xref: /openbmc/linux/net/sunrpc/auth_gss/auth_gss.c (revision c21b37f6)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  */
39 
40 
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/slab.h>
45 #include <linux/sched.h>
46 #include <linux/pagemap.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/auth.h>
49 #include <linux/sunrpc/auth_gss.h>
50 #include <linux/sunrpc/svcauth_gss.h>
51 #include <linux/sunrpc/gss_err.h>
52 #include <linux/workqueue.h>
53 #include <linux/sunrpc/rpc_pipe_fs.h>
54 #include <linux/sunrpc/gss_api.h>
55 #include <asm/uaccess.h>
56 
57 static const struct rpc_authops authgss_ops;
58 
59 static const struct rpc_credops gss_credops;
60 static const struct rpc_credops gss_nullops;
61 
62 #ifdef RPC_DEBUG
63 # define RPCDBG_FACILITY	RPCDBG_AUTH
64 #endif
65 
66 #define NFS_NGROUPS	16
67 
68 #define GSS_CRED_SLACK		1024		/* XXX: unused */
69 /* length of a krb5 verifier (48), plus data added before arguments when
70  * using integrity (two 4-byte integers): */
71 #define GSS_VERF_SLACK		100
72 
73 /* XXX this define must match the gssd define
74 * as it is passed to gssd to signal the use of
75 * machine creds should be part of the shared rpc interface */
76 
77 #define CA_RUN_AS_MACHINE  0x00000200
78 
79 /* dump the buffer in `emacs-hexl' style */
80 #define isprint(c)      ((c > 0x1f) && (c < 0x7f))
81 
82 struct gss_auth {
83 	struct kref kref;
84 	struct rpc_auth rpc_auth;
85 	struct gss_api_mech *mech;
86 	enum rpc_gss_svc service;
87 	struct rpc_clnt *client;
88 	struct dentry *dentry;
89 };
90 
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops;
93 
94 static inline struct gss_cl_ctx *
95 gss_get_ctx(struct gss_cl_ctx *ctx)
96 {
97 	atomic_inc(&ctx->count);
98 	return ctx;
99 }
100 
101 static inline void
102 gss_put_ctx(struct gss_cl_ctx *ctx)
103 {
104 	if (atomic_dec_and_test(&ctx->count))
105 		gss_free_ctx(ctx);
106 }
107 
108 /* gss_cred_set_ctx:
109  * called by gss_upcall_callback and gss_create_upcall in order
110  * to set the gss context. The actual exchange of an old context
111  * and a new one is protected by the inode->i_lock.
112  */
113 static void
114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
115 {
116 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
117 	struct gss_cl_ctx *old;
118 
119 	old = gss_cred->gc_ctx;
120 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
121 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
122 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
123 	if (old)
124 		gss_put_ctx(old);
125 }
126 
127 static int
128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred)
129 {
130 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
131 	int res = 0;
132 
133 	rcu_read_lock();
134 	if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx)
135 		res = 1;
136 	rcu_read_unlock();
137 	return res;
138 }
139 
140 static const void *
141 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
142 {
143 	const void *q = (const void *)((const char *)p + len);
144 	if (unlikely(q > end || q < p))
145 		return ERR_PTR(-EFAULT);
146 	memcpy(res, p, len);
147 	return q;
148 }
149 
150 static inline const void *
151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
152 {
153 	const void *q;
154 	unsigned int len;
155 
156 	p = simple_get_bytes(p, end, &len, sizeof(len));
157 	if (IS_ERR(p))
158 		return p;
159 	q = (const void *)((const char *)p + len);
160 	if (unlikely(q > end || q < p))
161 		return ERR_PTR(-EFAULT);
162 	dest->data = kmemdup(p, len, GFP_KERNEL);
163 	if (unlikely(dest->data == NULL))
164 		return ERR_PTR(-ENOMEM);
165 	dest->len = len;
166 	return q;
167 }
168 
169 static struct gss_cl_ctx *
170 gss_cred_get_ctx(struct rpc_cred *cred)
171 {
172 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
173 	struct gss_cl_ctx *ctx = NULL;
174 
175 	rcu_read_lock();
176 	if (gss_cred->gc_ctx)
177 		ctx = gss_get_ctx(gss_cred->gc_ctx);
178 	rcu_read_unlock();
179 	return ctx;
180 }
181 
182 static struct gss_cl_ctx *
183 gss_alloc_context(void)
184 {
185 	struct gss_cl_ctx *ctx;
186 
187 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
188 	if (ctx != NULL) {
189 		ctx->gc_proc = RPC_GSS_PROC_DATA;
190 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
191 		spin_lock_init(&ctx->gc_seq_lock);
192 		atomic_set(&ctx->count,1);
193 	}
194 	return ctx;
195 }
196 
197 #define GSSD_MIN_TIMEOUT (60 * 60)
198 static const void *
199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
200 {
201 	const void *q;
202 	unsigned int seclen;
203 	unsigned int timeout;
204 	u32 window_size;
205 	int ret;
206 
207 	/* First unsigned int gives the lifetime (in seconds) of the cred */
208 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
