xref: /openbmc/linux/net/socket.c (revision f79e4d5f)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.destroy_inode	= sock_destroy_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 			 int flags, const char *dev_name, void *data)
358 {
359 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 				  sockfs_xattr_handlers,
361 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363 
364 static struct vfsmount *sock_mnt __read_mostly;
365 
366 static struct file_system_type sock_fs_type = {
367 	.name =		"sockfs",
368 	.mount =	sockfs_mount,
369 	.kill_sb =	kill_anon_super,
370 };
371 
372 /*
373  *	Obtains the first available file descriptor and sets it up for use.
374  *
375  *	These functions create file structures and maps them to fd space
376  *	of the current process. On success it returns file descriptor
377  *	and file struct implicitly stored in sock->file.
378  *	Note that another thread may close file descriptor before we return
379  *	from this function. We use the fact that now we do not refer
380  *	to socket after mapping. If one day we will need it, this
381  *	function will increment ref. count on file by 1.
382  *
383  *	In any case returned fd MAY BE not valid!
384  *	This race condition is unavoidable
385  *	with shared fd spaces, we cannot solve it inside kernel,
386  *	but we take care of internal coherence yet.
387  */
388 
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 	struct qstr name = { .name = "" };
392 	struct path path;
393 	struct file *file;
394 
395 	if (dname) {
396 		name.name = dname;
397 		name.len = strlen(name.name);
398 	} else if (sock->sk) {
399 		name.name = sock->sk->sk_prot_creator->name;
400 		name.len = strlen(name.name);
401 	}
402 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 	if (unlikely(!path.dentry)) {
404 		sock_release(sock);
405 		return ERR_PTR(-ENOMEM);
406 	}
407 	path.mnt = mntget(sock_mnt);
408 
409 	d_instantiate(path.dentry, SOCK_INODE(sock));
410 
411 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 		  &socket_file_ops);
413 	if (IS_ERR(file)) {
414 		/* drop dentry, keep inode for a bit */
415 		ihold(d_inode(path.dentry));
416 		path_put(&path);
417 		/* ... and now kill it properly */
418 		sock_release(sock);
419 		return file;
420 	}
421 
422 	sock->file = file;
423 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 	file->private_data = sock;
425 	return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428 
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 	struct file *newfile;
432 	int fd = get_unused_fd_flags(flags);
433 	if (unlikely(fd < 0)) {
434 		sock_release(sock);
435 		return fd;
436 	}
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		if (sock->sk)
542 			sock->sk->sk_uid = iattr->ia_uid;
543 		else
544 			err = -ENOENT;
545 	}
546 
547 	return err;
548 }
549 
550 static const struct inode_operations sockfs_inode_ops = {
551 	.listxattr = sockfs_listxattr,
552 	.setattr = sockfs_setattr,
553 };
554 
555 /**
556  *	sock_alloc	-	allocate a socket
557  *
558  *	Allocate a new inode and socket object. The two are bound together
559  *	and initialised. The socket is then returned. If we are out of inodes
560  *	NULL is returned.
561  */
562 
563 struct socket *sock_alloc(void)
564 {
565 	struct inode *inode;
566 	struct socket *sock;
567 
568 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
569 	if (!inode)
570 		return NULL;
571 
572 	sock = SOCKET_I(inode);
573 
574 	inode->i_ino = get_next_ino();
575 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 	inode->i_uid = current_fsuid();
577 	inode->i_gid = current_fsgid();
578 	inode->i_op = &sockfs_inode_ops;
579 
580 	return sock;
581 }
582 EXPORT_SYMBOL(sock_alloc);
583 
584 /**
585  *	sock_release	-	close a socket
586  *	@sock: socket to close
587  *
588  *	The socket is released from the protocol stack if it has a release
589  *	callback, and the inode is then released if the socket is bound to
590  *	an inode not a file.
591  */
592 
593 static void __sock_release(struct socket *sock, struct inode *inode)
594 {
595 	if (sock->ops) {
596 		struct module *owner = sock->ops->owner;
597 
598 		if (inode)
599 			inode_lock(inode);
600 		sock->ops->release(sock);
601 		if (inode)
602 			inode_unlock(inode);
603 		sock->ops = NULL;
604 		module_put(owner);
605 	}
606 
607 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
608 		pr_err("%s: fasync list not empty!\n", __func__);
609 
610 	if (!sock->file) {
611 		iput(SOCK_INODE(sock));
612 		return;
613 	}
614 	sock->file = NULL;
615 }
616 
617 void sock_release(struct socket *sock)
618 {
619 	__sock_release(sock, NULL);
620 }
621 EXPORT_SYMBOL(sock_release);
622 
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
624 {
625 	u8 flags = *tx_flags;
626 
627 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 		flags |= SKBTX_HW_TSTAMP;
629 
630 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 		flags |= SKBTX_SW_TSTAMP;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 		flags |= SKBTX_SCHED_TSTAMP;
635 
636 	*tx_flags = flags;
637 }
638 EXPORT_SYMBOL(__sock_tx_timestamp);
639 
640 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
641 {
642 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
643 	BUG_ON(ret == -EIOCBQUEUED);
644 	return ret;
645 }
646 
647 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
648 {
649 	int err = security_socket_sendmsg(sock, msg,
650 					  msg_data_left(msg));
651 
652 	return err ?: sock_sendmsg_nosec(sock, msg);
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655 
656 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
657 		   struct kvec *vec, size_t num, size_t size)
658 {
659 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
660 	return sock_sendmsg(sock, msg);
661 }
662 EXPORT_SYMBOL(kernel_sendmsg);
663 
664 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
665 			  struct kvec *vec, size_t num, size_t size)
666 {
667 	struct socket *sock = sk->sk_socket;
668 
669 	if (!sock->ops->sendmsg_locked)
670 		return sock_no_sendmsg_locked(sk, msg, size);
671 
672 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
673 
674 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
675 }
676 EXPORT_SYMBOL(kernel_sendmsg_locked);
677 
678 static bool skb_is_err_queue(const struct sk_buff *skb)
679 {
680 	/* pkt_type of skbs enqueued on the error queue are set to
681 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
682 	 * in recvmsg, since skbs received on a local socket will never
683 	 * have a pkt_type of PACKET_OUTGOING.
684 	 */
685 	return skb->pkt_type == PACKET_OUTGOING;
686 }
687 
688 /* On transmit, software and hardware timestamps are returned independently.
689  * As the two skb clones share the hardware timestamp, which may be updated
690  * before the software timestamp is received, a hardware TX timestamp may be
691  * returned only if there is no software TX timestamp. Ignore false software
692  * timestamps, which may be made in the __sock_recv_timestamp() call when the
693  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
694  * hardware timestamp.
695  */
696 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
697 {
698 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
699 }
700 
701 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
702 {
703 	struct scm_ts_pktinfo ts_pktinfo;
704 	struct net_device *orig_dev;
705 
706 	if (!skb_mac_header_was_set(skb))
707 		return;
708 
709 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
710 
711 	rcu_read_lock();
712 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
713 	if (orig_dev)
714 		ts_pktinfo.if_index = orig_dev->ifindex;
715 	rcu_read_unlock();
716 
717 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
718 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
719 		 sizeof(ts_pktinfo), &ts_pktinfo);
720 }
721 
722 /*
723  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
724  */
725 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
726 	struct sk_buff *skb)
727 {
728 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
729 	struct scm_timestamping tss;
730 	int empty = 1, false_tstamp = 0;
731 	struct skb_shared_hwtstamps *shhwtstamps =
732 		skb_hwtstamps(skb);
733 
734 	/* Race occurred between timestamp enabling and packet
735 	   receiving.  Fill in the current time for now. */
736 	if (need_software_tstamp && skb->tstamp == 0) {
737 		__net_timestamp(skb);
738 		false_tstamp = 1;
739 	}
740 
741 	if (need_software_tstamp) {
742 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
743 			struct timeval tv;
744 			skb_get_timestamp(skb, &tv);
745 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
746 				 sizeof(tv), &tv);
747 		} else {
748 			struct timespec ts;
749 			skb_get_timestampns(skb, &ts);
750 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
751 				 sizeof(ts), &ts);
752 		}
753 	}
754 
755 	memset(&tss, 0, sizeof(tss));
756 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
757 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
758 		empty = 0;
759 	if (shhwtstamps &&
760 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
761 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
762 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
763 		empty = 0;
764 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
765 		    !skb_is_err_queue(skb))
766 			put_ts_pktinfo(msg, skb);
767 	}
768 	if (!empty) {
769 		put_cmsg(msg, SOL_SOCKET,
770 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
771 
772 		if (skb_is_err_queue(skb) && skb->len &&
773 		    SKB_EXT_ERR(skb)->opt_stats)
774 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
775 				 skb->len, skb->data);
776 	}
777 }
778 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
779 
780 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
781 	struct sk_buff *skb)
782 {
783 	int ack;
784 
785 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
786 		return;
787 	if (!skb->wifi_acked_valid)
788 		return;
789 
790 	ack = skb->wifi_acked;
791 
792 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
793 }
794 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
795 
796 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
797 				   struct sk_buff *skb)
798 {
799 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
800 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
801 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
802 }
803 
804 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
805 	struct sk_buff *skb)
806 {
807 	sock_recv_timestamp(msg, sk, skb);
808 	sock_recv_drops(msg, sk, skb);
809 }
810 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
811 
812 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 				     int flags)
814 {
815 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
816 }
817 
818 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
819 {
820 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
821 
822 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
823 }
824 EXPORT_SYMBOL(sock_recvmsg);
825 
826 /**
827  * kernel_recvmsg - Receive a message from a socket (kernel space)
828  * @sock:       The socket to receive the message from
829  * @msg:        Received message
830  * @vec:        Input s/g array for message data
831  * @num:        Size of input s/g array
832  * @size:       Number of bytes to read
833  * @flags:      Message flags (MSG_DONTWAIT, etc...)
834  *
835  * On return the msg structure contains the scatter/gather array passed in the
836  * vec argument. The array is modified so that it consists of the unfilled
837  * portion of the original array.
838  *
839  * The returned value is the total number of bytes received, or an error.
