1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * $Id$ 38 */ 39 40 41 #include <linux/module.h> 42 #include <linux/init.h> 43 #include <linux/types.h> 44 #include <linux/slab.h> 45 #include <linux/sched.h> 46 #include <linux/pagemap.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/auth.h> 49 #include <linux/sunrpc/auth_gss.h> 50 #include <linux/sunrpc/svcauth_gss.h> 51 #include <linux/sunrpc/gss_err.h> 52 #include <linux/workqueue.h> 53 #include <linux/sunrpc/rpc_pipe_fs.h> 54 #include <linux/sunrpc/gss_api.h> 55 #include <asm/uaccess.h> 56 57 static const struct rpc_authops authgss_ops; 58 59 static const struct rpc_credops gss_credops; 60 static const struct rpc_credops gss_nullops; 61 62 #ifdef RPC_DEBUG 63 # define RPCDBG_FACILITY RPCDBG_AUTH 64 #endif 65 66 #define NFS_NGROUPS 16 67 68 #define GSS_CRED_SLACK 1024 /* XXX: unused */ 69 /* length of a krb5 verifier (48), plus data added before arguments when 70 * using integrity (two 4-byte integers): */ 71 #define GSS_VERF_SLACK 100 72 73 /* XXX this define must match the gssd define 74 * as it is passed to gssd to signal the use of 75 * machine creds should be part of the shared rpc interface */ 76 77 #define CA_RUN_AS_MACHINE 0x00000200 78 79 /* dump the buffer in `emacs-hexl' style */ 80 #define isprint(c) ((c > 0x1f) && (c < 0x7f)) 81 82 struct gss_auth { 83 struct kref kref; 84 struct rpc_auth rpc_auth; 85 struct gss_api_mech *mech; 86 enum rpc_gss_svc service; 87 struct rpc_clnt *client; 88 struct dentry *dentry; 89 }; 90 91 static void gss_free_ctx(struct gss_cl_ctx *); 92 static struct rpc_pipe_ops gss_upcall_ops; 93 94 static inline struct gss_cl_ctx * 95 gss_get_ctx(struct gss_cl_ctx *ctx) 96 { 97 atomic_inc(&ctx->count); 98 return ctx; 99 } 100 101 static inline void 102 gss_put_ctx(struct gss_cl_ctx *ctx) 103 { 104 if (atomic_dec_and_test(&ctx->count)) 105 gss_free_ctx(ctx); 106 } 107 108 /* gss_cred_set_ctx: 109 * called by gss_upcall_callback and gss_create_upcall in order 110 * to set the gss context. The actual exchange of an old context 111 * and a new one is protected by the inode->i_lock. 112 */ 113 static void 114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 115 { 116 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 117 struct gss_cl_ctx *old; 118 119 old = gss_cred->gc_ctx; 120 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 121 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 122 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 123 if (old) 124 gss_put_ctx(old); 125 } 126 127 static int 128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred) 129 { 130 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 131 int res = 0; 132 133 rcu_read_lock(); 134 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx) 135 res = 1; 136 rcu_read_unlock(); 137 return res; 138 } 139 140 static const void * 141 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 142 { 143 const void *q = (const void *)((const char *)p + len); 144 if (unlikely(q > end || q < p)) 145 return ERR_PTR(-EFAULT); 146 memcpy(res, p, len); 147 return q; 148 } 149 150 static inline const void * 151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 152 { 153 const void *q; 154 unsigned int len; 155 156 p = simple_get_bytes(p, end, &len, sizeof(len)); 157 if (IS_ERR(p)) 158 return p; 159 q = (const void *)((const char *)p + len); 160 if (unlikely(q > end || q < p)) 161 return ERR_PTR(-EFAULT); 162 dest->data = kmemdup(p, len, GFP_KERNEL); 163 if (unlikely(dest->data == NULL)) 164 return ERR_PTR(-ENOMEM); 165 dest->len = len; 166 return q; 167 } 168 169 static struct gss_cl_ctx * 170 gss_cred_get_ctx(struct rpc_cred *cred) 171 { 172 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 173 struct gss_cl_ctx *ctx = NULL; 174 175 rcu_read_lock(); 176 if (gss_cred->gc_ctx) 177 ctx = gss_get_ctx(gss_cred->gc_ctx); 178 rcu_read_unlock(); 179 return ctx; 180 } 181 182 static struct gss_cl_ctx * 183 gss_alloc_context(void) 184 { 185 struct gss_cl_ctx *ctx; 186 187 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 188 if (ctx != NULL) { 189 ctx->gc_proc = RPC_GSS_PROC_DATA; 190 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 191 spin_lock_init(&ctx->gc_seq_lock); 192 atomic_set(&ctx->count,1); 193 } 194 return ctx; 195 } 196 197 #define GSSD_MIN_TIMEOUT (60 * 60) 198 static const void * 199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 200 { 201 const void *q; 202 unsigned int seclen; 203 unsigned int timeout; 204 u32 window_size; 205 int ret; 206 207 /* First unsigned int gives the lifetime (in seconds) of the cred */ 208 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 209 if (IS_ERR(p)) 210 goto err; 211 if (timeout == 0) 212 timeout = GSSD_MIN_TIMEOUT; 213 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4; 214 /* Sequence number window. Determines the maximum number of simultaneous requests */ 215 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 216 if (IS_ERR(p)) 217 goto err; 218 ctx->gc_win = window_size; 219 /* gssd signals an error by passing ctx->gc_win = 0: */ 220 if (ctx->gc_win == 0) { 221 /* in which case, p points to an error code which we ignore */ 222 p = ERR_PTR(-EACCES); 223 goto err; 224 } 225 /* copy the opaque wire context */ 226 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 227 if (IS_ERR(p)) 228 goto err; 229 /* import the opaque security context */ 230 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 231 if (IS_ERR(p)) 232 goto err; 233 q = (const void *)((const char *)p + seclen); 234 if (unlikely(q > end || q < p)) { 235 p = ERR_PTR(-EFAULT); 236 goto err; 237 } 238 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx); 239 if (ret < 0) { 240 p = ERR_PTR(ret); 241 goto err; 242 } 243 return q; 244 err: 245 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p)); 246 return p; 247 } 248 249 250 struct gss_upcall_msg { 251 atomic_t count; 252 uid_t uid; 253 struct rpc_pipe_msg msg; 254 struct list_head list; 255 struct gss_auth *auth; 256 struct rpc_wait_queue rpc_waitqueue; 257 wait_queue_head_t waitqueue; 258 struct gss_cl_ctx *ctx; 259 }; 260 261 static void 262 gss_release_msg(struct gss_upcall_msg *gss_msg) 263 { 264 if (!atomic_dec_and_test(&gss_msg->count)) 265 return; 266 BUG_ON(!list_empty(&gss_msg->list)); 267 if (gss_msg->ctx != NULL) 268 gss_put_ctx(gss_msg->ctx); 269 kfree(gss_msg); 270 } 271 272 static struct gss_upcall_msg * 273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid) 274 { 275 struct gss_upcall_msg *pos; 276 list_for_each_entry(pos, &rpci->in_downcall, list) { 277 if (pos->uid != uid) 278 continue; 279 atomic_inc(&pos->count); 280 dprintk("RPC: gss_find_upcall found msg %p\n", pos); 281 return pos; 282 } 283 dprintk("RPC: gss_find_upcall found nothing\n"); 284 return NULL; 285 } 286 287 /* Try to add a upcall to the pipefs queue. 288 * If an upcall owned by our uid already exists, then we return a reference 289 * to that upcall instead of adding the new upcall. 290 */ 291 static inline struct gss_upcall_msg * 292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg) 293 { 294 struct inode *inode = gss_auth->dentry->d_inode; 295 struct rpc_inode *rpci = RPC_I(inode); 296 struct gss_upcall_msg *old; 297 298 spin_lock(&inode->i_lock); 299 old = __gss_find_upcall(rpci, gss_msg->uid); 300 if (old == NULL) { 301 atomic_inc(&gss_msg->count); 302 list_add(&gss_msg->list, &rpci->in_downcall); 303 } else 304 gss_msg = old; 305 spin_unlock(&inode->i_lock); 306 return gss_msg; 307 } 308 309 static void 310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 311 { 312 list_del_init(&gss_msg->list); 313 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 314 wake_up_all(&gss_msg->waitqueue); 315 atomic_dec(&gss_msg->count); 316 } 317 318 static void 319 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 320 { 321 struct gss_auth *gss_auth = gss_msg->auth; 322 struct inode *inode = gss_auth->dentry->d_inode; 323 324 if (list_empty(&gss_msg->list)) 325 return; 326 spin_lock(&inode->i_lock); 327 if (!list_empty(&gss_msg->list)) 328 __gss_unhash_msg(gss_msg); 329 spin_unlock(&inode->i_lock); 330 } 331 332 static void 333 gss_upcall_callback(struct rpc_task *task) 334 { 335 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred, 336 struct gss_cred, gc_base); 337 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 338 struct inode *inode = gss_msg->auth->dentry->d_inode; 339 340 spin_lock(&inode->i_lock); 341 if (gss_msg->ctx) 342 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx)); 343 else 344 task->tk_status = gss_msg->msg.errno; 345 gss_cred->gc_upcall = NULL; 346 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 347 spin_unlock(&inode->i_lock); 348 gss_release_msg(gss_msg); 349 } 350 351 static inline struct gss_upcall_msg * 352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid) 353 { 354 struct gss_upcall_msg *gss_msg; 355 356 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL); 357 if (gss_msg != NULL) { 358 INIT_LIST_HEAD(&gss_msg->list); 359 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 360 init_waitqueue_head(&gss_msg->waitqueue); 361 atomic_set(&gss_msg->count, 1); 362 gss_msg->msg.data = &gss_msg->uid; 363 gss_msg->msg.len = sizeof(gss_msg->uid); 364 gss_msg->uid = uid; 365 gss_msg->auth = gss_auth; 366 } 367 return gss_msg; 368 } 369 370 static struct gss_upcall_msg * 