xref: /openbmc/linux/net/socket.c (revision febf2aaf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 
92 #include <linux/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/termios.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 #include <linux/ptp_clock_kernel.h>
110 #include <trace/events/sock.h>
111 
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116 
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static __poll_t sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 static void sock_splice_eof(struct file *file);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 
140 	if (sock->ops->show_fdinfo)
141 		sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146 
147 /*
148  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149  *	in the operation structures but are done directly via the socketcall() multiplexor.
150  */
151 
152 static const struct file_operations socket_file_ops = {
153 	.owner =	THIS_MODULE,
154 	.llseek =	no_llseek,
155 	.read_iter =	sock_read_iter,
156 	.write_iter =	sock_write_iter,
157 	.poll =		sock_poll,
158 	.unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 	.compat_ioctl = compat_sock_ioctl,
161 #endif
162 	.mmap =		sock_mmap,
163 	.release =	sock_close,
164 	.fasync =	sock_fasync,
165 	.splice_write = splice_to_socket,
166 	.splice_read =	sock_splice_read,
167 	.splice_eof =	sock_splice_eof,
168 	.show_fdinfo =	sock_show_fdinfo,
169 };
170 
171 static const char * const pf_family_names[] = {
172 	[PF_UNSPEC]	= "PF_UNSPEC",
173 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
174 	[PF_INET]	= "PF_INET",
175 	[PF_AX25]	= "PF_AX25",
176 	[PF_IPX]	= "PF_IPX",
177 	[PF_APPLETALK]	= "PF_APPLETALK",
178 	[PF_NETROM]	= "PF_NETROM",
179 	[PF_BRIDGE]	= "PF_BRIDGE",
180 	[PF_ATMPVC]	= "PF_ATMPVC",
181 	[PF_X25]	= "PF_X25",
182 	[PF_INET6]	= "PF_INET6",
183 	[PF_ROSE]	= "PF_ROSE",
184 	[PF_DECnet]	= "PF_DECnet",
185 	[PF_NETBEUI]	= "PF_NETBEUI",
186 	[PF_SECURITY]	= "PF_SECURITY",
187 	[PF_KEY]	= "PF_KEY",
188 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
189 	[PF_PACKET]	= "PF_PACKET",
190 	[PF_ASH]	= "PF_ASH",
191 	[PF_ECONET]	= "PF_ECONET",
192 	[PF_ATMSVC]	= "PF_ATMSVC",
193 	[PF_RDS]	= "PF_RDS",
194 	[PF_SNA]	= "PF_SNA",
195 	[PF_IRDA]	= "PF_IRDA",
196 	[PF_PPPOX]	= "PF_PPPOX",
197 	[PF_WANPIPE]	= "PF_WANPIPE",
198 	[PF_LLC]	= "PF_LLC",
199 	[PF_IB]		= "PF_IB",
200 	[PF_MPLS]	= "PF_MPLS",
201 	[PF_CAN]	= "PF_CAN",
202 	[PF_TIPC]	= "PF_TIPC",
203 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
204 	[PF_IUCV]	= "PF_IUCV",
205 	[PF_RXRPC]	= "PF_RXRPC",
206 	[PF_ISDN]	= "PF_ISDN",
207 	[PF_PHONET]	= "PF_PHONET",
208 	[PF_IEEE802154]	= "PF_IEEE802154",
209 	[PF_CAIF]	= "PF_CAIF",
210 	[PF_ALG]	= "PF_ALG",
211 	[PF_NFC]	= "PF_NFC",
212 	[PF_VSOCK]	= "PF_VSOCK",
213 	[PF_KCM]	= "PF_KCM",
214 	[PF_QIPCRTR]	= "PF_QIPCRTR",
215 	[PF_SMC]	= "PF_SMC",
216 	[PF_XDP]	= "PF_XDP",
217 	[PF_MCTP]	= "PF_MCTP",
218 };
219 
220 /*
221  *	The protocol list. Each protocol is registered in here.
222  */
223 
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226 
227 /*
228  * Support routines.
229  * Move socket addresses back and forth across the kernel/user
230  * divide and look after the messy bits.
231  */
232 
233 /**
234  *	move_addr_to_kernel	-	copy a socket address into kernel space
235  *	@uaddr: Address in user space
236  *	@kaddr: Address in kernel space
237  *	@ulen: Length in user space
238  *
239  *	The address is copied into kernel space. If the provided address is
240  *	too long an error code of -EINVAL is returned. If the copy gives
241  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
242  */
243 
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 		return -EINVAL;
248 	if (ulen == 0)
249 		return 0;
250 	if (copy_from_user(kaddr, uaddr, ulen))
251 		return -EFAULT;
252 	return audit_sockaddr(ulen, kaddr);
253 }
254 
255 /**
256  *	move_addr_to_user	-	copy an address to user space
257  *	@kaddr: kernel space address
258  *	@klen: length of address in kernel
259  *	@uaddr: user space address
260  *	@ulen: pointer to user length field
261  *
262  *	The value pointed to by ulen on entry is the buffer length available.
263  *	This is overwritten with the buffer space used. -EINVAL is returned
264  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
265  *	is returned if either the buffer or the length field are not
266  *	accessible.
267  *	After copying the data up to the limit the user specifies, the true
268  *	length of the data is written over the length limit the user
269  *	specified. Zero is returned for a success.
270  */
271 
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 			     void __user *uaddr, int __user *ulen)
274 {
275 	int err;
276 	int len;
277 
278 	BUG_ON(klen > sizeof(struct sockaddr_storage));
279 	err = get_user(len, ulen);
280 	if (err)
281 		return err;
282 	if (len > klen)
283 		len = klen;
284 	if (len < 0)
285 		return -EINVAL;
286 	if (len) {
287 		if (audit_sockaddr(klen, kaddr))
288 			return -ENOMEM;
289 		if (copy_to_user(uaddr, kaddr, len))
290 			return -EFAULT;
291 	}
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	return __put_user(klen, ulen);
297 }
298 
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 	struct socket_alloc *ei;
304 
305 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 	if (!ei)
307 		return NULL;
308 	init_waitqueue_head(&ei->socket.wq.wait);
309 	ei->socket.wq.fasync_list = NULL;
310 	ei->socket.wq.flags = 0;
311 
312 	ei->socket.state = SS_UNCONNECTED;
313 	ei->socket.flags = 0;
314 	ei->socket.ops = NULL;
315 	ei->socket.sk = NULL;
316 	ei->socket.file = NULL;
317 
318 	return &ei->vfs_inode;
319 }
320 
321 static void sock_free_inode(struct inode *inode)
322 {
323 	struct socket_alloc *ei;
324 
325 	ei = container_of(inode, struct socket_alloc, vfs_inode);
326 	kmem_cache_free(sock_inode_cachep, ei);
327 }
328 
329 static void init_once(void *foo)
330 {
331 	struct socket_alloc *ei = (struct socket_alloc *)foo;
332 
333 	inode_init_once(&ei->vfs_inode);
334 }
335 
336 static void init_inodecache(void)
337 {
338 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 					      sizeof(struct socket_alloc),
340 					      0,
341 					      (SLAB_HWCACHE_ALIGN |
342 					       SLAB_RECLAIM_ACCOUNT |
343 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 					      init_once);
345 	BUG_ON(sock_inode_cachep == NULL);
346 }
347 
348 static const struct super_operations sockfs_ops = {
349 	.alloc_inode	= sock_alloc_inode,
350 	.free_inode	= sock_free_inode,
351 	.statfs		= simple_statfs,
352 };
353 
354 /*
355  * sockfs_dname() is called from d_path().
356  */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 				d_inode(dentry)->i_ino);
361 }
362 
363 static const struct dentry_operations sockfs_dentry_operations = {
364 	.d_dname  = sockfs_dname,
365 };
366 
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 			    struct dentry *dentry, struct inode *inode,
369 			    const char *suffix, void *value, size_t size)
370 {
371 	if (value) {
372 		if (dentry->d_name.len + 1 > size)
373 			return -ERANGE;
374 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 	}
376 	return dentry->d_name.len + 1;
377 }
378 
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 
383 static const struct xattr_handler sockfs_xattr_handler = {
384 	.name = XATTR_NAME_SOCKPROTONAME,
385 	.get = sockfs_xattr_get,
386 };
387 
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 				     struct mnt_idmap *idmap,
390 				     struct dentry *dentry, struct inode *inode,
391 				     const char *suffix, const void *value,
392 				     size_t size, int flags)
393 {
394 	/* Handled by LSM. */
395 	return -EAGAIN;
396 }
397 
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 	.prefix = XATTR_SECURITY_PREFIX,
400 	.set = sockfs_security_xattr_set,
401 };
402 
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 	&sockfs_xattr_handler,
405 	&sockfs_security_xattr_handler,
406 	NULL
407 };
408 
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 	if (!ctx)
413 		return -ENOMEM;
414 	ctx->ops = &sockfs_ops;
415 	ctx->dops = &sockfs_dentry_operations;
416 	ctx->xattr = sockfs_xattr_handlers;
417 	return 0;
418 }
419 
420 static struct vfsmount *sock_mnt __read_mostly;
421 
422 static struct file_system_type sock_fs_type = {
423 	.name =		"sockfs",
424 	.init_fs_context = sockfs_init_fs_context,
425 	.kill_sb =	kill_anon_super,
426 };
427 
428 /*
429  *	Obtains the first available file descriptor and sets it up for use.
430  *
431  *	These functions create file structures and maps them to fd space
432  *	of the current process. On success it returns file descriptor
433  *	and file struct implicitly stored in sock->file.
434  *	Note that another thread may close file descriptor before we return
435  *	from this function. We use the fact that now we do not refer
436  *	to socket after mapping. If one day we will need it, this
437  *	function will increment ref. count on file by 1.
438  *
439  *	In any case returned fd MAY BE not valid!
440  *	This race condition is unavoidable
441  *	with shared fd spaces, we cannot solve it inside kernel,
442  *	but we take care of internal coherence yet.
443  */
444 
445 /**
446  *	sock_alloc_file - Bind a &socket to a &file
447  *	@sock: socket
448  *	@flags: file status flags
449  *	@dname: protocol name
450  *
451  *	Returns the &file bound with @sock, implicitly storing it
452  *	in sock->file. If dname is %NULL, sets to "".
453  *
454  *	On failure @sock is released, and an ERR pointer is returned.
455  *
456  *	This function uses GFP_KERNEL internally.
457  */
458 
459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 	struct file *file;
462 
463 	if (!dname)
464 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465 
466 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 				O_RDWR | (flags & O_NONBLOCK),
468 				&socket_file_ops);
469 	if (IS_ERR(file)) {
470 		sock_release(sock);
471 		return file;
472 	}
473 
474 	sock->file = file;
475 	file->private_data = sock;
476 	stream_open(SOCK_INODE(sock), file);
477 	return file;
478 }
479 EXPORT_SYMBOL(sock_alloc_file);
480 
481 static int sock_map_fd(struct socket *sock, int flags)
482 {
483 	struct file *newfile;
484 	int fd = get_unused_fd_flags(flags);
485 	if (unlikely(fd < 0)) {
486 		sock_release(sock);
487 		return fd;
488 	}
489 
490 	newfile = sock_alloc_file(sock, flags, NULL);
491 	if (!IS_ERR(newfile)) {
492 		fd_install(fd, newfile);
493 		return fd;
494 	}
495 
496 	put_unused_fd(fd);
497 	return PTR_ERR(newfile);
498 }
499 
500 /**
501  *	sock_from_file - Return the &socket bounded to @file.
502  *	@file: file
503  *
504  *	On failure returns %NULL.
505  */
506 
507 struct socket *sock_from_file(struct file *file)
508 {
509 	if (file->f_op == &socket_file_ops)
510 		return file->private_data;	/* set in sock_alloc_file */
511 
512 	return NULL;
513 }
514 EXPORT_SYMBOL(sock_from_file);
515 
516 /**
517  *	sockfd_lookup - Go from a file number to its socket slot
518  *	@fd: file handle
519  *	@err: pointer to an error code return
520  *
521  *	The file handle passed in is locked and the socket it is bound
522  *	to is returned. If an error occurs the err pointer is overwritten
523  *	with a negative errno code and NULL is returned. The function checks
524  *	for both invalid handles and passing a handle which is not a socket.
525  *
526  *	On a success the socket object pointer is returned.
