1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 92 #include <linux/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/termios.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 #include <linux/ptp_clock_kernel.h> 110 #include <trace/events/sock.h> 111 112 #ifdef CONFIG_NET_RX_BUSY_POLL 113 unsigned int sysctl_net_busy_read __read_mostly; 114 unsigned int sysctl_net_busy_poll __read_mostly; 115 #endif 116 117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static __poll_t sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 static void sock_splice_eof(struct file *file); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 const struct proto_ops *ops = READ_ONCE(sock->ops); 140 141 if (ops->show_fdinfo) 142 ops->show_fdinfo(m, sock); 143 } 144 #else 145 #define sock_show_fdinfo NULL 146 #endif 147 148 /* 149 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 150 * in the operation structures but are done directly via the socketcall() multiplexor. 151 */ 152 153 static const struct file_operations socket_file_ops = { 154 .owner = THIS_MODULE, 155 .llseek = no_llseek, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .mmap = sock_mmap, 164 .release = sock_close, 165 .fasync = sock_fasync, 166 .splice_write = splice_to_socket, 167 .splice_read = sock_splice_read, 168 .splice_eof = sock_splice_eof, 169 .show_fdinfo = sock_show_fdinfo, 170 }; 171 172 static const char * const pf_family_names[] = { 173 [PF_UNSPEC] = "PF_UNSPEC", 174 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 175 [PF_INET] = "PF_INET", 176 [PF_AX25] = "PF_AX25", 177 [PF_IPX] = "PF_IPX", 178 [PF_APPLETALK] = "PF_APPLETALK", 179 [PF_NETROM] = "PF_NETROM", 180 [PF_BRIDGE] = "PF_BRIDGE", 181 [PF_ATMPVC] = "PF_ATMPVC", 182 [PF_X25] = "PF_X25", 183 [PF_INET6] = "PF_INET6", 184 [PF_ROSE] = "PF_ROSE", 185 [PF_DECnet] = "PF_DECnet", 186 [PF_NETBEUI] = "PF_NETBEUI", 187 [PF_SECURITY] = "PF_SECURITY", 188 [PF_KEY] = "PF_KEY", 189 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 190 [PF_PACKET] = "PF_PACKET", 191 [PF_ASH] = "PF_ASH", 192 [PF_ECONET] = "PF_ECONET", 193 [PF_ATMSVC] = "PF_ATMSVC", 194 [PF_RDS] = "PF_RDS", 195 [PF_SNA] = "PF_SNA", 196 [PF_IRDA] = "PF_IRDA", 197 [PF_PPPOX] = "PF_PPPOX", 198 [PF_WANPIPE] = "PF_WANPIPE", 199 [PF_LLC] = "PF_LLC", 200 [PF_IB] = "PF_IB", 201 [PF_MPLS] = "PF_MPLS", 202 [PF_CAN] = "PF_CAN", 203 [PF_TIPC] = "PF_TIPC", 204 [PF_BLUETOOTH] = "PF_BLUETOOTH", 205 [PF_IUCV] = "PF_IUCV", 206 [PF_RXRPC] = "PF_RXRPC", 207 [PF_ISDN] = "PF_ISDN", 208 [PF_PHONET] = "PF_PHONET", 209 [PF_IEEE802154] = "PF_IEEE802154", 210 [PF_CAIF] = "PF_CAIF", 211 [PF_ALG] = "PF_ALG", 212 [PF_NFC] = "PF_NFC", 213 [PF_VSOCK] = "PF_VSOCK", 214 [PF_KCM] = "PF_KCM", 215 [PF_QIPCRTR] = "PF_QIPCRTR", 216 [PF_SMC] = "PF_SMC", 217 [PF_XDP] = "PF_XDP", 218 [PF_MCTP] = "PF_MCTP", 219 }; 220 221 /* 222 * The protocol list. Each protocol is registered in here. 223 */ 224 225 static DEFINE_SPINLOCK(net_family_lock); 226 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 227 228 /* 229 * Support routines. 230 * Move socket addresses back and forth across the kernel/user 231 * divide and look after the messy bits. 232 */ 233 234 /** 235 * move_addr_to_kernel - copy a socket address into kernel space 236 * @uaddr: Address in user space 237 * @kaddr: Address in kernel space 238 * @ulen: Length in user space 239 * 240 * The address is copied into kernel space. If the provided address is 241 * too long an error code of -EINVAL is returned. If the copy gives 242 * invalid addresses -EFAULT is returned. On a success 0 is returned. 243 */ 244 245 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 246 { 247 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 248 return -EINVAL; 249 if (ulen == 0) 250 return 0; 251 if (copy_from_user(kaddr, uaddr, ulen)) 252 return -EFAULT; 253 return audit_sockaddr(ulen, kaddr); 254 } 255 256 /** 257 * move_addr_to_user - copy an address to user space 258 * @kaddr: kernel space address 259 * @klen: length of address in kernel 260 * @uaddr: user space address 261 * @ulen: pointer to user length field 262 * 263 * The value pointed to by ulen on entry is the buffer length available. 264 * This is overwritten with the buffer space used. -EINVAL is returned 265 * if an overlong buffer is specified or a negative buffer size. -EFAULT 266 * is returned if either the buffer or the length field are not 267 * accessible. 268 * After copying the data up to the limit the user specifies, the true 269 * length of the data is written over the length limit the user 270 * specified. Zero is returned for a success. 271 */ 272 273 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 274 void __user *uaddr, int __user *ulen) 275 { 276 int err; 277 int len; 278 279 BUG_ON(klen > sizeof(struct sockaddr_storage)); 280 err = get_user(len, ulen); 281 if (err) 282 return err; 283 if (len > klen) 284 len = klen; 285 if (len < 0) 286 return -EINVAL; 287 if (len) { 288 if (audit_sockaddr(klen, kaddr)) 289 return -ENOMEM; 290 if (copy_to_user(uaddr, kaddr, len)) 291 return -EFAULT; 292 } 293 /* 294 * "fromlen shall refer to the value before truncation.." 