xref: /openbmc/linux/net/sunrpc/auth_gss/auth_gss.c (revision 1ab142d4)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 
55 static const struct rpc_authops authgss_ops;
56 
57 static const struct rpc_credops gss_credops;
58 static const struct rpc_credops gss_nullops;
59 
60 #define GSS_RETRY_EXPIRED 5
61 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
62 
63 #ifdef RPC_DEBUG
64 # define RPCDBG_FACILITY	RPCDBG_AUTH
65 #endif
66 
67 #define GSS_CRED_SLACK		(RPC_MAX_AUTH_SIZE * 2)
68 /* length of a krb5 verifier (48), plus data added before arguments when
69  * using integrity (two 4-byte integers): */
70 #define GSS_VERF_SLACK		100
71 
72 struct gss_auth {
73 	struct kref kref;
74 	struct rpc_auth rpc_auth;
75 	struct gss_api_mech *mech;
76 	enum rpc_gss_svc service;
77 	struct rpc_clnt *client;
78 	/*
79 	 * There are two upcall pipes; dentry[1], named "gssd", is used
80 	 * for the new text-based upcall; dentry[0] is named after the
81 	 * mechanism (for example, "krb5") and exists for
82 	 * backwards-compatibility with older gssd's.
83 	 */
84 	struct dentry *dentry[2];
85 };
86 
87 /* pipe_version >= 0 if and only if someone has a pipe open. */
88 static int pipe_version = -1;
89 static atomic_t pipe_users = ATOMIC_INIT(0);
90 static DEFINE_SPINLOCK(pipe_version_lock);
91 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
92 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
93 
94 static void gss_free_ctx(struct gss_cl_ctx *);
95 static const struct rpc_pipe_ops gss_upcall_ops_v0;
96 static const struct rpc_pipe_ops gss_upcall_ops_v1;
97 
98 static inline struct gss_cl_ctx *
99 gss_get_ctx(struct gss_cl_ctx *ctx)
100 {
101 	atomic_inc(&ctx->count);
102 	return ctx;
103 }
104 
105 static inline void
106 gss_put_ctx(struct gss_cl_ctx *ctx)
107 {
108 	if (atomic_dec_and_test(&ctx->count))
109 		gss_free_ctx(ctx);
110 }
111 
112 /* gss_cred_set_ctx:
113  * called by gss_upcall_callback and gss_create_upcall in order
114  * to set the gss context. The actual exchange of an old context
115  * and a new one is protected by the inode->i_lock.
116  */
117 static void
118 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
119 {
120 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
121 
122 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
123 		return;
124 	gss_get_ctx(ctx);
125 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
126 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
127 	smp_mb__before_clear_bit();
128 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
129 }
130 
131 static const void *
132 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
133 {
134 	const void *q = (const void *)((const char *)p + len);
135 	if (unlikely(q > end || q < p))
136 		return ERR_PTR(-EFAULT);
137 	memcpy(res, p, len);
138 	return q;
139 }
140 
141 static inline const void *
142 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
143 {
144 	const void *q;
145 	unsigned int len;
146 
147 	p = simple_get_bytes(p, end, &len, sizeof(len));
148 	if (IS_ERR(p))
149 		return p;
150 	q = (const void *)((const char *)p + len);
151 	if (unlikely(q > end || q < p))
152 		return ERR_PTR(-EFAULT);
153 	dest->data = kmemdup(p, len, GFP_NOFS);
154 	if (unlikely(dest->data == NULL))
155 		return ERR_PTR(-ENOMEM);
156 	dest->len = len;
157 	return q;
158 }
159 
160 static struct gss_cl_ctx *
161 gss_cred_get_ctx(struct rpc_cred *cred)
162 {
163 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
164 	struct gss_cl_ctx *ctx = NULL;
165 
166 	rcu_read_lock();
167 	if (gss_cred->gc_ctx)
168 		ctx = gss_get_ctx(gss_cred->gc_ctx);
169 	rcu_read_unlock();
170 	return ctx;
171 }
172 
173 static struct gss_cl_ctx *
174 gss_alloc_context(void)
175 {
176 	struct gss_cl_ctx *ctx;
177 
178 	ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
179 	if (ctx != NULL) {
180 		ctx->gc_proc = RPC_GSS_PROC_DATA;
181 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
182 		spin_lock_init(&ctx->gc_seq_lock);
183 		atomic_set(&ctx->count,1);
184 	}
185 	return ctx;
186 }
187 
188 #define GSSD_MIN_TIMEOUT (60 * 60)
189 static const void *
190 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
191 {
192 	const void *q;
193 	unsigned int seclen;
194 	unsigned int timeout;
195 	u32 window_size;
196 	int ret;
197 
198 	/* First unsigned int gives the lifetime (in seconds) of the cred */
199 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
200 	if (IS_ERR(p))
201 		goto err;
202 	if (timeout == 0)
203 		timeout = GSSD_MIN_TIMEOUT;
204 	ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
205 	/* Sequence number window. Determines the maximum number of simultaneous requests */
206 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
207 	if (IS_ERR(p))
208 		goto err;
209 	ctx->gc_win = window_size;
210 	/* gssd signals an error by passing ctx->gc_win = 0: */
211 	if (ctx->gc_win == 0) {
212 		/*
213 		 * in which case, p points to an error code. Anything other
214 		 * than -EKEYEXPIRED gets converted to -EACCES.
