1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * too is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 static bool skb_is_err_queue(const struct sk_buff *skb) 656 { 657 /* pkt_type of skbs enqueued on the error queue are set to 658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 659 * in recvmsg, since skbs received on a local socket will never 660 * have a pkt_type of PACKET_OUTGOING. 661 */ 662 return skb->pkt_type == PACKET_OUTGOING; 663 } 664 665 /* 666 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 667 */ 668 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 669 struct sk_buff *skb) 670 { 671 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 672 struct scm_timestamping tss; 673 int empty = 1; 674 struct skb_shared_hwtstamps *shhwtstamps = 675 skb_hwtstamps(skb); 676 677 /* Race occurred between timestamp enabling and packet 678 receiving. Fill in the current time for now. */ 679 if (need_software_tstamp && skb->tstamp == 0) 680 __net_timestamp(skb); 681 682 if (need_software_tstamp) { 683 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 684 struct timeval tv; 685 skb_get_timestamp(skb, &tv); 686 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 687 sizeof(tv), &tv); 688 } else { 689 struct timespec ts; 690 skb_get_timestampns(skb, &ts); 691 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 692 sizeof(ts), &ts); 693 } 694 } 695 696 memset(&tss, 0, sizeof(tss)); 697 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 698 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 699 empty = 0; 700 if (shhwtstamps && 701 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 702 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 703 empty = 0; 704 if (!empty) { 705 put_cmsg(msg, SOL_SOCKET, 706 SCM_TIMESTAMPING, sizeof(tss), &tss); 707 708 if (skb_is_err_queue(skb) && skb->len && 709 SKB_EXT_ERR(skb)->opt_stats) 710 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 711 skb->len, skb->data); 712 } 713 } 714 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 715 716 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 717 struct sk_buff *skb) 718 { 719 int ack; 720 721 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 722 return; 723 if (!skb->wifi_acked_valid) 724 return; 725 726 ack = skb->wifi_acked; 727 728 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 729 } 730 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 731 732 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 733 struct sk_buff *skb) 734 { 735 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 736 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 737 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 738 } 739 740 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 741 struct sk_buff *skb) 742 { 743 sock_recv_timestamp(msg, sk, skb); 744 sock_recv_drops(msg, sk, skb); 745 } 746 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 747 748 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 749 int flags) 750 { 751 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 752 } 753 754 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 755 { 756 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 757 758 return err ?: sock_recvmsg_nosec(sock, msg, flags); 759 } 760 EXPORT_SYMBOL(sock_recvmsg); 761 762 /** 763 * kernel_recvmsg - Receive a message from a socket (kernel space) 764 * @sock: The socket to receive the message from 765 * @msg: Received message 766 * @vec: Input s/g array for message data 767 * @num: Size of input s/g array 768 * @size: Number of bytes to read 769 * @flags: Message flags (MSG_DONTWAIT, etc...) 770 * 771 * On return the msg structure contains the scatter/gather array passed in the 772 * vec argument. The array is modified so that it consists of the unfilled 773 * portion of the original array. 774 * 775 * The returned value is the total number of bytes received, or an error. 776 */ 777 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 778 struct kvec *vec, size_t num, size_t size, int flags) 779 { 780 mm_segment_t oldfs = get_fs(); 781 int result; 782 783 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 784 set_fs(KERNEL_DS); 785 result = sock_recvmsg(sock, msg, flags); 786 set_fs(oldfs); 787 return result; 788 } 789 EXPORT_SYMBOL(kernel_recvmsg); 790 791 static ssize_t sock_sendpage(struct file *file, struct page *page, 792 int offset, size_t size, loff_t *ppos, int more) 793 { 794 struct socket *sock; 795 int flags; 796 797 sock = file->private_data; 798 799 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 800 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 801 flags |= more; 802 803 return kernel_sendpage(sock, page, offset, size, flags); 804 } 805 806 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 807 struct pipe_inode_info *pipe, size_t len, 808 unsigned int flags) 809 { 810 struct socket *sock = file->private_data; 811 812 if (unlikely(!sock->ops->splice_read)) 813 return -EINVAL; 814 815 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 816 } 817 818 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 819 { 820 struct file *file = iocb->ki_filp; 821 struct socket *sock = file->private_data; 822 struct msghdr msg = {.msg_iter = *to, 823 .msg_iocb = iocb}; 824 ssize_t res; 825 826 if (file->f_flags & O_NONBLOCK) 827 msg.msg_flags = MSG_DONTWAIT; 828 829 if (iocb->ki_pos != 0) 830 return -ESPIPE; 831 832 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 833 return 0; 834 835 res = sock_recvmsg(sock, &msg, msg.msg_flags); 836 *to = msg.msg_iter; 837 return res; 838 } 839 840 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 841 { 842 struct file *file = iocb->ki_filp; 843 struct socket *sock = file->private_data; 844 struct msghdr msg = {.msg_iter = *from, 845 .msg_iocb = iocb}; 846 ssize_t res; 847 848 if (iocb->ki_pos != 0) 849 return -ESPIPE; 850 851 if (file->f_flags & O_NONBLOCK) 852 msg.msg_flags = MSG_DONTWAIT; 853 854 if (sock->type == SOCK_SEQPACKET) 855 msg.msg_flags |= MSG_EOR; 856 857 res = sock_sendmsg(sock, &msg); 858 *from = msg.msg_iter; 859 return res; 860 } 861 862 /* 863 * Atomic setting of ioctl hooks to avoid race 864 * with module unload. 865 */ 866 867 static DEFINE_MUTEX(br_ioctl_mutex); 868 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 869 870 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 871 { 872 mutex_lock(&br_ioctl_mutex); 873 br_ioctl_hook = hook; 874 mutex_unlock(&br_ioctl_mutex); 875 } 876 EXPORT_SYMBOL(brioctl_set); 877 878 static DEFINE_MUTEX(vlan_ioctl_mutex); 879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 880 881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 882 { 883 mutex_lock(&vlan_ioctl_mutex); 884 vlan_ioctl_hook = hook; 885 mutex_unlock(&vlan_ioctl_mutex); 886 } 887 EXPORT_SYMBOL(vlan_ioctl_set); 888 889 static DEFINE_MUTEX(dlci_ioctl_mutex); 890 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 891 892 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 893 { 894 mutex_lock(&dlci_ioctl_mutex); 895 dlci_ioctl_hook = hook; 896 mutex_unlock(&dlci_ioctl_mutex); 897 } 898 EXPORT_SYMBOL(dlci_ioctl_set); 899 900 static long sock_do_ioctl(struct net *net, struct socket *sock, 901 unsigned int cmd, unsigned long arg) 902 { 903 int err; 904 void __user *argp = (void __user *)arg; 905 906 err = sock->ops->ioctl(sock, cmd, arg); 907 908 /* 909 * If this ioctl is unknown try to hand it down 910 * to the NIC driver. 911 */ 912 if (err == -ENOIOCTLCMD) 913 err = dev_ioctl(net, cmd, argp); 914 915 return err; 916 } 917 918 /* 919 * With an ioctl, arg may well be a user mode pointer, but we don't know 920 * what to do with it - that's up to the protocol still. 921 */ 922 923 static struct ns_common *get_net_ns(struct ns_common *ns) 924 { 925 return &get_net(container_of(ns, struct net, ns))->ns; 926 } 927 928 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 929 { 930 struct socket *sock; 931 struct sock *sk; 932 void __user *argp = (void __user *)arg; 933 int pid, err; 934 struct net *net; 935 936 sock = file->private_data; 937 sk = sock->sk; 938 net = sock_net(sk); 939 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 940 err = dev_ioctl(net, cmd, argp); 941 } else 942 #ifdef CONFIG_WEXT_CORE 943 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 944 err = dev_ioctl(net, cmd, argp); 945 } else 946 #endif 947 switch (cmd) { 948 case FIOSETOWN: 949 case SIOCSPGRP: 950 err = -EFAULT; 951 if (get_user(pid, (int __user *)argp)) 952 break; 953 f_setown(sock->file, pid, 1); 954 err = 0; 955 break; 956 case FIOGETOWN: 957 case SIOCGPGRP: 958 err = put_user(f_getown(sock->file), 959 (int __user *)argp); 960 break; 961 case SIOCGIFBR: 962 case SIOCSIFBR: 963 case SIOCBRADDBR: 964 case SIOCBRDELBR: 965 err = -ENOPKG; 966 if (!br_ioctl_hook) 967 request_module("bridge"); 968 969 mutex_lock(&br_ioctl_mutex); 970 if (br_ioctl_hook) 971 err = br_ioctl_hook(net, cmd, argp); 972 mutex_unlock(&br_ioctl_mutex); 973 break; 974 case SIOCGIFVLAN: 975 case SIOCSIFVLAN: 976 err = -ENOPKG; 977 if (!vlan_ioctl_hook) 978 request_module("8021q"); 979 980 mutex_lock(&vlan_ioctl_mutex); 981 if (vlan_ioctl_hook) 982 err = vlan_ioctl_hook(net, argp); 983 mutex_unlock(&vlan_ioctl_mutex); 984 break; 985 case SIOCADDDLCI: 986 case SIOCDELDLCI: 987 err = -ENOPKG; 988 if (!dlci_ioctl_hook) 989 