1 // SPDX-License-Identifier: BSD-3-Clause 2 /* 3 * linux/net/sunrpc/auth_gss/auth_gss.c 4 * 5 * RPCSEC_GSS client authentication. 6 * 7 * Copyright (c) 2000 The Regents of the University of Michigan. 8 * All rights reserved. 9 * 10 * Dug Song <dugsong@monkey.org> 11 * Andy Adamson <andros@umich.edu> 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/sunrpc/clnt.h> 21 #include <linux/sunrpc/auth.h> 22 #include <linux/sunrpc/auth_gss.h> 23 #include <linux/sunrpc/gss_krb5.h> 24 #include <linux/sunrpc/svcauth_gss.h> 25 #include <linux/sunrpc/gss_err.h> 26 #include <linux/workqueue.h> 27 #include <linux/sunrpc/rpc_pipe_fs.h> 28 #include <linux/sunrpc/gss_api.h> 29 #include <linux/uaccess.h> 30 #include <linux/hashtable.h> 31 32 #include "../netns.h" 33 34 #include <trace/events/rpcgss.h> 35 36 static const struct rpc_authops authgss_ops; 37 38 static const struct rpc_credops gss_credops; 39 static const struct rpc_credops gss_nullops; 40 41 #define GSS_RETRY_EXPIRED 5 42 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 43 44 #define GSS_KEY_EXPIRE_TIMEO 240 45 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 46 47 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 48 # define RPCDBG_FACILITY RPCDBG_AUTH 49 #endif 50 51 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 52 /* length of a krb5 verifier (48), plus data added before arguments when 53 * using integrity (two 4-byte integers): */ 54 #define GSS_VERF_SLACK 100 55 56 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 57 static DEFINE_SPINLOCK(gss_auth_hash_lock); 58 59 struct gss_pipe { 60 struct rpc_pipe_dir_object pdo; 61 struct rpc_pipe *pipe; 62 struct rpc_clnt *clnt; 63 const char *name; 64 struct kref kref; 65 }; 66 67 struct gss_auth { 68 struct kref kref; 69 struct hlist_node hash; 70 struct rpc_auth rpc_auth; 71 struct gss_api_mech *mech; 72 enum rpc_gss_svc service; 73 struct rpc_clnt *client; 74 struct net *net; 75 /* 76 * There are two upcall pipes; dentry[1], named "gssd", is used 77 * for the new text-based upcall; dentry[0] is named after the 78 * mechanism (for example, "krb5") and exists for 79 * backwards-compatibility with older gssd's. 80 */ 81 struct gss_pipe *gss_pipe[2]; 82 const char *target_name; 83 }; 84 85 /* pipe_version >= 0 if and only if someone has a pipe open. */ 86 static DEFINE_SPINLOCK(pipe_version_lock); 87 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 88 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 89 static void gss_put_auth(struct gss_auth *gss_auth); 90 91 static void gss_free_ctx(struct gss_cl_ctx *); 92 static const struct rpc_pipe_ops gss_upcall_ops_v0; 93 static const struct rpc_pipe_ops gss_upcall_ops_v1; 94 95 static inline struct gss_cl_ctx * 96 gss_get_ctx(struct gss_cl_ctx *ctx) 97 { 98 refcount_inc(&ctx->count); 99 return ctx; 100 } 101 102 static inline void 103 gss_put_ctx(struct gss_cl_ctx *ctx) 104 { 105 if (refcount_dec_and_test(&ctx->count)) 106 gss_free_ctx(ctx); 107 } 108 109 /* gss_cred_set_ctx: 110 * called by gss_upcall_callback and gss_create_upcall in order 111 * to set the gss context. The actual exchange of an old context 112 * and a new one is protected by the pipe->lock. 113 */ 114 static void 115 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 116 { 117 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 118 119 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 120 return; 121 gss_get_ctx(ctx); 122 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 123 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 124 smp_mb__before_atomic(); 125 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 126 } 127 128 static const void * 129 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 130 { 131 const void *q = (const void *)((const char *)p + len); 132 if (unlikely(q > end || q < p)) 133 return ERR_PTR(-EFAULT); 134 memcpy(res, p, len); 135 return q; 136 } 137 138 static inline const void * 139 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 140 { 141 const void *q; 142 unsigned int len; 143 144 p = simple_get_bytes(p, end, &len, sizeof(len)); 145 if (IS_ERR(p)) 146 return p; 147 q = (const void *)((const char *)p + len); 148 if (unlikely(q > end || q < p)) 149 return ERR_PTR(-EFAULT); 150 dest->data = kmemdup(p, len, GFP_NOFS); 151 if (unlikely(dest->data == NULL)) 152 return ERR_PTR(-ENOMEM); 153 dest->len = len; 154 return q; 155 } 156 157 static struct gss_cl_ctx * 158 gss_cred_get_ctx(struct rpc_cred *cred) 159 { 160 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 161 struct gss_cl_ctx *ctx = NULL; 162 163 rcu_read_lock(); 164 ctx = rcu_dereference(gss_cred->gc_ctx); 165 if (ctx) 166 gss_get_ctx(ctx); 167 rcu_read_unlock(); 168 return ctx; 169 } 170 171 static struct gss_cl_ctx * 172 gss_alloc_context(void) 173 { 174 struct gss_cl_ctx *ctx; 175 176 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 177 if (ctx != NULL) { 178 ctx->gc_proc = RPC_GSS_PROC_DATA; 179 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 180 spin_lock_init(&ctx->gc_seq_lock); 181 refcount_set(&ctx->count,1); 182 } 183 return ctx; 184 } 185 186 #define GSSD_MIN_TIMEOUT (60 * 60) 187 static const void * 188 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 189 { 190 const void *q; 191 unsigned int seclen; 192 unsigned int timeout; 193 unsigned long now = jiffies; 194 u32 window_size; 195 int ret; 196 197 /* First unsigned int gives the remaining lifetime in seconds of the 198 * credential - e.g. the remaining TGT lifetime for Kerberos or 199 * the -t value passed to GSSD. 200 */ 201 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 202 if (IS_ERR(p)) 203 goto err; 204 if (timeout == 0) 205 timeout = GSSD_MIN_TIMEOUT; 206 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 207 /* Sequence number window. Determines the maximum number of 208 * simultaneous requests 209 */ 210 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 211 if (IS_ERR(p)) 212 goto err; 213 ctx->gc_win = window_size; 214 /* gssd signals an error by passing ctx->gc_win = 0: */ 215 if (ctx->gc_win == 0) { 216 /* 217 * in which case, p points to an error code. Anything other 218 * than -EKEYEXPIRED gets converted to -EACCES. 219 */ 220 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 221 if (!IS_ERR(p)) 222 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 223 ERR_PTR(-EACCES); 224 goto err; 225 } 226 /* copy the opaque wire context */ 227 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 228 if (IS_ERR(p)) 229 goto err; 230 /* import the opaque security context */ 231 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 232 if (IS_ERR(p)) 233 goto err; 234 q = (const void *)((const char *)p + seclen); 235 if (unlikely(q > end || q < p)) { 236 p = ERR_PTR(-EFAULT); 237 goto err; 238 } 239 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); 240 if (ret < 0) { 241 trace_rpcgss_import_ctx(ret); 242 p = ERR_PTR(ret); 243 goto err; 244 } 245 246 /* is there any trailing data? */ 247 if (q == end) { 248 p = q; 249 goto done; 250 } 251 252 /* pull in acceptor name (if there is one) */ 253 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 254 if (IS_ERR(p)) 255 goto err; 256 done: 257 trace_rpcgss_context(ctx->gc_expiry, now, timeout, 258 ctx->gc_acceptor.len, ctx->gc_acceptor.data); 259 err: 260 return p; 261 } 262 263 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small. 264 * Is user space expecting no more than UPCALL_BUF_LEN bytes? 265 * Note that there are now _two_ NI_MAXHOST sized data items 266 * being passed in this string. 