840  */
841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
842 		   struct kvec *vec, size_t num, size_t size, int flags)
843 {
844 	mm_segment_t oldfs = get_fs();
845 	int result;
846 
847 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
848 	set_fs(KERNEL_DS);
849 	result = sock_recvmsg(sock, msg, flags);
850 	set_fs(oldfs);
851 	return result;
852 }
853 EXPORT_SYMBOL(kernel_recvmsg);
854 
855 static ssize_t sock_sendpage(struct file *file, struct page *page,
856 			     int offset, size_t size, loff_t *ppos, int more)
857 {
858 	struct socket *sock;
859 	int flags;
860 
861 	sock = file->private_data;
862 
863 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
864 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
865 	flags |= more;
866 
867 	return kernel_sendpage(sock, page, offset, size, flags);
868 }
869 
870 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
871 				struct pipe_inode_info *pipe, size_t len,
872 				unsigned int flags)
873 {
874 	struct socket *sock = file->private_data;
875 
876 	if (unlikely(!sock->ops->splice_read))
877 		return -EINVAL;
878 
879 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
880 }
881 
882 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
883 {
884 	struct file *file = iocb->ki_filp;
885 	struct socket *sock = file->private_data;
886 	struct msghdr msg = {.msg_iter = *to,
887 			     .msg_iocb = iocb};
888 	ssize_t res;
889 
890 	if (file->f_flags & O_NONBLOCK)
891 		msg.msg_flags = MSG_DONTWAIT;
892 
893 	if (iocb->ki_pos != 0)
894 		return -ESPIPE;
895 
896 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
897 		return 0;
898 
899 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
900 	*to = msg.msg_iter;
901 	return res;
902 }
903 
904 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
905 {
906 	struct file *file = iocb->ki_filp;
907 	struct socket *sock = file->private_data;
908 	struct msghdr msg = {.msg_iter = *from,
909 			     .msg_iocb = iocb};
910 	ssize_t res;
911 
912 	if (iocb->ki_pos != 0)
913 		return -ESPIPE;
914 
915 	if (file->f_flags & O_NONBLOCK)
916 		msg.msg_flags = MSG_DONTWAIT;
917 
918 	if (sock->type == SOCK_SEQPACKET)
919 		msg.msg_flags |= MSG_EOR;
920 
921 	res = sock_sendmsg(sock, &msg);
922 	*from = msg.msg_iter;
923 	return res;
924 }
925 
926 /*
927  * Atomic setting of ioctl hooks to avoid race
928  * with module unload.
929  */
930 
931 static DEFINE_MUTEX(br_ioctl_mutex);
932 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
933 
934 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
935 {
936 	mutex_lock(&br_ioctl_mutex);
937 	br_ioctl_hook = hook;
938 	mutex_unlock(&br_ioctl_mutex);
939 }
940 EXPORT_SYMBOL(brioctl_set);
941 
942 static DEFINE_MUTEX(vlan_ioctl_mutex);
943 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
944 
945 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
946 {
947 	mutex_lock(&vlan_ioctl_mutex);
948 	vlan_ioctl_hook = hook;
949 	mutex_unlock(&vlan_ioctl_mutex);
950 }
951 EXPORT_SYMBOL(vlan_ioctl_set);
952 
953 static DEFINE_MUTEX(dlci_ioctl_mutex);
954 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
955 
956 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
957 {
958 	mutex_lock(&dlci_ioctl_mutex);
959 	dlci_ioctl_hook = hook;
960 	mutex_unlock(&dlci_ioctl_mutex);
961 }
962 EXPORT_SYMBOL(dlci_ioctl_set);
963 
964 static long sock_do_ioctl(struct net *net, struct socket *sock,
965 				 unsigned int cmd, unsigned long arg)
966 {
967 	int err;
968 	void __user *argp = (void __user *)arg;
969 
970 	err = sock->ops->ioctl(sock, cmd, arg);
971 
972 	/*
973 	 * If this ioctl is unknown try to hand it down
974 	 * to the NIC driver.
975 	 */
976 	if (err != -ENOIOCTLCMD)
977 		return err;
978 
979 	if (cmd == SIOCGIFCONF) {
980 		struct ifconf ifc;
981 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
982 			return -EFAULT;
983 		rtnl_lock();
984 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
985 		rtnl_unlock();
986 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
987 			err = -EFAULT;
988 	} else {
989 		struct ifreq ifr;
990 		bool need_copyout;
991 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
992 			return -EFAULT;
993 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
994 		if (!err && need_copyout)
995 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
996 				return -EFAULT;
997 	}
998 	return err;
999 }
1000 
1001 /*
1002  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1003  *	what to do with it - that's up to the protocol still.
1004  */
1005 
1006 struct ns_common *get_net_ns(struct ns_common *ns)
1007 {
1008 	return &get_net(container_of(ns, struct net, ns))->ns;
1009 }
1010 EXPORT_SYMBOL_GPL(get_net_ns);
1011 
1012 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1013 {
1014 	struct socket *sock;
1015 	struct sock *sk;
1016 	void __user *argp = (void __user *)arg;
1017 	int pid, err;
1018 	struct net *net;
1019 
1020 	sock = file->private_data;
1021 	sk = sock->sk;
1022 	net = sock_net(sk);
1023 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1024 		struct ifreq ifr;
1025 		bool need_copyout;
1026 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1027 			return -EFAULT;
1028 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1029 		if (!err && need_copyout)
1030 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1031 				return -EFAULT;
1032 	} else
1033 #ifdef CONFIG_WEXT_CORE
1034 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1035 		err = wext_handle_ioctl(net, cmd, argp);
1036 	} else
1037 #endif
1038 		switch (cmd) {
1039 		case FIOSETOWN:
1040 		case SIOCSPGRP:
1041 			err = -EFAULT;
1042 			if (get_user(pid, (int __user *)argp))
1043 				break;
1044 			err = f_setown(sock->file, pid, 1);
1045 			break;
1046 		case FIOGETOWN:
1047 		case SIOCGPGRP:
1048 			err = put_user(f_getown(sock->file),
1049 				       (int __user *)argp);
1050 			break;
1051 		case SIOCGIFBR:
1052 		case SIOCSIFBR:
1053 		case SIOCBRADDBR:
1054 		case SIOCBRDELBR:
1055 			err = -ENOPKG;
1056 			if (!br_ioctl_hook)
1057 				request_module("bridge");
1058 
1059 			mutex_lock(&br_ioctl_mutex);
1060 			if (br_ioctl_hook)
1061 				err = br_ioctl_hook(net, cmd, argp);
1062 			mutex_unlock(&br_ioctl_mutex);
1063 			break;
1064 		case SIOCGIFVLAN:
1065 		case SIOCSIFVLAN:
1066 			err = -ENOPKG;
1067 			if (!vlan_ioctl_hook)
1068 				request_module("8021q");
1069 
1070 			mutex_lock(&vlan_ioctl_mutex);
1071 			if (vlan_ioctl_hook)
1072 				err = vlan_ioctl_hook(net, argp);
1073 			mutex_unlock(&vlan_ioctl_mutex);
1074 			break;
1075 		case SIOCADDDLCI:
1076 		case SIOCDELDLCI:
1077 			err = -ENOPKG;
1078 			if (!dlci_ioctl_hook)
1079 				request_module("dlci");
1080 
1081 			mutex_lock(&dlci_ioctl_mutex);
1082 			if (dlci_ioctl_hook)
1083 				err = dlci_ioctl_hook(cmd, argp);
1084 			mutex_unlock(&dlci_ioctl_mutex);
1085 			break;
1086 		case SIOCGSKNS:
1087 			err = -EPERM;
1088 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1089 				break;
1090 
1091 			err = open_related_ns(&net->ns, get_net_ns);
1092 			break;
1093 		default:
1094 			err = sock_do_ioctl(net, sock, cmd, arg);
1095 			break;
1096 		}
1097 	return err;
1098 }
1099 
1100 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1101 {
1102 	int err;
1103 	struct socket *sock = NULL;
1104 
1105 	err = security_socket_create(family, type, protocol, 1);
1106 	if (err)
1107 		goto out;
1108 
1109 	sock = sock_alloc();
1110 	if (!sock) {
1111 		err = -ENOMEM;
1112 		goto out;
1113 	}
1114 
1115 	sock->type = type;
1116 	err = security_socket_post_create(sock, family, type, protocol, 1);
1117 	if (err)
1118 		goto out_release;
1119 
1120 out:
1121 	*res = sock;
1122 	return err;
1123 out_release:
1124 	sock_release(sock);
1125 	sock = NULL;
1126 	goto out;
1127 }
1128 EXPORT_SYMBOL(sock_create_lite);
1129 
1130 /* No kernel lock held - perfect */
1131 static __poll_t sock_poll(struct file *file, poll_table *wait)
1132 {
1133 	struct socket *sock = file->private_data;
1134 	__poll_t events = poll_requested_events(wait);
1135 
1136 	sock_poll_busy_loop(sock, events);
1137 	if (!sock->ops->poll)
1138 		return 0;
1139 	return sock->ops->poll(file, sock, wait) | sock_poll_busy_flag(sock);
1140 }
1141 
1142 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1143 {
1144 	struct socket *sock = file->private_data;
1145 
1146 	return sock->ops->mmap(file, sock, vma);
1147 }
1148 
1149 static int sock_close(struct inode *inode, struct file *filp)
1150 {
1151 	__sock_release(SOCKET_I(inode), inode);
1152 	return 0;
1153 }
1154 
1155 /*
1156  *	Update the socket async list
1157  *
1158  *	Fasync_list locking strategy.
1159  *
1160  *	1. fasync_list is modified only under process context socket lock
1161  *	   i.e. under semaphore.
1162  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1163  *	   or under socket lock
1164  */
1165 
1166 static int sock_fasync(int fd, struct file *filp, int on)
1167 {
1168 	struct socket *sock = filp->private_data;
1169 	struct sock *sk = sock->sk;
1170 	struct socket_wq *wq;
1171 
1172 	if (sk == NULL)
1173 		return -EINVAL;
1174 
1175 	lock_sock(sk);
1176 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1177 	fasync_helper(fd, filp, on, &wq->fasync_list);
1178 
1179 	if (!wq->fasync_list)
1180 		sock_reset_flag(sk, SOCK_FASYNC);
1181 	else
1182 		sock_set_flag(sk, SOCK_FASYNC);
1183 
1184 	release_sock(sk);
1185 	return 0;
1186 }
1187 
1188 /* This function may be called only under rcu_lock */
1189 
1190 int sock_wake_async(struct socket_wq *wq, int how, int band)
1191 {
1192 	if (!wq || !wq->fasync_list)
1193 		return -1;
1194 
1195 	switch (how) {
1196 	case SOCK_WAKE_WAITD:
1197 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1198 			break;
1199 		goto call_kill;
1200 	case SOCK_WAKE_SPACE:
1201 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1202 			break;
1203 		/* fall through */
1204 	case SOCK_WAKE_IO:
1205 call_kill:
1206 		kill_fasync(&wq->fasync_list, SIGIO, band);
1207 		break;
1208 	case SOCK_WAKE_URG:
1209 		kill_fasync(&wq->fasync_list, SIGURG, band);
1210 	}
1211 
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL(sock_wake_async);
1215 
1216 int __sock_create(struct net *net, int family, int type, int protocol,
1217 			 struct socket **res, int kern)
1218 {
1219 	int err;
1220 	struct socket *sock;
1221 	const struct net_proto_family *pf;
1222 
1223 	/*
1224 	 *      Check protocol is in range
1225 	 */
1226 	if (family < 0 || family >= NPROTO)
1227 		return -EAFNOSUPPORT;
1228 	if (type < 0 || type >= SOCK_MAX)
1229 		return -EINVAL;
1230 
1231 	/* Compatibility.
