1 // SPDX-License-Identifier: BSD-3-Clause 2 /* 3 * linux/net/sunrpc/auth_gss/auth_gss.c 4 * 5 * RPCSEC_GSS client authentication. 6 * 7 * Copyright (c) 2000 The Regents of the University of Michigan. 8 * All rights reserved. 9 * 10 * Dug Song <dugsong@monkey.org> 11 * Andy Adamson <andros@umich.edu> 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/sunrpc/clnt.h> 21 #include <linux/sunrpc/auth.h> 22 #include <linux/sunrpc/auth_gss.h> 23 #include <linux/sunrpc/gss_krb5.h> 24 #include <linux/sunrpc/svcauth_gss.h> 25 #include <linux/sunrpc/gss_err.h> 26 #include <linux/workqueue.h> 27 #include <linux/sunrpc/rpc_pipe_fs.h> 28 #include <linux/sunrpc/gss_api.h> 29 #include <linux/uaccess.h> 30 #include <linux/hashtable.h> 31 32 #include "../netns.h" 33 34 #include <trace/events/rpcgss.h> 35 36 static const struct rpc_authops authgss_ops; 37 38 static const struct rpc_credops gss_credops; 39 static const struct rpc_credops gss_nullops; 40 41 #define GSS_RETRY_EXPIRED 5 42 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 43 44 #define GSS_KEY_EXPIRE_TIMEO 240 45 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 46 47 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 48 # define RPCDBG_FACILITY RPCDBG_AUTH 49 #endif 50 51 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 52 /* length of a krb5 verifier (48), plus data added before arguments when 53 * using integrity (two 4-byte integers): */ 54 #define GSS_VERF_SLACK 100 55 56 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 57 static DEFINE_SPINLOCK(gss_auth_hash_lock); 58 59 struct gss_pipe { 60 struct rpc_pipe_dir_object pdo; 61 struct rpc_pipe *pipe; 62 struct rpc_clnt *clnt; 63 const char *name; 64 struct kref kref; 65 }; 66 67 struct gss_auth { 68 struct kref kref; 69 struct hlist_node hash; 70 struct rpc_auth rpc_auth; 71 struct gss_api_mech *mech; 72 enum rpc_gss_svc service; 73 struct rpc_clnt *client; 74 struct net *net; 75 /* 76 * There are two upcall pipes; dentry[1], named "gssd", is used 77 * for the new text-based upcall; dentry[0] is named after the 78 * mechanism (for example, "krb5") and exists for 79 * backwards-compatibility with older gssd's. 80 */ 81 struct gss_pipe *gss_pipe[2]; 82 const char *target_name; 83 }; 84 85 /* pipe_version >= 0 if and only if someone has a pipe open. */ 86 static DEFINE_SPINLOCK(pipe_version_lock); 87 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 88 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 89 static void gss_put_auth(struct gss_auth *gss_auth); 90 91 static void gss_free_ctx(struct gss_cl_ctx *); 92 static const struct rpc_pipe_ops gss_upcall_ops_v0; 93 static const struct rpc_pipe_ops gss_upcall_ops_v1; 94 95 static inline struct gss_cl_ctx * 96 gss_get_ctx(struct gss_cl_ctx *ctx) 97 { 98 refcount_inc(&ctx->count); 99 return ctx; 100 } 101 102 static inline void 103 gss_put_ctx(struct gss_cl_ctx *ctx) 104 { 105 if (refcount_dec_and_test(&ctx->count)) 106 gss_free_ctx(ctx); 107 } 108 109 /* gss_cred_set_ctx: 110 * called by gss_upcall_callback and gss_create_upcall in order 111 * to set the gss context. The actual exchange of an old context 112 * and a new one is protected by the pipe->lock. 113 */ 114 static void 115 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 116 { 117 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 118 119 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 120 return; 121 gss_get_ctx(ctx); 122 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 123 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 124 smp_mb__before_atomic(); 125 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 126 } 127 128 static const void * 129 simple_get_bytes(const void *p, const void *end, void *res, size_t len) 130 { 131 const void *q = (const void *)((const char *)p + len); 132 if (unlikely(q > end || q < p)) 133 return ERR_PTR(-EFAULT); 134 memcpy(res, p, len); 135 return q; 136 } 137 138 static inline const void * 139 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) 140 { 141 const void *q; 142 unsigned int len; 143 144 p = simple_get_bytes(p, end, &len, sizeof(len)); 145 if (IS_ERR(p)) 146 return p; 147 q = (const void *)((const char *)p + len); 148 if (unlikely(q > end || q < p)) 149 return ERR_PTR(-EFAULT); 150 dest->data = kmemdup(p, len, GFP_NOFS); 151 if (unlikely(dest->data == NULL)) 152 return ERR_PTR(-ENOMEM); 153 dest->len = len; 154 return q; 155 } 156 157 static struct gss_cl_ctx * 158 gss_cred_get_ctx(struct rpc_cred *cred) 159 { 160 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 161 struct gss_cl_ctx *ctx = NULL; 162 163 rcu_read_lock(); 164 ctx = rcu_dereference(gss_cred->gc_ctx); 165 if (ctx) 166 gss_get_ctx(ctx); 167 rcu_read_unlock(); 168 return ctx; 169 } 170 171 static struct gss_cl_ctx * 172 gss_alloc_context(void) 173 { 174 struct gss_cl_ctx *ctx; 175 176 ctx = kzalloc(sizeof(*ctx), GFP_NOFS); 177 if (ctx != NULL) { 178 ctx->gc_proc = RPC_GSS_PROC_DATA; 179 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 180 spin_lock_init(&ctx->gc_seq_lock); 181 refcount_set(&ctx->count,1); 182 } 183 return ctx; 184 } 185 186 #define GSSD_MIN_TIMEOUT (60 * 60) 187 static const void * 188 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 189 { 190 const void *q; 191 unsigned int seclen; 192 unsigned int timeout; 193 unsigned long now = jiffies; 194 u32 window_size; 195 int ret; 196 197 /* First unsigned int gives the remaining lifetime in seconds of the 198 * credential - e.g. the remaining TGT lifetime for Kerberos or 199 * the -t value passed to GSSD. 200 */ 201 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 202 if (IS_ERR(p)) 203 goto err; 204 if (timeout == 0) 205 timeout = GSSD_MIN_TIMEOUT; 206 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 207 /* Sequence number window. Determines the maximum number of 208 * simultaneous requests 209 */ 210 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 211 if (IS_ERR(p)) 212 goto err; 213 ctx->gc_win = window_size; 214 /* gssd signals an error by passing ctx->gc_win = 0: */ 215 if (ctx->gc_win == 0) { 216 /* 217 * in which case, p points to an error code. Anything other 218 * than -EKEYEXPIRED gets converted to -EACCES. 219 */ 220 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 221 if (!IS_ERR(p)) 222 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 223 ERR_PTR(-EACCES); 224 goto err; 225 } 226 /* copy the opaque wire context */ 227 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 228 if (IS_ERR(p)) 229 goto err; 230 /* import the opaque security context */ 231 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 232 if (IS_ERR(p)) 233 goto err; 234 q = (const void *)((const char *)p + seclen); 235 if (unlikely(q > end || q < p)) { 236 p = ERR_PTR(-EFAULT); 237 goto err; 238 } 239 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); 240 if (ret < 0) { 241 trace_rpcgss_import_ctx(ret); 242 p = ERR_PTR(ret); 243 goto err; 244 } 245 246 /* is there any trailing data? */ 247 if (q == end) { 248 p = q; 249 goto done; 250 } 251 252 /* pull in acceptor name (if there is one) */ 253 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 254 if (IS_ERR(p)) 255 goto err; 256 done: 257 trace_rpcgss_context(window_size, ctx->gc_expiry, now, timeout, 258 ctx->gc_acceptor.len, ctx->gc_acceptor.data); 259 err: 260 return p; 261 } 262 263 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small. 264 * Is user space expecting no more than UPCALL_BUF_LEN bytes? 265 * Note that there are now _two_ NI_MAXHOST sized data items 266 * being passed in this string. 