267 */ 268 #define UPCALL_BUF_LEN 256 269 270 struct gss_upcall_msg { 271 refcount_t count; 272 kuid_t uid; 273 const char *service_name; 274 struct rpc_pipe_msg msg; 275 struct list_head list; 276 struct gss_auth *auth; 277 struct rpc_pipe *pipe; 278 struct rpc_wait_queue rpc_waitqueue; 279 wait_queue_head_t waitqueue; 280 struct gss_cl_ctx *ctx; 281 char databuf[UPCALL_BUF_LEN]; 282 }; 283 284 static int get_pipe_version(struct net *net) 285 { 286 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 287 int ret; 288 289 spin_lock(&pipe_version_lock); 290 if (sn->pipe_version >= 0) { 291 atomic_inc(&sn->pipe_users); 292 ret = sn->pipe_version; 293 } else 294 ret = -EAGAIN; 295 spin_unlock(&pipe_version_lock); 296 return ret; 297 } 298 299 static void put_pipe_version(struct net *net) 300 { 301 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 302 303 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 304 sn->pipe_version = -1; 305 spin_unlock(&pipe_version_lock); 306 } 307 } 308 309 static void 310 gss_release_msg(struct gss_upcall_msg *gss_msg) 311 { 312 struct net *net = gss_msg->auth->net; 313 if (!refcount_dec_and_test(&gss_msg->count)) 314 return; 315 put_pipe_version(net); 316 BUG_ON(!list_empty(&gss_msg->list)); 317 if (gss_msg->ctx != NULL) 318 gss_put_ctx(gss_msg->ctx); 319 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 320 gss_put_auth(gss_msg->auth); 321 kfree_const(gss_msg->service_name); 322 kfree(gss_msg); 323 } 324 325 static struct gss_upcall_msg * 326 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 327 { 328 struct gss_upcall_msg *pos; 329 list_for_each_entry(pos, &pipe->in_downcall, list) { 330 if (!uid_eq(pos->uid, uid)) 331 continue; 332 if (auth && pos->auth->service != auth->service) 333 continue; 334 refcount_inc(&pos->count); 335 return pos; 336 } 337 return NULL; 338 } 339 340 /* Try to add an upcall to the pipefs queue. 341 * If an upcall owned by our uid already exists, then we return a reference 342 * to that upcall instead of adding the new upcall. 343 */ 344 static inline struct gss_upcall_msg * 345 gss_add_msg(struct gss_upcall_msg *gss_msg) 346 { 347 struct rpc_pipe *pipe = gss_msg->pipe; 348 struct gss_upcall_msg *old; 349 350 spin_lock(&pipe->lock); 351 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 352 if (old == NULL) { 353 refcount_inc(&gss_msg->count); 354 list_add(&gss_msg->list, &pipe->in_downcall); 355 } else 356 gss_msg = old; 357 spin_unlock(&pipe->lock); 358 return gss_msg; 359 } 360 361 static void 362 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 363 { 364 list_del_init(&gss_msg->list); 365 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 366 wake_up_all(&gss_msg->waitqueue); 367 refcount_dec(&gss_msg->count); 368 } 369 370 static void 371 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 372 { 373 struct rpc_pipe *pipe = gss_msg->pipe; 374 375 if (list_empty(&gss_msg->list)) 376 return; 377 spin_lock(&pipe->lock); 378 if (!list_empty(&gss_msg->list)) 379 __gss_unhash_msg(gss_msg); 380 spin_unlock(&pipe->lock); 381 } 382 383 static void 384 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 385 { 386 switch (gss_msg->msg.errno) { 387 case 0: 388 if (gss_msg->ctx == NULL) 389 break; 390 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 391 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 392 break; 393 case -EKEYEXPIRED: 394 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 395 } 396 gss_cred->gc_upcall_timestamp = jiffies; 397 gss_cred->gc_upcall = NULL; 398 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 399 } 400 401 static void 402 gss_upcall_callback(struct rpc_task *task) 403 { 404 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 405 struct gss_cred, gc_base); 406 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 407 struct rpc_pipe *pipe = gss_msg->pipe; 408 409 spin_lock(&pipe->lock); 410 gss_handle_downcall_result(gss_cred, gss_msg); 411 spin_unlock(&pipe->lock); 412 task->tk_status = gss_msg->msg.errno; 413 gss_release_msg(gss_msg); 414 } 415 416 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg, 417 const struct cred *cred) 418 { 419 struct user_namespace *userns = cred->user_ns; 420 421 uid_t uid = from_kuid_munged(userns, gss_msg->uid); 422 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 423 gss_msg->msg.data = gss_msg->databuf; 424 gss_msg->msg.len = sizeof(uid); 425 426 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 427 } 428 429 static ssize_t 430 gss_v0_upcall(struct file *file, struct rpc_pipe_msg *msg, 431 char __user *buf, size_t buflen) 432 { 433 struct gss_upcall_msg *gss_msg = container_of(msg, 434 struct gss_upcall_msg, 435 msg); 436 if (msg->copied == 0) 437 gss_encode_v0_msg(gss_msg, file->f_cred); 438 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 439 } 440 441 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 442 const char *service_name, 443 const char *target_name, 444 const struct cred *cred) 445 { 446 struct user_namespace *userns = cred->user_ns; 447 struct gss_api_mech *mech = gss_msg->auth->mech; 448 char *p = gss_msg->databuf; 449 size_t buflen = sizeof(gss_msg->databuf); 450 int len; 451 452 len = scnprintf(p, buflen, "mech=%s uid=%d", mech->gm_name, 453 from_kuid_munged(userns, gss_msg->uid)); 454 buflen -= len; 455 p += len; 456 gss_msg->msg.len = len; 457 458 /* 459 * target= is a full service principal that names the remote 460 * identity that we are authenticating to. 461 */ 462 if (target_name) { 463 len = scnprintf(p, buflen, " target=%s", target_name); 464 buflen -= len; 465 p += len; 466 gss_msg->msg.len += len; 467 } 468 469 /* 470 * gssd uses service= and srchost= to select a matching key from 471 * the system's keytab to use as the source principal. 472 * 473 * service= is the service name part of the source principal, 474 * or "*" (meaning choose any). 475 * 476 * srchost= is the hostname part of the source principal. When 477 * not provided, gssd uses the local hostname. 478 */ 479 if (service_name) { 480 char *c = strchr(service_name, '@'); 481 482 if (!c) 483 len = scnprintf(p, buflen, " service=%s", 484 service_name); 485 else 486 len = scnprintf(p, buflen, 487 " service=%.*s srchost=%s", 488 (int)(c - service_name), 489 service_name, c + 1); 490 buflen -= len; 491 p += len; 492 gss_msg->msg.len += len; 493 } 494 495 if (mech->gm_upcall_enctypes) { 496 len = scnprintf(p, buflen, " enctypes=%s", 497 mech->gm_upcall_enctypes); 498 buflen -= len; 499 p += len; 500 gss_msg->msg.len += len; 501 } 502 trace_rpcgss_upcall_msg(gss_msg->databuf); 503 len = scnprintf(p, buflen, "\n"); 504 if (len == 0) 505 goto out_overflow; 506 gss_msg->msg.len += len; 507 gss_msg->msg.data = gss_msg->databuf; 508 return 0; 509 out_overflow: 510 WARN_ON_ONCE(1); 511 return -ENOMEM; 512 } 513 514 static ssize_t 515 gss_v1_upcall(struct file *file, struct rpc_pipe_msg *msg, 516 char __user *buf, size_t buflen) 517 { 518 struct gss_upcall_msg *gss_msg = container_of(msg, 519 struct gss_upcall_msg, 520 msg); 521 int err; 522 if (msg->copied == 0) { 523 err = gss_encode_v1_msg(gss_msg, 524 gss_msg->service_name, 525 gss_msg->auth->target_name, 526 file->f_cred); 527 if (err) 528 return err; 529 } 530 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 531 } 532 533 static struct gss_upcall_msg * 534 gss_alloc_msg(struct gss_auth *gss_auth, 535 kuid_t uid, const char *service_name) 536 { 537 struct gss_upcall_msg *gss_msg; 538 int vers; 539 int err = -ENOMEM; 540 541 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 542 if (gss_msg == NULL) 543 goto err; 544 vers = get_pipe_version(gss_auth->net); 545 err = vers; 546 if (err < 0) 547 goto err_free_msg; 548 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 549 INIT_LIST_HEAD(&gss_msg->list); 550 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 551 init_waitqueue_head(&gss_msg->waitqueue); 552 refcount_set(&gss_msg->count, 1); 553 gss_msg->uid = uid; 554 gss_msg->auth = gss_auth; 555 kref_get(&gss_auth->kref); 556 if (service_name) { 557 gss_msg->service_name = kstrdup_const(service_name, GFP_NOFS); 558 if (!gss_msg->service_name) { 559 err = -ENOMEM; 560 goto err_put_pipe_version; 561 } 562 } 563 return gss_msg; 564 err_put_pipe_version: 565 put_pipe_version(gss_auth->net); 566 err_free_msg: 567 kfree(gss_msg); 568 err: 569 return ERR_PTR(err); 570 } 571 572 static struct