request_module("dlci"); 990 991 mutex_lock(&dlci_ioctl_mutex); 992 if (dlci_ioctl_hook) 993 err = dlci_ioctl_hook(cmd, argp); 994 mutex_unlock(&dlci_ioctl_mutex); 995 break; 996 case SIOCGSKNS: 997 err = -EPERM; 998 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 999 break; 1000 1001 err = open_related_ns(&net->ns, get_net_ns); 1002 break; 1003 default: 1004 err = sock_do_ioctl(net, sock, cmd, arg); 1005 break; 1006 } 1007 return err; 1008 } 1009 1010 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1011 { 1012 int err; 1013 struct socket *sock = NULL; 1014 1015 err = security_socket_create(family, type, protocol, 1); 1016 if (err) 1017 goto out; 1018 1019 sock = sock_alloc(); 1020 if (!sock) { 1021 err = -ENOMEM; 1022 goto out; 1023 } 1024 1025 sock->type = type; 1026 err = security_socket_post_create(sock, family, type, protocol, 1); 1027 if (err) 1028 goto out_release; 1029 1030 out: 1031 *res = sock; 1032 return err; 1033 out_release: 1034 sock_release(sock); 1035 sock = NULL; 1036 goto out; 1037 } 1038 EXPORT_SYMBOL(sock_create_lite); 1039 1040 /* No kernel lock held - perfect */ 1041 static unsigned int sock_poll(struct file *file, poll_table *wait) 1042 { 1043 unsigned int busy_flag = 0; 1044 struct socket *sock; 1045 1046 /* 1047 * We can't return errors to poll, so it's either yes or no. 1048 */ 1049 sock = file->private_data; 1050 1051 if (sk_can_busy_loop(sock->sk)) { 1052 /* this socket can poll_ll so tell the system call */ 1053 busy_flag = POLL_BUSY_LOOP; 1054 1055 /* once, only if requested by syscall */ 1056 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1057 sk_busy_loop(sock->sk, 1); 1058 } 1059 1060 return busy_flag | sock->ops->poll(file, sock, wait); 1061 } 1062 1063 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1064 { 1065 struct socket *sock = file->private_data; 1066 1067 return sock->ops->mmap(file, sock, vma); 1068 } 1069 1070 static int sock_close(struct inode *inode, struct file *filp) 1071 { 1072 sock_release(SOCKET_I(inode)); 1073 return 0; 1074 } 1075 1076 /* 1077 * Update the socket async list 1078 * 1079 * Fasync_list locking strategy. 1080 * 1081 * 1. fasync_list is modified only under process context socket lock 1082 * i.e. under semaphore. 1083 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1084 * or under socket lock 1085 */ 1086 1087 static int sock_fasync(int fd, struct file *filp, int on) 1088 { 1089 struct socket *sock = filp->private_data; 1090 struct sock *sk = sock->sk; 1091 struct socket_wq *wq; 1092 1093 if (sk == NULL) 1094 return -EINVAL; 1095 1096 lock_sock(sk); 1097 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1098 fasync_helper(fd, filp, on, &wq->fasync_list); 1099 1100 if (!wq->fasync_list) 1101 sock_reset_flag(sk, SOCK_FASYNC); 1102 else 1103 sock_set_flag(sk, SOCK_FASYNC); 1104 1105 release_sock(sk); 1106 return 0; 1107 } 1108 1109 /* This function may be called only under rcu_lock */ 1110 1111 int sock_wake_async(struct socket_wq *wq, int how, int band) 1112 { 1113 if (!wq || !wq->fasync_list) 1114 return -1; 1115 1116 switch (how) { 1117 case SOCK_WAKE_WAITD: 1118 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1119 break; 1120 goto call_kill; 1121 case SOCK_WAKE_SPACE: 1122 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1123 break; 1124 /* fall through */ 1125 case SOCK_WAKE_IO: 1126 call_kill: 1127 kill_fasync(&wq->fasync_list, SIGIO, band); 1128 break; 1129 case SOCK_WAKE_URG: 1130 kill_fasync(&wq->fasync_list, SIGURG, band); 1131 } 1132 1133 return 0; 1134 } 1135 EXPORT_SYMBOL(sock_wake_async); 1136 1137 int __sock_create(struct net *net, int family, int type, int protocol, 1138 struct socket **res, int kern) 1139 { 1140 int err; 1141 struct socket *sock; 1142 const struct net_proto_family *pf; 1143 1144 /* 1145 * Check protocol is in range 1146 */ 1147 if (family < 0 || family >= NPROTO) 1148 return -EAFNOSUPPORT; 1149 if (type < 0 || type >= SOCK_MAX) 1150 return -EINVAL; 1151 1152 /* Compatibility. 1153 1154 This uglymoron is moved from INET layer to here to avoid 1155 deadlock in module load. 1156 */ 1157 if (family == PF_INET && type == SOCK_PACKET) { 1158 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1159 current->comm); 1160 family = PF_PACKET; 1161 } 1162 1163 err = security_socket_create(family, type, protocol, kern); 1164 if (err) 1165 return err; 1166 1167 /* 1168 * Allocate the socket and allow the family to set things up. if 1169 * the protocol is 0, the family is instructed to select an appropriate 1170 * default. 1171 */ 1172 sock = sock_alloc(); 1173 if (!sock) { 1174 net_warn_ratelimited("socket: no more sockets\n"); 1175 return -ENFILE; /* Not exactly a match, but its the 1176 closest posix thing */ 1177 } 1178 1179 sock->type = type; 1180 1181 #ifdef CONFIG_MODULES 1182 /* Attempt to load a protocol module if the find failed. 1183 * 1184 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1185 * requested real, full-featured networking support upon configuration. 1186 * Otherwise module support will break! 1187 */ 1188 if (rcu_access_pointer(net_families[family]) == NULL) 1189 request_module("net-pf-%d", family); 1190 #endif 1191 1192 rcu_read_lock(); 1193 pf = rcu_dereference(net_families[family]); 1194 err = -EAFNOSUPPORT; 1195 if (!pf) 1196 goto out_release; 1197 1198 /* 1199 * We will call the ->create function, that possibly is in a loadable 1200 * module, so we have to bump that loadable module refcnt first. 1201 */ 1202 if (!try_module_get(pf->owner)) 1203 goto out_release; 1204 1205 /* Now protected by module ref count */ 1206 rcu_read_unlock(); 1207 1208 err = pf->create(net, sock, protocol, kern); 1209 if (err < 0) 1210 goto out_module_put; 1211 1212 /* 1213 * Now to bump the refcnt of the [loadable] module that owns this 1214 * socket at sock_release time we decrement its refcnt. 1215 */ 1216 if (!try_module_get(sock->ops->owner)) 1217 goto out_module_busy; 1218 1219 /* 1220 * Now that we're done with the ->create function, the [loadable] 1221 * module can have its refcnt decremented 1222 */ 1223 module_put(pf->owner); 1224 err = security_socket_post_create(sock, family, type, protocol, kern); 1225 if (err) 1226 goto out_sock_release; 1227 *res = sock; 1228 1229 return 0; 1230 1231 out_module_busy: 1232 err = -EAFNOSUPPORT; 1233 out_module_put: 1234 sock->ops = NULL; 1235 module_put(pf->owner); 1236 out_sock_release: 1237 sock_release(sock); 1238 return err; 1239 1240 out_release: 1241 rcu_read_unlock(); 1242 goto out_sock_release; 1243 } 1244 EXPORT_SYMBOL(__sock_create); 1245 1246 int sock_create(int family, int type, int protocol, struct socket **res) 1247 { 1248 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1249 } 1250 EXPORT_SYMBOL(sock_create); 1251 1252 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1253 { 1254 return __sock_create(net, family, type, protocol, res, 1); 1255 } 1256 EXPORT_SYMBOL(sock_create_kern); 1257 1258 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1259 { 1260 int retval; 1261 struct socket *sock; 1262 int flags; 1263 1264 /* Check the SOCK_* constants for consistency. */ 1265 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1266 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1267 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1268 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1269 1270 flags = type & ~SOCK_TYPE_MASK; 1271 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1272 return -EINVAL; 1273 type &= SOCK_TYPE_MASK; 1274 1275 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1276 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1277 1278 retval = sock_create(family, type, protocol, &sock); 1279 if (retval < 0) 1280 goto out; 1281 1282 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1283 if (retval < 0) 1284 goto out_release; 1285 1286 out: 1287 /* It may be already another descriptor 8) Not kernel problem. */ 1288 return retval; 1289 1290 out_release: 1291 sock_release(sock); 1292 return retval; 1293 } 1294 1295 /* 1296 * Create a pair of connected sockets. 1297 */ 1298 1299 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1300 int __user *, usockvec) 1301 { 1302 struct socket *sock1, *sock2; 1303 int fd1, fd2, err; 1304 struct file *newfile1, *newfile2; 1305 int flags; 1306 1307 flags = type & ~SOCK_TYPE_MASK; 1308 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1309 return -EINVAL; 1310 type &= SOCK_TYPE_MASK; 1311 1312 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1313 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1314 1315 /* 1316 * Obtain the first socket and check if the underlying protocol 1317 * supports the socketpair call. 1318 */ 1319 1320 err = sock_create(family, type, protocol, &sock1); 1321 if (err < 0) 1322 goto out; 1323 1324 err = sock_create(family, type, protocol, &sock2); 1325 if (err < 0) 1326 goto out_release_1; 1327 1328 err = sock1->ops->socketpair(sock1, sock2); 1329 if (err < 0) 1330 goto out_release_both; 1331 1332 fd1 = get_unused_fd_flags(flags); 1333 if (unlikely(fd1 < 0)) { 1334 err = fd1; 1335 goto out_release_both; 1336 } 1337 1338 fd2 = get_unused_fd_flags(flags); 1339 if (unlikely(fd2 < 0)) { 1340 err = fd2; 1341 goto out_put_unused_1; 1342 } 1343 1344 newfile1 = sock_alloc_file(sock1, flags, NULL); 1345 if (IS_ERR(newfile1)) { 1346 err = PTR_ERR(newfile1); 1347 goto out_put_unused_both; 1348 } 1349 1350 newfile2 = sock_alloc_file(sock2, flags, NULL); 1351 if (IS_ERR(newfile2)) { 1352 err = PTR_ERR(newfile2); 1353 goto out_fput_1; 1354 } 1355 1356 err = put_user(fd1, &usockvec[0]); 1357 if (err) 1358 goto out_fput_both; 1359 1360 err = put_user(fd2, &usockvec[1]); 1361 if (err) 1362 goto out_fput_both; 1363 1364 audit_fd_pair(fd1, fd2); 1365 1366 fd_install(fd1, newfile1); 1367 fd_install(fd2, newfile2); 1368 /* fd1 and fd2 may be already another descriptors. 