209 	if (IS_ERR(p))
210 		goto err;
211 	if (timeout == 0)
212 		timeout = GSSD_MIN_TIMEOUT;
213 	ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
214 	/* Sequence number window. Determines the maximum number of simultaneous requests */
215 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
216 	if (IS_ERR(p))
217 		goto err;
218 	ctx->gc_win = window_size;
219 	/* gssd signals an error by passing ctx->gc_win = 0: */
220 	if (ctx->gc_win == 0) {
221 		/* in which case, p points to  an error code which we ignore */
222 		p = ERR_PTR(-EACCES);
223 		goto err;
224 	}
225 	/* copy the opaque wire context */
226 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
227 	if (IS_ERR(p))
228 		goto err;
229 	/* import the opaque security context */
230 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
231 	if (IS_ERR(p))
232 		goto err;
233 	q = (const void *)((const char *)p + seclen);
234 	if (unlikely(q > end || q < p)) {
235 		p = ERR_PTR(-EFAULT);
236 		goto err;
237 	}
238 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
239 	if (ret < 0) {
240 		p = ERR_PTR(ret);
241 		goto err;
242 	}
243 	return q;
244 err:
245 	dprintk("RPC:       gss_fill_context returning %ld\n", -PTR_ERR(p));
246 	return p;
247 }
248 
249 
250 struct gss_upcall_msg {
251 	atomic_t count;
252 	uid_t	uid;
253 	struct rpc_pipe_msg msg;
254 	struct list_head list;
255 	struct gss_auth *auth;
256 	struct rpc_wait_queue rpc_waitqueue;
257 	wait_queue_head_t waitqueue;
258 	struct gss_cl_ctx *ctx;
259 };
260 
261 static void
262 gss_release_msg(struct gss_upcall_msg *gss_msg)
263 {
264 	if (!atomic_dec_and_test(&gss_msg->count))
265 		return;
266 	BUG_ON(!list_empty(&gss_msg->list));
267 	if (gss_msg->ctx != NULL)
268 		gss_put_ctx(gss_msg->ctx);
269 	kfree(gss_msg);
270 }
271 
272 static struct gss_upcall_msg *
273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
274 {
275 	struct gss_upcall_msg *pos;
276 	list_for_each_entry(pos, &rpci->in_downcall, list) {
277 		if (pos->uid != uid)
278 			continue;
279 		atomic_inc(&pos->count);
280 		dprintk("RPC:       gss_find_upcall found msg %p\n", pos);
281 		return pos;
282 	}
283 	dprintk("RPC:       gss_find_upcall found nothing\n");
284 	return NULL;
285 }
286 
287 /* Try to add a upcall to the pipefs queue.
288  * If an upcall owned by our uid already exists, then we return a reference
289  * to that upcall instead of adding the new upcall.
290  */
291 static inline struct gss_upcall_msg *
292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
293 {
294 	struct inode *inode = gss_auth->dentry->d_inode;
295 	struct rpc_inode *rpci = RPC_I(inode);
296 	struct gss_upcall_msg *old;
297 
298 	spin_lock(&inode->i_lock);
299 	old = __gss_find_upcall(rpci, gss_msg->uid);
300 	if (old == NULL) {
301 		atomic_inc(&gss_msg->count);
302 		list_add(&gss_msg->list, &rpci->in_downcall);
303 	} else
304 		gss_msg = old;
305 	spin_unlock(&inode->i_lock);
306 	return gss_msg;
307 }
308 
309 static void
310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
311 {
312 	list_del_init(&gss_msg->list);
313 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
314 	wake_up_all(&gss_msg->waitqueue);
315 	atomic_dec(&gss_msg->count);
316 }
317 
318 static void
319 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
320 {
321 	struct gss_auth *gss_auth = gss_msg->auth;
322 	struct inode *inode = gss_auth->dentry->d_inode;
323 
324 	if (list_empty(&gss_msg->list))
325 		return;
326 	spin_lock(&inode->i_lock);
327 	if (!list_empty(&gss_msg->list))
328 		__gss_unhash_msg(gss_msg);
329 	spin_unlock(&inode->i_lock);
330 }
331 
332 static void
333 gss_upcall_callback(struct rpc_task *task)
334 {
335 	struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
336 			struct gss_cred, gc_base);
337 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
338 	struct inode *inode = gss_msg->auth->dentry->d_inode;
339 
340 	spin_lock(&inode->i_lock);
341 	if (gss_msg->ctx)
342 		gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx));
343 	else
344 		task->tk_status = gss_msg->msg.errno;
345 	gss_cred->gc_upcall = NULL;
346 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
347 	spin_unlock(&inode->i_lock);
348 	gss_release_msg(gss_msg);
349 }
350 
351 static inline struct gss_upcall_msg *
352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid)
353 {
354 	struct gss_upcall_msg *gss_msg;
355 
356 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
357 	if (gss_msg != NULL) {
358 		INIT_LIST_HEAD(&gss_msg->list);
359 		rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
360 		init_waitqueue_head(&gss_msg->waitqueue);
361 		atomic_set(&gss_msg->count, 1);
362 		gss_msg->msg.data = &gss_msg->uid;
363 		gss_msg->msg.len = sizeof(gss_msg->uid);