gss_upcall_msg * 573 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 574 { 575 struct gss_cred *gss_cred = container_of(cred, 576 struct gss_cred, gc_base); 577 struct gss_upcall_msg *gss_new, *gss_msg; 578 kuid_t uid = cred->cr_cred->fsuid; 579 580 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 581 if (IS_ERR(gss_new)) 582 return gss_new; 583 gss_msg = gss_add_msg(gss_new); 584 if (gss_msg == gss_new) { 585 int res; 586 refcount_inc(&gss_msg->count); 587 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 588 if (res) { 589 gss_unhash_msg(gss_new); 590 refcount_dec(&gss_msg->count); 591 gss_release_msg(gss_new); 592 gss_msg = ERR_PTR(res); 593 } 594 } else 595 gss_release_msg(gss_new); 596 return gss_msg; 597 } 598 599 static void warn_gssd(void) 600 { 601 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 602 } 603 604 static inline int 605 gss_refresh_upcall(struct rpc_task *task) 606 { 607 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 608 struct gss_auth *gss_auth = container_of(cred->cr_auth, 609 struct gss_auth, rpc_auth); 610 struct gss_cred *gss_cred = container_of(cred, 611 struct gss_cred, gc_base); 612 struct gss_upcall_msg *gss_msg; 613 struct rpc_pipe *pipe; 614 int err = 0; 615 616 gss_msg = gss_setup_upcall(gss_auth, cred); 617 if (PTR_ERR(gss_msg) == -EAGAIN) { 618 /* XXX: warning on the first, under the assumption we 619 * shouldn't normally hit this case on a refresh. */ 620 warn_gssd(); 621 rpc_sleep_on_timeout(&pipe_version_rpc_waitqueue, 622 task, NULL, jiffies + (15 * HZ)); 623 err = -EAGAIN; 624 goto out; 625 } 626 if (IS_ERR(gss_msg)) { 627 err = PTR_ERR(gss_msg); 628 goto out; 629 } 630 pipe = gss_msg->pipe; 631 spin_lock(&pipe->lock); 632 if (gss_cred->gc_upcall != NULL) 633 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 634 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 635 gss_cred->gc_upcall = gss_msg; 636 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 637 refcount_inc(&gss_msg->count); 638 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 639 } else { 640 gss_handle_downcall_result(gss_cred, gss_msg); 641 err = gss_msg->msg.errno; 642 } 643 spin_unlock(&pipe->lock); 644 gss_release_msg(gss_msg); 645 out: 646 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 647 cred->cr_cred->fsuid), err); 648 return err; 649 } 650 651 static inline int 652 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 653 { 654 struct net *net = gss_auth->net; 655 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 656 struct rpc_pipe *pipe; 657 struct rpc_cred *cred = &gss_cred->gc_base; 658 struct gss_upcall_msg *gss_msg; 659 DEFINE_WAIT(wait); 660 int err; 661 662 retry: 663 err = 0; 664 /* if gssd is down, just skip upcalling altogether */ 665 if (!gssd_running(net)) { 666 warn_gssd(); 667 err = -EACCES; 668 goto out; 669 } 670 gss_msg = gss_setup_upcall(gss_auth, cred); 671 if (PTR_ERR(gss_msg) == -EAGAIN) { 672 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 673 sn->pipe_version >= 0, 15 * HZ); 674 if (sn->pipe_version < 0) { 675 warn_gssd(); 676 err = -EACCES; 677 } 678 if (err < 0) 679 goto out; 680 goto retry; 681 } 682 if (IS_ERR(gss_msg)) { 683 err = PTR_ERR(gss_msg); 684 goto out; 685 } 686 pipe = gss_msg->pipe; 687 for (;;) { 688 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 689 spin_lock(&pipe->lock); 690 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 691 break; 692 } 693 spin_unlock(&pipe->lock); 694 if (fatal_signal_pending(current)) { 695 err = -ERESTARTSYS; 696 goto out_intr; 697 } 698 schedule(); 699 } 700 if (gss_msg->ctx) 701 gss_cred_set_ctx(cred, gss_msg->ctx); 702 else 703 err = gss_msg->msg.errno; 704 spin_unlock(&pipe->lock); 705 out_intr: 706 finish_wait(&gss_msg->waitqueue, &wait); 707 gss_release_msg(gss_msg); 708 out: 709 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 710 cred->cr_cred->fsuid), err); 711 return err; 712 } 713 714 #define MSG_BUF_MAXSIZE 1024 715 716 static ssize_t 717 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 718 { 719 const void *p, *end; 720 void *buf; 721 struct gss_upcall_msg *gss_msg; 722 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 723 struct gss_cl_ctx *ctx; 724 uid_t id; 725 kuid_t uid; 726 ssize_t err = -EFBIG; 727 728 if (mlen > MSG_BUF_MAXSIZE) 729 goto out; 730 err = -ENOMEM; 731 buf = kmalloc(mlen, GFP_NOFS); 732 if (!buf) 733 goto out; 734 735 err = -EFAULT; 736 if (copy_from_user(buf, src, mlen)) 737 goto err; 738 739 end = (const void *)((char *)buf + mlen); 740 p = simple_get_bytes(buf, end, &id, sizeof(id)); 741 if (IS_ERR(p)) { 742 err = PTR_ERR(p); 743 goto err; 744 } 745 746 uid = make_kuid(current_user_ns(), id); 747 if (!uid_valid(uid)) { 748 err = -EINVAL; 749 goto err; 750 } 751 752 err = -ENOMEM; 753 ctx = gss_alloc_context(); 754 if (ctx == NULL) 755 goto err; 756 757 err = -ENOENT; 758 /* Find a matching upcall */ 759 spin_lock(&pipe->lock); 760 gss_msg = __gss_find_upcall(pipe, uid, NULL); 761 if (gss_msg == NULL) { 762 spin_unlock(&pipe->lock); 763 goto err_put_ctx; 764 } 765 list_del_init(&gss_msg->list); 766 spin_unlock(&pipe->lock); 767 768 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 769 if (IS_ERR(p)) { 770 err = PTR_ERR(p); 771 switch (err) { 772 case -EACCES: 773 case -EKEYEXPIRED: 774 gss_msg->msg.errno = err; 775 err = mlen; 776 break; 777 case -EFAULT: 778 case -ENOMEM: 779 case -EINVAL: 780 case -ENOSYS: 781 gss_msg->msg.errno = -EAGAIN; 782 break; 783 default: 784 printk(KERN_CRIT "%s: bad return from " 785 "gss_fill_context: %zd\n", __func__, err); 786 gss_msg->msg.errno = -EIO; 787 } 788 goto err_release_msg; 789 } 790 gss_msg->ctx = gss_get_ctx(ctx); 791 err = mlen; 792 793 err_release_msg: 794 spin_lock(&pipe->lock); 795 __gss_unhash_msg(gss_msg); 796 spin_unlock(&pipe->lock); 797 gss_release_msg(gss_msg); 798 err_put_ctx: 799 gss_put_ctx(ctx); 800 err: 801 kfree(buf); 802 out: 803 return err; 804 } 805 806 static int gss_pipe_open(struct inode *inode, int new_version) 807 { 808 struct net *net = inode->i_sb->s_fs_info; 809 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 810 int ret = 0; 811 812 spin_lock(&pipe_version_lock); 813 if (sn->pipe_version < 0) { 814 /* First open of any gss pipe determines the version: */ 815 sn->pipe_version = new_version; 816 rpc_wake_up(&pipe_version_rpc_waitqueue); 817 wake_up(&pipe_version_waitqueue); 818 } else if (sn->pipe_version != new_version) { 819 /* Trying to open a pipe of a different version */ 820 ret = -EBUSY; 821 goto out; 822 } 823 atomic_inc(&sn->pipe_users); 824 out: 825 spin_unlock(&pipe_version_lock); 826 return ret; 827 828 } 829 830 static int gss_pipe_open_v0(struct inode *inode) 831 { 832 return gss_pipe_open(inode, 0); 833 } 834 835 static int gss_pipe_open_v1(struct inode *inode) 836 { 837 return gss_pipe_open(inode, 1); 838 } 839 840 static void 841 gss_pipe_release(struct inode *inode) 842 { 843 struct net *net = inode->i_sb->s_fs_info; 844 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 845 struct gss_upcall_msg *gss_msg; 846 847 restart: 848 spin_lock(&pipe->lock); 849 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 850 851 if (!list_empty(&gss_msg->msg.list)) 852 continue; 853 gss_msg->msg.errno = -EPIPE; 854 refcount_inc(&gss_msg->count); 855 __gss_unhash_msg(gss_msg); 856 spin_unlock(&pipe->lock); 857 gss_release_msg(gss_msg); 858 goto restart; 859 } 860 spin_unlock(&pipe->lock); 861 862 put_pipe_version(net); 863 } 864 865 static void 866 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 867 { 868 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 869 870 if (msg->errno < 0) { 871 refcount_inc(&gss_msg->count); 872 gss_unhash_msg(gss_msg); 873 if (msg->errno == -ETIMEDOUT) 874 warn_gssd(); 875 gss_release_msg(gss_msg); 876 } 877 gss_release_msg(gss_msg); 878 } 879 880 static void gss_pipe_dentry_destroy(struct dentry *dir, 881 struct rpc_pipe_dir_object *pdo) 882 { 883 struct gss_pipe *gss_pipe = pdo->pdo_data; 