295 * 1003.1g 296 */ 297 return __put_user(klen, ulen); 298 } 299 300 static struct kmem_cache *sock_inode_cachep __ro_after_init; 301 302 static struct inode *sock_alloc_inode(struct super_block *sb) 303 { 304 struct socket_alloc *ei; 305 306 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 307 if (!ei) 308 return NULL; 309 init_waitqueue_head(&ei->socket.wq.wait); 310 ei->socket.wq.fasync_list = NULL; 311 ei->socket.wq.flags = 0; 312 313 ei->socket.state = SS_UNCONNECTED; 314 ei->socket.flags = 0; 315 ei->socket.ops = NULL; 316 ei->socket.sk = NULL; 317 ei->socket.file = NULL; 318 319 return &ei->vfs_inode; 320 } 321 322 static void sock_free_inode(struct inode *inode) 323 { 324 struct socket_alloc *ei; 325 326 ei = container_of(inode, struct socket_alloc, vfs_inode); 327 kmem_cache_free(sock_inode_cachep, ei); 328 } 329 330 static void init_once(void *foo) 331 { 332 struct socket_alloc *ei = (struct socket_alloc *)foo; 333 334 inode_init_once(&ei->vfs_inode); 335 } 336 337 static void init_inodecache(void) 338 { 339 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 340 sizeof(struct socket_alloc), 341 0, 342 (SLAB_HWCACHE_ALIGN | 343 SLAB_RECLAIM_ACCOUNT | 344 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 345 init_once); 346 BUG_ON(sock_inode_cachep == NULL); 347 } 348 349 static const struct super_operations sockfs_ops = { 350 .alloc_inode = sock_alloc_inode, 351 .free_inode = sock_free_inode, 352 .statfs = simple_statfs, 353 }; 354 355 /* 356 * sockfs_dname() is called from d_path(). 357 */ 358 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 359 { 360 return dynamic_dname(buffer, buflen, "socket:[%lu]", 361 d_inode(dentry)->i_ino); 362 } 363 364 static const struct dentry_operations sockfs_dentry_operations = { 365 .d_dname = sockfs_dname, 366 }; 367 368 static int sockfs_xattr_get(const struct xattr_handler *handler, 369 struct dentry *dentry, struct inode *inode, 370 const char *suffix, void *value, size_t size) 371 { 372 if (value) { 373 if (dentry->d_name.len + 1 > size) 374 return -ERANGE; 375 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 376 } 377 return dentry->d_name.len + 1; 378 } 379 380 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 381 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 382 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 383 384 static const struct xattr_handler sockfs_xattr_handler = { 385 .name = XATTR_NAME_SOCKPROTONAME, 386 .get = sockfs_xattr_get, 387 }; 388 389 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 390 struct mnt_idmap *idmap, 391 struct dentry *dentry, struct inode *inode, 392 const char *suffix, const void *value, 393 size_t size, int flags) 394 { 395 /* Handled by LSM. */ 396 return -EAGAIN; 397 } 398 399 static const struct xattr_handler sockfs_security_xattr_handler = { 400 .prefix = XATTR_SECURITY_PREFIX, 401 .set = sockfs_security_xattr_set, 402 }; 403 404 static const struct xattr_handler *sockfs_xattr_handlers[] = { 405 &sockfs_xattr_handler, 406 &sockfs_security_xattr_handler, 407 NULL 408 }; 409 410 static int sockfs_init_fs_context(struct fs_context *fc) 411 { 412 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 413 if (!ctx) 414 return -ENOMEM; 415 ctx->ops = &sockfs_ops; 416 ctx->dops = &sockfs_dentry_operations; 417 ctx->xattr = sockfs_xattr_handlers; 418 return 0; 419 } 420 421 static struct vfsmount *sock_mnt __read_mostly; 422 423 static struct file_system_type sock_fs_type = { 424 .name = "sockfs", 425 .init_fs_context = sockfs_init_fs_context, 426 .kill_sb = kill_anon_super, 427 }; 428 429 /* 430 * Obtains the first available file descriptor and sets it up for use. 431 * 432 * These functions create file structures and maps them to fd space 433 * of the current process. On success it returns file descriptor 434 * and file struct implicitly stored in sock->file. 435 * Note that another thread may close file descriptor before we return 436 * from this function. We use the fact that now we do not refer 437 * to socket after mapping. If one day we will need it, this 438 * function will increment ref. count on file by 1. 439 * 440 * In any case returned fd MAY BE not valid! 441 * This race condition is unavoidable 442 * with shared fd spaces, we cannot solve it inside kernel, 443 * but we take care of internal coherence yet. 444 */ 445 446 /** 447 * sock_alloc_file - Bind a &socket to a &file 448 * @sock: socket 449 * @flags: file status flags 450 * @dname: protocol name 451 * 452 * Returns the &file bound with @sock, implicitly storing it 453 * in sock->file. If dname is %NULL, sets to "". 454 * 455 * On failure @sock is released, and an ERR pointer is returned. 456 * 457 * This function uses GFP_KERNEL internally. 