364 		gss_msg->uid = uid;
365 		gss_msg->auth = gss_auth;
366 	}
367 	return gss_msg;
368 }
369 
370 static struct gss_upcall_msg *
371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
372 {
373 	struct gss_upcall_msg *gss_new, *gss_msg;
374 
375 	gss_new = gss_alloc_msg(gss_auth, cred->cr_uid);
376 	if (gss_new == NULL)
377 		return ERR_PTR(-ENOMEM);
378 	gss_msg = gss_add_msg(gss_auth, gss_new);
379 	if (gss_msg == gss_new) {
380 		int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg);
381 		if (res) {
382 			gss_unhash_msg(gss_new);
383 			gss_msg = ERR_PTR(res);
384 		}
385 	} else
386 		gss_release_msg(gss_new);
387 	return gss_msg;
388 }
389 
390 static inline int
391 gss_refresh_upcall(struct rpc_task *task)
392 {
393 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
394 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
395 			struct gss_auth, rpc_auth);
396 	struct gss_cred *gss_cred = container_of(cred,
397 			struct gss_cred, gc_base);
398 	struct gss_upcall_msg *gss_msg;
399 	struct inode *inode = gss_auth->dentry->d_inode;
400 	int err = 0;
401 
402 	dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
403 								cred->cr_uid);
404 	gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
405 	if (IS_ERR(gss_msg)) {
406 		err = PTR_ERR(gss_msg);
407 		goto out;
408 	}
409 	spin_lock(&inode->i_lock);
410 	if (gss_cred->gc_upcall != NULL)
411 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL);
412 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
413 		task->tk_timeout = 0;
414 		gss_cred->gc_upcall = gss_msg;
415 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
416 		atomic_inc(&gss_msg->count);
417 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL);
418 	} else
419 		err = gss_msg->msg.errno;
420 	spin_unlock(&inode->i_lock);
421 	gss_release_msg(gss_msg);
422 out:
423 	dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
424 			task->tk_pid, cred->cr_uid, err);
425 	return err;
426 }
427 
428 static inline int
429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
430 {
431 	struct inode *inode = gss_auth->dentry->d_inode;
432 	struct rpc_cred *cred = &gss_cred->gc_base;
433 	struct gss_upcall_msg *gss_msg;
434 	DEFINE_WAIT(wait);
435 	int err = 0;
436 
437 	dprintk("RPC:       gss_upcall for uid %u\n", cred->cr_uid);
438 	gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
439 	if (IS_ERR(gss_msg)) {
440 		err = PTR_ERR(gss_msg);
441 		goto out;
442 	}
443 	for (;;) {
444 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
445 		spin_lock(&inode->i_lock);
446 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
447 			break;
448 		}
449 		spin_unlock(&inode->i_lock);
450 		if (signalled()) {
451 			err = -ERESTARTSYS;
452 			goto out_intr;
453 		}
454 		schedule();
455 	}
456 	if (gss_msg->ctx)
457 		gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx));
458 	else
459 		err = gss_msg->msg.errno;
460 	spin_unlock(&inode->i_lock);
461 out_intr:
462 	finish_wait(&gss_msg->waitqueue, &wait);
463 	gss_release_msg(gss_msg);
464 out:
465 	dprintk("RPC:       gss_create_upcall for uid %u result %d\n",
466 			cred->cr_uid, err);
467 	return err;
468 }
469 
470 static ssize_t
471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
472 		char __user *dst, size_t buflen)
473 {
474 	char *data = (char *)msg->data + msg->copied;
475 	ssize_t mlen = msg->len;
476 	ssize_t left;
477 
478 	if (mlen > buflen)
479 		mlen = buflen;
480 	left = copy_to_user(dst, data, mlen);
481 	if (left < 0) {
482 		msg->errno = left;
483 		return left;
484 	}
485 	mlen -= left;
486 	msg->copied += mlen;
487 	msg->errno = 0;
488 	return mlen;
489 }
490 
491 #define MSG_BUF_MAXSIZE 1024
492 
493 static ssize_t
494 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
495 {
496 	const void *p, *end;
497 	void *buf;
498 	struct rpc_clnt *clnt;
499 	struct gss_upcall_msg *gss_msg;
500 	struct inode *inode = filp->f_path.dentry->d_inode;
501 	struct gss_cl_ctx *ctx;
502 	uid_t uid;
503 	ssize_t err = -EFBIG;
504 
505 	if (mlen > MSG_BUF_MAXSIZE)
506 		goto out;
507 	err = -ENOMEM;
508 	buf = kmalloc(mlen, GFP_KERNEL);
509 	if (!buf)
510 		goto out;
511 
512 	clnt = RPC_I(inode)->private;
513 	err = -EFAULT;
514 	if (copy_from_user(buf, src, mlen))
515 		goto err;
516 
517 	end = (const void *)((char *)buf + mlen);
518 	p = simple_get_bytes(buf, end, &uid, sizeof(uid));
519 	if (IS_ERR(p)) {
520 		err = PTR_ERR(p);
521 		goto err;
522 	}
523 
524 	err = -ENOMEM;
525 	ctx = gss_alloc_context();
526 	if (ctx == NULL)
527 		goto err;
528 
529 	err = -ENOENT;
530 	/* Find a matching upcall */
531 	spin_lock(&inode->i_lock);
532 	gss_msg = __gss_find_upcall(RPC_I(inode), uid);
533 	if (gss_msg == NULL) {