371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred) 372 { 373 struct gss_upcall_msg *gss_new, *gss_msg; 374 375 gss_new = gss_alloc_msg(gss_auth, cred->cr_uid); 376 if (gss_new == NULL) 377 return ERR_PTR(-ENOMEM); 378 gss_msg = gss_add_msg(gss_auth, gss_new); 379 if (gss_msg == gss_new) { 380 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg); 381 if (res) { 382 gss_unhash_msg(gss_new); 383 gss_msg = ERR_PTR(res); 384 } 385 } else 386 gss_release_msg(gss_new); 387 return gss_msg; 388 } 389 390 static inline int 391 gss_refresh_upcall(struct rpc_task *task) 392 { 393 struct rpc_cred *cred = task->tk_msg.rpc_cred; 394 struct gss_auth *gss_auth = container_of(cred->cr_auth, 395 struct gss_auth, rpc_auth); 396 struct gss_cred *gss_cred = container_of(cred, 397 struct gss_cred, gc_base); 398 struct gss_upcall_msg *gss_msg; 399 struct inode *inode = gss_auth->dentry->d_inode; 400 int err = 0; 401 402 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid, 403 cred->cr_uid); 404 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred); 405 if (IS_ERR(gss_msg)) { 406 err = PTR_ERR(gss_msg); 407 goto out; 408 } 409 spin_lock(&inode->i_lock); 410 if (gss_cred->gc_upcall != NULL) 411 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL); 412 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 413 task->tk_timeout = 0; 414 gss_cred->gc_upcall = gss_msg; 415 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 416 atomic_inc(&gss_msg->count); 417 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL); 418 } else 419 err = gss_msg->msg.errno; 420 spin_unlock(&inode->i_lock); 421 gss_release_msg(gss_msg); 422 out: 423 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n", 424 task->tk_pid, cred->cr_uid, err); 425 return err; 426 } 427 428 static inline int 429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 430 { 431 struct inode *inode = gss_auth->dentry->d_inode; 432 struct rpc_cred *cred = &gss_cred->gc_base; 433 struct gss_upcall_msg *gss_msg; 434 DEFINE_WAIT(wait); 435 int err = 0; 436 437 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid); 438 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred); 439 if (IS_ERR(gss_msg)) { 440 err = PTR_ERR(gss_msg); 441 goto out; 442 } 443 for (;;) { 444 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE); 445 spin_lock(&inode->i_lock); 446 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 447 break; 448 } 449 spin_unlock(&inode->i_lock); 450 if (signalled()) { 451 err = -ERESTARTSYS; 452 goto out_intr; 453 } 454 schedule(); 455 } 456 if (gss_msg->ctx) 457 gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx)); 458 else 459 err = gss_msg->msg.errno; 460 spin_unlock(&inode->i_lock); 461 out_intr: 462 finish_wait(&gss_msg->waitqueue, &wait); 463 gss_release_msg(gss_msg); 464 out: 465 dprintk("RPC: gss_create_upcall for uid %u result %d\n", 466 cred->cr_uid, err); 467 return err; 468 } 469 470 static ssize_t 471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg, 472 char __user *dst, size_t buflen) 473 { 474 char *data = (char *)msg->data + msg->copied; 475 size_t mlen = min(msg->len, buflen); 476 unsigned long left; 477 478 left = copy_to_user(dst, data, mlen); 479 if (left == mlen) { 480 msg->errno = -EFAULT; 481 return -EFAULT; 482 } 483 484 mlen -= left; 485 msg->copied += mlen; 486 msg->errno = 0; 487 return mlen; 488 } 489 490 #define MSG_BUF_MAXSIZE 1024 491 492 static ssize_t 493 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 494 { 495 const void *p, *end; 496 void *buf; 497 struct rpc_clnt *clnt; 498 struct gss_upcall_msg *gss_msg; 499 struct inode *inode = filp->f_path.dentry->d_inode; 500 struct gss_cl_ctx *ctx; 501 uid_t uid; 502 ssize_t err = -EFBIG; 503 504 if (mlen > MSG_BUF_MAXSIZE) 505 goto out; 506 err = -ENOMEM; 507 buf = kmalloc(mlen, GFP_KERNEL); 508 if (!buf) 509 goto out; 510 511 clnt = RPC_I(inode)->private; 512 err = -EFAULT; 513 if (copy_from_user(buf, src, mlen)) 514 goto err; 515 516 end = (const void *)((char *)buf + mlen); 517 p = simple_get_bytes(buf, end, &uid, sizeof(uid)); 518 if (IS_ERR(p)) { 519 err = PTR_ERR(p); 520 goto err; 521 } 522 523 err = -ENOMEM; 524 ctx = gss_alloc_context(); 525 if (ctx == NULL) 526 goto err; 527 528 err = -ENOENT; 529 /* Find a matching upcall */ 530 spin_lock(&inode->i_lock); 531 gss_msg = __gss_find_upcall(RPC_I(inode), uid); 532 if (gss_msg == NULL) { 533 spin_unlock(&inode->i_lock); 534 goto err_put_ctx; 535 } 536 list_del_init(&gss_msg->list); 537 spin_unlock(&inode->i_lock); 538 539 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 540 if (IS_ERR(p)) { 541 err = PTR_ERR(p); 542 gss_msg->msg.errno = (err == -EAGAIN) ? -EAGAIN : -EACCES; 543 goto err_release_msg; 544 } 545 