527  */
528 
529 struct socket *sockfd_lookup(int fd, int *err)
530 {
531 	struct file *file;
532 	struct socket *sock;
533 
534 	file = fget(fd);
535 	if (!file) {
536 		*err = -EBADF;
537 		return NULL;
538 	}
539 
540 	sock = sock_from_file(file);
541 	if (!sock) {
542 		*err = -ENOTSOCK;
543 		fput(file);
544 	}
545 	return sock;
546 }
547 EXPORT_SYMBOL(sockfd_lookup);
548 
549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
550 {
551 	struct fd f = fdget(fd);
552 	struct socket *sock;
553 
554 	*err = -EBADF;
555 	if (f.file) {
556 		sock = sock_from_file(f.file);
557 		if (likely(sock)) {
558 			*fput_needed = f.flags & FDPUT_FPUT;
559 			return sock;
560 		}
561 		*err = -ENOTSOCK;
562 		fdput(f);
563 	}
564 	return NULL;
565 }
566 
567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
568 				size_t size)
569 {
570 	ssize_t len;
571 	ssize_t used = 0;
572 
573 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
574 	if (len < 0)
575 		return len;
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		buffer += len;
581 	}
582 
583 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 	used += len;
585 	if (buffer) {
586 		if (size < used)
587 			return -ERANGE;
588 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
589 		buffer += len;
590 	}
591 
592 	return used;
593 }
594 
595 static int sockfs_setattr(struct mnt_idmap *idmap,
596 			  struct dentry *dentry, struct iattr *iattr)
597 {
598 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
599 
600 	if (!err && (iattr->ia_valid & ATTR_UID)) {
601 		struct socket *sock = SOCKET_I(d_inode(dentry));
602 
603 		if (sock->sk)
604 			sock->sk->sk_uid = iattr->ia_uid;
605 		else
606 			err = -ENOENT;
607 	}
608 
609 	return err;
610 }
611 
612 static const struct inode_operations sockfs_inode_ops = {
613 	.listxattr = sockfs_listxattr,
614 	.setattr = sockfs_setattr,
615 };
616 
617 /**
618  *	sock_alloc - allocate a socket
619  *
620  *	Allocate a new inode and socket object. The two are bound together
621  *	and initialised. The socket is then returned. If we are out of inodes
622  *	NULL is returned. This functions uses GFP_KERNEL internally.
623  */
624 
625 struct socket *sock_alloc(void)
626 {
627 	struct inode *inode;
628 	struct socket *sock;
629 
630 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 	if (!inode)
632 		return NULL;
633 
634 	sock = SOCKET_I(inode);
635 
636 	inode->i_ino = get_next_ino();
637 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
638 	inode->i_uid = current_fsuid();
639 	inode->i_gid = current_fsgid();
640 	inode->i_op = &sockfs_inode_ops;
641 
642 	return sock;
643 }
644 EXPORT_SYMBOL(sock_alloc);
645 
646 static void __sock_release(struct socket *sock, struct inode *inode)
647 {
648 	if (sock->ops) {
649 		struct module *owner = sock->ops->owner;
650 
651 		if (inode)
652 			inode_lock(inode);
653 		sock->ops->release(sock);
654 		sock->sk = NULL;
655 		if (inode)
656 			inode_unlock(inode);
657 		sock->ops = NULL;
658 		module_put(owner);
659 	}
660 
661 	if (sock->wq.fasync_list)
662 		pr_err("%s: fasync list not empty!\n", __func__);
663 
664 	if (!sock->file) {
665 		iput(SOCK_INODE(sock));
666 		return;
667 	}
668 	sock->file = NULL;
669 }
670 
671 /**
672  *	sock_release - close a socket
673  *	@sock: socket to close
674  *
675  *	The socket is released from the protocol stack if it has a release
676  *	callback, and the inode is then released if the socket is bound to
677  *	an inode not a file.
678  */
679 void sock_release(struct socket *sock)
680 {
681 	__sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684 
685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
686 {
687 	u8 flags = *tx_flags;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
690 		flags |= SKBTX_HW_TSTAMP;
691 
692 		/* PTP hardware clocks can provide a free running cycle counter
693 		 * as a time base for virtual clocks. Tell driver to use the
694 		 * free running cycle counter for timestamp if socket is bound
695 		 * to virtual clock.
696 		 */
697 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
698 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 	}
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	*tx_flags = flags;
708 }
709 EXPORT_SYMBOL(__sock_tx_timestamp);
710 
711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
712 					   size_t));
713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 					    size_t));
715 
716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 						 int flags)
718 {
719 	trace_sock_send_length(sk, ret, 0);
720 }
721 
722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
723 {
724 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
725 				     inet_sendmsg, sock, msg,
726 				     msg_data_left(msg));
727 	BUG_ON(ret == -EIOCBQUEUED);
728 
729 	if (trace_sock_send_length_enabled())
730 		call_trace_sock_send_length(sock->sk, ret, 0);
731 	return ret;
732 }
733 
734 /**
735  *	sock_sendmsg - send a message through @sock
736  *	@sock: socket
737  *	@msg: message to send
738  *
739  *	Sends @msg through @sock, passing through LSM.
740  *	Returns the number of bytes sent, or an error code.
741  */
742 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
743 {
744 	int err = security_socket_sendmsg(sock, msg,
745 					  msg_data_left(msg));
746 
747 	return err ?: sock_sendmsg_nosec(sock, msg);
748 }
749 EXPORT_SYMBOL(sock_sendmsg);
750 
751 /**
752  *	kernel_sendmsg - send a message through @sock (kernel-space)
753  *	@sock: socket
754  *	@msg: message header
755  *	@vec: kernel vec
756  *	@num: vec array length
757  *	@size: total message data size
758  *
759  *	Builds the message data with @vec and sends it through @sock.
760  *	Returns the number of bytes sent, or an error code.
761  */
762 
763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
764 		   struct kvec *vec, size_t num, size_t size)
765 {
766 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
767 	return sock_sendmsg(sock, msg);
768 }
769 EXPORT_SYMBOL(kernel_sendmsg);
770 
771 /**
772  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
773  *	@sk: sock
774  *	@msg: message header
775  *	@vec: output s/g array
776  *	@num: output s/g array length
777  *	@size: total message data size
778  *
779  *	Builds the message data with @vec and sends it through @sock.
780  *	Returns the number of bytes sent, or an error code.
781  *	Caller must hold @sk.
782  */
783 
784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
785 			  struct kvec *vec, size_t num, size_t size)
786 {
787 	struct socket *sock = sk->sk_socket;
788 
789 	if (!sock->ops->sendmsg_locked)
790 		return sock_no_sendmsg_locked(sk, msg, size);
791 
792 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793 
794 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
795 }
796 EXPORT_SYMBOL(kernel_sendmsg_locked);
797 
798 static bool skb_is_err_queue(const struct sk_buff *skb)
799 {
800 	/* pkt_type of skbs enqueued on the error queue are set to
801 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
802 	 * in recvmsg, since skbs received on a local socket will never
803 	 * have a pkt_type of PACKET_OUTGOING.
804 	 */
805 	return skb->pkt_type == PACKET_OUTGOING;
806 }
807 
808 /* On transmit, software and hardware timestamps are returned independently.
809  * As the two skb clones share the hardware timestamp, which may be updated
810  * before the software timestamp is received, a hardware TX timestamp may be
811  * returned only if there is no software TX timestamp. Ignore false software
812  * timestamps, which may be made in the __sock_recv_timestamp() call when the
813  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
814  * hardware timestamp.
815  */
816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
817 {
818 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 }
820 
821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
822 {
823 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
824 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
825 	struct net_device *orig_dev;
826 	ktime_t hwtstamp;
827 
828 	rcu_read_lock();
829 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
830 	if (orig_dev) {
831 		*if_index = orig_dev->ifindex;
832 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
833 	} else {
834 		hwtstamp = shhwtstamps->hwtstamp;
835 	}
836 	rcu_read_unlock();
837 
838 	return hwtstamp;
839 }
840 
841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 			   int if_index)
843 {
844 	struct scm_ts_pktinfo ts_pktinfo;
845 	struct net_device *orig_dev;
846 
847 	if (!skb_mac_header_was_set(skb))
848 		return;
849 
850 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
851 
852 	if (!if_index) {
853 		rcu_read_lock();
854 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 		if (orig_dev)
856 			if_index = orig_dev->ifindex;
857 		rcu_read_unlock();
858 	}
859 	ts_pktinfo.if_index = if_index;
860 
861 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
862 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
863 		 sizeof(ts_pktinfo), &ts_pktinfo);
864 }
865 
866 /*
867  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
868  */
869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 	struct sk_buff *skb)
871 {
872 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
873 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
874 	struct scm_timestamping_internal tss;
875 
876 	int empty = 1, false_tstamp = 0;
877 	struct skb_shared_hwtstamps *shhwtstamps =
878 		skb_hwtstamps(skb);
879 	int if_index;
880 	ktime_t hwtstamp;
881 
882 	/* Race occurred between timestamp enabling and packet
883 	   receiving.  Fill in the current time for now. */
884 	if (need_software_tstamp && skb->tstamp == 0) {
885 		__net_timestamp(skb);
886 		false_tstamp = 1;
887 	}
888 
889 	if (need_software_tstamp) {
890 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
891 			if (new_tstamp) {
892 				struct __kernel_sock_timeval tv;
893 
894 				skb_get_new_timestamp(skb, &tv);
895 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 					 sizeof(tv), &tv);
897 			} else {
898 				struct __kernel_old_timeval tv;
899 
900 				skb_get_timestamp(skb, &tv);
901 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
902 					 sizeof(tv), &tv);
903 			}
904 		} else {
905 			if (new_tstamp) {
906 				struct __kernel_timespec ts;
907 
908 				skb_get_new_timestampns(skb, &ts);
909 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 					 sizeof(ts), &ts);
911 			} else {
912 				struct __kernel_old_timespec ts;
913 
914 				skb_get_timestampns(skb, &ts);
915 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
916 					 sizeof(ts), &ts);
917 			}
918 		}
919 	}
920 
921 	memset(&tss, 0, sizeof(tss));
922 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
923 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 		empty = 0;
925 	if (shhwtstamps &&
926 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
927 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
928 		if_index = 0;
929 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
930 			hwtstamp = get_timestamp(sk, skb, &if_index);
931 		else
932 			hwtstamp = shhwtstamps->hwtstamp;
933 
934 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
935 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 							 sk->sk_bind_phc);
937 
938 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 			empty = 0;
940 
941 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
942 			    !skb_is_err_queue(skb))
943 				put_ts_pktinfo(msg, skb, if_index);
944 		}
945 	}
946 	if (!empty) {
947 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
948 			put_cmsg_scm_timestamping64(msg, &tss);
949 		else
950 			put_cmsg_scm_timestamping(msg, &tss);
951 
952 		if (skb_is_err_queue(skb) && skb->len &&
953 		    SKB_EXT_ERR(skb)->opt_stats)
954 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
955 				 skb->len, skb->data);
956 	}
957 }
958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
959 
960 #ifdef CONFIG_WIRELESS
961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
962 	struct sk_buff *skb)
963 {
964 	int ack;
965 
966 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
967 		return;
968 	if (!skb->wifi_acked_valid)
969 		return;
970 
971 	ack = skb->wifi_acked;
972 
973 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
974 }
975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
976 #endif
977 
978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
979 				   struct sk_buff *skb)
980 {
981 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
982 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
983 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
984 }
985 
986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
987 			   struct sk_buff *skb)
988 {
989 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
990 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
991 		__u32 mark = skb->mark;
992 
993 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
994 	}
995 }
996 
997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
998 		       struct sk_buff *skb)
999 {
1000 	sock_recv_timestamp(msg, sk, skb);
1001 	sock_recv_drops(msg, sk, skb);
1002 	sock_recv_mark(msg, sk, skb);
1003 }
1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1005 
1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1007 					   size_t, int));
1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1009 					    size_t, int));
1010 
1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1012 {
1013 	trace_sock_recv_length(sk, ret, flags);
1014 }
1015 
1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1017 				     int flags)
1018 {
1019 	int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1020 				     inet_recvmsg, sock, msg,
1021 				     msg_data_left(msg), flags);
1022 	if (trace_sock_recv_length_enabled())
1023 		call_trace_sock_recv_length(sock->sk, ret, flags);
1024 	return ret;
1025 }
1026 
1027 /**
1028  *	sock_recvmsg - receive a message from @sock
1029  *	@sock: socket
1030  *	@msg: message to receive
1031  *	@flags: message flags
1032  *
1033  *	Receives @msg from @sock, passing through LSM. Returns the total number
1034  *	of bytes received, or an error.
1035  */
1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1037 {
1038 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1039 
1040 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1041 }
1042 EXPORT_SYMBOL(sock_recvmsg);
1043 
1044 /**
1045  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1046  *	@sock: The socket to receive the message from
1047  *	@msg: Received message
1048  *	@vec: Input s/g array for message data
1049  *	@num: Size of input s/g array
1050  *	@size: Number of bytes to read
1051  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1052  *
1053  *	On return the msg structure contains the scatter/gather array passed in the
1054  *	vec argument. The array is modified so that it consists of the unfilled
1055  *	portion of the original array.