534 		spin_unlock(&inode->i_lock);
535 		goto err_put_ctx;
536 	}
537 	list_del_init(&gss_msg->list);
538 	spin_unlock(&inode->i_lock);
539 
540 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
541 	if (IS_ERR(p)) {
542 		err = PTR_ERR(p);
543 		gss_msg->msg.errno = (err == -EACCES) ? -EACCES : -EAGAIN;
544 		goto err_release_msg;
545 	}
546 	gss_msg->ctx = gss_get_ctx(ctx);
547 	err = mlen;
548 
549 err_release_msg:
550 	spin_lock(&inode->i_lock);
551 	__gss_unhash_msg(gss_msg);
552 	spin_unlock(&inode->i_lock);
553 	gss_release_msg(gss_msg);
554 err_put_ctx:
555 	gss_put_ctx(ctx);
556 err:
557 	kfree(buf);
558 out:
559 	dprintk("RPC:       gss_pipe_downcall returning %Zd\n", err);
560 	return err;
561 }
562 
563 static void
564 gss_pipe_release(struct inode *inode)
565 {
566 	struct rpc_inode *rpci = RPC_I(inode);
567 	struct gss_upcall_msg *gss_msg;
568 
569 	spin_lock(&inode->i_lock);
570 	while (!list_empty(&rpci->in_downcall)) {
571 
572 		gss_msg = list_entry(rpci->in_downcall.next,
573 				struct gss_upcall_msg, list);
574 		gss_msg->msg.errno = -EPIPE;
575 		atomic_inc(&gss_msg->count);
576 		__gss_unhash_msg(gss_msg);
577 		spin_unlock(&inode->i_lock);
578 		gss_release_msg(gss_msg);
579 		spin_lock(&inode->i_lock);
580 	}
581 	spin_unlock(&inode->i_lock);
582 }
583 
584 static void
585 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
586 {
587 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
588 	static unsigned long ratelimit;
589 
590 	if (msg->errno < 0) {
591 		dprintk("RPC:       gss_pipe_destroy_msg releasing msg %p\n",
592 				gss_msg);
593 		atomic_inc(&gss_msg->count);
594 		gss_unhash_msg(gss_msg);
595 		if (msg->errno == -ETIMEDOUT) {
596 			unsigned long now = jiffies;
597 			if (time_after(now, ratelimit)) {
598 				printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
599 						    "Please check user daemon is running!\n");
600 				ratelimit = now + 15*HZ;
601 			}
602 		}
603 		gss_release_msg(gss_msg);
604 	}
605 }
606 
607 /*
608  * NOTE: we have the opportunity to use different
609  * parameters based on the input flavor (which must be a pseudoflavor)
610  */
611 static struct rpc_auth *
612 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
613 {
614 	struct gss_auth *gss_auth;
615 	struct rpc_auth * auth;
616 	int err = -ENOMEM; /* XXX? */
617 
618 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
619 
620 	if (!try_module_get(THIS_MODULE))
621 		return ERR_PTR(err);
622 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
623 		goto out_dec;
624 	gss_auth->client = clnt;
625 	err = -EINVAL;
626 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
627 	if (!gss_auth->mech) {
628 		printk(KERN_WARNING "%s: Pseudoflavor %d not found!",
629 				__FUNCTION__, flavor);
630 		goto err_free;
631 	}
632 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
633 	if (gss_auth->service == 0)
634 		goto err_put_mech;
635 	auth = &gss_auth->rpc_auth;
636 	auth->au_cslack = GSS_CRED_SLACK >> 2;
637 	auth->au_rslack = GSS_VERF_SLACK >> 2;
638 	auth->au_ops = &authgss_ops;
639 	auth->au_flavor = flavor;
640 	atomic_set(&auth->au_count, 1);
641 	kref_init(&gss_auth->kref);
642 
643 	gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name,
644 			clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
645 	if (IS_ERR(gss_auth->dentry)) {
646 		err = PTR_ERR(gss_auth->dentry);
647 		goto err_put_mech;
648 	}
649 
650 	err = rpcauth_init_credcache(auth);
651 	if (err)
652 		goto err_unlink_pipe;
653 
654 	return auth;
655 err_unlink_pipe:
656 	rpc_unlink(gss_auth->dentry);
657 err_put_mech:
658 	gss_mech_put(gss_auth->mech);
659 err_free:
660 	kfree(gss_auth);
661 out_dec:
662 	module_put(THIS_MODULE);
663 	return ERR_PTR(err);
664 }
665 
666 static void
667 gss_free(struct gss_auth *gss_auth)
668 {
669 	rpc_unlink(gss_auth->dentry);
670 	gss_auth->dentry = NULL;
671 	gss_mech_put(gss_auth->mech);
672 
673 	kfree(gss_auth);
674 	module_put(THIS_MODULE);
675 }
676 
677 static void
678 gss_free_callback(struct kref *kref)
679 {
680 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
681 
682 	gss_free(gss_auth);
683 }
684 
685 static void
686 gss_destroy(struct rpc_auth *auth)
687 {
688 	struct gss_auth *gss_auth;
689 
690 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
691 			auth, auth->au_flavor);
692 
693 	rpcauth_destroy_credcache(auth);
694 
695 	gss_auth = container_of(auth, struct gss_auth, rpc_auth);
696 	kref_put(&gss_auth->kref, gss_free_callback);
697 }
698 
699 /*
700  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
701  * to the server with the GSS control procedure field set to
702  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
703  * all RPCSEC_GSS state associated with that context.