gss_msg->ctx = gss_get_ctx(ctx); 546 err = mlen; 547 548 err_release_msg: 549 spin_lock(&inode->i_lock); 550 __gss_unhash_msg(gss_msg); 551 spin_unlock(&inode->i_lock); 552 gss_release_msg(gss_msg); 553 err_put_ctx: 554 gss_put_ctx(ctx); 555 err: 556 kfree(buf); 557 out: 558 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err); 559 return err; 560 } 561 562 static void 563 gss_pipe_release(struct inode *inode) 564 { 565 struct rpc_inode *rpci = RPC_I(inode); 566 struct gss_upcall_msg *gss_msg; 567 568 spin_lock(&inode->i_lock); 569 while (!list_empty(&rpci->in_downcall)) { 570 571 gss_msg = list_entry(rpci->in_downcall.next, 572 struct gss_upcall_msg, list); 573 gss_msg->msg.errno = -EPIPE; 574 atomic_inc(&gss_msg->count); 575 __gss_unhash_msg(gss_msg); 576 spin_unlock(&inode->i_lock); 577 gss_release_msg(gss_msg); 578 spin_lock(&inode->i_lock); 579 } 580 spin_unlock(&inode->i_lock); 581 } 582 583 static void 584 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 585 { 586 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 587 static unsigned long ratelimit; 588 589 if (msg->errno < 0) { 590 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n", 591 gss_msg); 592 atomic_inc(&gss_msg->count); 593 gss_unhash_msg(gss_msg); 594 if (msg->errno == -ETIMEDOUT) { 595 unsigned long now = jiffies; 596 if (time_after(now, ratelimit)) { 597 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n" 598 "Please check user daemon is running!\n"); 599 ratelimit = now + 15*HZ; 600 } 601 } 602 gss_release_msg(gss_msg); 603 } 604 } 605 606 /* 607 * NOTE: we have the opportunity to use different 608 * parameters based on the input flavor (which must be a pseudoflavor) 609 */ 610 static struct rpc_auth * 611 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 612 { 613 struct gss_auth *gss_auth; 614 struct rpc_auth * auth; 615 int err = -ENOMEM; /* XXX? */ 616 617 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 618 619 if (!try_module_get(THIS_MODULE)) 620 return ERR_PTR(err); 621 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 622 goto out_dec; 623 gss_auth->client = clnt; 624 err = -EINVAL; 625 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 626 if (!gss_auth->mech) { 627 printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n", 628 __FUNCTION__, flavor); 629 goto err_free; 630 } 631 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 632 if (gss_auth->service == 0) 633 goto err_put_mech; 634 auth = &gss_auth->rpc_auth; 635 auth->au_cslack = GSS_CRED_SLACK >> 2; 636 auth->au_rslack = GSS_VERF_SLACK >> 2; 637 auth->au_ops = &authgss_ops; 638 auth->au_flavor = flavor; 639 atomic_set(&auth->au_count, 1); 640 kref_init(&gss_auth->kref); 641 642 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name, 643 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 644 if (IS_ERR(gss_auth->dentry)) { 645 err = PTR_ERR(gss_auth->dentry); 646 goto err_put_mech; 647 } 648 649 err = rpcauth_init_credcache(auth); 650 if (err) 651 goto err_unlink_pipe; 652 653 return auth; 654 err_unlink_pipe: 655 rpc_unlink(gss_auth->dentry); 656 err_put_mech: 657 gss_mech_put(gss_auth->mech); 658 err_free: 659 kfree(gss_auth); 660 out_dec: 661 module_put(THIS_MODULE); 662 return ERR_PTR(err); 663 } 664 665 static void 666 gss_free(struct gss_auth *gss_auth) 667 { 668 rpc_unlink(gss_auth->dentry); 669 gss_auth->dentry = NULL; 670 gss_mech_put(gss_auth->mech); 671 672 kfree(gss_auth); 673 module_put(THIS_MODULE); 674 } 675 676 static void 677 gss_free_callback(struct kref *kref) 678 { 679 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 680 681 gss_free(gss_auth); 682 } 683 684 static void 685 gss_destroy(struct rpc_auth *auth) 686 { 687 struct gss_auth *gss_auth; 688 689 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 690 auth, auth->au_flavor); 691 692 rpcauth_destroy_credcache(auth); 693 694 gss_auth = container_of(auth, struct gss_auth, rpc_auth); 695 kref_put(&gss_auth->kref, gss_free_callback); 696 } 697 698 /* 699 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 700 * to the server with the GSS control procedure field set to 701 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 702 * all RPCSEC_GSS state associated with that context. 