1 /* 2 * linux/net/sunrpc/auth_gss/auth_gss.c 3 * 4 * RPCSEC_GSS client authentication. 5 * 6 * Copyright (c) 2000 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Dug Song <dugsong@monkey.org> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/sched.h> 44 #include <linux/pagemap.h> 45 #include <linux/sunrpc/clnt.h> 46 #include <linux/sunrpc/auth.h> 47 #include <linux/sunrpc/auth_gss.h> 48 #include <linux/sunrpc/svcauth_gss.h> 49 #include <linux/sunrpc/gss_err.h> 50 #include <linux/workqueue.h> 51 #include <linux/sunrpc/rpc_pipe_fs.h> 52 #include <linux/sunrpc/gss_api.h> 53 #include <asm/uaccess.h> 54 55 static const struct rpc_authops authgss_ops; 56 57 static const struct rpc_credops gss_credops; 58 static const struct rpc_credops gss_nullops; 59 60 #ifdef RPC_DEBUG 61 # define RPCDBG_FACILITY RPCDBG_AUTH 62 #endif 63 64 #define GSS_CRED_SLACK 1024 65 /* length of a krb5 verifier (48), plus data added before arguments when 66 * using integrity (two 4-byte integers): */ 67 #define GSS_VERF_SLACK 100 68 69 struct gss_auth { 70 struct kref kref; 71 struct rpc_auth rpc_auth; 72 struct gss_api_mech *mech; 73 enum rpc_gss_svc service; 74 struct rpc_clnt *client; 75 struct dentry *dentry; 76 }; 77 78 static void gss_free_ctx(struct gss_cl_ctx *); 79 static struct rpc_pipe_ops gss_upcall_ops; 80 81 static inline struct gss_cl_ctx * 82 gss_get_ctx(struct gss_cl_ctx *ctx) 83 { 84 atomic_inc(&ctx->count); 85 return ctx; 86 } 87 88 static inline void 89 gss_put_ctx(struct gss_cl_ctx *ctx) 90 { 91 if (atomic_dec_and_test(&ctx->count)) 92 gss_free_ctx(ctx); 93 } 94 95 /* gss_cred_set_ctx: 96 * called by gss_upcall_callback and gss_create_upcall in order 97 * to set the gss context. The actual exchange of an old context 98 * and a new one is protected by the inode->i_lock. 99 */ 100 static void 101 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 102 { 103 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 104 105 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 106 return; 107 gss_get_ctx(ctx); 108 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 109 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 110 smp_mb__before_clear_bit(); 111 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 112 } 113 114 static const void * 115 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 116 { 117 const void *q = (const void *)((const char *)p + len); 118 if (unlikely(q > end || q < p)) 119 return ERR_PTR(-EFAULT); 120 memcpy(res, p, len); 121 return q; 122 } 123 124 static inline const void * 125 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 126 { 127 const void *q; 128 unsigned int len; 129 130 p = simple_get_bytes(p, end, &len, sizeof(len)); 131 if (IS_ERR(p)) 132 return p; 133 q = (const void *)((const char *)p + len); 134 if (unlikely(q > end || q < p)) 135 return ERR_PTR(-EFAULT); 136 dest->data = kmemdup(p, len, GFP_NOFS); 137 if (unlikely(dest->data == NULL)) 138 return ERR_PTR(-ENOMEM); 139 dest->len = len; 140 return q; 141 } 142 143 static struct gss_cl_ctx * 144 gss_cred_get_ctx(struct rpc_cred *cred) 145 { 146 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 147 struct gss_cl_ctx *ctx = NULL; 148 149 rcu_read_lock(); 150 if (gss_cred->gc_ctx) 151 ctx = gss_get_ctx(gss_cred->gc_ctx); 152 rcu_read_unlock(); 153 return ctx; 154 } 155 156 static struct gss_cl_ctx * 157 gss_alloc_context(void) 158 { 159 struct gss_cl_ctx *ctx; 160 161 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 162 if (ctx != NULL) { 163 ctx->gc_proc = RPC_GSS_PROC_DATA; 164 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 165 spin_lock_init(&ctx->gc_seq_lock); 166 atomic_set(&ctx->count,1); 167 } 168 return ctx; 169 } 170 171 #define GSSD_MIN_TIMEOUT (60 * 60) 172 static const void * 173 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 174 { 175 const void *q; 176 unsigned int seclen; 177 unsigned int timeout; 178 u32 window_size; 179 int ret; 180 181 /* First unsigned int gives the lifetime (in seconds) of the cred */ 182 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 183 if (IS_ERR(p)) 184 goto err; 185 if (timeout == 0) 186 timeout = GSSD_MIN_TIMEOUT; 187 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4; 188 /* Sequence number window. Determines the maximum number of simultaneous requests */ 189 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 190 if (IS_ERR(p)) 191 goto err; 192 ctx->gc_win = window_size; 193 /* gssd signals an error by passing ctx->gc_win = 0: */ 194 if (ctx->gc_win == 0) { 195 /* in which case, p points to an error code which we ignore */ 196 p = ERR_PTR(-EACCES); 197 goto err; 198 } 199 /* copy the opaque wire context */ 200 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 201 if (IS_ERR(p)) 202 goto err; 203 /* import the opaque