1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 92 #include <linux/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/termios.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 #include <linux/ptp_clock_kernel.h> 110 #include <trace/events/sock.h> 111 112 #ifdef CONFIG_NET_RX_BUSY_POLL 113 unsigned int sysctl_net_busy_read __read_mostly; 114 unsigned int sysctl_net_busy_poll __read_mostly; 115 #endif 116 117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static __poll_t sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 static void sock_splice_eof(struct file *file); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 140 if (sock->ops->show_fdinfo) 141 sock->ops->show_fdinfo(m, sock); 142 } 143 #else 144 #define sock_show_fdinfo NULL 145 #endif 146 147 /* 148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 149 * in the operation structures but are done directly via the socketcall() multiplexor. 150 */ 151 152 static const struct file_operations socket_file_ops = { 153 .owner = THIS_MODULE, 154 .llseek = no_llseek, 155 .read_iter = sock_read_iter, 156 .write_iter = sock_write_iter, 157 .poll = sock_poll, 158 .unlocked_ioctl = sock_ioctl, 159 #ifdef CONFIG_COMPAT 160 .compat_ioctl = compat_sock_ioctl, 161 #endif 162 .mmap = sock_mmap, 163 .release = sock_close, 164 .fasync = sock_fasync, 165 .splice_write = splice_to_socket, 166 .splice_read = sock_splice_read, 167 .splice_eof = sock_splice_eof, 168 .show_fdinfo = sock_show_fdinfo, 169 }; 170 171 static const char * const pf_family_names[] = { 172 [PF_UNSPEC] = "PF_UNSPEC", 173 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 174 [PF_INET] = "PF_INET", 175 [PF_AX25] = "PF_AX25", 176 [PF_IPX] = "PF_IPX", 177 [PF_APPLETALK] = "PF_APPLETALK", 178 [PF_NETROM] = "PF_NETROM", 179 [PF_BRIDGE] = "PF_BRIDGE", 180 [PF_ATMPVC] = "PF_ATMPVC", 181 [PF_X25] = "PF_X25", 182 [PF_INET6] = "PF_INET6", 183 [PF_ROSE] = "PF_ROSE", 184 [PF_DECnet] = "PF_DECnet", 185 [PF_NETBEUI] = "PF_NETBEUI", 186 [PF_SECURITY] = "PF_SECURITY", 187 [PF_KEY] = "PF_KEY", 188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 189 [PF_PACKET] = "PF_PACKET", 190 [PF_ASH] = "PF_ASH", 191 [PF_ECONET] = "PF_ECONET", 192 [PF_ATMSVC] = "PF_ATMSVC", 193 [PF_RDS] = "PF_RDS", 194 [PF_SNA] = "PF_SNA", 195 [PF_IRDA] = "PF_IRDA", 196 [PF_PPPOX] = "PF_PPPOX", 197 [PF_WANPIPE] = "PF_WANPIPE", 198 [PF_LLC] = "PF_LLC", 199 [PF_IB] = "PF_IB", 200 [PF_MPLS] = "PF_MPLS", 201 [PF_CAN] = "PF_CAN", 202 [PF_TIPC] = "PF_TIPC", 203 [PF_BLUETOOTH] = "PF_BLUETOOTH", 204 [PF_IUCV] = "PF_IUCV", 205 [PF_RXRPC] = "PF_RXRPC", 206 [PF_ISDN] = "PF_ISDN", 207 [PF_PHONET] = "PF_PHONET", 208 [PF_IEEE802154] = "PF_IEEE802154", 209 [PF_CAIF] = "PF_CAIF", 210 [PF_ALG] = "PF_ALG", 211 [PF_NFC] = "PF_NFC", 212 [PF_VSOCK] = "PF_VSOCK", 213 [PF_KCM] = "PF_KCM", 214 [PF_QIPCRTR] = "PF_QIPCRTR", 215 [PF_SMC] = "PF_SMC", 216 [PF_XDP] = "PF_XDP", 217 [PF_MCTP] = "PF_MCTP", 218 }; 219 220 /* 221 * The protocol list. Each protocol is registered in here. 222 */ 223 224 static DEFINE_SPINLOCK(net_family_lock); 225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 226 227 /* 228 * Support routines. 229 * Move socket addresses back and forth across the kernel/user 230 * divide and look after the messy bits. 231 */ 232 233 /** 234 * move_addr_to_kernel - copy a socket address into kernel space 235 * @uaddr: Address in user space 236 * @kaddr: Address in kernel space 237 * @ulen: Length in user space 238 * 239 * The address is copied into kernel space. If the provided address is 240 * too long an error code of -EINVAL is returned. If the copy gives 241 * invalid addresses -EFAULT is returned. On a success 0 is returned. 242 */ 243 244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 245 { 246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 247 return -EINVAL; 248 if (ulen == 0) 249 return 0; 250 if (copy_from_user(kaddr, uaddr, ulen)) 251 return -EFAULT; 252 return audit_sockaddr(ulen, kaddr); 253 } 254 255 /** 256 * move_addr_to_user - copy an address to user space 257 * @kaddr: kernel space address 258 * @klen: length of address in kernel 259 * @uaddr: user space address 260 * @ulen: pointer to user length field 261 * 262 * The value pointed to by ulen on entry is the buffer length available. 263 * This is overwritten with the buffer space used. -EINVAL is returned 264 * if an overlong buffer is specified or a negative buffer size. -EFAULT 265 * is returned if either the buffer or the length field are not 266 * accessible. 267 * After copying the data up to the limit the user specifies, the true 268 * length of the data is written over the length limit the user 269 * specified. Zero is returned for a success. 270 */ 271 272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 273 void __user *uaddr, int __user *ulen) 274 { 275 int err; 276 int len; 277 278 BUG_ON(klen > sizeof(struct sockaddr_storage)); 279 err = get_user(len, ulen); 280 if (err) 281 return err; 282 if (len > klen) 283 len = klen; 284 if (len < 0) 285 return -EINVAL; 286 if (len) { 287 if (audit_sockaddr(klen, kaddr)) 288 return -ENOMEM; 289 if (copy_to_user(uaddr, kaddr, len)) 290 return -EFAULT; 291 } 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 return __put_user(klen, ulen); 297 } 298 299 static struct kmem_cache *sock_inode_cachep __ro_after_init; 300 301 static struct inode *sock_alloc_inode(struct super_block *sb) 302 { 303 struct socket_alloc *ei; 304 305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 306 if (!ei) 307 return NULL; 308 init_waitqueue_head(&ei->socket.wq.wait); 309 ei->socket.wq.fasync_list = NULL; 310 ei->socket.wq.flags = 0; 311 312 ei->socket.state = SS_UNCONNECTED; 313 ei->socket.flags = 0; 314 ei->socket.ops = NULL; 315 ei->socket.sk = NULL; 316 ei->socket.file = NULL; 317 318 return &ei->vfs_inode; 319 } 320 321 static void sock_free_inode(struct inode *inode) 322 { 323 struct socket_alloc *ei; 324 325 ei = container_of(inode, struct socket_alloc, vfs_inode); 326 kmem_cache_free(sock_inode_cachep, ei); 327 } 328 329 static void init_once(void *foo) 330 { 331 struct socket_alloc *ei = (struct socket_alloc *)foo; 332 333 inode_init_once(&ei->vfs_inode); 334 } 335 336 static void init_inodecache(void) 337 { 338 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 339 sizeof(struct socket_alloc), 340 0, 341 (SLAB_HWCACHE_ALIGN | 342 SLAB_RECLAIM_ACCOUNT | 343 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 344 init_once); 345 BUG_ON(sock_inode_cachep == NULL); 346 } 347 348 static const struct super_operations sockfs_ops = { 349 .alloc_inode = sock_alloc_inode, 350 .free_inode = sock_free_inode, 351 .statfs = simple_statfs, 352 }; 353 354 /* 355 * sockfs_dname() is called from d_path(). 356 */ 357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 358 { 359 return dynamic_dname(buffer, buflen, "socket:[%lu]", 360 d_inode(dentry)->i_ino); 361 } 362 363 static const struct dentry_operations sockfs_dentry_operations = { 364 .d_dname = sockfs_dname, 365 }; 366 367 static int sockfs_xattr_get(const struct xattr_handler *handler, 368 struct dentry *dentry, struct inode *inode, 369 const char *suffix, void *value, size_t size) 370 { 371 if (value) { 372 if (dentry->d_name.len + 1 > size) 373 return -ERANGE; 374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 375 } 376 return dentry->d_name.len + 1; 377 } 378 379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 382 383 static const struct xattr_handler sockfs_xattr_handler = { 384 .name = XATTR_NAME_SOCKPROTONAME, 385 .get = sockfs_xattr_get, 386 }; 387 388 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 389 struct mnt_idmap *idmap, 390 struct dentry *dentry, struct inode *inode, 391 const char *suffix, const void *value, 392 size_t size, int flags) 393 { 394 /* Handled by LSM. */ 395 return -EAGAIN; 396 } 397 398 static const struct xattr_handler sockfs_security_xattr_handler = { 399 .prefix = XATTR_SECURITY_PREFIX, 400 .set = sockfs_security_xattr_set, 401 }; 402 403 static const struct xattr_handler *sockfs_xattr_handlers[] = { 404 &sockfs_xattr_handler, 405 &sockfs_security_xattr_handler, 406 NULL 407 }; 408 409 static int sockfs_init_fs_context(struct fs_context *fc) 410 { 411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 412 if (!ctx) 413 return -ENOMEM; 414 ctx->ops = &sockfs_ops; 415 ctx->dops = &sockfs_dentry_operations; 416 ctx->xattr = sockfs_xattr_handlers; 417 return 0; 418 } 419 420 static struct vfsmount *sock_mnt __read_mostly; 421 422 static struct file_system_type sock_fs_type = { 423 .name = "sockfs", 424 .init_fs_context = sockfs_init_fs_context, 425 .kill_sb = kill_anon_super, 426 }; 427 428 /* 429 * Obtains the first available file descriptor and sets it up for use. 430 * 431 * These functions create file structures and maps them to fd space 432 * of the current process. On success it returns file descriptor 433 * and file struct implicitly stored in sock->file. 434 * Note that another thread may close file descriptor before we return 435 * from this function. We use the fact that now we do not refer 436 * to socket after mapping. If one day we will need it, this 437 * function will increment ref. count on file by 1. 438 * 439 * In any case returned fd MAY BE not valid! 440 * This race condition is unavoidable 441 * with shared fd spaces, we cannot solve it inside kernel, 442 * but we take care of internal coherence yet. 443 */ 444 445 /** 446 * sock_alloc_file - Bind a &socket to a &file 447 * @sock: socket 448 * @flags: file status flags 449 * @dname: protocol name 450 * 451 * Returns the &file bound with @sock, implicitly storing it 452 * in sock->file. If dname is %NULL, sets to "". 453 * 454 * On failure @sock is released, and an ERR pointer is returned. 455 * 456 * This function uses GFP_KERNEL internally. 457 */ 458 459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 460 { 461 struct file *file; 462 463 if (!dname) 464 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 465 466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 467 O_RDWR | (flags & O_NONBLOCK), 468 &socket_file_ops); 469 if (IS_ERR(file)) { 470 sock_release(sock); 471 return file; 472 } 473 474 sock->file = file; 475 file->private_data = sock; 476 stream_open(SOCK_INODE(sock), file); 477 return file; 478 } 479 EXPORT_SYMBOL(sock_alloc_file); 480 481 static int sock_map_fd(struct socket *sock, int flags) 482 { 483 struct file *newfile; 484 int fd = get_unused_fd_flags(flags); 485 if (unlikely(fd < 0)) { 486 sock_release(sock); 487 return fd; 488 } 489 490 newfile = sock_alloc_file(sock, flags, NULL); 491 if (!IS_ERR(newfile)) { 492 fd_install(fd, newfile); 493 return fd; 494 } 495 496 put_unused_fd(fd); 497 return PTR_ERR(newfile); 498 } 499 500 /** 501 * sock_from_file - Return the &socket bounded to @file. 502 * @file: file 503 * 504 * On failure returns %NULL. 505 */ 506 507 struct socket *sock_from_file(struct file *file) 508 { 509 if (file->f_op == &socket_file_ops) 510 return file->private_data; /* set in sock_alloc_file */ 511 512 return NULL; 513 } 514 EXPORT_SYMBOL(sock_from_file); 515 516 /** 517 * sockfd_lookup - Go from a file number to its socket slot 518 * @fd: file handle 519 * @err: pointer to an error code return 520 * 521 * The file handle passed in is locked and the socket it is bound 522 * to is returned. If an error occurs the err pointer is overwritten 523 * with a negative errno code and NULL is returned. The function checks 524 * for both invalid handles and passing a handle which is not a socket. 525 * 526 * On a success the socket object pointer is returned. 