703 */ 704 static int 705 gss_destroying_context(struct rpc_cred *cred) 706 { 707 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 708 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 709 struct rpc_task *task; 710 711 if (gss_cred->gc_ctx == NULL || 712 gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY) 713 return 0; 714 715 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY; 716 cred->cr_ops = &gss_nullops; 717 718 /* Take a reference to ensure the cred will be destroyed either 719 * by the RPC call or by the put_rpccred() below */ 720 get_rpccred(cred); 721 722 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC); 723 if (!IS_ERR(task)) 724 rpc_put_task(task); 725 726 put_rpccred(cred); 727 return 1; 728 } 729 730 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 731 * to create a new cred or context, so they check that things have been 732 * allocated before freeing them. */ 733 static void 734 gss_do_free_ctx(struct gss_cl_ctx *ctx) 735 { 736 dprintk("RPC: gss_free_ctx\n"); 737 738 kfree(ctx->gc_wire_ctx.data); 739 kfree(ctx); 740 } 741 742 static void 743 gss_free_ctx_callback(struct rcu_head *head) 744 { 745 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 746 gss_do_free_ctx(ctx); 747 } 748 749 static void 750 gss_free_ctx(struct gss_cl_ctx *ctx) 751 { 752 struct gss_ctx *gc_gss_ctx; 753 754 gc_gss_ctx = rcu_dereference(ctx->gc_gss_ctx); 755 rcu_assign_pointer(ctx->gc_gss_ctx, NULL); 756 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 757 if (gc_gss_ctx) 758 gss_delete_sec_context(&gc_gss_ctx); 759 } 760 761 static void 762 gss_free_cred(struct gss_cred *gss_cred) 763 { 764 dprintk("RPC: gss_free_cred %p\n", gss_cred); 765 kfree(gss_cred); 766 } 767 768 static void 769 gss_free_cred_callback(struct rcu_head *head) 770 { 771 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 772 gss_free_cred(gss_cred); 773 } 774 775 static void 776 gss_destroy_cred(struct rpc_cred *cred) 777 { 778 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 779 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 780 struct gss_cl_ctx *ctx = gss_cred->gc_ctx; 781 782 if (gss_destroying_context(cred)) 783 return; 784 rcu_assign_pointer(gss_cred->gc_ctx, NULL); 785 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 786 if (ctx) 787 gss_put_ctx(ctx); 788 kref_put(&gss_auth->kref, gss_free_callback); 789 } 790 791 /* 792 * Lookup RPCSEC_GSS cred for the current process 793 */ 794 static struct rpc_cred * 795 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 796 { 797 return rpcauth_lookup_credcache(auth, acred, flags); 798 } 799 800 static struct rpc_cred * 801 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 802 { 803 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 804 struct gss_cred *cred = NULL; 805 int err = -ENOMEM; 806 807 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n", 808 acred->uid, auth->au_flavor); 809 810 if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL))) 811 goto out_err; 812 813 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 814 /* 815 * Note: in order to force a call to call_refresh(), we deliberately 816 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 817 */ 818 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 819 cred->gc_service = gss_auth->service; 820 kref_get(&gss_auth->kref); 821 return &cred->gc_base; 822 823 out_err: 824 dprintk("RPC: gss_create_cred failed with error %d\n", err); 825 return ERR_PTR(err); 826 } 827 828 static int 829 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 830 { 831 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 832 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 833 int err; 834 835 do { 836 err = gss_create_upcall(gss_auth, gss_cred); 837 } while (err == -EAGAIN); 838 return err; 839 } 840 841 static int 842 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 843 { 844 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 845 846 /* 847 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then 848 * we don't really care if the credential has expired or not, 849 * since the caller should be prepared to reinitialise it. 850 */ 851 if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 852 goto out; 853 /* Don't match with creds that have expired. */ 854 if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry)) 855 return 0; 856 out: 857 return (rc->cr_uid == acred->uid); 858 } 859 860 /* 861 * Marshal credentials. 862 * Maybe we should keep a cached credential for performance reasons. 