267 */ 268 #define UPCALL_BUF_LEN 256 269 270 struct gss_upcall_msg { 271 refcount_t count; 272 kuid_t uid; 273 const char *service_name; 274 struct rpc_pipe_msg msg; 275 struct list_head list; 276 struct gss_auth *auth; 277 struct rpc_pipe *pipe; 278 struct rpc_wait_queue rpc_waitqueue; 279 wait_queue_head_t waitqueue; 280 struct gss_cl_ctx *ctx; 281 char databuf[UPCALL_BUF_LEN]; 282 }; 283 284 static int get_pipe_version(struct net *net) 285 { 286 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 287 int ret; 288 289 spin_lock(&pipe_version_lock); 290 if (sn->pipe_version >= 0) { 291 atomic_inc(&sn->pipe_users); 292 ret = sn->pipe_version; 293 } else 294 ret = -EAGAIN; 295 spin_unlock(&pipe_version_lock); 296 return ret; 297 } 298 299 static void put_pipe_version(struct net *net) 300 { 301 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 302 303 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 304 sn->pipe_version = -1; 305 spin_unlock(&pipe_version_lock); 306 } 307 } 308 309 static void 310 gss_release_msg(struct gss_upcall_msg *gss_msg) 311 { 312 struct net *net = gss_msg->auth->net; 313 if (!refcount_dec_and_test(&gss_msg->count)) 314 return; 315 put_pipe_version(net); 316 BUG_ON(!list_empty(&gss_msg->list)); 317 if (gss_msg->ctx != NULL) 318 gss_put_ctx(gss_msg->ctx); 319 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 320 gss_put_auth(gss_msg->auth); 321 kfree_const(gss_msg->service_name); 322 kfree(gss_msg); 323 } 324 325 static struct gss_upcall_msg * 326 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 327 { 328 struct gss_upcall_msg *pos; 329 list_for_each_entry(pos, &pipe->in_downcall, list) { 330 if (!uid_eq(pos->uid, uid)) 331 continue; 332 if (auth && pos->auth->service != auth->service) 333 continue; 334 refcount_inc(&pos->count); 335 return pos; 336 } 337 return NULL; 338 } 339 340 /* Try to add an upcall to the pipefs queue. 341 * If an upcall owned by our uid already exists, then we return a reference 342 * to that upcall instead of adding the new upcall. 343 */ 344 static inline struct gss_upcall_msg * 345 gss_add_msg(struct gss_upcall_msg *gss_msg) 346 { 347 struct rpc_pipe *pipe = gss_msg->pipe; 348 struct gss_upcall_msg *old; 349 350 spin_lock(&pipe->lock); 351 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 352 if (old == NULL) { 353 refcount_inc(&gss_msg->count); 354 list_add(&gss_msg->list, &pipe->in_downcall); 355 } else 356 gss_msg = old; 357 spin_unlock(&pipe->lock); 358 return gss_msg; 359 } 360 361 static void 362 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 363 { 364 list_del_init(&gss_msg->list); 365 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 366 wake_up_all(&gss_msg->waitqueue); 367 refcount_dec(&gss_msg->count); 368 } 369 370 static void 371 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 372 { 373 struct rpc_pipe *pipe = gss_msg->pipe; 374 375 if (list_empty(&gss_msg->list)) 376 return; 377 spin_lock(&pipe->lock); 378 if (!list_empty(&gss_msg->list)) 379 __gss_unhash_msg(gss_msg); 380 spin_unlock(&pipe->lock); 381 } 382 383 static void 384 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 385 { 386 switch (gss_msg->msg.errno) { 387 case 0: 388 if (gss_msg->ctx == NULL) 389 break; 390 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 391 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 392 break; 393 case -EKEYEXPIRED: 394 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 395 } 396 gss_cred->gc_upcall_timestamp = jiffies; 397 gss_cred->gc_upcall = NULL; 398 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 399 } 400 401 static void 402 gss_upcall_callback(struct rpc_task *task) 403 { 404 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 405 struct gss_cred, gc_base); 406 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 407 struct rpc_pipe *pipe = gss_msg->pipe; 408 409 spin_lock(&pipe->lock); 410 gss_handle_downcall_result(gss_cred, gss_msg); 411 spin_unlock(&pipe->lock); 412 task->tk_status = gss_msg->msg.errno; 413 gss_release_msg(gss_msg); 414 } 415 416 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg, 417 const struct cred *cred) 418 { 419 struct user_namespace *userns = cred->user_ns; 420 421 uid_t uid = from_kuid_munged(userns, gss_msg->uid); 422 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 423 gss_msg->msg.data = gss_msg->databuf; 424 gss_msg->msg.len = sizeof(uid); 425 426 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 427 } 428 429 static ssize_t 430 gss_v0_upcall(struct file *file, struct rpc_pipe_msg *msg, 431 char __user *buf, size_t buflen) 432 { 433 struct gss_upcall_msg *gss_msg = container_of(msg, 434 struct gss_upcall_msg, 435 msg); 436 if (msg->copied == 0) 437 gss_encode_v0_msg(gss_msg, file->f_cred); 438 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 439 } 440 441 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 442 const char *service_name, 443 const char *target_name, 444 const struct cred *cred) 445 { 446 struct user_namespace *userns = cred->user_ns; 447 struct gss_api_mech *mech = gss_msg->auth->mech; 448 char *p = gss_msg->databuf; 449 size_t buflen = sizeof(gss_msg->databuf); 450 int len; 451 452 len = scnprintf(p, buflen, "mech=%s uid=%d", mech->gm_name, 453 from_kuid_munged(userns, gss_msg->uid)); 454 buflen -= len; 455 p += len; 456 gss_msg->msg.len = len; 457 458 /* 459 * target= is a full service principal that names the remote 460 * identity that we are authenticating to. 461 */ 462 if (target_name) { 463 len = scnprintf(p, buflen, " target=%s", target_name); 464 buflen -= len; 465 p += len; 466 gss_msg->msg.len += len; 467 } 468 469 /* 470 * gssd uses service= and srchost= to select a matching key from 471 * the system's keytab to use as the source principal. 472 * 473 * service= is the service name part of the source principal, 474 * or "*" (meaning choose any). 475 * 476 * srchost= is the hostname part of the source principal. When 477 * not provided, gssd uses the local hostname. 478 */ 479 if (service_name) { 480 char *c = strchr(service_name, '@'); 481 482 if (!c) 483 len = scnprintf(p, buflen, " service=%s", 484 service_name); 485 else 486 len = scnprintf(p, buflen, 487 " service=%.*s srchost=%s", 488 (int)(c - service_name), 489 service_name, c + 1); 490 buflen -= len; 491 p += len; 492 gss_msg->msg.len += len; 493 } 494 495 if (mech->gm_upcall_enctypes) { 496 len = scnprintf(p, buflen, " enctypes=%s", 497 mech->gm_upcall_enctypes); 498 buflen -= len; 499 p += len; 500 gss_msg->msg.len += len; 501 } 502 trace_rpcgss_upcall_msg(gss_msg->databuf); 503 len = scnprintf(p, buflen, "\n"); 504 if (len == 0) 505 goto out_overflow; 506 gss_msg->msg.len += len; 507 gss_msg->msg.data = gss_msg->databuf; 508 return 0; 509 out_overflow: 510 WARN_ON_ONCE(1); 511 return -ENOMEM; 512 } 513 514 static ssize_t 515 gss_v1_upcall(struct file *file, struct rpc_pipe_msg *msg, 516 char __user *buf, size_t buflen) 517 { 518 struct gss_upcall_msg *gss_msg = container_of(msg, 519 struct gss_upcall_msg, 520 msg); 521 int err; 522 if (msg->copied == 0) { 523 err = gss_encode_v1_msg(gss_msg, 524 gss_msg->service_name, 525 gss_msg->auth->target_name, 526 file->f_cred); 527 if (err) 528 return err; 529 } 530 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 531 } 532 533 static struct gss_upcall_msg * 534 gss_alloc_msg(struct gss_auth *gss_auth, 535 kuid_t uid, const char *service_name) 536 { 537 struct gss_upcall_msg *gss_msg; 538 int vers; 539 int err = -ENOMEM; 540 541 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); 542 if (gss_msg == NULL) 543 goto err; 544 vers = get_pipe_version(gss_auth->net); 545 err = vers; 546 if (err < 0) 547 goto err_free_msg; 548 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 549 INIT_LIST_HEAD(&gss_msg->list); 550 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 551 init_waitqueue_head(&gss_msg->waitqueue); 552 refcount_set(&gss_msg->count, 1); 553 gss_msg->uid = uid; 554 gss_msg->auth = gss_auth; 555 kref_get(&gss_auth->kref); 556 if (service_name) { 557 gss_msg->service_name = kstrdup_const(service_name, GFP_NOFS); 558 if (!gss_msg->service_name) { 559 err = -ENOMEM; 560 goto err_put_pipe_version; 561 } 562 } 563 return gss_msg; 564 err_put_pipe_version: 565 put_pipe_version(gss_auth->net); 566 err_free_msg: 567 kfree(gss_msg); 568 err: 569 return ERR_PTR(err); 570 } 571 572 static struct gss_upcall_msg * 573 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 574 { 575 struct gss_cred *gss_cred = container_of(cred, 576 struct gss_cred, gc_base); 577 