458 */ 459 460 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 461 { 462 struct file *file; 463 464 if (!dname) 465 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 466 467 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 468 O_RDWR | (flags & O_NONBLOCK), 469 &socket_file_ops); 470 if (IS_ERR(file)) { 471 sock_release(sock); 472 return file; 473 } 474 475 file->f_mode |= FMODE_NOWAIT; 476 sock->file = file; 477 file->private_data = sock; 478 stream_open(SOCK_INODE(sock), file); 479 return file; 480 } 481 EXPORT_SYMBOL(sock_alloc_file); 482 483 static int sock_map_fd(struct socket *sock, int flags) 484 { 485 struct file *newfile; 486 int fd = get_unused_fd_flags(flags); 487 if (unlikely(fd < 0)) { 488 sock_release(sock); 489 return fd; 490 } 491 492 newfile = sock_alloc_file(sock, flags, NULL); 493 if (!IS_ERR(newfile)) { 494 fd_install(fd, newfile); 495 return fd; 496 } 497 498 put_unused_fd(fd); 499 return PTR_ERR(newfile); 500 } 501 502 /** 503 * sock_from_file - Return the &socket bounded to @file. 504 * @file: file 505 * 506 * On failure returns %NULL. 507 */ 508 509 struct socket *sock_from_file(struct file *file) 510 { 511 if (file->f_op == &socket_file_ops) 512 return file->private_data; /* set in sock_alloc_file */ 513 514 return NULL; 515 } 516 EXPORT_SYMBOL(sock_from_file); 517 518 /** 519 * sockfd_lookup - Go from a file number to its socket slot 520 * @fd: file handle 521 * @err: pointer to an error code return 522 * 523 * The file handle passed in is locked and the socket it is bound 524 * to is returned. If an error occurs the err pointer is overwritten 525 * with a negative errno code and NULL is returned. The function checks 526 * for both invalid handles and passing a handle which is not a socket. 527 * 528 * On a success the socket object pointer is returned. 529 */ 530 531 struct socket *sockfd_lookup(int fd, int *err) 532 { 533 struct file *file; 534 struct socket *sock; 535 536 file = fget(fd); 537 if (!file) { 538 *err = -EBADF; 539 return NULL; 540 } 541 542 sock = sock_from_file(file); 543 if (!sock) { 544 *err = -ENOTSOCK; 545 fput(file); 546 } 547 return sock; 548 } 549 EXPORT_SYMBOL(sockfd_lookup); 550 551 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 552 { 553 struct fd f = fdget(fd); 554 struct socket *sock; 555 556 *err = -EBADF; 557 if (f.file) { 558 sock = sock_from_file(f.file); 559 if (likely(sock)) { 560 *fput_needed = f.flags & FDPUT_FPUT; 561 return sock; 562 } 563 *err = -ENOTSOCK; 564 fdput(f); 565 } 566 return NULL; 567 } 568 569 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 570 size_t size) 571 { 572 ssize_t len; 573 ssize_t used = 0; 574 575 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 576 if (len < 0) 577 return len; 578 used += len; 579 if (buffer) { 580 if (size < used) 581 return -ERANGE; 582 buffer += len; 583 } 584 585 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 586 used += len; 587 if (buffer) { 588 if (size < used) 589 return -ERANGE; 590 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 591 buffer += len; 592 } 593 594 return used; 595 } 596 597 static int sockfs_setattr(struct mnt_idmap *idmap, 598 struct dentry *dentry, struct iattr *iattr) 599 { 600 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 601 602 if (!err && (iattr->ia_valid & ATTR_UID)) { 603 struct socket *sock = SOCKET_I(d_inode(dentry)); 604 605 if (sock->sk) 606 sock->sk->sk_uid = iattr->ia_uid; 607 else 608 err = -ENOENT; 609 } 610 611 return err; 612 } 613 614 static const struct inode_operations sockfs_inode_ops = { 615 .listxattr = sockfs_listxattr, 616 .setattr = sockfs_setattr, 617 }; 618 619 /** 620 * sock_alloc - allocate a socket 621 * 622 * Allocate a new inode and socket object. The two are bound together 623 * and initialised. The socket is then returned. If we are out of inodes 624 * NULL is returned. This functions uses GFP_KERNEL internally. 625 */ 626 627 struct socket *sock_alloc(void) 628 { 629 struct inode *inode; 630 struct socket *sock; 631 632 inode = new_inode_pseudo(sock_mnt->mnt_sb); 633 if (!inode) 634 return NULL; 635 636 sock = SOCKET_I(inode); 637 638 inode->i_ino = get_next_ino(); 639 inode->i_mode = S_IFSOCK | S_IRWXUGO; 640 inode->i_uid = current_fsuid(); 641 inode->i_gid = current_fsgid(); 642 inode->i_op = &sockfs_inode_ops; 643 644 return sock; 645 } 646 EXPORT_SYMBOL(sock_alloc); 647 648 static void __sock_release(struct socket *sock, struct inode *inode) 649 { 650 const struct proto_ops *ops = READ_ONCE(sock->ops); 651 652 if (ops) { 653 struct module *owner = ops->owner; 654 655 if (inode) 656 inode_lock(inode); 657 ops->release(sock); 658 sock->sk = NULL; 659 if (inode) 660 inode_unlock(inode); 661 sock->ops = NULL; 662 module_put(owner); 663 } 664 665 if (sock->wq.fasync_list) 666 pr_err("%s: fasync list not empty!