215 		 */
216 		p = simple_get_bytes(p, end, &ret, sizeof(ret));
217 		if (!IS_ERR(p))
218 			p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
219 						    ERR_PTR(-EACCES);
220 		goto err;
221 	}
222 	/* copy the opaque wire context */
223 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
224 	if (IS_ERR(p))
225 		goto err;
226 	/* import the opaque security context */
227 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
228 	if (IS_ERR(p))
229 		goto err;
230 	q = (const void *)((const char *)p + seclen);
231 	if (unlikely(q > end || q < p)) {
232 		p = ERR_PTR(-EFAULT);
233 		goto err;
234 	}
235 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, GFP_NOFS);
236 	if (ret < 0) {
237 		p = ERR_PTR(ret);
238 		goto err;
239 	}
240 	return q;
241 err:
242 	dprintk("RPC:       gss_fill_context returning %ld\n", -PTR_ERR(p));
243 	return p;
244 }
245 
246 #define UPCALL_BUF_LEN 128
247 
248 struct gss_upcall_msg {
249 	atomic_t count;
250 	uid_t	uid;
251 	struct rpc_pipe_msg msg;
252 	struct list_head list;
253 	struct gss_auth *auth;
254 	struct rpc_inode *inode;
255 	struct rpc_wait_queue rpc_waitqueue;
256 	wait_queue_head_t waitqueue;
257 	struct gss_cl_ctx *ctx;
258 	char databuf[UPCALL_BUF_LEN];
259 };
260 
261 static int get_pipe_version(void)
262 {
263 	int ret;
264 
265 	spin_lock(&pipe_version_lock);
266 	if (pipe_version >= 0) {
267 		atomic_inc(&pipe_users);
268 		ret = pipe_version;
269 	} else
270 		ret = -EAGAIN;
271 	spin_unlock(&pipe_version_lock);
272 	return ret;
273 }
274 
275 static void put_pipe_version(void)
276 {
277 	if (atomic_dec_and_lock(&pipe_users, &pipe_version_lock)) {
278 		pipe_version = -1;
279 		spin_unlock(&pipe_version_lock);
280 	}
281 }
282 
283 static void
284 gss_release_msg(struct gss_upcall_msg *gss_msg)
285 {
286 	if (!atomic_dec_and_test(&gss_msg->count))
287 		return;
288 	put_pipe_version();
289 	BUG_ON(!list_empty(&gss_msg->list));
290 	if (gss_msg->ctx != NULL)
291 		gss_put_ctx(gss_msg->ctx);
292 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
293 	kfree(gss_msg);
294 }
295 
296 static struct gss_upcall_msg *
297 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
298 {
299 	struct gss_upcall_msg *pos;
300 	list_for_each_entry(pos, &rpci->in_downcall, list) {
301 		if (pos->uid != uid)
302 			continue;
303 		atomic_inc(&pos->count);
304 		dprintk("RPC:       gss_find_upcall found msg %p\n", pos);
305 		return pos;
306 	}
307 	dprintk("RPC:       gss_find_upcall found nothing\n");
308 	return NULL;
309 }
310 
311 /* Try to add an upcall to the pipefs queue.
312  * If an upcall owned by our uid already exists, then we return a reference
313  * to that upcall instead of adding the new upcall.
314  */
315 static inline struct gss_upcall_msg *
316 gss_add_msg(struct gss_upcall_msg *gss_msg)
317 {
318 	struct rpc_inode *rpci = gss_msg->inode;
319 	struct inode *inode = &rpci->vfs_inode;
320 	struct gss_upcall_msg *old;
321 
322 	spin_lock(&inode->i_lock);
323 	old = __gss_find_upcall(rpci, gss_msg->uid);
324 	if (old == NULL) {
325 		atomic_inc(&gss_msg->count);
326 		list_add(&gss_msg->list, &rpci->in_downcall);
327 	} else
328 		gss_msg = old;
329 	spin_unlock(&inode->i_lock);
330 	return gss_msg;
331 }
332 
333 static void
334 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
335 {
336 	list_del_init(&gss_msg->list);
337 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
338 	wake_up_all(&gss_msg->waitqueue);
339 	atomic_dec(&gss_msg->count);
340 }
341 
342 static void
343 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
344 {
345 	struct inode *inode = &gss_msg->inode->vfs_inode;
346 
347 	if (list_empty(&gss_msg->list))
348 		return;
349 	spin_lock(&inode->i_lock);
350 	if (!list_empty(&gss_msg->list))
351 		__gss_unhash_msg(gss_msg);
352 	spin_unlock(&inode->i_lock);
353 }
354 
355 static void
356 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
357 {
358 	switch (gss_msg->msg.errno) {
359 	case 0:
360 		if (gss_msg->ctx == NULL)
361 			break;
362 		clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
363 		gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
364 		break;
365 	case -EKEYEXPIRED:
366 		set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
367 	}
368 	gss_cred->gc_upcall_timestamp = jiffies;
369 	gss_cred->gc_upcall = NULL;
370 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
371 }
372 
373 static void
374 gss_upcall_callback(struct rpc_task *task)
375 {
376 	struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
377 			struct gss_cred, gc_base);
378 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
379 	struct inode *inode = &gss_msg->inode->vfs_inode;
380 
381 	spin_lock(&inode->i_lock);
382 	gss_handle_downcall_result(gss_cred, gss_msg);
383 	spin_unlock(&inode->i_lock);
384 	task->tk_status = gss_msg->msg.errno;
385 	gss_release_msg(gss_msg);
386 }
387 
388 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
389 {
390 	gss_msg->msg.data = &gss_msg->uid;
391 	gss_msg->msg.len = sizeof(gss_msg->uid);
392 }
393 
394 static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
395 				struct rpc_clnt *clnt,
396 				const char *service_name)
397 {
398 	struct gss_api_mech *mech = gss_msg->auth->mech;
399 	char *p = gss_msg->databuf;
400 	int len = 0;
401 
402 	gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ",
403 				   mech->gm_name,
404 				   gss_msg->uid);
405 	p += gss_msg->msg.len;
406 	if (clnt->cl_principal) {
407 		len = sprintf(p, "target=%s ", clnt->cl_principal);
408 		p += len;
409 		gss_msg->msg.len += len;