527 */ 528 529 struct socket *sockfd_lookup(int fd, int *err) 530 { 531 struct file *file; 532 struct socket *sock; 533 534 file = fget(fd); 535 if (!file) { 536 *err = -EBADF; 537 return NULL; 538 } 539 540 sock = sock_from_file(file); 541 if (!sock) { 542 *err = -ENOTSOCK; 543 fput(file); 544 } 545 return sock; 546 } 547 EXPORT_SYMBOL(sockfd_lookup); 548 549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 550 { 551 struct fd f = fdget(fd); 552 struct socket *sock; 553 554 *err = -EBADF; 555 if (f.file) { 556 sock = sock_from_file(f.file); 557 if (likely(sock)) { 558 *fput_needed = f.flags & FDPUT_FPUT; 559 return sock; 560 } 561 *err = -ENOTSOCK; 562 fdput(f); 563 } 564 return NULL; 565 } 566 567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 568 size_t size) 569 { 570 ssize_t len; 571 ssize_t used = 0; 572 573 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 574 if (len < 0) 575 return len; 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 buffer += len; 581 } 582 583 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 584 used += len; 585 if (buffer) { 586 if (size < used) 587 return -ERANGE; 588 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 589 buffer += len; 590 } 591 592 return used; 593 } 594 595 static int sockfs_setattr(struct mnt_idmap *idmap, 596 struct dentry *dentry, struct iattr *iattr) 597 { 598 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 599 600 if (!err && (iattr->ia_valid & ATTR_UID)) { 601 struct socket *sock = SOCKET_I(d_inode(dentry)); 602 603 if (sock->sk) 604 sock->sk->sk_uid = iattr->ia_uid; 605 else 606 err = -ENOENT; 607 } 608 609 return err; 610 } 611 612 static const struct inode_operations sockfs_inode_ops = { 613 .listxattr = sockfs_listxattr, 614 .setattr = sockfs_setattr, 615 }; 616 617 /** 618 * sock_alloc - allocate a socket 619 * 620 * Allocate a new inode and socket object. The two are bound together 621 * and initialised. The socket is then returned. If we are out of inodes 622 * NULL is returned. This functions uses GFP_KERNEL internally. 623 */ 624 625 struct socket *sock_alloc(void) 626 { 627 struct inode *inode; 628 struct socket *sock; 629 630 inode = new_inode_pseudo(sock_mnt->mnt_sb); 631 if (!inode) 632 return NULL; 633 634 sock = SOCKET_I(inode); 635 636 inode->i_ino = get_next_ino(); 637 inode->i_mode = S_IFSOCK | S_IRWXUGO; 638 inode->i_uid = current_fsuid(); 639 inode->i_gid = current_fsgid(); 640 inode->i_op = &sockfs_inode_ops; 641 642 return sock; 643 } 644 EXPORT_SYMBOL(sock_alloc); 645 646 static void __sock_release(struct socket *sock, struct inode *inode) 647 { 648 if (sock->ops) { 649 struct module *owner = sock->ops->owner; 650 651 if (inode) 652 inode_lock(inode); 653 sock->ops->release(sock); 654 sock->sk = NULL; 655 if (inode) 656 inode_unlock(inode); 657 sock->ops = NULL; 658 module_put(owner); 659 } 660 661 if (sock->wq.fasync_list) 662 pr_err("%s: fasync list not empty!\n", __func__); 663 664 if (!sock->file) { 665 iput(SOCK_INODE(sock)); 666 return; 667 } 668 sock->file = NULL; 669 } 670 671 /** 672 * sock_release - close a socket 673 * @sock: socket to close 674 * 675 * The socket is released from the protocol stack if it has a release 676 * callback, and the inode is then released if the socket is bound to 677 * an inode not a file. 678 */ 679 void sock_release(struct socket *sock) 680 { 681 __sock_release(sock, NULL); 682 } 683 EXPORT_SYMBOL(sock_release); 684 685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 686 { 687 u8 flags = *tx_flags; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 690 flags |= SKBTX_HW_TSTAMP; 691 692 /* PTP hardware clocks can provide a free running cycle counter 693 * as a time base for virtual clocks. Tell driver to use the 694 * free running cycle counter for timestamp if socket is bound 695 * to virtual clock. 696 */ 697 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 698 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 699 } 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 702 flags |= SKBTX_SW_TSTAMP; 703 704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 705 flags |= SKBTX_SCHED_TSTAMP; 706 707 *tx_flags = flags; 708 } 709 EXPORT_SYMBOL(__sock_tx_timestamp); 710 711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 712 size_t)); 713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 714 size_t)); 715 716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 717 int flags) 718 { 719 trace_sock_send_length(sk, ret, 0); 720 } 721 722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 723 { 724 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 725 inet_sendmsg, sock, msg, 726 msg_data_left(msg)); 727 BUG_ON(ret == -EIOCBQUEUED); 728 729 if (trace_sock_send_length_enabled()) 730 call_trace_sock_send_length(sock->sk, ret, 0); 731 return ret; 732 } 733 734 /** 735 * sock_sendmsg - send a message through @sock 736 * @sock: socket 737 * @msg: message to send 738 * 739 * Sends @msg through @sock, passing through LSM. 740 * Returns the number of bytes sent, or an error code. 741 */ 742 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 743 { 744 int err = security_socket_sendmsg(sock, msg, 745 msg_data_left(msg)); 746 747 return err ?: sock_sendmsg_nosec(sock, msg); 748 } 749 EXPORT_SYMBOL(sock_sendmsg); 750 751 /** 752 * kernel_sendmsg - send a message through @sock (kernel-space) 753 * @sock: socket 754 * @msg: message header 755 * @vec: kernel vec 756 * @num: vec array length 757 * @size: total message data size 758 * 759 * Builds the message data with @vec and sends it through @sock. 760 * Returns the number of bytes sent, or an error code. 761 */ 762 763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size) 765 { 766 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 767 return sock_sendmsg(sock, msg); 768 } 769 EXPORT_SYMBOL(kernel_sendmsg); 770 771 /** 772 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 773 * @sk: sock 774 * @msg: message header 775 * @vec: output s/g array 776 * @num: output s/g array length 777 * @size: total message data size 778 * 779 * Builds the message data with @vec and sends it through @sock. 780 * Returns the number of bytes sent, or an error code. 781 * Caller must hold @sk. 782 */ 783 784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 785 struct kvec *vec, size_t num, size_t size) 786 { 787 struct socket *sock = sk->sk_socket; 788 789 if (!sock->ops->sendmsg_locked) 790 return sock_no_sendmsg_locked(sk, msg, size); 791 792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 793 794 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 795 } 796 EXPORT_SYMBOL(kernel_sendmsg_locked); 797 798 static bool skb_is_err_queue(const struct sk_buff *skb) 799 { 800 /* pkt_type of skbs enqueued on the error queue are set to 801 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 802 * in recvmsg, since skbs received on a local socket will never 803 * have a pkt_type of PACKET_OUTGOING. 804 */ 805 return skb->pkt_type == PACKET_OUTGOING; 806 } 807 808 /* On transmit, software and hardware timestamps are returned independently. 809 * As the two skb clones share the hardware timestamp, which may be updated 810 * before the software timestamp is received, a hardware TX timestamp may be 811 * returned only if there is no software TX timestamp. Ignore false software 812 * timestamps, which may be made in the __sock_recv_timestamp() call when the 813 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 814 * hardware timestamp. 815 */ 816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 817 { 818 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 819 } 820 821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 822 { 823 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 824 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 825 struct net_device *orig_dev; 826 ktime_t hwtstamp; 827 828 rcu_read_lock(); 829 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 830 if (orig_dev) { 831 *if_index = orig_dev->ifindex; 832 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 833 } else { 834 hwtstamp = shhwtstamps->hwtstamp; 835 } 836 rcu_read_unlock(); 837 838 return hwtstamp; 839 } 840 841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 842 int if_index) 843 { 844 struct scm_ts_pktinfo ts_pktinfo; 845 struct net_device *orig_dev; 846 847 if (!skb_mac_header_was_set(skb)) 848 return; 849 850 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 851 852 if (!if_index) { 853 rcu_read_lock(); 854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 855 if (orig_dev) 856 if_index = orig_dev->ifindex; 857 rcu_read_unlock(); 858 } 859 ts_pktinfo.if_index = if_index; 860 861 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 862 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 863 sizeof(ts_pktinfo), &ts_pktinfo); 864 } 865 866 /* 867 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 868 */ 869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 870 struct sk_buff *skb) 871 { 872 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 873 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 874 struct scm_timestamping_internal tss; 875 876 int empty = 1, false_tstamp = 0; 877 struct skb_shared_hwtstamps *shhwtstamps = 878 skb_hwtstamps(skb); 879 int if_index; 880 ktime_t hwtstamp; 881 882 /* Race occurred between timestamp enabling and packet 883 receiving. Fill in the current time for now. */ 884 if (need_software_tstamp && skb->tstamp == 0) { 885 __net_timestamp(skb); 886 false_tstamp = 1; 887 } 888 889 if (need_software_tstamp) { 890 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 891 if (new_tstamp) { 892 struct __kernel_sock_timeval tv; 893 894 skb_get_new_timestamp(skb, &tv); 895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 896 sizeof(tv), &tv); 897 } else { 898 struct __kernel_old_timeval tv; 899 900 skb_get_timestamp(skb, &tv); 901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 902 sizeof(tv), &tv); 903 } 904 } else { 905 if (new_tstamp) { 906 struct __kernel_timespec ts; 907 908 skb_get_new_timestampns(skb, &ts); 909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 910 sizeof(ts), &ts); 911 } else { 912 struct __kernel_old_timespec ts; 913 914 skb_get_timestampns(skb, &ts); 915 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 916 sizeof(ts), &ts); 917 } 918 } 919 } 920 921 memset(&tss, 0, sizeof(tss)); 922 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 923 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 924 empty = 0; 925 if (shhwtstamps && 926 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 927 !skb_is_swtx_tstamp(skb, false_tstamp)) { 928 if_index = 0; 929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 930 hwtstamp = get_timestamp(sk, skb, &if_index); 931 else 932 hwtstamp = shhwtstamps->hwtstamp; 933 934 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 935 hwtstamp = ptp_convert_timestamp(&hwtstamp, 936 sk->sk_bind_phc); 937 938 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 939 empty = 0; 940 941 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 942 !skb_is_err_queue(skb)) 943 put_ts_pktinfo(msg, skb, if_index); 944 } 945 } 946 if (!empty) { 947 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 948 put_cmsg_scm_timestamping64(msg, &tss); 949 else 950 put_cmsg_scm_timestamping(msg, &tss); 951 952 if (skb_is_err_queue(skb) && skb->len && 953 SKB_EXT_ERR(skb)->opt_stats) 954 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 955 skb->len, skb->data); 956 } 957 } 958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 959 960 #ifdef CONFIG_WIRELESS 961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 962 struct sk_buff *skb) 963 { 964 int ack; 965 966 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 967 return; 968 if (!skb->wifi_acked_valid) 969 return; 970 971 ack = skb->wifi_acked; 972 973 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 974 } 975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 976 #endif 977 978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 979 struct sk_buff *skb) 980 { 981 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 982 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 983 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 984 } 985 986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 987 struct sk_buff *skb) 988 { 989 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 990 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 991 __u32 mark = skb->mark; 992 993 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 994 } 995 } 996 997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 998 struct sk_buff *skb) 999 { 1000 sock_recv_timestamp(msg, sk, skb); 1001 sock_recv_drops(msg, sk, skb); 1002 sock_recv_mark(msg, sk, skb); 1003 } 1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1005 1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1007 size_t, int)); 1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1009 size_t, int)); 1010 1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1012 { 1013 trace_sock_recv_length(sk, ret, flags); 1014 } 1015 1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1017 int flags) 1018 { 1019 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 1020 inet_recvmsg, sock, msg, 1021 msg_data_left(msg), flags); 1022 if (trace_sock_recv_length_enabled()) 1023 call_trace_sock_recv_length(sock->sk, ret, flags); 1024 return ret; 1025 } 1026 1027 /** 1028 * sock_recvmsg - receive a message from @sock 1029 * @sock: socket 1030 * @msg: message to receive 1031 * @flags: message flags 1032 * 1033 * Receives @msg from @sock, passing through LSM. Returns the total number 1034 * of bytes received, or an error. 