security context */ 204 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 205 if (IS_ERR(p)) 206 goto err; 207 q = (const void *)((const char *)p + seclen); 208 if (unlikely(q > end || q < p)) { 209 p = ERR_PTR(-EFAULT); 210 goto err; 211 } 212 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx); 213 if (ret < 0) { 214 p = ERR_PTR(ret); 215 goto err; 216 } 217 return q; 218 err: 219 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p)); 220 return p; 221 } 222 223 224 struct gss_upcall_msg { 225 atomic_t count; 226 uid_t uid; 227 struct rpc_pipe_msg msg; 228 struct list_head list; 229 struct gss_auth *auth; 230 struct rpc_wait_queue rpc_waitqueue; 231 wait_queue_head_t waitqueue; 232 struct gss_cl_ctx *ctx; 233 }; 234 235 static void 236 gss_release_msg(struct gss_upcall_msg *gss_msg) 237 { 238 if (!atomic_dec_and_test(&gss_msg->count)) 239 return; 240 BUG_ON(!list_empty(&gss_msg->list)); 241 if (gss_msg->ctx != NULL) 242 gss_put_ctx(gss_msg->ctx); 243 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 244 kfree(gss_msg); 245 } 246 247 static struct gss_upcall_msg * 248 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid) 249 { 250 struct gss_upcall_msg *pos; 251 list_for_each_entry(pos, &rpci->in_downcall, list) { 252 if (pos->uid != uid) 253 continue; 254 atomic_inc(&pos->count); 255 dprintk("RPC: gss_find_upcall found msg %p\n", pos); 256 return pos; 257 } 258 dprintk("RPC: gss_find_upcall found nothing\n"); 259 return NULL; 260 } 261 262 /* Try to add an upcall to the pipefs queue. 263 * If an upcall owned by our uid already exists, then we return a reference 264 * to that upcall instead of adding the new upcall. 265 */ 266 static inline struct gss_upcall_msg * 267 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg) 268 { 269 struct inode *inode = gss_auth->dentry->d_inode; 270 struct rpc_inode *rpci = RPC_I(inode); 271 struct gss_upcall_msg *old; 272 273 spin_lock(&inode->i_lock); 274 old = __gss_find_upcall(rpci, gss_msg->uid); 275 if (old == NULL) { 276 atomic_inc(&gss_msg->count); 277 list_add(&gss_msg->list, &rpci->in_downcall); 278 } else 279 gss_msg = old; 280 spin_unlock(&inode->i_lock); 281 return gss_msg; 282 } 283 284 static void 285 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 286 { 287 list_del_init(&gss_msg->list); 288 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 289 wake_up_all(&gss_msg->waitqueue); 290 atomic_dec(&gss_msg->count); 291 } 292 293 static void 294 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 295 { 296 struct gss_auth *gss_auth = gss_msg->auth; 297 struct inode *inode = gss_auth->dentry->d_inode; 298 299 if (list_empty(&gss_msg->list)) 300 return; 301 spin_lock(&inode->i_lock); 302 if (!list_empty(&gss_msg->list)) 303 __gss_unhash_msg(gss_msg); 304 spin_unlock(&inode->i_lock); 305 } 306 307 static void 308 gss_upcall_callback(struct rpc_task *task) 309 { 310 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred, 311 struct gss_cred, gc_base); 312 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 313 struct inode *inode = gss_msg->auth->dentry->d_inode; 314 315 spin_lock(&inode->i_lock); 316 if (gss_msg->ctx) 317 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx); 318 else 319 task->tk_status = gss_msg->msg.errno; 320 gss_cred->gc_upcall = NULL; 321 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 322 spin_unlock(&inode->i_lock); 323 gss_release_msg(gss_msg); 324 } 325 326 static inline struct gss_upcall_msg * 327 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid) 328 { 329 struct gss_upcall_msg *gss_msg; 330 331 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 332 if (gss_msg != NULL) { 333 INIT_LIST_HEAD(&gss_msg->list); 334 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 335 init_waitqueue_head(&gss_msg->waitqueue); 336 atomic_set(&gss_msg->count, 1); 337 gss_msg->msg.data = &gss_msg->uid; 338 gss_msg->msg.len = sizeof(gss_msg->uid); 339 gss_msg->uid = uid; 340 gss_msg->auth = gss_auth; 341 } 342 return gss_msg; 343 } 344 345 static struct gss_upcall_msg * 346 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred) 347 { 348 struct gss_cred *gss_cred = container_of(cred, 349 struct gss_cred, gc_base); 350 struct gss_upcall_msg *gss_new, *gss_msg; 351 uid_t uid = cred->cr_uid; 352 353 /* Special case: rpc.gssd assumes that uid == 0 implies machine creds */ 354 if (gss_cred->gc_machine_cred != 0) 355 uid = 0; 356 357 gss_new = gss_alloc_msg(gss_auth, uid); 358 if (gss_new == NULL) 359 return ERR_PTR(-ENOMEM); 360 gss_msg = gss_add_msg(gss_auth, gss_new); 361 if (gss_msg == gss_new) { 362 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg); 363 if (res) { 364 gss_unhash_msg(gss_new); 365 gss_msg = ERR_PTR(res); 366 } 367 } else 368 gss_release_msg(gss_new); 369 return