struct gss_upcall_msg *gss_new, *gss_msg; 578 kuid_t uid = cred->cr_cred->fsuid; 579 580 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 581 if (IS_ERR(gss_new)) 582 return gss_new; 583 gss_msg = gss_add_msg(gss_new); 584 if (gss_msg == gss_new) { 585 int res; 586 refcount_inc(&gss_msg->count); 587 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 588 if (res) { 589 gss_unhash_msg(gss_new); 590 refcount_dec(&gss_msg->count); 591 gss_release_msg(gss_new); 592 gss_msg = ERR_PTR(res); 593 } 594 } else 595 gss_release_msg(gss_new); 596 return gss_msg; 597 } 598 599 static void warn_gssd(void) 600 { 601 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 602 } 603 604 static inline int 605 gss_refresh_upcall(struct rpc_task *task) 606 { 607 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 608 struct gss_auth *gss_auth = container_of(cred->cr_auth, 609 struct gss_auth, rpc_auth); 610 struct gss_cred *gss_cred = container_of(cred, 611 struct gss_cred, gc_base); 612 struct gss_upcall_msg *gss_msg; 613 struct rpc_pipe *pipe; 614 int err = 0; 615 616 gss_msg = gss_setup_upcall(gss_auth, cred); 617 if (PTR_ERR(gss_msg) == -EAGAIN) { 618 /* XXX: warning on the first, under the assumption we 619 * shouldn't normally hit this case on a refresh. */ 620 warn_gssd(); 621 rpc_sleep_on_timeout(&pipe_version_rpc_waitqueue, 622 task, NULL, jiffies + (15 * HZ)); 623 err = -EAGAIN; 624 goto out; 625 } 626 if (IS_ERR(gss_msg)) { 627 err = PTR_ERR(gss_msg); 628 goto out; 629 } 630 pipe = gss_msg->pipe; 631 spin_lock(&pipe->lock); 632 if (gss_cred->gc_upcall != NULL) 633 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 634 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 635 gss_cred->gc_upcall = gss_msg; 636 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 637 refcount_inc(&gss_msg->count); 638 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 639 } else { 640 gss_handle_downcall_result(gss_cred, gss_msg); 641 err = gss_msg->msg.errno; 642 } 643 spin_unlock(&pipe->lock); 644 gss_release_msg(gss_msg); 645 out: 646 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 647 cred->cr_cred->fsuid), err); 648 return err; 649 } 650 651 static inline int 652 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 653 { 654 struct net *net = gss_auth->net; 655 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 656 struct rpc_pipe *pipe; 657 struct rpc_cred *cred = &gss_cred->gc_base; 658 struct gss_upcall_msg *gss_msg; 659 DEFINE_WAIT(wait); 660 int err; 661 662 retry: 663 err = 0; 664 /* if gssd is down, just skip upcalling altogether */ 665 if (!gssd_running(net)) { 666 warn_gssd(); 667 err = -EACCES; 668 goto out; 669 } 670 gss_msg = gss_setup_upcall(gss_auth, cred); 671 if (PTR_ERR(gss_msg) == -EAGAIN) { 672 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 673 sn->pipe_version >= 0, 15 * HZ); 674 if (sn->pipe_version < 0) { 675 warn_gssd(); 676 err = -EACCES; 677 } 678 if (err < 0) 679 goto out; 680 goto retry; 681 } 682 if (IS_ERR(gss_msg)) { 683 err = PTR_ERR(gss_msg); 684 goto out; 685 } 686 pipe = gss_msg->pipe; 687 for (;;) { 688 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 689 spin_lock(&pipe->lock); 690 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 691 break; 692 } 693 spin_unlock(&pipe->lock); 694 if (fatal_signal_pending(current)) { 695 err = -ERESTARTSYS; 696 goto out_intr; 697 } 698 schedule(); 699 } 700 if (gss_msg->ctx) { 701 trace_rpcgss_ctx_init(gss_cred); 702 gss_cred_set_ctx(cred, gss_msg->ctx); 703 } else { 704 err = gss_msg->msg.errno; 705 } 706 spin_unlock(&pipe->lock); 707 out_intr: 708 finish_wait(&gss_msg->waitqueue, &wait); 709 gss_release_msg(gss_msg); 710 out: 711 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 712 cred->cr_cred->fsuid), err); 713 return err; 714 } 715 716 #define MSG_BUF_MAXSIZE 1024 717 718 static ssize_t 719 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 720 { 721 const void *p, *end; 722 void *buf; 723 struct gss_upcall_msg *gss_msg; 724 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 725 struct gss_cl_ctx *ctx; 726 uid_t id; 727 kuid_t uid; 728 ssize_t err = -EFBIG; 729 730 if (mlen > MSG_BUF_MAXSIZE) 731 goto out; 732 err = -ENOMEM; 733 buf = kmalloc(mlen, GFP_NOFS); 734 if (!buf) 735 goto out; 736 737 err = -EFAULT; 738 if (copy_from_user(buf, src, mlen)) 739 goto err; 740 741 end = (const void *)((char *)buf + mlen); 742 p = simple_get_bytes(buf, end, &id, sizeof(id)); 743 if (IS_ERR(p)) { 744 err = PTR_ERR(p); 745 goto err; 746 } 747 748 uid = make_kuid(current_user_ns(), id); 749 if (!uid_valid(uid)) { 750 err = -EINVAL; 751 goto err; 752 } 753 754 err = -ENOMEM; 755 ctx = gss_alloc_context(); 756 if (ctx == NULL) 757 goto err; 758 759 err = -ENOENT; 760 /* Find a matching upcall */ 761 spin_lock(&pipe->lock); 762 gss_msg = __gss_find_upcall(pipe, uid, NULL); 763 if (gss_msg == NULL) { 764 spin_unlock(&pipe->lock); 765 goto err_put_ctx; 766 } 767 list_del_init(&gss_msg->list); 768 spin_unlock(&pipe->lock); 769 770 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 771 if (IS_ERR(p)) { 772 err = PTR_ERR(p); 773 switch (err) { 774 case -EACCES: 775 case -EKEYEXPIRED: 776 gss_msg->msg.errno = err; 777 err = mlen; 778 break; 779 case -EFAULT: 780 case -ENOMEM: 781 case -EINVAL: 782 case -ENOSYS: 783 gss_msg->msg.errno = -EAGAIN; 784 break; 785 default: 786 printk(KERN_CRIT "%s: bad return from " 787 "gss_fill_context: %zd\n", __func__, err); 788 gss_msg->msg.errno = -EIO; 789 } 790 goto err_release_msg; 791 } 792 gss_msg->ctx = gss_get_ctx(ctx); 793 err = mlen; 794 795 err_release_msg: 796 spin_lock(&pipe->lock); 797 __gss_unhash_msg(gss_msg); 798 spin_unlock(&pipe->lock); 799 gss_release_msg(gss_msg); 800 err_put_ctx: 801 gss_put_ctx(ctx); 802 err: 803 kfree(buf); 804 out: 805 return err; 806 } 807 808 static int gss_pipe_open(struct inode *inode, int new_version) 809 { 810 struct net *net = inode->i_sb->s_fs_info; 811 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 812 int ret = 0; 813 814 spin_lock(&pipe_version_lock); 815 if (sn->pipe_version < 0) { 816 /* First open of any gss pipe determines the version: */ 817 sn->pipe_version = new_version; 818 rpc_wake_up(&pipe_version_rpc_waitqueue); 819 wake_up(&pipe_version_waitqueue); 820 } else if (sn->pipe_version != new_version) { 821 /* Trying to open a pipe of a different version */ 822 ret = -EBUSY; 823 goto out; 824 } 825 atomic_inc(&sn->pipe_users); 826 out: 827 spin_unlock(&pipe_version_lock); 828 return ret; 829 830 } 831 832 static int gss_pipe_open_v0(struct inode *inode) 833 { 834 return gss_pipe_open(inode, 0); 835 } 836 837 static int gss_pipe_open_v1(struct inode *inode) 838 { 839 return gss_pipe_open(inode, 1); 840 } 841 842 static void 843 gss_pipe_release(struct inode *inode) 844 { 845 struct net *net = inode->i_sb->s_fs_info; 846 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 847 struct gss_upcall_msg *gss_msg; 848 849 restart: 850 spin_lock(&pipe->lock); 851 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 852 853 if (!list_empty(&gss_msg->msg.list)) 854 continue; 855 gss_msg->msg.errno = -EPIPE; 856 refcount_inc(&gss_msg->count); 857 __gss_unhash_msg(gss_msg); 858 spin_unlock(&pipe->lock); 859 gss_release_msg(gss_msg); 860 goto restart; 861 } 862 spin_unlock(&pipe->lock); 863 864 put_pipe_version(net); 865 } 866 867 static void 868 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 869 { 870 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 871 872 if (msg->errno < 0) { 873 refcount_inc(&gss_msg->count); 874 gss_unhash_msg(gss_msg); 875 if (msg->errno == -ETIMEDOUT) 876 warn_gssd(); 877 gss_release_msg(gss_msg); 878 } 879 gss_release_msg(gss_msg); 880 } 881 882 static void gss_pipe_dentry_destroy(struct dentry *dir, 883 struct rpc_pipe_dir_object *pdo) 884 { 885 struct gss_pipe *gss_pipe = pdo->pdo_data; 886 struct rpc_pipe *pipe = gss_pipe->pipe; 887 888 if (pipe->dentry != NULL) { 889 rpc_unlink(pipe->dentry); 890 pipe->dentry = NULL; 891 } 892 } 893 894 static int gss_pipe_dentry_create(struct dentry *dir, 