1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/sched.h> 44 #include <linux/pagemap.h> 45 #include <linux/sunrpc/clnt.h> 46 #include <linux/sunrpc/auth.h> 47 #include <linux/sunrpc/auth_gss.h> 48 #include <linux/sunrpc/svcauth_gss.h> 49 #include <linux/sunrpc/gss_err.h> 50 #include <linux/workqueue.h> 51 #include <linux/sunrpc/rpc_pipe_fs.h> 52 #include <linux/sunrpc/gss_api.h> 53 #include <asm/uaccess.h> 54 #include <linux/hashtable.h> 55 56 #include "../netns.h" 57 58 static const struct rpc_authops authgss_ops; 59 60 static const struct rpc_credops gss_credops; 61 static const struct rpc_credops gss_nullops; 62 63 #define GSS_RETRY_EXPIRED 5 64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 65 66 #define GSS_KEY_EXPIRE_TIMEO 240 67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 68 69 #ifdef RPC_DEBUG 70 # define RPCDBG_FACILITY RPCDBG_AUTH 71 #endif 72 73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 74 /* length of a krb5 verifier (48), plus data added before arguments when 75 * using integrity (two 4-byte integers): */ 76 #define GSS_VERF_SLACK 100 77 78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 79 static DEFINE_SPINLOCK(gss_auth_hash_lock); 80 81 struct gss_pipe { 82 struct rpc_pipe_dir_object pdo; 83 struct rpc_pipe *pipe; 84 struct rpc_clnt *clnt; 85 const char *name; 86 struct kref kref; 87 }; 88 89 struct gss_auth { 90 struct kref kref; 91 struct hlist_node hash; 92 struct rpc_auth rpc_auth; 93 struct gss_api_mech *mech; 94 enum rpc_gss_svc service; 95 struct rpc_clnt *client; 96 struct net *net; 97 /* 98 * There are two upcall pipes; dentry[1], named "gssd", is used 99 * for the new text-based upcall; dentry[0] is named after the 100 * mechanism (for example, "krb5") and exists for 101 * backwards-compatibility with older gssd's. 102 */ 103 struct gss_pipe *gss_pipe[2]; 104 const char *target_name; 105 }; 106 107 /* pipe_version >= 0 if and only if someone has a pipe open. */ 108 static DEFINE_SPINLOCK(pipe_version_lock); 109 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 111 static void gss_put_auth(struct gss_auth *gss_auth); 112 113 static void gss_free_ctx(struct gss_cl_ctx *); 114 static const struct rpc_pipe_ops gss_upcall_ops_v0; 115 static const struct rpc_pipe_ops gss_upcall_ops_v1; 116 117 static inline struct gss_cl_ctx * 118 gss_get_ctx(struct gss_cl_ctx *ctx) 119 { 120 atomic_inc(&ctx->count); 121 return ctx; 122 } 123 124 static inline void 125 gss_put_ctx(struct gss_cl_ctx *ctx) 126 { 127 if (atomic_dec_and_test(&ctx->count)) 128 gss_free_ctx(ctx); 129 } 130 131 /* gss_cred_set_ctx: 132 * called by gss_upcall_callback and gss_create_upcall in order 133 * to set the gss context. The actual exchange of an old context 134 * and a new one is protected by the pipe->lock. 135 */ 136 static void 137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 138 { 139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 140 141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 142 return; 143 gss_get_ctx(ctx); 144 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 146 smp_mb__before_clear_bit(); 147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 148 } 149 150 static const void * 151 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 152 { 153 const void *q = (const void *)((const char *)p + len); 154 if (unlikely(q > end || q < p)) 155 return ERR_PTR(-EFAULT); 156 memcpy(res, p, len); 157 return q; 158 } 159 160 static inline const void * 161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 162 { 163 const void *q; 164 unsigned int len; 165 166 p = simple_get_bytes(p, end, &len, sizeof(len)); 167 if (IS_ERR(p)) 168 return p; 169 q = (const void *)((const char *)p + len); 170 if (unlikely(q > end || q < p)) 171 return ERR_PTR(-EFAULT); 172 dest->data = kmemdup(p, len, GFP_NOFS); 173 if (unlikely(dest->data == NULL)) 174 return ERR_PTR(-ENOMEM); 175 dest->len = len; 176 return q; 177 } 178 179 static struct gss_cl_ctx * 180 gss_cred_get_ctx(struct rpc_cred *cred) 181 { 182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 183 struct gss_cl_ctx *ctx = NULL; 184 185 rcu_read_lock(); 186 if (gss_cred->gc_ctx) 187 ctx = gss_get_ctx(gss_cred->gc_ctx); 188 rcu_read_unlock(); 189 return ctx; 190 } 191 192 static struct gss_cl_ctx * 193 gss_alloc_context(void) 194 { 195 struct gss_cl_ctx *ctx; 196 197 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 198 if (ctx != NULL) { 199 ctx->gc_proc = RPC_GSS_PROC_DATA; 200 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 201 spin_lock_init(&ctx->gc_seq_lock); 202 atomic_set(&ctx->count,1); 203 } 204 return ctx; 205 } 206 207 #define GSSD_MIN_TIMEOUT (60 * 60) 208 static const void * 209 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 210 { 211 const void *q; 212 unsigned int seclen; 213 unsigned int timeout; 214 unsigned long now = jiffies; 215 u32 window_size; 216 int ret; 217 218 /* First unsigned int gives the remaining lifetime in seconds of the 219 * credential - e.g. the remaining TGT lifetime for Kerberos or 220 * the -t value passed to GSSD. 221 */ 222 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 223 if (IS_ERR(p)) 224 goto err; 225 if (timeout == 0) 226 timeout = GSSD_MIN_TIMEOUT; 227 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 228 /* Sequence number window. Determines the maximum number of 229 * simultaneous requests 230 */ 231 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 232 if (IS_ERR(p)) 233 goto err; 234 ctx->gc_win = window_size; 235 /* gssd signals an error by passing ctx->gc_win = 0: */ 236 if (ctx->gc_win == 0) { 237 /* 238 * in which case, p points to an error code. Anything other 239 * than -EKEYEXPIRED gets converted to -EACCES. 240 */ 241 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 242 if (!IS_ERR(p)) 243 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 244 ERR_PTR(-EACCES); 245 goto err; 246 } 247 /* copy the opaque wire context */ 248 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 249 if (IS_ERR(p)) 250 goto err; 251 /* import the opaque security context */ 252 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 253 if (IS_ERR(p)) 254 goto err; 255 q = (const void *)((const char *)p + seclen); 256 if (unlikely(q > end || q < p)) { 257 p = ERR_PTR(-EFAULT); 258 goto err; 259 } 260 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); 261 if (ret < 0) { 262 p = ERR_PTR(ret); 263 goto err; 264 } 265 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u\n", 266 __func__, ctx->gc_expiry, now, timeout); 267 return q; 268 err: 269 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p)); 270 return p; 271 } 272 273 #define UPCALL_BUF_LEN 128 274 275 struct gss_upcall_msg { 276 atomic_t count; 277 kuid_t uid; 278 struct rpc_pipe_msg msg; 279 struct list_head list; 280 struct gss_auth *auth; 281 struct rpc_pipe *pipe; 282 struct rpc_wait_queue rpc_waitqueue; 283 wait_queue_head_t waitqueue; 284 struct gss_cl_ctx *ctx; 285 char databuf[UPCALL_BUF_LEN]; 286 }; 287 288 static