1232 
1233 	   This uglymoron is moved from INET layer to here to avoid
1234 	   deadlock in module load.
1235 	 */
1236 	if (family == PF_INET && type == SOCK_PACKET) {
1237 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1238 			     current->comm);
1239 		family = PF_PACKET;
1240 	}
1241 
1242 	err = security_socket_create(family, type, protocol, kern);
1243 	if (err)
1244 		return err;
1245 
1246 	/*
1247 	 *	Allocate the socket and allow the family to set things up. if
1248 	 *	the protocol is 0, the family is instructed to select an appropriate
1249 	 *	default.
1250 	 */
1251 	sock = sock_alloc();
1252 	if (!sock) {
1253 		net_warn_ratelimited("socket: no more sockets\n");
1254 		return -ENFILE;	/* Not exactly a match, but its the
1255 				   closest posix thing */
1256 	}
1257 
1258 	sock->type = type;
1259 
1260 #ifdef CONFIG_MODULES
1261 	/* Attempt to load a protocol module if the find failed.
1262 	 *
1263 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1264 	 * requested real, full-featured networking support upon configuration.
1265 	 * Otherwise module support will break!
1266 	 */
1267 	if (rcu_access_pointer(net_families[family]) == NULL)
1268 		request_module("net-pf-%d", family);
1269 #endif
1270 
1271 	rcu_read_lock();
1272 	pf = rcu_dereference(net_families[family]);
1273 	err = -EAFNOSUPPORT;
1274 	if (!pf)
1275 		goto out_release;
1276 
1277 	/*
1278 	 * We will call the ->create function, that possibly is in a loadable
1279 	 * module, so we have to bump that loadable module refcnt first.
1280 	 */
1281 	if (!try_module_get(pf->owner))
1282 		goto out_release;
1283 
1284 	/* Now protected by module ref count */
1285 	rcu_read_unlock();
1286 
1287 	err = pf->create(net, sock, protocol, kern);
1288 	if (err < 0)
1289 		goto out_module_put;
1290 
1291 	/*
1292 	 * Now to bump the refcnt of the [loadable] module that owns this
1293 	 * socket at sock_release time we decrement its refcnt.
1294 	 */
1295 	if (!try_module_get(sock->ops->owner))
1296 		goto out_module_busy;
1297 
1298 	/*
1299 	 * Now that we're done with the ->create function, the [loadable]
1300 	 * module can have its refcnt decremented
1301 	 */
1302 	module_put(pf->owner);
1303 	err = security_socket_post_create(sock, family, type, protocol, kern);
1304 	if (err)
1305 		goto out_sock_release;
1306 	*res = sock;
1307 
1308 	return 0;
1309 
1310 out_module_busy:
1311 	err = -EAFNOSUPPORT;
1312 out_module_put:
1313 	sock->ops = NULL;
1314 	module_put(pf->owner);
1315 out_sock_release:
1316 	sock_release(sock);
1317 	return err;
1318 
1319 out_release:
1320 	rcu_read_unlock();
1321 	goto out_sock_release;
1322 }
1323 EXPORT_SYMBOL(__sock_create);
1324 
1325 int sock_create(int family, int type, int protocol, struct socket **res)
1326 {
1327 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1328 }
1329 EXPORT_SYMBOL(sock_create);
1330 
1331 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1332 {
1333 	return __sock_create(net, family, type, protocol, res, 1);
1334 }
1335 EXPORT_SYMBOL(sock_create_kern);
1336 
1337 int __sys_socket(int family, int type, int protocol)
1338 {
1339 	int retval;
1340 	struct socket *sock;
1341 	int flags;
1342 
1343 	/* Check the SOCK_* constants for consistency.  */
1344 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1345 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1346 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1347 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1348 
1349 	flags = type & ~SOCK_TYPE_MASK;
1350 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1351 		return -EINVAL;
1352 	type &= SOCK_TYPE_MASK;
1353 
1354 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1355 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1356 
1357 	retval = sock_create(family, type, protocol, &sock);
1358 	if (retval < 0)
1359 		return retval;
1360 
1361 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1362 }
1363 
1364 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1365 {
1366 	return __sys_socket(family, type, protocol);
1367 }
1368 
1369 /*
1370  *	Create a pair of connected sockets.
1371  */
1372 
1373 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1374 {
1375 	struct socket *sock1, *sock2;
1376 	int fd1, fd2, err;
1377 	struct file *newfile1, *newfile2;
1378 	int flags;
1379 
1380 	flags = type & ~SOCK_TYPE_MASK;
1381 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1382 		return -EINVAL;
1383 	type &= SOCK_TYPE_MASK;
1384 
1385 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1386 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1387 
1388 	/*
1389 	 * reserve descriptors and make sure we won't fail
1390 	 * to return them to userland.
1391 	 */
1392 	fd1 = get_unused_fd_flags(flags);
1393 	if (unlikely(fd1 < 0))
1394 		return fd1;
1395 
1396 	fd2 = get_unused_fd_flags(flags);
1397 	if (unlikely(fd2 < 0)) {
1398 		put_unused_fd(fd1);
1399 		return fd2;
1400 	}
1401 
1402 	err = put_user(fd1, &usockvec[0]);
1403 	if (err)
1404 		goto out;
1405 
1406 	err = put_user(fd2, &usockvec[1]);
1407 	if (err)
1408 		goto out;
1409 
1410 	/*
1411 	 * Obtain the first socket and check if the underlying protocol
1412 	 * supports the socketpair call.
1413 	 */
1414 
1415 	err = sock_create(family, type, protocol, &sock1);
1416 	if (unlikely(err < 0))
1417 		goto out;
1418 
1419 	err = sock_create(family, type, protocol, &sock2);
1420 	if (unlikely(err < 0)) {
1421 		sock_release(sock1);
1422 		goto out;
1423 	}
1424 
1425 	err = security_socket_socketpair(sock1, sock2);
1426 	if (unlikely(err)) {
1427 		sock_release(sock2);
1428 		sock_release(sock1);
1429 		goto out;
1430 	}
1431 
1432 	err = sock1->ops->socketpair(sock1, sock2);
1433 	if (unlikely(err < 0)) {
1434 		sock_release(sock2);
1435 		sock_release(sock1);
1436 		goto out;
1437 	}
1438 
1439 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1440 	if (IS_ERR(newfile1)) {
1441 		err = PTR_ERR(newfile1);
1442 		sock_release(sock2);
1443 		goto out;
1444 	}
1445 
1446 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1447 	if (IS_ERR(newfile2)) {
1448 		err = PTR_ERR(newfile2);
1449 		fput(newfile1);
1450 		goto out;
1451 	}
1452 
1453 	audit_fd_pair(fd1, fd2);
1454 
1455 	fd_install(fd1, newfile1);
1456 	fd_install(fd2, newfile2);
1457 	return 0;
1458 
1459 out:
1460 	put_unused_fd(fd2);
1461 	put_unused_fd(fd1);
1462 	return err;
1463 }
1464 
1465 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1466 		int __user *, usockvec)
1467 {
1468 	return __sys_socketpair(family, type, protocol, usockvec);
1469 }
1470 
1471 /*
1472  *	Bind a name to a socket. Nothing much to do here since it's
1473  *	the protocol's responsibility to handle the local address.
1474  *
1475  *	We move the socket address to kernel space before we call
1476  *	the protocol layer (having also checked the address is ok).
1477  */
1478 
1479 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1480 {
1481 	struct socket *sock;
1482 	struct sockaddr_storage address;
1483 	int err, fput_needed;
1484 
1485 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1486 	if (sock) {
1487 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1488 		if (err >= 0) {
1489 			err = security_socket_bind(sock,
1490 						   (struct sockaddr *)&address,
1491 						   addrlen);
1492 			if (!err)
1493 				err = sock->ops->bind(sock,
1494 						      (struct sockaddr *)
1495 						      &address, addrlen);
1496 		}
1497 		fput_light(sock->file, fput_needed);
1498 	}
1499 	return err;
1500 }
1501 
1502 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1503 {
1504 	return __sys_bind(fd, umyaddr, addrlen);
1505 }
1506 
1507 /*
1508  *	Perform a listen. Basically, we allow the protocol to do anything
1509  *	necessary for a listen, and if that works, we mark the socket as
1510  *	ready for listening.
1511  */
1512 
1513 int __sys_listen(int fd, int backlog)
1514 {
1515 	struct socket *sock;
1516 	int err, fput_needed;
1517 	int somaxconn;
1518 
1519 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1520 	if (sock) {
1521 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1522 		if ((unsigned int)backlog > somaxconn)
1523 			backlog = somaxconn;
1524 
1525 		err = security_socket_listen(sock, backlog);
1526 		if (!err)
1527 			err = sock->ops->listen(sock, backlog);
1528 
1529 		fput_light(sock->file, fput_needed);
1530 	}
1531 	return err;
1532 }
1533 
1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1535 {
1536 	return __sys_listen(fd, backlog);
1537 }
1538 
1539 /*
1540  *	For accept, we attempt to create a new socket, set up the link
1541  *	with the client, wake up the client, then return the new
1542  *	connected fd. We collect the address of the connector in kernel
1543  *	space and move it to user at the very end. This is unclean because
1544  *	we open the socket then return an error.
1545  *
1546  *	1003.1g adds the ability to recvmsg() to query connection pending
1547  *	status to recvmsg. We need to add that support in a way thats
1548  *	clean when we restructure accept also.
1549  */
1550 
1551 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1552 		  int __user *upeer_addrlen, int flags)
1553 {
1554 	struct socket *sock, *newsock;
1555 	struct file *newfile;
1556 	int err, len, newfd, fput_needed;
1557 	struct sockaddr_storage address;
1558 
1559 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1560 		return -EINVAL;
1561 
1562 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1563 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1564 
1565 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 	if (!sock)
1567 		goto out;
1568 
1569 	err = -ENFILE;
1570 	newsock = sock_alloc();
1571 	if (!newsock)
1572 		goto out_put;
1573 
1574 	newsock->type = sock->type;
1575 	newsock->ops = sock->ops;
1576 
1577 	/*
1578 	 * We don't need try_module_get here, as the listening socket (sock)
1579 	 * has the protocol module (sock->ops->owner) held.