895 struct rpc_pipe_dir_object *pdo) 896 { 897 struct gss_pipe *p = pdo->pdo_data; 898 struct dentry *dentry; 899 900 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 901 if (IS_ERR(dentry)) 902 return PTR_ERR(dentry); 903 p->pipe->dentry = dentry; 904 return 0; 905 } 906 907 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 908 .create = gss_pipe_dentry_create, 909 .destroy = gss_pipe_dentry_destroy, 910 }; 911 912 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 913 const char *name, 914 const struct rpc_pipe_ops *upcall_ops) 915 { 916 struct gss_pipe *p; 917 int err = -ENOMEM; 918 919 p = kmalloc(sizeof(*p), GFP_KERNEL); 920 if (p == NULL) 921 goto err; 922 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 923 if (IS_ERR(p->pipe)) { 924 err = PTR_ERR(p->pipe); 925 goto err_free_gss_pipe; 926 } 927 p->name = name; 928 p->clnt = clnt; 929 kref_init(&p->kref); 930 rpc_init_pipe_dir_object(&p->pdo, 931 &gss_pipe_dir_object_ops, 932 p); 933 return p; 934 err_free_gss_pipe: 935 kfree(p); 936 err: 937 return ERR_PTR(err); 938 } 939 940 struct gss_alloc_pdo { 941 struct rpc_clnt *clnt; 942 const char *name; 943 const struct rpc_pipe_ops *upcall_ops; 944 }; 945 946 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 947 { 948 struct gss_pipe *gss_pipe; 949 struct gss_alloc_pdo *args = data; 950 951 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 952 return 0; 953 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 954 if (strcmp(gss_pipe->name, args->name) != 0) 955 return 0; 956 if (!kref_get_unless_zero(&gss_pipe->kref)) 957 return 0; 958 return 1; 959 } 960 961 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 962 { 963 struct gss_pipe *gss_pipe; 964 struct gss_alloc_pdo *args = data; 965 966 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 967 if (!IS_ERR(gss_pipe)) 968 return &gss_pipe->pdo; 969 return NULL; 970 } 971 972 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 973 const char *name, 974 const struct rpc_pipe_ops *upcall_ops) 975 { 976 struct net *net = rpc_net_ns(clnt); 977 struct rpc_pipe_dir_object *pdo; 978 struct gss_alloc_pdo args = { 979 .clnt = clnt, 980 .name = name, 981 .upcall_ops = upcall_ops, 982 }; 983 984 pdo = rpc_find_or_alloc_pipe_dir_object(net, 985 &clnt->cl_pipedir_objects, 986 gss_pipe_match_pdo, 987 gss_pipe_alloc_pdo, 988 &args); 989 if (pdo != NULL) 990 return container_of(pdo, struct gss_pipe, pdo); 991 return ERR_PTR(-ENOMEM); 992 } 993 994 static void __gss_pipe_free(struct gss_pipe *p) 995 { 996 struct rpc_clnt *clnt = p->clnt; 997 struct net *net = rpc_net_ns(clnt); 998 999 rpc_remove_pipe_dir_object(net, 1000 &clnt->cl_pipedir_objects, 1001 &p->pdo); 1002 rpc_destroy_pipe_data(p->pipe); 1003 kfree(p); 1004 } 1005 1006 static void __gss_pipe_release(struct kref *kref) 1007 { 1008 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 1009 1010 __gss_pipe_free(p); 1011 } 1012 1013 static void gss_pipe_free(struct gss_pipe *p) 1014 { 1015 if (p != NULL) 1016 kref_put(&p->kref, __gss_pipe_release); 1017 } 1018 1019 /* 1020 * NOTE: we have the opportunity to use different 1021 * parameters based on the input flavor (which must be a pseudoflavor) 1022 */ 1023 static struct gss_auth * 1024 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1025 { 1026 rpc_authflavor_t flavor = args->pseudoflavor; 1027 struct gss_auth *gss_auth; 1028 struct gss_pipe *gss_pipe; 1029 struct rpc_auth * auth; 1030 int err = -ENOMEM; /* XXX? */ 1031 1032 if (!try_module_get(THIS_MODULE)) 1033 return ERR_PTR(err); 1034 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 1035 goto out_dec; 1036 INIT_HLIST_NODE(&gss_auth->hash); 1037 gss_auth->target_name = NULL; 1038 if (args->target_name) { 1039 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1040 if (gss_auth->target_name == NULL) 1041 goto err_free; 1042 } 1043 gss_auth->client = clnt; 1044 gss_auth->net = get_net(rpc_net_ns(clnt)); 1045 err = -EINVAL; 1046 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1047 if (!gss_auth->mech) 1048 goto err_put_net; 1049 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1050 if (gss_auth->service == 0) 1051 goto err_put_mech; 1052 if (!gssd_running(gss_auth->net)) 1053 goto err_put_mech; 1054 auth = &gss_auth->rpc_auth; 1055 auth->au_cslack = GSS_CRED_SLACK >> 2; 1056 auth->au_rslack = GSS_KRB5_MAX_SLACK_NEEDED >> 2; 1057 auth->au_verfsize = GSS_VERF_SLACK >> 2; 1058 auth->au_ralign = GSS_VERF_SLACK >> 2; 1059 __set_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags); 1060 auth->au_ops = &authgss_ops; 1061 auth->au_flavor = flavor; 1062 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1063 __set_bit(RPCAUTH_AUTH_DATATOUCH, &auth->au_flags); 1064 refcount_set(&auth->au_count, 1); 1065 kref_init(&gss_auth->kref); 1066 1067 err = rpcauth_init_credcache(auth); 1068 if (err) 1069 goto err_put_mech; 1070 /* 1071 * Note: if we created the old pipe first, then someone who 1072 * examined the directory at the right moment might conclude 1073 * that we supported only the old pipe. So we instead create 1074 * the new pipe first. 1075 */ 1076 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1077 if (IS_ERR(gss_pipe)) { 1078 err = PTR_ERR(gss_pipe); 1079 goto err_destroy_credcache; 1080 } 1081 gss_auth->gss_pipe[1] = gss_pipe; 1082 1083 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1084 &gss_upcall_ops_v0); 1085 if (IS_ERR(gss_pipe)) { 1086 err = PTR_ERR(gss_pipe); 1087 goto err_destroy_pipe_1; 1088 } 1089 gss_auth->gss_pipe[0] = gss_pipe; 1090 1091 return gss_auth; 1092 err_destroy_pipe_1: 1093 gss_pipe_free(gss_auth->gss_pipe[1]); 1094 err_destroy_credcache: 1095 rpcauth_destroy_credcache(auth); 1096 err_put_mech: 1097 gss_mech_put(gss_auth->mech); 1098 err_put_net: 1099 put_net(gss_auth->net); 1100 err_free: 1101 kfree(gss_auth->target_name); 1102 kfree(gss_auth); 1103 out_dec: 1104 module_put(THIS_MODULE); 1105 trace_rpcgss_createauth(flavor, err); 1106 return ERR_PTR(err); 1107 } 1108 1109 static void 1110 gss_free(struct gss_auth *gss_auth) 1111 { 1112 gss_pipe_free(gss_auth->gss_pipe[0]); 1113 gss_pipe_free(gss_auth->gss_pipe[1]); 1114 gss_mech_put(gss_auth->mech); 1115 put_net(gss_auth->net); 1116 kfree(gss_auth->target_name); 1117 1118 kfree(gss_auth); 1119 module_put(THIS_MODULE); 1120 } 1121 1122 static void 1123 gss_free_callback(struct kref *kref) 1124 { 1125 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1126 1127 gss_free(gss_auth); 1128 } 1129 1130 static void 1131 gss_put_auth(struct gss_auth *gss_auth) 1132 { 1133 kref_put(&gss_auth->kref, gss_free_callback); 1134 } 1135 1136 static void 1137 gss_destroy(struct rpc_auth *auth) 1138 { 1139 struct gss_auth *gss_auth = container_of(auth, 1140 struct gss_auth, rpc_auth); 1141 1142 if (hash_hashed(&gss_auth->hash)) { 1143 spin_lock(&gss_auth_hash_lock); 1144 hash_del(&gss_auth->hash); 1145 spin_unlock(&gss_auth_hash_lock); 1146 } 1147 1148 gss_pipe_free(gss_auth->gss_pipe[0]); 1149 gss_auth->gss_pipe[0] = NULL; 1150 gss_pipe_free(gss_auth->gss_pipe[1]); 1151 gss_auth->gss_pipe[1] = NULL; 1152 rpcauth_destroy_credcache(auth); 1153 1154 gss_put_auth(gss_auth); 1155 } 1156 1157 /* 1158 * Auths may be shared between rpc clients that were cloned from a 1159 * common client with the same xprt, if they also share the flavor and 1160 * target_name. 1161 * 1162 * The auth is looked up from the oldest parent sharing the same 1163 * cl_xprt, and the auth itself references only that common parent 1164 * (which is guaranteed to last as long as any of its descendants). 