884 struct rpc_pipe *pipe = gss_pipe->pipe; 885 886 if (pipe->dentry != NULL) { 887 rpc_unlink(pipe->dentry); 888 pipe->dentry = NULL; 889 } 890 } 891 892 static int gss_pipe_dentry_create(struct dentry *dir, 893 struct rpc_pipe_dir_object *pdo) 894 { 895 struct gss_pipe *p = pdo->pdo_data; 896 struct dentry *dentry; 897 898 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 899 if (IS_ERR(dentry)) 900 return PTR_ERR(dentry); 901 p->pipe->dentry = dentry; 902 return 0; 903 } 904 905 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 906 .create = gss_pipe_dentry_create, 907 .destroy = gss_pipe_dentry_destroy, 908 }; 909 910 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 911 const char *name, 912 const struct rpc_pipe_ops *upcall_ops) 913 { 914 struct gss_pipe *p; 915 int err = -ENOMEM; 916 917 p = kmalloc(sizeof(*p), GFP_KERNEL); 918 if (p == NULL) 919 goto err; 920 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 921 if (IS_ERR(p->pipe)) { 922 err = PTR_ERR(p->pipe); 923 goto err_free_gss_pipe; 924 } 925 p->name = name; 926 p->clnt = clnt; 927 kref_init(&p->kref); 928 rpc_init_pipe_dir_object(&p->pdo, 929 &gss_pipe_dir_object_ops, 930 p); 931 return p; 932 err_free_gss_pipe: 933 kfree(p); 934 err: 935 return ERR_PTR(err); 936 } 937 938 struct gss_alloc_pdo { 939 struct rpc_clnt *clnt; 940 const char *name; 941 const struct rpc_pipe_ops *upcall_ops; 942 }; 943 944 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 945 { 946 struct gss_pipe *gss_pipe; 947 struct gss_alloc_pdo *args = data; 948 949 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 950 return 0; 951 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 952 if (strcmp(gss_pipe->name, args->name) != 0) 953 return 0; 954 if (!kref_get_unless_zero(&gss_pipe->kref)) 955 return 0; 956 return 1; 957 } 958 959 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 960 { 961 struct gss_pipe *gss_pipe; 962 struct gss_alloc_pdo *args = data; 963 964 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 965 if (!IS_ERR(gss_pipe)) 966 return &gss_pipe->pdo; 967 return NULL; 968 } 969 970 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 971 const char *name, 972 const struct rpc_pipe_ops *upcall_ops) 973 { 974 struct net *net = rpc_net_ns(clnt); 975 struct rpc_pipe_dir_object *pdo; 976 struct gss_alloc_pdo args = { 977 .clnt = clnt, 978 .name = name, 979 .upcall_ops = upcall_ops, 980 }; 981 982 pdo = rpc_find_or_alloc_pipe_dir_object(net, 983 &clnt->cl_pipedir_objects, 984 gss_pipe_match_pdo, 985 gss_pipe_alloc_pdo, 986 &args); 987 if (pdo != NULL) 988 return container_of(pdo, struct gss_pipe, pdo); 989 return ERR_PTR(-ENOMEM); 990 } 991 992 static void __gss_pipe_free(struct gss_pipe *p) 993 { 994 struct rpc_clnt *clnt = p->clnt; 995 struct net *net = rpc_net_ns(clnt); 996 997 rpc_remove_pipe_dir_object(net, 998 &clnt->cl_pipedir_objects, 999 &p->pdo); 1000 rpc_destroy_pipe_data(p->pipe); 1001 kfree(p); 1002 } 1003 1004 static void __gss_pipe_release(struct kref *kref) 1005 { 1006 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 1007 1008 __gss_pipe_free(p); 1009 } 1010 1011 static void gss_pipe_free(struct gss_pipe *p) 1012 { 1013 if (p != NULL) 1014 kref_put(&p->kref, __gss_pipe_release); 1015 } 1016 1017 /* 1018 * NOTE: we have the opportunity to use different 1019 * parameters based on the input flavor (which must be a pseudoflavor) 1020 */ 1021 static struct gss_auth * 1022 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1023 { 1024 rpc_authflavor_t flavor = args->pseudoflavor; 1025 struct gss_auth *gss_auth; 1026 struct gss_pipe *gss_pipe; 1027 struct rpc_auth * auth; 1028 int err = -ENOMEM; /* XXX? */ 1029 1030 if (!try_module_get(THIS_MODULE)) 1031 return ERR_PTR(err); 1032 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 1033 goto out_dec; 1034 INIT_HLIST_NODE(&gss_auth->hash); 1035 gss_auth->target_name = NULL; 1036 if (args->target_name) { 1037 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1038 if (gss_auth->target_name == NULL) 1039 goto err_free; 1040 } 1041 gss_auth->client = clnt; 1042 gss_auth->net = get_net(rpc_net_ns(clnt)); 1043 err = -EINVAL; 1044 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1045 if (!gss_auth->mech) 1046 goto err_put_net; 1047 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1048 if (gss_auth->service == 0) 1049 goto err_put_mech; 1050 if (!gssd_running(gss_auth->net)) 1051 goto err_put_mech; 1052 auth = &gss_auth->rpc_auth; 1053 auth->au_cslack = GSS_CRED_SLACK >> 2; 1054 auth->au_rslack = GSS_KRB5_MAX_SLACK_NEEDED >> 2; 1055 auth->au_verfsize = GSS_VERF_SLACK >> 2; 1056 auth->au_ralign = GSS_VERF_SLACK >> 2; 1057 auth->au_flags = 0; 1058 auth->au_ops = &authgss_ops; 1059 auth->au_flavor = flavor; 1060 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1061 auth->au_flags |= RPCAUTH_AUTH_DATATOUCH; 1062 refcount_set(&auth->au_count, 1); 1063 kref_init(&gss_auth->kref); 1064 1065 err = rpcauth_init_credcache(auth); 1066 if (err) 1067 goto err_put_mech; 1068 /* 1069 * Note: if we created the old pipe first, then someone who 1070 * examined the directory at the right moment might conclude 1071 * that we supported only the old pipe. So we instead create 1072 * the new pipe first. 1073 */ 1074 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1075 if (IS_ERR(gss_pipe)) { 1076 err = PTR_ERR(gss_pipe); 1077 goto err_destroy_credcache; 1078 } 1079 gss_auth->gss_pipe[1] = gss_pipe; 1080 1081 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1082 &gss_upcall_ops_v0); 1083 if (IS_ERR(gss_pipe)) { 1084 err = PTR_ERR(gss_pipe); 1085 goto err_destroy_pipe_1; 1086 } 1087 gss_auth->gss_pipe[0] = gss_pipe; 1088 1089 return gss_auth; 1090 err_destroy_pipe_1: 1091 gss_pipe_free(gss_auth->gss_pipe[1]); 1092 err_destroy_credcache: 1093 rpcauth_destroy_credcache(auth); 1094 err_put_mech: 1095 gss_mech_put(gss_auth->mech); 1096 err_put_net: 1097 put_net(gss_auth->net); 1098 err_free: 1099 kfree(gss_auth->target_name); 1100 kfree(gss_auth); 1101 out_dec: 1102 module_put(THIS_MODULE); 1103 trace_rpcgss_createauth(flavor, err); 1104 return ERR_PTR(err); 1105 } 1106 1107 static void 1108 gss_free(struct gss_auth *gss_auth) 1109 { 1110 gss_pipe_free(gss_auth->gss_pipe[0]); 1111 gss_pipe_free(gss_auth->gss_pipe[1]); 1112 gss_mech_put(gss_auth->mech); 1113 put_net(gss_auth->net); 1114 kfree(gss_auth->target_name); 1115 1116 kfree(gss_auth); 1117 module_put(THIS_MODULE); 1118 } 1119 1120 static void 1121 gss_free_callback(struct kref *kref) 1122 { 1123 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1124 1125 gss_free(gss_auth); 1126 } 1127 1128 static void 1129 gss_put_auth(struct gss_auth *gss_auth) 1130 { 1131 kref_put(&gss_auth->kref, gss_free_callback); 1132 } 1133 1134 static void 1135 gss_destroy(struct rpc_auth *auth) 1136 { 1137 struct gss_auth *gss_auth = container_of(auth, 1138 struct gss_auth, rpc_auth); 1139 1140 if (hash_hashed(&gss_auth->hash)) { 1141 spin_lock(&gss_auth_hash_lock); 1142 hash_del(&gss_auth->hash); 1143 spin_unlock(&gss_auth_hash_lock); 1144 } 1145 1146 gss_pipe_free(gss_auth->gss_pipe[0]); 1147 gss_auth->gss_pipe[0] = NULL; 1148 gss_pipe_free(gss_auth->gss_pipe[1]); 1149 gss_auth->gss_pipe[1] = NULL; 1150 rpcauth_destroy_credcache(auth); 1151 1152 gss_put_auth(gss_auth); 1153 } 1154 1155 /* 1156 * Auths may be shared between rpc clients that were cloned from a 1157 * common client with the same xprt, if they also share the flavor and 1158 * target_name. 1159 * 1160 * The auth is looked up from the oldest parent sharing the same 1161 * cl_xprt, and the auth itself references only that common parent 1162 * (which is guaranteed to last as long as any of its descendants). 