1369 * Not kernel problem. 1370 */ 1371 1372 return 0; 1373 1374 out_fput_both: 1375 fput(newfile2); 1376 fput(newfile1); 1377 put_unused_fd(fd2); 1378 put_unused_fd(fd1); 1379 goto out; 1380 1381 out_fput_1: 1382 fput(newfile1); 1383 put_unused_fd(fd2); 1384 put_unused_fd(fd1); 1385 sock_release(sock2); 1386 goto out; 1387 1388 out_put_unused_both: 1389 put_unused_fd(fd2); 1390 out_put_unused_1: 1391 put_unused_fd(fd1); 1392 out_release_both: 1393 sock_release(sock2); 1394 out_release_1: 1395 sock_release(sock1); 1396 out: 1397 return err; 1398 } 1399 1400 /* 1401 * Bind a name to a socket. Nothing much to do here since it's 1402 * the protocol's responsibility to handle the local address. 1403 * 1404 * We move the socket address to kernel space before we call 1405 * the protocol layer (having also checked the address is ok). 1406 */ 1407 1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1409 { 1410 struct socket *sock; 1411 struct sockaddr_storage address; 1412 int err, fput_needed; 1413 1414 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1415 if (sock) { 1416 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1417 if (err >= 0) { 1418 err = security_socket_bind(sock, 1419 (struct sockaddr *)&address, 1420 addrlen); 1421 if (!err) 1422 err = sock->ops->bind(sock, 1423 (struct sockaddr *) 1424 &address, addrlen); 1425 } 1426 fput_light(sock->file, fput_needed); 1427 } 1428 return err; 1429 } 1430 1431 /* 1432 * Perform a listen. Basically, we allow the protocol to do anything 1433 * necessary for a listen, and if that works, we mark the socket as 1434 * ready for listening. 1435 */ 1436 1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1438 { 1439 struct socket *sock; 1440 int err, fput_needed; 1441 int somaxconn; 1442 1443 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1444 if (sock) { 1445 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1446 if ((unsigned int)backlog > somaxconn) 1447 backlog = somaxconn; 1448 1449 err = security_socket_listen(sock, backlog); 1450 if (!err) 1451 err = sock->ops->listen(sock, backlog); 1452 1453 fput_light(sock->file, fput_needed); 1454 } 1455 return err; 1456 } 1457 1458 /* 1459 * For accept, we attempt to create a new socket, set up the link 1460 * with the client, wake up the client, then return the new 1461 * connected fd. We collect the address of the connector in kernel 1462 * space and move it to user at the very end. This is unclean because 1463 * we open the socket then return an error. 1464 * 1465 * 1003.1g adds the ability to recvmsg() to query connection pending 1466 * status to recvmsg. We need to add that support in a way thats 1467 * clean when we restucture accept also. 1468 */ 1469 1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1471 int __user *, upeer_addrlen, int, flags) 1472 { 1473 struct socket *sock, *newsock; 1474 struct file *newfile; 1475 int err, len, newfd, fput_needed; 1476 struct sockaddr_storage address; 1477 1478 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1479 return -EINVAL; 1480 1481 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1482 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1483 1484 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1485 if (!sock) 1486 goto out; 1487 1488 err = -ENFILE; 1489 newsock = sock_alloc(); 1490 if (!newsock) 1491 goto out_put; 1492 1493 newsock->type = sock->type; 1494 newsock->ops = sock->ops; 1495 1496 /* 1497 * We don't need try_module_get here, as the listening socket (sock) 1498 * has the protocol module (sock->ops->owner) held. 1499 */ 1500 __module_get(newsock->ops->owner); 1501 1502 newfd = get_unused_fd_flags(flags); 1503 if (unlikely(newfd < 0)) { 1504 err = newfd; 1505 sock_release(newsock); 1506 goto out_put; 1507 } 1508 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1509 if (IS_ERR(newfile)) { 1510 err = PTR_ERR(newfile); 1511 put_unused_fd(newfd); 1512 sock_release(newsock); 1513 goto out_put; 1514 } 1515 1516 err = security_socket_accept(sock, newsock); 1517 if (err) 1518 goto out_fd; 1519 1520 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1521 if (err < 0) 1522 goto out_fd; 1523 1524 if (upeer_sockaddr) { 1525 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1526 &len, 2) < 0) { 1527 err = -ECONNABORTED; 1528 goto out_fd; 1529 } 1530 err = move_addr_to_user(&address, 1531 len, upeer_sockaddr, upeer_addrlen); 1532 if (err < 0) 1533 goto out_fd; 1534 } 1535 1536 /* File flags are not inherited via accept() unlike another OSes. */ 1537 1538 fd_install(newfd, newfile); 1539 err = newfd; 1540 1541 out_put: 1542 fput_light(sock->file, fput_needed); 1543 out: 1544 return err; 1545 out_fd: 1546 fput(newfile); 1547 put_unused_fd(newfd); 1548 goto out_put; 1549 } 1550 1551 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1552 int __user *, upeer_addrlen) 1553 { 1554 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1555 } 1556 1557 /* 1558 * Attempt to connect to a socket with the server address. The address 1559 * is in user space so we verify it is OK and move it to kernel space. 1560 * 1561 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1562 * break bindings 1563 * 1564 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1565 * other SEQPACKET protocols that take time to connect() as it doesn't 1566 * include the -EINPROGRESS status for such sockets. 1567 */ 1568 1569 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1570 int, addrlen) 1571 { 1572 struct socket *sock; 1573 struct sockaddr_storage address; 1574 int err, fput_needed; 1575 1576 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1577 if (!sock) 1578 goto out; 1579 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1580 if (err < 0) 1581 goto out_put; 1582 1583 err = 1584 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1585 if (err) 1586 goto out_put; 1587 1588 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1589 sock->file->f_flags); 1590 out_put: 1591 fput_light(sock->file, fput_needed); 1592 out: 1593 return err; 1594 } 1595 1596 /* 1597 * Get the local address ('name') of a socket object. Move the obtained 1598 * name to user space. 1599 */ 1600 1601 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1602 int __user *, usockaddr_len) 1603 { 1604 struct socket *sock; 1605 struct sockaddr_storage address; 1606 int len, err, fput_needed; 1607 1608 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1609 if (!sock) 1610 goto out; 1611 1612 err = security_socket_getsockname(sock); 1613 if (err) 1614 goto out_put; 1615 1616 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1617 if (err) 1618 goto out_put; 1619 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1620 1621 out_put: 1622 fput_light(sock->file, fput_needed); 1623 out: 1624 return err; 1625 } 1626 1627 /* 1628 * Get the remote address ('name') of a socket object. Move the obtained 1629 * name to user space. 1630 */ 1631 1632 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1633 int __user *, usockaddr_len) 1634 { 1635 struct socket *sock; 1636 struct sockaddr_storage address; 1637 int len, err, fput_needed; 1638 1639 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1640 if (sock != NULL) { 1641 err = security_socket_getpeername(sock); 1642 if (err) { 1643 fput_light(sock->file, fput_needed); 1644 return err; 1645 } 1646 1647 err = 1648 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1649 1); 1650 if (!err) 1651 err = move_addr_to_user(&address, len, usockaddr, 1652 usockaddr_len); 1653 fput_light(sock->file, fput_needed); 1654 } 1655 return err; 1656 } 1657 1658 /* 1659 * Send a datagram to a given address. We move the address into kernel 1660 * space and check the user space data area is readable before invoking 1661 * the protocol. 1662 */ 1663 1664 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1665 unsigned int, flags, struct sockaddr __user *, addr, 1666 int, addr_len) 1667 { 1668 struct socket *sock; 1669 struct sockaddr_storage address; 1670 int err; 1671 struct msghdr msg; 1672 struct iovec iov; 1673 int fput_needed; 1674 1675 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1676 if (unlikely(err)) 1677 return err; 1678 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1679 if (!sock) 1680 goto out; 1681 1682 msg.msg_name = NULL; 1683 msg.msg_control = NULL; 1684 msg.msg_controllen = 0; 1685 msg.msg_namelen = 0; 1686 if (addr) { 1687 err = move_addr_to_kernel(addr, addr_len, &address); 1688 if (err < 0) 1689 goto out_put; 1690 msg.msg_name = (struct sockaddr *)&address; 1691 msg.msg_namelen = addr_len; 1692 } 1693 if (sock->file->f_flags & O_NONBLOCK) 1694 flags |= MSG_DONTWAIT; 1695 msg.msg_flags = flags; 1696 err = sock_sendmsg(sock, &msg); 1697 1698 out_put: 1699 fput_light(sock->file, fput_needed); 1700 out: 1701 return err; 1702 } 1703 1704 /* 1705 * Send a datagram down a socket. 