1165 */ 1166 static struct gss_auth * 1167 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args, 1168 struct rpc_clnt *clnt, 1169 struct gss_auth *new) 1170 { 1171 struct gss_auth *gss_auth; 1172 unsigned long hashval = (unsigned long)clnt; 1173 1174 spin_lock(&gss_auth_hash_lock); 1175 hash_for_each_possible(gss_auth_hash_table, 1176 gss_auth, 1177 hash, 1178 hashval) { 1179 if (gss_auth->client != clnt) 1180 continue; 1181 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1182 continue; 1183 if (gss_auth->target_name != args->target_name) { 1184 if (gss_auth->target_name == NULL) 1185 continue; 1186 if (args->target_name == NULL) 1187 continue; 1188 if (strcmp(gss_auth->target_name, args->target_name)) 1189 continue; 1190 } 1191 if (!refcount_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1192 continue; 1193 goto out; 1194 } 1195 if (new) 1196 hash_add(gss_auth_hash_table, &new->hash, hashval); 1197 gss_auth = new; 1198 out: 1199 spin_unlock(&gss_auth_hash_lock); 1200 return gss_auth; 1201 } 1202 1203 static struct gss_auth * 1204 gss_create_hashed(const struct rpc_auth_create_args *args, 1205 struct rpc_clnt *clnt) 1206 { 1207 struct gss_auth *gss_auth; 1208 struct gss_auth *new; 1209 1210 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1211 if (gss_auth != NULL) 1212 goto out; 1213 new = gss_create_new(args, clnt); 1214 if (IS_ERR(new)) 1215 return new; 1216 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1217 if (gss_auth != new) 1218 gss_destroy(&new->rpc_auth); 1219 out: 1220 return gss_auth; 1221 } 1222 1223 static struct rpc_auth * 1224 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1225 { 1226 struct gss_auth *gss_auth; 1227 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1228 1229 while (clnt != clnt->cl_parent) { 1230 struct rpc_clnt *parent = clnt->cl_parent; 1231 /* Find the original parent for this transport */ 1232 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1233 break; 1234 clnt = parent; 1235 } 1236 1237 gss_auth = gss_create_hashed(args, clnt); 1238 if (IS_ERR(gss_auth)) 1239 return ERR_CAST(gss_auth); 1240 return &gss_auth->rpc_auth; 1241 } 1242 1243 static struct gss_cred * 1244 gss_dup_cred(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 1245 { 1246 struct gss_cred *new; 1247 1248 /* Make a copy of the cred so that we can reference count it */ 1249 new = kzalloc(sizeof(*gss_cred), GFP_NOFS); 1250 if (new) { 1251 struct auth_cred acred = { 1252 .cred = gss_cred->gc_base.cr_cred, 1253 }; 1254 struct gss_cl_ctx *ctx = 1255 rcu_dereference_protected(gss_cred->gc_ctx, 1); 1256 1257 rpcauth_init_cred(&new->gc_base, &acred, 1258 &gss_auth->rpc_auth, 1259 &gss_nullops); 1260 new->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE; 1261 new->gc_service = gss_cred->gc_service; 1262 new->gc_principal = gss_cred->gc_principal; 1263 kref_get(&gss_auth->kref); 1264 rcu_assign_pointer(new->gc_ctx, ctx); 1265 gss_get_ctx(ctx); 1266 } 1267 return new; 1268 } 1269 1270 /* 1271 * gss_send_destroy_context will cause the RPCSEC_GSS to send a NULL RPC call 1272 * to the server with the GSS control procedure field set to 1273 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1274 * all RPCSEC_GSS state associated with that context. 1275 */ 1276 static void 1277 gss_send_destroy_context(struct rpc_cred *cred) 1278 { 1279 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1280 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1281 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1282 struct gss_cred *new; 1283 struct rpc_task *task; 1284 1285 new = gss_dup_cred(gss_auth, gss_cred); 1286 if (new) { 1287 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1288 1289 trace_rpcgss_ctx_destroy(gss_cred); 1290 task = rpc_call_null(gss_auth->client, &new->gc_base, 1291 RPC_TASK_ASYNC); 1292 if (!IS_ERR(task)) 1293 rpc_put_task(task); 1294 1295 put_rpccred(&new->gc_base); 1296 } 1297 } 1298 1299 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1300 * to create a new cred or context, so they check that things have been 1301 * allocated before freeing them. */ 1302 static void 1303 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1304 { 1305 gss_delete_sec_context(&ctx->gc_gss_ctx); 1306 kfree(ctx->gc_wire_ctx.data); 1307 kfree(ctx->gc_acceptor.data); 1308 kfree(ctx); 1309 } 1310 1311 static void 1312 gss_free_ctx_callback(struct rcu_head *head) 1313 { 1314 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1315 gss_do_free_ctx(ctx); 1316 } 1317 1318 static void 1319 gss_free_ctx(struct gss_cl_ctx *ctx) 1320 { 1321 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1322 } 1323 1324 static void 1325 gss_free_cred(struct gss_cred *gss_cred) 1326 { 1327 kfree(gss_cred); 1328 } 1329 1330 static void 1331 gss_free_cred_callback(struct rcu_head *head) 1332 { 1333 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1334 gss_free_cred(gss_cred); 1335 } 1336 1337 static void 1338 gss_destroy_nullcred(struct rpc_cred *cred) 1339 { 1340 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1341 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1342 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1343 1344 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1345 put_cred(cred->cr_cred); 1346 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1347 if (ctx) 1348 gss_put_ctx(ctx); 1349 gss_put_auth(gss_auth); 1350 } 1351 1352 static void 1353 gss_destroy_cred(struct rpc_cred *cred) 1354 { 1355 if (test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) != 0) 1356 gss_send_destroy_context(cred); 1357 gss_destroy_nullcred(cred); 1358 } 1359 1360 static int 1361 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1362 { 1363 return hash_64(from_kuid(&init_user_ns, acred->cred->fsuid), hashbits); 1364 } 1365 1366 /* 1367 * Lookup RPCSEC_GSS cred for the current process 1368 */ 1369 static struct rpc_cred * 1370 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) 1371 { 1372 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS); 1373 } 1374 1375 static struct rpc_cred * 1376 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1377 { 1378 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1379 struct gss_cred *cred = NULL; 1380 int err = -ENOMEM; 1381 1382 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1383 goto out_err; 1384 1385 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1386 /* 1387 * Note: in order to force a call to call_refresh(), we deliberately 1388 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1389 */ 1390 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1391 cred->gc_service = gss_auth->service; 1392 cred->gc_principal = acred->principal; 1393 kref_get(&gss_auth->kref); 1394 return &cred->gc_base; 1395 1396 out_err: 1397 return ERR_PTR(err); 1398 } 1399 1400 static int 1401 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1402 { 1403 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1404 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1405 int err; 1406 1407 do { 1408 err = gss_create_upcall(gss_auth, gss_cred); 1409 } while (err == -EAGAIN); 1410 return err; 1411 } 1412 1413 static char * 1414 gss_stringify_acceptor(struct rpc_cred *cred) 1415 { 1416 char *string = NULL; 1417 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1418 struct gss_cl_ctx *ctx; 1419 unsigned int len; 1420 struct xdr_netobj *acceptor; 1421 1422 rcu_read_lock(); 1423 ctx = rcu_dereference(gss_cred->gc_ctx); 1424 if (!ctx) 1425 goto out; 1426 1427 len = ctx->gc_acceptor.len; 1428 rcu_read_unlock(); 1429 1430 /* no point if there's no string */ 1431 if (!len) 1432 return NULL; 1433 realloc: 1434 string = kmalloc(len + 1, GFP_KERNEL); 1435 if (!string) 1436 return NULL; 1437 1438 rcu_read_lock(); 1439 ctx = rcu_dereference(gss_cred->gc_ctx); 1440 1441 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1442 if (!ctx || !ctx->gc_acceptor.len) { 1443 kfree(string); 1444 string = NULL; 1445 goto out; 1446 } 1447 1448 acceptor = &ctx->gc_acceptor; 1449 1450 /* 1451 * Did we find a new acceptor that's longer than the original? Allocate 1452 * a longer buffer and try again. 