410 	}
411 	if (service_name != NULL) {
412 		len = sprintf(p, "service=%s ", service_name);
413 		p += len;
414 		gss_msg->msg.len += len;
415 	}
416 	if (mech->gm_upcall_enctypes) {
417 		len = sprintf(p, "enctypes=%s ", mech->gm_upcall_enctypes);
418 		p += len;
419 		gss_msg->msg.len += len;
420 	}
421 	len = sprintf(p, "\n");
422 	gss_msg->msg.len += len;
423 
424 	gss_msg->msg.data = gss_msg->databuf;
425 	BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN);
426 }
427 
428 static void gss_encode_msg(struct gss_upcall_msg *gss_msg,
429 				struct rpc_clnt *clnt,
430 				const char *service_name)
431 {
432 	if (pipe_version == 0)
433 		gss_encode_v0_msg(gss_msg);
434 	else /* pipe_version == 1 */
435 		gss_encode_v1_msg(gss_msg, clnt, service_name);
436 }
437 
438 static struct gss_upcall_msg *
439 gss_alloc_msg(struct gss_auth *gss_auth, struct rpc_clnt *clnt,
440 		uid_t uid, const char *service_name)
441 {
442 	struct gss_upcall_msg *gss_msg;
443 	int vers;
444 
445 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
446 	if (gss_msg == NULL)
447 		return ERR_PTR(-ENOMEM);
448 	vers = get_pipe_version();
449 	if (vers < 0) {
450 		kfree(gss_msg);
451 		return ERR_PTR(vers);
452 	}
453 	gss_msg->inode = RPC_I(gss_auth->dentry[vers]->d_inode);
454 	INIT_LIST_HEAD(&gss_msg->list);
455 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
456 	init_waitqueue_head(&gss_msg->waitqueue);
457 	atomic_set(&gss_msg->count, 1);
458 	gss_msg->uid = uid;
459 	gss_msg->auth = gss_auth;
460 	gss_encode_msg(gss_msg, clnt, service_name);
461 	return gss_msg;
462 }
463 
464 static struct gss_upcall_msg *
465 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
466 {
467 	struct gss_cred *gss_cred = container_of(cred,
468 			struct gss_cred, gc_base);
469 	struct gss_upcall_msg *gss_new, *gss_msg;
470 	uid_t uid = cred->cr_uid;
471 
472 	gss_new = gss_alloc_msg(gss_auth, clnt, uid, gss_cred->gc_principal);
473 	if (IS_ERR(gss_new))
474 		return gss_new;
475 	gss_msg = gss_add_msg(gss_new);
476 	if (gss_msg == gss_new) {
477 		struct inode *inode = &gss_new->inode->vfs_inode;
478 		int res = rpc_queue_upcall(inode, &gss_new->msg);
479 		if (res) {
480 			gss_unhash_msg(gss_new);
481 			gss_msg = ERR_PTR(res);
482 		}
483 	} else
484 		gss_release_msg(gss_new);
485 	return gss_msg;
486 }
487 
488 static void warn_gssd(void)
489 {
490 	static unsigned long ratelimit;
491 	unsigned long now = jiffies;
492 
493 	if (time_after(now, ratelimit)) {
494 		printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
495 				"Please check user daemon is running.\n");
496 		ratelimit = now + 15*HZ;
497 	}
498 }
499 
500 static inline int
501 gss_refresh_upcall(struct rpc_task *task)
502 {
503 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
504 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
505 			struct gss_auth, rpc_auth);
506 	struct gss_cred *gss_cred = container_of(cred,
507 			struct gss_cred, gc_base);
508 	struct gss_upcall_msg *gss_msg;
509 	struct inode *inode;
510 	int err = 0;
511 
512 	dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
513 								cred->cr_uid);
514 	gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
515 	if (PTR_ERR(gss_msg) == -EAGAIN) {
516 		/* XXX: warning on the first, under the assumption we
517 		 * shouldn't normally hit this case on a refresh. */
518 		warn_gssd();
519 		task->tk_timeout = 15*HZ;
520 		rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
521 		return -EAGAIN;
522 	}
523 	if (IS_ERR(gss_msg)) {
524 		err = PTR_ERR(gss_msg);
525 		goto out;
526 	}
527 	inode = &gss_msg->inode->vfs_inode;
528 	spin_lock(&inode->i_lock);
529 	if (gss_cred->gc_upcall != NULL)
530 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
531 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
532 		task->tk_timeout = 0;
533 		gss_cred->gc_upcall = gss_msg;
534 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
535 		atomic_inc(&gss_msg->count);
536 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
537 	} else {
538 		gss_handle_downcall_result(gss_cred, gss_msg);
539 		err = gss_msg->msg.errno;
540 	}
541 	spin_unlock(&inode->i_lock);
542 	gss_release_msg(gss_msg);
543 out:
544 	dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
545 			task->tk_pid, cred->cr_uid, err);
546 	return err;
547 }
548 
549 static inline int
550 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
551 {
552 	struct inode *inode;
553 	struct rpc_cred *cred = &gss_cred->gc_base;
554 	struct gss_upcall_msg *gss_msg;
555 	DEFINE_WAIT(wait);
556 	int err = 0;
557 
558 	dprintk("RPC:       gss_upcall for uid %u\n", cred->cr_uid);
559 retry:
560 	gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
561 	if (PTR_ERR(gss_msg) == -EAGAIN) {
562 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
563 				pipe_version >= 0, 15*HZ);
564 		if (pipe_version < 0) {
565 			warn_gssd();
566 			err = -EACCES;
567 		}
568 		if (err)
569 			goto out;
570 		goto retry;
571 	}
572 	if (IS_ERR(gss_msg)) {
573 		err = PTR_ERR(gss_msg);
574 		goto out;
575 	}
576 	inode = &gss_msg->inode->vfs_inode;
577 	for (;;) {
578 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
579 		spin_lock(&inode->i_lock);
580 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
581 			break;
582 		}
583 		spin_unlock(&inode->i_lock);
584 		if (fatal_signal_pending(current)) {
585 			err = -ERESTARTSYS;
586 			goto out_intr;
587 		}
588 		schedule();
589 	}
590 	if (gss_msg->ctx)
591 		gss_cred_set_ctx(cred, gss_msg->ctx);
592 	else
593 		err = gss_msg->msg.errno;