1056  *
1057  *	The returned value is the total number of bytes received, or an error.
1058  */
1059 
1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1061 		   struct kvec *vec, size_t num, size_t size, int flags)
1062 {
1063 	msg->msg_control_is_user = false;
1064 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1065 	return sock_recvmsg(sock, msg, flags);
1066 }
1067 EXPORT_SYMBOL(kernel_recvmsg);
1068 
1069 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1070 				struct pipe_inode_info *pipe, size_t len,
1071 				unsigned int flags)
1072 {
1073 	struct socket *sock = file->private_data;
1074 
1075 	if (unlikely(!sock->ops->splice_read))
1076 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1077 
1078 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1079 }
1080 
1081 static void sock_splice_eof(struct file *file)
1082 {
1083 	struct socket *sock = file->private_data;
1084 
1085 	if (sock->ops->splice_eof)
1086 		sock->ops->splice_eof(sock);
1087 }
1088 
1089 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1090 {
1091 	struct file *file = iocb->ki_filp;
1092 	struct socket *sock = file->private_data;
1093 	struct msghdr msg = {.msg_iter = *to,
1094 			     .msg_iocb = iocb};
1095 	ssize_t res;
1096 
1097 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1098 		msg.msg_flags = MSG_DONTWAIT;
1099 
1100 	if (iocb->ki_pos != 0)
1101 		return -ESPIPE;
1102 
1103 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1104 		return 0;
1105 
1106 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1107 	*to = msg.msg_iter;
1108 	return res;
1109 }
1110 
1111 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1112 {
1113 	struct file *file = iocb->ki_filp;
1114 	struct socket *sock = file->private_data;
1115 	struct msghdr msg = {.msg_iter = *from,
1116 			     .msg_iocb = iocb};
1117 	ssize_t res;
1118 
1119 	if (iocb->ki_pos != 0)
1120 		return -ESPIPE;
1121 
1122 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1123 		msg.msg_flags = MSG_DONTWAIT;
1124 
1125 	if (sock->type == SOCK_SEQPACKET)
1126 		msg.msg_flags |= MSG_EOR;
1127 
1128 	res = sock_sendmsg(sock, &msg);
1129 	*from = msg.msg_iter;
1130 	return res;
1131 }
1132 
1133 /*
1134  * Atomic setting of ioctl hooks to avoid race
1135  * with module unload.
1136  */
1137 
1138 static DEFINE_MUTEX(br_ioctl_mutex);
1139 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1140 			    unsigned int cmd, struct ifreq *ifr,
1141 			    void __user *uarg);
1142 
1143 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1144 			     unsigned int cmd, struct ifreq *ifr,
1145 			     void __user *uarg))
1146 {
1147 	mutex_lock(&br_ioctl_mutex);
1148 	br_ioctl_hook = hook;
1149 	mutex_unlock(&br_ioctl_mutex);
1150 }
1151 EXPORT_SYMBOL(brioctl_set);
1152 
1153 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1154 		  struct ifreq *ifr, void __user *uarg)
1155 {
1156 	int err = -ENOPKG;
1157 
1158 	if (!br_ioctl_hook)
1159 		request_module("bridge");
1160 
1161 	mutex_lock(&br_ioctl_mutex);
1162 	if (br_ioctl_hook)
1163 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1164 	mutex_unlock(&br_ioctl_mutex);
1165 
1166 	return err;
1167 }
1168 
1169 static DEFINE_MUTEX(vlan_ioctl_mutex);
1170 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1171 
1172 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1173 {
1174 	mutex_lock(&vlan_ioctl_mutex);
1175 	vlan_ioctl_hook = hook;
1176 	mutex_unlock(&vlan_ioctl_mutex);
1177 }
1178 EXPORT_SYMBOL(vlan_ioctl_set);
1179 
1180 static long sock_do_ioctl(struct net *net, struct socket *sock,
1181 			  unsigned int cmd, unsigned long arg)
1182 {
1183 	struct ifreq ifr;
1184 	bool need_copyout;
1185 	int err;
1186 	void __user *argp = (void __user *)arg;
1187 	void __user *data;
1188 
1189 	err = sock->ops->ioctl(sock, cmd, arg);
1190 
1191 	/*
1192 	 * If this ioctl is unknown try to hand it down
1193 	 * to the NIC driver.
1194 	 */
1195 	if (err != -ENOIOCTLCMD)
1196 		return err;
1197 
1198 	if (!is_socket_ioctl_cmd(cmd))
1199 		return -ENOTTY;
1200 
1201 	if (get_user_ifreq(&ifr, &data, argp))
1202 		return -EFAULT;
1203 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1204 	if (!err && need_copyout)
1205 		if (put_user_ifreq(&ifr, argp))
1206 			return -EFAULT;
1207 
1208 	return err;
1209 }
1210 
1211 /*
1212  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1213  *	what to do with it - that's up to the protocol still.
1214  */
1215 
1216 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1217 {
1218 	struct socket *sock;
1219 	struct sock *sk;
1220 	void __user *argp = (void __user *)arg;
1221 	int pid, err;
1222 	struct net *net;
1223 
1224 	sock = file->private_data;
1225 	sk = sock->sk;
1226 	net = sock_net(sk);
1227 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1228 		struct ifreq ifr;
1229 		void __user *data;
1230 		bool need_copyout;
1231 		if (get_user_ifreq(&ifr, &data, argp))
1232 			return -EFAULT;
1233 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1234 		if (!err && need_copyout)
1235 			if (put_user_ifreq(&ifr, argp))
1236 				return -EFAULT;
1237 	} else
1238 #ifdef CONFIG_WEXT_CORE
1239 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1240 		err = wext_handle_ioctl(net, cmd, argp);
1241 	} else
1242 #endif
1243 		switch (cmd) {
1244 		case FIOSETOWN:
1245 		case SIOCSPGRP:
1246 			err = -EFAULT;
1247 			if (get_user(pid, (int __user *)argp))
1248 				break;
1249 			err = f_setown(sock->file, pid, 1);
1250 			break;
1251 		case FIOGETOWN:
1252 		case SIOCGPGRP:
1253 			err = put_user(f_getown(sock->file),
1254 				       (int __user *)argp);
1255 			break;
1256 		case SIOCGIFBR:
1257 		case SIOCSIFBR:
1258 		case SIOCBRADDBR:
1259 		case SIOCBRDELBR:
1260 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1261 			break;
1262 		case SIOCGIFVLAN:
1263 		case SIOCSIFVLAN:
1264 			err = -ENOPKG;
1265 			if (!vlan_ioctl_hook)
1266 				request_module("8021q");
1267 
1268 			mutex_lock(&vlan_ioctl_mutex);
1269 			if (vlan_ioctl_hook)
1270 				err = vlan_ioctl_hook(net, argp);
1271 			mutex_unlock(&vlan_ioctl_mutex);
1272 			break;
1273 		case SIOCGSKNS:
1274 			err = -EPERM;
1275 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1276 				break;
1277 
1278 			err = open_related_ns(&net->ns, get_net_ns);
1279 			break;
1280 		case SIOCGSTAMP_OLD:
1281 		case SIOCGSTAMPNS_OLD:
1282 			if (!sock->ops->gettstamp) {
1283 				err = -ENOIOCTLCMD;
1284 				break;
1285 			}
1286 			err = sock->ops->gettstamp(sock, argp,
1287 						   cmd == SIOCGSTAMP_OLD,
1288 						   !IS_ENABLED(CONFIG_64BIT));
1289 			break;
1290 		case SIOCGSTAMP_NEW:
1291 		case SIOCGSTAMPNS_NEW:
1292 			if (!sock->ops->gettstamp) {
1293 				err = -ENOIOCTLCMD;
1294 				break;
1295 			}
1296 			err = sock->ops->gettstamp(sock, argp,
1297 						   cmd == SIOCGSTAMP_NEW,
1298 						   false);
1299 			break;
1300 
1301 		case SIOCGIFCONF:
1302 			err = dev_ifconf(net, argp);
1303 			break;
1304 
1305 		default:
1306 			err = sock_do_ioctl(net, sock, cmd, arg);
1307 			break;
1308 		}
1309 	return err;
1310 }
1311 
1312 /**
1313  *	sock_create_lite - creates a socket
1314  *	@family: protocol family (AF_INET, ...)
1315  *	@type: communication type (SOCK_STREAM, ...)
1316  *	@protocol: protocol (0, ...)
1317  *	@res: new socket
1318  *
1319  *	Creates a new socket and assigns it to @res, passing through LSM.
1320  *	The new socket initialization is not complete, see kernel_accept().
1321  *	Returns 0 or an error. On failure @res is set to %NULL.
1322  *	This function internally uses GFP_KERNEL.
1323  */
1324 
1325 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1326 {
1327 	int err;
1328 	struct socket *sock = NULL;
1329 
1330 	err = security_socket_create(family, type, protocol, 1);
1331 	if (err)
1332 		goto out;
1333 
1334 	sock = sock_alloc();
1335 	if (!sock) {
1336 		err = -ENOMEM;
1337 		goto out;
1338 	}
1339 
1340 	sock->type = type;
1341 	err = security_socket_post_create(sock, family, type, protocol, 1);
1342 	if (err)
1343 		goto out_release;
1344 
1345 out:
1346 	*res = sock;
1347 	return err;
1348 out_release:
1349 	sock_release(sock);
1350 	sock = NULL;
1351 	goto out;
1352 }
1353 EXPORT_SYMBOL(sock_create_lite);
1354 
1355 /* No kernel lock held - perfect */
1356 static __poll_t sock_poll(struct file *file, poll_table *wait)
1357 {
1358 	struct socket *sock = file->private_data;
1359 	__poll_t events = poll_requested_events(wait), flag = 0;
1360 
1361 	if (!sock->ops->poll)
1362 		return 0;
1363 
1364 	if (sk_can_busy_loop(sock->sk)) {
1365 		/* poll once if requested by the syscall */
1366 		if (events & POLL_BUSY_LOOP)
1367 			sk_busy_loop(sock->sk, 1);
1368 
1369 		/* if this socket can poll_ll, tell the system call */
1370 		flag = POLL_BUSY_LOOP;
1371 	}
1372 
1373 	return sock->ops->poll(file, sock, wait) | flag;
1374 }
1375 
1376 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1377 {
1378 	struct socket *sock = file->private_data;
1379 
1380 	return sock->ops->mmap(file, sock, vma);
1381 }
1382 
1383 static int sock_close(struct inode *inode, struct file *filp)
1384 {
1385 	__sock_release(SOCKET_I(inode), inode);
1386 	return 0;
1387 }
1388 
1389 /*
1390  *	Update the socket async list
1391  *
1392  *	Fasync_list locking strategy.
1393  *
1394  *	1. fasync_list is modified only under process context socket lock
1395  *	   i.e. under semaphore.
1396  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1397  *	   or under socket lock
1398  */
1399 
1400 static int sock_fasync(int fd, struct file *filp, int on)
1401 {
1402 	struct socket *sock = filp->private_data;
1403 	struct sock *sk = sock->sk;
1404 	struct socket_wq *wq = &sock->wq;
1405 
1406 	if (sk == NULL)
1407 		return -EINVAL;
1408 
1409 	lock_sock(sk);
1410 	fasync_helper(fd, filp, on, &wq->fasync_list);
1411 
1412 	if (!wq->fasync_list)
1413 		sock_reset_flag(sk, SOCK_FASYNC);
1414 	else
1415 		sock_set_flag(sk, SOCK_FASYNC);
1416 
1417 	release_sock(sk);
1418 	return 0;
1419 }
1420 
1421 /* This function may be called only under rcu_lock */
1422 
1423 int sock_wake_async(struct socket_wq *wq, int how, int band)
1424 {
1425 	if (!wq || !wq->fasync_list)
1426 		return -1;
1427 
1428 	switch (how) {
1429 	case SOCK_WAKE_WAITD:
1430 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1431 			break;
1432 		goto call_kill;
1433 	case SOCK_WAKE_SPACE:
1434 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1435 			break;
1436 		fallthrough;
1437 	case SOCK_WAKE_IO:
1438 call_kill:
1439 		kill_fasync(&wq->fasync_list, SIGIO, band);
1440 		break;
1441 	case SOCK_WAKE_URG:
1442 		kill_fasync(&wq->fasync_list, SIGURG, band);
1443 	}
1444 
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(sock_wake_async);
1448 
1449 /**
1450  *	__sock_create - creates a socket
1451  *	@net: net namespace
1452  *	@family: protocol family (AF_INET, ...)
1453  *	@type: communication type (SOCK_STREAM, ...)
1454  *	@protocol: protocol (0, ...)
1455  *	@res: new socket
1456  *	@kern: boolean for kernel space sockets
1457  *
1458  *	Creates a new socket and assigns it to @res, passing through LSM.