1163 */ 1164 static struct gss_auth * 1165 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args, 1166 struct rpc_clnt *clnt, 1167 struct gss_auth *new) 1168 { 1169 struct gss_auth *gss_auth; 1170 unsigned long hashval = (unsigned long)clnt; 1171 1172 spin_lock(&gss_auth_hash_lock); 1173 hash_for_each_possible(gss_auth_hash_table, 1174 gss_auth, 1175 hash, 1176 hashval) { 1177 if (gss_auth->client != clnt) 1178 continue; 1179 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1180 continue; 1181 if (gss_auth->target_name != args->target_name) { 1182 if (gss_auth->target_name == NULL) 1183 continue; 1184 if (args->target_name == NULL) 1185 continue; 1186 if (strcmp(gss_auth->target_name, args->target_name)) 1187 continue; 1188 } 1189 if (!refcount_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1190 continue; 1191 goto out; 1192 } 1193 if (new) 1194 hash_add(gss_auth_hash_table, &new->hash, hashval); 1195 gss_auth = new; 1196 out: 1197 spin_unlock(&gss_auth_hash_lock); 1198 return gss_auth; 1199 } 1200 1201 static struct gss_auth * 1202 gss_create_hashed(const struct rpc_auth_create_args *args, 1203 struct rpc_clnt *clnt) 1204 { 1205 struct gss_auth *gss_auth; 1206 struct gss_auth *new; 1207 1208 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1209 if (gss_auth != NULL) 1210 goto out; 1211 new = gss_create_new(args, clnt); 1212 if (IS_ERR(new)) 1213 return new; 1214 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1215 if (gss_auth != new) 1216 gss_destroy(&new->rpc_auth); 1217 out: 1218 return gss_auth; 1219 } 1220 1221 static struct rpc_auth * 1222 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1223 { 1224 struct gss_auth *gss_auth; 1225 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1226 1227 while (clnt != clnt->cl_parent) { 1228 struct rpc_clnt *parent = clnt->cl_parent; 1229 /* Find the original parent for this transport */ 1230 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1231 break; 1232 clnt = parent; 1233 } 1234 1235 gss_auth = gss_create_hashed(args, clnt); 1236 if (IS_ERR(gss_auth)) 1237 return ERR_CAST(gss_auth); 1238 return &gss_auth->rpc_auth; 1239 } 1240 1241 static struct gss_cred * 1242 gss_dup_cred(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 1243 { 1244 struct gss_cred *new; 1245 1246 /* Make a copy of the cred so that we can reference count it */ 1247 new = kzalloc(sizeof(*gss_cred), GFP_NOFS); 1248 if (new) { 1249 struct auth_cred acred = { 1250 .cred = gss_cred->gc_base.cr_cred, 1251 }; 1252 struct gss_cl_ctx *ctx = 1253 rcu_dereference_protected(gss_cred->gc_ctx, 1); 1254 1255 rpcauth_init_cred(&new->gc_base, &acred, 1256 &gss_auth->rpc_auth, 1257 &gss_nullops); 1258 new->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE; 1259 new->gc_service = gss_cred->gc_service; 1260 new->gc_principal = gss_cred->gc_principal; 1261 kref_get(&gss_auth->kref); 1262 rcu_assign_pointer(new->gc_ctx, ctx); 1263 gss_get_ctx(ctx); 1264 } 1265 return new; 1266 } 1267 1268 /* 1269 * gss_send_destroy_context will cause the RPCSEC_GSS to send a NULL RPC call 1270 * to the server with the GSS control procedure field set to 1271 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1272 * all RPCSEC_GSS state associated with that context. 1273 */ 1274 static void 1275 gss_send_destroy_context(struct rpc_cred *cred) 1276 { 1277 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1278 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1279 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1280 struct gss_cred *new; 1281 struct rpc_task *task; 1282 1283 new = gss_dup_cred(gss_auth, gss_cred); 1284 if (new) { 1285 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1286 1287 task = rpc_call_null(gss_auth->client, &new->gc_base, 1288 RPC_TASK_ASYNC|RPC_TASK_SOFT); 1289 if (!IS_ERR(task)) 1290 rpc_put_task(task); 1291 1292 put_rpccred(&new->gc_base); 1293 } 1294 } 1295 1296 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1297 * to create a new cred or context, so they check that things have been 1298 * allocated before freeing them. */ 1299 static void 1300 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1301 { 1302 gss_delete_sec_context(&ctx->gc_gss_ctx); 1303 kfree(ctx->gc_wire_ctx.data); 1304 kfree(ctx->gc_acceptor.data); 1305 kfree(ctx); 1306 } 1307 1308 static void 1309 gss_free_ctx_callback(struct rcu_head *head) 1310 { 1311 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1312 gss_do_free_ctx(ctx); 1313 } 1314 1315 static void 1316 gss_free_ctx(struct gss_cl_ctx *ctx) 1317 { 1318 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1319 } 1320 1321 static void 1322 gss_free_cred(struct gss_cred *gss_cred) 1323 { 1324 kfree(gss_cred); 1325 } 1326 1327 static void 1328 gss_free_cred_callback(struct rcu_head *head) 1329 { 1330 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1331 gss_free_cred(gss_cred); 1332 } 1333 1334 static void 1335 gss_destroy_nullcred(struct rpc_cred *cred) 1336 { 1337 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1338 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1339 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1340 1341 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1342 put_cred(cred->cr_cred); 1343 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1344 if (ctx) 1345 gss_put_ctx(ctx); 1346 gss_put_auth(gss_auth); 1347 } 1348 1349 static void 1350 gss_destroy_cred(struct rpc_cred *cred) 1351 { 1352 1353 if (test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) != 0) 1354 gss_send_destroy_context(cred); 1355 gss_destroy_nullcred(cred); 1356 } 1357 1358 static int 1359 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1360 { 1361 return hash_64(from_kuid(&init_user_ns, acred->cred->fsuid), hashbits); 1362 } 1363 1364 /* 1365 * Lookup RPCSEC_GSS cred for the current process 1366 */ 1367 static struct rpc_cred * 1368 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1369 { 1370 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS); 1371 } 1372 1373 static struct rpc_cred * 1374 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1375 { 1376 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1377 struct gss_cred *cred = NULL; 1378 int err = -ENOMEM; 1379 1380 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1381 goto out_err; 1382 1383 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1384 /* 1385 * Note: in order to force a call to call_refresh(), we deliberately 1386 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1387 */ 1388 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1389 cred->gc_service = gss_auth->service; 1390 cred->gc_principal = acred->principal; 1391 kref_get(&gss_auth->kref); 1392 return &cred->gc_base; 1393 1394 out_err: 1395 return ERR_PTR(err); 1396 } 1397 1398 static int 1399 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1400 { 1401 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1402 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1403 int err; 1404 1405 do { 1406 err = gss_create_upcall(gss_auth, gss_cred); 1407 } while (err == -EAGAIN); 1408 return err; 1409 } 1410 1411 static char * 1412 gss_stringify_acceptor(struct rpc_cred *cred) 1413 { 1414 char *string = NULL; 1415 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1416 struct gss_cl_ctx *ctx; 1417 unsigned int len; 1418 struct xdr_netobj *acceptor; 1419 1420 rcu_read_lock(); 1421 ctx = rcu_dereference(gss_cred->gc_ctx); 1422 if (!ctx) 1423 goto out; 1424 1425 len = ctx->gc_acceptor.len; 1426 rcu_read_unlock(); 1427 1428 /* no point if there's no string */ 1429 if (!len) 1430 return NULL; 1431 realloc: 1432 string = kmalloc(len + 1, GFP_KERNEL); 1433 if (!string) 1434 return NULL; 1435 1436 rcu_read_lock(); 1437 ctx = rcu_dereference(gss_cred->gc_ctx); 1438 1439 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1440 if (!ctx || !ctx->gc_acceptor.len) { 1441 kfree(string); 1442 string = NULL; 1443 goto out; 1444 } 1445 1446 acceptor = &ctx->gc_acceptor; 1447 1448 /* 1449 * Did we find a new acceptor that's longer than the original? Allocate 1450 * a longer buffer and try again. 