xref: /openbmc/linux/net/socket.c (revision f7d84fa7)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry))
410 		return ERR_PTR(-ENOMEM);
411 	path.mnt = mntget(sock_mnt);
412 
413 	d_instantiate(path.dentry, SOCK_INODE(sock));
414 
415 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 		  &socket_file_ops);
417 	if (IS_ERR(file)) {
418 		/* drop dentry, keep inode */
419 		ihold(d_inode(path.dentry));
420 		path_put(&path);
421 		return file;
422 	}
423 
424 	sock->file = file;
425 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0))
436 		return fd;
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	too is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	kmemcheck_annotate_bitfield(sock, type);
572 	inode->i_ino = get_next_ino();
573 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 	inode->i_uid = current_fsuid();
575 	inode->i_gid = current_fsgid();
576 	inode->i_op = &sockfs_inode_ops;
577 
578 	this_cpu_add(sockets_in_use, 1);
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release	-	close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 void sock_release(struct socket *sock)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		sock->ops->release(sock);
598 		sock->ops = NULL;
599 		module_put(owner);
600 	}
601 
602 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 		pr_err("%s: fasync list not empty!\n", __func__);
604 
605 	this_cpu_sub(sockets_in_use, 1);
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 	BUG_ON(ret == -EIOCBQUEUED);
635 	return ret;
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 	int err = security_socket_sendmsg(sock, msg,
641 					  msg_data_left(msg));
642 
643 	return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 		   struct kvec *vec, size_t num, size_t size)
649 {
650 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 	return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654 
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 	/* pkt_type of skbs enqueued on the error queue are set to
658 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 	 * in recvmsg, since skbs received on a local socket will never
660 	 * have a pkt_type of PACKET_OUTGOING.
661 	 */
662 	return skb->pkt_type == PACKET_OUTGOING;
663 }
664 
665 /*
666  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
667  */
668 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
669 	struct sk_buff *skb)
670 {
671 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
672 	struct scm_timestamping tss;
673 	int empty = 1;
674 	struct skb_shared_hwtstamps *shhwtstamps =
675 		skb_hwtstamps(skb);
676 
677 	/* Race occurred between timestamp enabling and packet
678 	   receiving.  Fill in the current time for now. */
679 	if (need_software_tstamp && skb->tstamp == 0)
680 		__net_timestamp(skb);
681 
682 	if (need_software_tstamp) {
683 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
684 			struct timeval tv;
685 			skb_get_timestamp(skb, &tv);
686 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
687 				 sizeof(tv), &tv);
688 		} else {
689 			struct timespec ts;
690 			skb_get_timestampns(skb, &ts);
691 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
692 				 sizeof(ts), &ts);
693 		}
694 	}
695 
696 	memset(&tss, 0, sizeof(tss));
697 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
698 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
699 		empty = 0;
700 	if (shhwtstamps &&
701 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
702 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
703 		empty = 0;
704 	if (!empty) {
705 		put_cmsg(msg, SOL_SOCKET,
706 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
707 
708 		if (skb_is_err_queue(skb) && skb->len &&
709 		    SKB_EXT_ERR(skb)->opt_stats)
710 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
711 				 skb->len, skb->data);
712 	}
713 }
714 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
715 
716 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
717 	struct sk_buff *skb)
718 {
719 	int ack;
720 
721 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
722 		return;
723 	if (!skb->wifi_acked_valid)
724 		return;
725 
726 	ack = skb->wifi_acked;
727 
728 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
729 }
730 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
731 
732 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
733 				   struct sk_buff *skb)
734 {
735 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
736 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
737 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
738 }
739 
740 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
741 	struct sk_buff *skb)
742 {
743 	sock_recv_timestamp(msg, sk, skb);
744 	sock_recv_drops(msg, sk, skb);
745 }
746 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
747 
748 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
749 				     int flags)
750 {
751 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
752 }
753 
754 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
755 {
756 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
757 
758 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
759 }
760 EXPORT_SYMBOL(sock_recvmsg);
761 
762 /**
763  * kernel_recvmsg - Receive a message from a socket (kernel space)
764  * @sock:       The socket to receive the message from
765  * @msg:        Received message
766  * @vec:        Input s/g array for message data
767  * @num:        Size of input s/g array
768  * @size:       Number of bytes to read
769  * @flags:      Message flags (MSG_DONTWAIT, etc...)
770  *
771  * On return the msg structure contains the scatter/gather array passed in the
772  * vec argument. The array is modified so that it consists of the unfilled
773  * portion of the original array.
774  *
775  * The returned value is the total number of bytes received, or an error.
776  */
777 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
778 		   struct kvec *vec, size_t num, size_t size, int flags)
779 {
780 	mm_segment_t oldfs = get_fs();
781 	int result;
782 
783 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
784 	set_fs(KERNEL_DS);
785 	result = sock_recvmsg(sock, msg, flags);
786 	set_fs(oldfs);
787 	return result;
788 }
789 EXPORT_SYMBOL(kernel_recvmsg);
790 
791 static ssize_t sock_sendpage(struct file *file, struct page *page,
792 			     int offset, size_t size, loff_t *ppos, int more)
793 {
794 	struct socket *sock;
795 	int flags;
796 
797 	sock = file->private_data;
798 
799 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
800 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
801 	flags |= more;
802 
803 	return kernel_sendpage(sock, page, offset, size, flags);
804 }
805 
806 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
807 				struct pipe_inode_info *pipe, size_t len,
808 				unsigned int flags)
809 {
810 	struct socket *sock = file->private_data;
811 
812 	if (unlikely(!sock->ops->splice_read))
813 		return -EINVAL;
814 
815 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
816 }
817 
818 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
819 {
820 	struct file *file = iocb->ki_filp;
821 	struct socket *sock = file->private_data;
822 	struct msghdr msg = {.msg_iter = *to,
823 			     .msg_iocb = iocb};
824 	ssize_t res;
825 
826 	if (file->f_flags & O_NONBLOCK)
827 		msg.msg_flags = MSG_DONTWAIT;
828 
829 	if (iocb->ki_pos != 0)
830 		return -ESPIPE;
831 
832 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
833 		return 0;
834 
835 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
836 	*to = msg.msg_iter;
837 	return res;
838 }
839 
840 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
841 {
842 	struct file *file = iocb->ki_filp;
843 	struct socket *sock = file->private_data;
844 	struct msghdr msg = {.msg_iter = *from,
845 			     .msg_iocb = iocb};
846 	ssize_t res;
847 
848 	if (iocb->ki_pos != 0)
849 		return -ESPIPE;
850 
851 	if (file->f_flags & O_NONBLOCK)
852 		msg.msg_flags = MSG_DONTWAIT;
853 
854 	if (sock->type == SOCK_SEQPACKET)
855 		msg.msg_flags |= MSG_EOR;
856 
857 	res = sock_sendmsg(sock, &msg);
858 	*from = msg.msg_iter;
859 	return res;
860 }
861 
862 /*
863  * Atomic setting of ioctl hooks to avoid race
864  * with module unload.
865  */
866 
867 static DEFINE_MUTEX(br_ioctl_mutex);
868 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
869 
870 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871 {
872 	mutex_lock(&br_ioctl_mutex);
873 	br_ioctl_hook = hook;
874 	mutex_unlock(&br_ioctl_mutex);
875 }
876 EXPORT_SYMBOL(brioctl_set);
877 
878 static DEFINE_MUTEX(vlan_ioctl_mutex);
879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
880 
881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
882 {
883 	mutex_lock(&vlan_ioctl_mutex);
884 	vlan_ioctl_hook = hook;
885 	mutex_unlock(&vlan_ioctl_mutex);
886 }
887 EXPORT_SYMBOL(vlan_ioctl_set);
888 
889 static DEFINE_MUTEX(dlci_ioctl_mutex);
890 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
891 
892 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
893 {
894 	mutex_lock(&dlci_ioctl_mutex);
895 	dlci_ioctl_hook = hook;
896 	mutex_unlock(&dlci_ioctl_mutex);
897 }
898 EXPORT_SYMBOL(dlci_ioctl_set);
899 
900 static long sock_do_ioctl(struct net *net, struct socket *sock,
901 				 unsigned int cmd, unsigned long arg)
902 {
903 	int err;
904 	void __user *argp = (void __user *)arg;
905 
906 	err = sock->ops->ioctl(sock, cmd, arg);
907 
908 	/*
909 	 * If this ioctl is unknown try to hand it down
910 	 * to the NIC driver.
911 	 */
912 	if (err == -ENOIOCTLCMD)
913 		err = dev_ioctl(net, cmd, argp);
914 
915 	return err;
916 }
917 
918 /*
919  *	With an ioctl, arg may well be a user mode pointer, but we don't know
920  *	what to do with it - that's up to the protocol still.