1459  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1460  *	be set to true if the socket resides in kernel space.
1461  *	This function internally uses GFP_KERNEL.
1462  */
1463 
1464 int __sock_create(struct net *net, int family, int type, int protocol,
1465 			 struct socket **res, int kern)
1466 {
1467 	int err;
1468 	struct socket *sock;
1469 	const struct net_proto_family *pf;
1470 
1471 	/*
1472 	 *      Check protocol is in range
1473 	 */
1474 	if (family < 0 || family >= NPROTO)
1475 		return -EAFNOSUPPORT;
1476 	if (type < 0 || type >= SOCK_MAX)
1477 		return -EINVAL;
1478 
1479 	/* Compatibility.
1480 
1481 	   This uglymoron is moved from INET layer to here to avoid
1482 	   deadlock in module load.
1483 	 */
1484 	if (family == PF_INET && type == SOCK_PACKET) {
1485 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1486 			     current->comm);
1487 		family = PF_PACKET;
1488 	}
1489 
1490 	err = security_socket_create(family, type, protocol, kern);
1491 	if (err)
1492 		return err;
1493 
1494 	/*
1495 	 *	Allocate the socket and allow the family to set things up. if
1496 	 *	the protocol is 0, the family is instructed to select an appropriate
1497 	 *	default.
1498 	 */
1499 	sock = sock_alloc();
1500 	if (!sock) {
1501 		net_warn_ratelimited("socket: no more sockets\n");
1502 		return -ENFILE;	/* Not exactly a match, but its the
1503 				   closest posix thing */
1504 	}
1505 
1506 	sock->type = type;
1507 
1508 #ifdef CONFIG_MODULES
1509 	/* Attempt to load a protocol module if the find failed.
1510 	 *
1511 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1512 	 * requested real, full-featured networking support upon configuration.
1513 	 * Otherwise module support will break!
1514 	 */
1515 	if (rcu_access_pointer(net_families[family]) == NULL)
1516 		request_module("net-pf-%d", family);
1517 #endif
1518 
1519 	rcu_read_lock();
1520 	pf = rcu_dereference(net_families[family]);
1521 	err = -EAFNOSUPPORT;
1522 	if (!pf)
1523 		goto out_release;
1524 
1525 	/*
1526 	 * We will call the ->create function, that possibly is in a loadable
1527 	 * module, so we have to bump that loadable module refcnt first.
1528 	 */
1529 	if (!try_module_get(pf->owner))
1530 		goto out_release;
1531 
1532 	/* Now protected by module ref count */
1533 	rcu_read_unlock();
1534 
1535 	err = pf->create(net, sock, protocol, kern);
1536 	if (err < 0)
1537 		goto out_module_put;
1538 
1539 	/*
1540 	 * Now to bump the refcnt of the [loadable] module that owns this
1541 	 * socket at sock_release time we decrement its refcnt.
1542 	 */
1543 	if (!try_module_get(sock->ops->owner))
1544 		goto out_module_busy;
1545 
1546 	/*
1547 	 * Now that we're done with the ->create function, the [loadable]
1548 	 * module can have its refcnt decremented
1549 	 */
1550 	module_put(pf->owner);
1551 	err = security_socket_post_create(sock, family, type, protocol, kern);
1552 	if (err)
1553 		goto out_sock_release;
1554 	*res = sock;
1555 
1556 	return 0;
1557 
1558 out_module_busy:
1559 	err = -EAFNOSUPPORT;
1560 out_module_put:
1561 	sock->ops = NULL;
1562 	module_put(pf->owner);
1563 out_sock_release:
1564 	sock_release(sock);
1565 	return err;
1566 
1567 out_release:
1568 	rcu_read_unlock();
1569 	goto out_sock_release;
1570 }
1571 EXPORT_SYMBOL(__sock_create);
1572 
1573 /**
1574  *	sock_create - creates a socket
1575  *	@family: protocol family (AF_INET, ...)
1576  *	@type: communication type (SOCK_STREAM, ...)
1577  *	@protocol: protocol (0, ...)
1578  *	@res: new socket
1579  *
1580  *	A wrapper around __sock_create().
1581  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1582  */
1583 
1584 int sock_create(int family, int type, int protocol, struct socket **res)
1585 {
1586 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1587 }
1588 EXPORT_SYMBOL(sock_create);
1589 
1590 /**
1591  *	sock_create_kern - creates a socket (kernel space)
1592  *	@net: net namespace
1593  *	@family: protocol family (AF_INET, ...)
1594  *	@type: communication type (SOCK_STREAM, ...)
1595  *	@protocol: protocol (0, ...)
1596  *	@res: new socket
1597  *
1598  *	A wrapper around __sock_create().
1599  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1600  */
1601 
1602 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1603 {
1604 	return __sock_create(net, family, type, protocol, res, 1);
1605 }
1606 EXPORT_SYMBOL(sock_create_kern);
1607 
1608 static struct socket *__sys_socket_create(int family, int type, int protocol)
1609 {
1610 	struct socket *sock;
1611 	int retval;
1612 
1613 	/* Check the SOCK_* constants for consistency.  */
1614 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1615 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1616 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1617 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1618 
1619 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1620 		return ERR_PTR(-EINVAL);
1621 	type &= SOCK_TYPE_MASK;
1622 
1623 	retval = sock_create(family, type, protocol, &sock);
1624 	if (retval < 0)
1625 		return ERR_PTR(retval);
1626 
1627 	return sock;
1628 }
1629 
1630 struct file *__sys_socket_file(int family, int type, int protocol)
1631 {
1632 	struct socket *sock;
1633 	int flags;
1634 
1635 	sock = __sys_socket_create(family, type, protocol);
1636 	if (IS_ERR(sock))
1637 		return ERR_CAST(sock);
1638 
1639 	flags = type & ~SOCK_TYPE_MASK;
1640 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1641 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1642 
1643 	return sock_alloc_file(sock, flags, NULL);
1644 }
1645 
1646 int __sys_socket(int family, int type, int protocol)
1647 {
1648 	struct socket *sock;
1649 	int flags;
1650 
1651 	sock = __sys_socket_create(family, type, protocol);
1652 	if (IS_ERR(sock))
1653 		return PTR_ERR(sock);
1654 
1655 	flags = type & ~SOCK_TYPE_MASK;
1656 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1657 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1658 
1659 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1660 }
1661 
1662 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1663 {
1664 	return __sys_socket(family, type, protocol);
1665 }
1666 
1667 /*
1668  *	Create a pair of connected sockets.
1669  */
1670 
1671 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1672 {
1673 	struct socket *sock1, *sock2;
1674 	int fd1, fd2, err;
1675 	struct file *newfile1, *newfile2;
1676 	int flags;
1677 
1678 	flags = type & ~SOCK_TYPE_MASK;
1679 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1680 		return -EINVAL;
1681 	type &= SOCK_TYPE_MASK;
1682 
1683 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1684 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1685 
1686 	/*
1687 	 * reserve descriptors and make sure we won't fail
1688 	 * to return them to userland.
1689 	 */
1690 	fd1 = get_unused_fd_flags(flags);
1691 	if (unlikely(fd1 < 0))
1692 		return fd1;
1693 
1694 	fd2 = get_unused_fd_flags(flags);
1695 	if (unlikely(fd2 < 0)) {
1696 		put_unused_fd(fd1);
1697 		return fd2;
1698 	}
1699 
1700 	err = put_user(fd1, &usockvec[0]);
1701 	if (err)
1702 		goto out;
1703 
1704 	err = put_user(fd2, &usockvec[1]);
1705 	if (err)
1706 		goto out;
1707 
1708 	/*
1709 	 * Obtain the first socket and check if the underlying protocol
1710 	 * supports the socketpair call.
1711 	 */
1712 
1713 	err = sock_create(family, type, protocol, &sock1);
1714 	if (unlikely(err < 0))
1715 		goto out;
1716 
1717 	err = sock_create(family, type, protocol, &sock2);
1718 	if (unlikely(err < 0)) {
1719 		sock_release(sock1);
1720 		goto out;
1721 	}
1722 
1723 	err = security_socket_socketpair(sock1, sock2);
1724 	if (unlikely(err)) {
1725 		sock_release(sock2);
1726 		sock_release(sock1);
1727 		goto out;
1728 	}
1729 
1730 	err = sock1->ops->socketpair(sock1, sock2);
1731 	if (unlikely(err < 0)) {
1732 		sock_release(sock2);
1733 		sock_release(sock1);
1734 		goto out;
1735 	}
1736 
1737 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1738 	if (IS_ERR(newfile1)) {
1739 		err = PTR_ERR(newfile1);
1740 		sock_release(sock2);
1741 		goto out;
1742 	}
1743 
1744 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1745 	if (IS_ERR(newfile2)) {
1746 		err = PTR_ERR(newfile2);
1747 		fput(newfile1);
1748 		goto out;
1749 	}
1750 
1751 	audit_fd_pair(fd1, fd2);
1752 
1753 	fd_install(fd1, newfile1);
1754 	fd_install(fd2, newfile2);
1755 	return 0;
1756 
1757 out:
1758 	put_unused_fd(fd2);
1759 	put_unused_fd(fd1);
1760 	return err;
1761 }
1762 
1763 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1764 		int __user *, usockvec)
1765 {
1766 	return __sys_socketpair(family, type, protocol, usockvec);
1767 }
1768 
1769 /*
1770  *	Bind a name to a socket. Nothing much to do here since it's
1771  *	the protocol's responsibility to handle the local address.
1772  *
1773  *	We move the socket address to kernel space before we call
1774  *	the protocol layer (having also checked the address is ok).
1775  */
1776 
1777 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1778 {
1779 	struct socket *sock;
1780 	struct sockaddr_storage address;
1781 	int err, fput_needed;
1782 
1783 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 	if (sock) {
1785 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1786 		if (!err) {
1787 			err = security_socket_bind(sock,
1788 						   (struct sockaddr *)&address,
1789 						   addrlen);
1790 			if (!err)
1791 				err = sock->ops->bind(sock,
1792 						      (struct sockaddr *)
1793 						      &address, addrlen);
1794 		}
1795 		fput_light(sock->file, fput_needed);
1796 	}
1797 	return err;
1798 }
1799 
1800 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1801 {
1802 	return __sys_bind(fd, umyaddr, addrlen);
1803 }
1804 
1805 /*
1806  *	Perform a listen. Basically, we allow the protocol to do anything
1807  *	necessary for a listen, and if that works, we mark the socket as
1808  *	ready for listening.
1809  */
1810 
1811 int __sys_listen(int fd, int backlog)
1812 {
1813 	struct socket *sock;
1814 	int err, fput_needed;
1815 	int somaxconn;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock) {
1819 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1820 		if ((unsigned int)backlog > somaxconn)
1821 			backlog = somaxconn;
1822 
1823 		err = security_socket_listen(sock, backlog);
1824 		if (!err)
1825 			err = sock->ops->listen(sock, backlog);
1826 
1827 		fput_light(sock->file, fput_needed);
1828 	}
1829 	return err;
1830 }
1831 
1832 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1833 {
1834 	return __sys_listen(fd, backlog);
1835 }
1836 
1837 struct file *do_accept(struct file *file, unsigned file_flags,
1838 		       struct sockaddr __user *upeer_sockaddr,
1839 		       int __user *upeer_addrlen, int flags)
1840 {
1841 	struct socket *sock, *newsock;
1842 	struct file *newfile;
1843 	int err, len;
1844 	struct sockaddr_storage address;
1845 
1846 	sock = sock_from_file(file);
1847 	if (!sock)
1848 		return ERR_PTR(-ENOTSOCK);
1849 
1850 	newsock = sock_alloc();
1851 	if (!newsock)
1852 		return ERR_PTR(-ENFILE);
1853 
1854 	newsock->type = sock->type;
1855 	newsock->ops = sock->ops;
1856 
1857 	/*
1858 	 * We don't need try_module_get here, as the listening socket (sock)
1859 	 * has the protocol module (sock->ops->owner) held.