1580 	 */
1581 	__module_get(newsock->ops->owner);
1582 
1583 	newfd = get_unused_fd_flags(flags);
1584 	if (unlikely(newfd < 0)) {
1585 		err = newfd;
1586 		sock_release(newsock);
1587 		goto out_put;
1588 	}
1589 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1590 	if (IS_ERR(newfile)) {
1591 		err = PTR_ERR(newfile);
1592 		put_unused_fd(newfd);
1593 		goto out_put;
1594 	}
1595 
1596 	err = security_socket_accept(sock, newsock);
1597 	if (err)
1598 		goto out_fd;
1599 
1600 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1601 	if (err < 0)
1602 		goto out_fd;
1603 
1604 	if (upeer_sockaddr) {
1605 		len = newsock->ops->getname(newsock,
1606 					(struct sockaddr *)&address, 2);
1607 		if (len < 0) {
1608 			err = -ECONNABORTED;
1609 			goto out_fd;
1610 		}
1611 		err = move_addr_to_user(&address,
1612 					len, upeer_sockaddr, upeer_addrlen);
1613 		if (err < 0)
1614 			goto out_fd;
1615 	}
1616 
1617 	/* File flags are not inherited via accept() unlike another OSes. */
1618 
1619 	fd_install(newfd, newfile);
1620 	err = newfd;
1621 
1622 out_put:
1623 	fput_light(sock->file, fput_needed);
1624 out:
1625 	return err;
1626 out_fd:
1627 	fput(newfile);
1628 	put_unused_fd(newfd);
1629 	goto out_put;
1630 }
1631 
1632 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1633 		int __user *, upeer_addrlen, int, flags)
1634 {
1635 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1636 }
1637 
1638 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1639 		int __user *, upeer_addrlen)
1640 {
1641 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1642 }
1643 
1644 /*
1645  *	Attempt to connect to a socket with the server address.  The address
1646  *	is in user space so we verify it is OK and move it to kernel space.
1647  *
1648  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1649  *	break bindings
1650  *
1651  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1652  *	other SEQPACKET protocols that take time to connect() as it doesn't
1653  *	include the -EINPROGRESS status for such sockets.
1654  */
1655 
1656 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1657 {
1658 	struct socket *sock;
1659 	struct sockaddr_storage address;
1660 	int err, fput_needed;
1661 
1662 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 	if (!sock)
1664 		goto out;
1665 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1666 	if (err < 0)
1667 		goto out_put;
1668 
1669 	err =
1670 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1671 	if (err)
1672 		goto out_put;
1673 
1674 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1675 				 sock->file->f_flags);
1676 out_put:
1677 	fput_light(sock->file, fput_needed);
1678 out:
1679 	return err;
1680 }
1681 
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 		int, addrlen)
1684 {
1685 	return __sys_connect(fd, uservaddr, addrlen);
1686 }
1687 
1688 /*
1689  *	Get the local address ('name') of a socket object. Move the obtained
1690  *	name to user space.
1691  */
1692 
1693 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1694 		      int __user *usockaddr_len)
1695 {
1696 	struct socket *sock;
1697 	struct sockaddr_storage address;
1698 	int err, fput_needed;
1699 
1700 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 	if (!sock)
1702 		goto out;
1703 
1704 	err = security_socket_getsockname(sock);
1705 	if (err)
1706 		goto out_put;
1707 
1708 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1709 	if (err < 0)
1710 		goto out_put;
1711         /* "err" is actually length in this case */
1712 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1713 
1714 out_put:
1715 	fput_light(sock->file, fput_needed);
1716 out:
1717 	return err;
1718 }
1719 
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 		int __user *, usockaddr_len)
1722 {
1723 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1724 }
1725 
1726 /*
1727  *	Get the remote address ('name') of a socket object. Move the obtained
1728  *	name to user space.
1729  */
1730 
1731 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1732 		      int __user *usockaddr_len)
1733 {
1734 	struct socket *sock;
1735 	struct sockaddr_storage address;
1736 	int err, fput_needed;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (sock != NULL) {
1740 		err = security_socket_getpeername(sock);
1741 		if (err) {
1742 			fput_light(sock->file, fput_needed);
1743 			return err;
1744 		}
1745 
1746 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1747 		if (err >= 0)
1748 			/* "err" is actually length in this case */
1749 			err = move_addr_to_user(&address, err, usockaddr,
1750 						usockaddr_len);
1751 		fput_light(sock->file, fput_needed);
1752 	}
1753 	return err;
1754 }
1755 
1756 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1757 		int __user *, usockaddr_len)
1758 {
1759 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1760 }
1761 
1762 /*
1763  *	Send a datagram to a given address. We move the address into kernel
1764  *	space and check the user space data area is readable before invoking
1765  *	the protocol.
1766  */
1767 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1768 		 struct sockaddr __user *addr,  int addr_len)
1769 {
1770 	struct socket *sock;
1771 	struct sockaddr_storage address;
1772 	int err;
1773 	struct msghdr msg;
1774 	struct iovec iov;
1775 	int fput_needed;
1776 
1777 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1778 	if (unlikely(err))
1779 		return err;
1780 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 	if (!sock)
1782 		goto out;
1783 
1784 	msg.msg_name = NULL;
1785 	msg.msg_control = NULL;
1786 	msg.msg_controllen = 0;
1787 	msg.msg_namelen = 0;
1788 	if (addr) {
1789 		err = move_addr_to_kernel(addr, addr_len, &address);
1790 		if (err < 0)
1791 			goto out_put;
1792 		msg.msg_name = (struct sockaddr *)&address;
1793 		msg.msg_namelen = addr_len;
1794 	}
1795 	if (sock->file->f_flags & O_NONBLOCK)
1796 		flags |= MSG_DONTWAIT;
1797 	msg.msg_flags = flags;
1798 	err = sock_sendmsg(sock, &msg);
1799 
1800 out_put:
1801 	fput_light(sock->file, fput_needed);
1802 out:
1803 	return err;
1804 }
1805 
1806 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1807 		unsigned int, flags, struct sockaddr __user *, addr,
1808 		int, addr_len)
1809 {
1810 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1811 }
1812 
1813 /*
1814  *	Send a datagram down a socket.
1815  */
1816 
1817 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818 		unsigned int, flags)
1819 {
1820 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1821 }
1822 
1823 /*
1824  *	Receive a frame from the socket and optionally record the address of the
1825  *	sender. We verify the buffers are writable and if needed move the
1826  *	sender address from kernel to user space.
1827  */
1828 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1829 		   struct sockaddr __user *addr, int __user *addr_len)
1830 {
1831 	struct socket *sock;
1832 	struct iovec iov;
1833 	struct msghdr msg;
1834 	struct sockaddr_storage address;
1835 	int err, err2;
1836 	int fput_needed;
1837 
1838 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1839 	if (unlikely(err))
1840 		return err;
1841 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1842 	if (!sock)
1843 		goto out;
1844 
1845 	msg.msg_control = NULL;
1846 	msg.msg_controllen = 0;
1847 	/* Save some cycles and don't copy the address if not needed */
1848 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1849 	/* We assume all kernel code knows the size of sockaddr_storage */
1850 	msg.msg_namelen = 0;
1851 	msg.msg_iocb = NULL;
1852 	msg.msg_flags = 0;
1853 	if (sock->file->f_flags & O_NONBLOCK)
1854 		flags |= MSG_DONTWAIT;
1855 	err = sock_recvmsg(sock, &msg, flags);
1856 
1857 	if (err >= 0 && addr != NULL) {
1858 		err2 = move_addr_to_user(&address,
1859 					 msg.msg_namelen, addr, addr_len);
1860 		if (err2 < 0)
1861 			err = err2;
1862 	}
1863 
1864 	fput_light(sock->file, fput_needed);
1865 out:
1866 	return err;
1867 }
1868 
1869 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1870 		unsigned int, flags, struct sockaddr __user *, addr,
1871 		int __user *, addr_len)
1872 {
1873 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1874 }
1875 
1876 /*
1877  *	Receive a datagram from a socket.
1878  */
1879 
1880 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1881 		unsigned int, flags)
1882 {
1883 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1884 }
1885 
1886 /*
1887  *	Set a socket option. Because we don't know the option lengths we have
1888  *	to pass the user mode parameter for the protocols to sort out.
1889  */
1890 
1891 static int __sys_setsockopt(int fd, int level, int optname,
1892 			    char __user *optval, int optlen)
1893 {
1894 	int err, fput_needed;
1895 	struct socket *sock;
1896 
1897 	if (optlen < 0)
1898 		return -EINVAL;
1899 
1900 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 	if (sock != NULL) {
1902 		err = security_socket_setsockopt(sock, level, optname);
1903 		if (err)
1904 			goto out_put;
1905 
1906 		if (level == SOL_SOCKET)
1907 			err =
1908 			    sock_setsockopt(sock, level, optname, optval,
1909 					    optlen);
1910 		else
1911 			err =
1912 			    sock->ops->setsockopt(sock, level, optname, optval,
1913 						  optlen);
1914 out_put:
1915 		fput_light(sock->file, fput_needed);
1916 	}
1917 	return err;
1918 }
1919 
1920 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1921 		char __user *, optval, int, optlen)
1922 {
1923 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1924 }
1925 
1926 /*
1927  *	Get a socket option. Because we don't know the option lengths we have
1928  *	to pass a user mode parameter for the protocols to sort out.
1929  */
1930 
1931 static int __sys_getsockopt(int fd, int level, int optname,
1932 			    char __user *optval, int __user *optlen)
1933 {
1934 	int err, fput_needed;
1935 	struct socket *sock;
1936 
1937 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 	if (sock != NULL) {
1939 		err = security_socket_getsockopt(sock, level, optname);
1940 		if (err)
1941 			goto out_put;
1942 
1943 		if (level == SOL_SOCKET)
1944 			err =
1945 			    sock_getsockopt(sock, level, optname, optval,
1946 					    optlen);
1947 		else
1948 			err =
1949 			    sock->ops->getsockopt(sock, level, optname, optval,
1950 						  optlen);
1951 out_put:
1952 		fput_light(sock->file, fput_needed);
1953 	}
1954 	return err;
1955 }
1956 
1957 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1958 		char __user *, optval, int __user *, optlen)
1959 {
1960 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1961 }
1962 
1963 /*
1964  *	Shutdown a socket.
1965  */
1966 
1967 int __sys_shutdown(int fd, int how)
1968 {
1969 	int err, fput_needed;
1970 	struct socket *sock;
1971 
1972 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 	if (sock != NULL) {
1974 		err = security_socket_shutdown(sock, how);
1975 		if (!err)
1976 			err = sock->ops->shutdown(sock, how);
1977 		fput_light(sock->file, fput_needed);
1978 	}
1979 	return err;
1980 }
1981 
1982 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1983 {
1984 	return __sys_shutdown(fd, how);
1985 }
1986 
1987 /* A couple of helpful macros for getting the address of the 32/64 bit
1988  * fields which are the same type (int / unsigned) on our platforms.