gss_msg; 370 } 371 372 static inline int 373 gss_refresh_upcall(struct rpc_task *task) 374 { 375 struct rpc_cred *cred = task->tk_msg.rpc_cred; 376 struct gss_auth *gss_auth = container_of(cred->cr_auth, 377 struct gss_auth, rpc_auth); 378 struct gss_cred *gss_cred = container_of(cred, 379 struct gss_cred, gc_base); 380 struct gss_upcall_msg *gss_msg; 381 struct inode *inode = gss_auth->dentry->d_inode; 382 int err = 0; 383 384 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid, 385 cred->cr_uid); 386 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred); 387 if (IS_ERR(gss_msg)) { 388 err = PTR_ERR(gss_msg); 389 goto out; 390 } 391 spin_lock(&inode->i_lock); 392 if (gss_cred->gc_upcall != NULL) 393 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 394 else if (gss_msg->ctx != NULL) { 395 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx); 396 gss_cred->gc_upcall = NULL; 397 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 398 } else if (gss_msg->msg.errno >= 0) { 399 task->tk_timeout = 0; 400 gss_cred->gc_upcall = gss_msg; 401 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 402 atomic_inc(&gss_msg->count); 403 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 404 } else 405 err = gss_msg->msg.errno; 406 spin_unlock(&inode->i_lock); 407 gss_release_msg(gss_msg); 408 out: 409 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n", 410 task->tk_pid, cred->cr_uid, err); 411 return err; 412 } 413 414 static inline int 415 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 416 { 417 struct inode *inode = gss_auth->dentry->d_inode; 418 struct rpc_cred *cred = &gss_cred->gc_base; 419 struct gss_upcall_msg *gss_msg; 420 DEFINE_WAIT(wait); 421 int err = 0; 422 423 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid); 424 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred); 425 if (IS_ERR(gss_msg)) { 426 err = PTR_ERR(gss_msg); 427 goto out; 428 } 429 for (;;) { 430 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE); 431 spin_lock(&inode->i_lock); 432 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 433 break; 434 } 435 spin_unlock(&inode->i_lock); 436 if (signalled()) { 437 err = -ERESTARTSYS; 438 goto out_intr; 439 } 440 schedule(); 441 } 442 if (gss_msg->ctx) 443 gss_cred_set_ctx(cred, gss_msg->ctx); 444 else 445 err = gss_msg->msg.errno; 446 spin_unlock(&inode->i_lock); 447 out_intr: 448 finish_wait(&gss_msg->waitqueue, &wait); 449 gss_release_msg(gss_msg); 450 out: 451 dprintk("RPC: gss_create_upcall for uid %u result %d\n", 452 cred->cr_uid, err); 453 return err; 454 } 455 456 static ssize_t 457 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg, 458 char __user *dst, size_t buflen) 459 { 460 char *data = (char *)msg->data + msg->copied; 461 size_t mlen = min(msg->len, buflen); 462 unsigned long left; 463 464 left = copy_to_user(dst, data, mlen); 465 if (left == mlen) { 466 msg->errno = -EFAULT; 467 return -EFAULT; 468 } 469 470 mlen -= left; 471 msg->copied += mlen; 472 msg->errno = 0; 473 return mlen; 474 } 475 476 #define MSG_BUF_MAXSIZE 1024 477 478 static ssize_t 479 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 480 { 481 const void *p, *end; 482 void *buf; 483 struct gss_upcall_msg *gss_msg; 484 struct inode *inode = filp->f_path.dentry->d_inode; 485 struct gss_cl_ctx *ctx; 486 uid_t uid; 487 ssize_t err = -EFBIG; 488 489 if (mlen > MSG_BUF_MAXSIZE) 490 goto out; 491 err = -ENOMEM; 492 buf = kmalloc(mlen, GFP_NOFS); 493 if (!buf) 494 goto out; 495 496 err = -EFAULT; 497 if (copy_from_user(buf, src, mlen)) 498 goto err; 499 500 end = (const void *)((char *)buf + mlen); 501 p = simple_get_bytes(buf, end, &uid, sizeof(uid)); 502 if (IS_ERR(p)) { 503 err = PTR_ERR(p); 504 goto err; 505 } 506 507 err = -ENOMEM; 508 ctx = gss_alloc_context(); 509 if (ctx == NULL) 510 goto err; 511 512 err = -ENOENT; 513 /* Find a matching upcall */ 514 spin_lock(&inode->i_lock); 515 gss_msg = __gss_find_upcall(RPC_I(inode), uid); 516 if (gss_msg == NULL) { 517 spin_unlock(&inode->i_lock); 518 goto err_put_ctx; 519 } 520 list_del_init(&gss_msg->list); 521 spin_unlock(&inode->i_lock); 522 523 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 524 if (IS_ERR(p)) { 525 err = PTR_ERR(p); 526 gss_msg->msg.errno = (err == -EAGAIN) ? -EAGAIN : -EACCES; 527 goto err_release_msg; 528 } 529 gss_msg->ctx = gss_get_ctx(ctx); 530 err = mlen; 531 532 err_release_msg: 533 spin_lock(&inode->i_lock); 534 __gss_unhash_msg(gss_msg); 535 spin_unlock(&inode->i_lock); 536 gss_release_msg(gss_msg); 537 err_put_ctx: 538 gss_put_ctx(ctx); 539 err: 540 kfree(buf); 541 out: 542 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err); 543 return err; 544 } 545 546 static void 547 gss_pipe_release(struct inode *inode) 548 { 549 struct rpc_inode *rpci = RPC_I(inode); 550 