921  */
922 
923 static struct ns_common *get_net_ns(struct ns_common *ns)
924 {
925 	return &get_net(container_of(ns, struct net, ns))->ns;
926 }
927 
928 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
929 {
930 	struct socket *sock;
931 	struct sock *sk;
932 	void __user *argp = (void __user *)arg;
933 	int pid, err;
934 	struct net *net;
935 
936 	sock = file->private_data;
937 	sk = sock->sk;
938 	net = sock_net(sk);
939 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
940 		err = dev_ioctl(net, cmd, argp);
941 	} else
942 #ifdef CONFIG_WEXT_CORE
943 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
944 		err = dev_ioctl(net, cmd, argp);
945 	} else
946 #endif
947 		switch (cmd) {
948 		case FIOSETOWN:
949 		case SIOCSPGRP:
950 			err = -EFAULT;
951 			if (get_user(pid, (int __user *)argp))
952 				break;
953 			f_setown(sock->file, pid, 1);
954 			err = 0;
955 			break;
956 		case FIOGETOWN:
957 		case SIOCGPGRP:
958 			err = put_user(f_getown(sock->file),
959 				       (int __user *)argp);
960 			break;
961 		case SIOCGIFBR:
962 		case SIOCSIFBR:
963 		case SIOCBRADDBR:
964 		case SIOCBRDELBR:
965 			err = -ENOPKG;
966 			if (!br_ioctl_hook)
967 				request_module("bridge");
968 
969 			mutex_lock(&br_ioctl_mutex);
970 			if (br_ioctl_hook)
971 				err = br_ioctl_hook(net, cmd, argp);
972 			mutex_unlock(&br_ioctl_mutex);
973 			break;
974 		case SIOCGIFVLAN:
975 		case SIOCSIFVLAN:
976 			err = -ENOPKG;
977 			if (!vlan_ioctl_hook)
978 				request_module("8021q");
979 
980 			mutex_lock(&vlan_ioctl_mutex);
981 			if (vlan_ioctl_hook)
982 				err = vlan_ioctl_hook(net, argp);
983 			mutex_unlock(&vlan_ioctl_mutex);
984 			break;
985 		case SIOCADDDLCI:
986 		case SIOCDELDLCI:
987 			err = -ENOPKG;
988 			if (!dlci_ioctl_hook)
989 				request_module("dlci");
990 
991 			mutex_lock(&dlci_ioctl_mutex);
992 			if (dlci_ioctl_hook)
993 				err = dlci_ioctl_hook(cmd, argp);
994 			mutex_unlock(&dlci_ioctl_mutex);
995 			break;
996 		case SIOCGSKNS:
997 			err = -EPERM;
998 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
999 				break;
1000 
1001 			err = open_related_ns(&net->ns, get_net_ns);
1002 			break;
1003 		default:
1004 			err = sock_do_ioctl(net, sock, cmd, arg);
1005 			break;
1006 		}
1007 	return err;
1008 }
1009 
1010 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1011 {
1012 	int err;
1013 	struct socket *sock = NULL;
1014 
1015 	err = security_socket_create(family, type, protocol, 1);
1016 	if (err)
1017 		goto out;
1018 
1019 	sock = sock_alloc();
1020 	if (!sock) {
1021 		err = -ENOMEM;
1022 		goto out;
1023 	}
1024 
1025 	sock->type = type;
1026 	err = security_socket_post_create(sock, family, type, protocol, 1);
1027 	if (err)
1028 		goto out_release;
1029 
1030 out:
1031 	*res = sock;
1032 	return err;
1033 out_release:
1034 	sock_release(sock);
1035 	sock = NULL;
1036 	goto out;
1037 }
1038 EXPORT_SYMBOL(sock_create_lite);
1039 
1040 /* No kernel lock held - perfect */
1041 static unsigned int sock_poll(struct file *file, poll_table *wait)
1042 {
1043 	unsigned int busy_flag = 0;
1044 	struct socket *sock;
1045 
1046 	/*
1047 	 *      We can't return errors to poll, so it's either yes or no.
1048 	 */
1049 	sock = file->private_data;
1050 
1051 	if (sk_can_busy_loop(sock->sk)) {
1052 		/* this socket can poll_ll so tell the system call */
1053 		busy_flag = POLL_BUSY_LOOP;
1054 
1055 		/* once, only if requested by syscall */
1056 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1057 			sk_busy_loop(sock->sk, 1);
1058 	}
1059 
1060 	return busy_flag | sock->ops->poll(file, sock, wait);
1061 }
1062 
1063 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1064 {
1065 	struct socket *sock = file->private_data;
1066 
1067 	return sock->ops->mmap(file, sock, vma);
1068 }
1069 
1070 static int sock_close(struct inode *inode, struct file *filp)
1071 {
1072 	sock_release(SOCKET_I(inode));
1073 	return 0;
1074 }
1075 
1076 /*
1077  *	Update the socket async list
1078  *
1079  *	Fasync_list locking strategy.
1080  *
1081  *	1. fasync_list is modified only under process context socket lock
1082  *	   i.e. under semaphore.
1083  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1084  *	   or under socket lock
1085  */
1086 
1087 static int sock_fasync(int fd, struct file *filp, int on)
1088 {
1089 	struct socket *sock = filp->private_data;
1090 	struct sock *sk = sock->sk;
1091 	struct socket_wq *wq;
1092 
1093 	if (sk == NULL)
1094 		return -EINVAL;
1095 
1096 	lock_sock(sk);
1097 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1098 	fasync_helper(fd, filp, on, &wq->fasync_list);
1099 
1100 	if (!wq->fasync_list)
1101 		sock_reset_flag(sk, SOCK_FASYNC);
1102 	else
1103 		sock_set_flag(sk, SOCK_FASYNC);
1104 
1105 	release_sock(sk);
1106 	return 0;
1107 }
1108 
1109 /* This function may be called only under rcu_lock */
1110 
1111 int sock_wake_async(struct socket_wq *wq, int how, int band)
1112 {
1113 	if (!wq || !wq->fasync_list)
1114 		return -1;
1115 
1116 	switch (how) {
1117 	case SOCK_WAKE_WAITD:
1118 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1119 			break;
1120 		goto call_kill;
1121 	case SOCK_WAKE_SPACE:
1122 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1123 			break;
1124 		/* fall through */
1125 	case SOCK_WAKE_IO:
1126 call_kill:
1127 		kill_fasync(&wq->fasync_list, SIGIO, band);
1128 		break;
1129 	case SOCK_WAKE_URG:
1130 		kill_fasync(&wq->fasync_list, SIGURG, band);
1131 	}
1132 
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL(sock_wake_async);
1136 
1137 int __sock_create(struct net *net, int family, int type, int protocol,
1138 			 struct socket **res, int kern)
1139 {
1140 	int err;
1141 	struct socket *sock;
1142 	const struct net_proto_family *pf;
1143 
1144 	/*
1145 	 *      Check protocol is in range
1146 	 */
1147 	if (family < 0 || family >= NPROTO)
1148 		return -EAFNOSUPPORT;
1149 	if (type < 0 || type >= SOCK_MAX)
1150 		return -EINVAL;
1151 
1152 	/* Compatibility.
1153 
1154 	   This uglymoron is moved from INET layer to here to avoid
1155 	   deadlock in module load.
1156 	 */
1157 	if (family == PF_INET && type == SOCK_PACKET) {
1158 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1159 			     current->comm);
1160 		family = PF_PACKET;
1161 	}
1162 
1163 	err = security_socket_create(family, type, protocol, kern);
1164 	if (err)
1165 		return err;
1166 
1167 	/*
1168 	 *	Allocate the socket and allow the family to set things up. if
1169 	 *	the protocol is 0, the family is instructed to select an appropriate
1170 	 *	default.
1171 	 */
1172 	sock = sock_alloc();
1173 	if (!sock) {
1174 		net_warn_ratelimited("socket: no more sockets\n");
1175 		return -ENFILE;	/* Not exactly a match, but its the
1176 				   closest posix thing */
1177 	}
1178 
1179 	sock->type = type;
1180 
1181 #ifdef CONFIG_MODULES
1182 	/* Attempt to load a protocol module if the find failed.
1183 	 *
1184 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1185 	 * requested real, full-featured networking support upon configuration.
1186 	 * Otherwise module support will break!
1187 	 */
1188 	if (rcu_access_pointer(net_families[family]) == NULL)
1189 		request_module("net-pf-%d", family);
1190 #endif
1191 
1192 	rcu_read_lock();
1193 	pf = rcu_dereference(net_families[family]);
1194 	err = -EAFNOSUPPORT;
1195 	if (!pf)
1196 		goto out_release;
1197 
1198 	/*
1199 	 * We will call the ->create function, that possibly is in a loadable
1200 	 * module, so we have to bump that loadable module refcnt first.
1201 	 */
1202 	if (!try_module_get(pf->owner))
1203 		goto out_release;
1204 
1205 	/* Now protected by module ref count */
1206 	rcu_read_unlock();
1207 
1208 	err = pf->create(net, sock, protocol, kern);
1209 	if (err < 0)
1210 		goto out_module_put;
1211 
1212 	/*
1213 	 * Now to bump the refcnt of the [loadable] module that owns this
1214 	 * socket at sock_release time we decrement its refcnt.
1215 	 */
1216 	if (!try_module_get(sock->ops->owner))
1217 		goto out_module_busy;
1218 
1219 	/*
1220 	 * Now that we're done with the ->create function, the [loadable]
1221 	 * module can have its refcnt decremented
1222 	 */
1223 	module_put(pf->owner);
1224 	err = security_socket_post_create(sock, family, type, protocol, kern);
1225 	if (err)
1226 		goto out_sock_release;
1227 	*res = sock;
1228 
1229 	return 0;
1230 
1231 out_module_busy:
1232 	err = -EAFNOSUPPORT;
1233 out_module_put:
1234 	sock->ops = NULL;
1235 	module_put(pf->owner);
1236 out_sock_release:
1237 	sock_release(sock);
1238 	return err;
1239 
1240 out_release:
1241 	rcu_read_unlock();
1242 	goto out_sock_release;
1243 }
1244 EXPORT_SYMBOL(__sock_create);
1245 
1246 int sock_create(int family, int type, int protocol, struct socket **res)
1247 {
1248 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1249 }
1250 EXPORT_SYMBOL(sock_create);
1251 
1252 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1253 {
1254 	return __sock_create(net, family, type, protocol, res, 1);
1255 }
1256 EXPORT_SYMBOL(sock_create_kern);
1257 
1258 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1259 {
1260 	int retval;
1261 	struct socket *sock;
1262 	int flags;
1263 
1264 	/* Check the SOCK_* constants for consistency.  */
1265 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1266 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1267 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1268 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1269 
1270 	flags = type & ~SOCK_TYPE_MASK;
1271 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1272 		return -EINVAL;
1273 	type &= SOCK_TYPE_MASK;
1274 
1275 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1276 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1277 
1278 	retval = sock_create(family, type, protocol, &sock);
1279 	if (retval < 0)
1280 		goto out;
1281 
1282 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1283 	if (retval < 0)
1284 		goto out_release;
1285 
1286 out:
1287 	/* It may be already another descriptor 8) Not kernel problem. */
1288 	return retval;
1289 
1290 out_release:
1291 	sock_release(sock);
1292 	return retval;
1293 }
1294 
1295 /*
1296  *	Create a pair of connected sockets.
1297  */
1298 
1299 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1300 		int __user *, usockvec)
1301 {
1302 	struct socket *sock1, *sock2;
1303 	int fd1, fd2, err;
1304 	struct file *newfile1, *newfile2;
1305 	int flags;
1306 
1307 	flags = type & ~SOCK_TYPE_MASK;
1308 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1309 		return -EINVAL;
1310 	type &= SOCK_TYPE_MASK;
1311 
1312 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1313 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1314 
1315 	/*
1316 	 * Obtain the first socket and check if the underlying protocol
1317 	 * supports the socketpair call.