704  */
705 static int
706 gss_destroying_context(struct rpc_cred *cred)
707 {
708 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
709 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
710 	struct rpc_task *task;
711 
712 	if (gss_cred->gc_ctx == NULL ||
713 			gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY)
714 		return 0;
715 
716 	gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
717 	cred->cr_ops = &gss_nullops;
718 
719 	/* Take a reference to ensure the cred will be destroyed either
720 	 * by the RPC call or by the put_rpccred() below */
721 	get_rpccred(cred);
722 
723 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC);
724 	if (!IS_ERR(task))
725 		rpc_put_task(task);
726 
727 	put_rpccred(cred);
728 	return 1;
729 }
730 
731 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
732  * to create a new cred or context, so they check that things have been
733  * allocated before freeing them. */
734 static void
735 gss_do_free_ctx(struct gss_cl_ctx *ctx)
736 {
737 	dprintk("RPC:       gss_free_ctx\n");
738 
739 	if (ctx->gc_gss_ctx)
740 		gss_delete_sec_context(&ctx->gc_gss_ctx);
741 
742 	kfree(ctx->gc_wire_ctx.data);
743 	kfree(ctx);
744 }
745 
746 static void
747 gss_free_ctx_callback(struct rcu_head *head)
748 {
749 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
750 	gss_do_free_ctx(ctx);
751 }
752 
753 static void
754 gss_free_ctx(struct gss_cl_ctx *ctx)
755 {
756 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
757 }
758 
759 static void
760 gss_free_cred(struct gss_cred *gss_cred)
761 {
762 	dprintk("RPC:       gss_free_cred %p\n", gss_cred);
763 	kfree(gss_cred);
764 }
765 
766 static void
767 gss_free_cred_callback(struct rcu_head *head)
768 {
769 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
770 	gss_free_cred(gss_cred);
771 }
772 
773 static void
774 gss_destroy_cred(struct rpc_cred *cred)
775 {
776 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
777 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
778 	struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
779 
780 	if (gss_destroying_context(cred))
781 		return;
782 	rcu_assign_pointer(gss_cred->gc_ctx, NULL);
783 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
784 	if (ctx)
785 		gss_put_ctx(ctx);
786 	kref_put(&gss_auth->kref, gss_free_callback);
787 }
788 
789 /*
790  * Lookup RPCSEC_GSS cred for the current process
791  */
792 static struct rpc_cred *
793 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
794 {
795 	return rpcauth_lookup_credcache(auth, acred, flags);
796 }
797 
798 static struct rpc_cred *
799 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
800 {
801 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
802 	struct gss_cred	*cred = NULL;
803 	int err = -ENOMEM;
804 
805 	dprintk("RPC:       gss_create_cred for uid %d, flavor %d\n",
806 		acred->uid, auth->au_flavor);
807 
808 	if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL)))
809 		goto out_err;
810 
811 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
812 	/*
813 	 * Note: in order to force a call to call_refresh(), we deliberately
814 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
815 	 */
816 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
817 	cred->gc_service = gss_auth->service;
818 	kref_get(&gss_auth->kref);
819 	return &cred->gc_base;
820 
821 out_err:
822 	dprintk("RPC:       gss_create_cred failed with error %d\n", err);
823 	return ERR_PTR(err);
824 }
825 
826 static int
827 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
828 {
829 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
830 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
831 	int err;
832 
833 	do {
834 		err = gss_create_upcall(gss_auth, gss_cred);
835 	} while (err == -EAGAIN);
836 	return err;
837 }
838 
839 static int
840 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
841 {
842 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
843 
844 	/*
845 	 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then
846 	 * we don't really care if the credential has expired or not,
847 	 * since the caller should be prepared to reinitialise it.
848 	 */
849 	if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
850 		goto out;
851 	/* Don't match with creds that have expired. */
852 	if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
853 		return 0;
854 out:
855 	return (rc->cr_uid == acred->uid);
856 }
857 
858 /*
859 * Marshal credentials.
860 * Maybe we should keep a cached credential for performance reasons.