1860 	 */
1861 	__module_get(newsock->ops->owner);
1862 
1863 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1864 	if (IS_ERR(newfile))
1865 		return newfile;
1866 
1867 	err = security_socket_accept(sock, newsock);
1868 	if (err)
1869 		goto out_fd;
1870 
1871 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1872 					false);
1873 	if (err < 0)
1874 		goto out_fd;
1875 
1876 	if (upeer_sockaddr) {
1877 		len = newsock->ops->getname(newsock,
1878 					(struct sockaddr *)&address, 2);
1879 		if (len < 0) {
1880 			err = -ECONNABORTED;
1881 			goto out_fd;
1882 		}
1883 		err = move_addr_to_user(&address,
1884 					len, upeer_sockaddr, upeer_addrlen);
1885 		if (err < 0)
1886 			goto out_fd;
1887 	}
1888 
1889 	/* File flags are not inherited via accept() unlike another OSes. */
1890 	return newfile;
1891 out_fd:
1892 	fput(newfile);
1893 	return ERR_PTR(err);
1894 }
1895 
1896 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1897 			      int __user *upeer_addrlen, int flags)
1898 {
1899 	struct file *newfile;
1900 	int newfd;
1901 
1902 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1903 		return -EINVAL;
1904 
1905 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1906 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1907 
1908 	newfd = get_unused_fd_flags(flags);
1909 	if (unlikely(newfd < 0))
1910 		return newfd;
1911 
1912 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1913 			    flags);
1914 	if (IS_ERR(newfile)) {
1915 		put_unused_fd(newfd);
1916 		return PTR_ERR(newfile);
1917 	}
1918 	fd_install(newfd, newfile);
1919 	return newfd;
1920 }
1921 
1922 /*
1923  *	For accept, we attempt to create a new socket, set up the link
1924  *	with the client, wake up the client, then return the new
1925  *	connected fd. We collect the address of the connector in kernel
1926  *	space and move it to user at the very end. This is unclean because
1927  *	we open the socket then return an error.
1928  *
1929  *	1003.1g adds the ability to recvmsg() to query connection pending
1930  *	status to recvmsg. We need to add that support in a way thats
1931  *	clean when we restructure accept also.
1932  */
1933 
1934 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1935 		  int __user *upeer_addrlen, int flags)
1936 {
1937 	int ret = -EBADF;
1938 	struct fd f;
1939 
1940 	f = fdget(fd);
1941 	if (f.file) {
1942 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1943 					 upeer_addrlen, flags);
1944 		fdput(f);
1945 	}
1946 
1947 	return ret;
1948 }
1949 
1950 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1951 		int __user *, upeer_addrlen, int, flags)
1952 {
1953 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1954 }
1955 
1956 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1957 		int __user *, upeer_addrlen)
1958 {
1959 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1960 }
1961 
1962 /*
1963  *	Attempt to connect to a socket with the server address.  The address
1964  *	is in user space so we verify it is OK and move it to kernel space.
1965  *
1966  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1967  *	break bindings
1968  *
1969  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1970  *	other SEQPACKET protocols that take time to connect() as it doesn't
1971  *	include the -EINPROGRESS status for such sockets.
1972  */
1973 
1974 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1975 		       int addrlen, int file_flags)
1976 {
1977 	struct socket *sock;
1978 	int err;
1979 
1980 	sock = sock_from_file(file);
1981 	if (!sock) {
1982 		err = -ENOTSOCK;
1983 		goto out;
1984 	}
1985 
1986 	err =
1987 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1988 	if (err)
1989 		goto out;
1990 
1991 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1992 				 sock->file->f_flags | file_flags);
1993 out:
1994 	return err;
1995 }
1996 
1997 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1998 {
1999 	int ret = -EBADF;
2000 	struct fd f;
2001 
2002 	f = fdget(fd);
2003 	if (f.file) {
2004 		struct sockaddr_storage address;
2005 
2006 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2007 		if (!ret)
2008 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2009 		fdput(f);
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2016 		int, addrlen)
2017 {
2018 	return __sys_connect(fd, uservaddr, addrlen);
2019 }
2020 
2021 /*
2022  *	Get the local address ('name') of a socket object. Move the obtained
2023  *	name to user space.
2024  */
2025 
2026 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2027 		      int __user *usockaddr_len)
2028 {
2029 	struct socket *sock;
2030 	struct sockaddr_storage address;
2031 	int err, fput_needed;
2032 
2033 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2034 	if (!sock)
2035 		goto out;
2036 
2037 	err = security_socket_getsockname(sock);
2038 	if (err)
2039 		goto out_put;
2040 
2041 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2042 	if (err < 0)
2043 		goto out_put;
2044 	/* "err" is actually length in this case */
2045 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2046 
2047 out_put:
2048 	fput_light(sock->file, fput_needed);
2049 out:
2050 	return err;
2051 }
2052 
2053 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2054 		int __user *, usockaddr_len)
2055 {
2056 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2057 }
2058 
2059 /*
2060  *	Get the remote address ('name') of a socket object. Move the obtained
2061  *	name to user space.
2062  */
2063 
2064 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2065 		      int __user *usockaddr_len)
2066 {
2067 	struct socket *sock;
2068 	struct sockaddr_storage address;
2069 	int err, fput_needed;
2070 
2071 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 	if (sock != NULL) {
2073 		err = security_socket_getpeername(sock);
2074 		if (err) {
2075 			fput_light(sock->file, fput_needed);
2076 			return err;
2077 		}
2078 
2079 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2080 		if (err >= 0)
2081 			/* "err" is actually length in this case */
2082 			err = move_addr_to_user(&address, err, usockaddr,
2083 						usockaddr_len);
2084 		fput_light(sock->file, fput_needed);
2085 	}
2086 	return err;
2087 }
2088 
2089 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2090 		int __user *, usockaddr_len)
2091 {
2092 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2093 }
2094 
2095 /*
2096  *	Send a datagram to a given address. We move the address into kernel
2097  *	space and check the user space data area is readable before invoking
2098  *	the protocol.
2099  */
2100 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2101 		 struct sockaddr __user *addr,  int addr_len)
2102 {
2103 	struct socket *sock;
2104 	struct sockaddr_storage address;
2105 	int err;
2106 	struct msghdr msg;
2107 	struct iovec iov;
2108 	int fput_needed;
2109 
2110 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2111 	if (unlikely(err))
2112 		return err;
2113 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2114 	if (!sock)
2115 		goto out;
2116 
2117 	msg.msg_name = NULL;
2118 	msg.msg_control = NULL;
2119 	msg.msg_controllen = 0;
2120 	msg.msg_namelen = 0;
2121 	msg.msg_ubuf = NULL;
2122 	if (addr) {
2123 		err = move_addr_to_kernel(addr, addr_len, &address);
2124 		if (err < 0)
2125 			goto out_put;
2126 		msg.msg_name = (struct sockaddr *)&address;
2127 		msg.msg_namelen = addr_len;
2128 	}
2129 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2130 	if (sock->file->f_flags & O_NONBLOCK)
2131 		flags |= MSG_DONTWAIT;
2132 	msg.msg_flags = flags;
2133 	err = sock_sendmsg(sock, &msg);
2134 
2135 out_put:
2136 	fput_light(sock->file, fput_needed);
2137 out:
2138 	return err;
2139 }
2140 
2141 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2142 		unsigned int, flags, struct sockaddr __user *, addr,
2143 		int, addr_len)
2144 {
2145 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2146 }
2147 
2148 /*
2149  *	Send a datagram down a socket.
2150  */
2151 
2152 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2153 		unsigned int, flags)
2154 {
2155 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2156 }
2157 
2158 /*
2159  *	Receive a frame from the socket and optionally record the address of the
2160  *	sender. We verify the buffers are writable and if needed move the
2161  *	sender address from kernel to user space.
2162  */
2163 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2164 		   struct sockaddr __user *addr, int __user *addr_len)
2165 {
2166 	struct sockaddr_storage address;
2167 	struct msghdr msg = {
2168 		/* Save some cycles and don't copy the address if not needed */
2169 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2170 	};
2171 	struct socket *sock;
2172 	struct iovec iov;
2173 	int err, err2;
2174 	int fput_needed;
2175 
2176 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2177 	if (unlikely(err))
2178 		return err;
2179 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 	if (!sock)
2181 		goto out;
2182 
2183 	if (sock->file->f_flags & O_NONBLOCK)
2184 		flags |= MSG_DONTWAIT;
2185 	err = sock_recvmsg(sock, &msg, flags);
2186 
2187 	if (err >= 0 && addr != NULL) {
2188 		err2 = move_addr_to_user(&address,
2189 					 msg.msg_namelen, addr, addr_len);
2190 		if (err2 < 0)
2191 			err = err2;
2192 	}
2193 
2194 	fput_light(sock->file, fput_needed);
2195 out:
2196 	return err;
2197 }
2198 
2199 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2200 		unsigned int, flags, struct sockaddr __user *, addr,
2201 		int __user *, addr_len)
2202 {
2203 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2204 }
2205 
2206 /*
2207  *	Receive a datagram from a socket.
2208  */
2209 
2210 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2211 		unsigned int, flags)
2212 {
2213 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2214 }
2215 
2216 static bool sock_use_custom_sol_socket(const struct socket *sock)
2217 {
2218 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2219 }
2220 
2221 /*
2222  *	Set a socket option. Because we don't know the option lengths we have
2223  *	to pass the user mode parameter for the protocols to sort out.
2224  */
2225 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2226 		int optlen)
2227 {
2228 	sockptr_t optval = USER_SOCKPTR(user_optval);
2229 	char *kernel_optval = NULL;
2230 	int err, fput_needed;
2231 	struct socket *sock;
2232 
2233 	if (optlen < 0)
2234 		return -EINVAL;
2235 
2236 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237 	if (!sock)
2238 		return err;
2239 
2240 	err = security_socket_setsockopt(sock, level, optname);
2241 	if (err)
2242 		goto out_put;
2243 
2244 	if (!in_compat_syscall())
2245 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2246 						     user_optval, &optlen,
2247 						     &kernel_optval);
2248 	if (err < 0)
2249 		goto out_put;
2250 	if (err > 0) {
2251 		err = 0;
2252 		goto out_put;
2253 	}
2254 
2255 	if (kernel_optval)
2256 		optval = KERNEL_SOCKPTR(kernel_optval);
2257 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2258 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2259 	else if (unlikely(!sock->ops->setsockopt))
2260 		err = -EOPNOTSUPP;
2261 	else
2262 		err = sock->ops->setsockopt(sock, level, optname, optval,
2263 					    optlen);
2264 	kfree(kernel_optval);
2265 out_put:
2266 	fput_light(sock->file, fput_needed);
2267 	return err;
2268 }
2269 
2270 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2271 		char __user *, optval, int, optlen)
2272 {
2273 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2274 }
2275 
2276 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2277 							 int optname));
2278 
2279 /*
2280  *	Get a socket option. Because we don't know the option lengths we have
2281  *	to pass a user mode parameter for the protocols to sort out.
2282  */
2283 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2284 		int __user *optlen)
2285 {
2286 	int max_optlen __maybe_unused;
2287 	int err, fput_needed;
2288 	struct socket *sock;
2289 
2290 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2291 	if (!sock)
2292 		return err;
2293 
2294 	err = security_socket_getsockopt(sock, level, optname);
2295 	if (err)
2296 		goto out_put;
2297 
2298 	if (!in_compat_syscall())
2299 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2300 
2301 	if (level == SOL_SOCKET)
2302 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2303 	else if (unlikely(!sock->ops->getsockopt))
2304 		err = -EOPNOTSUPP;
2305 	else
2306 		err = sock->ops->getsockopt(sock, level, optname, optval,
2307 					    optlen);
2308 
2309 	if (!in_compat_syscall())
2310 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2311 						     optval, optlen, max_optlen,
2312 						     err);
2313 out_put:
2314 	fput_light(sock->file, fput_needed);
2315 	return err;
2316 }
2317 
2318 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2319 		char __user *, optval, int __user *, optlen)
2320 {
2321 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2322 }
2323 
2324 /*
2325  *	Shutdown a socket.
2326  */
2327 
2328 int __sys_shutdown_sock(struct socket *sock, int how)
2329 {
2330 	int err;
2331 
2332 	err = security_socket_shutdown(sock, how);
2333 	if (!err)
2334 		err = sock->ops->shutdown(sock, how);
2335 
2336 	return err;
2337 }
2338 
2339 int __sys_shutdown(int fd, int how)
2340 {
2341 	int err, fput_needed;
2342 	struct socket *sock;
2343 
2344 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2345 	if (sock != NULL) {
2346 		err = __sys_shutdown_sock(sock, how);
2347 		fput_light(sock->file, fput_needed);
2348 	}
2349 	return err;
2350 }
2351 
2352 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2353 {
2354 	return __sys_shutdown(fd, how);
2355 }
2356 
2357 /* A couple of helpful macros for getting the address of the 32/64 bit
2358  * fields which are the same type (int / unsigned) on our platforms.