1318 	 */
1319 
1320 	err = sock_create(family, type, protocol, &sock1);
1321 	if (err < 0)
1322 		goto out;
1323 
1324 	err = sock_create(family, type, protocol, &sock2);
1325 	if (err < 0)
1326 		goto out_release_1;
1327 
1328 	err = sock1->ops->socketpair(sock1, sock2);
1329 	if (err < 0)
1330 		goto out_release_both;
1331 
1332 	fd1 = get_unused_fd_flags(flags);
1333 	if (unlikely(fd1 < 0)) {
1334 		err = fd1;
1335 		goto out_release_both;
1336 	}
1337 
1338 	fd2 = get_unused_fd_flags(flags);
1339 	if (unlikely(fd2 < 0)) {
1340 		err = fd2;
1341 		goto out_put_unused_1;
1342 	}
1343 
1344 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1345 	if (IS_ERR(newfile1)) {
1346 		err = PTR_ERR(newfile1);
1347 		goto out_put_unused_both;
1348 	}
1349 
1350 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1351 	if (IS_ERR(newfile2)) {
1352 		err = PTR_ERR(newfile2);
1353 		goto out_fput_1;
1354 	}
1355 
1356 	err = put_user(fd1, &usockvec[0]);
1357 	if (err)
1358 		goto out_fput_both;
1359 
1360 	err = put_user(fd2, &usockvec[1]);
1361 	if (err)
1362 		goto out_fput_both;
1363 
1364 	audit_fd_pair(fd1, fd2);
1365 
1366 	fd_install(fd1, newfile1);
1367 	fd_install(fd2, newfile2);
1368 	/* fd1 and fd2 may be already another descriptors.
1369 	 * Not kernel problem.
1370 	 */
1371 
1372 	return 0;
1373 
1374 out_fput_both:
1375 	fput(newfile2);
1376 	fput(newfile1);
1377 	put_unused_fd(fd2);
1378 	put_unused_fd(fd1);
1379 	goto out;
1380 
1381 out_fput_1:
1382 	fput(newfile1);
1383 	put_unused_fd(fd2);
1384 	put_unused_fd(fd1);
1385 	sock_release(sock2);
1386 	goto out;
1387 
1388 out_put_unused_both:
1389 	put_unused_fd(fd2);
1390 out_put_unused_1:
1391 	put_unused_fd(fd1);
1392 out_release_both:
1393 	sock_release(sock2);
1394 out_release_1:
1395 	sock_release(sock1);
1396 out:
1397 	return err;
1398 }
1399 
1400 /*
1401  *	Bind a name to a socket. Nothing much to do here since it's
1402  *	the protocol's responsibility to handle the local address.
1403  *
1404  *	We move the socket address to kernel space before we call
1405  *	the protocol layer (having also checked the address is ok).
1406  */
1407 
1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 {
1410 	struct socket *sock;
1411 	struct sockaddr_storage address;
1412 	int err, fput_needed;
1413 
1414 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 	if (sock) {
1416 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1417 		if (err >= 0) {
1418 			err = security_socket_bind(sock,
1419 						   (struct sockaddr *)&address,
1420 						   addrlen);
1421 			if (!err)
1422 				err = sock->ops->bind(sock,
1423 						      (struct sockaddr *)
1424 						      &address, addrlen);
1425 		}
1426 		fput_light(sock->file, fput_needed);
1427 	}
1428 	return err;
1429 }
1430 
1431 /*
1432  *	Perform a listen. Basically, we allow the protocol to do anything
1433  *	necessary for a listen, and if that works, we mark the socket as
1434  *	ready for listening.
1435  */
1436 
1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 {
1439 	struct socket *sock;
1440 	int err, fput_needed;
1441 	int somaxconn;
1442 
1443 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 	if (sock) {
1445 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1446 		if ((unsigned int)backlog > somaxconn)
1447 			backlog = somaxconn;
1448 
1449 		err = security_socket_listen(sock, backlog);
1450 		if (!err)
1451 			err = sock->ops->listen(sock, backlog);
1452 
1453 		fput_light(sock->file, fput_needed);
1454 	}
1455 	return err;
1456 }
1457 
1458 /*
1459  *	For accept, we attempt to create a new socket, set up the link
1460  *	with the client, wake up the client, then return the new
1461  *	connected fd. We collect the address of the connector in kernel
1462  *	space and move it to user at the very end. This is unclean because
1463  *	we open the socket then return an error.
1464  *
1465  *	1003.1g adds the ability to recvmsg() to query connection pending
1466  *	status to recvmsg. We need to add that support in a way thats
1467  *	clean when we restucture accept also.
1468  */
1469 
1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1471 		int __user *, upeer_addrlen, int, flags)
1472 {
1473 	struct socket *sock, *newsock;
1474 	struct file *newfile;
1475 	int err, len, newfd, fput_needed;
1476 	struct sockaddr_storage address;
1477 
1478 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1479 		return -EINVAL;
1480 
1481 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1482 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483 
1484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 	if (!sock)
1486 		goto out;
1487 
1488 	err = -ENFILE;
1489 	newsock = sock_alloc();
1490 	if (!newsock)
1491 		goto out_put;
1492 
1493 	newsock->type = sock->type;
1494 	newsock->ops = sock->ops;
1495 
1496 	/*
1497 	 * We don't need try_module_get here, as the listening socket (sock)
1498 	 * has the protocol module (sock->ops->owner) held.
1499 	 */
1500 	__module_get(newsock->ops->owner);
1501 
1502 	newfd = get_unused_fd_flags(flags);
1503 	if (unlikely(newfd < 0)) {
1504 		err = newfd;
1505 		sock_release(newsock);
1506 		goto out_put;
1507 	}
1508 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1509 	if (IS_ERR(newfile)) {
1510 		err = PTR_ERR(newfile);
1511 		put_unused_fd(newfd);
1512 		sock_release(newsock);
1513 		goto out_put;
1514 	}
1515 
1516 	err = security_socket_accept(sock, newsock);
1517 	if (err)
1518 		goto out_fd;
1519 
1520 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1521 	if (err < 0)
1522 		goto out_fd;
1523 
1524 	if (upeer_sockaddr) {
1525 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1526 					  &len, 2) < 0) {
1527 			err = -ECONNABORTED;
1528 			goto out_fd;
1529 		}
1530 		err = move_addr_to_user(&address,
1531 					len, upeer_sockaddr, upeer_addrlen);
1532 		if (err < 0)
1533 			goto out_fd;
1534 	}
1535 
1536 	/* File flags are not inherited via accept() unlike another OSes. */
1537 
1538 	fd_install(newfd, newfile);
1539 	err = newfd;
1540 
1541 out_put:
1542 	fput_light(sock->file, fput_needed);
1543 out:
1544 	return err;
1545 out_fd:
1546 	fput(newfile);
1547 	put_unused_fd(newfd);
1548 	goto out_put;
1549 }
1550 
1551 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1552 		int __user *, upeer_addrlen)
1553 {
1554 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1555 }
1556 
1557 /*
1558  *	Attempt to connect to a socket with the server address.  The address
1559  *	is in user space so we verify it is OK and move it to kernel space.
1560  *
1561  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1562  *	break bindings
1563  *
1564  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1565  *	other SEQPACKET protocols that take time to connect() as it doesn't
1566  *	include the -EINPROGRESS status for such sockets.
1567  */
1568 
1569 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1570 		int, addrlen)
1571 {
1572 	struct socket *sock;
1573 	struct sockaddr_storage address;
1574 	int err, fput_needed;
1575 
1576 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 	if (!sock)
1578 		goto out;
1579 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1580 	if (err < 0)
1581 		goto out_put;
1582 
1583 	err =
1584 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1585 	if (err)
1586 		goto out_put;
1587 
1588 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1589 				 sock->file->f_flags);
1590 out_put:
1591 	fput_light(sock->file, fput_needed);
1592 out:
1593 	return err;
1594 }
1595 
1596 /*
1597  *	Get the local address ('name') of a socket object. Move the obtained
1598  *	name to user space.
1599  */
1600 
1601 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1602 		int __user *, usockaddr_len)
1603 {
1604 	struct socket *sock;
1605 	struct sockaddr_storage address;
1606 	int len, err, fput_needed;
1607 
1608 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1609 	if (!sock)
1610 		goto out;
1611 
1612 	err = security_socket_getsockname(sock);
1613 	if (err)
1614 		goto out_put;
1615 
1616 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1617 	if (err)
1618 		goto out_put;
1619 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1620 
1621 out_put:
1622 	fput_light(sock->file, fput_needed);
1623 out:
1624 	return err;
1625 }
1626 
1627 /*
1628  *	Get the remote address ('name') of a socket object. Move the obtained
1629  *	name to user space.
1630  */
1631 
1632 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1633 		int __user *, usockaddr_len)
1634 {
1635 	struct socket *sock;
1636 	struct sockaddr_storage address;
1637 	int len, err, fput_needed;
1638 
1639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 	if (sock != NULL) {
1641 		err = security_socket_getpeername(sock);
1642 		if (err) {
1643 			fput_light(sock->file, fput_needed);
1644 			return err;
1645 		}
1646 
1647 		err =
1648 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1649 				       1);
1650 		if (!err)
1651 			err = move_addr_to_user(&address, len, usockaddr,
1652 						usockaddr_len);
1653 		fput_light(sock->file, fput_needed);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  *	Send a datagram to a given address. We move the address into kernel
1660  *	space and check the user space data area is readable before invoking
1661  *	the protocol.
1662  */
1663 
1664 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1665 		unsigned int, flags, struct sockaddr __user *, addr,
1666 		int, addr_len)
1667 {
1668 	struct socket *sock;
1669 	struct sockaddr_storage address;
1670 	int err;
1671 	struct msghdr msg;
1672 	struct iovec iov;
1673 	int fput_needed;
1674 
1675 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1676 	if (unlikely(err))
1677 		return err;
1678 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 	if (!sock)
1680 		goto out;
1681 
1682 	msg.msg_name = NULL;
1683 	msg.msg_control = NULL;
1684 	msg.msg_controllen = 0;
1685 	msg.msg_namelen = 0;
1686 	if (addr) {
1687 		err = move_addr_to_kernel(addr, addr_len, &address);
1688 		if (err < 0)
1689 			goto out_put;
1690 		msg.msg_name = (struct sockaddr *)&address;
1691 		msg.msg_namelen = addr_len;
1692 	}
1693 	if (sock->file->f_flags & O_NONBLOCK)
1694 		flags |= MSG_DONTWAIT;
1695 	msg.msg_flags = flags;
1696 	err = sock_sendmsg(sock, &msg);
1697 
1698 out_put:
1699 	fput_light(sock->file, fput_needed);
1700 out:
1701 	return err;
1702 }
1703 
1704 /*
1705  *	Send a datagram down a socket.