861 */
862 static __be32 *
863 gss_marshal(struct rpc_task *task, __be32 *p)
864 {
865 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
866 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
867 						 gc_base);
868 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
869 	__be32		*cred_len;
870 	struct rpc_rqst *req = task->tk_rqstp;
871 	u32             maj_stat = 0;
872 	struct xdr_netobj mic;
873 	struct kvec	iov;
874 	struct xdr_buf	verf_buf;
875 
876 	dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
877 
878 	*p++ = htonl(RPC_AUTH_GSS);
879 	cred_len = p++;
880 
881 	spin_lock(&ctx->gc_seq_lock);
882 	req->rq_seqno = ctx->gc_seq++;
883 	spin_unlock(&ctx->gc_seq_lock);
884 
885 	*p++ = htonl((u32) RPC_GSS_VERSION);
886 	*p++ = htonl((u32) ctx->gc_proc);
887 	*p++ = htonl((u32) req->rq_seqno);
888 	*p++ = htonl((u32) gss_cred->gc_service);
889 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
890 	*cred_len = htonl((p - (cred_len + 1)) << 2);
891 
892 	/* We compute the checksum for the verifier over the xdr-encoded bytes
893 	 * starting with the xid and ending at the end of the credential: */
894 	iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
895 					req->rq_snd_buf.head[0].iov_base);
896 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
897 	xdr_buf_from_iov(&iov, &verf_buf);
898 
899 	/* set verifier flavor*/
900 	*p++ = htonl(RPC_AUTH_GSS);
901 
902 	mic.data = (u8 *)(p + 1);
903 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
904 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
905 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
906 	} else if (maj_stat != 0) {
907 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
908 		goto out_put_ctx;
909 	}
910 	p = xdr_encode_opaque(p, NULL, mic.len);
911 	gss_put_ctx(ctx);
912 	return p;
913 out_put_ctx:
914 	gss_put_ctx(ctx);
915 	return NULL;
916 }
917 
918 /*
919 * Refresh credentials. XXX - finish
920 */
921 static int
922 gss_refresh(struct rpc_task *task)
923 {
924 
925 	if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred))
926 		return gss_refresh_upcall(task);
927 	return 0;
928 }
929 
930 /* Dummy refresh routine: used only when destroying the context */
931 static int
932 gss_refresh_null(struct rpc_task *task)
933 {
934 	return -EACCES;
935 }
936 
937 static __be32 *
938 gss_validate(struct rpc_task *task, __be32 *p)
939 {
940 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
941 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
942 	__be32		seq;
943 	struct kvec	iov;
944 	struct xdr_buf	verf_buf;
945 	struct xdr_netobj mic;
946 	u32		flav,len;
947 	u32		maj_stat;
948 
949 	dprintk("RPC: %5u gss_validate\n", task->tk_pid);
950 
951 	flav = ntohl(*p++);
952 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
953 		goto out_bad;
954 	if (flav != RPC_AUTH_GSS)
955 		goto out_bad;
956 	seq = htonl(task->tk_rqstp->rq_seqno);
957 	iov.iov_base = &seq;
958 	iov.iov_len = sizeof(seq);
959 	xdr_buf_from_iov(&iov, &verf_buf);
960 	mic.data = (u8 *)p;
961 	mic.len = len;
962 
963 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
964 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
965 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
966 	if (maj_stat) {
967 		dprintk("RPC: %5u gss_validate: gss_verify_mic returned"
968 				"error 0x%08x\n", task->tk_pid, maj_stat);
969 		goto out_bad;
970 	}
971 	/* We leave it to unwrap to calculate au_rslack. For now we just
972 	 * calculate the length of the verifier: */
973 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
974 	gss_put_ctx(ctx);
975 	dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
976 			task->tk_pid);
977 	return p + XDR_QUADLEN(len);
978 out_bad:
979 	gss_put_ctx(ctx);
980 	dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
981 	return NULL;
982 }
983 
984 static inline int
985 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
986 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
987 {
988 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
989 	struct xdr_buf	integ_buf;
990 	__be32          *integ_len = NULL;
991 	struct xdr_netobj mic;
992 	u32		offset;
993 	__be32		*q;
994 	struct kvec	*iov;
995 	u32             maj_stat = 0;
996 	int		status = -EIO;
997 
998 	integ_len = p++;
999 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1000 	*p++ = htonl(rqstp->rq_seqno);
1001 
1002 	status = rpc_call_xdrproc(encode, rqstp, p, obj);
1003 	if (status)
1004 		return status;
1005 
1006 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1007 				offset, snd_buf->len - offset))
1008 		return status;
1009 	*integ_len = htonl(integ_buf.len);
1010 
1011 	/* guess whether we're in the head or the tail: */