int get_pipe_version(struct net *net) 289 { 290 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 291 int ret; 292 293 spin_lock(&pipe_version_lock); 294 if (sn->pipe_version >= 0) { 295 atomic_inc(&sn->pipe_users); 296 ret = sn->pipe_version; 297 } else 298 ret = -EAGAIN; 299 spin_unlock(&pipe_version_lock); 300 return ret; 301 } 302 303 static void put_pipe_version(struct net *net) 304 { 305 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 306 307 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 308 sn->pipe_version = -1; 309 spin_unlock(&pipe_version_lock); 310 } 311 } 312 313 static void 314 gss_release_msg(struct gss_upcall_msg *gss_msg) 315 { 316 struct net *net = gss_msg->auth->net; 317 if (!atomic_dec_and_test(&gss_msg->count)) 318 return; 319 put_pipe_version(net); 320 BUG_ON(!list_empty(&gss_msg->list)); 321 if (gss_msg->ctx != NULL) 322 gss_put_ctx(gss_msg->ctx); 323 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 324 gss_put_auth(gss_msg->auth); 325 kfree(gss_msg); 326 } 327 328 static struct gss_upcall_msg * 329 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid) 330 { 331 struct gss_upcall_msg *pos; 332 list_for_each_entry(pos, &pipe->in_downcall, list) { 333 if (!uid_eq(pos->uid, uid)) 334 continue; 335 atomic_inc(&pos->count); 336 dprintk("RPC: %s found msg %p\n", __func__, pos); 337 return pos; 338 } 339 dprintk("RPC: %s found nothing\n", __func__); 340 return NULL; 341 } 342 343 /* Try to add an upcall to the pipefs queue. 344 * If an upcall owned by our uid already exists, then we return a reference 345 * to that upcall instead of adding the new upcall. 346 */ 347 static inline struct gss_upcall_msg * 348 gss_add_msg(struct gss_upcall_msg *gss_msg) 349 { 350 struct rpc_pipe *pipe = gss_msg->pipe; 351 struct gss_upcall_msg *old; 352 353 spin_lock(&pipe->lock); 354 old = __gss_find_upcall(pipe, gss_msg->uid); 355 if (old == NULL) { 356 atomic_inc(&gss_msg->count); 357 list_add(&gss_msg->list, &pipe->in_downcall); 358 } else 359 gss_msg = old; 360 spin_unlock(&pipe->lock); 361 return gss_msg; 362 } 363 364 static void 365 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 366 { 367 list_del_init(&gss_msg->list); 368 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 369 wake_up_all(&gss_msg->waitqueue); 370 atomic_dec(&gss_msg->count); 371 } 372 373 static void 374 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 375 { 376 struct rpc_pipe *pipe = gss_msg->pipe; 377 378 if (list_empty(&gss_msg->list)) 379 return; 380 spin_lock(&pipe->lock); 381 if (!list_empty(&gss_msg->list)) 382 __gss_unhash_msg(gss_msg); 383 spin_unlock(&pipe->lock); 384 } 385 386 static void 387 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 388 { 389 switch (gss_msg->msg.errno) { 390 case 0: 391 if (gss_msg->ctx == NULL) 392 break; 393 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 394 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 395 break; 396 case -EKEYEXPIRED: 397 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 398 } 399 gss_cred->gc_upcall_timestamp = jiffies; 400 gss_cred->gc_upcall = NULL; 401 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 402 } 403 404 static void 405 gss_upcall_callback(struct rpc_task *task) 406 { 407 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 408 struct gss_cred, gc_base); 409 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 410 struct rpc_pipe *pipe = gss_msg->pipe; 411 412 spin_lock(&pipe->lock); 413 gss_handle_downcall_result(gss_cred, gss_msg); 414 spin_unlock(&pipe->lock); 415 task->tk_status = gss_msg->msg.errno; 416 gss_release_msg(gss_msg); 417 } 418 419 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg) 420 { 421 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid); 422 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 423 gss_msg->msg.data = gss_msg->databuf; 424 gss_msg->msg.len = sizeof(uid); 425 426 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 427 } 428 429 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 430 const char *service_name, 431 const char *target_name) 432 { 433 struct gss_api_mech *mech = gss_msg->auth->mech; 434 char *p = gss_msg->databuf; 435 size_t buflen = sizeof(gss_msg->databuf); 436 int len; 437 438 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name, 439 from_kuid(&init_user_ns, gss_msg->uid)); 440 buflen -= len; 441 p += len; 442 gss_msg->msg.len = len; 443 if (target_name) { 444 len = scnprintf(p, buflen, "target=%s ", target_name); 445 buflen -= len; 446 p += len; 447 gss_msg->msg.len += len; 448 } 449 if (service_name != NULL) { 450 len = scnprintf(p, buflen, "service=%s ", service_name); 451 buflen -= len; 452 p += len; 453 gss_msg->msg.len += len; 454 } 455 if (mech->gm_upcall_enctypes) { 456 len = scnprintf(p, buflen, "enctypes=%s ", 457 mech->gm_upcall_enctypes); 458 buflen -= len; 459 p += len; 460 gss_msg->msg.len += len; 461 } 462 len = scnprintf(p, buflen, "\n"); 463 if (len == 0) 464 goto out_overflow; 465 gss_msg->msg.len += len; 466 467 gss_msg->msg.data = gss_msg->databuf; 468 return 0; 469 out_overflow: 470 WARN_ON_ONCE(1); 471 return -ENOMEM; 472 } 473 474 static struct gss_upcall_msg * 475 gss_alloc_msg(struct gss_auth *gss_auth, 476 kuid_t uid, const char *service_name) 477 { 478 struct gss_upcall_msg *gss_msg; 479 int vers; 480 int err = -ENOMEM; 481 482 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 483 if (gss_msg == NULL) 484 goto err; 485 vers = get_pipe_version(gss_auth->net); 486 err = vers; 487 if (err < 0) 488 goto err_free_msg; 489 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 490 INIT_LIST_HEAD(&gss_msg->list); 491 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 492 init_waitqueue_head(&gss_msg->waitqueue); 493 atomic_set(&gss_msg->count, 1); 494 gss_msg->uid = uid; 495 gss_msg->auth = gss_auth; 496 switch (vers) { 497 case 0: 498 gss_encode_v0_msg(gss_msg); 499 break; 500 default: 501 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name); 502 if (err) 503 goto err_put_pipe_version; 504 }; 505 kref_get(&gss_auth->kref); 506 return gss_msg; 507 err_put_pipe_version: 508 put_pipe_version(gss_auth->net); 509 err_free_msg: 510 kfree(gss_msg); 511 err: 512 return ERR_PTR(err); 513 } 514 515 static struct gss_upcall_msg * 516 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 517 { 518 struct gss_cred *gss_cred = container_of(cred, 519 struct gss_cred, gc_base); 520 struct gss_upcall_msg *gss_new, *gss_msg; 521 kuid_t uid = cred->cr_uid; 522 523 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 524 if (IS_ERR(gss_new)) 525 return gss_new; 526 gss_msg = gss_add_msg(gss_new); 527 if (gss_msg == gss_new) { 528 int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 529 if (res) { 530 gss_unhash_msg(gss_new); 531 gss_msg = ERR_PTR(res); 532 } 533 } else 534 gss_release_msg(gss_new); 535 return gss_msg; 536 } 537 538 static void warn_gssd(void) 539 { 540 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 541 } 542 543 static inline int 544 