1706  */
1707 
1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1709 		unsigned int, flags)
1710 {
1711 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1712 }
1713 
1714 /*
1715  *	Receive a frame from the socket and optionally record the address of the
1716  *	sender. We verify the buffers are writable and if needed move the
1717  *	sender address from kernel to user space.
1718  */
1719 
1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1721 		unsigned int, flags, struct sockaddr __user *, addr,
1722 		int __user *, addr_len)
1723 {
1724 	struct socket *sock;
1725 	struct iovec iov;
1726 	struct msghdr msg;
1727 	struct sockaddr_storage address;
1728 	int err, err2;
1729 	int fput_needed;
1730 
1731 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1732 	if (unlikely(err))
1733 		return err;
1734 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 	if (!sock)
1736 		goto out;
1737 
1738 	msg.msg_control = NULL;
1739 	msg.msg_controllen = 0;
1740 	/* Save some cycles and don't copy the address if not needed */
1741 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1742 	/* We assume all kernel code knows the size of sockaddr_storage */
1743 	msg.msg_namelen = 0;
1744 	msg.msg_iocb = NULL;
1745 	msg.msg_flags = 0;
1746 	if (sock->file->f_flags & O_NONBLOCK)
1747 		flags |= MSG_DONTWAIT;
1748 	err = sock_recvmsg(sock, &msg, flags);
1749 
1750 	if (err >= 0 && addr != NULL) {
1751 		err2 = move_addr_to_user(&address,
1752 					 msg.msg_namelen, addr, addr_len);
1753 		if (err2 < 0)
1754 			err = err2;
1755 	}
1756 
1757 	fput_light(sock->file, fput_needed);
1758 out:
1759 	return err;
1760 }
1761 
1762 /*
1763  *	Receive a datagram from a socket.
1764  */
1765 
1766 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1767 		unsigned int, flags)
1768 {
1769 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1770 }
1771 
1772 /*
1773  *	Set a socket option. Because we don't know the option lengths we have
1774  *	to pass the user mode parameter for the protocols to sort out.
1775  */
1776 
1777 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1778 		char __user *, optval, int, optlen)
1779 {
1780 	int err, fput_needed;
1781 	struct socket *sock;
1782 
1783 	if (optlen < 0)
1784 		return -EINVAL;
1785 
1786 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 	if (sock != NULL) {
1788 		err = security_socket_setsockopt(sock, level, optname);
1789 		if (err)
1790 			goto out_put;
1791 
1792 		if (level == SOL_SOCKET)
1793 			err =
1794 			    sock_setsockopt(sock, level, optname, optval,
1795 					    optlen);
1796 		else
1797 			err =
1798 			    sock->ops->setsockopt(sock, level, optname, optval,
1799 						  optlen);
1800 out_put:
1801 		fput_light(sock->file, fput_needed);
1802 	}
1803 	return err;
1804 }
1805 
1806 /*
1807  *	Get a socket option. Because we don't know the option lengths we have
1808  *	to pass a user mode parameter for the protocols to sort out.
1809  */
1810 
1811 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1812 		char __user *, optval, int __user *, optlen)
1813 {
1814 	int err, fput_needed;
1815 	struct socket *sock;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_getsockopt(sock, level, optname);
1820 		if (err)
1821 			goto out_put;
1822 
1823 		if (level == SOL_SOCKET)
1824 			err =
1825 			    sock_getsockopt(sock, level, optname, optval,
1826 					    optlen);
1827 		else
1828 			err =
1829 			    sock->ops->getsockopt(sock, level, optname, optval,
1830 						  optlen);
1831 out_put:
1832 		fput_light(sock->file, fput_needed);
1833 	}
1834 	return err;
1835 }
1836 
1837 /*
1838  *	Shutdown a socket.
1839  */
1840 
1841 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1842 {
1843 	int err, fput_needed;
1844 	struct socket *sock;
1845 
1846 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1847 	if (sock != NULL) {
1848 		err = security_socket_shutdown(sock, how);
1849 		if (!err)
1850 			err = sock->ops->shutdown(sock, how);
1851 		fput_light(sock->file, fput_needed);
1852 	}
1853 	return err;
1854 }
1855 
1856 /* A couple of helpful macros for getting the address of the 32/64 bit
1857  * fields which are the same type (int / unsigned) on our platforms.
1858  */
1859 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1860 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1861 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1862 
1863 struct used_address {
1864 	struct sockaddr_storage name;
1865 	unsigned int name_len;
1866 };
1867 
1868 static int copy_msghdr_from_user(struct msghdr *kmsg,
1869 				 struct user_msghdr __user *umsg,
1870 				 struct sockaddr __user **save_addr,
1871 				 struct iovec **iov)
1872 {
1873 	struct sockaddr __user *uaddr;
1874 	struct iovec __user *uiov;
1875 	size_t nr_segs;
1876 	ssize_t err;
1877 
1878 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1879 	    __get_user(uaddr, &umsg->msg_name) ||
1880 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1881 	    __get_user(uiov, &umsg->msg_iov) ||
1882 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1883 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1884 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1885 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1886 		return -EFAULT;
1887 
1888 	if (!uaddr)
1889 		kmsg->msg_namelen = 0;
1890 
1891 	if (kmsg->msg_namelen < 0)
1892 		return -EINVAL;
1893 
1894 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1895 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1896 
1897 	if (save_addr)
1898 		*save_addr = uaddr;
1899 
1900 	if (uaddr && kmsg->msg_namelen) {
1901 		if (!save_addr) {
1902 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1903 						  kmsg->msg_name);
1904 			if (err < 0)
1905 				return err;
1906 		}
1907 	} else {
1908 		kmsg->msg_name = NULL;
1909 		kmsg->msg_namelen = 0;
1910 	}
1911 
1912 	if (nr_segs > UIO_MAXIOV)
1913 		return -EMSGSIZE;
1914 
1915 	kmsg->msg_iocb = NULL;
1916 
1917 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1918 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1919 }
1920 
1921 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1922 			 struct msghdr *msg_sys, unsigned int flags,
1923 			 struct used_address *used_address,
1924 			 unsigned int allowed_msghdr_flags)
1925 {
1926 	struct compat_msghdr __user *msg_compat =
1927 	    (struct compat_msghdr __user *)msg;
1928 	struct sockaddr_storage address;
1929 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1930 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1931 				__aligned(sizeof(__kernel_size_t));
1932 	/* 20 is size of ipv6_pktinfo */
1933 	unsigned char *ctl_buf = ctl;
1934 	int ctl_len;
1935 	ssize_t err;
1936 
1937 	msg_sys->msg_name = &address;
1938 
1939 	if (MSG_CMSG_COMPAT & flags)
1940 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1941 	else
1942 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1943 	if (err < 0)
1944 		return err;
1945 
1946 	err = -ENOBUFS;
1947 
1948 	if (msg_sys->msg_controllen > INT_MAX)
1949 		goto out_freeiov;
1950 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1951 	ctl_len = msg_sys->msg_controllen;
1952 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1953 		err =
1954 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1955 						     sizeof(ctl));
1956 		if (err)
1957 			goto out_freeiov;
1958 		ctl_buf = msg_sys->msg_control;
1959 		ctl_len = msg_sys->msg_controllen;
1960 	} else if (ctl_len) {
1961 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1962 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
1963 		if (ctl_len > sizeof(ctl)) {
1964 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1965 			if (ctl_buf == NULL)
1966 				goto out_freeiov;
1967 		}
1968 		err = -EFAULT;
1969 		/*
1970 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1971 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1972 		 * checking falls down on this.
1973 		 */
1974 		if (copy_from_user(ctl_buf,
1975 				   (void __user __force *)msg_sys->msg_control,
1976 				   ctl_len))
1977 			goto out_freectl;
1978 		msg_sys->msg_control = ctl_buf;
1979 	}
1980 	msg_sys->msg_flags = flags;
1981 
1982 	if (sock->file->f_flags & O_NONBLOCK)
1983 		msg_sys->msg_flags |= MSG_DONTWAIT;
1984 	/*
1985 	 * If this is sendmmsg() and current destination address is same as
1986 	 * previously succeeded address, omit asking LSM's decision.
1987 	 * used_address->name_len is initialized to UINT_MAX so that the first
1988 	 * destination address never matches.
1989 	 */
1990 	if (used_address && msg_sys->msg_name &&
1991 	    used_address->name_len == msg_sys->msg_namelen &&
1992 	    !memcmp(&used_address->name, msg_sys->msg_name,
1993 		    used_address->name_len)) {
1994 		err = sock_sendmsg_nosec(sock, msg_sys);
1995 		goto out_freectl;
1996 	}
1997 	err = sock_sendmsg(sock, msg_sys);
1998 	/*
1999 	 * If this is sendmmsg() and sending to current destination address was
2000 	 * successful, remember it.