struct gss_upcall_msg *gss_msg; 551 552 spin_lock(&inode->i_lock); 553 while (!list_empty(&rpci->in_downcall)) { 554 555 gss_msg = list_entry(rpci->in_downcall.next, 556 struct gss_upcall_msg, list); 557 gss_msg->msg.errno = -EPIPE; 558 atomic_inc(&gss_msg->count); 559 __gss_unhash_msg(gss_msg); 560 spin_unlock(&inode->i_lock); 561 gss_release_msg(gss_msg); 562 spin_lock(&inode->i_lock); 563 } 564 spin_unlock(&inode->i_lock); 565 } 566 567 static void 568 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 569 { 570 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 571 static unsigned long ratelimit; 572 573 if (msg->errno < 0) { 574 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n", 575 gss_msg); 576 atomic_inc(&gss_msg->count); 577 gss_unhash_msg(gss_msg); 578 if (msg->errno == -ETIMEDOUT) { 579 unsigned long now = jiffies; 580 if (time_after(now, ratelimit)) { 581 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n" 582 "Please check user daemon is running!\n"); 583 ratelimit = now + 15*HZ; 584 } 585 } 586 gss_release_msg(gss_msg); 587 } 588 } 589 590 /* 591 * NOTE: we have the opportunity to use different 592 * parameters based on the input flavor (which must be a pseudoflavor) 593 */ 594 static struct rpc_auth * 595 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 596 { 597 struct gss_auth *gss_auth; 598 struct rpc_auth * auth; 599 int err = -ENOMEM; /* XXX? */ 600 601 dprintk("RPC: creating GSS authenticator for client %p\n", clnt); 602 603 if (!try_module_get(THIS_MODULE)) 604 return ERR_PTR(err); 605 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 606 goto out_dec; 607 gss_auth->client = clnt; 608 err = -EINVAL; 609 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 610 if (!gss_auth->mech) { 611 printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n", 612 __func__, flavor); 613 goto err_free; 614 } 615 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 616 if (gss_auth->service == 0) 617 goto err_put_mech; 618 auth = &gss_auth->rpc_auth; 619 auth->au_cslack = GSS_CRED_SLACK >> 2; 620 auth->au_rslack = GSS_VERF_SLACK >> 2; 621 auth->au_ops = &authgss_ops; 622 auth->au_flavor = flavor; 623 atomic_set(&auth->au_count, 1); 624 kref_init(&gss_auth->kref); 625 626 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name, 627 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 628 if (IS_ERR(gss_auth->dentry)) { 629 err = PTR_ERR(gss_auth->dentry); 630 goto err_put_mech; 631 } 632 633 err = rpcauth_init_credcache(auth); 634 if (err) 635 goto err_unlink_pipe; 636 637 return auth; 638 err_unlink_pipe: 639 rpc_unlink(gss_auth->dentry); 640 err_put_mech: 641 gss_mech_put(gss_auth->mech); 642 err_free: 643 kfree(gss_auth); 644 out_dec: 645 module_put(THIS_MODULE); 646 return ERR_PTR(err); 647 } 648 649 static void 650 gss_free(struct gss_auth *gss_auth) 651 { 652 rpc_unlink(gss_auth->dentry); 653 gss_auth->dentry = NULL; 654 gss_mech_put(gss_auth->mech); 655 656 kfree(gss_auth); 657 module_put(THIS_MODULE); 658 } 659 660 static void 661 gss_free_callback(struct kref *kref) 662 { 663 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 664 665 gss_free(gss_auth); 666 } 667 668 static void 669 gss_destroy(struct rpc_auth *auth) 670 { 671 struct gss_auth *gss_auth; 672 673 dprintk("RPC: destroying GSS authenticator %p flavor %d\n", 674 auth, auth->au_flavor); 675 676 rpcauth_destroy_credcache(auth); 677 678 gss_auth = container_of(auth, struct gss_auth, rpc_auth); 679 kref_put(&gss_auth->kref, gss_free_callback); 680 } 681 682 /* 683 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call 684 * to the server with the GSS control procedure field set to 685 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 686 * all RPCSEC_GSS state associated with that context. 687 */ 688 static int 689 gss_destroying_context(struct rpc_cred *cred) 690 { 691 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 692 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 693 struct rpc_task *task; 694 695 if (gss_cred->gc_ctx == NULL || 696 test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0) 697 return 0; 698 699 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY; 700 cred->cr_ops = &gss_nullops; 701 702 /* Take a reference to ensure the cred will be destroyed either 703 * by the RPC call or by the put_rpccred() below */ 704 get_rpccred(cred); 705 706 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT); 707 if (!IS_ERR(task)) 708 rpc_put_task(task); 709 710 put_rpccred(cred); 711 return 1; 712 } 713 714 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 715 * to create a new cred or context, so they check that things have been 716 * allocated before freeing them. */ 717 static void 718 gss_do_free_ctx(struct gss_cl_ctx *ctx) 719 { 720 dprintk("RPC: gss_free_ctx\n"); 721 722 kfree(ctx->gc_wire_ctx.data); 723 kfree(ctx); 724 } 725 726 static void 727 gss_free_ctx_callback(struct rcu_head *head) 728 { 729 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 730 gss_do_free_ctx(ctx); 731 } 732 733 static void 734 gss_free_ctx(struct gss_cl_ctx *ctx) 735 { 736 struct gss_ctx *gc_gss_ctx; 737 738 gc_gss_ctx = rcu_dereference(ctx->gc_gss_ctx); 739 rcu_assign_pointer(ctx->gc_gss_ctx, NULL); 740 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 741 if (gc_gss_ctx) 742 gss_delete_sec_context(&gc_gss_ctx); 743 } 744 745 static void 746 gss_free_cred(struct gss_cred *gss_cred) 747 { 748 dprintk("RPC: gss_free_cred %p\n", gss_cred); 749 kfree(gss_cred); 750 } 751 752 static void 753 gss_free_cred_callback(struct rcu_head *head) 754 { 755 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 756 gss_free_cred(gss_cred); 757 } 758 759 static void 760 gss_destroy_cred(struct rpc_cred *cred) 761 { 762 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 763 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 764 struct gss_cl_ctx *ctx = gss_cred->gc_ctx; 765 766 if (gss_destroying_context(cred)) 767 return; 768 rcu_assign_pointer(gss_cred->gc_ctx, NULL); 769 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 770 if (ctx) 771 gss_put_ctx(ctx); 772 kref_put(&gss_auth->kref, gss_free_callback); 773 } 774 775 /* 776 * Lookup RPCSEC_GSS cred for the current process 777 */ 778 static struct rpc_cred * 779 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 780 { 781 return rpcauth_lookup_credcache(auth, acred, flags); 782 } 783 784 static struct rpc_cred * 785 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 786 { 787 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 788 struct gss_cred *cred = NULL; 789 int err = -ENOMEM; 790 791 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n", 792 acred->uid, auth->au_flavor); 793 794 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS))) 795 goto out_err; 796 797 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 798 /* 799 * Note: in order to force a call to call_refresh(), we deliberately 800 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 801 */ 802 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 803 cred->gc_service = gss_auth->service; 804 cred->gc_machine_cred = acred->machine_cred; 805 kref_get(&gss_auth->kref); 806 return &cred->gc_base; 807 808 out_err: 809 dprintk("RPC: gss_create_cred failed with error %d\n", err); 810 return ERR_PTR(err); 811 } 812 813 static int 814 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 815 { 816 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 817 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 818 int err; 819 820 do { 821 err = gss_create_upcall(gss_auth, gss_cred); 822 } while (err == -EAGAIN); 823 return err; 824 } 825 826 static int 827 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 828 { 829 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 830 831 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 832 goto out; 833 /* Don't match with creds that have expired. */ 834 if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry)) 835 return 0; 836 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 837 return 0; 838 out: 839 if (acred->machine_cred != gss_cred->gc_machine_cred) 840 return 0; 841 return (rc->cr_uid == acred->uid); 842 } 843 844 /* 845 * Marshal credentials. 846 * Maybe we should keep a cached credential for performance reasons. 847 */ 848 static __be32 * 849 gss_marshal(struct rpc_task *task, __be32 *p) 850 { 851 struct rpc_cred *cred = task->tk_msg.rpc_cred; 852 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 853 gc_base); 854 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 855 __be32 *cred_len; 856 struct rpc_rqst *req = task->tk_rqstp; 857 u32 maj_stat = 0; 858 struct xdr_netobj mic; 859 struct kvec iov; 860 struct xdr_buf verf_buf; 861 862 dprintk("RPC: %5u gss_marshal\n", task->tk_pid); 863 864 *p++ = htonl(RPC_AUTH_GSS); 865 cred_len = p++; 866 867 spin_lock(&ctx->gc_seq_lock); 868 req->rq_seqno = ctx->gc_seq++; 869 spin_unlock(&ctx->gc_seq_lock); 870 871 *p++ = htonl((u32) RPC_GSS_VERSION); 872 *p++ = htonl((u32) ctx->gc_proc); 873 *p++ = htonl((u32) req->rq_seqno); 874 *p++ = htonl((u32) gss_cred->gc_service); 875 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 876 *cred_len = htonl((p - (cred_len + 1)) << 2); 877 878 /* We compute the checksum for the verifier over the xdr-encoded bytes 879 * starting with the xid and ending at the end of the credential: */ 880 iov.iov_base = xprt_skip_transport_header(task->tk_xprt, 881 req->rq_snd_buf.head[0].iov_base); 882 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 883 xdr_buf_from_iov(&iov, &verf_buf); 884 885 /* set verifier flavor*/ 886 *p++ = htonl(RPC_AUTH_GSS); 887 888 mic.data = (u8 *)(p + 1); 889 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 890 if (maj_stat == GSS_S_CONTEXT_EXPIRED) { 891 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 892 } else if (maj_stat != 0) { 893 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); 894 goto out_put_ctx; 895 } 896 p = xdr_encode_opaque(p, NULL, mic.len); 897 gss_put_ctx(ctx); 898 return p; 899 out_put_ctx: 900 gss_put_ctx(ctx); 901 return NULL; 902 } 903 904 static int gss_renew_cred(struct rpc_task *task) 905 { 906 struct rpc_cred *oldcred = task->tk_msg.rpc_cred; 907 struct gss_cred *gss_cred = container_of(oldcred, 908 struct gss_cred, 909 gc_base); 910 struct rpc_auth *auth = oldcred->cr_auth; 911 struct auth_cred acred = { 912 .uid = oldcred->cr_uid, 913 .machine_cred = gss_cred->gc_machine_cred, 914 }; 915 struct rpc_cred *new; 916 917 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 918 if (IS_ERR(new)) 919 return PTR_ERR(new); 920 task->tk_msg.rpc_cred = new; 921 put_rpccred(oldcred); 922 return 0; 923 } 924 925 /* 926 * Refresh credentials. XXX - finish 927 */ 928 static int 929 gss_refresh(struct rpc_task *task) 930 { 931 struct rpc_cred *cred = task->tk_msg.rpc_cred; 932 int ret = 0; 933 934 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 935 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 936 ret = gss_renew_cred(task); 937 if (ret < 0) 938 goto out; 939 cred = task->tk_msg.rpc_cred; 940 } 941 942 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 943 ret = gss_refresh_upcall(task); 944 out: 945 return ret; 946 } 947 948 /* Dummy refresh routine: used only when destroying the context */ 949 static int 950 gss_refresh_null(struct rpc_task *task) 951 { 952 return -EACCES; 953 } 954 955 static __be32 * 956 gss_validate(struct rpc_task *task, __be32 *p) 957 { 958 struct rpc_cred *cred = task->tk_msg.rpc_cred; 959 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 960 __be32 seq; 961 struct kvec iov; 962 struct xdr_buf verf_buf; 963 struct xdr_netobj mic; 964 u32 flav,len; 965 u32 maj_stat; 966 967 dprintk("RPC: %5u gss_validate\n", task->tk_pid); 968 969 flav = ntohl(*p++); 970 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) 971 goto out_bad; 972 if (flav != RPC_AUTH_GSS) 973 goto out_bad; 974 seq = htonl(task->tk_rqstp->rq_seqno); 975 iov.iov_base = &seq; 976 iov.iov_len = sizeof(seq); 977 xdr_buf_from_iov(&iov, &verf_buf); 978 mic.data = (u8 *)p; 979 mic.len = len; 980 981 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 982 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 983 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 984 if (maj_stat) { 985 dprintk("RPC: %5u gss_validate: gss_verify_mic returned " 986 "error 0x%08x\n", task->tk_pid, maj_stat); 987 goto out_bad; 988 } 989 /* We leave it to unwrap to calculate au_rslack. For now we just 990 * calculate the length of the verifier: */ 991 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 992 gss_put_ctx(ctx); 993 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n", 994 task->tk_pid); 995 return p + XDR_QUADLEN(len); 996 out_bad: 997 gss_put_ctx(ctx); 998 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid); 999 return NULL; 1000 } 1001 1002 static inline int 1003 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1004 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 1005 { 1006 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1007 struct xdr_buf integ_buf; 1008 __be32 *integ_len = NULL; 1009 struct xdr_netobj mic; 1010 u32 offset; 1011 __be32 *q; 1012 struct kvec *iov; 1013 u32 maj_stat = 0; 1014 int status = -EIO; 1015 1016 integ_len = p++; 1017 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1018 *p++ = htonl(rqstp->rq_seqno); 1019 1020 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1021 if (status) 1022 return status; 1023 1024 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1025 offset, snd_buf->len - offset)) 1026 return status; 1027 *integ_len = htonl(integ_buf.len); 1028 1029 /* guess whether we're in the head or the tail: */ 1030 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1031 iov = snd_buf->tail; 1032 else 1033 iov = snd_buf->head; 1034 p = iov->iov_base + iov->iov_len; 1035 mic.data = (u8 *)(p + 1); 1036 1037 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1038 status = -EIO; /* XXX? */ 1039 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1040 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1041 else if (maj_stat) 1042 return status; 1043 q = xdr_encode_opaque(p, NULL, mic.len); 1044 1045 offset = (u8 *)q - (u8 *)p; 1046 iov->iov_len += offset; 1047 snd_buf->len += offset; 1048 return 0; 1049 } 1050 1051 static void 1052 priv_release_snd_buf(struct