gss_refresh_upcall(struct rpc_task *task) 545 { 546 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 547 struct gss_auth *gss_auth = container_of(cred->cr_auth, 548 struct gss_auth, rpc_auth); 549 struct gss_cred *gss_cred = container_of(cred, 550 struct gss_cred, gc_base); 551 struct gss_upcall_msg *gss_msg; 552 struct rpc_pipe *pipe; 553 int err = 0; 554 555 dprintk("RPC: %5u %s for uid %u\n", 556 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid)); 557 gss_msg = gss_setup_upcall(gss_auth, cred); 558 if (PTR_ERR(gss_msg) == -EAGAIN) { 559 /* XXX: warning on the first, under the assumption we 560 * shouldn't normally hit this case on a refresh. */ 561 warn_gssd(); 562 task->tk_timeout = 15*HZ; 563 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL); 564 return -EAGAIN; 565 } 566 if (IS_ERR(gss_msg)) { 567 err = PTR_ERR(gss_msg); 568 goto out; 569 } 570 pipe = gss_msg->pipe; 571 spin_lock(&pipe->lock); 572 if (gss_cred->gc_upcall != NULL) 573 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 574 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 575 task->tk_timeout = 0; 576 gss_cred->gc_upcall = gss_msg; 577 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 578 atomic_inc(&gss_msg->count); 579 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 580 } else { 581 gss_handle_downcall_result(gss_cred, gss_msg); 582 err = gss_msg->msg.errno; 583 } 584 spin_unlock(&pipe->lock); 585 gss_release_msg(gss_msg); 586 out: 587 dprintk("RPC: %5u %s for uid %u result %d\n", 588 task->tk_pid, __func__, 589 from_kuid(&init_user_ns, cred->cr_uid), err); 590 return err; 591 } 592 593 static inline int 594 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 595 { 596 struct net *net = gss_auth->net; 597 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 598 struct rpc_pipe *pipe; 599 struct rpc_cred *cred = &gss_cred->gc_base; 600 struct gss_upcall_msg *gss_msg; 601 DEFINE_WAIT(wait); 602 int err; 603 604 dprintk("RPC: %s for uid %u\n", 605 __func__, from_kuid(&init_user_ns, cred->cr_uid)); 606 retry: 607 err = 0; 608 /* if gssd is down, just skip upcalling altogether */ 609 if (!gssd_running(net)) { 610 warn_gssd(); 611 return -EACCES; 612 } 613 gss_msg = gss_setup_upcall(gss_auth, cred); 614 if (PTR_ERR(gss_msg) == -EAGAIN) { 615 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 616 sn->pipe_version >= 0, 15 * HZ); 617 if (sn->pipe_version < 0) { 618 warn_gssd(); 619 err = -EACCES; 620 } 621 if (err < 0) 622 goto out; 623 goto retry; 624 } 625 if (IS_ERR(gss_msg)) { 626 err = PTR_ERR(gss_msg); 627 goto out; 628 } 629 pipe = gss_msg->pipe; 630 for (;;) { 631 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 632 spin_lock(&pipe->lock); 633 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 634 break; 635 } 636 spin_unlock(&pipe->lock); 637 if (fatal_signal_pending(current)) { 638 err = -ERESTARTSYS; 639 goto out_intr; 640 } 641 schedule(); 642 } 643 if (gss_msg->ctx) 644 gss_cred_set_ctx(cred, gss_msg->ctx); 645 else 646 err = gss_msg->msg.errno; 647 spin_unlock(&pipe->lock); 648 out_intr: 649 finish_wait(&gss_msg->waitqueue, &wait); 650 gss_release_msg(gss_msg); 651 out: 652 dprintk("RPC: %s for uid %u result %d\n", 653 __func__, from_kuid(&init_user_ns, cred->cr_uid), err); 654 return err; 655 } 656 657 #define MSG_BUF_MAXSIZE 1024 658 659 static ssize_t 660 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 661 { 662 const void *p, *end; 663 void *buf; 664 struct gss_upcall_msg *gss_msg; 665 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 666 struct gss_cl_ctx *ctx; 667 uid_t id; 668 kuid_t uid; 669 ssize_t err = -EFBIG; 670 671 if (mlen > MSG_BUF_MAXSIZE) 672 goto out; 673 err = -ENOMEM; 674 buf = kmalloc(mlen, GFP_NOFS); 675 if (!buf) 676 goto out; 677 678 err = -EFAULT; 679 if (copy_from_user(buf, src, mlen)) 680 goto err; 681 682 end = (const void *)((char *)buf + mlen); 683 p = simple_get_bytes(buf, end, &id, sizeof(id)); 684 if (IS_ERR(p)) { 685 err = PTR_ERR(p); 686 goto err; 687 } 688 689 uid = make_kuid(&init_user_ns, id); 690 if (!uid_valid(uid)) { 691 err = -EINVAL; 692 goto err; 693 } 694 695 err = -ENOMEM; 696 ctx = gss_alloc_context(); 697 if (ctx == NULL) 698 goto err; 699 700 err = -ENOENT; 701 /* Find a matching upcall */ 702 spin_lock(&pipe->lock); 703 gss_msg = __gss_find_upcall(pipe, uid); 704 if (gss_msg == NULL) { 705 spin_unlock(&pipe->lock); 706 goto err_put_ctx; 707 } 708 list_del_init(&gss_msg->list); 709 spin_unlock(&pipe->lock); 710 711 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 712 if (IS_ERR(p)) { 713 err = PTR_ERR(p); 714 switch (err) { 715 case -EACCES: 716 case -EKEYEXPIRED: 717 gss_msg->msg.errno = err; 718 err = mlen; 719 break; 720 case -EFAULT: 721 case -ENOMEM: 722 case -EINVAL: 723 case -ENOSYS: 724 gss_msg->msg.errno = -EAGAIN; 725 break; 726 default: 727 printk(KERN_CRIT "%s: bad return from " 728 "gss_fill_context: %zd\n", __func__, err); 729 BUG(); 730 } 731 goto err_release_msg; 732 } 733 gss_msg->ctx = gss_get_ctx(ctx); 734 err = mlen; 735 736 err_release_msg: 737 spin_lock(&pipe->lock); 738 __gss_unhash_msg(gss_msg); 739 spin_unlock(&pipe->lock); 740 gss_release_msg(gss_msg); 741 err_put_ctx: 742 gss_put_ctx(ctx); 743 err: 744 kfree(buf); 745 out: 746 dprintk("RPC: %s returning %Zd\n", __func__, err); 747 return err; 748 } 749 750 static int gss_pipe_open(struct inode *inode, int new_version) 751 { 752 struct net *net = inode->i_sb->s_fs_info; 753 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 754 int ret = 0; 755 756 spin_lock(&pipe_version_lock); 757 if (sn->pipe_version < 0) { 758 /* First open of any gss pipe determines the version: */ 759 sn->pipe_version = new_version; 760 rpc_wake_up(&pipe_version_rpc_waitqueue); 761 wake_up(&pipe_version_waitqueue); 762 } else if (sn->pipe_version != new_version) { 763 /* Trying to open a pipe of a different version */ 764 ret = -EBUSY; 765 goto out; 766 } 767 atomic_inc(&sn->pipe_users); 768 out: 769 spin_unlock(&pipe_version_lock); 770 return ret; 771 772 } 773 774 static int gss_pipe_open_v0(struct inode *inode) 775 { 776 return gss_pipe_open(inode, 0); 777 } 778 779 static int gss_pipe_open_v1(struct inode *inode) 780 { 781 return gss_pipe_open(inode, 1); 782 } 783 784 static void 785 gss_pipe_release(struct inode *inode) 786 { 787 struct net *net = inode->i_sb->s_fs_info; 788 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 789 struct gss_upcall_msg *gss_msg; 790 791 restart: 792 spin_lock(&pipe->lock); 793 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 794 795 if (!list_empty(&gss_msg->msg.list)) 796 continue; 797 gss_msg->msg.errno = -EPIPE; 798 atomic_inc(&gss_msg->count); 799 __gss_unhash_msg(gss_msg); 800 spin_unlock(&pipe->lock); 801 gss_release_msg(gss_msg); 802 goto restart; 803 } 804 spin_unlock(&pipe->lock); 805 806 put_pipe_version(net); 807 } 808 809 static void 810 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 811 { 812 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 813 814 if (msg->errno < 0) { 815 dprintk("RPC: %s releasing msg %p\n", 816 __func__, gss_msg); 817 atomic_inc(&gss_msg->count); 818 gss_unhash_msg(gss_msg); 819 if (msg->errno == -ETIMEDOUT) 820 warn_gssd(); 821 gss_release_msg(gss_msg); 822 } 823 } 824 825 static void gss_pipe_dentry_destroy(struct dentry *dir, 826 struct rpc_pipe_dir_object *pdo) 827 { 828 struct gss_pipe *gss_pipe = pdo->pdo_data; 829 struct rpc_pipe *pipe = gss_pipe->pipe; 830 831 if (pipe->dentry != NULL) { 832 rpc_unlink(pipe->dentry); 833 pipe->dentry = NULL; 834 } 835 } 836 837 static int gss_pipe_dentry_create(struct dentry *dir, 838 struct rpc_pipe_dir_object *pdo) 839 { 840 struct gss_pipe *p = pdo->pdo_data; 841 struct dentry *dentry; 842 843 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 844 if (IS_ERR(dentry)) 845 return PTR_ERR(dentry); 846 p->pipe->dentry = dentry; 847 return 0; 848 } 849 850 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 851 .create = gss_pipe_dentry_create, 852 .destroy = gss_pipe_dentry_destroy, 853 }; 854 855 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 856 const char *name, 857 const struct rpc_pipe_ops *upcall_ops) 858 { 859 struct gss_pipe *p; 860 int err = -ENOMEM; 861 862 p = kmalloc(sizeof(*p), GFP_KERNEL); 863 if (p == NULL) 864 goto err; 865 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 866 if (IS_ERR(p->pipe)) { 867 err = PTR_ERR(p->pipe); 868 goto err_free_gss_pipe; 869 } 870 p->name = name; 871 p->clnt = clnt; 872 kref_init(&p->kref); 873 rpc_init_pipe_dir_object(&p->pdo, 874 &gss_pipe_dir_object_ops, 875 p); 876 return p; 877 err_free_gss_pipe: 878 kfree(p); 879 err: 880 return ERR_PTR(err); 881 } 882 883 struct gss_alloc_pdo { 884 struct rpc_clnt *clnt; 885 const char *name; 886 const struct rpc_pipe_ops *upcall_ops; 887 }; 888 889 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 890 { 891 struct gss_pipe *gss_pipe; 892 struct gss_alloc_pdo *args = data; 893 894 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 895 return 0; 896 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 897 if (strcmp(gss_pipe->name, args->name) != 0) 898 return 0; 899 if (!kref_get_unless_zero(&gss_pipe->kref)) 900 return 0; 901 return 1; 902 } 903 904 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 905 { 906 struct gss_pipe *gss_pipe; 907 struct gss_alloc_pdo *args = data; 908 909 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 910 if (!IS_ERR(gss_pipe)) 911 return &gss_pipe->pdo; 912 return NULL; 913 } 914 915 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 916 const char *name, 917 const struct rpc_pipe_ops *upcall_ops) 918 { 919 struct net *net = rpc_net_ns(clnt); 920 struct rpc_pipe_dir_object *pdo; 921 struct gss_alloc_pdo args = { 922 .clnt = clnt, 923 .name = name, 924 .upcall_ops = upcall_ops, 925 }; 926 927 pdo = rpc_find_or_alloc_pipe_dir_object(net, 928 &clnt->cl_pipedir_objects, 929 gss_pipe_match_pdo, 930 gss_pipe_alloc_pdo, 931 &args); 932 if (pdo != NULL) 933 return container_of(pdo, struct gss_pipe, pdo); 934 return ERR_PTR(-ENOMEM); 935 } 936 937 static void __gss_pipe_free(struct gss_pipe *p) 938 { 939 struct rpc_clnt *clnt = p->clnt; 940 struct net *net = rpc_net_ns(clnt); 941 942 rpc_remove_pipe_dir_object(net, 943 &clnt->cl_pipedir_objects, 944 &p->pdo); 945 rpc_destroy_pipe_data(p->pipe); 946 kfree(p); 947 } 948 949 static void __gss_pipe_release(struct kref *kref) 950 { 951 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 952 953 __gss_pipe_free(p); 954 } 955 956 static void gss_pipe_free(struct gss_pipe *p) 957 { 958 if (p != NULL) 959 kref_put(&p->kref, __gss_pipe_release); 960 } 961 962 /* 963 * NOTE: we have the opportunity to use different 964 * parameters based on the input flavor (which must be a pseudoflavor) 965 */ 966 static struct gss_auth * 967 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 968 { 969 rpc_authflavor_t flavor = args->pseudoflavor; 970 struct gss_auth *gss_auth; 971 struct gss_pipe *gss_pipe; 972 struct rpc_auth * auth; 973 int err = -ENOMEM; /* XXX? */ 974 975 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 976 977 if (!try_module_get(THIS_MODULE)) 978 return ERR_PTR(err); 979 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 980 goto out_dec; 981 INIT_HLIST_NODE(&gss_auth->hash); 982 gss_auth->target_name = NULL; 983 if (args->target_name) { 984 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 985 if (gss_auth->target_name == NULL) 986 goto err_free; 987 } 988 gss_auth->client = clnt; 989 gss_auth->net = get_net(rpc_net_ns(clnt)); 990 err = -EINVAL; 991 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 992 if (!gss_auth->mech) { 993 dprintk("RPC: Pseudoflavor %d not found!\n", flavor); 994 goto err_put_net; 995 } 996 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 997 if (gss_auth->service == 0) 998 goto err_put_mech; 999 if (!gssd_running(gss_auth->net)) 1000 goto err_put_mech; 1001 auth = &gss_auth->rpc_auth; 1002 auth->au_cslack = GSS_CRED_SLACK >> 2; 1003 auth->au_rslack = GSS_VERF_SLACK >> 2; 1004 auth->au_ops = &authgss_ops; 1005 auth->au_flavor = flavor; 1006 atomic_set(&auth->au_count, 1); 1007 kref_init(&gss_auth->kref); 1008 1009 err = rpcauth_init_credcache(auth); 1010 if (err) 1011 goto err_put_mech; 1012 /* 1013 * Note: if we created the old pipe first, then someone who 1014 * examined the directory at the right moment might conclude 1015 * that we supported only the old pipe. So we instead create 1016 * the new pipe first. 1017 */ 1018 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1019 if (IS_ERR(gss_pipe)) { 1020 err = PTR_ERR(gss_pipe); 1021 goto err_destroy_credcache; 1022 } 1023 gss_auth->gss_pipe[1] = gss_pipe; 1024 1025 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1026 &gss_upcall_ops_v0); 1027 if (IS_ERR(gss_pipe)) { 1028 err = PTR_ERR(gss_pipe); 1029 goto err_destroy_pipe_1; 1030 } 1031 gss_auth->gss_pipe[0] = gss_pipe; 1032 1033 return gss_auth; 1034 err_destroy_pipe_1: 1035 gss_pipe_free(gss_auth->gss_pipe[1]); 1036 err_destroy_credcache: 1037 rpcauth_destroy_credcache(auth); 1038 err_put_mech: 1039 gss_mech_put(gss_auth->mech); 1040 err_put_net: 1041 put_net(gss_auth->net); 1042 err_free: 1043 kfree(gss_auth->target_name); 1044 kfree(gss_auth); 1045 out_dec: 1046 module_put(THIS_MODULE); 1047 return ERR_PTR(err); 1048 } 1049 1050 static void 1051 gss_free(struct gss_auth *gss_auth) 1052 { 1053 gss_pipe_free(gss_auth->gss_pipe[0]); 1054 gss_pipe_free(gss_auth->gss_pipe[1]); 1055 gss_mech_put(gss_auth->mech); 1056 put_net(gss_auth->net); 1057 kfree(gss_auth->target_name); 1058 1059 kfree(gss_auth); 1060 module_put(THIS_MODULE); 1061 } 1062 1063 static void 1064 gss_free_callback(struct kref *kref) 1065 { 1066 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1067 1068 gss_free(gss_auth); 1069 } 1070 1071 static void 1072 gss_put_auth(struct gss_auth *gss_auth) 1073 { 1074 kref_put(&gss_auth->kref, gss_free_callback); 1075 } 1076 1077 static void 1078 gss_destroy(struct rpc_auth *auth) 1079 { 1080 struct gss_auth *gss_auth = container_of(auth, 1081 struct gss_auth, rpc_auth); 1082 1083 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 1084 auth, auth->au_flavor); 1085 1086 if (hash_hashed(&gss_auth->hash)) { 1087 spin_lock(&gss_auth_hash_lock); 1088 hash_del(&gss_auth->hash); 1089 spin_unlock(&gss_auth_hash_lock); 1090 } 1091 1092 gss_pipe_free(gss_auth->gss_pipe[0]); 1093 gss_auth->gss_pipe[0] = NULL; 1094 gss_pipe_free(gss_auth->gss_pipe[1]); 1095 gss_auth->gss_pipe[1] = NULL; 1096 rpcauth_destroy_credcache(auth); 1097 1098 gss_put_auth(gss_auth); 1099 } 1100 1101 /* 1102 * Auths may be shared between rpc clients that were cloned from a 1103 * common client with the same xprt, if they also share the flavor and 1104 * target_name. 1105 * 1106 * The auth is looked up from the oldest parent sharing the same 1107 * cl_xprt, and the auth itself references only that common parent 1108 * (which is guaranteed to last as long as any of its descendants). 