2001 	 */
2002 	if (used_address && err >= 0) {
2003 		used_address->name_len = msg_sys->msg_namelen;
2004 		if (msg_sys->msg_name)
2005 			memcpy(&used_address->name, msg_sys->msg_name,
2006 			       used_address->name_len);
2007 	}
2008 
2009 out_freectl:
2010 	if (ctl_buf != ctl)
2011 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2012 out_freeiov:
2013 	kfree(iov);
2014 	return err;
2015 }
2016 
2017 /*
2018  *	BSD sendmsg interface
2019  */
2020 
2021 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2022 {
2023 	int fput_needed, err;
2024 	struct msghdr msg_sys;
2025 	struct socket *sock;
2026 
2027 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2028 	if (!sock)
2029 		goto out;
2030 
2031 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2032 
2033 	fput_light(sock->file, fput_needed);
2034 out:
2035 	return err;
2036 }
2037 
2038 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2039 {
2040 	if (flags & MSG_CMSG_COMPAT)
2041 		return -EINVAL;
2042 	return __sys_sendmsg(fd, msg, flags);
2043 }
2044 
2045 /*
2046  *	Linux sendmmsg interface
2047  */
2048 
2049 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2050 		   unsigned int flags)
2051 {
2052 	int fput_needed, err, datagrams;
2053 	struct socket *sock;
2054 	struct mmsghdr __user *entry;
2055 	struct compat_mmsghdr __user *compat_entry;
2056 	struct msghdr msg_sys;
2057 	struct used_address used_address;
2058 	unsigned int oflags = flags;
2059 
2060 	if (vlen > UIO_MAXIOV)
2061 		vlen = UIO_MAXIOV;
2062 
2063 	datagrams = 0;
2064 
2065 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2066 	if (!sock)
2067 		return err;
2068 
2069 	used_address.name_len = UINT_MAX;
2070 	entry = mmsg;
2071 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2072 	err = 0;
2073 	flags |= MSG_BATCH;
2074 
2075 	while (datagrams < vlen) {
2076 		if (datagrams == vlen - 1)
2077 			flags = oflags;
2078 
2079 		if (MSG_CMSG_COMPAT & flags) {
2080 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2081 					     &msg_sys, flags, &used_address, MSG_EOR);
2082 			if (err < 0)
2083 				break;
2084 			err = __put_user(err, &compat_entry->msg_len);
2085 			++compat_entry;
2086 		} else {
2087 			err = ___sys_sendmsg(sock,
2088 					     (struct user_msghdr __user *)entry,
2089 					     &msg_sys, flags, &used_address, MSG_EOR);
2090 			if (err < 0)
2091 				break;
2092 			err = put_user(err, &entry->msg_len);
2093 			++entry;
2094 		}
2095 
2096 		if (err)
2097 			break;
2098 		++datagrams;
2099 		if (msg_data_left(&msg_sys))
2100 			break;
2101 		cond_resched();
2102 	}
2103 
2104 	fput_light(sock->file, fput_needed);
2105 
2106 	/* We only return an error if no datagrams were able to be sent */
2107 	if (datagrams != 0)
2108 		return datagrams;
2109 
2110 	return err;
2111 }
2112 
2113 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2114 		unsigned int, vlen, unsigned int, flags)
2115 {
2116 	if (flags & MSG_CMSG_COMPAT)
2117 		return -EINVAL;
2118 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2119 }
2120 
2121 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2122 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2123 {
2124 	struct compat_msghdr __user *msg_compat =
2125 	    (struct compat_msghdr __user *)msg;
2126 	struct iovec iovstack[UIO_FASTIOV];
2127 	struct iovec *iov = iovstack;
2128 	unsigned long cmsg_ptr;
2129 	int len;
2130 	ssize_t err;
2131 
2132 	/* kernel mode address */
2133 	struct sockaddr_storage addr;
2134 
2135 	/* user mode address pointers */
2136 	struct sockaddr __user *uaddr;
2137 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2138 
2139 	msg_sys->msg_name = &addr;
2140 
2141 	if (MSG_CMSG_COMPAT & flags)
2142 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2143 	else
2144 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2145 	if (err < 0)
2146 		return err;
2147 
2148 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2149 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2150 
2151 	/* We assume all kernel code knows the size of sockaddr_storage */
2152 	msg_sys->msg_namelen = 0;
2153 
2154 	if (sock->file->f_flags & O_NONBLOCK)
2155 		flags |= MSG_DONTWAIT;
2156 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2157 	if (err < 0)
2158 		goto out_freeiov;
2159 	len = err;
2160 
2161 	if (uaddr != NULL) {
2162 		err = move_addr_to_user(&addr,
2163 					msg_sys->msg_namelen, uaddr,
2164 					uaddr_len);
2165 		if (err < 0)
2166 			goto out_freeiov;
2167 	}
2168 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2169 			 COMPAT_FLAGS(msg));
2170 	if (err)
2171 		goto out_freeiov;
2172 	if (MSG_CMSG_COMPAT & flags)
2173 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2174 				 &msg_compat->msg_controllen);
2175 	else
2176 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2177 				 &msg->msg_controllen);
2178 	if (err)
2179 		goto out_freeiov;
2180 	err = len;
2181 
2182 out_freeiov:
2183 	kfree(iov);
2184 	return err;
2185 }
2186 
2187 /*
2188  *	BSD recvmsg interface
2189  */
2190 
2191 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2192 {
2193 	int fput_needed, err;
2194 	struct msghdr msg_sys;
2195 	struct socket *sock;
2196 
2197 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 	if (!sock)
2199 		goto out;
2200 
2201 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2202 
2203 	fput_light(sock->file, fput_needed);
2204 out:
2205 	return err;
2206 }
2207 
2208 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2209 		unsigned int, flags)
2210 {
2211 	if (flags & MSG_CMSG_COMPAT)
2212 		return -EINVAL;
2213 	return __sys_recvmsg(fd, msg, flags);
2214 }
2215 
2216 /*
2217  *     Linux recvmmsg interface
2218  */
2219 
2220 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2221 		   unsigned int flags, struct timespec *timeout)
2222 {
2223 	int fput_needed, err, datagrams;
2224 	struct socket *sock;
2225 	struct mmsghdr __user *entry;
2226 	struct compat_mmsghdr __user *compat_entry;
2227 	struct msghdr msg_sys;
2228 	struct timespec64 end_time;
2229 	struct timespec64 timeout64;
2230 
2231 	if (timeout &&
2232 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2233 				    timeout->tv_nsec))
2234 		return -EINVAL;
2235 
2236 	datagrams = 0;
2237 
2238 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 	if (!sock)
2240 		return err;
2241 
2242 	err = sock_error(sock->sk);
2243 	if (err) {
2244 		datagrams = err;
2245 		goto out_put;
2246 	}
2247 
2248 	entry = mmsg;
2249 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2250 
2251 	while (datagrams < vlen) {
2252 		/*
2253 		 * No need to ask LSM for more than the first datagram.
2254 		 */
2255 		if (MSG_CMSG_COMPAT & flags) {
2256 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2257 					     &msg_sys, flags & ~MSG_WAITFORONE,
2258 					     datagrams);
2259 			if (err < 0)
2260 				break;
2261 			err = __put_user(err, &compat_entry->msg_len);
2262 			++compat_entry;
2263 		} else {
2264 			err = ___sys_recvmsg(sock,
2265 					     (struct user_msghdr __user *)entry,
2266 					     &msg_sys, flags & ~MSG_WAITFORONE,
2267 					     datagrams);
2268 			if (err < 0)
2269 				break;
2270 			err = put_user(err, &entry->msg_len);
2271 			++entry;
2272 		}
2273 
2274 		if (err)
2275 			break;
2276 		++datagrams;
2277 
2278 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2279 		if (flags & MSG_WAITFORONE)
2280 			flags |= MSG_DONTWAIT;
2281 
2282 		if (timeout) {
2283 			ktime_get_ts64(&timeout64);
2284 			*timeout = timespec64_to_timespec(
2285 					timespec64_sub(end_time, timeout64));
2286 			if (timeout->tv_sec < 0) {
2287 				timeout->tv_sec = timeout->tv_nsec = 0;
2288 				break;
2289 			}
2290 
2291 			/* Timeout, return less than vlen datagrams */
2292 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2293 				break;
2294 		}
2295 
2296 		/* Out of band data, return right away */
2297 		if (msg_sys.msg_flags & MSG_OOB)
2298 			break;
2299 		cond_resched();
2300 	}
2301 
2302 	if (err == 0)
2303 		goto out_put;
2304 
2305 	if (datagrams == 0) {
2306 		datagrams = err;
2307 		goto out_put;
2308 	}
2309 
2310 	/*
2311 	 * We may return less entries than requested (vlen) if the
2312 	 * sock is non block and there aren't enough datagrams...
2313 	 */
2314 	if (err != -EAGAIN) {
2315 		/*
2316 		 * ... or  if recvmsg returns an error after we
2317 		 * received some datagrams, where we record the
2318 		 * error to return on the next call or if the
2319 		 * app asks about it using getsockopt(SO_ERROR).
2320 		 */
2321 		sock->sk->sk_err = -err;
2322 	}
2323 out_put:
2324 	fput_light(sock->file, fput_needed);
2325 
2326 	return datagrams;
2327 }
2328 
2329 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2330 		unsigned int, vlen, unsigned int, flags,
2331 		struct timespec __user *, timeout)
2332 {
2333 	int datagrams;
2334 	struct timespec timeout_sys;
2335 
2336 	if (flags & MSG_CMSG_COMPAT)
2337 		return -EINVAL;
2338 
2339 	if (!timeout)
2340 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2341 
2342 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2343 		return -EFAULT;
2344 
2345 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2346 
2347 	if (datagrams > 0 &&
2348 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2349 		datagrams = -EFAULT;
2350 
2351 	return datagrams;
2352 }
2353 
2354 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2355 /* Argument list sizes for sys_socketcall */
2356 #define AL(x) ((x) * sizeof(unsigned long))
2357 static const unsigned char nargs[21] = {
2358 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2359 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2360 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2361 	AL(4), AL(5), AL(4)
2362 };
2363 
2364 #undef AL
2365 
2366 /*
2367  *	System call vectors.
2368  *
2369  *	Argument checking cleaned up. Saved 20% in size.
2370  *  This function doesn't need to set the kernel lock because
2371  *  it is set by the callees.