1035 */ 1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1037 { 1038 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1039 1040 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1041 } 1042 EXPORT_SYMBOL(sock_recvmsg); 1043 1044 /** 1045 * kernel_recvmsg - Receive a message from a socket (kernel space) 1046 * @sock: The socket to receive the message from 1047 * @msg: Received message 1048 * @vec: Input s/g array for message data 1049 * @num: Size of input s/g array 1050 * @size: Number of bytes to read 1051 * @flags: Message flags (MSG_DONTWAIT, etc...) 1052 * 1053 * On return the msg structure contains the scatter/gather array passed in the 1054 * vec argument. The array is modified so that it consists of the unfilled 1055 * portion of the original array. 1056 * 1057 * The returned value is the total number of bytes received, or an error. 1058 */ 1059 1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1061 struct kvec *vec, size_t num, size_t size, int flags) 1062 { 1063 msg->msg_control_is_user = false; 1064 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1065 return sock_recvmsg(sock, msg, flags); 1066 } 1067 EXPORT_SYMBOL(kernel_recvmsg); 1068 1069 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1070 struct pipe_inode_info *pipe, size_t len, 1071 unsigned int flags) 1072 { 1073 struct socket *sock = file->private_data; 1074 1075 if (unlikely(!sock->ops->splice_read)) 1076 return generic_file_splice_read(file, ppos, pipe, len, flags); 1077 1078 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1079 } 1080 1081 static void sock_splice_eof(struct file *file) 1082 { 1083 struct socket *sock = file->private_data; 1084 1085 if (sock->ops->splice_eof) 1086 sock->ops->splice_eof(sock); 1087 } 1088 1089 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1090 { 1091 struct file *file = iocb->ki_filp; 1092 struct socket *sock = file->private_data; 1093 struct msghdr msg = {.msg_iter = *to, 1094 .msg_iocb = iocb}; 1095 ssize_t res; 1096 1097 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1098 msg.msg_flags = MSG_DONTWAIT; 1099 1100 if (iocb->ki_pos != 0) 1101 return -ESPIPE; 1102 1103 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1104 return 0; 1105 1106 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1107 *to = msg.msg_iter; 1108 return res; 1109 } 1110 1111 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1112 { 1113 struct file *file = iocb->ki_filp; 1114 struct socket *sock = file->private_data; 1115 struct msghdr msg = {.msg_iter = *from, 1116 .msg_iocb = iocb}; 1117 ssize_t res; 1118 1119 if (iocb->ki_pos != 0) 1120 return -ESPIPE; 1121 1122 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1123 msg.msg_flags = MSG_DONTWAIT; 1124 1125 if (sock->type == SOCK_SEQPACKET) 1126 msg.msg_flags |= MSG_EOR; 1127 1128 res = sock_sendmsg(sock, &msg); 1129 *from = msg.msg_iter; 1130 return res; 1131 } 1132 1133 /* 1134 * Atomic setting of ioctl hooks to avoid race 1135 * with module unload. 1136 */ 1137 1138 static DEFINE_MUTEX(br_ioctl_mutex); 1139 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1140 unsigned int cmd, struct ifreq *ifr, 1141 void __user *uarg); 1142 1143 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1144 unsigned int cmd, struct ifreq *ifr, 1145 void __user *uarg)) 1146 { 1147 mutex_lock(&br_ioctl_mutex); 1148 br_ioctl_hook = hook; 1149 mutex_unlock(&br_ioctl_mutex); 1150 } 1151 EXPORT_SYMBOL(brioctl_set); 1152 1153 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1154 struct ifreq *ifr, void __user *uarg) 1155 { 1156 int err = -ENOPKG; 1157 1158 if (!br_ioctl_hook) 1159 request_module("bridge"); 1160 1161 mutex_lock(&br_ioctl_mutex); 1162 if (br_ioctl_hook) 1163 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1164 mutex_unlock(&br_ioctl_mutex); 1165 1166 return err; 1167 } 1168 1169 static DEFINE_MUTEX(vlan_ioctl_mutex); 1170 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1171 1172 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1173 { 1174 mutex_lock(&vlan_ioctl_mutex); 1175 vlan_ioctl_hook = hook; 1176 mutex_unlock(&vlan_ioctl_mutex); 1177 } 1178 EXPORT_SYMBOL(vlan_ioctl_set); 1179 1180 static long sock_do_ioctl(struct net *net, struct socket *sock, 1181 unsigned int cmd, unsigned long arg) 1182 { 1183 struct ifreq ifr; 1184 bool need_copyout; 1185 int err; 1186 void __user *argp = (void __user *)arg; 1187 void __user *data; 1188 1189 err = sock->ops->ioctl(sock, cmd, arg); 1190 1191 /* 1192 * If this ioctl is unknown try to hand it down 1193 * to the NIC driver. 1194 */ 1195 if (err != -ENOIOCTLCMD) 1196 return err; 1197 1198 if (!is_socket_ioctl_cmd(cmd)) 1199 return -ENOTTY; 1200 1201 if (get_user_ifreq(&ifr, &data, argp)) 1202 return -EFAULT; 1203 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1204 if (!err && need_copyout) 1205 if (put_user_ifreq(&ifr, argp)) 1206 return -EFAULT; 1207 1208 return err; 1209 } 1210 1211 /* 1212 * With an ioctl, arg may well be a user mode pointer, but we don't know 1213 * what to do with it - that's up to the protocol still. 1214 */ 1215 1216 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1217 { 1218 struct socket *sock; 1219 struct sock *sk; 1220 void __user *argp = (void __user *)arg; 1221 int pid, err; 1222 struct net *net; 1223 1224 sock = file->private_data; 1225 sk = sock->sk; 1226 net = sock_net(sk); 1227 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1228 struct ifreq ifr; 1229 void __user *data; 1230 bool need_copyout; 1231 if (get_user_ifreq(&ifr, &data, argp)) 1232 return -EFAULT; 1233 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1234 if (!err && need_copyout) 1235 if (put_user_ifreq(&ifr, argp)) 1236 return -EFAULT; 1237 } else 1238 #ifdef CONFIG_WEXT_CORE 1239 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1240 err = wext_handle_ioctl(net, cmd, argp); 1241 } else 1242 #endif 1243 switch (cmd) { 1244 case FIOSETOWN: 1245 case SIOCSPGRP: 1246 err = -EFAULT; 1247 if (get_user(pid, (int __user *)argp)) 1248 break; 1249 err = f_setown(sock->file, pid, 1); 1250 break; 1251 case FIOGETOWN: 1252 case SIOCGPGRP: 1253 err = put_user(f_getown(sock->file), 1254 (int __user *)argp); 1255 break; 1256 case SIOCGIFBR: 1257 case SIOCSIFBR: 1258 case SIOCBRADDBR: 1259 case SIOCBRDELBR: 1260 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1261 break; 1262 case SIOCGIFVLAN: 1263 case SIOCSIFVLAN: 1264 err = -ENOPKG; 1265 if (!vlan_ioctl_hook) 1266 request_module("8021q"); 1267 1268 mutex_lock(&vlan_ioctl_mutex); 1269 if (vlan_ioctl_hook) 1270 err = vlan_ioctl_hook(net, argp); 1271 mutex_unlock(&vlan_ioctl_mutex); 1272 break; 1273 case SIOCGSKNS: 1274 err = -EPERM; 1275 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1276 break; 1277 1278 err = open_related_ns(&net->ns, get_net_ns); 1279 break; 1280 case SIOCGSTAMP_OLD: 1281 case SIOCGSTAMPNS_OLD: 1282 if (!sock->ops->gettstamp) { 1283 err = -ENOIOCTLCMD; 1284 break; 1285 } 1286 err = sock->ops->gettstamp(sock, argp, 1287 cmd == SIOCGSTAMP_OLD, 1288 !IS_ENABLED(CONFIG_64BIT)); 1289 break; 1290 case SIOCGSTAMP_NEW: 1291 case SIOCGSTAMPNS_NEW: 1292 if (!sock->ops->gettstamp) { 1293 err = -ENOIOCTLCMD; 1294 break; 1295 } 1296 err = sock->ops->gettstamp(sock, argp, 1297 cmd == SIOCGSTAMP_NEW, 1298 false); 1299 break; 1300 1301 case SIOCGIFCONF: 1302 err = dev_ifconf(net, argp); 1303 break; 1304 1305 default: 1306 err = sock_do_ioctl(net, sock, cmd, arg); 1307 break; 1308 } 1309 return err; 1310 } 1311 1312 /** 1313 * sock_create_lite - creates a socket 1314 * @family: protocol family (AF_INET, ...) 1315 * @type: communication type (SOCK_STREAM, ...) 1316 * @protocol: protocol (0, ...) 1317 * @res: new socket 1318 * 1319 * Creates a new socket and assigns it to @res, passing through LSM. 1320 * The new socket initialization is not complete, see kernel_accept(). 1321 * Returns 0 or an error. On failure @res is set to %NULL. 1322 * This function internally uses GFP_KERNEL. 1323 */ 1324 1325 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1326 { 1327 int err; 1328 struct socket *sock = NULL; 1329 1330 err = security_socket_create(family, type, protocol, 1); 1331 if (err) 1332 goto out; 1333 1334 sock = sock_alloc(); 1335 if (!sock) { 1336 err = -ENOMEM; 1337 goto out; 1338 } 1339 1340 sock->type = type; 1341 err = security_socket_post_create(sock, family, type, protocol, 1); 1342 if (err) 1343 goto out_release; 1344 1345 out: 1346 *res = sock; 1347 return err; 1348 out_release: 1349 sock_release(sock); 1350 sock = NULL; 1351 goto out; 1352 } 1353 EXPORT_SYMBOL(sock_create_lite); 1354 1355 /* No kernel lock held - perfect */ 1356 static __poll_t sock_poll(struct file *file, poll_table *wait) 1357 { 1358 struct socket *sock = file->private_data; 1359 __poll_t events = poll_requested_events(wait), flag = 0; 1360 1361 if (!sock->ops->poll) 1362 return 0; 1363 1364 if (sk_can_busy_loop(sock->sk)) { 1365 /* poll once if requested by the syscall */ 1366 if (events & POLL_BUSY_LOOP) 1367 sk_busy_loop(sock->sk, 1); 1368 1369 /* if this socket can poll_ll, tell the system call */ 1370 flag = POLL_BUSY_LOOP; 1371 } 1372 1373 return sock->ops->poll(file, sock, wait) | flag; 1374 } 1375 1376 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1377 { 1378 struct socket *sock = file->private_data; 1379 1380 return sock->ops->mmap(file, sock, vma); 1381 } 1382 1383 static int sock_close(struct inode *inode, struct file *filp) 1384 { 1385 __sock_release(SOCKET_I(inode), inode); 1386 return 0; 1387 } 1388 1389 /* 1390 * Update the socket async list 1391 * 1392 * Fasync_list locking strategy. 1393 * 1394 * 1. fasync_list is modified only under process context socket lock 1395 * i.e. under semaphore. 1396 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1397 * or under socket lock 1398 */ 1399 1400 static int sock_fasync(int fd, struct file *filp, int on) 1401 { 1402 struct socket *sock = filp->private_data; 1403 struct sock *sk = sock->sk; 1404 struct socket_wq *wq = &sock->wq; 1405 1406 if (sk == NULL) 1407 return -EINVAL; 1408 1409 lock_sock(sk); 1410 fasync_helper(fd, filp, on, &wq->fasync_list); 1411 1412 if (!wq->fasync_list) 1413 sock_reset_flag(sk, SOCK_FASYNC); 1414 else 1415 sock_set_flag(sk, SOCK_FASYNC); 1416 1417 release_sock(sk); 1418 return 0; 1419 } 1420 1421 /* This function may be called only under rcu_lock */ 1422 1423 int sock_wake_async(struct socket_wq *wq, int how, int band) 1424 { 1425 if (!wq || !wq->fasync_list) 1426 return -1; 1427 1428 switch (how) { 1429 case SOCK_WAKE_WAITD: 1430 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1431 break; 1432 goto call_kill; 1433 case SOCK_WAKE_SPACE: 1434 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1435 break; 1436 fallthrough; 1437 case SOCK_WAKE_IO: 1438 call_kill: 1439 kill_fasync(&wq->fasync_list, SIGIO, band); 1440 break; 1441 case SOCK_WAKE_URG: 1442 kill_fasync(&wq->fasync_list, SIGURG, band); 1443 } 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL(sock_wake_async); 1448 1449 /** 1450 * __sock_create - creates a socket 1451 * @net: net namespace 1452 * @family: protocol family (AF_INET, ...) 