2359  */
2360 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2361 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2362 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2363 
2364 struct used_address {
2365 	struct sockaddr_storage name;
2366 	unsigned int name_len;
2367 };
2368 
2369 int __copy_msghdr(struct msghdr *kmsg,
2370 		  struct user_msghdr *msg,
2371 		  struct sockaddr __user **save_addr)
2372 {
2373 	ssize_t err;
2374 
2375 	kmsg->msg_control_is_user = true;
2376 	kmsg->msg_get_inq = 0;
2377 	kmsg->msg_control_user = msg->msg_control;
2378 	kmsg->msg_controllen = msg->msg_controllen;
2379 	kmsg->msg_flags = msg->msg_flags;
2380 
2381 	kmsg->msg_namelen = msg->msg_namelen;
2382 	if (!msg->msg_name)
2383 		kmsg->msg_namelen = 0;
2384 
2385 	if (kmsg->msg_namelen < 0)
2386 		return -EINVAL;
2387 
2388 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2389 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2390 
2391 	if (save_addr)
2392 		*save_addr = msg->msg_name;
2393 
2394 	if (msg->msg_name && kmsg->msg_namelen) {
2395 		if (!save_addr) {
2396 			err = move_addr_to_kernel(msg->msg_name,
2397 						  kmsg->msg_namelen,
2398 						  kmsg->msg_name);
2399 			if (err < 0)
2400 				return err;
2401 		}
2402 	} else {
2403 		kmsg->msg_name = NULL;
2404 		kmsg->msg_namelen = 0;
2405 	}
2406 
2407 	if (msg->msg_iovlen > UIO_MAXIOV)
2408 		return -EMSGSIZE;
2409 
2410 	kmsg->msg_iocb = NULL;
2411 	kmsg->msg_ubuf = NULL;
2412 	return 0;
2413 }
2414 
2415 static int copy_msghdr_from_user(struct msghdr *kmsg,
2416 				 struct user_msghdr __user *umsg,
2417 				 struct sockaddr __user **save_addr,
2418 				 struct iovec **iov)
2419 {
2420 	struct user_msghdr msg;
2421 	ssize_t err;
2422 
2423 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2424 		return -EFAULT;
2425 
2426 	err = __copy_msghdr(kmsg, &msg, save_addr);
2427 	if (err)
2428 		return err;
2429 
2430 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2431 			    msg.msg_iov, msg.msg_iovlen,
2432 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2433 	return err < 0 ? err : 0;
2434 }
2435 
2436 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2437 			   unsigned int flags, struct used_address *used_address,
2438 			   unsigned int allowed_msghdr_flags)
2439 {
2440 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2441 				__aligned(sizeof(__kernel_size_t));
2442 	/* 20 is size of ipv6_pktinfo */
2443 	unsigned char *ctl_buf = ctl;
2444 	int ctl_len;
2445 	ssize_t err;
2446 
2447 	err = -ENOBUFS;
2448 
2449 	if (msg_sys->msg_controllen > INT_MAX)
2450 		goto out;
2451 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2452 	ctl_len = msg_sys->msg_controllen;
2453 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2454 		err =
2455 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2456 						     sizeof(ctl));
2457 		if (err)
2458 			goto out;
2459 		ctl_buf = msg_sys->msg_control;
2460 		ctl_len = msg_sys->msg_controllen;
2461 	} else if (ctl_len) {
2462 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2463 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2464 		if (ctl_len > sizeof(ctl)) {
2465 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2466 			if (ctl_buf == NULL)
2467 				goto out;
2468 		}
2469 		err = -EFAULT;
2470 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2471 			goto out_freectl;
2472 		msg_sys->msg_control = ctl_buf;
2473 		msg_sys->msg_control_is_user = false;
2474 	}
2475 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2476 	msg_sys->msg_flags = flags;
2477 
2478 	if (sock->file->f_flags & O_NONBLOCK)
2479 		msg_sys->msg_flags |= MSG_DONTWAIT;
2480 	/*
2481 	 * If this is sendmmsg() and current destination address is same as
2482 	 * previously succeeded address, omit asking LSM's decision.
2483 	 * used_address->name_len is initialized to UINT_MAX so that the first
2484 	 * destination address never matches.
2485 	 */
2486 	if (used_address && msg_sys->msg_name &&
2487 	    used_address->name_len == msg_sys->msg_namelen &&
2488 	    !memcmp(&used_address->name, msg_sys->msg_name,
2489 		    used_address->name_len)) {
2490 		err = sock_sendmsg_nosec(sock, msg_sys);
2491 		goto out_freectl;
2492 	}
2493 	err = sock_sendmsg(sock, msg_sys);
2494 	/*
2495 	 * If this is sendmmsg() and sending to current destination address was
2496 	 * successful, remember it.
2497 	 */
2498 	if (used_address && err >= 0) {
2499 		used_address->name_len = msg_sys->msg_namelen;
2500 		if (msg_sys->msg_name)
2501 			memcpy(&used_address->name, msg_sys->msg_name,
2502 			       used_address->name_len);
2503 	}
2504 
2505 out_freectl:
2506 	if (ctl_buf != ctl)
2507 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2508 out:
2509 	return err;
2510 }
2511 
2512 int sendmsg_copy_msghdr(struct msghdr *msg,
2513 			struct user_msghdr __user *umsg, unsigned flags,
2514 			struct iovec **iov)
2515 {
2516 	int err;
2517 
2518 	if (flags & MSG_CMSG_COMPAT) {
2519 		struct compat_msghdr __user *msg_compat;
2520 
2521 		msg_compat = (struct compat_msghdr __user *) umsg;
2522 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2523 	} else {
2524 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2525 	}
2526 	if (err < 0)
2527 		return err;
2528 
2529 	return 0;
2530 }
2531 
2532 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2533 			 struct msghdr *msg_sys, unsigned int flags,
2534 			 struct used_address *used_address,
2535 			 unsigned int allowed_msghdr_flags)
2536 {
2537 	struct sockaddr_storage address;
2538 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2539 	ssize_t err;
2540 
2541 	msg_sys->msg_name = &address;
2542 
2543 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2544 	if (err < 0)
2545 		return err;
2546 
2547 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2548 				allowed_msghdr_flags);
2549 	kfree(iov);
2550 	return err;
2551 }
2552 
2553 /*
2554  *	BSD sendmsg interface
2555  */
2556 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2557 			unsigned int flags)
2558 {
2559 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2560 }
2561 
2562 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2563 		   bool forbid_cmsg_compat)
2564 {
2565 	int fput_needed, err;
2566 	struct msghdr msg_sys;
2567 	struct socket *sock;
2568 
2569 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2570 		return -EINVAL;
2571 
2572 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2573 	if (!sock)
2574 		goto out;
2575 
2576 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2577 
2578 	fput_light(sock->file, fput_needed);
2579 out:
2580 	return err;
2581 }
2582 
2583 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2584 {
2585 	return __sys_sendmsg(fd, msg, flags, true);
2586 }
2587 
2588 /*
2589  *	Linux sendmmsg interface
2590  */
2591 
2592 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2593 		   unsigned int flags, bool forbid_cmsg_compat)
2594 {
2595 	int fput_needed, err, datagrams;
2596 	struct socket *sock;
2597 	struct mmsghdr __user *entry;
2598 	struct compat_mmsghdr __user *compat_entry;
2599 	struct msghdr msg_sys;
2600 	struct used_address used_address;
2601 	unsigned int oflags = flags;
2602 
2603 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2604 		return -EINVAL;
2605 
2606 	if (vlen > UIO_MAXIOV)
2607 		vlen = UIO_MAXIOV;
2608 
2609 	datagrams = 0;
2610 
2611 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2612 	if (!sock)
2613 		return err;
2614 
2615 	used_address.name_len = UINT_MAX;
2616 	entry = mmsg;
2617 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2618 	err = 0;
2619 	flags |= MSG_BATCH;
2620 
2621 	while (datagrams < vlen) {
2622 		if (datagrams == vlen - 1)
2623 			flags = oflags;
2624 
2625 		if (MSG_CMSG_COMPAT & flags) {
2626 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2627 					     &msg_sys, flags, &used_address, MSG_EOR);
2628 			if (err < 0)
2629 				break;
2630 			err = __put_user(err, &compat_entry->msg_len);
2631 			++compat_entry;
2632 		} else {
2633 			err = ___sys_sendmsg(sock,
2634 					     (struct user_msghdr __user *)entry,
2635 					     &msg_sys, flags, &used_address, MSG_EOR);
2636 			if (err < 0)
2637 				break;
2638 			err = put_user(err, &entry->msg_len);
2639 			++entry;
2640 		}
2641 
2642 		if (err)
2643 			break;
2644 		++datagrams;
2645 		if (msg_data_left(&msg_sys))
2646 			break;
2647 		cond_resched();
2648 	}
2649 
2650 	fput_light(sock->file, fput_needed);
2651 
2652 	/* We only return an error if no datagrams were able to be sent */
2653 	if (datagrams != 0)
2654 		return datagrams;
2655 
2656 	return err;
2657 }
2658 
2659 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2660 		unsigned int, vlen, unsigned int, flags)
2661 {
2662 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2663 }
2664 
2665 int recvmsg_copy_msghdr(struct msghdr *msg,
2666 			struct user_msghdr __user *umsg, unsigned flags,
2667 			struct sockaddr __user **uaddr,
2668 			struct iovec **iov)
2669 {
2670 	ssize_t err;
2671 
2672 	if (MSG_CMSG_COMPAT & flags) {
2673 		struct compat_msghdr __user *msg_compat;
2674 
2675 		msg_compat = (struct compat_msghdr __user *) umsg;
2676 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2677 	} else {
2678 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2679 	}
2680 	if (err < 0)
2681 		return err;
2682 
2683 	return 0;
2684 }
2685 
2686 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2687 			   struct user_msghdr __user *msg,
2688 			   struct sockaddr __user *uaddr,
2689 			   unsigned int flags, int nosec)
2690 {
2691 	struct compat_msghdr __user *msg_compat =
2692 					(struct compat_msghdr __user *) msg;
2693 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2694 	struct sockaddr_storage addr;
2695 	unsigned long cmsg_ptr;
2696 	int len;
2697 	ssize_t err;
2698 
2699 	msg_sys->msg_name = &addr;
2700 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2701 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2702 
2703 	/* We assume all kernel code knows the size of sockaddr_storage */
2704 	msg_sys->msg_namelen = 0;
2705 
2706 	if (sock->file->f_flags & O_NONBLOCK)
2707 		flags |= MSG_DONTWAIT;
2708 
2709 	if (unlikely(nosec))
2710 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2711 	else
2712 		err = sock_recvmsg(sock, msg_sys, flags);
2713 
2714 	if (err < 0)
2715 		goto out;
2716 	len = err;
2717 
2718 	if (uaddr != NULL) {
2719 		err = move_addr_to_user(&addr,
2720 					msg_sys->msg_namelen, uaddr,
2721 					uaddr_len);
2722 		if (err < 0)
2723 			goto out;
2724 	}
2725 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2726 			 COMPAT_FLAGS(msg));
2727 	if (err)
2728 		goto out;
2729 	if (MSG_CMSG_COMPAT & flags)
2730 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2731 				 &msg_compat->msg_controllen);
2732 	else
2733 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2734 				 &msg->msg_controllen);
2735 	if (err)
2736 		goto out;
2737 	err = len;
2738 out:
2739 	return err;
2740 }
2741 
2742 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2743 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2744 {
2745 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2746 	/* user mode address pointers */
2747 	struct sockaddr __user *uaddr;
2748 	ssize_t err;
2749 
2750 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2751 	if (err < 0)
2752 		return err;
2753 
2754 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2755 	kfree(iov);
2756 	return err;
2757 }
2758 
2759 /*
2760  *	BSD recvmsg interface
2761  */
2762 
2763 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2764 			struct user_msghdr __user *umsg,
2765 			struct sockaddr __user *uaddr, unsigned int flags)
2766 {
2767 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2768 }
2769 
2770 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2771 		   bool forbid_cmsg_compat)
2772 {
2773 	int fput_needed, err;
2774 	struct msghdr msg_sys;
2775 	struct socket *sock;
2776 
2777 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2778 		return -EINVAL;
2779 
2780 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2781 	if (!sock)
2782 		goto out;
2783 
2784 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2785 
2786 	fput_light(sock->file, fput_needed);
2787 out:
2788 	return err;
2789 }
2790 
2791 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2792 		unsigned int, flags)
2793 {
2794 	return __sys_recvmsg(fd, msg, flags, true);
2795 }
2796 
2797 /*
2798  *     Linux recvmmsg interface
2799  */
2800 
2801 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2802 			  unsigned int vlen, unsigned int flags,
2803 			  struct timespec64 *timeout)
2804 {
2805 	int fput_needed, err, datagrams;
2806 	struct socket *sock;
2807 	struct mmsghdr __user *entry;
2808 	struct compat_mmsghdr __user *compat_entry;
2809 	struct msghdr msg_sys;
2810 	struct timespec64 end_time;
2811 	struct timespec64 timeout64;
2812 
2813 	if (timeout &&
2814 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2815 				    timeout->tv_nsec))
2816 		return -EINVAL;
2817 
2818 	datagrams = 0;
2819 
2820 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2821 	if (!sock)
2822 		return err;
2823 
2824 	if (likely(!(flags & MSG_ERRQUEUE))) {
2825 		err = sock_error(sock->sk);
2826 		if (err) {
2827 			datagrams = err;
2828 			goto out_put;
2829 		}
2830 	}
2831 
2832 	entry = mmsg;
2833 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2834 
2835 	while (datagrams < vlen) {
2836 		/*
2837 		 * No need to ask LSM for more than the first datagram.