1989  */
1990 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1991 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1992 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1993 
1994 struct used_address {
1995 	struct sockaddr_storage name;
1996 	unsigned int name_len;
1997 };
1998 
1999 static int copy_msghdr_from_user(struct msghdr *kmsg,
2000 				 struct user_msghdr __user *umsg,
2001 				 struct sockaddr __user **save_addr,
2002 				 struct iovec **iov)
2003 {
2004 	struct user_msghdr msg;
2005 	ssize_t err;
2006 
2007 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2008 		return -EFAULT;
2009 
2010 	kmsg->msg_control = (void __force *)msg.msg_control;
2011 	kmsg->msg_controllen = msg.msg_controllen;
2012 	kmsg->msg_flags = msg.msg_flags;
2013 
2014 	kmsg->msg_namelen = msg.msg_namelen;
2015 	if (!msg.msg_name)
2016 		kmsg->msg_namelen = 0;
2017 
2018 	if (kmsg->msg_namelen < 0)
2019 		return -EINVAL;
2020 
2021 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2022 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2023 
2024 	if (save_addr)
2025 		*save_addr = msg.msg_name;
2026 
2027 	if (msg.msg_name && kmsg->msg_namelen) {
2028 		if (!save_addr) {
2029 			err = move_addr_to_kernel(msg.msg_name,
2030 						  kmsg->msg_namelen,
2031 						  kmsg->msg_name);
2032 			if (err < 0)
2033 				return err;
2034 		}
2035 	} else {
2036 		kmsg->msg_name = NULL;
2037 		kmsg->msg_namelen = 0;
2038 	}
2039 
2040 	if (msg.msg_iovlen > UIO_MAXIOV)
2041 		return -EMSGSIZE;
2042 
2043 	kmsg->msg_iocb = NULL;
2044 
2045 	return import_iovec(save_addr ? READ : WRITE,
2046 			    msg.msg_iov, msg.msg_iovlen,
2047 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2048 }
2049 
2050 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2051 			 struct msghdr *msg_sys, unsigned int flags,
2052 			 struct used_address *used_address,
2053 			 unsigned int allowed_msghdr_flags)
2054 {
2055 	struct compat_msghdr __user *msg_compat =
2056 	    (struct compat_msghdr __user *)msg;
2057 	struct sockaddr_storage address;
2058 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2059 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2060 				__aligned(sizeof(__kernel_size_t));
2061 	/* 20 is size of ipv6_pktinfo */
2062 	unsigned char *ctl_buf = ctl;
2063 	int ctl_len;
2064 	ssize_t err;
2065 
2066 	msg_sys->msg_name = &address;
2067 
2068 	if (MSG_CMSG_COMPAT & flags)
2069 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2070 	else
2071 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2072 	if (err < 0)
2073 		return err;
2074 
2075 	err = -ENOBUFS;
2076 
2077 	if (msg_sys->msg_controllen > INT_MAX)
2078 		goto out_freeiov;
2079 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2080 	ctl_len = msg_sys->msg_controllen;
2081 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2082 		err =
2083 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2084 						     sizeof(ctl));
2085 		if (err)
2086 			goto out_freeiov;
2087 		ctl_buf = msg_sys->msg_control;
2088 		ctl_len = msg_sys->msg_controllen;
2089 	} else if (ctl_len) {
2090 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2091 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2092 		if (ctl_len > sizeof(ctl)) {
2093 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2094 			if (ctl_buf == NULL)
2095 				goto out_freeiov;
2096 		}
2097 		err = -EFAULT;
2098 		/*
2099 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2100 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2101 		 * checking falls down on this.
2102 		 */
2103 		if (copy_from_user(ctl_buf,
2104 				   (void __user __force *)msg_sys->msg_control,
2105 				   ctl_len))
2106 			goto out_freectl;
2107 		msg_sys->msg_control = ctl_buf;
2108 	}
2109 	msg_sys->msg_flags = flags;
2110 
2111 	if (sock->file->f_flags & O_NONBLOCK)
2112 		msg_sys->msg_flags |= MSG_DONTWAIT;
2113 	/*
2114 	 * If this is sendmmsg() and current destination address is same as
2115 	 * previously succeeded address, omit asking LSM's decision.
2116 	 * used_address->name_len is initialized to UINT_MAX so that the first
2117 	 * destination address never matches.
2118 	 */
2119 	if (used_address && msg_sys->msg_name &&
2120 	    used_address->name_len == msg_sys->msg_namelen &&
2121 	    !memcmp(&used_address->name, msg_sys->msg_name,
2122 		    used_address->name_len)) {
2123 		err = sock_sendmsg_nosec(sock, msg_sys);
2124 		goto out_freectl;
2125 	}
2126 	err = sock_sendmsg(sock, msg_sys);
2127 	/*
2128 	 * If this is sendmmsg() and sending to current destination address was
2129 	 * successful, remember it.
2130 	 */
2131 	if (used_address && err >= 0) {
2132 		used_address->name_len = msg_sys->msg_namelen;
2133 		if (msg_sys->msg_name)
2134 			memcpy(&used_address->name, msg_sys->msg_name,
2135 			       used_address->name_len);
2136 	}
2137 
2138 out_freectl:
2139 	if (ctl_buf != ctl)
2140 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2141 out_freeiov:
2142 	kfree(iov);
2143 	return err;
2144 }
2145 
2146 /*
2147  *	BSD sendmsg interface
2148  */
2149 
2150 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2151 		   bool forbid_cmsg_compat)
2152 {
2153 	int fput_needed, err;
2154 	struct msghdr msg_sys;
2155 	struct socket *sock;
2156 
2157 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2158 		return -EINVAL;
2159 
2160 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 	if (!sock)
2162 		goto out;
2163 
2164 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2165 
2166 	fput_light(sock->file, fput_needed);
2167 out:
2168 	return err;
2169 }
2170 
2171 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2172 {
2173 	return __sys_sendmsg(fd, msg, flags, true);
2174 }
2175 
2176 /*
2177  *	Linux sendmmsg interface
2178  */
2179 
2180 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2181 		   unsigned int flags, bool forbid_cmsg_compat)
2182 {
2183 	int fput_needed, err, datagrams;
2184 	struct socket *sock;
2185 	struct mmsghdr __user *entry;
2186 	struct compat_mmsghdr __user *compat_entry;
2187 	struct msghdr msg_sys;
2188 	struct used_address used_address;
2189 	unsigned int oflags = flags;
2190 
2191 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2192 		return -EINVAL;
2193 
2194 	if (vlen > UIO_MAXIOV)
2195 		vlen = UIO_MAXIOV;
2196 
2197 	datagrams = 0;
2198 
2199 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2200 	if (!sock)
2201 		return err;
2202 
2203 	used_address.name_len = UINT_MAX;
2204 	entry = mmsg;
2205 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2206 	err = 0;
2207 	flags |= MSG_BATCH;
2208 
2209 	while (datagrams < vlen) {
2210 		if (datagrams == vlen - 1)
2211 			flags = oflags;
2212 
2213 		if (MSG_CMSG_COMPAT & flags) {
2214 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2215 					     &msg_sys, flags, &used_address, MSG_EOR);
2216 			if (err < 0)
2217 				break;
2218 			err = __put_user(err, &compat_entry->msg_len);
2219 			++compat_entry;
2220 		} else {
2221 			err = ___sys_sendmsg(sock,
2222 					     (struct user_msghdr __user *)entry,
2223 					     &msg_sys, flags, &used_address, MSG_EOR);
2224 			if (err < 0)
2225 				break;
2226 			err = put_user(err, &entry->msg_len);
2227 			++entry;
2228 		}
2229 
2230 		if (err)
2231 			break;
2232 		++datagrams;
2233 		if (msg_data_left(&msg_sys))
2234 			break;
2235 		cond_resched();
2236 	}
2237 
2238 	fput_light(sock->file, fput_needed);
2239 
2240 	/* We only return an error if no datagrams were able to be sent */
2241 	if (datagrams != 0)
2242 		return datagrams;
2243 
2244 	return err;
2245 }
2246 
2247 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2248 		unsigned int, vlen, unsigned int, flags)
2249 {
2250 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2251 }
2252 
2253 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2254 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2255 {
2256 	struct compat_msghdr __user *msg_compat =
2257 	    (struct compat_msghdr __user *)msg;
2258 	struct iovec iovstack[UIO_FASTIOV];
2259 	struct iovec *iov = iovstack;
2260 	unsigned long cmsg_ptr;
2261 	int len;
2262 	ssize_t err;
2263 
2264 	/* kernel mode address */
2265 	struct sockaddr_storage addr;
2266 
2267 	/* user mode address pointers */
2268 	struct sockaddr __user *uaddr;
2269 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2270 
2271 	msg_sys->msg_name = &addr;
2272 
2273 	if (MSG_CMSG_COMPAT & flags)
2274 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2275 	else
2276 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2277 	if (err < 0)
2278 		return err;
2279 
2280 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2281 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2282 
2283 	/* We assume all kernel code knows the size of sockaddr_storage */
2284 	msg_sys->msg_namelen = 0;
2285 
2286 	if (sock->file->f_flags & O_NONBLOCK)
2287 		flags |= MSG_DONTWAIT;
2288 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2289 	if (err < 0)
2290 		goto out_freeiov;
2291 	len = err;
2292 
2293 	if (uaddr != NULL) {
2294 		err = move_addr_to_user(&addr,
2295 					msg_sys->msg_namelen, uaddr,
2296 					uaddr_len);
2297 		if (err < 0)
2298 			goto out_freeiov;
2299 	}
2300 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2301 			 COMPAT_FLAGS(msg));
2302 	if (err)
2303 		goto out_freeiov;
2304 	if (MSG_CMSG_COMPAT & flags)
2305 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2306 				 &msg_compat->msg_controllen);
2307 	else
2308 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2309 				 &msg->msg_controllen);
2310 	if (err)
2311 		goto out_freeiov;
2312 	err = len;
2313 
2314 out_freeiov:
2315 	kfree(iov);
2316 	return err;
2317 }
2318 
2319 /*
2320  *	BSD recvmsg interface
2321  */
2322 
2323 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2324 		   bool forbid_cmsg_compat)
2325 {
2326 	int fput_needed, err;
2327 	struct msghdr msg_sys;
2328 	struct socket *sock;
2329 
2330 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2331 		return -EINVAL;
2332 
2333 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2334 	if (!sock)
2335 		goto out;
2336 
2337 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2338 
2339 	fput_light(sock->file, fput_needed);
2340 out:
2341 	return err;
2342 }
2343 
2344 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2345 		unsigned int, flags)
2346 {
2347 	return __sys_recvmsg(fd, msg, flags, true);
2348 }
2349 
2350 /*
2351  *     Linux recvmmsg interface
2352  */
2353 
2354 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2355 		   unsigned int flags, struct timespec *timeout)
2356 {
2357 	int fput_needed, err, datagrams;
2358 	struct socket *sock;
2359 	struct mmsghdr __user *entry;
2360 	struct compat_mmsghdr __user *compat_entry;
2361 	struct msghdr msg_sys;
2362 	struct timespec64 end_time;
2363 	struct timespec64 timeout64;
2364 
2365 	if (timeout &&
2366 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2367 				    timeout->tv_nsec))
2368 		return -EINVAL;
2369 
2370 	datagrams = 0;
2371 
2372 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2373 	if (!sock)
2374 		return err;
2375 
2376 	if (likely(!(flags & MSG_ERRQUEUE))) {
2377 		err = sock_error(sock->sk);
2378 		if (err) {
2379 			datagrams = err;
2380 			goto out_put;
2381 		}
2382 	}
2383 
2384 	entry = mmsg;
2385 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2386 
2387 	while (datagrams < vlen) {
2388 		/*
2389 		 * No need to ask LSM for more than the first datagram.