1706 */ 1707 1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1709 unsigned int, flags) 1710 { 1711 return sys_sendto(fd, buff, len, flags, NULL, 0); 1712 } 1713 1714 /* 1715 * Receive a frame from the socket and optionally record the address of the 1716 * sender. We verify the buffers are writable and if needed move the 1717 * sender address from kernel to user space. 1718 */ 1719 1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1721 unsigned int, flags, struct sockaddr __user *, addr, 1722 int __user *, addr_len) 1723 { 1724 struct socket *sock; 1725 struct iovec iov; 1726 struct msghdr msg; 1727 struct sockaddr_storage address; 1728 int err, err2; 1729 int fput_needed; 1730 1731 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1732 if (unlikely(err)) 1733 return err; 1734 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1735 if (!sock) 1736 goto out; 1737 1738 msg.msg_control = NULL; 1739 msg.msg_controllen = 0; 1740 /* Save some cycles and don't copy the address if not needed */ 1741 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1742 /* We assume all kernel code knows the size of sockaddr_storage */ 1743 msg.msg_namelen = 0; 1744 msg.msg_iocb = NULL; 1745 msg.msg_flags = 0; 1746 if (sock->file->f_flags & O_NONBLOCK) 1747 flags |= MSG_DONTWAIT; 1748 err = sock_recvmsg(sock, &msg, flags); 1749 1750 if (err >= 0 && addr != NULL) { 1751 err2 = move_addr_to_user(&address, 1752 msg.msg_namelen, addr, addr_len); 1753 if (err2 < 0) 1754 err = err2; 1755 } 1756 1757 fput_light(sock->file, fput_needed); 1758 out: 1759 return err; 1760 } 1761 1762 /* 1763 * Receive a datagram from a socket. 1764 */ 1765 1766 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1767 unsigned int, flags) 1768 { 1769 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1770 } 1771 1772 /* 1773 * Set a socket option. Because we don't know the option lengths we have 1774 * to pass the user mode parameter for the protocols to sort out. 1775 */ 1776 1777 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1778 char __user *, optval, int, optlen) 1779 { 1780 int err, fput_needed; 1781 struct socket *sock; 1782 1783 if (optlen < 0) 1784 return -EINVAL; 1785 1786 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1787 if (sock != NULL) { 1788 err = security_socket_setsockopt(sock, level, optname); 1789 if (err) 1790 goto out_put; 1791 1792 if (level == SOL_SOCKET) 1793 err = 1794 sock_setsockopt(sock, level, optname, optval, 1795 optlen); 1796 else 1797 err = 1798 sock->ops->setsockopt(sock, level, optname, optval, 1799 optlen); 1800 out_put: 1801 fput_light(sock->file, fput_needed); 1802 } 1803 return err; 1804 } 1805 1806 /* 1807 * Get a socket option. Because we don't know the option lengths we have 1808 * to pass a user mode parameter for the protocols to sort out. 1809 */ 1810 1811 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1812 char __user *, optval, int __user *, optlen) 1813 { 1814 int err, fput_needed; 1815 struct socket *sock; 1816 1817 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1818 if (sock != NULL) { 1819 err = security_socket_getsockopt(sock, level, optname); 1820 if (err) 1821 goto out_put; 1822 1823 if (level == SOL_SOCKET) 1824 err = 1825 sock_getsockopt(sock, level, optname, optval, 1826 optlen); 1827 else 1828 err = 1829 sock->ops->getsockopt(sock, level, optname, optval, 1830 optlen); 1831 out_put: 1832 fput_light(sock->file, fput_needed); 1833 } 1834 return err; 1835 } 1836 1837 /* 1838 * Shutdown a socket. 1839 */ 1840 1841 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1842 { 1843 int err, fput_needed; 1844 struct socket *sock; 1845 1846 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1847 if (sock != NULL) { 1848 err = security_socket_shutdown(sock, how); 1849 if (!err) 1850 err = sock->ops->shutdown(sock, how); 1851 fput_light(sock->file, fput_needed); 1852 } 1853 return err; 1854 } 1855 1856 /* A couple of helpful macros for getting the address of the 32/64 bit 1857 * fields which are the same type (int / unsigned) on our platforms. 1858 */ 1859 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1860 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1861 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1862 1863 struct used_address { 1864 struct sockaddr_storage name; 1865 unsigned int name_len; 1866 }; 1867 1868 static int copy_msghdr_from_user(struct msghdr *kmsg, 1869 struct user_msghdr __user *umsg, 1870 struct sockaddr __user **save_addr, 1871 struct iovec **iov) 1872 { 1873 struct sockaddr __user *uaddr; 1874 struct iovec __user *uiov; 1875 size_t nr_segs; 1876 ssize_t err; 1877 1878 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1879 __get_user(uaddr, &umsg->msg_name) || 1880 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1881 __get_user(uiov, &umsg->msg_iov) || 1882 __get_user(nr_segs, &umsg->msg_iovlen) || 1883 __get_user(kmsg->msg_control, &umsg->msg_control) || 1884 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1885 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1886 return -EFAULT; 1887 1888 if (!uaddr) 1889 kmsg->msg_namelen = 0; 1890 1891 if (kmsg->msg_namelen < 0) 1892 return -EINVAL; 1893 1894 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1895 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1896 1897 if (save_addr) 1898 *save_addr = uaddr; 1899 1900 if (uaddr && kmsg->msg_namelen) { 1901 if (!save_addr) { 1902 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1903 kmsg->msg_name); 1904 if (err < 0) 1905 return err; 1906 } 1907 } else { 1908 kmsg->msg_name = NULL; 1909 kmsg->msg_namelen = 0; 1910 } 1911 1912 if (nr_segs > UIO_MAXIOV) 1913 return -EMSGSIZE; 1914 1915 kmsg->msg_iocb = NULL; 1916 1917 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1918 UIO_FASTIOV, iov, &kmsg->msg_iter); 1919 } 1920 1921 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1922 struct msghdr *msg_sys, unsigned int flags, 1923 struct used_address *used_address, 1924 unsigned int allowed_msghdr_flags) 1925 { 1926 struct compat_msghdr __user *msg_compat = 1927 (struct compat_msghdr __user *)msg; 1928 struct sockaddr_storage address; 1929 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1930 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1931 __aligned(sizeof(__kernel_size_t)); 1932 /* 20 is size of ipv6_pktinfo */ 1933 unsigned char *ctl_buf = ctl; 1934 int ctl_len; 1935 ssize_t err; 1936 1937 msg_sys->msg_name = &address; 1938 1939 if (MSG_CMSG_COMPAT & flags) 1940 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1941 else 1942 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1943 if (err < 0) 1944 return err; 1945 1946 err = -ENOBUFS; 1947 1948 if (msg_sys->msg_controllen > INT_MAX) 1949 goto out_freeiov; 1950 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1951 ctl_len = msg_sys->msg_controllen; 1952 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1953 err = 1954 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1955 sizeof(ctl)); 1956 if (err) 1957 goto out_freeiov; 1958 ctl_buf = msg_sys->msg_control; 1959 ctl_len = msg_sys->msg_controllen; 1960 } else if (ctl_len) { 1961 BUILD_BUG_ON(sizeof(struct cmsghdr) != 1962 CMSG_ALIGN(sizeof(struct cmsghdr))); 1963 if (ctl_len > sizeof(ctl)) { 1964 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1965 if (ctl_buf == NULL) 1966 goto out_freeiov; 1967 } 1968 err = -EFAULT; 1969 /* 1970 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1971 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1972 * checking falls down on this. 1973 */ 1974 if (copy_from_user(ctl_buf, 1975 (void __user __force *)msg_sys->msg_control, 1976 ctl_len)) 1977 goto out_freectl; 1978 msg_sys->msg_control = ctl_buf; 1979 } 1980 msg_sys->msg_flags = flags; 1981 1982 if (sock->file->f_flags & O_NONBLOCK) 1983 msg_sys->msg_flags |= MSG_DONTWAIT; 1984 /* 1985 * If this is sendmmsg() and current destination address is same as 1986 * previously succeeded address, omit asking LSM's decision. 1987 * used_address->name_len is initialized to UINT_MAX so that the first 1988 * destination address never matches. 