2372  */
2373 
2374 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2375 {
2376 	unsigned long a[AUDITSC_ARGS];
2377 	unsigned long a0, a1;
2378 	int err;
2379 	unsigned int len;
2380 
2381 	if (call < 1 || call > SYS_SENDMMSG)
2382 		return -EINVAL;
2383 
2384 	len = nargs[call];
2385 	if (len > sizeof(a))
2386 		return -EINVAL;
2387 
2388 	/* copy_from_user should be SMP safe. */
2389 	if (copy_from_user(a, args, len))
2390 		return -EFAULT;
2391 
2392 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2393 	if (err)
2394 		return err;
2395 
2396 	a0 = a[0];
2397 	a1 = a[1];
2398 
2399 	switch (call) {
2400 	case SYS_SOCKET:
2401 		err = sys_socket(a0, a1, a[2]);
2402 		break;
2403 	case SYS_BIND:
2404 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2405 		break;
2406 	case SYS_CONNECT:
2407 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2408 		break;
2409 	case SYS_LISTEN:
2410 		err = sys_listen(a0, a1);
2411 		break;
2412 	case SYS_ACCEPT:
2413 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414 				  (int __user *)a[2], 0);
2415 		break;
2416 	case SYS_GETSOCKNAME:
2417 		err =
2418 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2419 				    (int __user *)a[2]);
2420 		break;
2421 	case SYS_GETPEERNAME:
2422 		err =
2423 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2424 				    (int __user *)a[2]);
2425 		break;
2426 	case SYS_SOCKETPAIR:
2427 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2428 		break;
2429 	case SYS_SEND:
2430 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2431 		break;
2432 	case SYS_SENDTO:
2433 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2434 				 (struct sockaddr __user *)a[4], a[5]);
2435 		break;
2436 	case SYS_RECV:
2437 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2438 		break;
2439 	case SYS_RECVFROM:
2440 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2441 				   (struct sockaddr __user *)a[4],
2442 				   (int __user *)a[5]);
2443 		break;
2444 	case SYS_SHUTDOWN:
2445 		err = sys_shutdown(a0, a1);
2446 		break;
2447 	case SYS_SETSOCKOPT:
2448 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2449 		break;
2450 	case SYS_GETSOCKOPT:
2451 		err =
2452 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2453 				   (int __user *)a[4]);
2454 		break;
2455 	case SYS_SENDMSG:
2456 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2457 		break;
2458 	case SYS_SENDMMSG:
2459 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2460 		break;
2461 	case SYS_RECVMSG:
2462 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2463 		break;
2464 	case SYS_RECVMMSG:
2465 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2466 				   (struct timespec __user *)a[4]);
2467 		break;
2468 	case SYS_ACCEPT4:
2469 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2470 				  (int __user *)a[2], a[3]);
2471 		break;
2472 	default:
2473 		err = -EINVAL;
2474 		break;
2475 	}
2476 	return err;
2477 }
2478 
2479 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2480 
2481 /**
2482  *	sock_register - add a socket protocol handler
2483  *	@ops: description of protocol
2484  *
2485  *	This function is called by a protocol handler that wants to
2486  *	advertise its address family, and have it linked into the
2487  *	socket interface. The value ops->family corresponds to the
2488  *	socket system call protocol family.
2489  */
2490 int sock_register(const struct net_proto_family *ops)
2491 {
2492 	int err;
2493 
2494 	if (ops->family >= NPROTO) {
2495 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2496 		return -ENOBUFS;
2497 	}
2498 
2499 	spin_lock(&net_family_lock);
2500 	if (rcu_dereference_protected(net_families[ops->family],
2501 				      lockdep_is_held(&net_family_lock)))
2502 		err = -EEXIST;
2503 	else {
2504 		rcu_assign_pointer(net_families[ops->family], ops);
2505 		err = 0;
2506 	}
2507 	spin_unlock(&net_family_lock);
2508 
2509 	pr_info("NET: Registered protocol family %d\n", ops->family);
2510 	return err;
2511 }
2512 EXPORT_SYMBOL(sock_register);
2513 
2514 /**
2515  *	sock_unregister - remove a protocol handler
2516  *	@family: protocol family to remove
2517  *
2518  *	This function is called by a protocol handler that wants to
2519  *	remove its address family, and have it unlinked from the
2520  *	new socket creation.
2521  *
2522  *	If protocol handler is a module, then it can use module reference
2523  *	counts to protect against new references. If protocol handler is not
2524  *	a module then it needs to provide its own protection in
2525  *	the ops->create routine.
2526  */
2527 void sock_unregister(int family)
2528 {
2529 	BUG_ON(family < 0 || family >= NPROTO);
2530 
2531 	spin_lock(&net_family_lock);
2532 	RCU_INIT_POINTER(net_families[family], NULL);
2533 	spin_unlock(&net_family_lock);
2534 
2535 	synchronize_rcu();
2536 
2537 	pr_info("NET: Unregistered protocol family %d\n", family);
2538 }
2539 EXPORT_SYMBOL(sock_unregister);
2540 
2541 static int __init sock_init(void)
2542 {
2543 	int err;
2544 	/*
2545 	 *      Initialize the network sysctl infrastructure.
2546 	 */
2547 	err = net_sysctl_init();
2548 	if (err)
2549 		goto out;
2550 
2551 	/*
2552 	 *      Initialize skbuff SLAB cache
2553 	 */
2554 	skb_init();
2555 
2556 	/*
2557 	 *      Initialize the protocols module.
2558 	 */
2559 
2560 	init_inodecache();
2561 
2562 	err = register_filesystem(&sock_fs_type);
2563 	if (err)
2564 		goto out_fs;
2565 	sock_mnt = kern_mount(&sock_fs_type);
2566 	if (IS_ERR(sock_mnt)) {
2567 		err = PTR_ERR(sock_mnt);
2568 		goto out_mount;
2569 	}
2570 
2571 	/* The real protocol initialization is performed in later initcalls.
2572 	 */
2573 
2574 #ifdef CONFIG_NETFILTER
2575 	err = netfilter_init();
2576 	if (err)
2577 		goto out;
2578 #endif
2579 
2580 	ptp_classifier_init();
2581 
2582 out:
2583 	return err;
2584 
2585 out_mount:
2586 	unregister_filesystem(&sock_fs_type);
2587 out_fs:
2588 	goto out;
2589 }
2590 
2591 core_initcall(sock_init);	/* early initcall */
2592 
2593 #ifdef CONFIG_PROC_FS
2594 void socket_seq_show(struct seq_file *seq)
2595 {
2596 	int cpu;
2597 	int counter = 0;
2598 
2599 	for_each_possible_cpu(cpu)
2600 	    counter += per_cpu(sockets_in_use, cpu);
2601 
2602 	/* It can be negative, by the way. 8) */
2603 	if (counter < 0)
2604 		counter = 0;
2605 
2606 	seq_printf(seq, "sockets: used %d\n", counter);
2607 }
2608 #endif				/* CONFIG_PROC_FS */
2609 
2610 #ifdef CONFIG_COMPAT
2611 static int do_siocgstamp(struct net *net, struct socket *sock,
2612 			 unsigned int cmd, void __user *up)
2613 {
2614 	mm_segment_t old_fs = get_fs();
2615 	struct timeval ktv;
2616 	int err;
2617 
2618 	set_fs(KERNEL_DS);
2619 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2620 	set_fs(old_fs);
2621 	if (!err)
2622 		err = compat_put_timeval(&ktv, up);
2623 
2624 	return err;
2625 }
2626 
2627 static int do_siocgstampns(struct net *net, struct socket *sock,
2628 			   unsigned int cmd, void __user *up)
2629 {
2630 	mm_segment_t old_fs = get_fs();
2631 	struct timespec kts;
2632 	int err;
2633 
2634 	set_fs(KERNEL_DS);
2635 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2636 	set_fs(old_fs);
2637 	if (!err)
2638 		err = compat_put_timespec(&kts, up);
2639 
2640 	return err;
2641 }
2642 
2643 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2644 {
2645 	struct ifreq __user *uifr;
2646 	int err;
2647 
2648 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2649 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2650 		return -EFAULT;
2651 
2652 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2653 	if (err)
2654 		return err;
2655 
2656 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2657 		return -EFAULT;
2658 
2659 	return 0;
2660 }
2661 
2662 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2663 {
2664 	struct compat_ifconf ifc32;
2665 	struct ifconf ifc;
2666 	struct ifconf __user *uifc;
2667 	struct compat_ifreq __user *ifr32;
2668 	struct ifreq __user *ifr;
2669 	unsigned int i, j;
2670 	int err;
2671 
2672 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2673 		return -EFAULT;
2674 
2675 	memset(&ifc, 0, sizeof(ifc));
2676 	if (ifc32.ifcbuf == 0) {
2677 		ifc32.ifc_len = 0;
2678 		ifc.ifc_len = 0;
2679 		ifc.ifc_req = NULL;
2680 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2681 	} else {
2682 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2683 			sizeof(struct ifreq);
2684 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2685 		ifc.ifc_len = len;
2686 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2687 		ifr32 = compat_ptr(ifc32.ifcbuf);
2688 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2689 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2690 				return -EFAULT;
2691 			ifr++;
2692 			ifr32++;
2693 		}
2694 	}
2695 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2696 		return -EFAULT;
2697 
2698 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2699 	if (err)
2700 		return err;
2701 
2702 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2703 		return -EFAULT;
2704 
2705 	ifr = ifc.ifc_req;
2706 	ifr32 = compat_ptr(ifc32.ifcbuf);
2707 	for (i = 0, j = 0;
2708 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2709 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2710 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2711 			return -EFAULT;
2712 		ifr32++;
2713 		ifr++;
2714 	}
2715 
2716 	if (ifc32.ifcbuf == 0) {
2717 		/* Translate from 64-bit structure multiple to
2718 		 * a 32-bit one.
2719 		 */
2720 		i = ifc.ifc_len;
2721 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2722 		ifc32.ifc_len = i;
2723 	} else {
2724 		ifc32.ifc_len = i;
2725 	}
2726 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2727 		return -EFAULT;
2728 
2729 	return 0;
2730 }
2731 
2732 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2733 {
2734 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2735 	bool convert_in = false, convert_out = false;
2736 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2737 	struct ethtool_rxnfc __user *rxnfc;
2738 	struct ifreq __user *ifr;
2739 	u32 rule_cnt = 0, actual_rule_cnt;
2740 	u32 ethcmd;
2741 	u32 data;
2742 	int ret;
2743 
2744 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2745 		return -EFAULT;
2746 
2747 	compat_rxnfc = compat_ptr(data);
2748 
2749 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2750 		return -EFAULT;
2751 
2752 	/* Most ethtool structures are defined without padding.
2753 	 * Unfortunately struct ethtool_rxnfc is an exception.