1453 */ 1454 if (len < acceptor->len) { 1455 len = acceptor->len; 1456 rcu_read_unlock(); 1457 kfree(string); 1458 goto realloc; 1459 } 1460 1461 memcpy(string, acceptor->data, acceptor->len); 1462 string[acceptor->len] = '\0'; 1463 out: 1464 rcu_read_unlock(); 1465 return string; 1466 } 1467 1468 /* 1469 * Returns -EACCES if GSS context is NULL or will expire within the 1470 * timeout (miliseconds) 1471 */ 1472 static int 1473 gss_key_timeout(struct rpc_cred *rc) 1474 { 1475 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1476 struct gss_cl_ctx *ctx; 1477 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1478 int ret = 0; 1479 1480 rcu_read_lock(); 1481 ctx = rcu_dereference(gss_cred->gc_ctx); 1482 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1483 ret = -EACCES; 1484 rcu_read_unlock(); 1485 1486 return ret; 1487 } 1488 1489 static int 1490 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1491 { 1492 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1493 struct gss_cl_ctx *ctx; 1494 int ret; 1495 1496 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1497 goto out; 1498 /* Don't match with creds that have expired. */ 1499 rcu_read_lock(); 1500 ctx = rcu_dereference(gss_cred->gc_ctx); 1501 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1502 rcu_read_unlock(); 1503 return 0; 1504 } 1505 rcu_read_unlock(); 1506 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1507 return 0; 1508 out: 1509 if (acred->principal != NULL) { 1510 if (gss_cred->gc_principal == NULL) 1511 return 0; 1512 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1513 } else { 1514 if (gss_cred->gc_principal != NULL) 1515 return 0; 1516 ret = uid_eq(rc->cr_cred->fsuid, acred->cred->fsuid); 1517 } 1518 return ret; 1519 } 1520 1521 /* 1522 * Marshal credentials. 1523 * 1524 * The expensive part is computing the verifier. We can't cache a 1525 * pre-computed version of the verifier because the seqno, which 1526 * is different every time, is included in the MIC. 1527 */ 1528 static int gss_marshal(struct rpc_task *task, struct xdr_stream *xdr) 1529 { 1530 struct rpc_rqst *req = task->tk_rqstp; 1531 struct rpc_cred *cred = req->rq_cred; 1532 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1533 gc_base); 1534 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1535 __be32 *p, *cred_len; 1536 u32 maj_stat = 0; 1537 struct xdr_netobj mic; 1538 struct kvec iov; 1539 struct xdr_buf verf_buf; 1540 int status; 1541 1542 /* Credential */ 1543 1544 p = xdr_reserve_space(xdr, 7 * sizeof(*p) + 1545 ctx->gc_wire_ctx.len); 1546 if (!p) 1547 goto marshal_failed; 1548 *p++ = rpc_auth_gss; 1549 cred_len = p++; 1550 1551 spin_lock(&ctx->gc_seq_lock); 1552 req->rq_seqno = (ctx->gc_seq < MAXSEQ) ? ctx->gc_seq++ : MAXSEQ; 1553 spin_unlock(&ctx->gc_seq_lock); 1554 if (req->rq_seqno == MAXSEQ) 1555 goto expired; 1556 trace_rpcgss_seqno(task); 1557 1558 *p++ = cpu_to_be32(RPC_GSS_VERSION); 1559 *p++ = cpu_to_be32(ctx->gc_proc); 1560 *p++ = cpu_to_be32(req->rq_seqno); 1561 *p++ = cpu_to_be32(gss_cred->gc_service); 1562 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1563 *cred_len = cpu_to_be32((p - (cred_len + 1)) << 2); 1564 1565 /* Verifier */ 1566 1567 /* We compute the checksum for the verifier over the xdr-encoded bytes 1568 * starting with the xid and ending at the end of the credential: */ 1569 iov.iov_base = req->rq_snd_buf.head[0].iov_base; 1570 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1571 xdr_buf_from_iov(&iov, &verf_buf); 1572 1573 p = xdr_reserve_space(xdr, sizeof(*p)); 1574 if (!p) 1575 goto marshal_failed; 1576 *p++ = rpc_auth_gss; 1577 mic.data = (u8 *)(p + 1); 1578 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1579 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1580 goto expired; 1581 else if (maj_stat != 0) 1582 goto bad_mic; 1583 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1584 goto marshal_failed; 1585 status = 0; 1586 out: 1587 gss_put_ctx(ctx); 1588 return status; 1589 expired: 1590 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1591 status = -EKEYEXPIRED; 1592 goto out; 1593 marshal_failed: 1594 status = -EMSGSIZE; 1595 goto out; 1596 bad_mic: 1597 trace_rpcgss_get_mic(task, maj_stat); 1598 status = -EIO; 1599 goto out; 1600 } 1601 1602 static int gss_renew_cred(struct rpc_task *task) 1603 { 1604 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1605 struct gss_cred *gss_cred = container_of(oldcred, 1606 struct gss_cred, 1607 gc_base); 1608 struct rpc_auth *auth = oldcred->cr_auth; 1609 struct auth_cred acred = { 1610 .cred = oldcred->cr_cred, 1611 .principal = gss_cred->gc_principal, 1612 }; 1613 struct rpc_cred *new; 1614 1615 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1616 if (IS_ERR(new)) 1617 return PTR_ERR(new); 1618 1619 task->tk_rqstp->rq_cred = new; 1620 put_rpccred(oldcred); 1621 return 0; 1622 } 1623 1624 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1625 { 1626 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1627 unsigned long now = jiffies; 1628 unsigned long begin, expire; 1629 struct gss_cred *gss_cred; 1630 1631 gss_cred = container_of(cred, struct gss_cred, gc_base); 1632 begin = gss_cred->gc_upcall_timestamp; 1633 expire = begin + gss_expired_cred_retry_delay * HZ; 1634 1635 if (time_in_range_open(now, begin, expire)) 1636 return 1; 1637 } 1638 return 0; 1639 } 1640 1641 /* 1642 * Refresh credentials. XXX - finish 1643 */ 1644 static int 1645 gss_refresh(struct rpc_task *task) 1646 { 1647 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1648 int ret = 0; 1649 1650 if (gss_cred_is_negative_entry(cred)) 1651 return -EKEYEXPIRED; 1652 1653 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1654 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1655 ret = gss_renew_cred(task); 1656 if (ret < 0) 1657 goto out; 1658 cred = task->tk_rqstp->rq_cred; 1659 } 1660 1661 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1662 ret = gss_refresh_upcall(task); 1663 out: 1664 return ret; 1665 } 1666 1667 /* Dummy refresh routine: used only when destroying the context */ 1668 static int 1669 gss_refresh_null(struct rpc_task *task) 1670 { 1671 return 0; 1672 } 1673 1674 static int 1675 gss_validate(struct rpc_task *task, struct xdr_stream *xdr) 1676 { 1677 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1678 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1679 __be32 *p, *seq = NULL; 1680 struct kvec iov; 1681 struct xdr_buf verf_buf; 1682 struct xdr_netobj mic; 1683 u32 len, maj_stat; 1684 int status; 1685 1686 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1687 if (!p) 1688 goto validate_failed; 1689 if (*p++ != rpc_auth_gss) 1690 goto validate_failed; 1691 len = be32_to_cpup(p); 1692 if (len > RPC_MAX_AUTH_SIZE) 1693 goto validate_failed; 1694 p = xdr_inline_decode(xdr, len); 1695 if (!p) 1696 goto validate_failed; 1697 1698 seq = kmalloc(4, GFP_NOFS); 1699 if (!seq) 1700 goto validate_failed; 1701 *seq = cpu_to_be32(task->tk_rqstp->rq_seqno); 1702 iov.iov_base = seq; 1703 iov.iov_len = 4; 1704 xdr_buf_from_iov(&iov, &verf_buf); 1705 mic.data = (u8 *)p; 1706 mic.len = len; 1707 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1708 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1709 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1710 if (maj_stat) 1711 goto bad_mic; 1712 1713 /* We leave it to unwrap to calculate au_rslack. For now we just 1714 * calculate the length of the verifier: */ 1715 if (test_bit(RPCAUTH_AUTH_UPDATE_SLACK, &cred->cr_auth->au_flags)) 1716 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1717 status = 0; 1718 out: 1719 gss_put_ctx(ctx); 1720 kfree(seq); 1721 return status; 1722 1723 validate_failed: 1724 status = -EIO; 1725 goto out; 1726 bad_mic: 1727 trace_rpcgss_verify_mic(task, maj_stat); 1728 status = -EACCES; 1729 goto out; 1730 } 1731 1732 static noinline_for_stack int 1733 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1734 struct rpc_task *task, struct xdr_stream *xdr) 1735 { 1736 struct rpc_rqst *rqstp = task->tk_rqstp; 1737 struct xdr_buf integ_buf, *snd_buf = &rqstp->rq_snd_buf; 1738 struct xdr_netobj mic; 1739 __be32 *p, *integ_len; 1740 u32 offset, maj_stat; 1741 1742 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1743 if (!p) 1744 goto wrap_failed; 1745 integ_len = p++; 1746 *p = cpu_to_be32(rqstp->rq_seqno); 1747 1748 if (rpcauth_wrap_req_encode(task, xdr)) 1749 goto wrap_failed; 1750 1751 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1752 