\n", __func__); 667 668 if (!sock->file) { 669 iput(SOCK_INODE(sock)); 670 return; 671 } 672 sock->file = NULL; 673 } 674 675 /** 676 * sock_release - close a socket 677 * @sock: socket to close 678 * 679 * The socket is released from the protocol stack if it has a release 680 * callback, and the inode is then released if the socket is bound to 681 * an inode not a file. 682 */ 683 void sock_release(struct socket *sock) 684 { 685 __sock_release(sock, NULL); 686 } 687 EXPORT_SYMBOL(sock_release); 688 689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 690 { 691 u8 flags = *tx_flags; 692 693 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 694 flags |= SKBTX_HW_TSTAMP; 695 696 /* PTP hardware clocks can provide a free running cycle counter 697 * as a time base for virtual clocks. Tell driver to use the 698 * free running cycle counter for timestamp if socket is bound 699 * to virtual clock. 700 */ 701 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 702 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 703 } 704 705 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 706 flags |= SKBTX_SW_TSTAMP; 707 708 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 709 flags |= SKBTX_SCHED_TSTAMP; 710 711 *tx_flags = flags; 712 } 713 EXPORT_SYMBOL(__sock_tx_timestamp); 714 715 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 716 size_t)); 717 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 720 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 721 int flags) 722 { 723 trace_sock_send_length(sk, ret, 0); 724 } 725 726 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 727 { 728 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 729 inet_sendmsg, sock, msg, 730 msg_data_left(msg)); 731 BUG_ON(ret == -EIOCBQUEUED); 732 733 if (trace_sock_send_length_enabled()) 734 call_trace_sock_send_length(sock->sk, ret, 0); 735 return ret; 736 } 737 738 /** 739 * sock_sendmsg - send a message through @sock 740 * @sock: socket 741 * @msg: message to send 742 * 743 * Sends @msg through @sock, passing through LSM. 744 * Returns the number of bytes sent, or an error code. 745 */ 746 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 747 { 748 int err = security_socket_sendmsg(sock, msg, 749 msg_data_left(msg)); 750 751 return err ?: sock_sendmsg_nosec(sock, msg); 752 } 753 EXPORT_SYMBOL(sock_sendmsg); 754 755 /** 756 * kernel_sendmsg - send a message through @sock (kernel-space) 757 * @sock: socket 758 * @msg: message header 759 * @vec: kernel vec 760 * @num: vec array length 761 * @size: total message data size 762 * 763 * Builds the message data with @vec and sends it through @sock. 764 * Returns the number of bytes sent, or an error code. 765 */ 766 767 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 768 struct kvec *vec, size_t num, size_t size) 769 { 770 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 771 return sock_sendmsg(sock, msg); 772 } 773 EXPORT_SYMBOL(kernel_sendmsg); 774 775 /** 776 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 777 * @sk: sock 778 * @msg: message header 779 * @vec: output s/g array 780 * @num: output s/g array length 781 * @size: total message data size 782 * 783 * Builds the message data with @vec and sends it through @sock. 784 * Returns the number of bytes sent, or an error code. 785 * Caller must hold @sk. 786 */ 787 788 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 789 struct kvec *vec, size_t num, size_t size) 790 { 791 struct socket *sock = sk->sk_socket; 792 const struct proto_ops *ops = READ_ONCE(sock->ops); 793 794 if (!ops->sendmsg_locked) 795 return sock_no_sendmsg_locked(sk, msg, size); 796 797 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 798 799 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 800 } 801 EXPORT_SYMBOL(kernel_sendmsg_locked); 802 803 static bool skb_is_err_queue(const struct sk_buff *skb) 804 { 805 /* pkt_type of skbs enqueued on the error queue are set to 806 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 807 * in recvmsg, since skbs received on a local socket will never 808 * have a pkt_type of PACKET_OUTGOING. 809 */ 810 return skb->pkt_type == PACKET_OUTGOING; 811 } 812 813 /* On transmit, software and hardware timestamps are returned independently. 814 * As the two skb clones share the hardware timestamp, which may be updated 815 * before the software timestamp is received, a hardware TX timestamp may be 816 * returned only if there is no software TX timestamp. Ignore false software 817 * timestamps, which may be made in the __sock_recv_timestamp() call when the 818 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 819 * hardware timestamp. 820 */ 821 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 822 { 823 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 824 } 825 826 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 827 { 828 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 829 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 830 struct net_device *orig_dev; 831 ktime_t hwtstamp; 832 833 rcu_read_lock(); 834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 835 if (orig_dev) { 836 *if_index = orig_dev->ifindex; 837 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 838 } else { 839 hwtstamp = shhwtstamps->hwtstamp; 840 } 841 rcu_read_unlock(); 842 843 return hwtstamp; 844 } 845 846 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 847 int if_index) 848 { 849 struct