1453 * @type: communication type (SOCK_STREAM, ...) 1454 * @protocol: protocol (0, ...) 1455 * @res: new socket 1456 * @kern: boolean for kernel space sockets 1457 * 1458 * Creates a new socket and assigns it to @res, passing through LSM. 1459 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1460 * be set to true if the socket resides in kernel space. 1461 * This function internally uses GFP_KERNEL. 1462 */ 1463 1464 int __sock_create(struct net *net, int family, int type, int protocol, 1465 struct socket **res, int kern) 1466 { 1467 int err; 1468 struct socket *sock; 1469 const struct net_proto_family *pf; 1470 1471 /* 1472 * Check protocol is in range 1473 */ 1474 if (family < 0 || family >= NPROTO) 1475 return -EAFNOSUPPORT; 1476 if (type < 0 || type >= SOCK_MAX) 1477 return -EINVAL; 1478 1479 /* Compatibility. 1480 1481 This uglymoron is moved from INET layer to here to avoid 1482 deadlock in module load. 1483 */ 1484 if (family == PF_INET && type == SOCK_PACKET) { 1485 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1486 current->comm); 1487 family = PF_PACKET; 1488 } 1489 1490 err = security_socket_create(family, type, protocol, kern); 1491 if (err) 1492 return err; 1493 1494 /* 1495 * Allocate the socket and allow the family to set things up. if 1496 * the protocol is 0, the family is instructed to select an appropriate 1497 * default. 1498 */ 1499 sock = sock_alloc(); 1500 if (!sock) { 1501 net_warn_ratelimited("socket: no more sockets\n"); 1502 return -ENFILE; /* Not exactly a match, but its the 1503 closest posix thing */ 1504 } 1505 1506 sock->type = type; 1507 1508 #ifdef CONFIG_MODULES 1509 /* Attempt to load a protocol module if the find failed. 1510 * 1511 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1512 * requested real, full-featured networking support upon configuration. 1513 * Otherwise module support will break! 1514 */ 1515 if (rcu_access_pointer(net_families[family]) == NULL) 1516 request_module("net-pf-%d", family); 1517 #endif 1518 1519 rcu_read_lock(); 1520 pf = rcu_dereference(net_families[family]); 1521 err = -EAFNOSUPPORT; 1522 if (!pf) 1523 goto out_release; 1524 1525 /* 1526 * We will call the ->create function, that possibly is in a loadable 1527 * module, so we have to bump that loadable module refcnt first. 1528 */ 1529 if (!try_module_get(pf->owner)) 1530 goto out_release; 1531 1532 /* Now protected by module ref count */ 1533 rcu_read_unlock(); 1534 1535 err = pf->create(net, sock, protocol, kern); 1536 if (err < 0) 1537 goto out_module_put; 1538 1539 /* 1540 * Now to bump the refcnt of the [loadable] module that owns this 1541 * socket at sock_release time we decrement its refcnt. 1542 */ 1543 if (!try_module_get(sock->ops->owner)) 1544 goto out_module_busy; 1545 1546 /* 1547 * Now that we're done with the ->create function, the [loadable] 1548 * module can have its refcnt decremented 1549 */ 1550 module_put(pf->owner); 1551 err = security_socket_post_create(sock, family, type, protocol, kern); 1552 if (err) 1553 goto out_sock_release; 1554 *res = sock; 1555 1556 return 0; 1557 1558 out_module_busy: 1559 err = -EAFNOSUPPORT; 1560 out_module_put: 1561 sock->ops = NULL; 1562 module_put(pf->owner); 1563 out_sock_release: 1564 sock_release(sock); 1565 return err; 1566 1567 out_release: 1568 rcu_read_unlock(); 1569 goto out_sock_release; 1570 } 1571 EXPORT_SYMBOL(__sock_create); 1572 1573 /** 1574 * sock_create - creates a socket 1575 * @family: protocol family (AF_INET, ...) 1576 * @type: communication type (SOCK_STREAM, ...) 1577 * @protocol: protocol (0, ...) 1578 * @res: new socket 1579 * 1580 * A wrapper around __sock_create(). 1581 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1582 */ 1583 1584 int sock_create(int family, int type, int protocol, struct socket **res) 1585 { 1586 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1587 } 1588 EXPORT_SYMBOL(sock_create); 1589 1590 /** 1591 * sock_create_kern - creates a socket (kernel space) 1592 * @net: net namespace 1593 * @family: protocol family (AF_INET, ...) 1594 * @type: communication type (SOCK_STREAM, ...) 1595 * @protocol: protocol (0, ...) 1596 * @res: new socket 1597 * 1598 * A wrapper around __sock_create(). 1599 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1600 */ 1601 1602 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1603 { 1604 return __sock_create(net, family, type, protocol, res, 1); 1605 } 1606 EXPORT_SYMBOL(sock_create_kern); 1607 1608 static struct socket *__sys_socket_create(int family, int type, int protocol) 1609 { 1610 struct socket *sock; 1611 int retval; 1612 1613 /* Check the SOCK_* constants for consistency. */ 1614 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1615 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1616 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1617 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1618 1619 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1620 return ERR_PTR(-EINVAL); 1621 type &= SOCK_TYPE_MASK; 1622 1623 retval = sock_create(family, type, protocol, &sock); 1624 if (retval < 0) 1625 return ERR_PTR(retval); 1626 1627 return sock; 1628 } 1629 1630 struct file *__sys_socket_file(int family, int type, int protocol) 1631 { 1632 struct socket *sock; 1633 int flags; 1634 1635 sock = __sys_socket_create(family, type, protocol); 1636 if (IS_ERR(sock)) 1637 return ERR_CAST(sock); 1638 1639 flags = type & ~SOCK_TYPE_MASK; 1640 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1641 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1642 1643 return sock_alloc_file(sock, flags, NULL); 1644 } 1645 1646 int __sys_socket(int family, int type, int protocol) 1647 { 1648 struct socket *sock; 1649 int flags; 1650 1651 sock = __sys_socket_create(family, type, protocol); 1652 if (IS_ERR(sock)) 1653 return PTR_ERR(sock); 1654 1655 flags = type & ~SOCK_TYPE_MASK; 1656 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1657 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1658 1659 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1660 } 1661 1662 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1663 { 1664 return __sys_socket(family, type, protocol); 1665 } 1666 1667 /* 1668 * Create a pair of connected sockets. 1669 */ 1670 1671 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1672 { 1673 struct socket *sock1, *sock2; 1674 int fd1, fd2, err; 1675 struct file *newfile1, *newfile2; 1676 int flags; 1677 1678 flags = type & ~SOCK_TYPE_MASK; 1679 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1680 return -EINVAL; 1681 type &= SOCK_TYPE_MASK; 1682 1683 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1684 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1685 1686 /* 1687 * reserve descriptors and make sure we won't fail 1688 * to return them to userland. 1689 */ 1690 fd1 = get_unused_fd_flags(flags); 1691 if (unlikely(fd1 < 0)) 1692 return fd1; 1693 1694 fd2 = get_unused_fd_flags(flags); 1695 if (unlikely(fd2 < 0)) { 1696 put_unused_fd(fd1); 1697 return fd2; 1698 } 1699 1700 err = put_user(fd1, &usockvec[0]); 1701 if (err) 1702 goto out; 1703 1704 err = put_user(fd2, &usockvec[1]); 1705 if (err) 1706 goto out; 1707 1708 /* 1709 * Obtain the first socket and check if the underlying protocol 1710 * supports the socketpair call. 1711 */ 1712 1713 err = sock_create(family, type, protocol, &sock1); 1714 if (unlikely(err < 0)) 1715 goto out; 1716 1717 err = sock_create(family, type, protocol, &sock2); 1718 if (unlikely(err < 0)) { 1719 sock_release(sock1); 1720 goto out; 1721 } 1722 1723 err = security_socket_socketpair(sock1, sock2); 1724 if (unlikely(err)) { 1725 sock_release(sock2); 1726 sock_release(sock1); 1727 goto out; 1728 } 1729 1730 err = sock1->ops->socketpair(sock1, sock2); 1731 if (unlikely(err < 0)) { 1732 sock_release(sock2); 1733 sock_release(sock1); 1734 goto out; 1735 } 1736 1737 newfile1 = sock_alloc_file(sock1, flags, NULL); 1738 if (IS_ERR(newfile1)) { 1739 err = PTR_ERR(newfile1); 1740 sock_release(sock2); 1741 goto out; 1742 } 1743 1744 newfile2 = sock_alloc_file(sock2, flags, NULL); 1745 if (IS_ERR(newfile2)) { 1746 err = PTR_ERR(newfile2); 1747 fput(newfile1); 1748 goto out; 1749 } 1750 1751 audit_fd_pair(fd1, fd2); 1752 1753 fd_install(fd1, newfile1); 1754 fd_install(fd2, newfile2); 1755 return 0; 1756 1757 out: 1758 put_unused_fd(fd2); 1759 put_unused_fd(fd1); 1760 return err; 1761 } 1762 1763 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1764 int __user *, usockvec) 1765 { 1766 return __sys_socketpair(family, type, protocol, usockvec); 1767 } 1768 1769 /* 1770 * Bind a name to a socket. Nothing much to do here since it's 1771 * the protocol's responsibility to handle the local address. 1772 * 1773 * We move the socket address to kernel space before we call 1774 * the protocol layer (having also checked the address is ok). 1775 */ 1776 1777 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1778 { 1779 struct socket *sock; 1780 struct sockaddr_storage address; 1781 int err, fput_needed; 1782 1783 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1784 if (sock) { 1785 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1786 if (!err) { 1787 err = security_socket_bind(sock, 1788 (struct sockaddr *)&address, 1789 addrlen); 1790 if (!err) 1791 err = sock->ops->bind(sock, 1792 (struct sockaddr *) 1793 &address, addrlen); 1794 } 1795 fput_light(sock->file, fput_needed); 1796 } 1797 return err; 1798 } 1799 1800 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1801 { 1802 return __sys_bind(fd, umyaddr, addrlen); 1803 } 1804 1805 /* 1806 * Perform a listen. Basically, we allow the protocol to do anything 1807 * necessary for a listen, and if that works, we mark the socket as 1808 * ready for listening. 1809 */ 1810 1811 int __sys_listen(int fd, int backlog) 1812 { 1813 struct socket *sock; 1814 int err, fput_needed; 1815 int somaxconn; 1816 1817 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1818 if (sock) { 1819 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1820 if ((unsigned int)backlog > somaxconn) 1821 backlog = somaxconn; 1822 1823 err = security_socket_listen(sock, backlog); 1824 if (!err) 1825 err = sock->ops->listen(sock, backlog); 1826 1827 fput_light(sock->file, fput_needed); 1828 } 1829 return err; 1830 } 1831 1832 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1833 { 1834 return __sys_listen(fd, backlog); 1835 } 1836 1837 struct file *do_accept(struct file *file, unsigned file_flags, 1838 struct sockaddr __user *upeer_sockaddr, 1839 int __user *upeer_addrlen, int flags) 1840 { 1841 struct socket *sock, *newsock; 1842 struct file *newfile; 1843 int err, len; 1844 struct sockaddr_storage address; 1845 1846 sock = sock_from_file(file); 1847 if (!sock) 1848 return ERR_PTR(-ENOTSOCK); 1849 1850 newsock = sock_alloc(); 1851 if (!newsock) 1852 return ERR_PTR(-ENFILE); 1853 1854 newsock->type = sock->type; 1855 newsock->ops = sock->ops; 1856 1857 /* 1858 * We don't need try_module_get here, as the listening socket (sock) 1859 * has the protocol module (sock->ops->owner) held. 1860 */ 1861 __module_get(newsock->ops->owner); 1862 1863 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1864 if (IS_ERR(newfile)) 1865 return newfile; 1866 1867 err = security_socket_accept(sock, newsock); 1868 if (err) 1869 goto out_fd; 1870 1871 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1872 false); 1873 if (err < 0) 1874 goto out_fd; 1875 1876 if (upeer_sockaddr) { 1877 len = newsock->ops->getname(newsock, 1878 (struct sockaddr *)&address, 2); 1879 if (len < 0) { 1880 err = -ECONNABORTED; 1881 goto out_fd; 1882 } 1883 err = move_addr_to_user(&address, 1884 len, upeer_sockaddr, upeer_addrlen); 1885 if (err < 0) 1886 goto out_fd; 1887 } 1888 1889 /* File flags are not inherited via accept() unlike another OSes. */ 1890 return newfile; 1891 out_fd: 1892 fput(newfile); 1893 return ERR_PTR(err); 1894 } 1895 1896 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1897 int __user *upeer_addrlen, int flags) 1898 { 1899 struct file *newfile; 1900 int newfd; 1901 1902 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1903 return -EINVAL; 1904 1905 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1906 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1907 1908 newfd = get_unused_fd_flags(flags); 1909 if (unlikely(newfd < 0)) 1910 return newfd; 1911 1912 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1913 flags); 1914 if (IS_ERR(newfile)) { 1915 put_unused_fd(newfd); 1916 return PTR_ERR(newfile); 1917 } 1918 fd_install(newfd, newfile); 1919 return newfd; 1920 } 1921 1922 /* 1923 * For accept, we attempt to create a new socket, set up the link 1924 * with the client, wake up the client, then return the new 1925 * connected fd. We collect the address of the connector in kernel 1926 * space and move it to user at the very end. This is unclean because 1927 * we open the socket then return an error. 