863 */ 864 static __be32 * 865 gss_marshal(struct rpc_task *task, __be32 *p) 866 { 867 struct rpc_cred *cred = task->tk_msg.rpc_cred; 868 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 869 gc_base); 870 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 871 __be32 *cred_len; 872 struct rpc_rqst *req = task->tk_rqstp; 873 u32 maj_stat = 0; 874 struct xdr_netobj mic; 875 struct kvec iov; 876 struct xdr_buf verf_buf; 877 878 dprintk("RPC: %5u gss_marshal\n", task->tk_pid); 879 880 *p++ = htonl(RPC_AUTH_GSS); 881 cred_len = p++; 882 883 spin_lock(&ctx->gc_seq_lock); 884 req->rq_seqno = ctx->gc_seq++; 885 spin_unlock(&ctx->gc_seq_lock); 886 887 *p++ = htonl((u32) RPC_GSS_VERSION); 888 *p++ = htonl((u32) ctx->gc_proc); 889 *p++ = htonl((u32) req->rq_seqno); 890 *p++ = htonl((u32) gss_cred->gc_service); 891 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 892 *cred_len = htonl((p - (cred_len + 1)) << 2); 893 894 /* We compute the checksum for the verifier over the xdr-encoded bytes 895 * starting with the xid and ending at the end of the credential: */ 896 iov.iov_base = xprt_skip_transport_header(task->tk_xprt, 897 req->rq_snd_buf.head[0].iov_base); 898 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 899 xdr_buf_from_iov(&iov, &verf_buf); 900 901 /* set verifier flavor*/ 902 *p++ = htonl(RPC_AUTH_GSS); 903 904 mic.data = (u8 *)(p + 1); 905 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 906 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 907 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 908 } else if (maj_stat != 0) { 909 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 910 goto out_put_ctx; 911 } 912 p = xdr_encode_opaque(p, NULL, mic.len); 913 gss_put_ctx(ctx); 914 return p; 915 out_put_ctx: 916 gss_put_ctx(ctx); 917 return NULL; 918 } 919 920 /* 921 * Refresh credentials. XXX - finish 922 */ 923 static int 924 gss_refresh(struct rpc_task *task) 925 { 926 927 if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred)) 928 return gss_refresh_upcall(task); 929 return 0; 930 } 931 932 /* Dummy refresh routine: used only when destroying the context */ 933 static int 934 gss_refresh_null(struct rpc_task *task) 935 { 936 return -EACCES; 937 } 938 939 static __be32 * 940 gss_validate(struct rpc_task *task, __be32 *p) 941 { 942 struct rpc_cred *cred = task->tk_msg.rpc_cred; 943 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 944 __be32 seq; 945 struct kvec iov; 946 struct xdr_buf verf_buf; 947 struct xdr_netobj mic; 948 u32 flav,len; 949 u32 maj_stat; 950 951 dprintk("RPC: %5u gss_validate\n", task->tk_pid); 952 953 flav = ntohl(*p++); 954 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 955 goto out_bad; 956 if (flav != RPC_AUTH_GSS) 957 goto out_bad; 958 seq = htonl(task->tk_rqstp->rq_seqno); 959 iov.iov_base = &seq; 960 iov.iov_len = sizeof(seq); 961 xdr_buf_from_iov(&iov, &verf_buf); 962 mic.data = (u8 *)p; 963 mic.len = len; 964 965 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 966 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 967 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 968 if (maj_stat) { 969 dprintk("RPC: %5u gss_validate: gss_verify_mic returned " 970 "error 0x%08x\n", task->tk_pid, maj_stat); 971 goto out_bad; 972 } 973 /* We leave it to unwrap to calculate au_rslack. For now we just 974 * calculate the length of the verifier: */ 975 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 976 gss_put_ctx(ctx); 977 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n", 978 task->tk_pid); 979 return p + XDR_QUADLEN(len); 980 out_bad: 981 gss_put_ctx(ctx); 982 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid); 983 return NULL; 984 } 985 986 static inline int 987 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 988 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 989 { 990 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 991 struct xdr_buf integ_buf; 992 __be32 *integ_len = NULL; 993 struct xdr_netobj mic; 994 u32 offset; 995 __be32 *q; 996 struct kvec *iov; 997 u32 maj_stat = 0; 998 int status = -EIO; 999 1000 integ_len = p++; 1001 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1002 *p++ = htonl(rqstp->rq_seqno); 1003 1004 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1005 if (status) 1006 return status; 1007 1008 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1009 offset, snd_buf->len - offset)) 1010 return status; 1011 *integ_len = htonl(integ_buf.len); 1012 1013 /* guess whether we're in the head or the tail: */ 1014 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1015 iov = snd_buf->tail; 1016 else 1017 iov = snd_buf->head; 1018 p = iov->iov_base + iov->iov_len; 1019 mic.data = (u8 *)(p + 1); 1020 1021 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1022 status = -EIO; /* XXX? */ 1023 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1024 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1025 else if (maj_stat) 1026 return status; 1027 q = xdr_encode_opaque(p, NULL, mic.len); 1028 1029 offset = (u8 *)q - (u8 *)p; 1030 iov->iov_len += offset; 1031 snd_buf->len += offset; 1032 return 0; 1033 } 1034 1035 static void 1036 priv_release_snd_buf(struct rpc_rqst *rqstp) 1037 { 1038 int i; 1039 1040 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1041 __free_page(rqstp->rq_enc_pages[i]); 1042 