scm_ts_pktinfo ts_pktinfo; 850 struct net_device *orig_dev; 851 852 if (!skb_mac_header_was_set(skb)) 853 return; 854 855 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 856 857 if (!if_index) { 858 rcu_read_lock(); 859 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 860 if (orig_dev) 861 if_index = orig_dev->ifindex; 862 rcu_read_unlock(); 863 } 864 ts_pktinfo.if_index = if_index; 865 866 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 867 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 868 sizeof(ts_pktinfo), &ts_pktinfo); 869 } 870 871 /* 872 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 873 */ 874 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 875 struct sk_buff *skb) 876 { 877 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 878 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 879 struct scm_timestamping_internal tss; 880 881 int empty = 1, false_tstamp = 0; 882 struct skb_shared_hwtstamps *shhwtstamps = 883 skb_hwtstamps(skb); 884 int if_index; 885 ktime_t hwtstamp; 886 887 /* Race occurred between timestamp enabling and packet 888 receiving. Fill in the current time for now. */ 889 if (need_software_tstamp && skb->tstamp == 0) { 890 __net_timestamp(skb); 891 false_tstamp = 1; 892 } 893 894 if (need_software_tstamp) { 895 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 896 if (new_tstamp) { 897 struct __kernel_sock_timeval tv; 898 899 skb_get_new_timestamp(skb, &tv); 900 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 901 sizeof(tv), &tv); 902 } else { 903 struct __kernel_old_timeval tv; 904 905 skb_get_timestamp(skb, &tv); 906 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 907 sizeof(tv), &tv); 908 } 909 } else { 910 if (new_tstamp) { 911 struct __kernel_timespec ts; 912 913 skb_get_new_timestampns(skb, &ts); 914 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 915 sizeof(ts), &ts); 916 } else { 917 struct __kernel_old_timespec ts; 918 919 skb_get_timestampns(skb, &ts); 920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 921 sizeof(ts), &ts); 922 } 923 } 924 } 925 926 memset(&tss, 0, sizeof(tss)); 927 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 928 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 929 empty = 0; 930 if (shhwtstamps && 931 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 932 !skb_is_swtx_tstamp(skb, false_tstamp)) { 933 if_index = 0; 934 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 935 hwtstamp = get_timestamp(sk, skb, &if_index); 936 else 937 hwtstamp = shhwtstamps->hwtstamp; 938 939 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 940 hwtstamp = ptp_convert_timestamp(&hwtstamp, 941 sk->sk_bind_phc); 942 943 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 944 empty = 0; 945 946 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 947 !skb_is_err_queue(skb)) 948 put_ts_pktinfo(msg, skb, if_index); 949 } 950 } 951 if (!empty) { 952 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 953 put_cmsg_scm_timestamping64(msg, &tss); 954 else 955 put_cmsg_scm_timestamping(msg, &tss); 956 957 if (skb_is_err_queue(skb) && skb->len && 958 SKB_EXT_ERR(skb)->opt_stats) 959 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 960 skb->len, skb->data); 961 } 962 } 963 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 964 965 #ifdef CONFIG_WIRELESS 966 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 967 struct sk_buff *skb) 968 { 969 int ack; 970 971 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 972 return; 973 if (!skb->wifi_acked_valid) 974 return; 975 976 ack = skb->wifi_acked; 977 978 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 979 } 980 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 981 #endif 982 983 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 984 struct sk_buff *skb) 985 { 986 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 987 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 988 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 989 } 990 991 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 992 struct sk_buff *skb) 993 { 994 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 995 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 996 __u32 mark = skb->mark; 997 998 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 999 } 1000 } 1001 1002 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1003 struct sk_buff *skb) 1004 { 1005 sock_recv_timestamp(msg, sk, skb); 1006 sock_recv_drops(msg, sk, skb); 1007 sock_recv_mark(msg, sk, skb); 1008 } 1009 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1010 1011 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1012 size_t, int)); 1013 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1014 size_t, int)); 1015 1016 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1017 { 1018 trace_sock_recv_length(sk, ret, flags); 1019 } 1020 1021 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1022 int flags) 1023 { 1024 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1025 inet6_recvmsg, 1026 inet_recvmsg, sock, msg, 1027 msg_data_left(msg), flags); 1028 if (trace_sock_recv_length_enabled()) 1029 call_trace_sock_recv_length(sock->sk, ret, flags); 1030 return ret; 1031 } 1032 1033 /** 1034 * sock_recvmsg - receive a message from @sock 1035 * @sock: socket 1036 * @msg: message to receive 1037 * @flags: message flags 1038 * 1039 * Receives @msg from @sock, passing through LSM. Returns the total number 1040 * of bytes received, or an error. 