int err = 0; 1332 1333 err = rpcauth_register(&authgss_ops); 1334 if (err) 1335 goto out; 1336 err = gss_svc_init(); 1337 if (err) 1338 goto out_unregister; 1339 return 0; 1340 out_unregister: 1341 rpcauth_unregister(&authgss_ops); 1342 out: 1343 return err; 1344 } 1345 1346 static void __exit exit_rpcsec_gss(void) 1347 { 1348 gss_svc_shutdown(); 1349 rpcauth_unregister(&authgss_ops); 1350 } 1351 1352 MODULE_LICENSE("GPL"); 1353 module_init(init_rpcsec_gss) 1354 module_exit(exit_rpcsec_gss) 1355