594 	spin_unlock(&inode->i_lock);
595 out_intr:
596 	finish_wait(&gss_msg->waitqueue, &wait);
597 	gss_release_msg(gss_msg);
598 out:
599 	dprintk("RPC:       gss_create_upcall for uid %u result %d\n",
600 			cred->cr_uid, err);
601 	return err;
602 }
603 
604 #define MSG_BUF_MAXSIZE 1024
605 
606 static ssize_t
607 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
608 {
609 	const void *p, *end;
610 	void *buf;
611 	struct gss_upcall_msg *gss_msg;
612 	struct inode *inode = filp->f_path.dentry->d_inode;
613 	struct gss_cl_ctx *ctx;
614 	uid_t uid;
615 	ssize_t err = -EFBIG;
616 
617 	if (mlen > MSG_BUF_MAXSIZE)
618 		goto out;
619 	err = -ENOMEM;
620 	buf = kmalloc(mlen, GFP_NOFS);
621 	if (!buf)
622 		goto out;
623 
624 	err = -EFAULT;
625 	if (copy_from_user(buf, src, mlen))
626 		goto err;
627 
628 	end = (const void *)((char *)buf + mlen);
629 	p = simple_get_bytes(buf, end, &uid, sizeof(uid));
630 	if (IS_ERR(p)) {
631 		err = PTR_ERR(p);
632 		goto err;
633 	}
634 
635 	err = -ENOMEM;
636 	ctx = gss_alloc_context();
637 	if (ctx == NULL)
638 		goto err;
639 
640 	err = -ENOENT;
641 	/* Find a matching upcall */
642 	spin_lock(&inode->i_lock);
643 	gss_msg = __gss_find_upcall(RPC_I(inode), uid);
644 	if (gss_msg == NULL) {
645 		spin_unlock(&inode->i_lock);
646 		goto err_put_ctx;
647 	}
648 	list_del_init(&gss_msg->list);
649 	spin_unlock(&inode->i_lock);
650 
651 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
652 	if (IS_ERR(p)) {
653 		err = PTR_ERR(p);
654 		switch (err) {
655 		case -EACCES:
656 		case -EKEYEXPIRED:
657 			gss_msg->msg.errno = err;
658 			err = mlen;
659 			break;
660 		case -EFAULT:
661 		case -ENOMEM:
662 		case -EINVAL:
663 		case -ENOSYS:
664 			gss_msg->msg.errno = -EAGAIN;
665 			break;
666 		default:
667 			printk(KERN_CRIT "%s: bad return from "
668 				"gss_fill_context: %zd\n", __func__, err);
669 			BUG();
670 		}
671 		goto err_release_msg;
672 	}
673 	gss_msg->ctx = gss_get_ctx(ctx);
674 	err = mlen;
675 
676 err_release_msg:
677 	spin_lock(&inode->i_lock);
678 	__gss_unhash_msg(gss_msg);
679 	spin_unlock(&inode->i_lock);
680 	gss_release_msg(gss_msg);
681 err_put_ctx:
682 	gss_put_ctx(ctx);
683 err:
684 	kfree(buf);
685 out:
686 	dprintk("RPC:       gss_pipe_downcall returning %Zd\n", err);
687 	return err;
688 }
689 
690 static int gss_pipe_open(struct inode *inode, int new_version)
691 {
692 	int ret = 0;
693 
694 	spin_lock(&pipe_version_lock);
695 	if (pipe_version < 0) {
696 		/* First open of any gss pipe determines the version: */
697 		pipe_version = new_version;
698 		rpc_wake_up(&pipe_version_rpc_waitqueue);
699 		wake_up(&pipe_version_waitqueue);
700 	} else if (pipe_version != new_version) {
701 		/* Trying to open a pipe of a different version */
702 		ret = -EBUSY;
703 		goto out;
704 	}
705 	atomic_inc(&pipe_users);
706 out:
707 	spin_unlock(&pipe_version_lock);
708 	return ret;
709 
710 }
711 
712 static int gss_pipe_open_v0(struct inode *inode)
713 {
714 	return gss_pipe_open(inode, 0);
715 }
716 
717 static int gss_pipe_open_v1(struct inode *inode)
718 {
719 	return gss_pipe_open(inode, 1);
720 }
721 
722 static void
723 gss_pipe_release(struct inode *inode)
724 {
725 	struct rpc_inode *rpci = RPC_I(inode);
726 	struct gss_upcall_msg *gss_msg;
727 
728 restart:
729 	spin_lock(&inode->i_lock);
730 	list_for_each_entry(gss_msg, &rpci->in_downcall, list) {
731 
732 		if (!list_empty(&gss_msg->msg.list))
733 			continue;
734 		gss_msg->msg.errno = -EPIPE;
735 		atomic_inc(&gss_msg->count);
736 		__gss_unhash_msg(gss_msg);
737 		spin_unlock(&inode->i_lock);
738 		gss_release_msg(gss_msg);
739 		goto restart;
740 	}
741 	spin_unlock(&inode->i_lock);
742 
743 	put_pipe_version();
744 }
745 
746 static void
747 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
748 {
749 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
750 
751 	if (msg->errno < 0) {
752 		dprintk("RPC:       gss_pipe_destroy_msg releasing msg %p\n",
753 				gss_msg);
754 		atomic_inc(&gss_msg->count);
755 		gss_unhash_msg(gss_msg);
756 		if (msg->errno == -ETIMEDOUT)
757 			warn_gssd();
758 		gss_release_msg(gss_msg);
759 	}
760 }
761 
762 /*
763  * NOTE: we have the opportunity to use different
764  * parameters based on the input flavor (which must be a pseudoflavor)
765  */
766 static struct rpc_auth *
767 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
768 {
769 	struct gss_auth *gss_auth;
770 	struct rpc_auth * auth;
771 	int err = -ENOMEM; /* XXX? */
772 
773 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
774 
775 	if (!try_module_get(THIS_MODULE))
776 		return ERR_PTR(err);
777 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
778 		goto out_dec;
779 	gss_auth->client = clnt;
780 	err = -EINVAL;
781 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
782 	if (!gss_auth->mech) {
783 		printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
784 				__func__, flavor);
785 		goto err_free;
786 	}
787 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
788 	if (gss_auth->service == 0)
789 		goto err_put_mech;
790 	auth = &gss_auth->rpc_auth;
791 	auth->au_cslack = GSS_CRED_SLACK >> 2;
792 	auth->au_rslack = GSS_VERF_SLACK >> 2;
793 	auth->au_ops = &authgss_ops;
794 	auth->au_flavor = flavor;
795 	atomic_set(&auth->au_count, 1);
796 	kref_init(&gss_auth->kref);
797 
798 	/*
799 	 * Note: if we created the old pipe first, then someone who
800 	 * examined the directory at the right moment might conclude
801 	 * that we supported only the old pipe.  So we instead create
802 	 * the new pipe first.