1041 */ 1042 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1043 { 1044 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1045 1046 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1047 } 1048 EXPORT_SYMBOL(sock_recvmsg); 1049 1050 /** 1051 * kernel_recvmsg - Receive a message from a socket (kernel space) 1052 * @sock: The socket to receive the message from 1053 * @msg: Received message 1054 * @vec: Input s/g array for message data 1055 * @num: Size of input s/g array 1056 * @size: Number of bytes to read 1057 * @flags: Message flags (MSG_DONTWAIT, etc...) 1058 * 1059 * On return the msg structure contains the scatter/gather array passed in the 1060 * vec argument. The array is modified so that it consists of the unfilled 1061 * portion of the original array. 1062 * 1063 * The returned value is the total number of bytes received, or an error. 1064 */ 1065 1066 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1067 struct kvec *vec, size_t num, size_t size, int flags) 1068 { 1069 msg->msg_control_is_user = false; 1070 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1071 return sock_recvmsg(sock, msg, flags); 1072 } 1073 EXPORT_SYMBOL(kernel_recvmsg); 1074 1075 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1076 struct pipe_inode_info *pipe, size_t len, 1077 unsigned int flags) 1078 { 1079 struct socket *sock = file->private_data; 1080 const struct proto_ops *ops; 1081 1082 ops = READ_ONCE(sock->ops); 1083 if (unlikely(!ops->splice_read)) 1084 return copy_splice_read(file, ppos, pipe, len, flags); 1085 1086 return ops->splice_read(sock, ppos, pipe, len, flags); 1087 } 1088 1089 static void sock_splice_eof(struct file *file) 1090 { 1091 struct socket *sock = file->private_data; 1092 const struct proto_ops *ops; 1093 1094 ops = READ_ONCE(sock->ops); 1095 if (ops->splice_eof) 1096 ops->splice_eof(sock); 1097 } 1098 1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1100 { 1101 struct file *file = iocb->ki_filp; 1102 struct socket *sock = file->private_data; 1103 struct msghdr msg = {.msg_iter = *to, 1104 .msg_iocb = iocb}; 1105 ssize_t res; 1106 1107 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1108 msg.msg_flags = MSG_DONTWAIT; 1109 1110 if (iocb->ki_pos != 0) 1111 return -ESPIPE; 1112 1113 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1114 return 0; 1115 1116 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1117 *to = msg.msg_iter; 1118 return res; 1119 } 1120 1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1122 { 1123 struct file *file = iocb->ki_filp; 1124 struct socket *sock = file->private_data; 1125 struct msghdr msg = {.msg_iter = *from, 1126 .msg_iocb = iocb}; 1127 ssize_t res; 1128 1129 if (iocb->ki_pos != 0) 1130 return -ESPIPE; 1131 1132 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1133 msg.msg_flags = MSG_DONTWAIT; 1134 1135 if (sock->type == SOCK_SEQPACKET) 1136 msg.msg_flags |= MSG_EOR; 1137 1138 res = sock_sendmsg(sock, &msg); 1139 *from = msg.msg_iter; 1140 return res; 1141 } 1142 1143 /* 1144 * Atomic setting of ioctl hooks to avoid race 1145 * with module unload. 1146 */ 1147 1148 static DEFINE_MUTEX(br_ioctl_mutex); 1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1150 unsigned int cmd, struct ifreq *ifr, 1151 void __user *uarg); 1152 1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1154 unsigned int cmd, struct ifreq *ifr, 1155 void __user *uarg)) 1156 { 1157 mutex_lock(&br_ioctl_mutex); 1158 br_ioctl_hook = hook; 1159 mutex_unlock(&br_ioctl_mutex); 1160 } 1161 EXPORT_SYMBOL(brioctl_set); 1162 1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1164 struct ifreq *ifr, void __user *uarg) 1165 { 1166 int err = -ENOPKG; 1167 1168 if (!br_ioctl_hook) 1169 request_module("bridge"); 1170 1171 mutex_lock(&br_ioctl_mutex); 1172 if (br_ioctl_hook) 1173 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1174 mutex_unlock(&br_ioctl_mutex); 1175 1176 return err; 1177 } 1178 1179 static DEFINE_MUTEX(vlan_ioctl_mutex); 1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1181 1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1183 { 1184 mutex_lock(&vlan_ioctl_mutex); 1185 vlan_ioctl_hook = hook; 1186 mutex_unlock(&vlan_ioctl_mutex); 1187 } 1188 EXPORT_SYMBOL(vlan_ioctl_set); 1189 1190 static long sock_do_ioctl(struct net *net, struct socket *sock, 1191 unsigned int cmd, unsigned long arg) 1192 { 1193 const struct proto_ops *ops = READ_ONCE(sock->ops); 1194 struct ifreq ifr; 1195 bool need_copyout; 1196 int err; 1197 void __user *argp = (void __user *)arg; 1198 void __user *data; 1199 1200 err = ops->ioctl(sock, cmd, arg); 1201 1202 /* 1203 * If this ioctl is unknown try to hand it down 1204 * to the NIC driver. 