1012 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1013 		iov = snd_buf->tail;
1014 	else
1015 		iov = snd_buf->head;
1016 	p = iov->iov_base + iov->iov_len;
1017 	mic.data = (u8 *)(p + 1);
1018 
1019 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1020 	status = -EIO; /* XXX? */
1021 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1022 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1023 	else if (maj_stat)
1024 		return status;
1025 	q = xdr_encode_opaque(p, NULL, mic.len);
1026 
1027 	offset = (u8 *)q - (u8 *)p;
1028 	iov->iov_len += offset;
1029 	snd_buf->len += offset;
1030 	return 0;
1031 }
1032 
1033 static void
1034 priv_release_snd_buf(struct rpc_rqst *rqstp)
1035 {
1036 	int i;
1037 
1038 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1039 		__free_page(rqstp->rq_enc_pages[i]);
1040 	kfree(rqstp->rq_enc_pages);
1041 }
1042 
1043 static int
1044 alloc_enc_pages(struct rpc_rqst *rqstp)
1045 {
1046 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1047 	int first, last, i;
1048 
1049 	if (snd_buf->page_len == 0) {
1050 		rqstp->rq_enc_pages_num = 0;
1051 		return 0;
1052 	}
1053 
1054 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1055 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1056 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1057 	rqstp->rq_enc_pages
1058 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1059 				GFP_NOFS);
1060 	if (!rqstp->rq_enc_pages)
1061 		goto out;
1062 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1063 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1064 		if (rqstp->rq_enc_pages[i] == NULL)
1065 			goto out_free;
1066 	}
1067 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1068 	return 0;
1069 out_free:
1070 	for (i--; i >= 0; i--) {
1071 		__free_page(rqstp->rq_enc_pages[i]);
1072 	}
1073 out:
1074 	return -EAGAIN;
1075 }
1076 
1077 static inline int
1078 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1079 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1080 {
1081 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1082 	u32		offset;
1083 	u32             maj_stat;
1084 	int		status;
1085 	__be32		*opaque_len;
1086 	struct page	**inpages;
1087 	int		first;
1088 	int		pad;
1089 	struct kvec	*iov;
1090 	char		*tmp;
1091 
1092 	opaque_len = p++;
1093 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1094 	*p++ = htonl(rqstp->rq_seqno);
1095 
1096 	status = rpc_call_xdrproc(encode, rqstp, p, obj);
1097 	if (status)
1098 		return status;
1099 
1100 	status = alloc_enc_pages(rqstp);
1101 	if (status)
1102 		return status;
1103 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1104 	inpages = snd_buf->pages + first;
1105 	snd_buf->pages = rqstp->rq_enc_pages;
1106 	snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1107 	/* Give the tail its own page, in case we need extra space in the
1108 	 * head when wrapping: */
1109 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1110 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1111 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1112 		snd_buf->tail[0].iov_base = tmp;
1113 	}
1114 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1115 	/* RPC_SLACK_SPACE should prevent this ever happening: */
1116 	BUG_ON(snd_buf->len > snd_buf->buflen);
1117 	status = -EIO;
1118 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1119 	 * done anyway, so it's safe to put the request on the wire: */
1120 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1121 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1122 	else if (maj_stat)
1123 		return status;
1124 
1125 	*opaque_len = htonl(snd_buf->len - offset);
1126 	/* guess whether we're in the head or the tail: */
1127 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1128 		iov = snd_buf->tail;
1129 	else
1130 		iov = snd_buf->head;
1131 	p = iov->iov_base + iov->iov_len;
1132 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1133 	memset(p, 0, pad);
1134 	iov->iov_len += pad;
1135 	snd_buf->len += pad;
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 gss_wrap_req(struct rpc_task *task,
1142 	     kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1143 {
1144 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1145 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1146 			gc_base);
1147 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1148 	int             status = -EIO;
1149 
1150 	dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1151 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1152 		/* The spec seems a little ambiguous here, but I think that not
1153 		 * wrapping context destruction requests makes the most sense.