803 	 */
804 	gss_auth->dentry[1] = rpc_mkpipe(clnt->cl_path.dentry,
805 					 "gssd",
806 					 clnt, &gss_upcall_ops_v1,
807 					 RPC_PIPE_WAIT_FOR_OPEN);
808 	if (IS_ERR(gss_auth->dentry[1])) {
809 		err = PTR_ERR(gss_auth->dentry[1]);
810 		goto err_put_mech;
811 	}
812 
813 	gss_auth->dentry[0] = rpc_mkpipe(clnt->cl_path.dentry,
814 					 gss_auth->mech->gm_name,
815 					 clnt, &gss_upcall_ops_v0,
816 					 RPC_PIPE_WAIT_FOR_OPEN);
817 	if (IS_ERR(gss_auth->dentry[0])) {
818 		err = PTR_ERR(gss_auth->dentry[0]);
819 		goto err_unlink_pipe_1;
820 	}
821 	err = rpcauth_init_credcache(auth);
822 	if (err)
823 		goto err_unlink_pipe_0;
824 
825 	return auth;
826 err_unlink_pipe_0:
827 	rpc_unlink(gss_auth->dentry[0]);
828 err_unlink_pipe_1:
829 	rpc_unlink(gss_auth->dentry[1]);
830 err_put_mech:
831 	gss_mech_put(gss_auth->mech);
832 err_free:
833 	kfree(gss_auth);
834 out_dec:
835 	module_put(THIS_MODULE);
836 	return ERR_PTR(err);
837 }
838 
839 static void
840 gss_free(struct gss_auth *gss_auth)
841 {
842 	rpc_unlink(gss_auth->dentry[1]);
843 	rpc_unlink(gss_auth->dentry[0]);
844 	gss_mech_put(gss_auth->mech);
845 
846 	kfree(gss_auth);
847 	module_put(THIS_MODULE);
848 }
849 
850 static void
851 gss_free_callback(struct kref *kref)
852 {
853 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
854 
855 	gss_free(gss_auth);
856 }
857 
858 static void
859 gss_destroy(struct rpc_auth *auth)
860 {
861 	struct gss_auth *gss_auth;
862 
863 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
864 			auth, auth->au_flavor);
865 
866 	rpcauth_destroy_credcache(auth);
867 
868 	gss_auth = container_of(auth, struct gss_auth, rpc_auth);
869 	kref_put(&gss_auth->kref, gss_free_callback);
870 }
871 
872 /*
873  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
874  * to the server with the GSS control procedure field set to
875  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
876  * all RPCSEC_GSS state associated with that context.
877  */
878 static int
879 gss_destroying_context(struct rpc_cred *cred)
880 {
881 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
882 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
883 	struct rpc_task *task;
884 
885 	if (gss_cred->gc_ctx == NULL ||
886 	    test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
887 		return 0;
888 
889 	gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
890 	cred->cr_ops = &gss_nullops;
891 
892 	/* Take a reference to ensure the cred will be destroyed either
893 	 * by the RPC call or by the put_rpccred() below */
894 	get_rpccred(cred);
895 
896 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
897 	if (!IS_ERR(task))
898 		rpc_put_task(task);
899 
900 	put_rpccred(cred);
901 	return 1;
902 }
903 
904 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
905  * to create a new cred or context, so they check that things have been
906  * allocated before freeing them. */
907 static void
908 gss_do_free_ctx(struct gss_cl_ctx *ctx)
909 {
910 	dprintk("RPC:       gss_free_ctx\n");
911 
912 	gss_delete_sec_context(&ctx->gc_gss_ctx);
913 	kfree(ctx->gc_wire_ctx.data);
914 	kfree(ctx);
915 }
916 
917 static void
918 gss_free_ctx_callback(struct rcu_head *head)
919 {
920 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
921 	gss_do_free_ctx(ctx);
922 }
923 
924 static void
925 gss_free_ctx(struct gss_cl_ctx *ctx)
926 {
927 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
928 }
929 
930 static void
931 gss_free_cred(struct gss_cred *gss_cred)
932 {
933 	dprintk("RPC:       gss_free_cred %p\n", gss_cred);
934 	kfree(gss_cred);
935 }
936 
937 static void
938 gss_free_cred_callback(struct rcu_head *head)
939 {
940 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
941 	gss_free_cred(gss_cred);
942 }
943 
944 static void
945 gss_destroy_nullcred(struct rpc_cred *cred)
946 {
947 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
948 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
949 	struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
950 
951 	RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
952 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
953 	if (ctx)
954 		gss_put_ctx(ctx);
955 	kref_put(&gss_auth->kref, gss_free_callback);
956 }
957 
958 static void
959 gss_destroy_cred(struct rpc_cred *cred)
960 {
961 
962 	if (gss_destroying_context(cred))
963 		return;
964 	gss_destroy_nullcred(cred);
965 }
966 
967 /*
968  * Lookup RPCSEC_GSS cred for the current process
969  */
970 static struct rpc_cred *
971 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
972 {
973 	return rpcauth_lookup_credcache(auth, acred, flags);
974 }
975 
976 static struct rpc_cred *
977 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
978 {
979 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
980 	struct gss_cred	*cred = NULL;
981 	int err = -ENOMEM;
982 
983 	dprintk("RPC:       gss_create_cred for uid %d, flavor %d\n",
984 		acred->uid, auth->au_flavor);
985 
986 	if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
987 		goto out_err;
988 
989 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
990 	/*
991 	 * Note: in order to force a call to call_refresh(), we deliberately
992 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
993 	 */
994 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
995 	cred->gc_service = gss_auth->service;
996 	cred->gc_principal = NULL;
997 	if (acred->machine_cred)
998 		cred->gc_principal = acred->principal;
999 	kref_get(&gss_auth->kref);
1000 	return &cred->gc_base;
1001 
1002 out_err:
1003 	dprintk("RPC:       gss_create_cred failed with error %d\n", err);
1004 	return ERR_PTR(err);
1005 }
1006 
1007 static int
1008 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1009 {
1010 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1011 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1012 	int err;
1013 
1014 	do {
1015 		err = gss_create_upcall(gss_auth, gss_cred);
1016 	} while (err == -EAGAIN);
1017 	return err;
1018 }
1019 
1020 static int
1021 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1022 {
1023 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1024 
1025 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1026 		goto out;
1027 	/* Don't match with creds that have expired. */
1028 	if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1029 		return 0;
1030 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1031 		return 0;
1032 out:
1033 	if (acred->principal != NULL) {
1034 		if (gss_cred->gc_principal == NULL)
1035 			return 0;
1036 		return strcmp(acred->principal, gss_cred->gc_principal) == 0;
1037 	}
1038 	if (gss_cred->gc_principal != NULL)
1039 		return 0;
1040 	return rc->cr_uid == acred->uid;
1041 }
1042 
1043 /*
1044 * Marshal credentials.