1109 */ 1110 static struct gss_auth * 1111 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args, 1112 struct rpc_clnt *clnt, 1113 struct gss_auth *new) 1114 { 1115 struct gss_auth *gss_auth; 1116 unsigned long hashval = (unsigned long)clnt; 1117 1118 spin_lock(&gss_auth_hash_lock); 1119 hash_for_each_possible(gss_auth_hash_table, 1120 gss_auth, 1121 hash, 1122 hashval) { 1123 if (gss_auth->client != clnt) 1124 continue; 1125 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1126 continue; 1127 if (gss_auth->target_name != args->target_name) { 1128 if (gss_auth->target_name == NULL) 1129 continue; 1130 if (args->target_name == NULL) 1131 continue; 1132 if (strcmp(gss_auth->target_name, args->target_name)) 1133 continue; 1134 } 1135 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1136 continue; 1137 goto out; 1138 } 1139 if (new) 1140 hash_add(gss_auth_hash_table, &new->hash, hashval); 1141 gss_auth = new; 1142 out: 1143 spin_unlock(&gss_auth_hash_lock); 1144 return gss_auth; 1145 } 1146 1147 static struct gss_auth * 1148 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1149 { 1150 struct gss_auth *gss_auth; 1151 struct gss_auth *new; 1152 1153 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1154 if (gss_auth != NULL) 1155 goto out; 1156 new = gss_create_new(args, clnt); 1157 if (IS_ERR(new)) 1158 return new; 1159 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1160 if (gss_auth != new) 1161 gss_destroy(&new->rpc_auth); 1162 out: 1163 return gss_auth; 1164 } 1165 1166 static struct rpc_auth * 1167 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1168 { 1169 struct gss_auth *gss_auth; 1170 struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt); 1171 1172 while (clnt != clnt->cl_parent) { 1173 struct rpc_clnt *parent = clnt->cl_parent; 1174 /* Find the original parent for this transport */ 1175 if (rcu_access_pointer(parent->cl_xprt) != xprt) 1176 break; 1177 clnt = parent; 1178 } 1179 1180 gss_auth = gss_create_hashed(args, clnt); 1181 if (IS_ERR(gss_auth)) 1182 return ERR_CAST(gss_auth); 1183 return &gss_auth->rpc_auth; 1184 } 1185 1186 /* 1187 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 1188 * to the server with the GSS control procedure field set to 1189 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1190 * all RPCSEC_GSS state associated with that context. 1191 */ 1192 static int 1193 gss_destroying_context(struct rpc_cred *cred) 1194 { 1195 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1196 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1197 struct rpc_task *task; 1198 1199 if (gss_cred->gc_ctx == NULL || 1200 test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0) 1201 return 0; 1202 1203 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1204 cred->cr_ops = &gss_nullops; 1205 1206 /* Take a reference to ensure the cred will be destroyed either 1207 * by the RPC call or by the put_rpccred() below */ 1208 get_rpccred(cred); 1209 1210 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT); 1211 if (!IS_ERR(task)) 1212 rpc_put_task(task); 1213 1214 put_rpccred(cred); 1215 return 1; 1216 } 1217 1218 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1219 * to create a new cred or context, so they check that things have been 1220 * allocated before freeing them. */ 1221 static void 1222 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1223 { 1224 dprintk("RPC: %s\n", __func__); 1225 1226 gss_delete_sec_context(&ctx->gc_gss_ctx); 1227 kfree(ctx->gc_wire_ctx.data); 1228 kfree(ctx); 1229 } 1230 1231 static void 1232 gss_free_ctx_callback(struct rcu_head *head) 1233 { 1234 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1235 gss_do_free_ctx(ctx); 1236 } 1237 1238 static void 1239 gss_free_ctx(struct gss_cl_ctx *ctx) 1240 { 1241 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1242 } 1243 1244 static void 1245 gss_free_cred(struct gss_cred *gss_cred) 1246 { 1247 dprintk("RPC: %s cred=%p\n", __func__, gss_cred); 1248 kfree(gss_cred); 1249 } 1250 1251 static void 1252 gss_free_cred_callback(struct rcu_head *head) 1253 { 1254 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1255 gss_free_cred(gss_cred); 1256 } 1257 1258 static void 1259 gss_destroy_nullcred(struct rpc_cred *cred) 1260 { 1261 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1262 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1263 struct gss_cl_ctx *ctx = gss_cred->gc_ctx; 1264 1265 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1266 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1267 if (ctx) 1268 gss_put_ctx(ctx); 1269 gss_put_auth(gss_auth); 1270 } 1271 1272 static void 1273 gss_destroy_cred(struct rpc_cred *cred) 1274 { 1275 1276 if (gss_destroying_context(cred)) 1277 return; 1278 gss_destroy_nullcred(cred); 1279 } 1280 1281 /* 1282 * Lookup RPCSEC_GSS cred for the current process 1283 */ 1284 static struct rpc_cred * 1285 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1286 { 1287 return rpcauth_lookup_credcache(auth, acred, flags); 1288 } 1289 1290 static struct rpc_cred * 1291 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1292 { 1293 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1294 struct gss_cred *cred = NULL; 1295 int err = -ENOMEM; 1296 1297 dprintk("RPC: %s for uid %d, flavor %d\n", 1298 __func__, from_kuid(&init_user_ns, acred->uid), 1299 auth->au_flavor); 1300 1301 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS))) 1302 goto out_err; 1303 1304 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1305 /* 1306 * Note: in order to force a call to call_refresh(), we deliberately 1307 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1308 */ 1309 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1310 cred->gc_service = gss_auth->service; 1311 cred->gc_principal = NULL; 1312 if (acred->machine_cred) 1313 cred->gc_principal = acred->principal; 1314 kref_get(&gss_auth->kref); 1315 return &cred->gc_base; 1316 1317 out_err: 1318 dprintk("RPC: %s failed with error %d\n", __func__, err); 1319 return