kfree(rqstp->rq_enc_pages); 1043 } 1044 1045 static int 1046 alloc_enc_pages(struct rpc_rqst *rqstp) 1047 { 1048 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1049 int first, last, i; 1050 1051 if (snd_buf->page_len == 0) { 1052 rqstp->rq_enc_pages_num = 0; 1053 return 0; 1054 } 1055 1056 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1057 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT; 1058 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1059 rqstp->rq_enc_pages 1060 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), 1061 GFP_NOFS); 1062 if (!rqstp->rq_enc_pages) 1063 goto out; 1064 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1065 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1066 if (rqstp->rq_enc_pages[i] == NULL) 1067 goto out_free; 1068 } 1069 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1070 return 0; 1071 out_free: 1072 for (i--; i >= 0; i--) { 1073 __free_page(rqstp->rq_enc_pages[i]); 1074 } 1075 out: 1076 return -EAGAIN; 1077 } 1078 1079 static inline int 1080 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1081 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 1082 { 1083 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1084 u32 offset; 1085 u32 maj_stat; 1086 int status; 1087 __be32 *opaque_len; 1088 struct page **inpages; 1089 int first; 1090 int pad; 1091 struct kvec *iov; 1092 char *tmp; 1093 1094 opaque_len = p++; 1095 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1096 *p++ = htonl(rqstp->rq_seqno); 1097 1098 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1099 if (status) 1100 return status; 1101 1102 status = alloc_enc_pages(rqstp); 1103 if (status) 1104 return status; 1105 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1106 inpages = snd_buf->pages + first; 1107 snd_buf->pages = rqstp->rq_enc_pages; 1108 snd_buf->page_base -= first << PAGE_CACHE_SHIFT; 1109 /* Give the tail its own page, in case we need extra space in the 1110 * head when wrapping: */ 1111 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1112 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1113 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1114 snd_buf->tail[0].iov_base = tmp; 1115 } 1116 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1117 /* RPC_SLACK_SPACE should prevent this ever happening: */ 1118 BUG_ON(snd_buf->len > snd_buf->buflen); 1119 status = -EIO; 1120 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1121 * done anyway, so it's safe to put the request on the wire: */ 1122 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1123 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1124 else if (maj_stat) 1125 return status; 1126 1127 *opaque_len = htonl(snd_buf->len - offset); 1128 /* guess whether we're in the head or the tail: */ 1129 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1130 iov = snd_buf->tail; 1131 else 1132 iov = snd_buf->head; 1133 p = iov->iov_base + iov->iov_len; 1134 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1135 memset(p, 0, pad); 1136 iov->iov_len += pad; 1137 snd_buf->len += pad; 1138 1139 return 0; 1140 } 1141 1142 static int 1143 gss_wrap_req(struct rpc_task *task, 1144 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj) 1145 { 1146 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1147 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1148 gc_base); 1149 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1150 int status = -EIO; 1151 1152 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid); 1153 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1154 /* The spec seems a little ambiguous here, but I think that not 1155 * wrapping context destruction requests makes the most sense. 1156 */ 1157 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1158 goto out; 1159 } 1160 switch (gss_cred->gc_service) { 1161 case RPC_GSS_SVC_NONE: 1162 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1163 break; 1164 case RPC_GSS_SVC_INTEGRITY: 1165 status = gss_wrap_req_integ(cred, ctx, encode, 1166 rqstp, p, obj); 1167 break; 1168 case RPC_GSS_SVC_PRIVACY: 1169 status = gss_wrap_req_priv(cred, ctx, encode, 1170 rqstp, p, obj); 1171 break; 1172 } 1173 out: 1174 gss_put_ctx(ctx); 1175 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status); 1176 return status; 1177 } 1178 1179 static inline int 1180 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1181 struct rpc_rqst *rqstp, __be32 **p) 1182 { 1183 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1184 struct xdr_buf integ_buf; 1185 struct xdr_netobj mic; 1186 u32 data_offset, mic_offset; 1187 u32 integ_len; 1188 u32 maj_stat; 1189 int status = -EIO; 1190 1191 integ_len = ntohl(*(*p)++); 