1045 * Maybe we should keep a cached credential for performance reasons.
1046 */
1047 static __be32 *
1048 gss_marshal(struct rpc_task *task, __be32 *p)
1049 {
1050 	struct rpc_rqst *req = task->tk_rqstp;
1051 	struct rpc_cred *cred = req->rq_cred;
1052 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1053 						 gc_base);
1054 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1055 	__be32		*cred_len;
1056 	u32             maj_stat = 0;
1057 	struct xdr_netobj mic;
1058 	struct kvec	iov;
1059 	struct xdr_buf	verf_buf;
1060 
1061 	dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
1062 
1063 	*p++ = htonl(RPC_AUTH_GSS);
1064 	cred_len = p++;
1065 
1066 	spin_lock(&ctx->gc_seq_lock);
1067 	req->rq_seqno = ctx->gc_seq++;
1068 	spin_unlock(&ctx->gc_seq_lock);
1069 
1070 	*p++ = htonl((u32) RPC_GSS_VERSION);
1071 	*p++ = htonl((u32) ctx->gc_proc);
1072 	*p++ = htonl((u32) req->rq_seqno);
1073 	*p++ = htonl((u32) gss_cred->gc_service);
1074 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1075 	*cred_len = htonl((p - (cred_len + 1)) << 2);
1076 
1077 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1078 	 * starting with the xid and ending at the end of the credential: */
1079 	iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
1080 					req->rq_snd_buf.head[0].iov_base);
1081 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1082 	xdr_buf_from_iov(&iov, &verf_buf);
1083 
1084 	/* set verifier flavor*/
1085 	*p++ = htonl(RPC_AUTH_GSS);
1086 
1087 	mic.data = (u8 *)(p + 1);
1088 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1089 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1090 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1091 	} else if (maj_stat != 0) {
1092 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1093 		goto out_put_ctx;
1094 	}
1095 	p = xdr_encode_opaque(p, NULL, mic.len);
1096 	gss_put_ctx(ctx);
1097 	return p;
1098 out_put_ctx:
1099 	gss_put_ctx(ctx);
1100 	return NULL;
1101 }
1102 
1103 static int gss_renew_cred(struct rpc_task *task)
1104 {
1105 	struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1106 	struct gss_cred *gss_cred = container_of(oldcred,
1107 						 struct gss_cred,
1108 						 gc_base);
1109 	struct rpc_auth *auth = oldcred->cr_auth;
1110 	struct auth_cred acred = {
1111 		.uid = oldcred->cr_uid,
1112 		.principal = gss_cred->gc_principal,
1113 		.machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1114 	};
1115 	struct rpc_cred *new;
1116 
1117 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1118 	if (IS_ERR(new))
1119 		return PTR_ERR(new);
1120 	task->tk_rqstp->rq_cred = new;
1121 	put_rpccred(oldcred);
1122 	return 0;
1123 }
1124 
1125 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1126 {
1127 	if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1128 		unsigned long now = jiffies;
1129 		unsigned long begin, expire;
1130 		struct gss_cred *gss_cred;
1131 
1132 		gss_cred = container_of(cred, struct gss_cred, gc_base);
1133 		begin = gss_cred->gc_upcall_timestamp;
1134 		expire = begin + gss_expired_cred_retry_delay * HZ;
1135 
1136 		if (time_in_range_open(now, begin, expire))
1137 			return 1;
1138 	}
1139 	return 0;
1140 }
1141 
1142 /*
1143 * Refresh credentials. XXX - finish
1144 */
1145 static int
1146 gss_refresh(struct rpc_task *task)
1147 {
1148 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1149 	int ret = 0;
1150 
1151 	if (gss_cred_is_negative_entry(cred))
1152 		return -EKEYEXPIRED;
1153 
1154 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1155 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1156 		ret = gss_renew_cred(task);
1157 		if (ret < 0)
1158 			goto out;
1159 		cred = task->tk_rqstp->rq_cred;
1160 	}
1161 
1162 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1163 		ret = gss_refresh_upcall(task);
1164 out:
1165 	return ret;
1166 }
1167 
1168 /* Dummy refresh routine: used only when destroying the context */
1169 static int
1170 gss_refresh_null(struct rpc_task *task)
1171 {
1172 	return -EACCES;
1173 }
1174 
1175 static __be32 *
1176 gss_validate(struct rpc_task *task, __be32 *p)
1177 {
1178 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1179 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1180 	__be32		seq;
1181 	struct kvec	iov;
1182 	struct xdr_buf	verf_buf;
1183 	struct xdr_netobj mic;
1184 	u32		flav,len;
1185 	u32		maj_stat;
1186 
1187 	dprintk("RPC: %5u gss_validate\n", task->tk_pid);
1188 
1189 	flav = ntohl(*p++);
1190 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1191 		goto out_bad;
1192 	if (flav != RPC_AUTH_GSS)
1193 		goto out_bad;
1194 	seq = htonl(task->tk_rqstp->rq_seqno);
1195 	iov.iov_base = &seq;
1196 	iov.iov_len = sizeof(seq);
1197 	xdr_buf_from_iov(&iov, &verf_buf);
1198 	mic.data = (u8 *)p;
1199 	mic.len = len;
1200 
1201 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1202 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1203 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1204 	if (maj_stat) {
1205 		dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
1206 				"error 0x%08x\n", task->tk_pid, maj_stat);
1207 		goto out_bad;
1208 	}
1209 	/* We leave it to unwrap to calculate au_rslack. For now we just
1210 	 * calculate the length of the verifier: */
1211 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1212 	gss_put_ctx(ctx);
1213 	dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
1214 			task->tk_pid);
1215 	return p + XDR_QUADLEN(len);
1216 out_bad:
1217 	gss_put_ctx(ctx);
1218 	dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
1219 	return NULL;
1220 }
1221 
1222 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1223 				__be32 *p, void *obj)
1224 {
1225 	struct xdr_stream xdr;
1226 