ERR_PTR(err); 1320 } 1321 1322 static int 1323 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1324 { 1325 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1326 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1327 int err; 1328 1329 do { 1330 err = gss_create_upcall(gss_auth, gss_cred); 1331 } while (err == -EAGAIN); 1332 return err; 1333 } 1334 1335 /* 1336 * Returns -EACCES if GSS context is NULL or will expire within the 1337 * timeout (miliseconds) 1338 */ 1339 static int 1340 gss_key_timeout(struct rpc_cred *rc) 1341 { 1342 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1343 unsigned long now = jiffies; 1344 unsigned long expire; 1345 1346 if (gss_cred->gc_ctx == NULL) 1347 return -EACCES; 1348 1349 expire = gss_cred->gc_ctx->gc_expiry - (gss_key_expire_timeo * HZ); 1350 1351 if (time_after(now, expire)) 1352 return -EACCES; 1353 return 0; 1354 } 1355 1356 static int 1357 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1358 { 1359 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1360 int ret; 1361 1362 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1363 goto out; 1364 /* Don't match with creds that have expired. */ 1365 if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry)) 1366 return 0; 1367 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1368 return 0; 1369 out: 1370 if (acred->principal != NULL) { 1371 if (gss_cred->gc_principal == NULL) 1372 return 0; 1373 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1374 goto check_expire; 1375 } 1376 if (gss_cred->gc_principal != NULL) 1377 return 0; 1378 ret = uid_eq(rc->cr_uid, acred->uid); 1379 1380 check_expire: 1381 if (ret == 0) 1382 return ret; 1383 1384 /* Notify acred users of GSS context expiration timeout */ 1385 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) && 1386 (gss_key_timeout(rc) != 0)) { 1387 /* test will now be done from generic cred */ 1388 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags); 1389 /* tell NFS layer that key will expire soon */ 1390 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags); 1391 } 1392 return ret; 1393 } 1394 1395 /* 1396 * Marshal credentials. 1397 * Maybe we should keep a cached credential for performance reasons. 1398 */ 1399 static __be32 * 1400 gss_marshal(struct rpc_task *task, __be32 *p) 1401 { 1402 struct rpc_rqst *req = task->tk_rqstp; 1403 struct rpc_cred *cred = req->rq_cred; 1404 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1405 gc_base); 1406 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1407 __be32 *cred_len; 1408 u32 maj_stat = 0; 1409 struct xdr_netobj mic; 1410 struct kvec iov; 1411 struct xdr_buf verf_buf; 1412 1413 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1414 1415 *p++ = htonl(RPC_AUTH_GSS); 1416 cred_len = p++; 1417 1418 spin_lock(&ctx->gc_seq_lock); 1419 req->rq_seqno = ctx->gc_seq++; 1420 spin_unlock(&ctx->gc_seq_lock); 1421 1422 *p++ = htonl((u32) RPC_GSS_VERSION); 1423 *p++ = htonl((u32) ctx->gc_proc); 1424 *p++ = htonl((u32) req->rq_seqno); 1425 *p++ = htonl((u32) gss_cred->gc_service); 1426 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1427 *cred_len = htonl((p - (cred_len + 1)) << 2); 1428 1429 /* We compute the checksum for the verifier over the xdr-encoded bytes 1430 * starting with the xid and ending at the end of the credential: */ 1431 iov.iov_base = xprt_skip_transport_header(req->rq_xprt, 1432 req->rq_snd_buf.head[0].iov_base); 1433 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1434 xdr_buf_from_iov(&iov, &verf_buf); 1435 1436 /* set verifier flavor*/ 1437 *p++ = htonl(RPC_AUTH_GSS); 1438 1439 mic.data = (u8 *)(p + 1); 1440 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1441 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 1442 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1443 } else if (maj_stat != 0) { 1444 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 1445 goto out_put_ctx; 1446 } 1447 p = xdr_encode_opaque(p, NULL, mic.len); 1448 gss_put_ctx(ctx); 1449 return p; 1450 out_put_ctx: 1451 gss_put_ctx(ctx); 1452 return NULL; 1453 } 1454 1455 static int gss_renew_cred(struct rpc_task *task) 1456 { 1457 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1458 struct gss_cred *gss_cred = container_of(oldcred, 1459 struct gss_cred, 1460 gc_base); 1461 struct rpc_auth *auth = oldcred->cr_auth; 1462 struct auth_cred acred = { 1463 .uid = oldcred->cr_uid, 1464 .principal = gss_cred->gc_principal, 1465 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0), 1466 }; 1467 struct rpc_cred *new; 1468 1469 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1470 if (IS_ERR(new)) 1471 return PTR_ERR(new); 1472 task->tk_rqstp->rq_cred = new; 1473 put_rpccred(oldcred); 1474 return 0; 1475 } 1476 1477 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1478 { 1479 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1480 unsigned long now = jiffies; 1481 unsigned long begin, expire; 1482 struct gss_cred *gss_cred; 1483 1484 gss_cred = container_of(cred, struct gss_cred, gc_base); 1485 begin = gss_cred->gc_upcall_timestamp; 1486 expire = begin + gss_expired_cred_retry_delay * HZ; 1487 1488 if (time_in_range_open(now, begin, expire)) 1489 return 1; 1490 } 1491 return 0; 1492 } 1493 1494 /* 1495 * Refresh credentials. XXX - finish 1496 */ 1497 static int 1498 gss_refresh(struct rpc_task *task) 1499 { 1500 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1501 int ret = 0; 1502 1503 if (gss_cred_is_negative_entry(cred)) 1504 return -EKEYEXPIRED; 1505 1506 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1507 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1508 ret = gss_renew_cred(task); 1509 if (ret < 0) 1510 goto out; 1511 cred = task->tk_rqstp->rq_cred; 1512 } 1513 1514 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1515 ret = gss_refresh_upcall(task); 1516 out: 1517 return ret; 1518 } 1519 1520 /* Dummy refresh routine: used only when destroying the context */ 1521 static int 1522 gss_refresh_null(struct rpc_task *task) 1523 { 1524 return 0; 1525 } 1526 1527 static __be32 * 1528 gss_validate(struct rpc_task *task, __be32 *p) 1529 { 1530 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1531 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1532 __be32 seq; 1533 struct kvec iov; 1534 struct xdr_buf verf_buf; 1535 struct xdr_netobj mic; 1536 u32 flav,len; 1537 u32 maj_stat; 1538 __be32 *ret = ERR_PTR(-EIO); 1539 1540 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1541 1542 flav = ntohl(*p++); 1543 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 1544 goto out_bad; 1545 if (flav != RPC_AUTH_GSS) 1546 goto out_bad; 1547 seq = htonl(task->tk_rqstp->rq_seqno); 1548 iov.iov_base = &seq; 1549 iov.iov_len = sizeof(seq); 1550 xdr_buf_from_iov(&iov, &verf_buf); 1551 mic.data = (u8 *)p; 1552 mic.len = len; 1553 1554 ret = ERR_PTR(-EACCES); 1555 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1556 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1557 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1558 