2390 		 */
2391 		if (MSG_CMSG_COMPAT & flags) {
2392 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2393 					     &msg_sys, flags & ~MSG_WAITFORONE,
2394 					     datagrams);
2395 			if (err < 0)
2396 				break;
2397 			err = __put_user(err, &compat_entry->msg_len);
2398 			++compat_entry;
2399 		} else {
2400 			err = ___sys_recvmsg(sock,
2401 					     (struct user_msghdr __user *)entry,
2402 					     &msg_sys, flags & ~MSG_WAITFORONE,
2403 					     datagrams);
2404 			if (err < 0)
2405 				break;
2406 			err = put_user(err, &entry->msg_len);
2407 			++entry;
2408 		}
2409 
2410 		if (err)
2411 			break;
2412 		++datagrams;
2413 
2414 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2415 		if (flags & MSG_WAITFORONE)
2416 			flags |= MSG_DONTWAIT;
2417 
2418 		if (timeout) {
2419 			ktime_get_ts64(&timeout64);
2420 			*timeout = timespec64_to_timespec(
2421 					timespec64_sub(end_time, timeout64));
2422 			if (timeout->tv_sec < 0) {
2423 				timeout->tv_sec = timeout->tv_nsec = 0;
2424 				break;
2425 			}
2426 
2427 			/* Timeout, return less than vlen datagrams */
2428 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2429 				break;
2430 		}
2431 
2432 		/* Out of band data, return right away */
2433 		if (msg_sys.msg_flags & MSG_OOB)
2434 			break;
2435 		cond_resched();
2436 	}
2437 
2438 	if (err == 0)
2439 		goto out_put;
2440 
2441 	if (datagrams == 0) {
2442 		datagrams = err;
2443 		goto out_put;
2444 	}
2445 
2446 	/*
2447 	 * We may return less entries than requested (vlen) if the
2448 	 * sock is non block and there aren't enough datagrams...
2449 	 */
2450 	if (err != -EAGAIN) {
2451 		/*
2452 		 * ... or  if recvmsg returns an error after we
2453 		 * received some datagrams, where we record the
2454 		 * error to return on the next call or if the
2455 		 * app asks about it using getsockopt(SO_ERROR).
2456 		 */
2457 		sock->sk->sk_err = -err;
2458 	}
2459 out_put:
2460 	fput_light(sock->file, fput_needed);
2461 
2462 	return datagrams;
2463 }
2464 
2465 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2466 			   unsigned int vlen, unsigned int flags,
2467 			   struct timespec __user *timeout)
2468 {
2469 	int datagrams;
2470 	struct timespec timeout_sys;
2471 
2472 	if (flags & MSG_CMSG_COMPAT)
2473 		return -EINVAL;
2474 
2475 	if (!timeout)
2476 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2477 
2478 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2479 		return -EFAULT;
2480 
2481 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2482 
2483 	if (datagrams > 0 &&
2484 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2485 		datagrams = -EFAULT;
2486 
2487 	return datagrams;
2488 }
2489 
2490 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2491 		unsigned int, vlen, unsigned int, flags,
2492 		struct timespec __user *, timeout)
2493 {
2494 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2495 }
2496 
2497 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2498 /* Argument list sizes for sys_socketcall */
2499 #define AL(x) ((x) * sizeof(unsigned long))
2500 static const unsigned char nargs[21] = {
2501 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2502 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2503 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2504 	AL(4), AL(5), AL(4)
2505 };
2506 
2507 #undef AL
2508 
2509 /*
2510  *	System call vectors.
2511  *
2512  *	Argument checking cleaned up. Saved 20% in size.
2513  *  This function doesn't need to set the kernel lock because
2514  *  it is set by the callees.
2515  */
2516 
2517 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2518 {
2519 	unsigned long a[AUDITSC_ARGS];
2520 	unsigned long a0, a1;
2521 	int err;
2522 	unsigned int len;
2523 
2524 	if (call < 1 || call > SYS_SENDMMSG)
2525 		return -EINVAL;
2526 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2527 
2528 	len = nargs[call];
2529 	if (len > sizeof(a))
2530 		return -EINVAL;
2531 
2532 	/* copy_from_user should be SMP safe. */
2533 	if (copy_from_user(a, args, len))
2534 		return -EFAULT;
2535 
2536 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2537 	if (err)
2538 		return err;
2539 
2540 	a0 = a[0];
2541 	a1 = a[1];
2542 
2543 	switch (call) {
2544 	case SYS_SOCKET:
2545 		err = __sys_socket(a0, a1, a[2]);
2546 		break;
2547 	case SYS_BIND:
2548 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2549 		break;
2550 	case SYS_CONNECT:
2551 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2552 		break;
2553 	case SYS_LISTEN:
2554 		err = __sys_listen(a0, a1);
2555 		break;
2556 	case SYS_ACCEPT:
2557 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2558 				    (int __user *)a[2], 0);
2559 		break;
2560 	case SYS_GETSOCKNAME:
2561 		err =
2562 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2563 				      (int __user *)a[2]);
2564 		break;
2565 	case SYS_GETPEERNAME:
2566 		err =
2567 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2568 				      (int __user *)a[2]);
2569 		break;
2570 	case SYS_SOCKETPAIR:
2571 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2572 		break;
2573 	case SYS_SEND:
2574 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2575 				   NULL, 0);
2576 		break;
2577 	case SYS_SENDTO:
2578 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2579 				   (struct sockaddr __user *)a[4], a[5]);
2580 		break;
2581 	case SYS_RECV:
2582 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2583 				     NULL, NULL);
2584 		break;
2585 	case SYS_RECVFROM:
2586 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2587 				     (struct sockaddr __user *)a[4],
2588 				     (int __user *)a[5]);
2589 		break;
2590 	case SYS_SHUTDOWN:
2591 		err = __sys_shutdown(a0, a1);
2592 		break;
2593 	case SYS_SETSOCKOPT:
2594 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2595 				       a[4]);
2596 		break;
2597 	case SYS_GETSOCKOPT:
2598 		err =
2599 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2600 				     (int __user *)a[4]);
2601 		break;
2602 	case SYS_SENDMSG:
2603 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2604 				    a[2], true);
2605 		break;
2606 	case SYS_SENDMMSG:
2607 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2608 				     a[3], true);
2609 		break;
2610 	case SYS_RECVMSG:
2611 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2612 				    a[2], true);
2613 		break;
2614 	case SYS_RECVMMSG:
2615 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2616 				      a[3], (struct timespec __user *)a[4]);
2617 		break;
2618 	case SYS_ACCEPT4:
2619 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2620 				    (int __user *)a[2], a[3]);
2621 		break;
2622 	default:
2623 		err = -EINVAL;
2624 		break;
2625 	}
2626 	return err;
2627 }
2628 
2629 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2630 
2631 /**
2632  *	sock_register - add a socket protocol handler
2633  *	@ops: description of protocol
2634  *
2635  *	This function is called by a protocol handler that wants to
2636  *	advertise its address family, and have it linked into the
2637  *	socket interface. The value ops->family corresponds to the
2638  *	socket system call protocol family.
2639  */
2640 int sock_register(const struct net_proto_family *ops)
2641 {
2642 	int err;
2643 
2644 	if (ops->family >= NPROTO) {
2645 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2646 		return -ENOBUFS;
2647 	}
2648 
2649 	spin_lock(&net_family_lock);
2650 	if (rcu_dereference_protected(net_families[ops->family],
2651 				      lockdep_is_held(&net_family_lock)))
2652 		err = -EEXIST;
2653 	else {
2654 		rcu_assign_pointer(net_families[ops->family], ops);
2655 		err = 0;
2656 	}
2657 	spin_unlock(&net_family_lock);
2658 
2659 	pr_info("NET: Registered protocol family %d\n", ops->family);
2660 	return err;
2661 }
2662 EXPORT_SYMBOL(sock_register);
2663 
2664 /**
2665  *	sock_unregister - remove a protocol handler
2666  *	@family: protocol family to remove
2667  *
2668  *	This function is called by a protocol handler that wants to
2669  *	remove its address family, and have it unlinked from the
2670  *	new socket creation.
2671  *
2672  *	If protocol handler is a module, then it can use module reference
2673  *	counts to protect against new references. If protocol handler is not
2674  *	a module then it needs to provide its own protection in
2675  *	the ops->create routine.
2676  */
2677 void sock_unregister(int family)
2678 {
2679 	BUG_ON(family < 0 || family >= NPROTO);
2680 
2681 	spin_lock(&net_family_lock);
2682 	RCU_INIT_POINTER(net_families[family], NULL);
2683 	spin_unlock(&net_family_lock);
2684 
2685 	synchronize_rcu();
2686 
2687 	pr_info("NET: Unregistered protocol family %d\n", family);
2688 }
2689 EXPORT_SYMBOL(sock_unregister);
2690 
2691 bool sock_is_registered(int family)
2692 {
2693 	return family < NPROTO &&
2694 		rcu_access_pointer(net_families[array_index_nospec(family, NPROTO)]);
2695 }
2696 
2697 static int __init sock_init(void)
2698 {
2699 	int err;
2700 	/*
2701 	 *      Initialize the network sysctl infrastructure.
2702 	 */
2703 	err = net_sysctl_init();
2704 	if (err)
2705 		goto out;
2706 
2707 	/*
2708 	 *      Initialize skbuff SLAB cache
2709 	 */
2710 	skb_init();
2711 
2712 	/*
2713 	 *      Initialize the protocols module.