1451 */ 1452 if (len < acceptor->len) { 1453 len = acceptor->len; 1454 rcu_read_unlock(); 1455 kfree(string); 1456 goto realloc; 1457 } 1458 1459 memcpy(string, acceptor->data, acceptor->len); 1460 string[acceptor->len] = '\0'; 1461 out: 1462 rcu_read_unlock(); 1463 return string; 1464 } 1465 1466 /* 1467 * Returns -EACCES if GSS context is NULL or will expire within the 1468 * timeout (miliseconds) 1469 */ 1470 static int 1471 gss_key_timeout(struct rpc_cred *rc) 1472 { 1473 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1474 struct gss_cl_ctx *ctx; 1475 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1476 int ret = 0; 1477 1478 rcu_read_lock(); 1479 ctx = rcu_dereference(gss_cred->gc_ctx); 1480 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1481 ret = -EACCES; 1482 rcu_read_unlock(); 1483 1484 return ret; 1485 } 1486 1487 static int 1488 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1489 { 1490 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1491 struct gss_cl_ctx *ctx; 1492 int ret; 1493 1494 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1495 goto out; 1496 /* Don't match with creds that have expired. */ 1497 rcu_read_lock(); 1498 ctx = rcu_dereference(gss_cred->gc_ctx); 1499 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1500 rcu_read_unlock(); 1501 return 0; 1502 } 1503 rcu_read_unlock(); 1504 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1505 return 0; 1506 out: 1507 if (acred->principal != NULL) { 1508 if (gss_cred->gc_principal == NULL) 1509 return 0; 1510 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1511 } else { 1512 if (gss_cred->gc_principal != NULL) 1513 return 0; 1514 ret = uid_eq(rc->cr_cred->fsuid, acred->cred->fsuid); 1515 } 1516 return ret; 1517 } 1518 1519 /* 1520 * Marshal credentials. 1521 * 1522 * The expensive part is computing the verifier. We can't cache a 1523 * pre-computed version of the verifier because the seqno, which 1524 * is different every time, is included in the MIC. 1525 */ 1526 static int gss_marshal(struct rpc_task *task, struct xdr_stream *xdr) 1527 { 1528 struct rpc_rqst *req = task->tk_rqstp; 1529 struct rpc_cred *cred = req->rq_cred; 1530 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1531 gc_base); 1532 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1533 __be32 *p, *cred_len; 1534 u32 maj_stat = 0; 1535 struct xdr_netobj mic; 1536 struct kvec iov; 1537 struct xdr_buf verf_buf; 1538 int status; 1539 1540 /* Credential */ 1541 1542 p = xdr_reserve_space(xdr, 7 * sizeof(*p) + 1543 ctx->gc_wire_ctx.len); 1544 if (!p) 1545 goto marshal_failed; 1546 *p++ = rpc_auth_gss; 1547 cred_len = p++; 1548 1549 spin_lock(&ctx->gc_seq_lock); 1550 req->rq_seqno = (ctx->gc_seq < MAXSEQ) ? ctx->gc_seq++ : MAXSEQ; 1551 spin_unlock(&ctx->gc_seq_lock); 1552 if (req->rq_seqno == MAXSEQ) 1553 goto expired; 1554 trace_rpcgss_seqno(task); 1555 1556 *p++ = cpu_to_be32(RPC_GSS_VERSION); 1557 *p++ = cpu_to_be32(ctx->gc_proc); 1558 *p++ = cpu_to_be32(req->rq_seqno); 1559 *p++ = cpu_to_be32(gss_cred->gc_service); 1560 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1561 *cred_len = cpu_to_be32((p - (cred_len + 1)) << 2); 1562 1563 /* Verifier */ 1564 1565 /* We compute the checksum for the verifier over the xdr-encoded bytes 1566 * starting with the xid and ending at the end of the credential: */ 1567 iov.iov_base = req->rq_snd_buf.head[0].iov_base; 1568 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1569 xdr_buf_from_iov(&iov, &verf_buf); 1570 1571 p = xdr_reserve_space(xdr, sizeof(*p)); 1572 if (!p) 1573 goto marshal_failed; 1574 *p++ = rpc_auth_gss; 1575 mic.data = (u8 *)(p + 1); 1576 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1577 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1578 goto expired; 1579 else if (maj_stat != 0) 1580 goto bad_mic; 1581 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1582 goto marshal_failed; 1583 status = 0; 1584 out: 1585 gss_put_ctx(ctx); 1586 return status; 1587 expired: 1588 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1589 status = -EKEYEXPIRED; 1590 goto out; 1591 marshal_failed: 1592 status = -EMSGSIZE; 1593 goto out; 1594 bad_mic: 1595 trace_rpcgss_get_mic(task, maj_stat); 1596 status = -EIO; 1597 goto out; 1598 } 1599 1600 static int gss_renew_cred(struct rpc_task *task) 1601 { 1602 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1603 struct gss_cred *gss_cred = container_of(oldcred, 1604 struct gss_cred, 1605 gc_base); 1606 struct rpc_auth *auth = oldcred->cr_auth; 1607 struct auth_cred acred = { 1608 .cred = oldcred->cr_cred, 1609 .principal = gss_cred->gc_principal, 1610 }; 1611 struct rpc_cred *new; 1612 1613 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1614 if (IS_ERR(new)) 1615 return PTR_ERR(new); 1616 task->tk_rqstp->rq_cred = new; 1617 put_rpccred(oldcred); 1618 return 0; 1619 } 1620 1621 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1622 { 1623 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1624 unsigned long now = jiffies; 1625 unsigned long begin, expire; 1626 struct gss_cred *gss_cred; 1627 1628 gss_cred = container_of(cred, struct gss_cred, gc_base); 1629 begin = gss_cred->gc_upcall_timestamp; 1630 expire = begin + gss_expired_cred_retry_delay * HZ; 1631 1632 if (time_in_range_open(now, begin, expire)) 1633 return 1; 1634 } 1635 return 0; 1636 } 1637 1638 /* 1639 * Refresh credentials. XXX - finish 1640 */ 1641 static int 1642 gss_refresh(struct rpc_task *task) 1643 { 1644 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1645 int ret = 0; 1646 1647 if (gss_cred_is_negative_entry(cred)) 1648 return -EKEYEXPIRED; 1649 1650 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1651 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1652 ret = gss_renew_cred(task); 1653 if (ret < 0) 1654 goto out; 1655 cred = task->tk_rqstp->rq_cred; 1656 } 1657 1658 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1659 ret = gss_refresh_upcall(task); 1660 out: 1661 return ret; 1662 } 1663 1664 /* Dummy refresh routine: used only when destroying the context */ 1665 static int 1666 gss_refresh_null(struct rpc_task *task) 1667 { 1668 return 0; 1669 } 1670 1671 static int 1672 gss_validate(struct rpc_task *task, struct xdr_stream *xdr) 1673 { 1674 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1675 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1676 __be32 *p, *seq = NULL; 1677 struct kvec iov; 1678 struct xdr_buf verf_buf; 1679 struct xdr_netobj mic; 1680 u32 len, maj_stat; 1681 int status; 1682 1683 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1684 if (!p) 1685 goto validate_failed; 1686 if (*p++ != rpc_auth_gss) 1687 goto validate_failed; 1688 len = be32_to_cpup(p); 1689 if (len > RPC_MAX_AUTH_SIZE) 1690 goto validate_failed; 1691 p = xdr_inline_decode(xdr, len); 1692 if (!p) 1693 goto validate_failed; 1694 1695 seq = kmalloc(4, GFP_NOFS); 1696 if (!seq) 1697 goto validate_failed; 1698 *seq = cpu_to_be32(task->tk_rqstp->rq_seqno); 1699 iov.iov_base = seq; 1700 iov.iov_len = 4; 1701 xdr_buf_from_iov(&iov, &verf_buf); 1702 mic.data = (u8 *)p; 1703 mic.len = len; 1704 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1705 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1706 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1707 if (maj_stat) 1708 goto bad_mic; 1709 1710 /* We leave it to unwrap to calculate au_rslack. For now we just 1711 * calculate the length of the verifier: */ 1712 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1713 status = 0; 1714 out: 1715 gss_put_ctx(ctx); 1716 kfree(seq); 1717 return status; 1718 1719 validate_failed: 1720 status = -EIO; 1721 goto out; 1722 bad_mic: 1723 trace_rpcgss_verify_mic(task, maj_stat); 1724 status = -EACCES; 1725 goto out; 1726 } 1727 1728 static noinline_for_stack int 1729 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1730 struct rpc_task *task, struct xdr_stream *xdr) 1731 { 1732 struct rpc_rqst *rqstp = task->tk_rqstp; 1733 struct xdr_buf integ_buf, *snd_buf = &rqstp->rq_snd_buf; 1734 struct xdr_netobj mic; 1735 __be32 *p, *integ_len; 1736 u32 