rpc_rqst *rqstp) 1053 { 1054 int i; 1055 1056 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1057 __free_page(rqstp->rq_enc_pages[i]); 1058 kfree(rqstp->rq_enc_pages); 1059 } 1060 1061 static int 1062 alloc_enc_pages(struct rpc_rqst *rqstp) 1063 { 1064 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1065 int first, last, i; 1066 1067 if (snd_buf->page_len == 0) { 1068 rqstp->rq_enc_pages_num = 0; 1069 return 0; 1070 } 1071 1072 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1073 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT; 1074 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1075 rqstp->rq_enc_pages 1076 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), 1077 GFP_NOFS); 1078 if (!rqstp->rq_enc_pages) 1079 goto out; 1080 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1081 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1082 if (rqstp->rq_enc_pages[i] == NULL) 1083 goto out_free; 1084 } 1085 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1086 return 0; 1087 out_free: 1088 for (i--; i >= 0; i--) { 1089 __free_page(rqstp->rq_enc_pages[i]); 1090 } 1091 out: 1092 return -EAGAIN; 1093 } 1094 1095 static inline int 1096 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1097 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) 1098 { 1099 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1100 u32 offset; 1101 u32 maj_stat; 1102 int status; 1103 __be32 *opaque_len; 1104 struct page **inpages; 1105 int first; 1106 int pad; 1107 struct kvec *iov; 1108 char *tmp; 1109 1110 opaque_len = p++; 1111 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1112 *p++ = htonl(rqstp->rq_seqno); 1113 1114 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1115 if (status) 1116 return status; 1117 1118 status = alloc_enc_pages(rqstp); 1119 if (status) 1120 return status; 1121 first = snd_buf->page_base >> PAGE_CACHE_SHIFT; 1122 inpages = snd_buf->pages + first; 1123 snd_buf->pages = rqstp->rq_enc_pages; 1124 snd_buf->page_base -= first << PAGE_CACHE_SHIFT; 1125 /* Give the tail its own page, in case we need extra space in the 1126 * head when wrapping: */ 1127 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1128 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1129 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1130 snd_buf->tail[0].iov_base = tmp; 1131 } 1132 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1133 /* RPC_SLACK_SPACE should prevent this ever happening: */ 1134 BUG_ON(snd_buf->len > snd_buf->buflen); 1135 status = -EIO; 1136 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1137 * done anyway, so it's safe to put the request on the wire: */ 1138 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1139 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1140 else if (maj_stat) 1141 return status; 1142 1143 *opaque_len = htonl(snd_buf->len - offset); 1144 /* guess whether we're in the head or the tail: */ 1145 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1146 iov = snd_buf->tail; 1147 else 1148 iov = snd_buf->head; 1149 p = iov->iov_base + iov->iov_len; 1150 pad = 3 - ((snd_buf->len - offset - 1) & 3); 1151 memset(p, 0, pad); 1152 iov->iov_len += pad; 1153 snd_buf->len += pad; 1154 1155 return 0; 1156 } 1157 1158 static int 1159 gss_wrap_req(struct rpc_task *task, 1160 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj) 1161 { 1162 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1163 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1164 gc_base); 1165 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1166 int status = -EIO; 1167 1168 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid); 1169 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1170 /* The spec seems a little ambiguous here, but I think that not 1171 * wrapping context destruction requests makes the most sense. 1172 */ 1173 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1174 goto out; 1175 } 1176 switch (gss_cred->gc_service) { 1177 case RPC_GSS_SVC_NONE: 1178 status = rpc_call_xdrproc(encode, rqstp, p, obj); 1179 break; 1180 case RPC_GSS_SVC_INTEGRITY: 1181 status = gss_wrap_req_integ(cred, ctx, encode, 1182 rqstp, p, obj); 1183 break; 1184 case RPC_GSS_SVC_PRIVACY: 1185 status = gss_wrap_req_priv(cred, ctx, encode, 1186 rqstp, p, obj); 1187 break; 1188 } 1189 out: 1190 gss_put_ctx(ctx); 1191 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status); 1192 return status; 1193 } 1194 1195 static inline int 1196 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1197 struct rpc_rqst *rqstp, __be32 **p) 1198 { 1199 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1200 struct xdr_buf integ_buf; 1201 struct xdr_netobj mic; 1202 u32 data_offset, mic_offset; 1203 u32 integ_len; 1204 u32 maj_stat; 1205 int status = -EIO; 