2714 	 */
2715 
2716 	init_inodecache();
2717 
2718 	err = register_filesystem(&sock_fs_type);
2719 	if (err)
2720 		goto out_fs;
2721 	sock_mnt = kern_mount(&sock_fs_type);
2722 	if (IS_ERR(sock_mnt)) {
2723 		err = PTR_ERR(sock_mnt);
2724 		goto out_mount;
2725 	}
2726 
2727 	/* The real protocol initialization is performed in later initcalls.
2728 	 */
2729 
2730 #ifdef CONFIG_NETFILTER
2731 	err = netfilter_init();
2732 	if (err)
2733 		goto out;
2734 #endif
2735 
2736 	ptp_classifier_init();
2737 
2738 out:
2739 	return err;
2740 
2741 out_mount:
2742 	unregister_filesystem(&sock_fs_type);
2743 out_fs:
2744 	goto out;
2745 }
2746 
2747 core_initcall(sock_init);	/* early initcall */
2748 
2749 #ifdef CONFIG_PROC_FS
2750 void socket_seq_show(struct seq_file *seq)
2751 {
2752 	seq_printf(seq, "sockets: used %d\n",
2753 		   sock_inuse_get(seq->private));
2754 }
2755 #endif				/* CONFIG_PROC_FS */
2756 
2757 #ifdef CONFIG_COMPAT
2758 static int do_siocgstamp(struct net *net, struct socket *sock,
2759 			 unsigned int cmd, void __user *up)
2760 {
2761 	mm_segment_t old_fs = get_fs();
2762 	struct timeval ktv;
2763 	int err;
2764 
2765 	set_fs(KERNEL_DS);
2766 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2767 	set_fs(old_fs);
2768 	if (!err)
2769 		err = compat_put_timeval(&ktv, up);
2770 
2771 	return err;
2772 }
2773 
2774 static int do_siocgstampns(struct net *net, struct socket *sock,
2775 			   unsigned int cmd, void __user *up)
2776 {
2777 	mm_segment_t old_fs = get_fs();
2778 	struct timespec kts;
2779 	int err;
2780 
2781 	set_fs(KERNEL_DS);
2782 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2783 	set_fs(old_fs);
2784 	if (!err)
2785 		err = compat_put_timespec(&kts, up);
2786 
2787 	return err;
2788 }
2789 
2790 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2791 {
2792 	struct compat_ifconf ifc32;
2793 	struct ifconf ifc;
2794 	int err;
2795 
2796 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2797 		return -EFAULT;
2798 
2799 	ifc.ifc_len = ifc32.ifc_len;
2800 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2801 
2802 	rtnl_lock();
2803 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2804 	rtnl_unlock();
2805 	if (err)
2806 		return err;
2807 
2808 	ifc32.ifc_len = ifc.ifc_len;
2809 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2810 		return -EFAULT;
2811 
2812 	return 0;
2813 }
2814 
2815 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2816 {
2817 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2818 	bool convert_in = false, convert_out = false;
2819 	size_t buf_size = 0;
2820 	struct ethtool_rxnfc __user *rxnfc = NULL;
2821 	struct ifreq ifr;
2822 	u32 rule_cnt = 0, actual_rule_cnt;
2823 	u32 ethcmd;
2824 	u32 data;
2825 	int ret;
2826 
2827 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2828 		return -EFAULT;
2829 
2830 	compat_rxnfc = compat_ptr(data);
2831 
2832 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2833 		return -EFAULT;
2834 
2835 	/* Most ethtool structures are defined without padding.
2836 	 * Unfortunately struct ethtool_rxnfc is an exception.
2837 	 */
2838 	switch (ethcmd) {
2839 	default:
2840 		break;
2841 	case ETHTOOL_GRXCLSRLALL:
2842 		/* Buffer size is variable */
2843 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2844 			return -EFAULT;
2845 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2846 			return -ENOMEM;
2847 		buf_size += rule_cnt * sizeof(u32);
2848 		/* fall through */
2849 	case ETHTOOL_GRXRINGS:
2850 	case ETHTOOL_GRXCLSRLCNT:
2851 	case ETHTOOL_GRXCLSRULE:
2852 	case ETHTOOL_SRXCLSRLINS:
2853 		convert_out = true;
2854 		/* fall through */
2855 	case ETHTOOL_SRXCLSRLDEL:
2856 		buf_size += sizeof(struct ethtool_rxnfc);
2857 		convert_in = true;
2858 		rxnfc = compat_alloc_user_space(buf_size);
2859 		break;
2860 	}
2861 
2862 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2863 		return -EFAULT;
2864 
2865 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2866 
2867 	if (convert_in) {
2868 		/* We expect there to be holes between fs.m_ext and
2869 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2870 		 */
2871 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2872 			     sizeof(compat_rxnfc->fs.m_ext) !=
2873 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2874 			     sizeof(rxnfc->fs.m_ext));
2875 		BUILD_BUG_ON(
2876 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2877 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2878 			offsetof(struct ethtool_rxnfc, fs.location) -
2879 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2880 
2881 		if (copy_in_user(rxnfc, compat_rxnfc,
2882 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2883 				 (void __user *)rxnfc) ||
2884 		    copy_in_user(&rxnfc->fs.ring_cookie,
2885 				 &compat_rxnfc->fs.ring_cookie,
2886 				 (void __user *)(&rxnfc->fs.location + 1) -
2887 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2888 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2889 				 sizeof(rxnfc->rule_cnt)))
2890 			return -EFAULT;
2891 	}
2892 
2893 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2894 	if (ret)
2895 		return ret;
2896 
2897 	if (convert_out) {
2898 		if (copy_in_user(compat_rxnfc, rxnfc,
2899 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2900 				 (const void __user *)rxnfc) ||
2901 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2902 				 &rxnfc->fs.ring_cookie,
2903 				 (const void __user *)(&rxnfc->fs.location + 1) -
2904 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2905 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2906 				 sizeof(rxnfc->rule_cnt)))
2907 			return -EFAULT;
2908 
2909 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2910 			/* As an optimisation, we only copy the actual
2911 			 * number of rules that the underlying
2912 			 * function returned.  Since Mallory might
2913 			 * change the rule count in user memory, we
2914 			 * check that it is less than the rule count
2915 			 * originally given (as the user buffer size),
2916 			 * which has been range-checked.
2917 			 */
2918 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2919 				return -EFAULT;
2920 			if (actual_rule_cnt < rule_cnt)
2921 				rule_cnt = actual_rule_cnt;
2922 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2923 					 &rxnfc->rule_locs[0],
2924 					 rule_cnt * sizeof(u32)))
2925 				return -EFAULT;
2926 		}
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2933 {
2934 	compat_uptr_t uptr32;
2935 	struct ifreq ifr;
2936 	void __user *saved;
2937 	int err;
2938 
2939 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2940 		return -EFAULT;
2941 
2942 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2943 		return -EFAULT;
2944 
2945 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2946 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2947 
2948 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2949 	if (!err) {
2950 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2951 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2952 			err = -EFAULT;
2953 	}
2954 	return err;
2955 }
2956 
2957 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2958 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2959 				 struct compat_ifreq __user *u_ifreq32)
2960 {
2961 	struct ifreq ifreq;
2962 	u32 data32;
2963 
2964 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2965 		return -EFAULT;
2966 	if (get_user(data32, &u_ifreq32->ifr_data))
2967 		return -EFAULT;
2968 	ifreq.ifr_data = compat_ptr(data32);
2969 
2970 	return dev_ioctl(net, cmd, &ifreq, NULL);
2971 }
2972 
2973 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2974 			struct compat_ifreq __user *uifr32)
2975 {
2976 	struct ifreq ifr;
2977 	struct compat_ifmap __user *uifmap32;
2978 	int err;
2979 
2980 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2981 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2982 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2983 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2984 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2985 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2986 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2987 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2988 	if (err)
2989 		return -EFAULT;
2990 
2991 	err = dev_ioctl(net, cmd, &ifr, NULL);
2992 
2993 	if (cmd == SIOCGIFMAP && !err) {
2994 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3001 		if (err)
3002 			err = -EFAULT;
3003 	}
3004 	return err;
3005 }
3006 
3007 struct rtentry32 {
3008 	u32		rt_pad1;
3009 	struct sockaddr rt_dst;         /* target address               */
3010 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3011 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3012 	unsigned short	rt_flags;
3013 	short		rt_pad2;
3014 	u32		rt_pad3;
3015 	unsigned char	rt_tos;
3016 	unsigned char	rt_class;
3017 	short		rt_pad4;
3018 	short		rt_metric;      /* +1 for binary compatibility! */
3019 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3020 	u32		rt_mtu;         /* per route MTU/Window         */
3021 	u32		rt_window;      /* Window clamping              */
3022 	unsigned short  rt_irtt;        /* Initial RTT                  */
3023 };
3024 
3025 struct in6_rtmsg32 {
3026 	struct in6_addr		rtmsg_dst;
3027 	struct in6_addr		rtmsg_src;
3028 	struct in6_addr		rtmsg_gateway;
3029 	u32			rtmsg_type;
3030 	u16			rtmsg_dst_len;
3031 	u16			rtmsg_src_len;
3032 	u32			rtmsg_metric;
3033 	u32			rtmsg_info;
3034 	u32			rtmsg_flags;
3035 	s32			rtmsg_ifindex;
3036 };
3037 
3038 static int routing_ioctl(struct net *net, struct socket *sock,
3039 			 unsigned int cmd, void __user *argp)
3040 {
3041 	int ret;
3042 	void *r = NULL;
3043 	struct in6_rtmsg r6;
3044 	struct rtentry r4;
3045 	char devname[16];
3046 	u32 rtdev;
3047 	mm_segment_t old_fs = get_fs();
3048 
3049 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3050 		struct in6_rtmsg32 __user *ur6 = argp;
3051 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3052 			3 * sizeof(struct in6_addr));