offset, maj_stat; 1737 1738 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1739 if (!p) 1740 goto wrap_failed; 1741 integ_len = p++; 1742 *p = cpu_to_be32(rqstp->rq_seqno); 1743 1744 if (rpcauth_wrap_req_encode(task, xdr)) 1745 goto wrap_failed; 1746 1747 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1748 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1749 offset, snd_buf->len - offset)) 1750 goto wrap_failed; 1751 *integ_len = cpu_to_be32(integ_buf.len); 1752 1753 p = xdr_reserve_space(xdr, 0); 1754 if (!p) 1755 goto wrap_failed; 1756 mic.data = (u8 *)(p + 1); 1757 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1758 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1759 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1760 else if (maj_stat) 1761 goto bad_mic; 1762 /* Check that the trailing MIC fit in the buffer, after the fact */ 1763 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1764 goto wrap_failed; 1765 return 0; 1766 wrap_failed: 1767 return -EMSGSIZE; 1768 bad_mic: 1769 trace_rpcgss_get_mic(task, maj_stat); 1770 return -EIO; 1771 } 1772 1773 static void 1774 priv_release_snd_buf(struct rpc_rqst *rqstp) 1775 { 1776 int i; 1777 1778 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1779 __free_page(rqstp->rq_enc_pages[i]); 1780 kfree(rqstp->rq_enc_pages); 1781 rqstp->rq_release_snd_buf = NULL; 1782 } 1783 1784 static int 1785 alloc_enc_pages(struct rpc_rqst *rqstp) 1786 { 1787 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1788 int first, last, i; 1789 1790 if (rqstp->rq_release_snd_buf) 1791 rqstp->rq_release_snd_buf(rqstp); 1792 1793 if (snd_buf->page_len == 0) { 1794 rqstp->rq_enc_pages_num = 0; 1795 return 0; 1796 } 1797 1798 first = snd_buf->page_base >> PAGE_SHIFT; 1799 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1800 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1801 rqstp->rq_enc_pages 1802 = kmalloc_array(rqstp->rq_enc_pages_num, 1803 sizeof(struct page *), 1804 GFP_NOFS); 1805 if (!rqstp->rq_enc_pages) 1806 goto out; 1807 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1808 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1809 if (rqstp->rq_enc_pages[i] == NULL) 1810 goto out_free; 1811 } 1812 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1813 return 0; 1814 out_free: 1815 rqstp->rq_enc_pages_num = i; 1816 priv_release_snd_buf(rqstp); 1817 out: 1818 return -EAGAIN; 1819 } 1820 1821 static noinline_for_stack int 1822 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1823 struct rpc_task *task, struct xdr_stream *xdr) 1824 { 1825 struct rpc_rqst *rqstp = task->tk_rqstp; 1826 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1827 u32 pad, offset, maj_stat; 1828 int status; 1829 __be32 *p, *opaque_len; 1830 struct page **inpages; 1831 int first; 1832 struct kvec *iov; 1833 1834 status = -EIO; 1835 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1836 if (!p) 1837 goto wrap_failed; 1838 opaque_len = p++; 1839 *p = cpu_to_be32(rqstp->rq_seqno); 1840 1841 if (rpcauth_wrap_req_encode(task, xdr)) 1842 goto wrap_failed; 1843 1844 status = alloc_enc_pages(rqstp); 1845 if (unlikely(status)) 1846 goto wrap_failed; 1847 first = snd_buf->page_base >> PAGE_SHIFT; 1848 inpages = snd_buf->pages + first; 1849 snd_buf->pages = rqstp->rq_enc_pages; 1850 snd_buf->page_base -= first << PAGE_SHIFT; 1851 /* 1852 * Move the tail into its own page, in case gss_wrap needs 1853 * more space in the head when wrapping. 1854 * 1855 * Still... Why can't gss_wrap just slide the tail down? 1856 */ 1857 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1858 char *tmp; 1859 1860 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1861 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1862 snd_buf->tail[0].iov_base = tmp; 1863 } 1864 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1865 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1866 /* slack space should prevent this ever happening: */ 1867 if (unlikely(snd_buf->len > snd_buf->buflen)) 1868 goto wrap_failed; 1869 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1870 * done anyway, so it's safe to put the request on the wire: */ 1871 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1872 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1873 else if (maj_stat) 1874 goto bad_wrap; 1875 1876 *opaque_len = cpu_to_be32(snd_buf->len - offset); 1877 /* guess whether the pad goes into the head or the tail: */ 1878 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1879 iov = snd_buf->tail; 1880 else 1881 iov = snd_buf->head; 1882 p = iov->iov_base + iov->iov_len; 1883 pad = xdr_pad_size(snd_buf->len - offset); 1884 memset(p, 0, pad); 1885 iov->iov_len += pad; 1886 snd_buf->len += pad; 1887 1888 return 0; 1889 wrap_failed: 1890 return status; 1891 bad_wrap: 1892 trace_rpcgss_wrap(task, maj_stat); 1893 return -EIO; 1894 } 1895 1896 static int gss_wrap_req(struct rpc_task *task, struct xdr_stream *xdr) 1897 { 1898 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1899 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1900 gc_base); 1901 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1902 int status; 1903 1904 status = -EIO; 1905 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1906 /* The spec seems a little ambiguous here, but I think that not 1907 * wrapping context destruction requests makes the most sense. 1908 */ 1909 status = rpcauth_wrap_req_encode(task, xdr); 1910 goto out; 1911 } 1912 switch (gss_cred->gc_service) { 1913 case RPC_GSS_SVC_NONE: 1914 status = rpcauth_wrap_req_encode(task, xdr); 1915 break; 1916 case RPC_GSS_SVC_INTEGRITY: 1917 status = gss_wrap_req_integ(cred, ctx, task, xdr); 1918 break; 1919 case RPC_GSS_SVC_PRIVACY: 1920 status = gss_wrap_req_priv(cred, ctx, task, xdr); 1921 break; 1922 default: 1923 status = -EIO; 1924 } 1925 out: 1926 gss_put_ctx(ctx); 1927 return status; 1928 } 1929 1930 static int 1931 gss_unwrap_resp_auth(struct rpc_cred *cred) 1932 { 1933 struct rpc_auth *auth = cred->cr_auth; 1934 1935 auth->au_rslack = auth->au_verfsize; 1936 auth->au_ralign = auth->au_verfsize; 1937 return 0; 1938 } 1939 1940 /* 1941 * RFC 2203, Section 5.3.2.2 1942 * 1943 * struct rpc_gss_integ_data { 1944 * opaque databody_integ<>; 1945 * opaque checksum<>; 1946 * }; 1947 * 1948 * struct rpc_gss_data_t { 1949 * unsigned int seq_num; 1950 * proc_req_arg_t arg; 1951 * }; 1952 */ 1953 static noinline_for_stack int 1954 gss_unwrap_resp_integ(struct rpc_task *task, struct rpc_cred *cred, 1955 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 1956 struct xdr_stream *xdr) 1957 { 1958 struct xdr_buf gss_data, *rcv_buf = &rqstp->rq_rcv_buf; 1959 struct rpc_auth *auth = cred->cr_auth; 1960 u32 len, offset, seqno, maj_stat; 1961 struct xdr_netobj mic; 1962 int ret; 1963 1964 ret = -EIO; 1965 mic.data = NULL; 1966 1967 /* opaque databody_integ<>; */ 1968 if (xdr_stream_decode_u32(xdr, &len)) 1969 goto unwrap_failed; 1970 if (len & 3) 1971 goto unwrap_failed; 1972 offset = rcv_buf->len - xdr_stream_remaining(xdr); 1973 if (xdr_stream_decode_u32(xdr, &seqno)) 1974 goto unwrap_failed; 1975 if (seqno != rqstp->rq_seqno) 1976 goto bad_seqno; 1977 if (xdr_buf_subsegment(rcv_buf, &gss_data, offset, len)) 1978 goto unwrap_failed; 1979 1980 /* 1981 * The xdr_stream now points to the beginning of the 1982 * upper layer payload, to be passed below to 1983 * rpcauth_unwrap_resp_decode(). The checksum, which 1984 * follows the upper layer payload in @rcv_buf, is 1985 * located and parsed without updating the xdr_stream. 