2754 	 */
2755 	switch (ethcmd) {
2756 	default:
2757 		break;
2758 	case ETHTOOL_GRXCLSRLALL:
2759 		/* Buffer size is variable */
2760 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2761 			return -EFAULT;
2762 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2763 			return -ENOMEM;
2764 		buf_size += rule_cnt * sizeof(u32);
2765 		/* fall through */
2766 	case ETHTOOL_GRXRINGS:
2767 	case ETHTOOL_GRXCLSRLCNT:
2768 	case ETHTOOL_GRXCLSRULE:
2769 	case ETHTOOL_SRXCLSRLINS:
2770 		convert_out = true;
2771 		/* fall through */
2772 	case ETHTOOL_SRXCLSRLDEL:
2773 		buf_size += sizeof(struct ethtool_rxnfc);
2774 		convert_in = true;
2775 		break;
2776 	}
2777 
2778 	ifr = compat_alloc_user_space(buf_size);
2779 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2780 
2781 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2782 		return -EFAULT;
2783 
2784 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2785 		     &ifr->ifr_ifru.ifru_data))
2786 		return -EFAULT;
2787 
2788 	if (convert_in) {
2789 		/* We expect there to be holes between fs.m_ext and
2790 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2791 		 */
2792 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2793 			     sizeof(compat_rxnfc->fs.m_ext) !=
2794 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2795 			     sizeof(rxnfc->fs.m_ext));
2796 		BUILD_BUG_ON(
2797 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2798 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2799 			offsetof(struct ethtool_rxnfc, fs.location) -
2800 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2801 
2802 		if (copy_in_user(rxnfc, compat_rxnfc,
2803 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2804 				 (void __user *)rxnfc) ||
2805 		    copy_in_user(&rxnfc->fs.ring_cookie,
2806 				 &compat_rxnfc->fs.ring_cookie,
2807 				 (void __user *)(&rxnfc->fs.location + 1) -
2808 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2809 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2810 				 sizeof(rxnfc->rule_cnt)))
2811 			return -EFAULT;
2812 	}
2813 
2814 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2815 	if (ret)
2816 		return ret;
2817 
2818 	if (convert_out) {
2819 		if (copy_in_user(compat_rxnfc, rxnfc,
2820 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2821 				 (const void __user *)rxnfc) ||
2822 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2823 				 &rxnfc->fs.ring_cookie,
2824 				 (const void __user *)(&rxnfc->fs.location + 1) -
2825 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2826 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2827 				 sizeof(rxnfc->rule_cnt)))
2828 			return -EFAULT;
2829 
2830 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2831 			/* As an optimisation, we only copy the actual
2832 			 * number of rules that the underlying
2833 			 * function returned.  Since Mallory might
2834 			 * change the rule count in user memory, we
2835 			 * check that it is less than the rule count
2836 			 * originally given (as the user buffer size),
2837 			 * which has been range-checked.
2838 			 */
2839 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2840 				return -EFAULT;
2841 			if (actual_rule_cnt < rule_cnt)
2842 				rule_cnt = actual_rule_cnt;
2843 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2844 					 &rxnfc->rule_locs[0],
2845 					 rule_cnt * sizeof(u32)))
2846 				return -EFAULT;
2847 		}
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2854 {
2855 	void __user *uptr;
2856 	compat_uptr_t uptr32;
2857 	struct ifreq __user *uifr;
2858 
2859 	uifr = compat_alloc_user_space(sizeof(*uifr));
2860 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2861 		return -EFAULT;
2862 
2863 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2864 		return -EFAULT;
2865 
2866 	uptr = compat_ptr(uptr32);
2867 
2868 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2869 		return -EFAULT;
2870 
2871 	return dev_ioctl(net, SIOCWANDEV, uifr);
2872 }
2873 
2874 static int bond_ioctl(struct net *net, unsigned int cmd,
2875 			 struct compat_ifreq __user *ifr32)
2876 {
2877 	struct ifreq kifr;
2878 	mm_segment_t old_fs;
2879 	int err;
2880 
2881 	switch (cmd) {
2882 	case SIOCBONDENSLAVE:
2883 	case SIOCBONDRELEASE:
2884 	case SIOCBONDSETHWADDR:
2885 	case SIOCBONDCHANGEACTIVE:
2886 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2887 			return -EFAULT;
2888 
2889 		old_fs = get_fs();
2890 		set_fs(KERNEL_DS);
2891 		err = dev_ioctl(net, cmd,
2892 				(struct ifreq __user __force *) &kifr);
2893 		set_fs(old_fs);
2894 
2895 		return err;
2896 	default:
2897 		return -ENOIOCTLCMD;
2898 	}
2899 }
2900 
2901 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2902 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2903 				 struct compat_ifreq __user *u_ifreq32)
2904 {
2905 	struct ifreq __user *u_ifreq64;
2906 	char tmp_buf[IFNAMSIZ];
2907 	void __user *data64;
2908 	u32 data32;
2909 
2910 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2911 			   IFNAMSIZ))
2912 		return -EFAULT;
2913 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2914 		return -EFAULT;
2915 	data64 = compat_ptr(data32);
2916 
2917 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2918 
2919 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2920 			 IFNAMSIZ))
2921 		return -EFAULT;
2922 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2923 		return -EFAULT;
2924 
2925 	return dev_ioctl(net, cmd, u_ifreq64);
2926 }
2927 
2928 static int dev_ifsioc(struct net *net, struct socket *sock,
2929 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2930 {
2931 	struct ifreq __user *uifr;
2932 	int err;
2933 
2934 	uifr = compat_alloc_user_space(sizeof(*uifr));
2935 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2936 		return -EFAULT;
2937 
2938 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2939 
2940 	if (!err) {
2941 		switch (cmd) {
2942 		case SIOCGIFFLAGS:
2943 		case SIOCGIFMETRIC:
2944 		case SIOCGIFMTU:
2945 		case SIOCGIFMEM:
2946 		case SIOCGIFHWADDR:
2947 		case SIOCGIFINDEX:
2948 		case SIOCGIFADDR:
2949 		case SIOCGIFBRDADDR:
2950 		case SIOCGIFDSTADDR:
2951 		case SIOCGIFNETMASK:
2952 		case SIOCGIFPFLAGS:
2953 		case SIOCGIFTXQLEN:
2954 		case SIOCGMIIPHY:
2955 		case SIOCGMIIREG:
2956 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2957 				err = -EFAULT;
2958 			break;
2959 		}
2960 	}
2961 	return err;
2962 }
2963 
2964 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2965 			struct compat_ifreq __user *uifr32)
2966 {
2967 	struct ifreq ifr;
2968 	struct compat_ifmap __user *uifmap32;
2969 	mm_segment_t old_fs;
2970 	int err;
2971 
2972 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2973 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2974 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2975 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2976 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2977 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2978 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2979 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2980 	if (err)
2981 		return -EFAULT;
2982 
2983 	old_fs = get_fs();
2984 	set_fs(KERNEL_DS);
2985 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2986 	set_fs(old_fs);
2987 
2988 	if (cmd == SIOCGIFMAP && !err) {
2989 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2990 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2991 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2992 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2993 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2994 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2995 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2996 		if (err)
2997 			err = -EFAULT;
2998 	}
2999 	return err;
3000 }
3001 
3002 struct rtentry32 {
3003 	u32		rt_pad1;
3004 	struct sockaddr rt_dst;         /* target address               */
3005 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3006 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3007 	unsigned short	rt_flags;
3008 	short		rt_pad2;
3009 	u32		rt_pad3;
3010 	unsigned char	rt_tos;
3011 	unsigned char	rt_class;
3012 	short		rt_pad4;
3013 	short		rt_metric;      /* +1 for binary compatibility! */
3014 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3015 	u32		rt_mtu;         /* per route MTU/Window         */
3016 	u32		rt_window;      /* Window clamping              */
3017 	unsigned short  rt_irtt;        /* Initial RTT                  */
3018 };
3019 
3020 struct in6_rtmsg32 {
3021 	struct in6_addr		rtmsg_dst;
3022 	struct in6_addr		rtmsg_src;
3023 	struct in6_addr		rtmsg_gateway;
3024 	u32			rtmsg_type;
3025 	u16			rtmsg_dst_len;
3026 	u16			rtmsg_src_len;
3027 	u32			rtmsg_metric;
3028 	u32			rtmsg_info;
3029 	u32			rtmsg_flags;
3030 	s32			rtmsg_ifindex;
3031 };
3032 
3033 static int routing_ioctl(struct net *net, struct socket *sock,
3034 			 unsigned int cmd, void __user *argp)
3035 {
3036 	int ret;
3037 	void *r = NULL;
3038 	struct in6_rtmsg r6;
3039 	struct rtentry r4;
3040 	char devname[16];
3041 	u32 rtdev;
3042 	mm_segment_t old_fs = get_fs();
3043 
3044 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3045 		struct in6_rtmsg32 __user *ur6 = argp;
3046 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3047 			3 * sizeof(struct in6_addr));
3048 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3049 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3050 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3051 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3052 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3053 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3054 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3055 
3056 		r = (void *) &r6;