1989 */ 1990 if (used_address && msg_sys->msg_name && 1991 used_address->name_len == msg_sys->msg_namelen && 1992 !memcmp(&used_address->name, msg_sys->msg_name, 1993 used_address->name_len)) { 1994 err = sock_sendmsg_nosec(sock, msg_sys); 1995 goto out_freectl; 1996 } 1997 err = sock_sendmsg(sock, msg_sys); 1998 /* 1999 * If this is sendmmsg() and sending to current destination address was 2000 * successful, remember it. 2001 */ 2002 if (used_address && err >= 0) { 2003 used_address->name_len = msg_sys->msg_namelen; 2004 if (msg_sys->msg_name) 2005 memcpy(&used_address->name, msg_sys->msg_name, 2006 used_address->name_len); 2007 } 2008 2009 out_freectl: 2010 if (ctl_buf != ctl) 2011 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2012 out_freeiov: 2013 kfree(iov); 2014 return err; 2015 } 2016 2017 /* 2018 * BSD sendmsg interface 2019 */ 2020 2021 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2022 { 2023 int fput_needed, err; 2024 struct msghdr msg_sys; 2025 struct socket *sock; 2026 2027 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2028 if (!sock) 2029 goto out; 2030 2031 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2032 2033 fput_light(sock->file, fput_needed); 2034 out: 2035 return err; 2036 } 2037 2038 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2039 { 2040 if (flags & MSG_CMSG_COMPAT) 2041 return -EINVAL; 2042 return __sys_sendmsg(fd, msg, flags); 2043 } 2044 2045 /* 2046 * Linux sendmmsg interface 2047 */ 2048 2049 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2050 unsigned int flags) 2051 { 2052 int fput_needed, err, datagrams; 2053 struct socket *sock; 2054 struct mmsghdr __user *entry; 2055 struct compat_mmsghdr __user *compat_entry; 2056 struct msghdr msg_sys; 2057 struct used_address used_address; 2058 unsigned int oflags = flags; 2059 2060 if (vlen > UIO_MAXIOV) 2061 vlen = UIO_MAXIOV; 2062 2063 datagrams = 0; 2064 2065 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2066 if (!sock) 2067 return err; 2068 2069 used_address.name_len = UINT_MAX; 2070 entry = mmsg; 2071 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2072 err = 0; 2073 flags |= MSG_BATCH; 2074 2075 while (datagrams < vlen) { 2076 if (datagrams == vlen - 1) 2077 flags = oflags; 2078 2079 if (MSG_CMSG_COMPAT & flags) { 2080 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2081 &msg_sys, flags, &used_address, MSG_EOR); 2082 if (err < 0) 2083 break; 2084 err = __put_user(err, &compat_entry->msg_len); 2085 ++compat_entry; 2086 } else { 2087 err = ___sys_sendmsg(sock, 2088 (struct user_msghdr __user *)entry, 2089 &msg_sys, flags, &used_address, MSG_EOR); 2090 if (err < 0) 2091 break; 2092 err = put_user(err, &entry->msg_len); 2093 ++entry; 2094 } 2095 2096 if (err) 2097 break; 2098 ++datagrams; 2099 if (msg_data_left(&msg_sys)) 2100 break; 2101 cond_resched(); 2102 } 2103 2104 fput_light(sock->file, fput_needed); 2105 2106 /* We only return an error if no datagrams were able to be sent */ 2107 if (datagrams != 0) 2108 return datagrams; 2109 2110 return err; 2111 } 2112 2113 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2114 unsigned int, vlen, unsigned int, flags) 2115 { 2116 if (flags & MSG_CMSG_COMPAT) 2117 return -EINVAL; 2118 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2119 } 2120 2121 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2122 struct msghdr *msg_sys, unsigned int flags, int nosec) 2123 { 2124 struct compat_msghdr __user *msg_compat = 2125 (struct compat_msghdr __user *)msg; 2126 struct iovec iovstack[UIO_FASTIOV]; 2127 struct iovec *iov = iovstack; 2128 unsigned long cmsg_ptr; 2129 int len; 2130 ssize_t err; 2131 2132 /* kernel mode address */ 2133 struct sockaddr_storage addr; 2134 2135 /* user mode address pointers */ 2136 struct sockaddr __user *uaddr; 2137 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2138 2139 msg_sys->msg_name = &addr; 2140 2141 if (MSG_CMSG_COMPAT & flags) 2142 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2143 else 2144 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2145 if (err < 0) 2146 return err; 2147 2148 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2149 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2150 2151 /* We assume all kernel code knows the size of sockaddr_storage */ 2152 msg_sys->msg_namelen = 0; 2153 2154 if (sock->file->f_flags & O_NONBLOCK) 2155 flags |= MSG_DONTWAIT; 2156 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2157 if (err < 0) 2158 goto out_freeiov; 2159 len = err; 2160 2161 if (uaddr != NULL) { 2162 err = move_addr_to_user(&addr, 2163 msg_sys->msg_namelen, uaddr, 2164 uaddr_len); 2165 if (err < 0) 2166 goto out_freeiov; 2167 } 2168 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2169 COMPAT_FLAGS(msg)); 2170 if (err) 2171 goto out_freeiov; 2172 if (MSG_CMSG_COMPAT & flags) 2173 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2174 &msg_compat->msg_controllen); 2175 else 2176 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2177 &msg->msg_controllen); 2178 if (err) 2179 goto out_freeiov; 2180 err = len; 2181 2182 out_freeiov: 2183 kfree(iov); 2184 return err; 2185 } 2186 2187 /* 2188 * BSD recvmsg interface 2189 */ 2190 2191 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2192 { 2193 int fput_needed, err; 2194 struct msghdr msg_sys; 2195 struct socket *sock; 2196 2197 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2198 if (!sock) 2199 goto out; 2200 2201 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2202 2203 fput_light(sock->file, fput_needed); 2204 out: 2205 return err; 2206 } 2207 2208 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2209 unsigned int, flags) 2210 { 2211 if (flags & MSG_CMSG_COMPAT) 2212 return -EINVAL; 2213 return __sys_recvmsg(fd, msg, flags); 2214 } 2215 2216 /* 2217 * Linux recvmmsg interface 2218 */ 2219 2220 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2221 unsigned int flags, struct timespec *timeout) 2222 { 2223 int fput_needed, err, datagrams; 2224 struct socket *sock; 2225 struct mmsghdr __user *entry; 2226 struct compat_mmsghdr __user *compat_entry; 2227 struct msghdr msg_sys; 2228 struct timespec64 end_time; 2229 struct timespec64 timeout64; 2230 2231 if (timeout && 2232 poll_select_set_timeout(&end_time, timeout->tv_sec, 2233 timeout->tv_nsec)) 2234 return -EINVAL; 2235 2236 datagrams = 0; 2237 2238 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2239 if (!sock) 2240 return err; 2241 2242 err = sock_error(sock->sk); 2243 if (err) { 2244 datagrams = err; 2245 goto out_put; 2246 } 2247 2248 entry = mmsg; 2249 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2250 2251 while (datagrams < vlen) { 2252 /* 2253 * No need to ask LSM for more than the first datagram. 2254 */ 2255 if (MSG_CMSG_COMPAT & flags) { 2256 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2257 &msg_sys, flags & ~MSG_WAITFORONE, 2258 datagrams); 2259 if (err < 0) 2260 break; 2261 err = __put_user(err, &compat_entry->msg_len); 2262 ++compat_entry; 2263 } else { 2264 err = ___sys_recvmsg(sock, 2265 (struct user_msghdr __user *)entry, 2266 &msg_sys, flags & ~MSG_WAITFORONE, 2267 datagrams); 2268 if (err < 0) 2269 break; 2270 err = put_user(err, &entry->msg_len); 2271 ++entry; 2272 } 2273 2274 if (err) 2275 break; 2276 ++datagrams; 2277 2278 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2279 if (flags & MSG_WAITFORONE) 2280 flags |= MSG_DONTWAIT; 2281 2282 if (timeout) { 2283 ktime_get_ts64(&timeout64); 2284 *timeout = timespec64_to_timespec( 2285 timespec64_sub(end_time, timeout64)); 2286 if (timeout->tv_sec < 0) { 2287 timeout->tv_sec = timeout->tv_nsec = 0; 2288 break; 2289 } 2290 2291 /* Timeout, return less than vlen datagrams */ 2292 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2293 break; 2294 } 2295 2296 /* Out of band data, return right away */ 2297 if (msg_sys.msg_flags & MSG_OOB) 2298 break; 2299 cond_resched(); 2300 } 2301 2302 if (err == 0) 2303 goto out_put; 2304 2305 if (datagrams == 0) { 2306 datagrams = err; 2307 goto out_put; 2308 } 2309 2310 /* 2311 * We may return less entries than requested (vlen) if the 2312 * sock is non block and there aren't enough datagrams... 2313 */ 2314 if (err != -EAGAIN) { 2315 /* 2316 * ... or if recvmsg returns an error after we 2317 * received some datagrams, where we record the 2318 * error to return on the next call or if the 2319 * app asks about it using getsockopt(SO_ERROR). 2320 */ 2321 sock->sk->sk_err = -err; 2322 } 2323 out_put: 2324 fput_light(sock->file, fput_needed); 2325 2326 return datagrams; 2327 } 2328 2329 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2330 unsigned int, vlen, unsigned int, flags, 2331 struct timespec __user *, timeout) 2332 { 2333 int datagrams; 2334 struct timespec timeout_sys; 2335 2336 if (flags & MSG_CMSG_COMPAT) 2337 return -EINVAL; 2338 2339 if (!timeout) 2340 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2341 2342 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2343 return -EFAULT; 2344 2345 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2346 2347 if (datagrams > 0 && 2348 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2349 datagrams = -EFAULT; 2350 2351 return datagrams; 2352 } 2353 2354 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2355 /* Argument list sizes for sys_socketcall */ 2356 #define AL(x) ((x) * sizeof(unsigned long)) 2357 static const unsigned char nargs[21] = { 2358 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2359 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2360 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2361 AL(4), AL(5), AL(4) 2362 }; 2363 2364 #undef AL 2365 2366 /* 2367 * System call vectors. 2368 * 2369 * Argument checking cleaned up. Saved 20% in size. 2370 * This function doesn't need to set the kernel lock because 2371 * it is set by the callees. 