1206 1207 integ_len = ntohl(*(*p)++); 1208 if (integ_len & 3) 1209 return status; 1210 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1211 mic_offset = integ_len + data_offset; 1212 if (mic_offset > rcv_buf->len) 1213 return status; 1214 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1215 return status; 1216 1217 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, 1218 mic_offset - data_offset)) 1219 return status; 1220 1221 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) 1222 return status; 1223 1224 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1225 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1226 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1227 if (maj_stat != GSS_S_COMPLETE) 1228 return status; 1229 return 0; 1230 } 1231 1232 static inline int 1233 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1234 struct rpc_rqst *rqstp, __be32 **p) 1235 { 1236 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 1237 u32 offset; 1238 u32 opaque_len; 1239 u32 maj_stat; 1240 int status = -EIO; 1241 1242 opaque_len = ntohl(*(*p)++); 1243 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; 1244 if (offset + opaque_len > rcv_buf->len) 1245 return status; 1246 /* remove padding: */ 1247 rcv_buf->len = offset + opaque_len; 1248 1249 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); 1250 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1251 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1252 if (maj_stat != GSS_S_COMPLETE) 1253 return status; 1254 if (ntohl(*(*p)++) != rqstp->rq_seqno) 1255 return status; 1256 1257 return 0; 1258 } 1259 1260 1261 static int 1262 gss_unwrap_resp(struct rpc_task *task, 1263 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj) 1264 { 1265 struct rpc_cred *cred = task->tk_msg.rpc_cred; 1266 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1267 gc_base); 1268 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1269 __be32 *savedp = p; 1270 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; 1271 int savedlen = head->iov_len; 1272 int status = -EIO; 1273 1274 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 1275 goto out_decode; 1276 switch (gss_cred->gc_service) { 1277 case RPC_GSS_SVC_NONE: 1278 break; 1279 case RPC_GSS_SVC_INTEGRITY: 1280 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); 1281 if (status) 1282 goto out; 1283 break; 1284 case RPC_GSS_SVC_PRIVACY: 1285 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); 1286 if (status) 1287 goto out; 1288 break; 1289 } 1290 /* take into account extra slack for integrity and privacy cases: */ 1291 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) 1292 + (savedlen - head->iov_len); 1293 out_decode: 1294 status = rpc_call_xdrproc(decode, rqstp, p, obj); 1295 out: 1296 gss_put_ctx(ctx); 1297 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid, 1298 status); 1299 return status; 1300 } 1301 1302 static const struct rpc_authops authgss_ops = { 1303 .owner = THIS_MODULE, 1304 .au_flavor = RPC_AUTH_GSS, 1305 .au_name = "RPCSEC_GSS", 1306 .create = gss_create, 1307 .destroy = gss_destroy, 1308 .lookup_cred = gss_lookup_cred, 1309 .crcreate = gss_create_cred 1310 }; 1311 1312 static const struct rpc_credops gss_credops = { 1313 .cr_name = "AUTH_GSS", 1314 .crdestroy = gss_destroy_cred, 1315 .cr_init = gss_cred_init, 1316 .crbind = rpcauth_generic_bind_cred, 1317 .crmatch = gss_match, 1318 .crmarshal = gss_marshal, 1319 .crrefresh = gss_refresh, 1320 .crvalidate = gss_validate, 1321 .crwrap_req = gss_wrap_req, 1322 .crunwrap_resp = gss_unwrap_resp, 1323 }; 1324 1325 static const struct rpc_credops gss_nullops = { 1326 .cr_name = "AUTH_GSS", 1327 .crdestroy = gss_destroy_cred, 1328 .crbind = rpcauth_generic_bind_cred, 1329 .crmatch = gss_match, 1330 .crmarshal = gss_marshal, 1331 .crrefresh = gss_refresh_null, 1332 .crvalidate = gss_validate, 1333 .crwrap_req = gss_wrap_req, 1334 .crunwrap_resp = gss_unwrap_resp, 1335 }; 1336 1337 static struct rpc_pipe_ops gss_upcall_ops = { 1338 .upcall = gss_pipe_upcall, 1339 .downcall = gss_pipe_downcall, 1340 .destroy_msg = gss_pipe_destroy_msg, 1341 .release_pipe = gss_pipe_release, 1342 }; 1343 1344 /* 1345 * Initialize RPCSEC_GSS module 1346 */ 1347 static int __init init_rpcsec_gss(void) 1348 { 1349 int err = 0; 1350 1351 err = rpcauth_register(&authgss_ops); 1352 if (err) 1353 goto out; 1354 err = gss_svc_init(); 1355 if (err) 1356 goto out_unregister; 1357 return 0; 1358 out_unregister: 1359 rpcauth_unregister(&authgss_ops); 1360 out: 1361 return err; 1362 } 1363 1364 static void __exit exit_rpcsec_gss(void) 1365 { 1366 gss_svc_shutdown(); 1367 rpcauth_unregister(&authgss_ops); 1368 } 1369 1370 MODULE_LICENSE("GPL"); 1371 module_init(init_rpcsec_gss) 1372 module_exit(exit_rpcsec_gss) 1373