1227 	xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1228 	encode(rqstp, &xdr, obj);
1229 }
1230 
1231 static inline int
1232 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1233 		   kxdreproc_t encode, struct rpc_rqst *rqstp,
1234 		   __be32 *p, void *obj)
1235 {
1236 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1237 	struct xdr_buf	integ_buf;
1238 	__be32          *integ_len = NULL;
1239 	struct xdr_netobj mic;
1240 	u32		offset;
1241 	__be32		*q;
1242 	struct kvec	*iov;
1243 	u32             maj_stat = 0;
1244 	int		status = -EIO;
1245 
1246 	integ_len = p++;
1247 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1248 	*p++ = htonl(rqstp->rq_seqno);
1249 
1250 	gss_wrap_req_encode(encode, rqstp, p, obj);
1251 
1252 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1253 				offset, snd_buf->len - offset))
1254 		return status;
1255 	*integ_len = htonl(integ_buf.len);
1256 
1257 	/* guess whether we're in the head or the tail: */
1258 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1259 		iov = snd_buf->tail;
1260 	else
1261 		iov = snd_buf->head;
1262 	p = iov->iov_base + iov->iov_len;
1263 	mic.data = (u8 *)(p + 1);
1264 
1265 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1266 	status = -EIO; /* XXX? */
1267 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1268 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1269 	else if (maj_stat)
1270 		return status;
1271 	q = xdr_encode_opaque(p, NULL, mic.len);
1272 
1273 	offset = (u8 *)q - (u8 *)p;
1274 	iov->iov_len += offset;
1275 	snd_buf->len += offset;
1276 	return 0;
1277 }
1278 
1279 static void
1280 priv_release_snd_buf(struct rpc_rqst *rqstp)
1281 {
1282 	int i;
1283 
1284 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1285 		__free_page(rqstp->rq_enc_pages[i]);
1286 	kfree(rqstp->rq_enc_pages);
1287 }
1288 
1289 static int
1290 alloc_enc_pages(struct rpc_rqst *rqstp)
1291 {
1292 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1293 	int first, last, i;
1294 
1295 	if (snd_buf->page_len == 0) {
1296 		rqstp->rq_enc_pages_num = 0;
1297 		return 0;
1298 	}
1299 
1300 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1301 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1302 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1303 	rqstp->rq_enc_pages
1304 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1305 				GFP_NOFS);
1306 	if (!rqstp->rq_enc_pages)
1307 		goto out;
1308 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1309 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1310 		if (rqstp->rq_enc_pages[i] == NULL)
1311 			goto out_free;
1312 	}
1313 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1314 	return 0;
1315 out_free:
1316 	rqstp->rq_enc_pages_num = i;
1317 	priv_release_snd_buf(rqstp);
1318 out:
1319 	return -EAGAIN;
1320 }
1321 
1322 static inline int
1323 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1324 		  kxdreproc_t encode, struct rpc_rqst *rqstp,
1325 		  __be32 *p, void *obj)
1326 {
1327 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1328 	u32		offset;
1329 	u32             maj_stat;
1330 	int		status;
1331 	__be32		*opaque_len;
1332 	struct page	**inpages;
1333 	int		first;
1334 	int		pad;
1335 	struct kvec	*iov;
1336 	char		*tmp;
1337 
1338 	opaque_len = p++;
1339 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1340 	*p++ = htonl(rqstp->rq_seqno);
1341 
1342 	gss_wrap_req_encode(encode, rqstp, p, obj);
1343 
1344 	status = alloc_enc_pages(rqstp);
1345 	if (status)
1346 		return status;
1347 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1348 	inpages = snd_buf->pages + first;
1349 	snd_buf->pages = rqstp->rq_enc_pages;
1350 	snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1351 	/*
1352 	 * Give the tail its own page, in case we need extra space in the
1353 	 * head when wrapping:
1354 	 *
1355 	 * call_allocate() allocates twice the slack space required
1356 	 * by the authentication flavor to rq_callsize.
1357 	 * For GSS, slack is GSS_CRED_SLACK.
1358 	 */
1359 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1360 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1361 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1362 		snd_buf->tail[0].iov_base = tmp;
1363 	}
1364 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1365 	/* slack space should prevent this ever happening: */
1366 	BUG_ON(snd_buf->len > snd_buf->buflen);
1367 	status = -EIO;
1368 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1369 	 * done anyway, so it's safe to put the request on the wire: */
1370 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1371 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1372 	else if (maj_stat)
1373 		return status;
1374 
1375 	*opaque_len = htonl(snd_buf->len - offset);
1376 	/* guess whether we're in the head or the tail: */
1377 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1378 		iov = snd_buf->tail;
1379 	else
1380 		iov = snd_buf->head;
1381 	p = iov->iov_base + iov->iov_len;
1382 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1383 	memset(p, 0, pad);
1384 	iov->iov_len += pad;
1385 	snd_buf->len += pad;
1386 
1387 	return 0;
1388 }
1389 
1390 static int
1391 gss_wrap_req(struct rpc_task *task,
1392 	     kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1393 {
1394 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1395 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1396 			gc_base);
1397 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1398 	int             status = -EIO;
1399 
1400 	dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1401 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1402 		/* The spec seems a little ambiguous here, but I think that not
1403 		 * wrapping context destruction requests makes the most sense.