1986 */ 1987 1988 /* opaque checksum<>; */ 1989 offset += len; 1990 if (xdr_decode_word(rcv_buf, offset, &len)) 1991 goto unwrap_failed; 1992 offset += sizeof(__be32); 1993 if (offset + len > rcv_buf->len) 1994 goto unwrap_failed; 1995 mic.len = len; 1996 mic.data = kmalloc(len, GFP_NOFS); 1997 if (!mic.data) 1998 goto unwrap_failed; 1999 if (read_bytes_from_xdr_buf(rcv_buf, offset, mic.data, mic.len)) 2000 goto unwrap_failed; 2001 2002 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &gss_data, &mic); 2003 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2004 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2005 if (maj_stat != GSS_S_COMPLETE) 2006 goto bad_mic; 2007 2008 auth->au_rslack = auth->au_verfsize + 2 + 1 + XDR_QUADLEN(mic.len); 2009 auth->au_ralign = auth->au_verfsize + 2; 2010 ret = 0; 2011 2012 out: 2013 kfree(mic.data); 2014 return ret; 2015 2016 unwrap_failed: 2017 trace_rpcgss_unwrap_failed(task); 2018 goto out; 2019 bad_seqno: 2020 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, seqno); 2021 goto out; 2022 bad_mic: 2023 trace_rpcgss_verify_mic(task, maj_stat); 2024 goto out; 2025 } 2026 2027 static noinline_for_stack int 2028 gss_unwrap_resp_priv(struct rpc_task *task, struct rpc_cred *cred, 2029 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 2030 struct xdr_stream *xdr) 2031 { 2032 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 2033 struct kvec *head = rqstp->rq_rcv_buf.head; 2034 struct rpc_auth *auth = cred->cr_auth; 2035 u32 offset, opaque_len, maj_stat; 2036 __be32 *p; 2037 2038 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 2039 if (unlikely(!p)) 2040 goto unwrap_failed; 2041 opaque_len = be32_to_cpup(p++); 2042 offset = (u8 *)(p) - (u8 *)head->iov_base; 2043 if (offset + opaque_len > rcv_buf->len) 2044 goto unwrap_failed; 2045 2046 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, 2047 offset + opaque_len, rcv_buf); 2048 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2049 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2050 if (maj_stat != GSS_S_COMPLETE) 2051 goto bad_unwrap; 2052 /* gss_unwrap decrypted the sequence number */ 2053 if (be32_to_cpup(p++) != rqstp->rq_seqno) 2054 goto bad_seqno; 2055 2056 /* gss_unwrap redacts the opaque blob from the head iovec. 2057 * rcv_buf has changed, thus the stream needs to be reset. 2058 */ 2059 xdr_init_decode(xdr, rcv_buf, p, rqstp); 2060 2061 auth->au_rslack = auth->au_verfsize + 2 + ctx->gc_gss_ctx->slack; 2062 auth->au_ralign = auth->au_verfsize + 2 + ctx->gc_gss_ctx->align; 2063 2064 return 0; 2065 unwrap_failed: 2066 trace_rpcgss_unwrap_failed(task); 2067 return -EIO; 2068 bad_seqno: 2069 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, be32_to_cpup(--p)); 2070 return -EIO; 2071 bad_unwrap: 2072 trace_rpcgss_unwrap(task, maj_stat); 2073 return -EIO; 2074 } 2075 2076 static bool 2077 gss_seq_is_newer(u32 new, u32 old) 2078 { 2079 return (s32)(new - old) > 0; 2080 } 2081 2082 static bool 2083 gss_xmit_need_reencode(struct rpc_task *task) 2084 { 2085 struct rpc_rqst *req = task->tk_rqstp; 2086 struct rpc_cred *cred = req->rq_cred; 2087 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2088 u32 win, seq_xmit = 0; 2089 bool ret = true; 2090 2091 if (!ctx) 2092 goto out; 2093 2094 if (gss_seq_is_newer(req->rq_seqno, READ_ONCE(ctx->gc_seq))) 2095 goto out_ctx; 2096 2097 seq_xmit = READ_ONCE(ctx->gc_seq_xmit); 2098 while (gss_seq_is_newer(req->rq_seqno, seq_xmit)) { 2099 u32 tmp = seq_xmit; 2100 2101 seq_xmit = cmpxchg(&ctx->gc_seq_xmit, tmp, req->rq_seqno); 2102 if (seq_xmit == tmp) { 2103 ret = false; 2104 goto out_ctx; 2105 } 2106 } 2107 2108 win = ctx->gc_win; 2109 if (win > 0) 2110 ret = !gss_seq_is_newer(req->rq_seqno, seq_xmit - win); 2111 2112 out_ctx: 2113 gss_put_ctx(ctx); 2114 out: 2115 trace_rpcgss_need_reencode(task, seq_xmit, ret); 2116 return ret; 2117 } 2118 2119 static int 2120 gss_unwrap_resp(struct rpc_task *task, struct xdr_stream *xdr) 2121 { 2122 struct rpc_rqst *rqstp = task->tk_rqstp; 2123 struct rpc_cred *cred = rqstp->rq_cred; 2124 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 2125 gc_base); 2126 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2127 int status = -EIO; 2128 2129 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 2130 goto out_decode; 2131 switch (gss_cred->gc_service) { 2132 case RPC_GSS_SVC_NONE: 2133 status = gss_unwrap_resp_auth(cred); 2134 break; 2135 case RPC_GSS_SVC_INTEGRITY: 2136 status = gss_unwrap_resp_integ(task, cred, ctx, rqstp, xdr); 2137 break; 2138 case RPC_GSS_SVC_PRIVACY: 2139 status = gss_unwrap_resp_priv(task, cred, ctx, rqstp, xdr); 2140 break; 2141 } 2142 if (status) 2143 goto out; 2144 2145 out_decode: 2146 status = rpcauth_unwrap_resp_decode(task, xdr); 2147 out: 2148 gss_put_ctx(ctx); 2149 return status; 2150 } 2151 2152 static const struct rpc_authops authgss_ops = { 2153 .owner = THIS_MODULE, 2154 .au_flavor = RPC_AUTH_GSS, 2155 .au_name = "RPCSEC_GSS", 2156 .create = gss_create, 2157 .destroy = gss_destroy, 2158 .hash_cred = gss_hash_cred, 2159 .lookup_cred = gss_lookup_cred, 2160 .crcreate = gss_create_cred, 2161 .info2flavor = gss_mech_info2flavor, 2162 .flavor2info = gss_mech_flavor2info, 2163 }; 2164 2165 static const struct rpc_credops gss_credops = { 2166 .cr_name = "AUTH_GSS", 2167 .crdestroy = gss_destroy_cred, 2168 .cr_init = gss_cred_init, 2169 .crmatch = gss_match, 2170 .crmarshal = gss_marshal, 2171 .crrefresh = gss_refresh, 2172 .crvalidate = gss_validate, 2173 .crwrap_req = gss_wrap_req, 2174 .crunwrap_resp = gss_unwrap_resp, 2175 .crkey_timeout = gss_key_timeout, 2176 .crstringify_acceptor = gss_stringify_acceptor, 2177 .crneed_reencode = gss_xmit_need_reencode, 2178 }; 2179 2180 static const struct rpc_credops gss_nullops = { 2181 .cr_name = "AUTH_GSS", 2182 .crdestroy = gss_destroy_nullcred, 2183 .crmatch = gss_match, 2184 .crmarshal = gss_marshal, 2185 .crrefresh = gss_refresh_null, 2186 .crvalidate = gss_validate, 2187 .crwrap_req = gss_wrap_req, 2188 .crunwrap_resp = gss_unwrap_resp, 2189 .crstringify_acceptor = gss_stringify_acceptor, 2190 }; 2191 2192 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2193 .upcall = gss_v0_upcall, 2194 .downcall = gss_pipe_downcall, 2195 .destroy_msg = gss_pipe_destroy_msg, 2196 .open_pipe = gss_pipe_open_v0, 2197 .release_pipe = gss_pipe_release, 2198 }; 2199 2200 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2201 .upcall = gss_v1_upcall, 2202 .downcall = gss_pipe_downcall, 2203 .destroy_msg = gss_pipe_destroy_msg, 2204 .open_pipe = gss_pipe_open_v1, 2205 .release_pipe = gss_pipe_release, 2206 }; 2207 2208 static __net_init int rpcsec_gss_init_net(struct net *net) 2209 { 2210 return gss_svc_init_net(net); 2211 } 2212 2213 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2214 { 2215 gss_svc_shutdown_net(net); 2216 } 2217 2218 static struct pernet_operations rpcsec_gss_net_ops = { 2219 .init = rpcsec_gss_init_net, 2220 .exit = rpcsec_gss_exit_net, 2221 }; 2222 2223 /* 2224 * Initialize RPCSEC_GSS module 2225 */ 2226 static int __init init_rpcsec_gss(void) 2227 { 2228 int err = 0; 2229 2230 err = rpcauth_register(&authgss_ops); 2231 if (err) 2232 goto out; 2233 err = gss_svc_init(); 2234 if (err) 2235 goto out_unregister; 2236 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2237 if (err) 2238 goto out_svc_exit; 2239 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2240 return 0; 2241 out_svc_exit: 2242 gss_svc_shutdown(); 2243 out_unregister: 2244 rpcauth_unregister(&authgss_ops); 2245 out: 2246 return err; 2247 } 2248 2249 static void __exit exit_rpcsec_gss(void) 2250 { 2251 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2252 gss_svc_shutdown(); 2253 rpcauth_unregister(&authgss_ops); 2254 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2255 } 2256 2257 MODULE_ALIAS("rpc-auth-6"); 2258 MODULE_LICENSE("GPL"); 2259 module_param_named(expired_cred_retry_delay, 2260 gss_expired_cred_retry_delay, 2261 uint, 0644); 2262 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2263 "the RPC engine retries an expired credential"); 2264 2265 module_param_named(key_expire_timeo, 2266 gss_key_expire_timeo, 2267 uint, 0644); 2268 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2269 "credential keys lifetime where the NFS layer cleans up " 2270 "prior to key expiration"); 2271 2272 module_init(init_rpcsec_gss) 2273 module_exit(exit_rpcsec_gss) 2274