if (maj_stat) { 1559 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n", 1560 task->tk_pid, __func__, maj_stat); 1561 goto out_bad; 1562 } 1563 /* We leave it to unwrap to calculate au_rslack. For now we just 1564 * calculate the length of the verifier: */ 1565 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1566 gss_put_ctx(ctx); 1567 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n", 1568 task->tk_pid, __func__); 1569 return p + XDR_QUADLEN(len); 1570 out_bad: 1571 gss_put_ctx(ctx); 1572 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__, 1573 PTR_ERR(ret)); 1574 return ret; 1575 } 1576 1577 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp, 1578 __be32 *p, void *obj) 1579 { 1580 struct xdr_stream xdr; 1581 1582 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p); 1583 encode(rqstp, &xdr, obj); 1584 } 1585 1586 static inline int 1587 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1588 kxdreproc_t encode, struct rpc_rqst *rqstp, 1589 __be32 *p, void *obj) 1590 { 1591 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1592 struct xdr_buf integ_buf; 1593 __be32 *integ_len = NULL; 1594 struct xdr_netobj mic; 1595 u32 offset; 1596 __be32 *q; 1597 struct kvec *iov; 1598 u32 maj_stat = 0; 1599 int status = -EIO; 1600 1601 integ_len = p++; 1602 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1603 *p++ = htonl(rqstp->rq_seqno); 1604 1605 gss_wrap_req_encode(encode, rqstp, p, obj); 1606 1607 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1608 offset, snd_buf->len - offset)) 1609 return status; 1610 *integ_len = htonl(integ_buf.len); 1611 1612 /* guess whether we're in the head or the tail: */ 1613 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1614 iov = snd_buf->tail; 1615 else 1616 iov = snd_buf->head; 1617 p = iov->iov_base + iov->iov_len; 1618 mic.data = (u8 *)(p + 1); 1619 1620 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1621 status = -EIO; /* XXX? */ 1622 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1623 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1624 else if (maj_stat) 1625 return status; 1626 q = xdr_encode_opaque(p, NULL, mic.len); 1627 1628 offset = (u8 *)q - (u8 *)p; 1629 iov->iov_len += offset; 1630 snd_buf->len += offset; 1631 return 0; 1632 } 1633 1634 static void 1635 priv_release_snd_buf(struct rpc_rqst *rqstp) 1636 { 1637 int i; 1638 1639 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1640 __free_page(rqstp->rq_enc_pages[i]); 1641 kfree(rqstp->rq_enc_pages); 1642 } 1643 1644 static int 1645 alloc_enc_pages(struct rpc_rqst *rqstp) 1646 { 1647 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1648 int first, last, i; 1649 1650 if (snd_buf->page_len == 0) { 1651 rqstp->rq_enc_pages_num = 0; 1652 return 0; 1653 } 1654 1655 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1656 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT; 1657 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1658 rqstp->rq_enc_pages 1659 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), 1660 GFP_NOFS); 1661 if (!rqstp->rq_enc_pages) 1662 goto out; 1663 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1664 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1665 if (rqstp->rq_enc_pages[i] == NULL) 1666 goto out_free; 1667 } 1668 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1669 return 0; 1670 out_free: 1671 rqstp->rq_enc_pages_num = i; 1672 priv_release_snd_buf(rqstp); 1673 out: 1674 return -EAGAIN; 1675 } 1676 1677 static inline int 1678 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1679 kxdreproc_t encode, struct rpc_rqst *rqstp, 1680 __be32 *p, void *obj) 1681 { 1682 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1683 u32 offset; 1684 u32 maj_stat; 1685 int status; 1686 __be32 *opaque_len; 1687 struct page **inpages; 1688 int first; 1689 int pad; 1690 struct kvec *iov; 1691 char *tmp; 1692 1693 opaque_len = p++; 1694 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1695 *p++ = htonl(rqstp->rq_seqno); 1696 1697 gss_wrap_req_encode(encode, rqstp, p, obj); 1698 1699 status = alloc_enc_pages(rqstp); 1700 if (status) 1701 return status; 1702 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1703 inpages = snd_buf->pages + first; 1704 snd_buf->pages = rqstp->rq_enc_pages; 1705 snd_buf->page_base -= first << PAGE_CACHE_SHIFT; 1706 /* 1707 * Give the tail its own page, in case we need extra space in the 1708 * head when wrapping: 1709 * 1710 * call_allocate() allocates twice the slack space required 1711 * by the authentication flavor to rq_callsize. 1712 * For GSS, slack is GSS_CRED_SLACK. 1713 */ 1714 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1715 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1716 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1717 snd_buf->tail[0].iov_base = tmp; 1718 } 1719 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1720 /* slack space should prevent this ever happening: */ 1721 BUG_ON(snd_buf->len > snd_buf->buflen); 1722 status = -EIO; 1723 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1724 * done anyway, so it's safe to put the request on the wire: */ 1725 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1726 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1727 else if (maj_stat) 1728 return status; 1729 1730 *opaque_len = htonl(snd_buf->len - offset); 1731 /* guess whether we're in the head or the tail: */ 1732 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1733 iov = snd_buf->tail; 1734 else 1735 iov = snd_buf->head; 1736 p = iov->iov_base + iov->iov_len; 1737 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1738 memset(p, 0, pad); 1739 iov->iov_len += pad; 1740 snd_buf->len += pad; 1741 1742 return 0; 1743 } 1744 1745 static int 1746 gss_wrap_req(struct rpc_task *task, 1747 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj) 1748 { 1749 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1750 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1751 gc_base); 1752 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1753 int status = -EIO; 1754 1755 dprintk("RPC: %5u %s\n", task->tk_pid, __func__); 1756 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1757 /* The spec seems a little ambiguous here, but I think that not 1758 * wrapping context destruction requests makes the most sense. 