2372 */ 2373 2374 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2375 { 2376 unsigned long a[AUDITSC_ARGS]; 2377 unsigned long a0, a1; 2378 int err; 2379 unsigned int len; 2380 2381 if (call < 1 || call > SYS_SENDMMSG) 2382 return -EINVAL; 2383 2384 len = nargs[call]; 2385 if (len > sizeof(a)) 2386 return -EINVAL; 2387 2388 /* copy_from_user should be SMP safe. */ 2389 if (copy_from_user(a, args, len)) 2390 return -EFAULT; 2391 2392 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2393 if (err) 2394 return err; 2395 2396 a0 = a[0]; 2397 a1 = a[1]; 2398 2399 switch (call) { 2400 case SYS_SOCKET: 2401 err = sys_socket(a0, a1, a[2]); 2402 break; 2403 case SYS_BIND: 2404 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2405 break; 2406 case SYS_CONNECT: 2407 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2408 break; 2409 case SYS_LISTEN: 2410 err = sys_listen(a0, a1); 2411 break; 2412 case SYS_ACCEPT: 2413 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2414 (int __user *)a[2], 0); 2415 break; 2416 case SYS_GETSOCKNAME: 2417 err = 2418 sys_getsockname(a0, (struct sockaddr __user *)a1, 2419 (int __user *)a[2]); 2420 break; 2421 case SYS_GETPEERNAME: 2422 err = 2423 sys_getpeername(a0, (struct sockaddr __user *)a1, 2424 (int __user *)a[2]); 2425 break; 2426 case SYS_SOCKETPAIR: 2427 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2428 break; 2429 case SYS_SEND: 2430 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2431 break; 2432 case SYS_SENDTO: 2433 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2434 (struct sockaddr __user *)a[4], a[5]); 2435 break; 2436 case SYS_RECV: 2437 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2438 break; 2439 case SYS_RECVFROM: 2440 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2441 (struct sockaddr __user *)a[4], 2442 (int __user *)a[5]); 2443 break; 2444 case SYS_SHUTDOWN: 2445 err = sys_shutdown(a0, a1); 2446 break; 2447 case SYS_SETSOCKOPT: 2448 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2449 break; 2450 case SYS_GETSOCKOPT: 2451 err = 2452 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2453 (int __user *)a[4]); 2454 break; 2455 case SYS_SENDMSG: 2456 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2457 break; 2458 case SYS_SENDMMSG: 2459 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2460 break; 2461 case SYS_RECVMSG: 2462 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2463 break; 2464 case SYS_RECVMMSG: 2465 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2466 (struct timespec __user *)a[4]); 2467 break; 2468 case SYS_ACCEPT4: 2469 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2470 (int __user *)a[2], a[3]); 2471 break; 2472 default: 2473 err = -EINVAL; 2474 break; 2475 } 2476 return err; 2477 } 2478 2479 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2480 2481 /** 2482 * sock_register - add a socket protocol handler 2483 * @ops: description of protocol 2484 * 2485 * This function is called by a protocol handler that wants to 2486 * advertise its address family, and have it linked into the 2487 * socket interface. The value ops->family corresponds to the 2488 * socket system call protocol family. 2489 */ 2490 int sock_register(const struct net_proto_family *ops) 2491 { 2492 int err; 2493 2494 if (ops->family >= NPROTO) { 2495 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2496 return -ENOBUFS; 2497 } 2498 2499 spin_lock(&net_family_lock); 2500 if (rcu_dereference_protected(net_families[ops->family], 2501 lockdep_is_held(&net_family_lock))) 2502 err = -EEXIST; 2503 else { 2504 rcu_assign_pointer(net_families[ops->family], ops); 2505 err = 0; 2506 } 2507 spin_unlock(&net_family_lock); 2508 2509 pr_info("NET: Registered protocol family %d\n", ops->family); 2510 return err; 2511 } 2512 EXPORT_SYMBOL(sock_register); 2513 2514 /** 2515 * sock_unregister - remove a protocol handler 2516 * @family: protocol family to remove 2517 * 2518 * This function is called by a protocol handler that wants to 2519 * remove its address family, and have it unlinked from the 2520 * new socket creation. 2521 * 2522 * If protocol handler is a module, then it can use module reference 2523 * counts to protect against new references. If protocol handler is not 2524 * a module then it needs to provide its own protection in 2525 * the ops->create routine. 2526 */ 2527 void sock_unregister(int family) 2528 { 2529 BUG_ON(family < 0 || family >= NPROTO); 2530 2531 spin_lock(&net_family_lock); 2532 RCU_INIT_POINTER(net_families[family], NULL); 2533 spin_unlock(&net_family_lock); 2534 2535 synchronize_rcu(); 2536 2537 pr_info("NET: Unregistered protocol family %d\n", family); 2538 } 2539 EXPORT_SYMBOL(sock_unregister); 2540 2541 static int __init sock_init(void) 2542 { 2543 int err; 2544 /* 2545 * Initialize the network sysctl infrastructure. 2546 */ 2547 err = net_sysctl_init(); 2548 if (err) 2549 goto out; 2550 2551 /* 2552 * Initialize skbuff SLAB cache 2553 */ 2554 skb_init(); 2555 2556 /* 2557 * Initialize the protocols module. 2558 */ 2559 2560 init_inodecache(); 2561 2562 err = register_filesystem(&sock_fs_type); 2563 if (err) 2564 goto out_fs; 2565 sock_mnt = kern_mount(&sock_fs_type); 2566 if (IS_ERR(sock_mnt)) { 2567 err = PTR_ERR(sock_mnt); 2568 goto out_mount; 2569 } 2570 2571 /* The real protocol initialization is performed in later initcalls. 2572 */ 2573 2574 #ifdef CONFIG_NETFILTER 2575 err = netfilter_init(); 2576 if (err) 2577 goto out; 2578 #endif 2579 2580 ptp_classifier_init(); 2581 2582 out: 2583 return err; 2584 2585 out_mount: 2586 unregister_filesystem(&sock_fs_type); 2587 out_fs: 2588 goto out; 2589 } 2590 2591 core_initcall(sock_init); /* early initcall */ 2592 2593 #ifdef CONFIG_PROC_FS 2594 void socket_seq_show(struct seq_file *seq) 2595 { 2596 int cpu; 2597 int counter = 0; 2598 2599 for_each_possible_cpu(cpu) 2600 counter += per_cpu(sockets_in_use, cpu); 2601 2602 /* It can be negative, by the way. 8) */ 2603 if (counter < 0) 2604 counter = 0; 2605 2606 seq_printf(seq, "sockets: used %d\n", counter); 2607 } 2608 #endif /* CONFIG_PROC_FS */ 2609 2610 #ifdef CONFIG_COMPAT 2611 static int do_siocgstamp(struct net *net, struct socket *sock, 2612 unsigned int cmd, void __user *up) 2613 { 2614 mm_segment_t old_fs = get_fs(); 2615 struct timeval ktv; 2616 int err; 2617 2618 set_fs(KERNEL_DS); 2619 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2620 set_fs(old_fs); 2621 if (!err) 2622 err = compat_put_timeval(&ktv, up); 2623 2624 return err; 2625 } 2626 2627 static int do_siocgstampns(struct net *net, struct socket *sock, 2628 unsigned int cmd, void __user *up) 2629 { 2630 mm_segment_t old_fs = get_fs(); 2631 struct timespec kts; 2632 int err; 2633 2634 set_fs(KERNEL_DS); 2635 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2636 set_fs(old_fs); 2637 if (!err) 2638 err = compat_put_timespec(&kts, up); 2639 2640 return err; 2641 } 2642 2643 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2644 { 2645 struct ifreq __user *uifr; 2646 int err; 2647 2648 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2649 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2650 return -EFAULT; 2651 2652 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2653 if (err) 2654 return err; 2655 2656 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2657 return -EFAULT; 2658 2659 return 0; 2660 } 2661 2662 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2663 { 2664 struct compat_ifconf ifc32; 2665 struct ifconf ifc; 2666 struct ifconf __user *uifc; 2667 struct compat_ifreq __user *ifr32; 2668 struct ifreq __user *ifr; 2669 unsigned int i, j; 2670 int err; 2671 2672 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2673 return -EFAULT; 2674 2675 memset(&ifc, 0, sizeof(ifc)); 2676 if (ifc32.ifcbuf == 0) { 2677 ifc32.ifc_len = 0; 2678 ifc.ifc_len = 0; 2679 ifc.ifc_req = NULL; 2680 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2681 } else { 2682 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2683 sizeof(struct ifreq); 2684 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2685 ifc.ifc_len = len; 2686 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2687 ifr32 = compat_ptr(ifc32.ifcbuf); 2688 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2689 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2690 return -EFAULT; 2691 ifr++; 2692 ifr32++; 2693 } 2694 } 2695 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2696 return -EFAULT; 2697 2698 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2699 if (err) 2700 return err; 2701 2702 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2703 return -EFAULT; 2704 2705 ifr = ifc.ifc_req; 2706 ifr32 = compat_ptr(ifc32.ifcbuf); 2707 for (i = 0, j = 0; 2708 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2709 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2710 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2711 return -EFAULT; 2712 ifr32++; 2713 ifr++; 2714 } 2715 2716 if (ifc32.ifcbuf == 0) { 2717 /* Translate from 64-bit structure multiple to 2718 * a 32-bit one. 2719 */ 2720 i = ifc.ifc_len; 2721 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2722 ifc32.ifc_len = i; 2723 } else { 2724 ifc32.ifc_len = i; 2725 } 2726 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2727 return -EFAULT; 2728 2729 return 0; 2730 } 2731 2732 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2733 { 2734 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2735 bool convert_in = false, convert_out = false; 2736 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2737 struct ethtool_rxnfc __user *rxnfc; 2738 struct ifreq __user *ifr; 2739 u32 rule_cnt = 0, actual_rule_cnt; 2740 u32 ethcmd; 2741 u32 data; 2742 int ret; 2743 2744 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2745 return -EFAULT; 2746 2747 compat_rxnfc = compat_ptr(data); 2748 2749 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2750 return -EFAULT; 2751 2752 /* Most ethtool structures are defined without padding. 2753 * Unfortunately struct ethtool_rxnfc is an exception. 