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1753 offset, snd_buf->len - offset)) 1754 goto wrap_failed; 1755 *integ_len = cpu_to_be32(integ_buf.len); 1756 1757 p = xdr_reserve_space(xdr, 0); 1758 if (!p) 1759 goto wrap_failed; 1760 mic.data = (u8 *)(p + 1); 1761 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1762 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1763 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1764 else if (maj_stat) 1765 goto bad_mic; 1766 /* Check that the trailing MIC fit in the buffer, after the fact */ 1767 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1768 goto wrap_failed; 1769 return 0; 1770 wrap_failed: 1771 return -EMSGSIZE; 1772 bad_mic: 1773 trace_rpcgss_get_mic(task, maj_stat); 1774 return -EIO; 1775 } 1776 1777 static void 1778 priv_release_snd_buf(struct rpc_rqst *rqstp) 1779 { 1780 int i; 1781 1782 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1783 __free_page(rqstp->rq_enc_pages[i]); 1784 kfree(rqstp->rq_enc_pages); 1785 rqstp->rq_release_snd_buf = NULL; 1786 } 1787 1788 static int 1789 alloc_enc_pages(struct rpc_rqst *rqstp) 1790 { 1791 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1792 int first, last, i; 1793 1794 if (rqstp->rq_release_snd_buf) 1795 rqstp->rq_release_snd_buf(rqstp); 1796 1797 if (snd_buf->page_len == 0) { 1798 rqstp->rq_enc_pages_num = 0; 1799 return 0; 1800 } 1801 1802 first = snd_buf->page_base >> PAGE_SHIFT; 1803 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1804 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1805 rqstp->rq_enc_pages 1806 = kmalloc_array(rqstp->rq_enc_pages_num, 1807 sizeof(struct page *), 1808 GFP_NOFS); 1809 if (!rqstp->rq_enc_pages) 1810 goto out; 1811 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1812 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); 1813 if (rqstp->rq_enc_pages[i] == NULL) 1814 goto out_free; 1815 } 1816 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1817 return 0; 1818 out_free: 1819 rqstp->rq_enc_pages_num = i; 1820 priv_release_snd_buf(rqstp); 1821 out: 1822 return -EAGAIN; 1823 } 1824 1825 static noinline_for_stack int 1826 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1827 struct rpc_task *task, struct xdr_stream *xdr) 1828 { 1829 struct rpc_rqst *rqstp = task->tk_rqstp; 1830 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1831 u32 pad, offset, maj_stat; 1832 int status; 1833 __be32 *p, *opaque_len; 1834 struct page **inpages; 1835 int first; 1836 struct kvec *iov; 1837 1838 status = -EIO; 1839 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1840 if (!p) 1841 goto wrap_failed; 1842 opaque_len = p++; 1843 *p = cpu_to_be32(rqstp->rq_seqno); 1844 1845 if (rpcauth_wrap_req_encode(task, xdr)) 1846 goto wrap_failed; 1847 1848 status = alloc_enc_pages(rqstp); 1849 if (unlikely(status)) 1850 goto wrap_failed; 1851 first = snd_buf->page_base >> PAGE_SHIFT; 1852 inpages = snd_buf->pages + first; 1853 snd_buf->pages = rqstp->rq_enc_pages; 1854 snd_buf->page_base -= first << PAGE_SHIFT; 1855 /* 1856 * Move the tail into its own page, in case gss_wrap needs 1857 * more space in the head when wrapping. 1858 * 1859 * Still... Why can't gss_wrap just slide the tail down? 1860 */ 1861 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1862 char *tmp; 1863 1864 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1865 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1866 snd_buf->tail[0].iov_base = tmp; 1867 } 1868 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1869 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1870 /* slack space should prevent this ever happening: */ 1871 if (unlikely(snd_buf->len > snd_buf->buflen)) 1872 goto wrap_failed; 1873 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1874 * done anyway, so it's safe to put the request on the wire: */ 1875 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1876 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1877 else if (maj_stat) 1878 goto bad_wrap; 1879 1880 *opaque_len = cpu_to_be32(snd_buf->len - offset); 1881 /* guess whether the pad goes into the head or the tail: */ 1882 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1883 iov = snd_buf->tail; 1884 else 1885 iov = snd_buf->head; 1886 p = iov->iov_base + iov->iov_len; 1887 pad = xdr_pad_size(snd_buf->len - offset); 1888 memset(p, 0, pad); 1889 iov->iov_len += pad; 1890 snd_buf->len += pad; 1891 1892 return 0; 1893 wrap_failed: 1894 return status; 1895 bad_wrap: 1896 trace_rpcgss_wrap(task, maj_stat); 1897 return -EIO; 1898 } 1899 1900 static int gss_wrap_req(struct rpc_task *task, struct xdr_stream *xdr) 1901 { 1902 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1903 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1904 gc_base); 1905 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1906 int status; 1907 1908 status = -EIO; 1909 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1910 /* The spec seems a little ambiguous here, but I think that not 1911 * wrapping context destruction requests makes the most sense. 1912 */ 1913 status = rpcauth_wrap_req_encode(task, xdr); 1914 goto out; 1915 } 1916 switch (gss_cred->gc_service) { 1917 case RPC_GSS_SVC_NONE: 1918 status = rpcauth_wrap_req_encode(task, xdr); 1919 break; 1920 case RPC_GSS_SVC_INTEGRITY: 1921 status = gss_wrap_req_integ(cred, ctx, task, xdr); 1922 break; 1923 case RPC_GSS_SVC_PRIVACY: 1924 status = gss_wrap_req_priv(cred, ctx, task, xdr); 1925 break; 1926 default: 1927 status = -EIO; 1928 } 1929 out: 1930 gss_put_ctx(ctx); 1931 return status; 1932 } 1933 1934 /** 1935 * gss_update_rslack - Possibly update RPC receive buffer size estimates 1936 * @task: rpc_task for incoming RPC Reply being unwrapped 1937 * @cred: controlling rpc_cred for @task 1938 * @before: XDR words needed before each RPC Reply message 1939 * @after: XDR words needed following each RPC Reply message 1940 * 1941 */ 1942 static void gss_update_rslack(struct rpc_task *task, struct rpc_cred *cred, 1943 unsigned int before, unsigned int after) 1944 { 1945 struct rpc_auth *auth = cred->cr_auth; 1946 1947 if (test_and_clear_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags)) { 1948 auth->au_ralign = auth->au_verfsize + before; 1949 auth->au_rslack = auth->au_verfsize + after; 1950 trace_rpcgss_update_slack(task, auth); 1951 } 1952 } 1953 1954 static int 1955 gss_unwrap_resp_auth(struct rpc_task *task, struct rpc_cred *cred) 1956 { 1957 gss_update_rslack(task, cred, 0, 0); 1958 return 0; 1959 } 1960 1961 /* 1962 * RFC 2203, Section 5.3.2.2 1963 * 1964 * struct rpc_gss_integ_data { 1965 * opaque databody_integ<>; 1966 * opaque checksum<>; 1967 * }; 1968 * 1969 * struct rpc_gss_data_t { 1970 * unsigned int seq_num; 1971 * proc_req_arg_t arg; 1972 * }; 1973 */ 1974 static noinline_for_stack int 1975 gss_unwrap_resp_integ(struct rpc_task *task, struct rpc_cred *cred, 1976 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 1977 struct xdr_stream *xdr) 1978 { 1979 struct xdr_buf gss_data, *rcv_buf = &rqstp->rq_rcv_buf; 1980 u32 len, offset, seqno, maj_stat; 1981 struct xdr_netobj mic; 1982 int ret; 1983 1984 ret = -EIO; 1985 mic.data = NULL; 1986 1987 /* opaque databody_integ<>; */ 1988 if (xdr_stream_decode_u32(xdr, &len)) 1989 goto unwrap_failed; 1990 if (len & 3) 1991 goto unwrap_failed; 1992 offset = rcv_buf->len - xdr_stream_remaining(xdr); 1993 if (xdr_stream_decode_u32(xdr, &seqno)) 1994 goto unwrap_failed; 1995 if (seqno != rqstp->rq_seqno) 1996 goto bad_seqno; 1997 if (xdr_buf_subsegment(rcv_buf, &gss_data, offset, len)) 1998 goto unwrap_failed; 1999 2000 /* 2001 * The xdr_stream now points to the beginning of the 2002 * upper layer payload, to be passed below to 2003 * rpcauth_unwrap_resp_decode(). The checksum, which 2004 * follows the upper layer payload in @rcv_buf, is 2005 * located and parsed without updating the xdr_stream. 