1759 */ 1760 gss_wrap_req_encode(encode, rqstp, p, obj); 1761 status = 0; 1762 goto out; 1763 } 1764 switch (gss_cred->gc_service) { 1765 case RPC_GSS_SVC_NONE: 1766 gss_wrap_req_encode(encode, rqstp, p, obj); 1767 status = 0; 1768 break; 1769 case RPC_GSS_SVC_INTEGRITY: 1770 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj); 1771 break; 1772 case RPC_GSS_SVC_PRIVACY: 1773 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj); 1774 break; 1775 } 1776 out: 1777 gss_put_ctx(ctx); 1778 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status); 1779 return status; 1780 } 1781 1782 static inline int 1783 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1784 struct rpc_rqst *rqstp, __be32 **p) 1785 { 1786 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1787 struct xdr_buf integ_buf; 1788 struct xdr_netobj mic; 1789 u32 data_offset, mic_offset; 1790 u32 integ_len; 1791 u32 maj_stat; 1792 int status = -EIO; 1793 1794 integ_len = ntohl(*(*p)++); 1795 if (integ_len & 3) 1796 return status; 1797 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1798 mic_offset = integ_len + data_offset; 1799 if (mic_offset > rcv_buf->len) 1800 return status; 1801 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1802 return status; 1803 1804 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1805 mic_offset - data_offset)) 1806 return status; 1807 1808 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1809 return status; 1810 1811 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1812 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1813 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1814 if (maj_stat != GSS_S_COMPLETE) 1815 return status; 1816 return 0; 1817 } 1818 1819 static inline int 1820 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1821 struct rpc_rqst *rqstp, __be32 **p) 1822 { 1823 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1824 u32 offset; 1825 u32 opaque_len; 1826 u32 maj_stat; 1827 int status = -EIO; 1828 1829 opaque_len = ntohl(*(*p)++); 1830 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1831 if (offset + opaque_len > rcv_buf->len) 1832 return status; 1833 /* remove padding: */ 1834 rcv_buf->len = offset + opaque_len; 1835 1836 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1837 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1838 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1839 if (maj_stat != GSS_S_COMPLETE) 1840 return status; 1841 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1842 return status; 1843 1844 return 0; 1845 } 1846 1847 static int 1848 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp, 1849 __be32 *p, void *obj) 1850 { 1851 struct xdr_stream xdr; 1852 1853 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p); 1854 return decode(rqstp, &xdr, obj); 1855 } 1856 1857 static int 1858 gss_unwrap_resp(struct rpc_task *task, 1859 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj) 1860 { 1861 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1862 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1863 gc_base); 1864 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1865 __be32 *savedp = p; 1866 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1867 int savedlen = head->iov_len; 1868 int status = -EIO; 1869 1870 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 1871 goto out_decode; 1872 switch (gss_cred->gc_service) { 1873 case RPC_GSS_SVC_NONE: 1874 break; 1875 case RPC_GSS_SVC_INTEGRITY: 1876 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 1877 if (status) 1878 goto out; 1879 break; 1880 case RPC_GSS_SVC_PRIVACY: 1881 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 1882 if (status) 1883 goto out; 1884 break; 1885 } 1886 /* take into account extra slack for integrity and privacy cases: */ 1887 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 1888 + (savedlen - head->iov_len); 1889 out_decode: 1890 status = gss_unwrap_req_decode(decode, rqstp, p, obj); 1891 out: 1892 gss_put_ctx(ctx); 1893 dprintk("RPC: %5u %s returning %d\n", 1894 task->tk_pid, __func__, status); 1895 return status; 1896 } 1897 1898 static const struct rpc_authops authgss_ops = { 1899 .owner = THIS_MODULE, 1900 .au_flavor = RPC_AUTH_GSS, 1901 .au_name = "RPCSEC_GSS", 1902 .create = gss_create, 1903 .destroy = gss_destroy, 1904 .lookup_cred = gss_lookup_cred, 1905 .crcreate = gss_create_cred, 1906 .list_pseudoflavors = gss_mech_list_pseudoflavors, 1907 .info2flavor = gss_mech_info2flavor, 1908 .flavor2info = gss_mech_flavor2info, 1909 }; 1910 1911 static const struct rpc_credops gss_credops = { 1912 .cr_name = "AUTH_GSS", 1913 .crdestroy = gss_destroy_cred, 1914 .cr_init = gss_cred_init, 1915 .crbind = rpcauth_generic_bind_cred, 1916 .crmatch = gss_match, 1917 .crmarshal = gss_marshal, 1918 .crrefresh = gss_refresh, 1919 .crvalidate = gss_validate, 1920 .crwrap_req = gss_wrap_req, 1921 .crunwrap_resp = gss_unwrap_resp, 1922 .crkey_timeout = gss_key_timeout, 1923 }; 1924 1925 static const struct rpc_credops gss_nullops = { 1926 .cr_name = "AUTH_GSS", 1927 .crdestroy = gss_destroy_nullcred, 1928 .crbind = rpcauth_generic_bind_cred, 1929 .crmatch = gss_match, 1930 .crmarshal = gss_marshal, 1931 .crrefresh = gss_refresh_null, 1932 .crvalidate = gss_validate, 1933 .crwrap_req = gss_wrap_req, 1934 .crunwrap_resp = gss_unwrap_resp, 1935 }; 1936 1937 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 1938 .upcall = rpc_pipe_generic_upcall, 1939 .downcall = gss_pipe_downcall, 1940 .destroy_msg = gss_pipe_destroy_msg, 1941 .open_pipe = gss_pipe_open_v0, 1942 .release_pipe = gss_pipe_release, 1943 }; 1944 1945 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 1946 .upcall = rpc_pipe_generic_upcall, 1947 .downcall = gss_pipe_downcall, 1948 .destroy_msg = gss_pipe_destroy_msg, 1949 .open_pipe = gss_pipe_open_v1, 1950 .release_pipe = gss_pipe_release, 1951 }; 1952 1953 static __net_init int rpcsec_gss_init_net(struct net *net) 1954 { 1955 return gss_svc_init_net(net); 1956 } 1957 1958 static __net_exit void rpcsec_gss_exit_net(struct net *net) 1959 { 1960 gss_svc_shutdown_net(net); 1961 } 1962 1963 static struct pernet_operations rpcsec_gss_net_ops = { 1964 .init = rpcsec_gss_init_net, 1965 .exit = rpcsec_gss_exit_net, 1966 }; 1967 1968 /* 1969 * Initialize RPCSEC_GSS module 1970 */ 1971 static int __init init_rpcsec_gss(void) 1972 { 1973 int err = 0; 1974 1975 err = rpcauth_register(&authgss_ops); 1976 if (err) 1977 goto out; 1978 err = gss_svc_init(); 1979 if (err) 1980 goto out_unregister; 1981 err = register_pernet_subsys(&rpcsec_gss_net_ops); 1982 if (err) 1983 goto out_svc_exit; 1984 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 1985 return 0; 1986 out_svc_exit: 1987 gss_svc_shutdown(); 1988 out_unregister: 1989 rpcauth_unregister(&authgss_ops); 1990 out: 1991 return err; 1992 } 1993 1994 static void __exit exit_rpcsec_gss(void) 1995 { 1996 unregister_pernet_subsys(&rpcsec_gss_net_ops); 1997 gss_svc_shutdown(); 1998 rpcauth_unregister(&authgss_ops); 1999 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2000 } 2001 2002 MODULE_ALIAS("rpc-auth-6"); 2003 MODULE_LICENSE("GPL"); 2004 module_param_named(expired_cred_retry_delay, 2005 gss_expired_cred_retry_delay, 2006 uint, 0644); 2007 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2008 "the RPC engine retries an expired credential"); 2009 2010 module_param_named(key_expire_timeo, 2011 gss_key_expire_timeo, 2012 uint, 0644); 2013 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2014 "credential keys lifetime where the NFS layer cleans up " 2015 "prior to key expiration"); 2016 2017 module_init(init_rpcsec_gss) 2018 module_exit(exit_rpcsec_gss) 2019