1928 * 1929 * 1003.1g adds the ability to recvmsg() to query connection pending 1930 * status to recvmsg. We need to add that support in a way thats 1931 * clean when we restructure accept also. 1932 */ 1933 1934 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1935 int __user *upeer_addrlen, int flags) 1936 { 1937 int ret = -EBADF; 1938 struct fd f; 1939 1940 f = fdget(fd); 1941 if (f.file) { 1942 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1943 upeer_addrlen, flags); 1944 fdput(f); 1945 } 1946 1947 return ret; 1948 } 1949 1950 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1951 int __user *, upeer_addrlen, int, flags) 1952 { 1953 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1954 } 1955 1956 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1957 int __user *, upeer_addrlen) 1958 { 1959 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1960 } 1961 1962 /* 1963 * Attempt to connect to a socket with the server address. The address 1964 * is in user space so we verify it is OK and move it to kernel space. 1965 * 1966 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1967 * break bindings 1968 * 1969 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1970 * other SEQPACKET protocols that take time to connect() as it doesn't 1971 * include the -EINPROGRESS status for such sockets. 1972 */ 1973 1974 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1975 int addrlen, int file_flags) 1976 { 1977 struct socket *sock; 1978 int err; 1979 1980 sock = sock_from_file(file); 1981 if (!sock) { 1982 err = -ENOTSOCK; 1983 goto out; 1984 } 1985 1986 err = 1987 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1988 if (err) 1989 goto out; 1990 1991 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1992 sock->file->f_flags | file_flags); 1993 out: 1994 return err; 1995 } 1996 1997 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1998 { 1999 int ret = -EBADF; 2000 struct fd f; 2001 2002 f = fdget(fd); 2003 if (f.file) { 2004 struct sockaddr_storage address; 2005 2006 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2007 if (!ret) 2008 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2009 fdput(f); 2010 } 2011 2012 return ret; 2013 } 2014 2015 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2016 int, addrlen) 2017 { 2018 return __sys_connect(fd, uservaddr, addrlen); 2019 } 2020 2021 /* 2022 * Get the local address ('name') of a socket object. Move the obtained 2023 * name to user space. 2024 */ 2025 2026 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2027 int __user *usockaddr_len) 2028 { 2029 struct socket *sock; 2030 struct sockaddr_storage address; 2031 int err, fput_needed; 2032 2033 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2034 if (!sock) 2035 goto out; 2036 2037 err = security_socket_getsockname(sock); 2038 if (err) 2039 goto out_put; 2040 2041 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2042 if (err < 0) 2043 goto out_put; 2044 /* "err" is actually length in this case */ 2045 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2046 2047 out_put: 2048 fput_light(sock->file, fput_needed); 2049 out: 2050 return err; 2051 } 2052 2053 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2054 int __user *, usockaddr_len) 2055 { 2056 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2057 } 2058 2059 /* 2060 * Get the remote address ('name') of a socket object. Move the obtained 2061 * name to user space. 2062 */ 2063 2064 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2065 int __user *usockaddr_len) 2066 { 2067 struct socket *sock; 2068 struct sockaddr_storage address; 2069 int err, fput_needed; 2070 2071 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2072 if (sock != NULL) { 2073 err = security_socket_getpeername(sock); 2074 if (err) { 2075 fput_light(sock->file, fput_needed); 2076 return err; 2077 } 2078 2079 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2080 if (err >= 0) 2081 /* "err" is actually length in this case */ 2082 err = move_addr_to_user(&address, err, usockaddr, 2083 usockaddr_len); 2084 fput_light(sock->file, fput_needed); 2085 } 2086 return err; 2087 } 2088 2089 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2090 int __user *, usockaddr_len) 2091 { 2092 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2093 } 2094 2095 /* 2096 * Send a datagram to a given address. We move the address into kernel 2097 * space and check the user space data area is readable before invoking 2098 * the protocol. 2099 */ 2100 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2101 struct sockaddr __user *addr, int addr_len) 2102 { 2103 struct socket *sock; 2104 struct sockaddr_storage address; 2105 int err; 2106 struct msghdr msg; 2107 struct iovec iov; 2108 int fput_needed; 2109 2110 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2111 if (unlikely(err)) 2112 return err; 2113 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2114 if (!sock) 2115 goto out; 2116 2117 msg.msg_name = NULL; 2118 msg.msg_control = NULL; 2119 msg.msg_controllen = 0; 2120 msg.msg_namelen = 0; 2121 msg.msg_ubuf = NULL; 2122 if (addr) { 2123 err = move_addr_to_kernel(addr, addr_len, &address); 2124 if (err < 0) 2125 goto out_put; 2126 msg.msg_name = (struct sockaddr *)&address; 2127 msg.msg_namelen = addr_len; 2128 } 2129 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2130 if (sock->file->f_flags & O_NONBLOCK) 2131 flags |= MSG_DONTWAIT; 2132 msg.msg_flags = flags; 2133 err = sock_sendmsg(sock, &msg); 2134 2135 out_put: 2136 fput_light(sock->file, fput_needed); 2137 out: 2138 return err; 2139 } 2140 2141 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2142 unsigned int, flags, struct sockaddr __user *, addr, 2143 int, addr_len) 2144 { 2145 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2146 } 2147 2148 /* 2149 * Send a datagram down a socket. 2150 */ 2151 2152 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2153 unsigned int, flags) 2154 { 2155 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2156 } 2157 2158 /* 2159 * Receive a frame from the socket and optionally record the address of the 2160 * sender. We verify the buffers are writable and if needed move the 2161 * sender address from kernel to user space. 2162 */ 2163 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2164 struct sockaddr __user *addr, int __user *addr_len) 2165 { 2166 struct sockaddr_storage address; 2167 struct msghdr msg = { 2168 /* Save some cycles and don't copy the address if not needed */ 2169 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2170 }; 2171 struct socket *sock; 2172 struct iovec iov; 2173 int err, err2; 2174 int fput_needed; 2175 2176 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2177 if (unlikely(err)) 2178 return err; 2179 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2180 if (!sock) 2181 goto out; 2182 2183 if (sock->file->f_flags & O_NONBLOCK) 2184 flags |= MSG_DONTWAIT; 2185 err = sock_recvmsg(sock, &msg, flags); 2186 2187 if (err >= 0 && addr != NULL) { 2188 err2 = move_addr_to_user(&address, 2189 msg.msg_namelen, addr, addr_len); 2190 if (err2 < 0) 2191 err = err2; 2192 } 2193 2194 fput_light(sock->file, fput_needed); 2195 out: 2196 return err; 2197 } 2198 2199 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2200 unsigned int, flags, struct sockaddr __user *, addr, 2201 int __user *, addr_len) 2202 { 2203 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2204 } 2205 2206 /* 2207 * Receive a datagram from a socket. 2208 */ 2209 2210 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2211 unsigned int, flags) 2212 { 2213 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2214 } 2215 2216 static bool sock_use_custom_sol_socket(const struct socket *sock) 2217 { 2218 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2219 } 2220 2221 /* 2222 * Set a socket option. Because we don't know the option lengths we have 2223 * to pass the user mode parameter for the protocols to sort out. 2224 */ 2225 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2226 int optlen) 2227 { 2228 sockptr_t optval = USER_SOCKPTR(user_optval); 2229 char *kernel_optval = NULL; 2230 int err, fput_needed; 2231 struct socket *sock; 2232 2233 if (optlen < 0) 2234 return -EINVAL; 2235 2236 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2237 if (!sock) 2238 return err; 2239 2240 err = security_socket_setsockopt(sock, level, optname); 2241 if (err) 2242 goto out_put; 2243 2244 if (!in_compat_syscall()) 2245 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2246 user_optval, &optlen, 2247 &kernel_optval); 2248 if (err < 0) 2249 goto out_put; 2250 if (err > 0) { 2251 err = 0; 2252 goto out_put; 2253 } 2254 2255 if (kernel_optval) 2256 optval = KERNEL_SOCKPTR(kernel_optval); 2257 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2258 err = sock_setsockopt(sock, level, optname, optval, optlen); 2259 else if (unlikely(!sock->ops->setsockopt)) 2260 err = -EOPNOTSUPP; 2261 else 2262 err = sock->ops->setsockopt(sock, level, optname, optval, 2263 optlen); 2264 kfree(kernel_optval); 2265 out_put: 2266 fput_light(sock->file, fput_needed); 2267 return err; 2268 } 2269 2270 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2271 char __user *, optval, int, optlen) 2272 { 2273 return __sys_setsockopt(fd, level, optname, optval, optlen); 2274 } 2275 2276 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2277 int optname)); 2278 2279 /* 2280 * Get a socket option. Because we don't know the option lengths we have 2281 * to pass a user mode parameter for the protocols to sort out. 2282 */ 2283 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2284 int __user *optlen) 2285 { 2286 int max_optlen __maybe_unused; 2287 int err, fput_needed; 2288 struct socket *sock; 2289 2290 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2291 if (!sock) 2292 return err; 2293 2294 err = security_socket_getsockopt(sock, level, optname); 2295 if (err) 2296 goto out_put; 2297 2298 if (!in_compat_syscall()) 2299 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2300 2301 if (level == SOL_SOCKET) 2302 err = sock_getsockopt(sock, level, optname, optval, optlen); 2303 else if (unlikely(!sock->ops->getsockopt)) 2304 err = -EOPNOTSUPP; 2305 else 2306 err = sock->ops->getsockopt(sock, level, optname, optval, 2307 optlen); 2308 2309 if (!in_compat_syscall()) 2310 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2311 optval, optlen, max_optlen, 2312 err); 2313 out_put: 2314 fput_light(sock->file, fput_needed); 2315 return err; 2316 } 2317 2318 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2319 char __user *, optval, int __user *, optlen) 2320 { 2321 return __sys_getsockopt(fd, level, optname, optval, optlen); 2322 } 2323 2324 /* 2325 * Shutdown a socket. 