2754 */ 2755 switch (ethcmd) { 2756 default: 2757 break; 2758 case ETHTOOL_GRXCLSRLALL: 2759 /* Buffer size is variable */ 2760 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2761 return -EFAULT; 2762 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2763 return -ENOMEM; 2764 buf_size += rule_cnt * sizeof(u32); 2765 /* fall through */ 2766 case ETHTOOL_GRXRINGS: 2767 case ETHTOOL_GRXCLSRLCNT: 2768 case ETHTOOL_GRXCLSRULE: 2769 case ETHTOOL_SRXCLSRLINS: 2770 convert_out = true; 2771 /* fall through */ 2772 case ETHTOOL_SRXCLSRLDEL: 2773 buf_size += sizeof(struct ethtool_rxnfc); 2774 convert_in = true; 2775 break; 2776 } 2777 2778 ifr = compat_alloc_user_space(buf_size); 2779 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2780 2781 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2782 return -EFAULT; 2783 2784 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2785 &ifr->ifr_ifru.ifru_data)) 2786 return -EFAULT; 2787 2788 if (convert_in) { 2789 /* We expect there to be holes between fs.m_ext and 2790 * fs.ring_cookie and at the end of fs, but nowhere else. 2791 */ 2792 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2793 sizeof(compat_rxnfc->fs.m_ext) != 2794 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2795 sizeof(rxnfc->fs.m_ext)); 2796 BUILD_BUG_ON( 2797 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2798 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2799 offsetof(struct ethtool_rxnfc, fs.location) - 2800 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2801 2802 if (copy_in_user(rxnfc, compat_rxnfc, 2803 (void __user *)(&rxnfc->fs.m_ext + 1) - 2804 (void __user *)rxnfc) || 2805 copy_in_user(&rxnfc->fs.ring_cookie, 2806 &compat_rxnfc->fs.ring_cookie, 2807 (void __user *)(&rxnfc->fs.location + 1) - 2808 (void __user *)&rxnfc->fs.ring_cookie) || 2809 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2810 sizeof(rxnfc->rule_cnt))) 2811 return -EFAULT; 2812 } 2813 2814 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2815 if (ret) 2816 return ret; 2817 2818 if (convert_out) { 2819 if (copy_in_user(compat_rxnfc, rxnfc, 2820 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2821 (const void __user *)rxnfc) || 2822 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2823 &rxnfc->fs.ring_cookie, 2824 (const void __user *)(&rxnfc->fs.location + 1) - 2825 (const void __user *)&rxnfc->fs.ring_cookie) || 2826 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2827 sizeof(rxnfc->rule_cnt))) 2828 return -EFAULT; 2829 2830 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2831 /* As an optimisation, we only copy the actual 2832 * number of rules that the underlying 2833 * function returned. Since Mallory might 2834 * change the rule count in user memory, we 2835 * check that it is less than the rule count 2836 * originally given (as the user buffer size), 2837 * which has been range-checked. 2838 */ 2839 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2840 return -EFAULT; 2841 if (actual_rule_cnt < rule_cnt) 2842 rule_cnt = actual_rule_cnt; 2843 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2844 &rxnfc->rule_locs[0], 2845 rule_cnt * sizeof(u32))) 2846 return -EFAULT; 2847 } 2848 } 2849 2850 return 0; 2851 } 2852 2853 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2854 { 2855 void __user *uptr; 2856 compat_uptr_t uptr32; 2857 struct ifreq __user *uifr; 2858 2859 uifr = compat_alloc_user_space(sizeof(*uifr)); 2860 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2861 return -EFAULT; 2862 2863 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2864 return -EFAULT; 2865 2866 uptr = compat_ptr(uptr32); 2867 2868 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2869 return -EFAULT; 2870 2871 return dev_ioctl(net, SIOCWANDEV, uifr); 2872 } 2873 2874 static int bond_ioctl(struct net *net, unsigned int cmd, 2875 struct compat_ifreq __user *ifr32) 2876 { 2877 struct ifreq kifr; 2878 mm_segment_t old_fs; 2879 int err; 2880 2881 switch (cmd) { 2882 case SIOCBONDENSLAVE: 2883 case SIOCBONDRELEASE: 2884 case SIOCBONDSETHWADDR: 2885 case SIOCBONDCHANGEACTIVE: 2886 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2887 return -EFAULT; 2888 2889 old_fs = get_fs(); 2890 set_fs(KERNEL_DS); 2891 err = dev_ioctl(net, cmd, 2892 (struct ifreq __user __force *) &kifr); 2893 set_fs(old_fs); 2894 2895 return err; 2896 default: 2897 return -ENOIOCTLCMD; 2898 } 2899 } 2900 2901 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2902 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2903 struct compat_ifreq __user *u_ifreq32) 2904 { 2905 struct ifreq __user *u_ifreq64; 2906 char tmp_buf[IFNAMSIZ]; 2907 void __user *data64; 2908 u32 data32; 2909 2910 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2911 IFNAMSIZ)) 2912 return -EFAULT; 2913 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2914 return -EFAULT; 2915 data64 = compat_ptr(data32); 2916 2917 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2918 2919 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2920 IFNAMSIZ)) 2921 return -EFAULT; 2922 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2923 return -EFAULT; 2924 2925 return dev_ioctl(net, cmd, u_ifreq64); 2926 } 2927 2928 static int dev_ifsioc(struct net *net, struct socket *sock, 2929 unsigned int cmd, struct compat_ifreq __user *uifr32) 2930 { 2931 struct ifreq __user *uifr; 2932 int err; 2933 2934 uifr = compat_alloc_user_space(sizeof(*uifr)); 2935 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2936 return -EFAULT; 2937 2938 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2939 2940 if (!err) { 2941 switch (cmd) { 2942 case SIOCGIFFLAGS: 2943 case SIOCGIFMETRIC: 2944 case SIOCGIFMTU: 2945 case SIOCGIFMEM: 2946 case SIOCGIFHWADDR: 2947 case SIOCGIFINDEX: 2948 case SIOCGIFADDR: 2949 case SIOCGIFBRDADDR: 2950 case SIOCGIFDSTADDR: 2951 case SIOCGIFNETMASK: 2952 case SIOCGIFPFLAGS: 2953 case SIOCGIFTXQLEN: 2954 case SIOCGMIIPHY: 2955 case SIOCGMIIREG: 2956 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2957 err = -EFAULT; 2958 break; 2959 } 2960 } 2961 return err; 2962 } 2963 2964 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2965 struct compat_ifreq __user *uifr32) 2966 { 2967 struct ifreq ifr; 2968 struct compat_ifmap __user *uifmap32; 2969 mm_segment_t old_fs; 2970 int err; 2971 2972 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2973 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2974 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2975 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2976 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2977 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2978 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2979 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2980 if (err) 2981 return -EFAULT; 2982 2983 old_fs = get_fs(); 2984 set_fs(KERNEL_DS); 2985 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2986 set_fs(old_fs); 2987 2988 if (cmd == SIOCGIFMAP && !err) { 2989 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2990 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2991 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2992 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2993 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2994 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2995 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2996 if (err) 2997 err = -EFAULT; 2998 } 2999 return err; 3000 } 3001 3002 struct rtentry32 { 3003 u32 rt_pad1; 3004 struct sockaddr rt_dst; /* target address */ 3005 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3006 struct sockaddr rt_genmask; /* target network mask (IP) */ 3007 unsigned short rt_flags; 3008 short rt_pad2; 3009 u32 rt_pad3; 3010 unsigned char rt_tos; 3011 unsigned char rt_class; 3012 short rt_pad4; 3013 short rt_metric; /* +1 for binary compatibility! */ 3014 /* char * */ u32 rt_dev; /* forcing the device at add */ 3015 u32 rt_mtu; /* per route MTU/Window */ 3016 u32 rt_window; /* Window clamping */ 3017 unsigned short rt_irtt; /* Initial RTT */ 3018 }; 3019 3020 struct in6_rtmsg32 { 3021 struct in6_addr rtmsg_dst; 3022 struct in6_addr rtmsg_src; 3023 struct in6_addr rtmsg_gateway; 3024 u32 rtmsg_type; 3025 u16 rtmsg_dst_len; 3026 u16 rtmsg_src_len; 3027 u32 rtmsg_metric; 3028 u32 rtmsg_info; 3029 u32 rtmsg_flags; 3030 s32 rtmsg_ifindex; 3031 }; 3032 3033 static int routing_ioctl(struct net *net, struct socket *sock, 3034 unsigned int cmd, void __user *argp) 3035 { 3036 int ret; 3037 void *r = NULL; 3038 struct in6_rtmsg r6; 3039 struct rtentry r4; 3040 char devname[16]; 3041 u32 rtdev; 3042 mm_segment_t old_fs = get_fs(); 3043 3044 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3045 struct in6_rtmsg32 __user *ur6 = argp; 3046 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3047 3 * sizeof(struct in6_addr)); 3048 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3049 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3050 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3051 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3052 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3053 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3054 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3055 3056 r = (void *) &r6; 3057 } else { /* ipv4 */ 3058 struct rtentry32 __user *ur4 = argp; 3059 