1154 		 */
1155 		status = rpc_call_xdrproc(encode, rqstp, p, obj);
1156 		goto out;
1157 	}
1158 	switch (gss_cred->gc_service) {
1159 		case RPC_GSS_SVC_NONE:
1160 			status = rpc_call_xdrproc(encode, rqstp, p, obj);
1161 			break;
1162 		case RPC_GSS_SVC_INTEGRITY:
1163 			status = gss_wrap_req_integ(cred, ctx, encode,
1164 								rqstp, p, obj);
1165 			break;
1166 		case RPC_GSS_SVC_PRIVACY:
1167 			status = gss_wrap_req_priv(cred, ctx, encode,
1168 					rqstp, p, obj);
1169 			break;
1170 	}
1171 out:
1172 	gss_put_ctx(ctx);
1173 	dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1174 	return status;
1175 }
1176 
1177 static inline int
1178 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1179 		struct rpc_rqst *rqstp, __be32 **p)
1180 {
1181 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1182 	struct xdr_buf integ_buf;
1183 	struct xdr_netobj mic;
1184 	u32 data_offset, mic_offset;
1185 	u32 integ_len;
1186 	u32 maj_stat;
1187 	int status = -EIO;
1188 
1189 	integ_len = ntohl(*(*p)++);
1190 	if (integ_len & 3)
1191 		return status;
1192 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1193 	mic_offset = integ_len + data_offset;
1194 	if (mic_offset > rcv_buf->len)
1195 		return status;
1196 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1197 		return status;
1198 
1199 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1200 				mic_offset - data_offset))
1201 		return status;
1202 
1203 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1204 		return status;
1205 
1206 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1207 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1208 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1209 	if (maj_stat != GSS_S_COMPLETE)
1210 		return status;
1211 	return 0;
1212 }
1213 
1214 static inline int
1215 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1216 		struct rpc_rqst *rqstp, __be32 **p)
1217 {
1218 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1219 	u32 offset;
1220 	u32 opaque_len;
1221 	u32 maj_stat;
1222 	int status = -EIO;
1223 
1224 	opaque_len = ntohl(*(*p)++);
1225 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1226 	if (offset + opaque_len > rcv_buf->len)
1227 		return status;
1228 	/* remove padding: */
1229 	rcv_buf->len = offset + opaque_len;
1230 
1231 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1232 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1233 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1234 	if (maj_stat != GSS_S_COMPLETE)
1235 		return status;
1236 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1237 		return status;
1238 
1239 	return 0;
1240 }
1241 
1242 
1243 static int
1244 gss_unwrap_resp(struct rpc_task *task,
1245 		kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1246 {
1247 	struct rpc_cred *cred = task->tk_msg.rpc_cred;
1248 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1249 			gc_base);
1250 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1251 	__be32		*savedp = p;
1252 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1253 	int		savedlen = head->iov_len;
1254 	int             status = -EIO;
1255 
1256 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1257 		goto out_decode;
1258 	switch (gss_cred->gc_service) {
1259 		case RPC_GSS_SVC_NONE:
1260 			break;
1261 		case RPC_GSS_SVC_INTEGRITY:
1262 			status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1263 			if (status)
1264 				goto out;
1265 			break;
1266 		case RPC_GSS_SVC_PRIVACY:
1267 			status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1268 			if (status)
1269 				goto out;
1270 			break;
1271 	}
1272 	/* take into account extra slack for integrity and privacy cases: */
1273 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1274 						+ (savedlen - head->iov_len);
1275 out_decode:
1276 	status = rpc_call_xdrproc(decode, rqstp, p, obj);
1277 out:
1278 	gss_put_ctx(ctx);
1279 	dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1280 			status);
1281 	return status;
1282 }
1283 
1284 static const struct rpc_authops authgss_ops = {
1285 	.owner		= THIS_MODULE,
1286 	.au_flavor	= RPC_AUTH_GSS,
1287 #ifdef RPC_DEBUG
1288 	.au_name	= "RPCSEC_GSS",
1289 #endif
1290 	.create		= gss_create,
1291 	.destroy	= gss_destroy,
1292 	.lookup_cred	= gss_lookup_cred,
1293 	.crcreate	= gss_create_cred
1294 };
1295 
1296 static const struct rpc_credops gss_credops = {
1297 	.cr_name	= "AUTH_GSS",
1298 	.crdestroy	= gss_destroy_cred,
1299 	.cr_init	= gss_cred_init,
1300 	.crmatch	= gss_match,
1301 	.crmarshal	= gss_marshal,
1302 	.crrefresh	= gss_refresh,
1303 	.crvalidate	= gss_validate,
1304 	.crwrap_req	= gss_wrap_req,
1305 	.crunwrap_resp	= gss_unwrap_resp,
1306 };
1307 
1308 static const struct rpc_credops gss_nullops = {
1309 	.cr_name	= "AUTH_GSS",
1310 	.crdestroy	= gss_destroy_cred,
1311 	.crmatch	= gss_match,
1312 	.crmarshal	= gss_marshal,
1313 	.crrefresh	= gss_refresh_null,
1314 	.crvalidate	= gss_validate,
1315 	.crwrap_req	= gss_wrap_req,
1316 	.crunwrap_resp	= gss_unwrap_resp,
1317 };
1318 
1319 static struct rpc_pipe_ops gss_upcall_ops = {
1320 	.upcall		= gss_pipe_upcall,
1321 	.downcall	= gss_pipe_downcall,
1322 	.destroy_msg	= gss_pipe_destroy_msg,
1323 	.release_pipe	= gss_pipe_release,
1324 };
1325 
1326 /*
1327  * Initialize RPCSEC_GSS module
1328  */
1329 static int __init init_rpcsec_gss(void)
1330 {
1331 	int err = 0;
1332 
1333 	err = rpcauth_register(&authgss_ops);
1334 	if (err)
1335 		goto out;
1336 	err = gss_svc_init();
1337 	if (err)
1338 		goto out_unregister;
1339 	return 0;
1340 out_unregister:
1341 	rpcauth_unregister(&authgss_ops);
1342 out:
1343 	return err;
1344 }
1345 
1346 static void __exit exit_rpcsec_gss(void)
1347 {
1348 	gss_svc_shutdown();
1349 	rpcauth_unregister(&authgss_ops);
1350 }
1351 
1352 MODULE_LICENSE("GPL");
1353 module_init(init_rpcsec_gss)
1354 module_exit(exit_rpcsec_gss)
1355