1205 */ 1206 if (err != -ENOIOCTLCMD) 1207 return err; 1208 1209 if (!is_socket_ioctl_cmd(cmd)) 1210 return -ENOTTY; 1211 1212 if (get_user_ifreq(&ifr, &data, argp)) 1213 return -EFAULT; 1214 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1215 if (!err && need_copyout) 1216 if (put_user_ifreq(&ifr, argp)) 1217 return -EFAULT; 1218 1219 return err; 1220 } 1221 1222 /* 1223 * With an ioctl, arg may well be a user mode pointer, but we don't know 1224 * what to do with it - that's up to the protocol still. 1225 */ 1226 1227 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1228 { 1229 const struct proto_ops *ops; 1230 struct socket *sock; 1231 struct sock *sk; 1232 void __user *argp = (void __user *)arg; 1233 int pid, err; 1234 struct net *net; 1235 1236 sock = file->private_data; 1237 ops = READ_ONCE(sock->ops); 1238 sk = sock->sk; 1239 net = sock_net(sk); 1240 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1241 struct ifreq ifr; 1242 void __user *data; 1243 bool need_copyout; 1244 if (get_user_ifreq(&ifr, &data, argp)) 1245 return -EFAULT; 1246 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1247 if (!err && need_copyout) 1248 if (put_user_ifreq(&ifr, argp)) 1249 return -EFAULT; 1250 } else 1251 #ifdef CONFIG_WEXT_CORE 1252 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1253 err = wext_handle_ioctl(net, cmd, argp); 1254 } else 1255 #endif 1256 switch (cmd) { 1257 case FIOSETOWN: 1258 case SIOCSPGRP: 1259 err = -EFAULT; 1260 if (get_user(pid, (int __user *)argp)) 1261 break; 1262 err = f_setown(sock->file, pid, 1); 1263 break; 1264 case FIOGETOWN: 1265 case SIOCGPGRP: 1266 err = put_user(f_getown(sock->file), 1267 (int __user *)argp); 1268 break; 1269 case SIOCGIFBR: 1270 case SIOCSIFBR: 1271 case SIOCBRADDBR: 1272 case SIOCBRDELBR: 1273 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1274 break; 1275 case SIOCGIFVLAN: 1276 case SIOCSIFVLAN: 1277 err = -ENOPKG; 1278 if (!vlan_ioctl_hook) 1279 request_module("8021q"); 1280 1281 mutex_lock(&vlan_ioctl_mutex); 1282 if (vlan_ioctl_hook) 1283 err = vlan_ioctl_hook(net, argp); 1284 mutex_unlock(&vlan_ioctl_mutex); 1285 break; 1286 case SIOCGSKNS: 1287 err = -EPERM; 1288 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1289 break; 1290 1291 err = open_related_ns(&net->ns, get_net_ns); 1292 break; 1293 case SIOCGSTAMP_OLD: 1294 case SIOCGSTAMPNS_OLD: 1295 if (!ops->gettstamp) { 1296 err = -ENOIOCTLCMD; 1297 break; 1298 } 1299 err = ops->gettstamp(sock, argp, 1300 cmd == SIOCGSTAMP_OLD, 1301 !IS_ENABLED(CONFIG_64BIT)); 1302 break; 1303 case SIOCGSTAMP_NEW: 1304 case SIOCGSTAMPNS_NEW: 1305 if (!ops->gettstamp) { 1306 err = -ENOIOCTLCMD; 1307 break; 1308 } 1309 err = ops->gettstamp(sock, argp, 1310 cmd == SIOCGSTAMP_NEW, 1311 false); 1312 break; 1313 1314 case SIOCGIFCONF: 1315 err = dev_ifconf(net, argp); 1316 break; 1317 1318 default: 1319 err = sock_do_ioctl(net, sock, cmd, arg); 1320 break; 1321 } 1322 return err; 1323 } 1324 1325 /** 1326 * sock_create_lite - creates a socket 1327 * @family: protocol family (AF_INET, ...) 1328 * @type: communication type (SOCK_STREAM, ...) 1329 * @protocol: protocol (0, ...) 1330 * @res: new socket 1331 * 1332 * Creates a new socket and assigns it to @res, passing through LSM. 1333 * The new socket initialization is not complete, see kernel_accept(). 1334 * Returns 0 or an error. On failure @res is set to %NULL. 1335 * This function internally uses GFP_KERNEL. 1336 */ 1337 1338 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1339 { 1340 int err; 1341 struct socket *sock = NULL; 1342 1343 err = security_socket_create(family, type, protocol, 1); 1344 if (err) 1345 goto out; 1346 1347 sock = sock_alloc(); 1348 if (!sock) { 1349 err = -ENOMEM; 1350 goto out; 1351 } 1352 1353 sock->type = type; 1354 err = security_socket_post_create(sock, family, type, protocol, 1); 1355 if (err) 1356 goto out_release; 1357 1358 out: 1359 *res = sock; 1360 return err; 1361 out_release: 1362 sock_release(sock); 1363 sock = NULL; 1364 goto out; 1365 } 1366 EXPORT_SYMBOL(sock_create_lite); 1367 1368 /* No kernel lock held - perfect */ 1369 static __poll_t sock_poll(struct file *file, poll_table *wait) 1370 { 1371 struct socket *sock = file->private_data; 1372 const struct proto_ops *ops = READ_ONCE(sock->ops); 1373 __poll_t events = poll_requested_events(wait), flag = 0; 1374 1375 if (!ops->poll) 1376 return 0; 1377 1378 if (sk_can_busy_loop(sock->sk)) { 1379 /* poll once if requested by the syscall */ 1380 if (events & POLL_BUSY_LOOP) 1381 sk_busy_loop(sock->sk, 1); 1382 1383 /* if this socket can poll_ll, tell the system call */ 1384 flag = POLL_BUSY_LOOP; 1385 } 1386 1387 return ops->poll(file, sock, wait) | flag; 1388 } 1389 1390 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1391 { 1392 struct socket *sock = file->private_data; 1393 1394 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1395 } 1396 1397 static int sock_close(struct inode *inode, struct file *filp) 1398 { 1399 __sock_release(SOCKET_I(inode), inode); 1400 return 0; 1401 } 1402 1403 /* 1404 * Update the socket async list 1405 * 1406 * Fasync_list locking strategy. 