3057 	} else { /* ipv4 */
3058 		struct rtentry32 __user *ur4 = argp;
3059 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3060 					3 * sizeof(struct sockaddr));
3061 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3062 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3063 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3064 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3065 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3066 		ret |= get_user(rtdev, &(ur4->rt_dev));
3067 		if (rtdev) {
3068 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3069 			r4.rt_dev = (char __user __force *)devname;
3070 			devname[15] = 0;
3071 		} else
3072 			r4.rt_dev = NULL;
3073 
3074 		r = (void *) &r4;
3075 	}
3076 
3077 	if (ret) {
3078 		ret = -EFAULT;
3079 		goto out;
3080 	}
3081 
3082 	set_fs(KERNEL_DS);
3083 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3084 	set_fs(old_fs);
3085 
3086 out:
3087 	return ret;
3088 }
3089 
3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3091  * for some operations; this forces use of the newer bridge-utils that
3092  * use compatible ioctls
3093  */
3094 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3095 {
3096 	compat_ulong_t tmp;
3097 
3098 	if (get_user(tmp, argp))
3099 		return -EFAULT;
3100 	if (tmp == BRCTL_GET_VERSION)
3101 		return BRCTL_VERSION + 1;
3102 	return -EINVAL;
3103 }
3104 
3105 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3106 			 unsigned int cmd, unsigned long arg)
3107 {
3108 	void __user *argp = compat_ptr(arg);
3109 	struct sock *sk = sock->sk;
3110 	struct net *net = sock_net(sk);
3111 
3112 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3113 		return compat_ifr_data_ioctl(net, cmd, argp);
3114 
3115 	switch (cmd) {
3116 	case SIOCSIFBR:
3117 	case SIOCGIFBR:
3118 		return old_bridge_ioctl(argp);
3119 	case SIOCGIFNAME:
3120 		return dev_ifname32(net, argp);
3121 	case SIOCGIFCONF:
3122 		return dev_ifconf(net, argp);
3123 	case SIOCETHTOOL:
3124 		return ethtool_ioctl(net, argp);
3125 	case SIOCWANDEV:
3126 		return compat_siocwandev(net, argp);
3127 	case SIOCGIFMAP:
3128 	case SIOCSIFMAP:
3129 		return compat_sioc_ifmap(net, cmd, argp);
3130 	case SIOCBONDENSLAVE:
3131 	case SIOCBONDRELEASE:
3132 	case SIOCBONDSETHWADDR:
3133 	case SIOCBONDCHANGEACTIVE:
3134 		return bond_ioctl(net, cmd, argp);
3135 	case SIOCADDRT:
3136 	case SIOCDELRT:
3137 		return routing_ioctl(net, sock, cmd, argp);
3138 	case SIOCGSTAMP:
3139 		return do_siocgstamp(net, sock, cmd, argp);
3140 	case SIOCGSTAMPNS:
3141 		return do_siocgstampns(net, sock, cmd, argp);
3142 	case SIOCBONDSLAVEINFOQUERY:
3143 	case SIOCBONDINFOQUERY:
3144 	case SIOCSHWTSTAMP:
3145 	case SIOCGHWTSTAMP:
3146 		return compat_ifr_data_ioctl(net, cmd, argp);
3147 
3148 	case FIOSETOWN:
3149 	case SIOCSPGRP:
3150 	case FIOGETOWN:
3151 	case SIOCGPGRP:
3152 	case SIOCBRADDBR:
3153 	case SIOCBRDELBR:
3154 	case SIOCGIFVLAN:
3155 	case SIOCSIFVLAN:
3156 	case SIOCADDDLCI:
3157 	case SIOCDELDLCI:
3158 	case SIOCGSKNS:
3159 		return sock_ioctl(file, cmd, arg);
3160 
3161 	case SIOCGIFFLAGS:
3162 	case SIOCSIFFLAGS:
3163 	case SIOCGIFMETRIC:
3164 	case SIOCSIFMETRIC:
3165 	case SIOCGIFMTU:
3166 	case SIOCSIFMTU:
3167 	case SIOCGIFMEM:
3168 	case SIOCSIFMEM:
3169 	case SIOCGIFHWADDR:
3170 	case SIOCSIFHWADDR:
3171 	case SIOCADDMULTI:
3172 	case SIOCDELMULTI:
3173 	case SIOCGIFINDEX:
3174 	case SIOCGIFADDR:
3175 	case SIOCSIFADDR:
3176 	case SIOCSIFHWBROADCAST:
3177 	case SIOCDIFADDR:
3178 	case SIOCGIFBRDADDR:
3179 	case SIOCSIFBRDADDR:
3180 	case SIOCGIFDSTADDR:
3181 	case SIOCSIFDSTADDR:
3182 	case SIOCGIFNETMASK:
3183 	case SIOCSIFNETMASK:
3184 	case SIOCSIFPFLAGS:
3185 	case SIOCGIFPFLAGS:
3186 	case SIOCGIFTXQLEN:
3187 	case SIOCSIFTXQLEN:
3188 	case SIOCBRADDIF:
3189 	case SIOCBRDELIF:
3190 	case SIOCSIFNAME:
3191 	case SIOCGMIIPHY:
3192 	case SIOCGMIIREG:
3193 	case SIOCSMIIREG:
3194 		return dev_ifsioc(net, sock, cmd, argp);
3195 
3196 	case SIOCSARP:
3197 	case SIOCGARP:
3198 	case SIOCDARP:
3199 	case SIOCATMARK:
3200 		return sock_do_ioctl(net, sock, cmd, arg);
3201 	}
3202 
3203 	return -ENOIOCTLCMD;
3204 }
3205 
3206 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3207 			      unsigned long arg)
3208 {
3209 	struct socket *sock = file->private_data;
3210 	int ret = -ENOIOCTLCMD;
3211 	struct sock *sk;
3212 	struct net *net;
3213 
3214 	sk = sock->sk;
3215 	net = sock_net(sk);
3216 
3217 	if (sock->ops->compat_ioctl)
3218 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3219 
3220 	if (ret == -ENOIOCTLCMD &&
3221 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3222 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3223 
3224 	if (ret == -ENOIOCTLCMD)
3225 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3226 
3227 	return ret;
3228 }
3229 #endif
3230 
3231 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3232 {
3233 	return sock->ops->bind(sock, addr, addrlen);
3234 }
3235 EXPORT_SYMBOL(kernel_bind);
3236 
3237 int kernel_listen(struct socket *sock, int backlog)
3238 {
3239 	return sock->ops->listen(sock, backlog);
3240 }
3241 EXPORT_SYMBOL(kernel_listen);
3242 
3243 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3244 {
3245 	struct sock *sk = sock->sk;
3246 	int err;
3247 
3248 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3249 			       newsock);
3250 	if (err < 0)
3251 		goto done;
3252 
3253 	err = sock->ops->accept(sock, *newsock, flags, true);
3254 	if (err < 0) {
3255 		sock_release(*newsock);
3256 		*newsock = NULL;
3257 		goto done;
3258 	}
3259 
3260 	(*newsock)->ops = sock->ops;
3261 	__module_get((*newsock)->ops->owner);
3262 
3263 done:
3264 	return err;
3265 }
3266 EXPORT_SYMBOL(kernel_accept);
3267 
3268 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3269 		   int flags)
3270 {
3271 	return sock->ops->connect(sock, addr, addrlen, flags);
3272 }
3273 EXPORT_SYMBOL(kernel_connect);
3274 
3275 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3276 			 int *addrlen)
3277 {
3278 	return sock->ops->getname(sock, addr, addrlen, 0);
3279 }
3280 EXPORT_SYMBOL(kernel_getsockname);
3281 
3282 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3283 			 int *addrlen)
3284 {
3285 	return sock->ops->getname(sock, addr, addrlen, 1);
3286 }
3287 EXPORT_SYMBOL(kernel_getpeername);
3288 
3289 int kernel_getsockopt(struct socket *sock, int level, int optname,
3290 			char *optval, int *optlen)
3291 {
3292 	mm_segment_t oldfs = get_fs();
3293 	char __user *uoptval;
3294 	int __user *uoptlen;
3295 	int err;
3296 
3297 	uoptval = (char __user __force *) optval;
3298 	uoptlen = (int __user __force *) optlen;
3299 
3300 	set_fs(KERNEL_DS);
3301 	if (level == SOL_SOCKET)
3302 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3303 	else
3304 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3305 					    uoptlen);
3306 	set_fs(oldfs);
3307 	return err;
3308 }
3309 EXPORT_SYMBOL(kernel_getsockopt);
3310 
3311 int kernel_setsockopt(struct socket *sock, int level, int optname,
3312 			char *optval, unsigned int optlen)
3313 {
3314 	mm_segment_t oldfs = get_fs();
3315 	char __user *uoptval;
3316 	int err;
3317 
3318 	uoptval = (char __user __force *) optval;
3319 
3320 	set_fs(KERNEL_DS);
3321 	if (level == SOL_SOCKET)
3322 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3323 	else
3324 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3325 					    optlen);
3326 	set_fs(oldfs);
3327 	return err;
3328 }
3329 EXPORT_SYMBOL(kernel_setsockopt);
3330 
3331 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3332 		    size_t size, int flags)
3333 {
3334 	if (sock->ops->sendpage)
3335 		return sock->ops->sendpage(sock, page, offset, size, flags);
3336 
3337 	return sock_no_sendpage(sock, page, offset, size, flags);
3338 }
3339 EXPORT_SYMBOL(kernel_sendpage);
3340 
3341 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3342 {
3343 	mm_segment_t oldfs = get_fs();
3344 	int err;
3345 
3346 	set_fs(KERNEL_DS);
3347 	err = sock->ops->ioctl(sock, cmd, arg);
3348 	set_fs(oldfs);
3349 
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(kernel_sock_ioctl);
3353 
3354 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3355 {
3356 	return sock->ops->shutdown(sock, how);
3357 }
3358 EXPORT_SYMBOL(kernel_sock_shutdown);
3359 
3360 /* This routine returns the IP overhead imposed by a socket i.e.
3361  * the length of the underlying IP header, depending on whether
3362  * this is an IPv4 or IPv6 socket and the length from IP options turned
3363  * on at the socket. Assumes that the caller has a lock on the socket.
3364  */
3365 u32 kernel_sock_ip_overhead(struct sock *sk)
3366 {
3367 	struct inet_sock *inet;
3368 	struct ip_options_rcu *opt;
3369 	u32 overhead = 0;
3370 	bool owned_by_user;
3371 #if IS_ENABLED(CONFIG_IPV6)
3372 	struct ipv6_pinfo *np;
3373 	struct ipv6_txoptions *optv6 = NULL;
3374 #endif /* IS_ENABLED(CONFIG_IPV6) */
3375 
3376 	if (!sk)
3377 		return overhead;
3378 
3379 	owned_by_user = sock_owned_by_user(sk);
3380 	switch (sk->sk_family) {
3381 	case AF_INET:
3382 		inet = inet_sk(sk);
3383 		overhead += sizeof(struct iphdr);
3384 		opt = rcu_dereference_protected(inet->inet_opt,
3385 						owned_by_user);
3386 		if (opt)
3387 			overhead += opt->opt.optlen;
3388 		return overhead;
3389 #if IS_ENABLED(CONFIG_IPV6)
3390 	case AF_INET6:
3391 		np = inet6_sk(sk);
3392 		overhead += sizeof(struct ipv6hdr);
3393 		if (np)
3394 			optv6 = rcu_dereference_protected(np->opt,
3395 							  owned_by_user);
3396 		if (optv6)
3397 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3398 		return overhead;
3399 #endif /* IS_ENABLED(CONFIG_IPV6) */
3400 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3401 		return overhead;
3402 	}
3403 }
3404 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3405