2006 */ 2007 2008 /* opaque checksum<>; */ 2009 offset += len; 2010 if (xdr_decode_word(rcv_buf, offset, &len)) 2011 goto unwrap_failed; 2012 offset += sizeof(__be32); 2013 if (offset + len > rcv_buf->len) 2014 goto unwrap_failed; 2015 mic.len = len; 2016 mic.data = kmalloc(len, GFP_NOFS); 2017 if (!mic.data) 2018 goto unwrap_failed; 2019 if (read_bytes_from_xdr_buf(rcv_buf, offset, mic.data, mic.len)) 2020 goto unwrap_failed; 2021 2022 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &gss_data, &mic); 2023 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2024 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2025 if (maj_stat != GSS_S_COMPLETE) 2026 goto bad_mic; 2027 2028 gss_update_rslack(task, cred, 2, 2 + 1 + XDR_QUADLEN(mic.len)); 2029 ret = 0; 2030 2031 out: 2032 kfree(mic.data); 2033 return ret; 2034 2035 unwrap_failed: 2036 trace_rpcgss_unwrap_failed(task); 2037 goto out; 2038 bad_seqno: 2039 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, seqno); 2040 goto out; 2041 bad_mic: 2042 trace_rpcgss_verify_mic(task, maj_stat); 2043 goto out; 2044 } 2045 2046 static noinline_for_stack int 2047 gss_unwrap_resp_priv(struct rpc_task *task, struct rpc_cred *cred, 2048 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 2049 struct xdr_stream *xdr) 2050 { 2051 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 2052 struct kvec *head = rqstp->rq_rcv_buf.head; 2053 u32 offset, opaque_len, maj_stat; 2054 __be32 *p; 2055 2056 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 2057 if (unlikely(!p)) 2058 goto unwrap_failed; 2059 opaque_len = be32_to_cpup(p++); 2060 offset = (u8 *)(p) - (u8 *)head->iov_base; 2061 if (offset + opaque_len > rcv_buf->len) 2062 goto unwrap_failed; 2063 2064 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, 2065 offset + opaque_len, rcv_buf); 2066 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2067 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2068 if (maj_stat != GSS_S_COMPLETE) 2069 goto bad_unwrap; 2070 /* gss_unwrap decrypted the sequence number */ 2071 if (be32_to_cpup(p++) != rqstp->rq_seqno) 2072 goto bad_seqno; 2073 2074 /* gss_unwrap redacts the opaque blob from the head iovec. 2075 * rcv_buf has changed, thus the stream needs to be reset. 2076 */ 2077 xdr_init_decode(xdr, rcv_buf, p, rqstp); 2078 2079 gss_update_rslack(task, cred, 2 + ctx->gc_gss_ctx->align, 2080 2 + ctx->gc_gss_ctx->slack); 2081 2082 return 0; 2083 unwrap_failed: 2084 trace_rpcgss_unwrap_failed(task); 2085 return -EIO; 2086 bad_seqno: 2087 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, be32_to_cpup(--p)); 2088 return -EIO; 2089 bad_unwrap: 2090 trace_rpcgss_unwrap(task, maj_stat); 2091 return -EIO; 2092 } 2093 2094 static bool 2095 gss_seq_is_newer(u32 new, u32 old) 2096 { 2097 return (s32)(new - old) > 0; 2098 } 2099 2100 static bool 2101 gss_xmit_need_reencode(struct rpc_task *task) 2102 { 2103 struct rpc_rqst *req = task->tk_rqstp; 2104 struct rpc_cred *cred = req->rq_cred; 2105 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2106 u32 win, seq_xmit = 0; 2107 bool ret = true; 2108 2109 if (!ctx) 2110 goto out; 2111 2112 if (gss_seq_is_newer(req->rq_seqno, READ_ONCE(ctx->gc_seq))) 2113 goto out_ctx; 2114 2115 seq_xmit = READ_ONCE(ctx->gc_seq_xmit); 2116 while (gss_seq_is_newer(req->rq_seqno, seq_xmit)) { 2117 u32 tmp = seq_xmit; 2118 2119 seq_xmit = cmpxchg(&ctx->gc_seq_xmit, tmp, req->rq_seqno); 2120 if (seq_xmit == tmp) { 2121 ret = false; 2122 goto out_ctx; 2123 } 2124 } 2125 2126 win = ctx->gc_win; 2127 if (win > 0) 2128 ret = !gss_seq_is_newer(req->rq_seqno, seq_xmit - win); 2129 2130 out_ctx: 2131 gss_put_ctx(ctx); 2132 out: 2133 trace_rpcgss_need_reencode(task, seq_xmit, ret); 2134 return ret; 2135 } 2136 2137 static int 2138 gss_unwrap_resp(struct rpc_task *task, struct xdr_stream *xdr) 2139 { 2140 struct rpc_rqst *rqstp = task->tk_rqstp; 2141 struct rpc_cred *cred = rqstp->rq_cred; 2142 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 2143 gc_base); 2144 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2145 int status = -EIO; 2146 2147 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 2148 goto out_decode; 2149 switch (gss_cred->gc_service) { 2150 case RPC_GSS_SVC_NONE: 2151 status = gss_unwrap_resp_auth(task, cred); 2152 break; 2153 case RPC_GSS_SVC_INTEGRITY: 2154 status = gss_unwrap_resp_integ(task, cred, ctx, rqstp, xdr); 2155 break; 2156 case RPC_GSS_SVC_PRIVACY: 2157 status = gss_unwrap_resp_priv(task, cred, ctx, rqstp, xdr); 2158 break; 2159 } 2160 if (status) 2161 goto out; 2162 2163 out_decode: 2164 status = rpcauth_unwrap_resp_decode(task, xdr); 2165 out: 2166 gss_put_ctx(ctx); 2167 return status; 2168 } 2169 2170 static const struct rpc_authops authgss_ops = { 2171 .owner = THIS_MODULE, 2172 .au_flavor = RPC_AUTH_GSS, 2173 .au_name = "RPCSEC_GSS", 2174 .create = gss_create, 2175 .destroy = gss_destroy, 2176 .hash_cred = gss_hash_cred, 2177 .lookup_cred = gss_lookup_cred, 2178 .crcreate = gss_create_cred, 2179 .info2flavor = gss_mech_info2flavor, 2180 .flavor2info = gss_mech_flavor2info, 2181 }; 2182 2183 static const struct rpc_credops gss_credops = { 2184 .cr_name = "AUTH_GSS", 2185 .crdestroy = gss_destroy_cred, 2186 .cr_init = gss_cred_init, 2187 .crmatch = gss_match, 2188 .crmarshal = gss_marshal, 2189 .crrefresh = gss_refresh, 2190 .crvalidate = gss_validate, 2191 .crwrap_req = gss_wrap_req, 2192 .crunwrap_resp = gss_unwrap_resp, 2193 .crkey_timeout = gss_key_timeout, 2194 .crstringify_acceptor = gss_stringify_acceptor, 2195 .crneed_reencode = gss_xmit_need_reencode, 2196 }; 2197 2198 static const struct rpc_credops gss_nullops = { 2199 .cr_name = "AUTH_GSS", 2200 .crdestroy = gss_destroy_nullcred, 2201 .crmatch = gss_match, 2202 .crmarshal = gss_marshal, 2203 .crrefresh = gss_refresh_null, 2204 .crvalidate = gss_validate, 2205 .crwrap_req = gss_wrap_req, 2206 .crunwrap_resp = gss_unwrap_resp, 2207 .crstringify_acceptor = gss_stringify_acceptor, 2208 }; 2209 2210 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2211 .upcall = gss_v0_upcall, 2212 .downcall = gss_pipe_downcall, 2213 .destroy_msg = gss_pipe_destroy_msg, 2214 .open_pipe = gss_pipe_open_v0, 2215 .release_pipe = gss_pipe_release, 2216 }; 2217 2218 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2219 .upcall = gss_v1_upcall, 2220 .downcall = gss_pipe_downcall, 2221 .destroy_msg = gss_pipe_destroy_msg, 2222 .open_pipe = gss_pipe_open_v1, 2223 .release_pipe = gss_pipe_release, 2224 }; 2225 2226 static __net_init int rpcsec_gss_init_net(struct net *net) 2227 { 2228 return gss_svc_init_net(net); 2229 } 2230 2231 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2232 { 2233 gss_svc_shutdown_net(net); 2234 } 2235 2236 static struct pernet_operations rpcsec_gss_net_ops = { 2237 .init = rpcsec_gss_init_net, 2238 .exit = rpcsec_gss_exit_net, 2239 }; 2240 2241 /* 2242 * Initialize RPCSEC_GSS module 2243 */ 2244 static int __init init_rpcsec_gss(void) 2245 { 2246 int err = 0; 2247 2248 err = rpcauth_register(&authgss_ops); 2249 if (err) 2250 goto out; 2251 err = gss_svc_init(); 2252 if (err) 2253 goto out_unregister; 2254 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2255 if (err) 2256 goto out_svc_exit; 2257 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2258 return 0; 2259 out_svc_exit: 2260 gss_svc_shutdown(); 2261 out_unregister: 2262 rpcauth_unregister(&authgss_ops); 2263 out: 2264 return err; 2265 } 2266 2267 static void __exit exit_rpcsec_gss(void) 2268 { 2269 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2270 gss_svc_shutdown(); 2271 rpcauth_unregister(&authgss_ops); 2272 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2273 } 2274 2275 MODULE_ALIAS("rpc-auth-6"); 2276 MODULE_LICENSE("GPL"); 2277 module_param_named(expired_cred_retry_delay, 2278 gss_expired_cred_retry_delay, 2279 uint, 0644); 2280 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2281 "the RPC engine retries an expired credential"); 2282 2283 module_param_named(key_expire_timeo, 2284 gss_key_expire_timeo, 2285 uint, 0644); 2286 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2287 "credential keys lifetime where the NFS layer cleans up " 2288 "prior to key expiration"); 2289 2290 module_init(init_rpcsec_gss) 2291 module_exit(exit_rpcsec_gss) 2292