3053 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3054 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3055 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3056 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3057 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3058 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3059 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3060 
3061 		r = (void *) &r6;
3062 	} else { /* ipv4 */
3063 		struct rtentry32 __user *ur4 = argp;
3064 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3065 					3 * sizeof(struct sockaddr));
3066 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3067 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3068 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3069 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3070 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3071 		ret |= get_user(rtdev, &(ur4->rt_dev));
3072 		if (rtdev) {
3073 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3074 			r4.rt_dev = (char __user __force *)devname;
3075 			devname[15] = 0;
3076 		} else
3077 			r4.rt_dev = NULL;
3078 
3079 		r = (void *) &r4;
3080 	}
3081 
3082 	if (ret) {
3083 		ret = -EFAULT;
3084 		goto out;
3085 	}
3086 
3087 	set_fs(KERNEL_DS);
3088 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3089 	set_fs(old_fs);
3090 
3091 out:
3092 	return ret;
3093 }
3094 
3095 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3096  * for some operations; this forces use of the newer bridge-utils that
3097  * use compatible ioctls
3098  */
3099 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3100 {
3101 	compat_ulong_t tmp;
3102 
3103 	if (get_user(tmp, argp))
3104 		return -EFAULT;
3105 	if (tmp == BRCTL_GET_VERSION)
3106 		return BRCTL_VERSION + 1;
3107 	return -EINVAL;
3108 }
3109 
3110 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3111 			 unsigned int cmd, unsigned long arg)
3112 {
3113 	void __user *argp = compat_ptr(arg);
3114 	struct sock *sk = sock->sk;
3115 	struct net *net = sock_net(sk);
3116 
3117 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3118 		return compat_ifr_data_ioctl(net, cmd, argp);
3119 
3120 	switch (cmd) {
3121 	case SIOCSIFBR:
3122 	case SIOCGIFBR:
3123 		return old_bridge_ioctl(argp);
3124 	case SIOCGIFCONF:
3125 		return compat_dev_ifconf(net, argp);
3126 	case SIOCETHTOOL:
3127 		return ethtool_ioctl(net, argp);
3128 	case SIOCWANDEV:
3129 		return compat_siocwandev(net, argp);
3130 	case SIOCGIFMAP:
3131 	case SIOCSIFMAP:
3132 		return compat_sioc_ifmap(net, cmd, argp);
3133 	case SIOCADDRT:
3134 	case SIOCDELRT:
3135 		return routing_ioctl(net, sock, cmd, argp);
3136 	case SIOCGSTAMP:
3137 		return do_siocgstamp(net, sock, cmd, argp);
3138 	case SIOCGSTAMPNS:
3139 		return do_siocgstampns(net, sock, cmd, argp);
3140 	case SIOCBONDSLAVEINFOQUERY:
3141 	case SIOCBONDINFOQUERY:
3142 	case SIOCSHWTSTAMP:
3143 	case SIOCGHWTSTAMP:
3144 		return compat_ifr_data_ioctl(net, cmd, argp);
3145 
3146 	case FIOSETOWN:
3147 	case SIOCSPGRP:
3148 	case FIOGETOWN:
3149 	case SIOCGPGRP:
3150 	case SIOCBRADDBR:
3151 	case SIOCBRDELBR:
3152 	case SIOCGIFVLAN:
3153 	case SIOCSIFVLAN:
3154 	case SIOCADDDLCI:
3155 	case SIOCDELDLCI:
3156 	case SIOCGSKNS:
3157 		return sock_ioctl(file, cmd, arg);
3158 
3159 	case SIOCGIFFLAGS:
3160 	case SIOCSIFFLAGS:
3161 	case SIOCGIFMETRIC:
3162 	case SIOCSIFMETRIC:
3163 	case SIOCGIFMTU:
3164 	case SIOCSIFMTU:
3165 	case SIOCGIFMEM:
3166 	case SIOCSIFMEM:
3167 	case SIOCGIFHWADDR:
3168 	case SIOCSIFHWADDR:
3169 	case SIOCADDMULTI:
3170 	case SIOCDELMULTI:
3171 	case SIOCGIFINDEX:
3172 	case SIOCGIFADDR:
3173 	case SIOCSIFADDR:
3174 	case SIOCSIFHWBROADCAST:
3175 	case SIOCDIFADDR:
3176 	case SIOCGIFBRDADDR:
3177 	case SIOCSIFBRDADDR:
3178 	case SIOCGIFDSTADDR:
3179 	case SIOCSIFDSTADDR:
3180 	case SIOCGIFNETMASK:
3181 	case SIOCSIFNETMASK:
3182 	case SIOCSIFPFLAGS:
3183 	case SIOCGIFPFLAGS:
3184 	case SIOCGIFTXQLEN:
3185 	case SIOCSIFTXQLEN:
3186 	case SIOCBRADDIF:
3187 	case SIOCBRDELIF:
3188 	case SIOCSIFNAME:
3189 	case SIOCGMIIPHY:
3190 	case SIOCGMIIREG:
3191 	case SIOCSMIIREG:
3192 	case SIOCSARP:
3193 	case SIOCGARP:
3194 	case SIOCDARP:
3195 	case SIOCATMARK:
3196 	case SIOCBONDENSLAVE:
3197 	case SIOCBONDRELEASE:
3198 	case SIOCBONDSETHWADDR:
3199 	case SIOCBONDCHANGEACTIVE:
3200 	case SIOCGIFNAME:
3201 		return sock_do_ioctl(net, sock, cmd, arg);
3202 	}
3203 
3204 	return -ENOIOCTLCMD;
3205 }
3206 
3207 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3208 			      unsigned long arg)
3209 {
3210 	struct socket *sock = file->private_data;
3211 	int ret = -ENOIOCTLCMD;
3212 	struct sock *sk;
3213 	struct net *net;
3214 
3215 	sk = sock->sk;
3216 	net = sock_net(sk);
3217 
3218 	if (sock->ops->compat_ioctl)
3219 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3220 
3221 	if (ret == -ENOIOCTLCMD &&
3222 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3223 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3224 
3225 	if (ret == -ENOIOCTLCMD)
3226 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3227 
3228 	return ret;
3229 }
3230 #endif
3231 
3232 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3233 {
3234 	return sock->ops->bind(sock, addr, addrlen);
3235 }
3236 EXPORT_SYMBOL(kernel_bind);
3237 
3238 int kernel_listen(struct socket *sock, int backlog)
3239 {
3240 	return sock->ops->listen(sock, backlog);
3241 }
3242 EXPORT_SYMBOL(kernel_listen);
3243 
3244 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3245 {
3246 	struct sock *sk = sock->sk;
3247 	int err;
3248 
3249 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3250 			       newsock);
3251 	if (err < 0)
3252 		goto done;
3253 
3254 	err = sock->ops->accept(sock, *newsock, flags, true);
3255 	if (err < 0) {
3256 		sock_release(*newsock);
3257 		*newsock = NULL;
3258 		goto done;
3259 	}
3260 
3261 	(*newsock)->ops = sock->ops;
3262 	__module_get((*newsock)->ops->owner);
3263 
3264 done:
3265 	return err;
3266 }
3267 EXPORT_SYMBOL(kernel_accept);
3268 
3269 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3270 		   int flags)
3271 {
3272 	return sock->ops->connect(sock, addr, addrlen, flags);
3273 }
3274 EXPORT_SYMBOL(kernel_connect);
3275 
3276 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3277 {
3278 	return sock->ops->getname(sock, addr, 0);
3279 }
3280 EXPORT_SYMBOL(kernel_getsockname);
3281 
3282 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3283 {
3284 	return sock->ops->getname(sock, addr, 1);
3285 }
3286 EXPORT_SYMBOL(kernel_getpeername);
3287 
3288 int kernel_getsockopt(struct socket *sock, int level, int optname,
3289 			char *optval, int *optlen)
3290 {
3291 	mm_segment_t oldfs = get_fs();
3292 	char __user *uoptval;
3293 	int __user *uoptlen;
3294 	int err;
3295 
3296 	uoptval = (char __user __force *) optval;
3297 	uoptlen = (int __user __force *) optlen;
3298 
3299 	set_fs(KERNEL_DS);
3300 	if (level == SOL_SOCKET)
3301 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3302 	else
3303 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3304 					    uoptlen);
3305 	set_fs(oldfs);
3306 	return err;
3307 }
3308 EXPORT_SYMBOL(kernel_getsockopt);
3309 
3310 int kernel_setsockopt(struct socket *sock, int level, int optname,
3311 			char *optval, unsigned int optlen)
3312 {
3313 	mm_segment_t oldfs = get_fs();
3314 	char __user *uoptval;
3315 	int err;
3316 
3317 	uoptval = (char __user __force *) optval;
3318 
3319 	set_fs(KERNEL_DS);
3320 	if (level == SOL_SOCKET)
3321 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3322 	else
3323 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3324 					    optlen);
3325 	set_fs(oldfs);
3326 	return err;
3327 }
3328 EXPORT_SYMBOL(kernel_setsockopt);
3329 
3330 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3331 		    size_t size, int flags)
3332 {
3333 	if (sock->ops->sendpage)
3334 		return sock->ops->sendpage(sock, page, offset, size, flags);
3335 
3336 	return sock_no_sendpage(sock, page, offset, size, flags);
3337 }
3338 EXPORT_SYMBOL(kernel_sendpage);
3339 
3340 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3341 			   size_t size, int flags)
3342 {
3343 	struct socket *sock = sk->sk_socket;
3344 
3345 	if (sock->ops->sendpage_locked)
3346 		return sock->ops->sendpage_locked(sk, page, offset, size,
3347 						  flags);
3348 
3349 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3350 }
3351 EXPORT_SYMBOL(kernel_sendpage_locked);
3352 
3353 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3354 {
3355 	return sock->ops->shutdown(sock, how);
3356 }
3357 EXPORT_SYMBOL(kernel_sock_shutdown);
3358 
3359 /* This routine returns the IP overhead imposed by a socket i.e.
3360  * the length of the underlying IP header, depending on whether
3361  * this is an IPv4 or IPv6 socket and the length from IP options turned
3362  * on at the socket. Assumes that the caller has a lock on the socket.
3363  */
3364 u32 kernel_sock_ip_overhead(struct sock *sk)
3365 {
3366 	struct inet_sock *inet;
3367 	struct ip_options_rcu *opt;
3368 	u32 overhead = 0;
3369 #if IS_ENABLED(CONFIG_IPV6)
3370 	struct ipv6_pinfo *np;
3371 	struct ipv6_txoptions *optv6 = NULL;
3372 #endif /* IS_ENABLED(CONFIG_IPV6) */
3373 
3374 	if (!sk)
3375 		return overhead;
3376 
3377 	switch (sk->sk_family) {
3378 	case AF_INET:
3379 		inet = inet_sk(sk);
3380 		overhead += sizeof(struct iphdr);
3381 		opt = rcu_dereference_protected(inet->inet_opt,
3382 						sock_owned_by_user(sk));
3383 		if (opt)
3384 			overhead += opt->opt.optlen;
3385 		return overhead;
3386 #if IS_ENABLED(CONFIG_IPV6)
3387 	case AF_INET6:
3388 		np = inet6_sk(sk);
3389 		overhead += sizeof(struct ipv6hdr);
3390 		if (np)
3391 			optv6 = rcu_dereference_protected(np->opt,
3392 							  sock_owned_by_user(sk));
3393 		if (optv6)
3394 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3395 		return overhead;
3396 #endif /* IS_ENABLED(CONFIG_IPV6) */
3397 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3398 		return overhead;
3399 	}
3400 }
3401 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3402