2838 		 */
2839 		if (MSG_CMSG_COMPAT & flags) {
2840 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2841 					     &msg_sys, flags & ~MSG_WAITFORONE,
2842 					     datagrams);
2843 			if (err < 0)
2844 				break;
2845 			err = __put_user(err, &compat_entry->msg_len);
2846 			++compat_entry;
2847 		} else {
2848 			err = ___sys_recvmsg(sock,
2849 					     (struct user_msghdr __user *)entry,
2850 					     &msg_sys, flags & ~MSG_WAITFORONE,
2851 					     datagrams);
2852 			if (err < 0)
2853 				break;
2854 			err = put_user(err, &entry->msg_len);
2855 			++entry;
2856 		}
2857 
2858 		if (err)
2859 			break;
2860 		++datagrams;
2861 
2862 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2863 		if (flags & MSG_WAITFORONE)
2864 			flags |= MSG_DONTWAIT;
2865 
2866 		if (timeout) {
2867 			ktime_get_ts64(&timeout64);
2868 			*timeout = timespec64_sub(end_time, timeout64);
2869 			if (timeout->tv_sec < 0) {
2870 				timeout->tv_sec = timeout->tv_nsec = 0;
2871 				break;
2872 			}
2873 
2874 			/* Timeout, return less than vlen datagrams */
2875 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2876 				break;
2877 		}
2878 
2879 		/* Out of band data, return right away */
2880 		if (msg_sys.msg_flags & MSG_OOB)
2881 			break;
2882 		cond_resched();
2883 	}
2884 
2885 	if (err == 0)
2886 		goto out_put;
2887 
2888 	if (datagrams == 0) {
2889 		datagrams = err;
2890 		goto out_put;
2891 	}
2892 
2893 	/*
2894 	 * We may return less entries than requested (vlen) if the
2895 	 * sock is non block and there aren't enough datagrams...
2896 	 */
2897 	if (err != -EAGAIN) {
2898 		/*
2899 		 * ... or  if recvmsg returns an error after we
2900 		 * received some datagrams, where we record the
2901 		 * error to return on the next call or if the
2902 		 * app asks about it using getsockopt(SO_ERROR).
2903 		 */
2904 		WRITE_ONCE(sock->sk->sk_err, -err);
2905 	}
2906 out_put:
2907 	fput_light(sock->file, fput_needed);
2908 
2909 	return datagrams;
2910 }
2911 
2912 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2913 		   unsigned int vlen, unsigned int flags,
2914 		   struct __kernel_timespec __user *timeout,
2915 		   struct old_timespec32 __user *timeout32)
2916 {
2917 	int datagrams;
2918 	struct timespec64 timeout_sys;
2919 
2920 	if (timeout && get_timespec64(&timeout_sys, timeout))
2921 		return -EFAULT;
2922 
2923 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2924 		return -EFAULT;
2925 
2926 	if (!timeout && !timeout32)
2927 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2928 
2929 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2930 
2931 	if (datagrams <= 0)
2932 		return datagrams;
2933 
2934 	if (timeout && put_timespec64(&timeout_sys, timeout))
2935 		datagrams = -EFAULT;
2936 
2937 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2938 		datagrams = -EFAULT;
2939 
2940 	return datagrams;
2941 }
2942 
2943 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2944 		unsigned int, vlen, unsigned int, flags,
2945 		struct __kernel_timespec __user *, timeout)
2946 {
2947 	if (flags & MSG_CMSG_COMPAT)
2948 		return -EINVAL;
2949 
2950 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2951 }
2952 
2953 #ifdef CONFIG_COMPAT_32BIT_TIME
2954 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2955 		unsigned int, vlen, unsigned int, flags,
2956 		struct old_timespec32 __user *, timeout)
2957 {
2958 	if (flags & MSG_CMSG_COMPAT)
2959 		return -EINVAL;
2960 
2961 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2962 }
2963 #endif
2964 
2965 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2966 /* Argument list sizes for sys_socketcall */
2967 #define AL(x) ((x) * sizeof(unsigned long))
2968 static const unsigned char nargs[21] = {
2969 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2970 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2971 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2972 	AL(4), AL(5), AL(4)
2973 };
2974 
2975 #undef AL
2976 
2977 /*
2978  *	System call vectors.
2979  *
2980  *	Argument checking cleaned up. Saved 20% in size.
2981  *  This function doesn't need to set the kernel lock because
2982  *  it is set by the callees.
2983  */
2984 
2985 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2986 {
2987 	unsigned long a[AUDITSC_ARGS];
2988 	unsigned long a0, a1;
2989 	int err;
2990 	unsigned int len;
2991 
2992 	if (call < 1 || call > SYS_SENDMMSG)
2993 		return -EINVAL;
2994 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2995 
2996 	len = nargs[call];
2997 	if (len > sizeof(a))
2998 		return -EINVAL;
2999 
3000 	/* copy_from_user should be SMP safe. */
3001 	if (copy_from_user(a, args, len))
3002 		return -EFAULT;
3003 
3004 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3005 	if (err)
3006 		return err;
3007 
3008 	a0 = a[0];
3009 	a1 = a[1];
3010 
3011 	switch (call) {
3012 	case SYS_SOCKET:
3013 		err = __sys_socket(a0, a1, a[2]);
3014 		break;
3015 	case SYS_BIND:
3016 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3017 		break;
3018 	case SYS_CONNECT:
3019 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3020 		break;
3021 	case SYS_LISTEN:
3022 		err = __sys_listen(a0, a1);
3023 		break;
3024 	case SYS_ACCEPT:
3025 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3026 				    (int __user *)a[2], 0);
3027 		break;
3028 	case SYS_GETSOCKNAME:
3029 		err =
3030 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3031 				      (int __user *)a[2]);
3032 		break;
3033 	case SYS_GETPEERNAME:
3034 		err =
3035 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3036 				      (int __user *)a[2]);
3037 		break;
3038 	case SYS_SOCKETPAIR:
3039 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3040 		break;
3041 	case SYS_SEND:
3042 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3043 				   NULL, 0);
3044 		break;
3045 	case SYS_SENDTO:
3046 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3047 				   (struct sockaddr __user *)a[4], a[5]);
3048 		break;
3049 	case SYS_RECV:
3050 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3051 				     NULL, NULL);
3052 		break;
3053 	case SYS_RECVFROM:
3054 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3055 				     (struct sockaddr __user *)a[4],
3056 				     (int __user *)a[5]);
3057 		break;
3058 	case SYS_SHUTDOWN:
3059 		err = __sys_shutdown(a0, a1);
3060 		break;
3061 	case SYS_SETSOCKOPT:
3062 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3063 				       a[4]);
3064 		break;
3065 	case SYS_GETSOCKOPT:
3066 		err =
3067 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3068 				     (int __user *)a[4]);
3069 		break;
3070 	case SYS_SENDMSG:
3071 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3072 				    a[2], true);
3073 		break;
3074 	case SYS_SENDMMSG:
3075 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3076 				     a[3], true);
3077 		break;
3078 	case SYS_RECVMSG:
3079 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3080 				    a[2], true);
3081 		break;
3082 	case SYS_RECVMMSG:
3083 		if (IS_ENABLED(CONFIG_64BIT))
3084 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3085 					     a[2], a[3],
3086 					     (struct __kernel_timespec __user *)a[4],
3087 					     NULL);
3088 		else
3089 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3090 					     a[2], a[3], NULL,
3091 					     (struct old_timespec32 __user *)a[4]);
3092 		break;
3093 	case SYS_ACCEPT4:
3094 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3095 				    (int __user *)a[2], a[3]);
3096 		break;
3097 	default:
3098 		err = -EINVAL;
3099 		break;
3100 	}
3101 	return err;
3102 }
3103 
3104 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3105 
3106 /**
3107  *	sock_register - add a socket protocol handler
3108  *	@ops: description of protocol
3109  *
3110  *	This function is called by a protocol handler that wants to
3111  *	advertise its address family, and have it linked into the
3112  *	socket interface. The value ops->family corresponds to the
3113  *	socket system call protocol family.
3114  */
3115 int sock_register(const struct net_proto_family *ops)
3116 {
3117 	int err;
3118 
3119 	if (ops->family >= NPROTO) {
3120 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3121 		return -ENOBUFS;
3122 	}
3123 
3124 	spin_lock(&net_family_lock);
3125 	if (rcu_dereference_protected(net_families[ops->family],
3126 				      lockdep_is_held(&net_family_lock)))
3127 		err = -EEXIST;
3128 	else {
3129 		rcu_assign_pointer(net_families[ops->family], ops);
3130 		err = 0;
3131 	}
3132 	spin_unlock(&net_family_lock);
3133 
3134 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3135 	return err;
3136 }
3137 EXPORT_SYMBOL(sock_register);
3138 
3139 /**
3140  *	sock_unregister - remove a protocol handler
3141  *	@family: protocol family to remove
3142  *
3143  *	This function is called by a protocol handler that wants to
3144  *	remove its address family, and have it unlinked from the
3145  *	new socket creation.
3146  *
3147  *	If protocol handler is a module, then it can use module reference
3148  *	counts to protect against new references. If protocol handler is not
3149  *	a module then it needs to provide its own protection in
3150  *	the ops->create routine.
3151  */
3152 void sock_unregister(int family)
3153 {
3154 	BUG_ON(family < 0 || family >= NPROTO);
3155 
3156 	spin_lock(&net_family_lock);
3157 	RCU_INIT_POINTER(net_families[family], NULL);
3158 	spin_unlock(&net_family_lock);
3159 
3160 	synchronize_rcu();
3161 
3162 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3163 }
3164 EXPORT_SYMBOL(sock_unregister);
3165 
3166 bool sock_is_registered(int family)
3167 {
3168 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3169 }
3170 
3171 static int __init sock_init(void)
3172 {
3173 	int err;
3174 	/*
3175 	 *      Initialize the network sysctl infrastructure.
3176 	 */
3177 	err = net_sysctl_init();
3178 	if (err)
3179 		goto out;
3180 
3181 	/*
3182 	 *      Initialize skbuff SLAB cache
3183 	 */
3184 	skb_init();
3185 
3186 	/*
3187 	 *      Initialize the protocols module.
3188 	 */
3189 
3190 	init_inodecache();
3191 
3192 	err = register_filesystem(&sock_fs_type);
3193 	if (err)
3194 		goto out;
3195 	sock_mnt = kern_mount(&sock_fs_type);
3196 	if (IS_ERR(sock_mnt)) {
3197 		err = PTR_ERR(sock_mnt);
3198 		goto out_mount;
3199 	}
3200 
3201 	/* The real protocol initialization is performed in later initcalls.
3202 	 */
3203 
3204 #ifdef CONFIG_NETFILTER
3205 	err = netfilter_init();
3206 	if (err)
3207 		goto out;
3208 #endif
3209 
3210 	ptp_classifier_init();
3211 
3212 out:
3213 	return err;
3214 
3215 out_mount:
3216 	unregister_filesystem(&sock_fs_type);
3217 	goto out;
3218 }
3219 
3220 core_initcall(sock_init);	/* early initcall */
3221 
3222 #ifdef CONFIG_PROC_FS
3223 void socket_seq_show(struct seq_file *seq)
3224 {
3225 	seq_printf(seq, "sockets: used %d\n",
3226 		   sock_inuse_get(seq->private));
3227 }
3228 #endif				/* CONFIG_PROC_FS */
3229 
3230 /* Handle the fact that while struct ifreq has the same *layout* on
3231  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3232  * which are handled elsewhere, it still has different *size* due to
3233  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3234  * resulting in struct ifreq being 32 and 40 bytes respectively).
3235  * As a result, if the struct happens to be at the end of a page and
3236  * the next page isn't readable/writable, we get a fault. To prevent
3237  * that, copy back and forth to the full size.