1404 		 */
1405 		gss_wrap_req_encode(encode, rqstp, p, obj);
1406 		status = 0;
1407 		goto out;
1408 	}
1409 	switch (gss_cred->gc_service) {
1410 	case RPC_GSS_SVC_NONE:
1411 		gss_wrap_req_encode(encode, rqstp, p, obj);
1412 		status = 0;
1413 		break;
1414 	case RPC_GSS_SVC_INTEGRITY:
1415 		status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1416 		break;
1417 	case RPC_GSS_SVC_PRIVACY:
1418 		status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1419 		break;
1420 	}
1421 out:
1422 	gss_put_ctx(ctx);
1423 	dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1424 	return status;
1425 }
1426 
1427 static inline int
1428 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1429 		struct rpc_rqst *rqstp, __be32 **p)
1430 {
1431 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1432 	struct xdr_buf integ_buf;
1433 	struct xdr_netobj mic;
1434 	u32 data_offset, mic_offset;
1435 	u32 integ_len;
1436 	u32 maj_stat;
1437 	int status = -EIO;
1438 
1439 	integ_len = ntohl(*(*p)++);
1440 	if (integ_len & 3)
1441 		return status;
1442 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1443 	mic_offset = integ_len + data_offset;
1444 	if (mic_offset > rcv_buf->len)
1445 		return status;
1446 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1447 		return status;
1448 
1449 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1450 				mic_offset - data_offset))
1451 		return status;
1452 
1453 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1454 		return status;
1455 
1456 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1457 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1458 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1459 	if (maj_stat != GSS_S_COMPLETE)
1460 		return status;
1461 	return 0;
1462 }
1463 
1464 static inline int
1465 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1466 		struct rpc_rqst *rqstp, __be32 **p)
1467 {
1468 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1469 	u32 offset;
1470 	u32 opaque_len;
1471 	u32 maj_stat;
1472 	int status = -EIO;
1473 
1474 	opaque_len = ntohl(*(*p)++);
1475 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1476 	if (offset + opaque_len > rcv_buf->len)
1477 		return status;
1478 	/* remove padding: */
1479 	rcv_buf->len = offset + opaque_len;
1480 
1481 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1482 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1483 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1484 	if (maj_stat != GSS_S_COMPLETE)
1485 		return status;
1486 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1487 		return status;
1488 
1489 	return 0;
1490 }
1491 
1492 static int
1493 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1494 		      __be32 *p, void *obj)
1495 {
1496 	struct xdr_stream xdr;
1497 
1498 	xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1499 	return decode(rqstp, &xdr, obj);
1500 }
1501 
1502 static int
1503 gss_unwrap_resp(struct rpc_task *task,
1504 		kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1505 {
1506 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1507 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1508 			gc_base);
1509 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1510 	__be32		*savedp = p;
1511 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1512 	int		savedlen = head->iov_len;
1513 	int             status = -EIO;
1514 
1515 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1516 		goto out_decode;
1517 	switch (gss_cred->gc_service) {
1518 	case RPC_GSS_SVC_NONE:
1519 		break;
1520 	case RPC_GSS_SVC_INTEGRITY:
1521 		status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1522 		if (status)
1523 			goto out;
1524 		break;
1525 	case RPC_GSS_SVC_PRIVACY:
1526 		status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1527 		if (status)
1528 			goto out;
1529 		break;
1530 	}
1531 	/* take into account extra slack for integrity and privacy cases: */
1532 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1533 						+ (savedlen - head->iov_len);
1534 out_decode:
1535 	status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1536 out:
1537 	gss_put_ctx(ctx);
1538 	dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1539 			status);
1540 	return status;
1541 }
1542 
1543 static const struct rpc_authops authgss_ops = {
1544 	.owner		= THIS_MODULE,
1545 	.au_flavor	= RPC_AUTH_GSS,
1546 	.au_name	= "RPCSEC_GSS",
1547 	.create		= gss_create,
1548 	.destroy	= gss_destroy,
1549 	.lookup_cred	= gss_lookup_cred,
1550 	.crcreate	= gss_create_cred
1551 };
1552 
1553 static const struct rpc_credops gss_credops = {
1554 	.cr_name	= "AUTH_GSS",
1555 	.crdestroy	= gss_destroy_cred,
1556 	.cr_init	= gss_cred_init,
1557 	.crbind		= rpcauth_generic_bind_cred,
1558 	.crmatch	= gss_match,
1559 	.crmarshal	= gss_marshal,
1560 	.crrefresh	= gss_refresh,
1561 	.crvalidate	= gss_validate,
1562 	.crwrap_req	= gss_wrap_req,
1563 	.crunwrap_resp	= gss_unwrap_resp,
1564 };
1565 
1566 static const struct rpc_credops gss_nullops = {
1567 	.cr_name	= "AUTH_GSS",
1568 	.crdestroy	= gss_destroy_nullcred,
1569 	.crbind		= rpcauth_generic_bind_cred,
1570 	.crmatch	= gss_match,
1571 	.crmarshal	= gss_marshal,
1572 	.crrefresh	= gss_refresh_null,
1573 	.crvalidate	= gss_validate,
1574 	.crwrap_req	= gss_wrap_req,
1575 	.crunwrap_resp	= gss_unwrap_resp,
1576 };
1577 
1578 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1579 	.upcall		= rpc_pipe_generic_upcall,
1580 	.downcall	= gss_pipe_downcall,
1581 	.destroy_msg	= gss_pipe_destroy_msg,
1582 	.open_pipe	= gss_pipe_open_v0,
1583 	.release_pipe	= gss_pipe_release,
1584 };
1585 
1586 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
1587 	.upcall		= rpc_pipe_generic_upcall,
1588 	.downcall	= gss_pipe_downcall,
1589 	.destroy_msg	= gss_pipe_destroy_msg,
1590 	.open_pipe	= gss_pipe_open_v1,
1591 	.release_pipe	= gss_pipe_release,
1592 };
1593 
1594 /*
1595  * Initialize RPCSEC_GSS module
1596  */
1597 static int __init init_rpcsec_gss(void)
1598 {
1599 	int err = 0;
1600 
1601 	err = rpcauth_register(&authgss_ops);
1602 	if (err)
1603 		goto out;
1604 	err = gss_svc_init();
1605 	if (err)
1606 		goto out_unregister;
1607 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1608 	return 0;
1609 out_unregister:
1610 	rpcauth_unregister(&authgss_ops);
1611 out:
1612 	return err;
1613 }
1614 
1615 static void __exit exit_rpcsec_gss(void)
1616 {
1617 	gss_svc_shutdown();
1618 	rpcauth_unregister(&authgss_ops);
1619 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
1620 }
1621 
1622 MODULE_LICENSE("GPL");
1623 module_param_named(expired_cred_retry_delay,
1624 		   gss_expired_cred_retry_delay,
1625 		   uint, 0644);
1626 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
1627 		"the RPC engine retries an expired credential");
1628 
1629 module_init(init_rpcsec_gss)
1630 module_exit(exit_rpcsec_gss)
1631