2326 */ 2327 2328 int __sys_shutdown_sock(struct socket *sock, int how) 2329 { 2330 int err; 2331 2332 err = security_socket_shutdown(sock, how); 2333 if (!err) 2334 err = sock->ops->shutdown(sock, how); 2335 2336 return err; 2337 } 2338 2339 int __sys_shutdown(int fd, int how) 2340 { 2341 int err, fput_needed; 2342 struct socket *sock; 2343 2344 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2345 if (sock != NULL) { 2346 err = __sys_shutdown_sock(sock, how); 2347 fput_light(sock->file, fput_needed); 2348 } 2349 return err; 2350 } 2351 2352 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2353 { 2354 return __sys_shutdown(fd, how); 2355 } 2356 2357 /* A couple of helpful macros for getting the address of the 32/64 bit 2358 * fields which are the same type (int / unsigned) on our platforms. 2359 */ 2360 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2361 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2362 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2363 2364 struct used_address { 2365 struct sockaddr_storage name; 2366 unsigned int name_len; 2367 }; 2368 2369 int __copy_msghdr(struct msghdr *kmsg, 2370 struct user_msghdr *msg, 2371 struct sockaddr __user **save_addr) 2372 { 2373 ssize_t err; 2374 2375 kmsg->msg_control_is_user = true; 2376 kmsg->msg_get_inq = 0; 2377 kmsg->msg_control_user = msg->msg_control; 2378 kmsg->msg_controllen = msg->msg_controllen; 2379 kmsg->msg_flags = msg->msg_flags; 2380 2381 kmsg->msg_namelen = msg->msg_namelen; 2382 if (!msg->msg_name) 2383 kmsg->msg_namelen = 0; 2384 2385 if (kmsg->msg_namelen < 0) 2386 return -EINVAL; 2387 2388 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2389 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2390 2391 if (save_addr) 2392 *save_addr = msg->msg_name; 2393 2394 if (msg->msg_name && kmsg->msg_namelen) { 2395 if (!save_addr) { 2396 err = move_addr_to_kernel(msg->msg_name, 2397 kmsg->msg_namelen, 2398 kmsg->msg_name); 2399 if (err < 0) 2400 return err; 2401 } 2402 } else { 2403 kmsg->msg_name = NULL; 2404 kmsg->msg_namelen = 0; 2405 } 2406 2407 if (msg->msg_iovlen > UIO_MAXIOV) 2408 return -EMSGSIZE; 2409 2410 kmsg->msg_iocb = NULL; 2411 kmsg->msg_ubuf = NULL; 2412 return 0; 2413 } 2414 2415 static int copy_msghdr_from_user(struct msghdr *kmsg, 2416 struct user_msghdr __user *umsg, 2417 struct sockaddr __user **save_addr, 2418 struct iovec **iov) 2419 { 2420 struct user_msghdr msg; 2421 ssize_t err; 2422 2423 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2424 return -EFAULT; 2425 2426 err = __copy_msghdr(kmsg, &msg, save_addr); 2427 if (err) 2428 return err; 2429 2430 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2431 msg.msg_iov, msg.msg_iovlen, 2432 UIO_FASTIOV, iov, &kmsg->msg_iter); 2433 return err < 0 ? err : 0; 2434 } 2435 2436 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2437 unsigned int flags, struct used_address *used_address, 2438 unsigned int allowed_msghdr_flags) 2439 { 2440 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2441 __aligned(sizeof(__kernel_size_t)); 2442 /* 20 is size of ipv6_pktinfo */ 2443 unsigned char *ctl_buf = ctl; 2444 int ctl_len; 2445 ssize_t err; 2446 2447 err = -ENOBUFS; 2448 2449 if (msg_sys->msg_controllen > INT_MAX) 2450 goto out; 2451 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2452 ctl_len = msg_sys->msg_controllen; 2453 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2454 err = 2455 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2456 sizeof(ctl)); 2457 if (err) 2458 goto out; 2459 ctl_buf = msg_sys->msg_control; 2460 ctl_len = msg_sys->msg_controllen; 2461 } else if (ctl_len) { 2462 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2463 CMSG_ALIGN(sizeof(struct cmsghdr))); 2464 if (ctl_len > sizeof(ctl)) { 2465 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2466 if (ctl_buf == NULL) 2467 goto out; 2468 } 2469 err = -EFAULT; 2470 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2471 goto out_freectl; 2472 msg_sys->msg_control = ctl_buf; 2473 msg_sys->msg_control_is_user = false; 2474 } 2475 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2476 msg_sys->msg_flags = flags; 2477 2478 if (sock->file->f_flags & O_NONBLOCK) 2479 msg_sys->msg_flags |= MSG_DONTWAIT; 2480 /* 2481 * If this is sendmmsg() and current destination address is same as 2482 * previously succeeded address, omit asking LSM's decision. 2483 * used_address->name_len is initialized to UINT_MAX so that the first 2484 * destination address never matches. 2485 */ 2486 if (used_address && msg_sys->msg_name && 2487 used_address->name_len == msg_sys->msg_namelen && 2488 !memcmp(&used_address->name, msg_sys->msg_name, 2489 used_address->name_len)) { 2490 err = sock_sendmsg_nosec(sock, msg_sys); 2491 goto out_freectl; 2492 } 2493 err = sock_sendmsg(sock, msg_sys); 2494 /* 2495 * If this is sendmmsg() and sending to current destination address was 2496 * successful, remember it. 2497 */ 2498 if (used_address && err >= 0) { 2499 used_address->name_len = msg_sys->msg_namelen; 2500 if (msg_sys->msg_name) 2501 memcpy(&used_address->name, msg_sys->msg_name, 2502 used_address->name_len); 2503 } 2504 2505 out_freectl: 2506 if (ctl_buf != ctl) 2507 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2508 out: 2509 return err; 2510 } 2511 2512 int sendmsg_copy_msghdr(struct msghdr *msg, 2513 struct user_msghdr __user *umsg, unsigned flags, 2514 struct iovec **iov) 2515 { 2516 int err; 2517 2518 if (flags & MSG_CMSG_COMPAT) { 2519 struct compat_msghdr __user *msg_compat; 2520 2521 msg_compat = (struct compat_msghdr __user *) umsg; 2522 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2523 } else { 2524 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2525 } 2526 if (err < 0) 2527 return err; 2528 2529 return 0; 2530 } 2531 2532 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2533 struct msghdr *msg_sys, unsigned int flags, 2534 struct used_address *used_address, 2535 unsigned int allowed_msghdr_flags) 2536 { 2537 struct sockaddr_storage address; 2538 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2539 ssize_t err; 2540 2541 msg_sys->msg_name = &address; 2542 2543 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2544 if (err < 0) 2545 return err; 2546 2547 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2548 allowed_msghdr_flags); 2549 kfree(iov); 2550 return err; 2551 } 2552 2553 /* 2554 * BSD sendmsg interface 2555 */ 2556 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2557 unsigned int flags) 2558 { 2559 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2560 } 2561 2562 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2563 bool forbid_cmsg_compat) 2564 { 2565 int fput_needed, err; 2566 struct msghdr msg_sys; 2567 struct socket *sock; 2568 2569 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2570 return -EINVAL; 2571 2572 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2573 if (!sock) 2574 goto out; 2575 2576 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2577 2578 fput_light(sock->file, fput_needed); 2579 out: 2580 return err; 2581 } 2582 2583 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2584 { 2585 return __sys_sendmsg(fd, msg, flags, true); 2586 } 2587 2588 /* 2589 * Linux sendmmsg interface 2590 */ 2591 2592 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2593 unsigned int flags, bool forbid_cmsg_compat) 2594 { 2595 int fput_needed, err, datagrams; 2596 struct socket *sock; 2597 struct mmsghdr __user *entry; 2598 struct compat_mmsghdr __user *compat_entry; 2599 struct msghdr msg_sys; 2600 struct used_address used_address; 2601 unsigned int oflags = flags; 2602 2603 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2604 return -EINVAL; 2605 2606 if (vlen > UIO_MAXIOV) 2607 vlen = UIO_MAXIOV; 2608 2609 datagrams = 0; 2610 2611 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2612 if (!sock) 2613 return err; 2614 2615 used_address.name_len = UINT_MAX; 2616 entry = mmsg; 2617 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2618 err = 0; 2619 flags |= MSG_BATCH; 2620 2621 while (datagrams < vlen) { 2622 if (datagrams == vlen - 1) 2623 flags = oflags; 2624 2625 if (MSG_CMSG_COMPAT & flags) { 2626 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2627 &msg_sys, flags, &used_address, MSG_EOR); 2628 if (err < 0) 2629 break; 2630 err = __put_user(err, &compat_entry->msg_len); 2631 ++compat_entry; 2632 } else { 2633 err = ___sys_sendmsg(sock, 2634 (struct user_msghdr __user *)entry, 2635 &msg_sys, flags, &used_address, MSG_EOR); 2636 if (err < 0) 2637 break; 2638 err = put_user(err, &entry->msg_len); 2639 ++entry; 2640 } 2641 2642 if (err) 2643 break; 2644 ++datagrams; 2645 if (msg_data_left(&msg_sys)) 2646 break; 2647 cond_resched(); 2648 } 2649 2650 fput_light(sock->file, fput_needed); 2651 2652 /* We only return an error if no datagrams were able to be sent */ 2653 if (datagrams != 0) 2654 return datagrams; 2655 2656 return err; 2657 } 2658 2659 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2660 unsigned int, vlen, unsigned int, flags) 2661 { 2662 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2663 } 2664 2665 int recvmsg_copy_msghdr(struct msghdr *msg, 2666 struct user_msghdr __user *umsg, unsigned flags, 2667 struct sockaddr __user **uaddr, 2668 struct iovec **iov) 2669 { 2670 ssize_t err; 2671 2672 if (MSG_CMSG_COMPAT & flags) { 2673 struct compat_msghdr __user *msg_compat; 2674 2675 msg_compat = (struct compat_msghdr __user *) umsg; 2676 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2677 } else { 2678 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2679 } 2680 if (err < 0) 2681 return err; 2682 2683 return 0; 2684 } 2685 2686 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2687 struct user_msghdr __user *msg, 2688 struct sockaddr __user *uaddr, 2689 unsigned int flags, int nosec) 2690 { 2691 struct compat_msghdr __user *msg_compat = 2692 (struct compat_msghdr __user *) msg; 2693 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2694 struct sockaddr_storage addr; 2695 unsigned long cmsg_ptr; 2696 int len; 2697 ssize_t err; 2698 2699 msg_sys->msg_name = &addr; 2700 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2701 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2702 2703 /* We assume all kernel code knows the size of sockaddr_storage */ 2704 msg_sys->msg_namelen = 0; 2705 2706 if (sock->file->f_flags & O_NONBLOCK) 2707 flags |= MSG_DONTWAIT; 2708 2709 if (unlikely(nosec)) 2710 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2711 else 2712 err = sock_recvmsg(sock, msg_sys, flags); 2713 2714 if (err < 0) 2715 goto out; 2716 len = err; 2717 2718 if (uaddr != NULL) { 2719 err = move_addr_to_user(&addr, 2720 msg_sys->msg_namelen, uaddr, 2721 uaddr_len); 2722 if (err < 0) 2723 goto out; 2724 } 2725 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2726 COMPAT_FLAGS(msg)); 2727 if (err) 2728 goto out; 2729 if (MSG_CMSG_COMPAT & flags) 2730 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2731 &msg_compat->msg_controllen); 2732 else 2733 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2734 &msg->msg_controllen); 2735 if (err) 2736 goto out; 2737 err = len; 2738 out: 2739 return err; 2740 } 2741 2742 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2743 struct msghdr *msg_sys, unsigned int flags, int nosec) 2744 { 2745 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2746 /* user mode address pointers */ 2747 struct sockaddr __user *uaddr; 2748 ssize_t err; 2749 2750 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2751 if (err < 0) 2752 return err; 2753 2754 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2755 kfree(iov); 2756 return err; 2757 } 2758 2759 /* 2760 * BSD recvmsg interface 2761 */ 2762 2763 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2764 struct user_msghdr __user *umsg, 2765 struct sockaddr __user *uaddr, unsigned int flags) 2766 { 2767 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2768 } 2769 2770 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2771 bool forbid_cmsg_compat) 2772 { 2773 int fput_needed, err; 2774 struct msghdr msg_sys; 2775 struct socket *sock; 2776 2777 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2778 return -EINVAL; 2779 2780 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2781 if (!sock) 2782 goto out; 2783 2784 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2785 2786 fput_light(sock->file, fput_needed); 2787 out: 2788 return err; 2789 } 2790 2791 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2792 unsigned int, flags) 2793 { 2794 return __sys_recvmsg(fd, msg, flags, true); 2795 } 2796 2797 /* 2798 * Linux recvmmsg interface 2799 */ 2800 2801 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2802 unsigned int vlen, unsigned int flags, 2803 struct timespec64 *timeout) 2804 { 2805 int fput_needed, err, datagrams; 2806 struct socket *sock; 2807 struct mmsghdr __user *entry; 2808 struct compat_mmsghdr __user *compat_entry; 2809 struct msghdr msg_sys; 2810 struct timespec64 end_time; 2811 struct timespec64 timeout64; 2812 2813 if (timeout && 2814 poll_select_set_timeout(&end_time, timeout->tv_sec, 2815 timeout->tv_nsec)) 2816 return -EINVAL; 2817 2818 datagrams = 0; 2819 2820 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2821 if (!sock) 2822 return err; 2823 2824 if (likely(!