3238  */
3239 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3240 {
3241 	if (in_compat_syscall()) {
3242 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3243 
3244 		memset(ifr, 0, sizeof(*ifr));
3245 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3246 			return -EFAULT;
3247 
3248 		if (ifrdata)
3249 			*ifrdata = compat_ptr(ifr32->ifr_data);
3250 
3251 		return 0;
3252 	}
3253 
3254 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3255 		return -EFAULT;
3256 
3257 	if (ifrdata)
3258 		*ifrdata = ifr->ifr_data;
3259 
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL(get_user_ifreq);
3263 
3264 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3265 {
3266 	size_t size = sizeof(*ifr);
3267 
3268 	if (in_compat_syscall())
3269 		size = sizeof(struct compat_ifreq);
3270 
3271 	if (copy_to_user(arg, ifr, size))
3272 		return -EFAULT;
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL(put_user_ifreq);
3277 
3278 #ifdef CONFIG_COMPAT
3279 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3280 {
3281 	compat_uptr_t uptr32;
3282 	struct ifreq ifr;
3283 	void __user *saved;
3284 	int err;
3285 
3286 	if (get_user_ifreq(&ifr, NULL, uifr32))
3287 		return -EFAULT;
3288 
3289 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3290 		return -EFAULT;
3291 
3292 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3293 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3294 
3295 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3296 	if (!err) {
3297 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3298 		if (put_user_ifreq(&ifr, uifr32))
3299 			err = -EFAULT;
3300 	}
3301 	return err;
3302 }
3303 
3304 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3305 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3306 				 struct compat_ifreq __user *u_ifreq32)
3307 {
3308 	struct ifreq ifreq;
3309 	void __user *data;
3310 
3311 	if (!is_socket_ioctl_cmd(cmd))
3312 		return -ENOTTY;
3313 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3314 		return -EFAULT;
3315 	ifreq.ifr_data = data;
3316 
3317 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3318 }
3319 
3320 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3321 			 unsigned int cmd, unsigned long arg)
3322 {
3323 	void __user *argp = compat_ptr(arg);
3324 	struct sock *sk = sock->sk;
3325 	struct net *net = sock_net(sk);
3326 
3327 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3328 		return sock_ioctl(file, cmd, (unsigned long)argp);
3329 
3330 	switch (cmd) {
3331 	case SIOCWANDEV:
3332 		return compat_siocwandev(net, argp);
3333 	case SIOCGSTAMP_OLD:
3334 	case SIOCGSTAMPNS_OLD:
3335 		if (!sock->ops->gettstamp)
3336 			return -ENOIOCTLCMD;
3337 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3338 					    !COMPAT_USE_64BIT_TIME);
3339 
3340 	case SIOCETHTOOL:
3341 	case SIOCBONDSLAVEINFOQUERY:
3342 	case SIOCBONDINFOQUERY:
3343 	case SIOCSHWTSTAMP:
3344 	case SIOCGHWTSTAMP:
3345 		return compat_ifr_data_ioctl(net, cmd, argp);
3346 
3347 	case FIOSETOWN:
3348 	case SIOCSPGRP:
3349 	case FIOGETOWN:
3350 	case SIOCGPGRP:
3351 	case SIOCBRADDBR:
3352 	case SIOCBRDELBR:
3353 	case SIOCGIFVLAN:
3354 	case SIOCSIFVLAN:
3355 	case SIOCGSKNS:
3356 	case SIOCGSTAMP_NEW:
3357 	case SIOCGSTAMPNS_NEW:
3358 	case SIOCGIFCONF:
3359 	case SIOCSIFBR:
3360 	case SIOCGIFBR:
3361 		return sock_ioctl(file, cmd, arg);
3362 
3363 	case SIOCGIFFLAGS:
3364 	case SIOCSIFFLAGS:
3365 	case SIOCGIFMAP:
3366 	case SIOCSIFMAP:
3367 	case SIOCGIFMETRIC:
3368 	case SIOCSIFMETRIC:
3369 	case SIOCGIFMTU:
3370 	case SIOCSIFMTU:
3371 	case SIOCGIFMEM:
3372 	case SIOCSIFMEM:
3373 	case SIOCGIFHWADDR:
3374 	case SIOCSIFHWADDR:
3375 	case SIOCADDMULTI:
3376 	case SIOCDELMULTI:
3377 	case SIOCGIFINDEX:
3378 	case SIOCGIFADDR:
3379 	case SIOCSIFADDR:
3380 	case SIOCSIFHWBROADCAST:
3381 	case SIOCDIFADDR:
3382 	case SIOCGIFBRDADDR:
3383 	case SIOCSIFBRDADDR:
3384 	case SIOCGIFDSTADDR:
3385 	case SIOCSIFDSTADDR:
3386 	case SIOCGIFNETMASK:
3387 	case SIOCSIFNETMASK:
3388 	case SIOCSIFPFLAGS:
3389 	case SIOCGIFPFLAGS:
3390 	case SIOCGIFTXQLEN:
3391 	case SIOCSIFTXQLEN:
3392 	case SIOCBRADDIF:
3393 	case SIOCBRDELIF:
3394 	case SIOCGIFNAME:
3395 	case SIOCSIFNAME:
3396 	case SIOCGMIIPHY:
3397 	case SIOCGMIIREG:
3398 	case SIOCSMIIREG:
3399 	case SIOCBONDENSLAVE:
3400 	case SIOCBONDRELEASE:
3401 	case SIOCBONDSETHWADDR:
3402 	case SIOCBONDCHANGEACTIVE:
3403 	case SIOCSARP:
3404 	case SIOCGARP:
3405 	case SIOCDARP:
3406 	case SIOCOUTQ:
3407 	case SIOCOUTQNSD:
3408 	case SIOCATMARK:
3409 		return sock_do_ioctl(net, sock, cmd, arg);
3410 	}
3411 
3412 	return -ENOIOCTLCMD;
3413 }
3414 
3415 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3416 			      unsigned long arg)
3417 {
3418 	struct socket *sock = file->private_data;
3419 	int ret = -ENOIOCTLCMD;
3420 	struct sock *sk;
3421 	struct net *net;
3422 
3423 	sk = sock->sk;
3424 	net = sock_net(sk);
3425 
3426 	if (sock->ops->compat_ioctl)
3427 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3428 
3429 	if (ret == -ENOIOCTLCMD &&
3430 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3431 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3432 
3433 	if (ret == -ENOIOCTLCMD)
3434 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3435 
3436 	return ret;
3437 }
3438 #endif
3439 
3440 /**
3441  *	kernel_bind - bind an address to a socket (kernel space)
3442  *	@sock: socket
3443  *	@addr: address
3444  *	@addrlen: length of address
3445  *
3446  *	Returns 0 or an error.
3447  */
3448 
3449 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3450 {
3451 	return sock->ops->bind(sock, addr, addrlen);
3452 }
3453 EXPORT_SYMBOL(kernel_bind);
3454 
3455 /**
3456  *	kernel_listen - move socket to listening state (kernel space)
3457  *	@sock: socket
3458  *	@backlog: pending connections queue size
3459  *
3460  *	Returns 0 or an error.
3461  */
3462 
3463 int kernel_listen(struct socket *sock, int backlog)
3464 {
3465 	return sock->ops->listen(sock, backlog);
3466 }
3467 EXPORT_SYMBOL(kernel_listen);
3468 
3469 /**
3470  *	kernel_accept - accept a connection (kernel space)
3471  *	@sock: listening socket
3472  *	@newsock: new connected socket
3473  *	@flags: flags
3474  *
3475  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3476  *	If it fails, @newsock is guaranteed to be %NULL.
3477  *	Returns 0 or an error.
3478  */
3479 
3480 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3481 {
3482 	struct sock *sk = sock->sk;
3483 	int err;
3484 
3485 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3486 			       newsock);
3487 	if (err < 0)
3488 		goto done;
3489 
3490 	err = sock->ops->accept(sock, *newsock, flags, true);
3491 	if (err < 0) {
3492 		sock_release(*newsock);
3493 		*newsock = NULL;
3494 		goto done;
3495 	}
3496 
3497 	(*newsock)->ops = sock->ops;
3498 	__module_get((*newsock)->ops->owner);
3499 
3500 done:
3501 	return err;
3502 }
3503 EXPORT_SYMBOL(kernel_accept);
3504 
3505 /**
3506  *	kernel_connect - connect a socket (kernel space)
3507  *	@sock: socket
3508  *	@addr: address
3509  *	@addrlen: address length
3510  *	@flags: flags (O_NONBLOCK, ...)
3511  *
3512  *	For datagram sockets, @addr is the address to which datagrams are sent
3513  *	by default, and the only address from which datagrams are received.
3514  *	For stream sockets, attempts to connect to @addr.
3515  *	Returns 0 or an error code.
3516  */
3517 
3518 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3519 		   int flags)
3520 {
3521 	return sock->ops->connect(sock, addr, addrlen, flags);
3522 }
3523 EXPORT_SYMBOL(kernel_connect);
3524 
3525 /**
3526  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3527  *	@sock: socket
3528  *	@addr: address holder
3529  *
3530  * 	Fills the @addr pointer with the address which the socket is bound.
3531  *	Returns the length of the address in bytes or an error code.
3532  */
3533 
3534 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3535 {
3536 	return sock->ops->getname(sock, addr, 0);
3537 }
3538 EXPORT_SYMBOL(kernel_getsockname);
3539 
3540 /**
3541  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3542  *	@sock: socket
3543  *	@addr: address holder
3544  *
3545  * 	Fills the @addr pointer with the address which the socket is connected.
3546  *	Returns the length of the address in bytes or an error code.
3547  */
3548 
3549 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3550 {
3551 	return sock->ops->getname(sock, addr, 1);
3552 }
3553 EXPORT_SYMBOL(kernel_getpeername);
3554 
3555 /**
3556  *	kernel_sendpage - send a &page through a socket (kernel space)
3557  *	@sock: socket
3558  *	@page: page
3559  *	@offset: page offset
3560  *	@size: total size in bytes
3561  *	@flags: flags (MSG_DONTWAIT, ...)
3562  *
3563  *	Returns the total amount sent in bytes or an error.
3564  */
3565 
3566 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3567 		    size_t size, int flags)
3568 {
3569 	if (sock->ops->sendpage) {
3570 		/* Warn in case the improper page to zero-copy send */
3571 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3572 		return sock->ops->sendpage(sock, page, offset, size, flags);
3573 	}
3574 	return sock_no_sendpage(sock, page, offset, size, flags);
3575 }
3576 EXPORT_SYMBOL(kernel_sendpage);
3577 
3578 /**
3579  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3580  *	@sk: sock
3581  *	@page: page
3582  *	@offset: page offset
3583  *	@size: total size in bytes
3584  *	@flags: flags (MSG_DONTWAIT, ...)
3585  *
3586  *	Returns the total amount sent in bytes or an error.
3587  *	Caller must hold @sk.
3588  */
3589 
3590 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3591 			   size_t size, int flags)
3592 {
3593 	struct socket *sock = sk->sk_socket;
3594 
3595 	if (sock->ops->sendpage_locked)
3596 		return sock->ops->sendpage_locked(sk, page, offset, size,
3597 						  flags);
3598 
3599 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3600 }
3601 EXPORT_SYMBOL(kernel_sendpage_locked);
3602 
3603 /**
3604  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3605  *	@sock: socket
3606  *	@how: connection part
3607  *
3608  *	Returns 0 or an error.
3609  */
3610 
3611 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3612 {
3613 	return sock->ops->shutdown(sock, how);
3614 }
3615 EXPORT_SYMBOL(kernel_sock_shutdown);
3616 
3617 /**
3618  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3619  *	@sk: socket
3620  *
3621  *	This routine returns the IP overhead imposed by a socket i.e.
3622  *	the length of the underlying IP header, depending on whether
3623  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3624  *	on at the socket. Assumes that the caller has a lock on the socket.
3625  */
3626 
3627 u32 kernel_sock_ip_overhead(struct sock *sk)
3628 {
3629 	struct inet_sock *inet;
3630 	struct ip_options_rcu *opt;
3631 	u32 overhead = 0;
3632 #if IS_ENABLED(CONFIG_IPV6)
3633 	struct ipv6_pinfo *np;
3634 	struct ipv6_txoptions *optv6 = NULL;
3635 #endif /* IS_ENABLED(CONFIG_IPV6) */
3636 
3637 	if (!sk)
3638 		return overhead;
3639 
3640 	switch (sk->sk_family) {
3641 	case AF_INET:
3642 		inet = inet_sk(sk);
3643 		overhead += sizeof(struct iphdr);
3644 		opt = rcu_dereference_protected(inet->inet_opt,
3645 						sock_owned_by_user(sk));
3646 		if (opt)
3647 			overhead += opt->opt.optlen;
3648 		return overhead;
3649 #if IS_ENABLED(CONFIG_IPV6)
3650 	case AF_INET6:
3651 		np = inet6_sk(sk);
3652 		overhead += sizeof(struct ipv6hdr);
3653 		if (np)
3654 			optv6 = rcu_dereference_protected(np->opt,
3655 							  sock_owned_by_user(sk));
3656 		if (optv6)
3657 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3658 		return overhead;
3659 #endif /* IS_ENABLED(CONFIG_IPV6) */
3660 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3661 		return overhead;
3662 	}
3663 }
3664 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3665