1192 if (integ_len & 3) 1193 return status; 1194 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1195 mic_offset = integ_len + data_offset; 1196 if (mic_offset > rcv_buf->len) 1197 return status; 1198 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1199 return status; 1200 1201 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1202 mic_offset - data_offset)) 1203 return status; 1204 1205 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1206 return status; 1207 1208 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1209 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1210 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1211 if (maj_stat != GSS_S_COMPLETE) 1212 return status; 1213 return 0; 1214 } 1215 1216 static inline int 1217 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1218 struct rpc_rqst *rqstp, __be32 **p) 1219 { 1220 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1221 u32 offset; 1222 u32 opaque_len; 1223 u32 maj_stat; 1224 int status = -EIO; 1225 1226 opaque_len = ntohl(*(*p)++); 1227 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1228 if (offset + opaque_len > rcv_buf->len) 1229 return status; 1230 /* remove padding: */ 1231 rcv_buf->len = offset + opaque_len; 1232 1233 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1234 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1235 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1236 if (maj_stat != GSS_S_COMPLETE) 1237 return status; 1238 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1239 return status; 1240 1241 return 0; 1242 } 1243 1244 1245 static int 1246 gss_unwrap_resp(struct rpc_task *task, 1247 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj) 1248 { 1249 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1250 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1251 gc_base); 1252 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1253 __be32 *savedp = p; 1254 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1255 int savedlen = head->iov_len; 1256 int status = -EIO; 1257 1258 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 1259 goto out_decode; 1260 switch (gss_cred->gc_service) { 1261 case RPC_GSS_SVC_NONE: 1262 break; 1263 case RPC_GSS_SVC_INTEGRITY: 1264 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 1265 if (status) 1266 goto out; 1267 break; 1268 case RPC_GSS_SVC_PRIVACY: 1269 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 1270 if (status) 1271 goto out; 1272 break; 1273 } 1274 /* take into account extra slack for integrity and privacy cases: */ 1275 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 1276 + (savedlen - head->iov_len); 1277 out_decode: 1278 status = rpc_call_xdrproc(decode, rqstp, p, obj); 1279 out: 1280 gss_put_ctx(ctx); 1281 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid, 1282 status); 1283 return status; 1284 } 1285 1286 static const struct rpc_authops authgss_ops = { 1287 .owner = THIS_MODULE, 1288 .au_flavor = RPC_AUTH_GSS, 1289 #ifdef RPC_DEBUG 1290 .au_name = "RPCSEC_GSS", 1291 #endif 1292 .create = gss_create, 1293 .destroy = gss_destroy, 1294 .lookup_cred = gss_lookup_cred, 1295 .crcreate = gss_create_cred 1296 }; 1297 1298 static const struct rpc_credops gss_credops = { 1299 .cr_name = "AUTH_GSS", 1300 .crdestroy = gss_destroy_cred, 1301 .cr_init = gss_cred_init, 1302 .crmatch = gss_match, 1303 .crmarshal = gss_marshal, 1304 .crrefresh = gss_refresh, 1305 .crvalidate = gss_validate, 1306 .crwrap_req = gss_wrap_req, 1307 .crunwrap_resp = gss_unwrap_resp, 1308 }; 1309 1310 static const struct rpc_credops gss_nullops = { 1311 .cr_name = "AUTH_GSS", 1312 .crdestroy = gss_destroy_cred, 1313 .crmatch = gss_match, 1314 .crmarshal = gss_marshal, 1315 .crrefresh = gss_refresh_null, 1316 .crvalidate = gss_validate, 1317 .crwrap_req = gss_wrap_req, 1318 .crunwrap_resp = gss_unwrap_resp, 1319 }; 1320 1321 static struct rpc_pipe_ops gss_upcall_ops = { 1322 .upcall = gss_pipe_upcall, 1323 .downcall = gss_pipe_downcall, 1324 .destroy_msg = gss_pipe_destroy_msg, 1325 .release_pipe = gss_pipe_release, 1326 }; 1327 1328 /* 1329 * Initialize RPCSEC_GSS module 1330 */ 1331 static int __init init_rpcsec_gss(void) 1332 { 1333 int err = 0; 1334 1335 err = rpcauth_register(&authgss_ops); 1336 if (err) 1337 goto out; 1338 err = gss_svc_init(); 1339 if (err) 1340 goto out_unregister; 1341 return 0; 1342 out_unregister: 1343 rpcauth_unregister(&authgss_ops); 1344 out: 1345 return err; 1346 } 1347 1348 static void __exit exit_rpcsec_gss(void) 1349 { 1350 gss_svc_shutdown(); 1351 rpcauth_unregister(&authgss_ops); 1352 } 1353 1354 MODULE_LICENSE("GPL"); 1355 module_init(init_rpcsec_gss) 1356 module_exit(exit_rpcsec_gss) 1357