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3060 3 * sizeof(struct sockaddr)); 3061 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3062 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3063 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3064 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3065 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3066 ret |= get_user(rtdev, &(ur4->rt_dev)); 3067 if (rtdev) { 3068 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3069 r4.rt_dev = (char __user __force *)devname; 3070 devname[15] = 0; 3071 } else 3072 r4.rt_dev = NULL; 3073 3074 r = (void *) &r4; 3075 } 3076 3077 if (ret) { 3078 ret = -EFAULT; 3079 goto out; 3080 } 3081 3082 set_fs(KERNEL_DS); 3083 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3084 set_fs(old_fs); 3085 3086 out: 3087 return ret; 3088 } 3089 3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3091 * for some operations; this forces use of the newer bridge-utils that 3092 * use compatible ioctls 3093 */ 3094 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3095 { 3096 compat_ulong_t tmp; 3097 3098 if (get_user(tmp, argp)) 3099 return -EFAULT; 3100 if (tmp == BRCTL_GET_VERSION) 3101 return BRCTL_VERSION + 1; 3102 return -EINVAL; 3103 } 3104 3105 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3106 unsigned int cmd, unsigned long arg) 3107 { 3108 void __user *argp = compat_ptr(arg); 3109 struct sock *sk = sock->sk; 3110 struct net *net = sock_net(sk); 3111 3112 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3113 return compat_ifr_data_ioctl(net, cmd, argp); 3114 3115 switch (cmd) { 3116 case SIOCSIFBR: 3117 case SIOCGIFBR: 3118 return old_bridge_ioctl(argp); 3119 case SIOCGIFNAME: 3120 return dev_ifname32(net, argp); 3121 case SIOCGIFCONF: 3122 return dev_ifconf(net, argp); 3123 case SIOCETHTOOL: 3124 return ethtool_ioctl(net, argp); 3125 case SIOCWANDEV: 3126 return compat_siocwandev(net, argp); 3127 case SIOCGIFMAP: 3128 case SIOCSIFMAP: 3129 return compat_sioc_ifmap(net, cmd, argp); 3130 case SIOCBONDENSLAVE: 3131 case SIOCBONDRELEASE: 3132 case SIOCBONDSETHWADDR: 3133 case SIOCBONDCHANGEACTIVE: 3134 return bond_ioctl(net, cmd, argp); 3135 case SIOCADDRT: 3136 case SIOCDELRT: 3137 return routing_ioctl(net, sock, cmd, argp); 3138 case SIOCGSTAMP: 3139 return do_siocgstamp(net, sock, cmd, argp); 3140 case SIOCGSTAMPNS: 3141 return do_siocgstampns(net, sock, cmd, argp); 3142 case SIOCBONDSLAVEINFOQUERY: 3143 case SIOCBONDINFOQUERY: 3144 case SIOCSHWTSTAMP: 3145 case SIOCGHWTSTAMP: 3146 return compat_ifr_data_ioctl(net, cmd, argp); 3147 3148 case FIOSETOWN: 3149 case SIOCSPGRP: 3150 case FIOGETOWN: 3151 case SIOCGPGRP: 3152 case SIOCBRADDBR: 3153 case SIOCBRDELBR: 3154 case SIOCGIFVLAN: 3155 case SIOCSIFVLAN: 3156 case SIOCADDDLCI: 3157 case SIOCDELDLCI: 3158 case SIOCGSKNS: 3159 return sock_ioctl(file, cmd, arg); 3160 3161 case SIOCGIFFLAGS: 3162 case SIOCSIFFLAGS: 3163 case SIOCGIFMETRIC: 3164 case SIOCSIFMETRIC: 3165 case SIOCGIFMTU: 3166 case SIOCSIFMTU: 3167 case SIOCGIFMEM: 3168 case SIOCSIFMEM: 3169 case SIOCGIFHWADDR: 3170 case SIOCSIFHWADDR: 3171 case SIOCADDMULTI: 3172 case SIOCDELMULTI: 3173 case SIOCGIFINDEX: 3174 case SIOCGIFADDR: 3175 case SIOCSIFADDR: 3176 case SIOCSIFHWBROADCAST: 3177 case SIOCDIFADDR: 3178 case SIOCGIFBRDADDR: 3179 case SIOCSIFBRDADDR: 3180 case SIOCGIFDSTADDR: 3181 case SIOCSIFDSTADDR: 3182 case SIOCGIFNETMASK: 3183 case SIOCSIFNETMASK: 3184 case SIOCSIFPFLAGS: 3185 case SIOCGIFPFLAGS: 3186 case SIOCGIFTXQLEN: 3187 case SIOCSIFTXQLEN: 3188 case SIOCBRADDIF: 3189 case SIOCBRDELIF: 3190 case SIOCSIFNAME: 3191 case SIOCGMIIPHY: 3192 case SIOCGMIIREG: 3193 case SIOCSMIIREG: 3194 return dev_ifsioc(net, sock, cmd, argp); 3195 3196 case SIOCSARP: 3197 case SIOCGARP: 3198 case SIOCDARP: 3199 case SIOCATMARK: 3200 return sock_do_ioctl(net, sock, cmd, arg); 3201 } 3202 3203 return -ENOIOCTLCMD; 3204 } 3205 3206 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3207 unsigned long arg) 3208 { 3209 struct socket *sock = file->private_data; 3210 int ret = -ENOIOCTLCMD; 3211 struct sock *sk; 3212 struct net *net; 3213 3214 sk = sock->sk; 3215 net = sock_net(sk); 3216 3217 if (sock->ops->compat_ioctl) 3218 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3219 3220 if (ret == -ENOIOCTLCMD && 3221 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3222 ret = compat_wext_handle_ioctl(net, cmd, arg); 3223 3224 if (ret == -ENOIOCTLCMD) 3225 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3226 3227 return ret; 3228 } 3229 #endif 3230 3231 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3232 { 3233 return sock->ops->bind(sock, addr, addrlen); 3234 } 3235 EXPORT_SYMBOL(kernel_bind); 3236 3237 int kernel_listen(struct socket *sock, int backlog) 3238 { 3239 return sock->ops->listen(sock, backlog); 3240 } 3241 EXPORT_SYMBOL(kernel_listen); 3242 3243 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3244 { 3245 struct sock *sk = sock->sk; 3246 int err; 3247 3248 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3249 newsock); 3250 if (err < 0) 3251 goto done; 3252 3253 err = sock->ops->accept(sock, *newsock, flags, true); 3254 if (err < 0) { 3255 sock_release(*newsock); 3256 *newsock = NULL; 3257 goto done; 3258 } 3259 3260 (*newsock)->ops = sock->ops; 3261 __module_get((*newsock)->ops->owner); 3262 3263 done: 3264 return err; 3265 } 3266 EXPORT_SYMBOL(kernel_accept); 3267 3268 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3269 int flags) 3270 { 3271 return sock->ops->connect(sock, addr, addrlen, flags); 3272 } 3273 EXPORT_SYMBOL(kernel_connect); 3274 3275 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3276 int *addrlen) 3277 { 3278 return sock->ops->getname(sock, addr, addrlen, 0); 3279 } 3280 EXPORT_SYMBOL(kernel_getsockname); 3281 3282 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3283 int *addrlen) 3284 { 3285 return sock->ops->getname(sock, addr, addrlen, 1); 3286 } 3287 EXPORT_SYMBOL(kernel_getpeername); 3288 3289 int kernel_getsockopt(struct socket *sock, int level, int optname, 3290 char *optval, int *optlen) 3291 { 3292 mm_segment_t oldfs = get_fs(); 3293 char __user *uoptval; 3294 int __user *uoptlen; 3295 int err; 3296 3297 uoptval = (char __user __force *) optval; 3298 uoptlen = (int __user __force *) optlen; 3299 3300 set_fs(KERNEL_DS); 3301 if (level == SOL_SOCKET) 3302 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3303 else 3304 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3305 uoptlen); 3306 set_fs(oldfs); 3307 return err; 3308 } 3309 EXPORT_SYMBOL(kernel_getsockopt); 3310 3311 int kernel_setsockopt(struct socket *sock, int level, int optname, 3312 char *optval, unsigned int optlen) 3313 { 3314 mm_segment_t oldfs = get_fs(); 3315 char __user *uoptval; 3316 int err; 3317 3318 uoptval = (char __user __force *) optval; 3319 3320 set_fs(KERNEL_DS); 3321 if (level == SOL_SOCKET) 3322 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3323 else 3324 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3325 optlen); 3326 set_fs(oldfs); 3327 return err; 3328 } 3329 EXPORT_SYMBOL(kernel_setsockopt); 3330 3331 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3332 size_t size, int flags) 3333 { 3334 if (sock->ops->sendpage) 3335 return sock->ops->sendpage(sock, page, offset, size, flags); 3336 3337 return sock_no_sendpage(sock, page, offset, size, flags); 3338 } 3339 EXPORT_SYMBOL(kernel_sendpage); 3340 3341 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3342 { 3343 mm_segment_t oldfs = get_fs(); 3344 int err; 3345 3346 set_fs(KERNEL_DS); 3347 err = sock->ops->ioctl(sock, cmd, arg); 3348 set_fs(oldfs); 3349 3350 return err; 3351 } 3352 EXPORT_SYMBOL(kernel_sock_ioctl); 3353 3354 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3355 { 3356 return sock->ops->shutdown(sock, how); 3357 } 3358 EXPORT_SYMBOL(kernel_sock_shutdown); 3359 3360 /* This routine returns the IP overhead imposed by a socket i.e. 3361 * the length of the underlying IP header, depending on whether 3362 * this is an IPv4 or IPv6 socket and the length from IP options turned 3363 * on at the socket. Assumes that the caller has a lock on the socket. 3364 */ 3365 u32 kernel_sock_ip_overhead(struct sock *sk) 3366 { 3367 struct inet_sock *inet; 3368 struct ip_options_rcu *opt; 3369 u32 overhead = 0; 3370 bool owned_by_user; 3371 #if IS_ENABLED(CONFIG_IPV6) 3372 struct ipv6_pinfo *np; 3373 struct ipv6_txoptions *optv6 = NULL; 3374 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3375 3376 if (!sk) 3377 return overhead; 3378 3379 owned_by_user = sock_owned_by_user(sk); 3380 switch (sk->sk_family) { 3381 case AF_INET: 3382 inet = inet_sk(sk); 3383 overhead += sizeof(struct iphdr); 3384 opt = rcu_dereference_protected(inet->inet_opt, 3385 owned_by_user); 3386 if (opt) 3387 overhead += opt->opt.optlen; 3388 return overhead; 3389 #if IS_ENABLED(CONFIG_IPV6) 3390 case AF_INET6: 3391 np = inet6_sk(sk); 3392 overhead += sizeof(struct ipv6hdr); 3393 if (np) 3394 optv6 = rcu_dereference_protected(np->opt, 3395 owned_by_user); 3396 if (optv6) 3397 overhead += (optv6->opt_flen + optv6->opt_nflen); 3398 return overhead; 3399 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3400 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3401 return overhead; 3402 } 3403 } 3404 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3405