(flags & MSG_ERRQUEUE))) { 2825 err = sock_error(sock->sk); 2826 if (err) { 2827 datagrams = err; 2828 goto out_put; 2829 } 2830 } 2831 2832 entry = mmsg; 2833 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2834 2835 while (datagrams < vlen) { 2836 /* 2837 * No need to ask LSM for more than the first datagram. 2838 */ 2839 if (MSG_CMSG_COMPAT & flags) { 2840 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2841 &msg_sys, flags & ~MSG_WAITFORONE, 2842 datagrams); 2843 if (err < 0) 2844 break; 2845 err = __put_user(err, &compat_entry->msg_len); 2846 ++compat_entry; 2847 } else { 2848 err = ___sys_recvmsg(sock, 2849 (struct user_msghdr __user *)entry, 2850 &msg_sys, flags & ~MSG_WAITFORONE, 2851 datagrams); 2852 if (err < 0) 2853 break; 2854 err = put_user(err, &entry->msg_len); 2855 ++entry; 2856 } 2857 2858 if (err) 2859 break; 2860 ++datagrams; 2861 2862 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2863 if (flags & MSG_WAITFORONE) 2864 flags |= MSG_DONTWAIT; 2865 2866 if (timeout) { 2867 ktime_get_ts64(&timeout64); 2868 *timeout = timespec64_sub(end_time, timeout64); 2869 if (timeout->tv_sec < 0) { 2870 timeout->tv_sec = timeout->tv_nsec = 0; 2871 break; 2872 } 2873 2874 /* Timeout, return less than vlen datagrams */ 2875 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2876 break; 2877 } 2878 2879 /* Out of band data, return right away */ 2880 if (msg_sys.msg_flags & MSG_OOB) 2881 break; 2882 cond_resched(); 2883 } 2884 2885 if (err == 0) 2886 goto out_put; 2887 2888 if (datagrams == 0) { 2889 datagrams = err; 2890 goto out_put; 2891 } 2892 2893 /* 2894 * We may return less entries than requested (vlen) if the 2895 * sock is non block and there aren't enough datagrams... 2896 */ 2897 if (err != -EAGAIN) { 2898 /* 2899 * ... or if recvmsg returns an error after we 2900 * received some datagrams, where we record the 2901 * error to return on the next call or if the 2902 * app asks about it using getsockopt(SO_ERROR). 2903 */ 2904 WRITE_ONCE(sock->sk->sk_err, -err); 2905 } 2906 out_put: 2907 fput_light(sock->file, fput_needed); 2908 2909 return datagrams; 2910 } 2911 2912 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2913 unsigned int vlen, unsigned int flags, 2914 struct __kernel_timespec __user *timeout, 2915 struct old_timespec32 __user *timeout32) 2916 { 2917 int datagrams; 2918 struct timespec64 timeout_sys; 2919 2920 if (timeout && get_timespec64(&timeout_sys, timeout)) 2921 return -EFAULT; 2922 2923 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2924 return -EFAULT; 2925 2926 if (!timeout && !timeout32) 2927 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2928 2929 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2930 2931 if (datagrams <= 0) 2932 return datagrams; 2933 2934 if (timeout && put_timespec64(&timeout_sys, timeout)) 2935 datagrams = -EFAULT; 2936 2937 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2938 datagrams = -EFAULT; 2939 2940 return datagrams; 2941 } 2942 2943 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2944 unsigned int, vlen, unsigned int, flags, 2945 struct __kernel_timespec __user *, timeout) 2946 { 2947 if (flags & MSG_CMSG_COMPAT) 2948 return -EINVAL; 2949 2950 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2951 } 2952 2953 #ifdef CONFIG_COMPAT_32BIT_TIME 2954 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2955 unsigned int, vlen, unsigned int, flags, 2956 struct old_timespec32 __user *, timeout) 2957 { 2958 if (flags & MSG_CMSG_COMPAT) 2959 return -EINVAL; 2960 2961 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2962 } 2963 #endif 2964 2965 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2966 /* Argument list sizes for sys_socketcall */ 2967 #define AL(x) ((x) * sizeof(unsigned long)) 2968 static const unsigned char nargs[21] = { 2969 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2970 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2971 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2972 AL(4), AL(5), AL(4) 2973 }; 2974 2975 #undef AL 2976 2977 /* 2978 * System call vectors. 2979 * 2980 * Argument checking cleaned up. Saved 20% in size. 2981 * This function doesn't need to set the kernel lock because 2982 * it is set by the callees. 2983 */ 2984 2985 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2986 { 2987 unsigned long a[AUDITSC_ARGS]; 2988 unsigned long a0, a1; 2989 int err; 2990 unsigned int len; 2991 2992 if (call < 1 || call > SYS_SENDMMSG) 2993 return -EINVAL; 2994 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2995 2996 len = nargs[call]; 2997 if (len > sizeof(a)) 2998 return -EINVAL; 2999 3000 /* copy_from_user should be SMP safe. */ 3001 if (copy_from_user(a, args, len)) 3002 return -EFAULT; 3003 3004 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3005 if (err) 3006 return err; 3007 3008 a0 = a[0]; 3009 a1 = a[1]; 3010 3011 switch (call) { 3012 case SYS_SOCKET: 3013 err = __sys_socket(a0, a1, a[2]); 3014 break; 3015 case SYS_BIND: 3016 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3017 break; 3018 case SYS_CONNECT: 3019 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3020 break; 3021 case SYS_LISTEN: 3022 err = __sys_listen(a0, a1); 3023 break; 3024 case SYS_ACCEPT: 3025 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3026 (int __user *)a[2], 0); 3027 break; 3028 case SYS_GETSOCKNAME: 3029 err = 3030 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3031 (int __user *)a[2]); 3032 break; 3033 case SYS_GETPEERNAME: 3034 err = 3035 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3036 (int __user *)a[2]); 3037 break; 3038 case SYS_SOCKETPAIR: 3039 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3040 break; 3041 case SYS_SEND: 3042 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3043 NULL, 0); 3044 break; 3045 case SYS_SENDTO: 3046 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3047 (struct sockaddr __user *)a[4], a[5]); 3048 break; 3049 case SYS_RECV: 3050 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3051 NULL, NULL); 3052 break; 3053 case SYS_RECVFROM: 3054 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3055 (struct sockaddr __user *)a[4], 3056 (int __user *)a[5]); 3057 break; 3058 case SYS_SHUTDOWN: 3059 err = __sys_shutdown(a0, a1); 3060 break; 3061 case SYS_SETSOCKOPT: 3062 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3063 a[4]); 3064 break; 3065 case SYS_GETSOCKOPT: 3066 err = 3067 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3068 (int __user *)a[4]); 3069 break; 3070 case SYS_SENDMSG: 3071 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3072 a[2], true); 3073 break; 3074 case SYS_SENDMMSG: 3075 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3076 a[3], true); 3077 break; 3078 case SYS_RECVMSG: 3079 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3080 a[2], true); 3081 break; 3082 case SYS_RECVMMSG: 3083 if (IS_ENABLED(CONFIG_64BIT)) 3084 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3085 a[2], a[3], 3086 (struct __kernel_timespec __user *)a[4], 3087 NULL); 3088 else 3089 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3090 a[2], a[3], NULL, 3091 (struct old_timespec32 __user *)a[4]); 3092 break; 3093 case SYS_ACCEPT4: 3094 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3095 (int __user *)a[2], a[3]); 3096 break; 3097 default: 3098 err = -EINVAL; 3099 break; 3100 } 3101 return err; 3102 } 3103 3104 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3105 3106 /** 3107 * sock_register - add a socket protocol handler 3108 * @ops: description of protocol 3109 * 3110 * This function is called by a protocol handler that wants to 3111 * advertise its address family, and have it linked into the 3112 * socket interface. The value ops->family corresponds to the 3113 * socket system call protocol family. 3114 */ 3115 int sock_register(const struct net_proto_family *ops) 3116 { 3117 int err; 3118 3119 if (ops->family >= NPROTO) { 3120 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3121 return -ENOBUFS; 3122 } 3123 3124 spin_lock(&net_family_lock); 3125 if (rcu_dereference_protected(net_families[ops->family], 3126 lockdep_is_held(&net_family_lock))) 3127 err = -EEXIST; 3128 else { 3129 rcu_assign_pointer(net_families[ops->family], ops); 3130 err = 0; 3131 } 3132 spin_unlock(&net_family_lock); 3133 3134 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3135 return err; 3136 } 3137 EXPORT_SYMBOL(sock_register); 3138 3139 /** 3140 * sock_unregister - remove a protocol handler 3141 * @family: protocol family to remove 3142 * 3143 * This function is called by a protocol handler that wants to 3144 * remove its address family, and have it unlinked from the 3145 * new socket creation. 3146 * 3147 * If protocol handler is a module, then it can use module reference 3148 * counts to protect against new references. If protocol handler is not 3149 * a module then it needs to provide its own protection in 3150 * the ops->create routine. 3151 */ 3152 void sock_unregister(int family) 3153 { 3154 BUG_ON(family < 0 || family >= NPROTO); 3155 3156 spin_lock(&net_family_lock); 3157 RCU_INIT_POINTER(net_families[family], NULL); 3158 spin_unlock(&net_family_lock); 3159 3160 synchronize_rcu(); 3161 3162 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3163 } 3164 EXPORT_SYMBOL(sock_unregister); 3165 3166 bool sock_is_registered(int family) 3167 { 3168 return family < NPROTO && rcu_access_pointer(net_families[family]); 3169 } 3170 3171 static int __init sock_init(void) 3172 { 3173 int err; 3174 /* 3175 * Initialize the network sysctl infrastructure. 3176 */ 3177 err = net_sysctl_init(); 3178 if (err) 3179 goto out; 3180 3181 /* 3182 * Initialize skbuff SLAB cache 3183 */ 3184 skb_init(); 3185 3186 /* 3187 * Initialize the protocols module. 3188 */ 3189 3190 init_inodecache(); 3191 3192 err = register_filesystem(&sock_fs_type); 3193 if (err) 3194 goto out; 3195 sock_mnt = kern_mount(&sock_fs_type); 3196 if (IS_ERR(sock_mnt)) { 3197 err = PTR_ERR(sock_mnt); 3198 goto out_mount; 3199 } 3200 3201 /* The real protocol initialization is performed in later initcalls. 3202 */ 3203 3204 #ifdef CONFIG_NETFILTER 3205 err = netfilter_init(); 3206 if (err) 3207 goto out; 3208 #endif 3209 3210 ptp_classifier_init(); 3211 3212 out: 3213 return err; 3214 3215 out_mount: 3216 unregister_filesystem(&sock_fs_type); 3217 goto out; 3218 } 3219 3220 core_initcall(sock_init); /* early initcall */ 3221 3222 #ifdef CONFIG_PROC_FS 3223 void socket_seq_show(struct seq_file *seq) 3224 { 3225 seq_printf(seq, "sockets: used %d\n", 3226 sock_inuse_get(seq->private)); 3227 } 3228 #endif /* CONFIG_PROC_FS */ 3229 3230 /* Handle the fact that while struct ifreq has the same *layout* on 3231 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3232 * which are handled elsewhere, it still has different *size* due to 3233 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3234 * resulting in struct ifreq being 32 and 40 bytes respectively). 3235 * As a result, if the struct happens to be at the end of a page and 3236 * the next page isn't readable/writable, we get a fault. To prevent 3237 * that, copy back and forth to the full size. 3238 */ 3239 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3240 { 3241 if (in_compat_syscall()) { 3242 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3243 3244 memset(ifr, 0, sizeof(*ifr)); 3245 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3246 return -EFAULT; 3247 3248 if (ifrdata) 3249 *ifrdata = compat_ptr(ifr32->ifr_data); 3250 3251 return 0; 3252 } 3253 3254 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3255 return -EFAULT; 3256 3257 if (ifrdata) 3258 *ifrdata = ifr->ifr_data; 3259 3260 return 0; 3261 } 3262 EXPORT_SYMBOL(get_user_ifreq); 3263 3264 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3265 { 3266 size_t size = sizeof(*ifr); 3267 3268 if (in_compat_syscall()) 3269 size = sizeof(struct compat_ifreq); 3270 3271 if (copy_to_user(arg, ifr, size)) 3272 return -EFAULT; 3273 3274 return 0; 3275 } 3276 EXPORT_SYMBOL(put_user_ifreq); 3277 3278 #ifdef CONFIG_COMPAT 3279 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3280 { 3281 compat_uptr_t uptr32; 3282 struct ifreq ifr; 3283 void __user *saved; 3284 int err; 3285 3286 if (get_user_ifreq(&ifr, NULL, uifr32)) 3287 return -EFAULT; 3288 3289 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3290 return -EFAULT; 3291 3292 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3293 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3294 3295 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3296 if (!err) { 3297 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3298 if (put_user_ifreq(&ifr, uifr32)) 3299 err = -EFAULT; 3300 } 3301 return err; 3302 } 3303 3304 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3305 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3306 struct compat_ifreq __user *u_ifreq32) 3307 { 3308 struct ifreq ifreq; 3309 void __user *data; 3310 3311 if (!is_socket_ioctl_cmd(cmd)) 3312 return -ENOTTY; 3313 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3314 return -EFAULT; 3315 ifreq.ifr_data = data; 3316 3317 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3318 } 3319 3320 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3321 unsigned int cmd, unsigned long arg) 3322 { 3323 void __user *argp = compat_ptr(arg); 3324 struct sock *sk = sock->sk; 3325 struct net *net = sock_net(sk); 3326 3327 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3328 return sock_ioctl(file, cmd, (unsigned long)argp); 3329 3330 switch (cmd) { 3331 case SIOCWANDEV: 3332 return compat_siocwandev(net, argp); 3333 case SIOCGSTAMP_OLD: 3334 case SIOCGSTAMPNS_OLD: 3335 if (!sock->ops->gettstamp) 3336 return -ENOIOCTLCMD; 3337 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3338 !COMPAT_USE_64BIT_TIME); 3339 3340 case SIOCETHTOOL: 3341 case SIOCBONDSLAVEINFOQUERY: 3342 case SIOCBONDINFOQUERY: 3343 case SIOCSHWTSTAMP: 3344 case SIOCGHWTSTAMP: 3345 return compat_ifr_data_ioctl(net, cmd, argp); 3346 3347 case FIOSETOWN: 3348 case SIOCSPGRP: 3349 case FIOGETOWN: 3350 case SIOCGPGRP: 3351 case SIOCBRADDBR: 3352 case SIOCBRDELBR: 3353 case SIOCGIFVLAN: 3354 case SIOCSIFVLAN: 3355 case SIOCGSKNS: 3356 case SIOCGSTAMP_NEW: 3357 case SIOCGSTAMPNS_NEW: 3358 case SIOCGIFCONF: 3359 case SIOCSIFBR: 3360 case SIOCGIFBR: 3361 return sock_ioctl(file, cmd, arg); 3362 3363 case SIOCGIFFLAGS: 3364 case SIOCSIFFLAGS: 3365 case SIOCGIFMAP: 3366 case SIOCSIFMAP: 3367 case SIOCGIFMETRIC: 3368 case SIOCSIFMETRIC: 3369 case SIOCGIFMTU: 3370 case SIOCSIFMTU: 3371 case SIOCGIFMEM: 3372 case SIOCSIFMEM: 3373 case SIOCGIFHWADDR: 3374 case SIOCSIFHWADDR: 3375 case SIOCADDMULTI: 3376 case SIOCDELMULTI: 3377 case SIOCGIFINDEX: 3378 case SIOCGIFADDR: 3379 case SIOCSIFADDR: 3380 case SIOCSIFHWBROADCAST: 3381 case SIOCDIFADDR: 3382 case SIOCGIFBRDADDR: 3383 case SIOCSIFBRDADDR: 3384 case SIOCGIFDSTADDR: 3385 case SIOCSIFDSTADDR: 3386 case SIOCGIFNETMASK: 3387 case SIOCSIFNETMASK: 3388 case SIOCSIFPFLAGS: 3389 case SIOCGIFPFLAGS: 3390 case SIOCGIFTXQLEN: 3391 case SIOCSIFTXQLEN: 3392 case SIOCBRADDIF: 3393 case SIOCBRDELIF: 3394 case SIOCGIFNAME: 3395 case SIOCSIFNAME: 3396 case SIOCGMIIPHY: 3397 case SIOCGMIIREG: 3398 case SIOCSMIIREG: 3399 case SIOCBONDENSLAVE: 3400 case SIOCBONDRELEASE: 3401 case SIOCBONDSETHWADDR: 3402 case SIOCBONDCHANGEACTIVE: 3403 case SIOCSARP: 3404 case SIOCGARP: 3405 case SIOCDARP: 3406 case SIOCOUTQ: 3407 case SIOCOUTQNSD: 3408 case SIOCATMARK: 3409 return sock_do_ioctl(net, sock, cmd, arg); 3410 } 3411 3412 return -ENOIOCTLCMD; 3413 } 3414 3415 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3416 unsigned long arg) 3417 { 3418 struct socket *sock = file->private_data; 3419 int ret = -ENOIOCTLCMD; 3420 struct sock *sk; 3421 struct net *net; 3422 3423 sk = sock->sk; 3424 net = sock_net(sk); 3425 3426 if (sock->ops->compat_ioctl) 3427 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3428 3429 if (ret == -ENOIOCTLCMD && 3430 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3431 ret = compat_wext_handle_ioctl(net, cmd, arg); 3432 3433 if (ret == -ENOIOCTLCMD) 3434 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3435 3436 return ret; 3437 } 3438 #endif 3439 3440 /** 3441 * kernel_bind - bind an address to a socket (kernel space) 3442 * @sock: socket 3443 * @addr: address 3444 * @addrlen: length of address 3445 * 3446 * Returns 0 or an error. 3447 */ 3448 3449 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3450 { 3451 return sock->ops->bind(sock, addr, addrlen); 3452 } 3453 EXPORT_SYMBOL(kernel_bind); 3454 3455 /** 3456 * kernel_listen - move socket to listening state (kernel space) 3457 * @sock: socket 3458 * @backlog: pending connections queue size 3459 * 3460 * Returns 0 or an error. 3461 */ 3462 3463 int kernel_listen(struct socket *sock, int backlog) 3464 { 3465 return sock->ops->listen(sock, backlog); 3466 } 3467 EXPORT_SYMBOL(kernel_listen); 3468 3469 /** 3470 * kernel_accept - accept a connection (kernel space) 3471 * @sock: listening socket 3472 * @newsock: new connected socket 3473 * @flags: flags 3474 * 3475 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3476 * If it fails, @newsock is guaranteed to be %NULL. 3477 * Returns 0 or an error. 3478 */ 3479 3480 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3481 { 3482 struct sock *sk = sock->sk; 3483 int err; 3484 3485 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3486 newsock); 3487 if (err < 0) 3488 goto done; 3489 3490 err = sock->ops->accept(sock, *newsock, flags, true); 3491 if (err < 0) { 3492 sock_release(*newsock); 3493 *newsock = NULL; 3494 goto done; 3495 } 3496 3497 (*newsock)->ops = sock->ops; 3498 __module_get((*newsock)->ops->owner); 3499 3500 done: 3501 return err; 3502 } 3503 EXPORT_SYMBOL(kernel_accept); 3504 3505 /** 3506 * kernel_connect - connect a socket (kernel space) 3507 * @sock: socket 3508 * @addr: address 3509 * @addrlen: address length 3510 * @flags: flags (O_NONBLOCK, ...) 3511 * 3512 * For datagram sockets, @addr is the address to which datagrams are sent 3513 * by default, and the only address from which datagrams are received. 3514 * For stream sockets, attempts to connect to @addr. 3515 * Returns 0 or an error code. 3516 */ 3517 3518 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3519 int flags) 3520 { 3521 return sock->ops->connect(sock, addr, addrlen, flags); 3522 } 3523 EXPORT_SYMBOL(kernel_connect); 3524 3525 /** 3526 * kernel_getsockname - get the address which the socket is bound (kernel space) 3527 * @sock: socket 3528 * @addr: address holder 3529 * 3530 * Fills the @addr pointer with the address which the socket is bound. 3531 * Returns the length of the address in bytes or an error code. 3532 */ 3533 3534 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3535 { 3536 return sock->ops->getname(sock, addr, 0); 3537 } 3538 EXPORT_SYMBOL(kernel_getsockname); 3539 3540 /** 3541 * kernel_getpeername - get the address which the socket is connected (kernel space) 3542 * @sock: socket 3543 * @addr: address holder 3544 * 3545 * Fills the @addr pointer with the address which the socket is connected. 3546 * Returns the length of the address in bytes or an error code. 3547 */ 3548 3549 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3550 { 3551 return sock->ops->getname(sock, addr, 1); 3552 } 3553 EXPORT_SYMBOL(kernel_getpeername); 3554 3555 /** 3556 * kernel_sendpage - send a &page through a socket (kernel space) 3557 * @sock: socket 3558 * @page: page 3559 * @offset: page offset 3560 * @size: total size in bytes 3561 * @flags: flags (MSG_DONTWAIT, ...) 3562 * 3563 * Returns the total amount sent in bytes or an error. 3564 */ 3565 3566 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3567 size_t size, int flags) 3568 { 3569 if (sock->ops->sendpage) { 3570 /* Warn in case the improper page to zero-copy send */ 3571 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3572 return sock->ops->sendpage(sock, page, offset, size, flags); 3573 } 3574 return sock_no_sendpage(sock, page, offset, size, flags); 3575 } 3576 EXPORT_SYMBOL(kernel_sendpage); 3577 3578 /** 3579 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3580 * @sk: sock 3581 * @page: page 3582 * @offset: page offset 3583 * @size: total size in bytes 3584 * @flags: flags (MSG_DONTWAIT, ...) 3585 * 3586 * Returns the total amount sent in bytes or an error. 3587 * Caller must hold @sk. 3588 */ 3589 3590 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3591 size_t size, int flags) 3592 { 3593 struct socket *sock = sk->sk_socket; 3594 3595 if (sock->ops->sendpage_locked) 3596 return sock->ops->sendpage_locked(sk, page, offset, size, 3597 flags); 3598 3599 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3600 } 3601 EXPORT_SYMBOL(kernel_sendpage_locked); 3602 3603 /** 3604 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3605 * @sock: socket 3606 * @how: connection part 3607 * 3608 * Returns 0 or an error. 3609 */ 3610 3611 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3612 { 3613 return sock->ops->shutdown(sock, how); 3614 } 3615 EXPORT_SYMBOL(kernel_sock_shutdown); 3616 3617 /** 3618 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3619 * @sk: socket 3620 * 3621 * This routine returns the IP overhead imposed by a socket i.e. 3622 * the length of the underlying IP header, depending on whether 3623 * this is an IPv4 or IPv6 socket and the length from IP options turned 3624 * on at the socket. Assumes that the caller has a lock on the socket. 3625 */ 3626 3627 u32 kernel_sock_ip_overhead(struct sock *sk) 3628 { 3629 struct inet_sock *inet; 3630 struct ip_options_rcu *opt; 3631 u32 overhead = 0; 3632 #if IS_ENABLED(CONFIG_IPV6) 3633 struct ipv6_pinfo *np; 3634 struct ipv6_txoptions *optv6 = NULL; 3635 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3636 3637 if (!sk) 3638 return overhead; 3639 3640 switch (sk->sk_family) { 3641 case AF_INET: 3642 inet = inet_sk(sk); 3643 overhead += sizeof(struct iphdr); 3644 opt = rcu_dereference_protected(inet->inet_opt, 3645 sock_owned_by_user(sk)); 3646 if (opt) 3647 overhead += opt->opt.optlen; 3648 return overhead; 3649 #if IS_ENABLED(CONFIG_IPV6) 3650 case AF_INET6: 3651 np = inet6_sk(sk); 3652 overhead += sizeof(struct ipv6hdr); 3653 if (np) 3654 optv6 = rcu_dereference_protected(np->opt, 3655 sock_owned_by_user(sk)); 3656 if (optv6) 3657 overhead += (optv6->opt_flen + optv6->opt_nflen); 3658 return overhead; 3659 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3660 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3661 return overhead; 3662 } 3663 } 3664 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3665