1407 * 1408 * 1. fasync_list is modified only under process context socket lock 1409 * i.e. under semaphore. 1410 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1411 * or under socket lock 1412 */ 1413 1414 static int sock_fasync(int fd, struct file *filp, int on) 1415 { 1416 struct socket *sock = filp->private_data; 1417 struct sock *sk = sock->sk; 1418 struct socket_wq *wq = &sock->wq; 1419 1420 if (sk == NULL) 1421 return -EINVAL; 1422 1423 lock_sock(sk); 1424 fasync_helper(fd, filp, on, &wq->fasync_list); 1425 1426 if (!wq->fasync_list) 1427 sock_reset_flag(sk, SOCK_FASYNC); 1428 else 1429 sock_set_flag(sk, SOCK_FASYNC); 1430 1431 release_sock(sk); 1432 return 0; 1433 } 1434 1435 /* This function may be called only under rcu_lock */ 1436 1437 int sock_wake_async(struct socket_wq *wq, int how, int band) 1438 { 1439 if (!wq || !wq->fasync_list) 1440 return -1; 1441 1442 switch (how) { 1443 case SOCK_WAKE_WAITD: 1444 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1445 break; 1446 goto call_kill; 1447 case SOCK_WAKE_SPACE: 1448 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1449 break; 1450 fallthrough; 1451 case SOCK_WAKE_IO: 1452 call_kill: 1453 kill_fasync(&wq->fasync_list, SIGIO, band); 1454 break; 1455 case SOCK_WAKE_URG: 1456 kill_fasync(&wq->fasync_list, SIGURG, band); 1457 } 1458 1459 return 0; 1460 } 1461 EXPORT_SYMBOL(sock_wake_async); 1462 1463 /** 1464 * __sock_create - creates a socket 1465 * @net: net namespace 1466 * @family: protocol family (AF_INET, ...) 1467 * @type: communication type (SOCK_STREAM, ...) 1468 * @protocol: protocol (0, ...) 1469 * @res: new socket 1470 * @kern: boolean for kernel space sockets 1471 * 1472 * Creates a new socket and assigns it to @res, passing through LSM. 1473 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1474 * be set to true if the socket resides in kernel space. 1475 * This function internally uses GFP_KERNEL. 1476 */ 1477 1478 int __sock_create(struct net *net, int family, int type, int protocol, 1479 struct socket **res, int kern) 1480 { 1481 int err; 1482 struct socket *sock; 1483 const struct net_proto_family *pf; 1484 1485 /* 1486 * Check protocol is in range 1487 */ 1488 if (family < 0 || family >= NPROTO) 1489 return -EAFNOSUPPORT; 1490 if (type < 0 || type >= SOCK_MAX) 1491 return -EINVAL; 1492 1493 /* Compatibility. 1494 1495 This uglymoron is moved from INET layer to here to avoid 1496 deadlock in module load. 1497 */ 1498 if (family == PF_INET && type == SOCK_PACKET) { 1499 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1500 current->comm); 1501 family = PF_PACKET; 1502 } 1503 1504 err = security_socket_create(family, type, protocol, kern); 1505 if (err) 1506 return err; 1507 1508 /* 1509 * Allocate the socket and allow the family to set things up. if 1510 * the protocol is 0, the family is instructed to select an appropriate 1511 * default. 1512 */ 1513 sock = sock_alloc(); 1514 if (!sock) { 1515 net_warn_ratelimited("socket: no more sockets\n"); 1516 return -ENFILE; /* Not exactly a match, but its the 1517 closest posix thing */ 1518 } 1519 1520 sock->type = type; 1521 1522 #ifdef CONFIG_MODULES 1523 /* Attempt to load a protocol module if the find failed. 1524 * 1525 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1526 * requested real, full-featured networking support upon configuration. 1527 * Otherwise module support will break! 1528 */ 1529 if (rcu_access_pointer(net_families[family]) == NULL) 1530 request_module("net-pf-%d", family); 1531 #endif 1532 1533 rcu_read_lock(); 1534 pf = rcu_dereference(net_families[family]); 1535 err = -EAFNOSUPPORT; 1536 if (!pf) 1537 goto out_release; 1538 1539 /* 1540 * We will call the ->create function, that possibly is in a loadable 1541 * module, so we have to bump that loadable module refcnt first. 1542 */ 1543 if (!try_module_get(pf->owner)) 1544 goto out_release; 1545 1546 /* Now protected by module ref count */ 1547 rcu_read_unlock(); 1548 1549 err = pf->create(net, sock, protocol, kern); 1550 if (err < 0) 1551 goto out_module_put; 1552 1553 /* 1554 * Now to bump the refcnt of the [loadable] module that owns this 1555 * socket at sock_release time we decrement its refcnt. 1556 */ 1557 if (!try_module_get(sock->ops->owner)) 1558 goto out_module_busy; 1559 1560 /* 1561 * Now that we're done with the ->create function, the [loadable] 1562 * module can have its refcnt decremented 1563 */ 1564 module_put(pf->owner); 1565 err = security_socket_post_create(sock, family, type, protocol, kern); 1566 if (err) 1567 goto out_sock_release; 1568 *res = sock; 1569 1570 return 0; 1571 1572 out_module_busy: 1573 err = -EAFNOSUPPORT; 1574 out_module_put: 1575 sock->ops = NULL; 1576 module_put(pf->owner); 1577 out_sock_release: 1578 sock_release(sock); 1579 return err; 1580 1581 out_release: 1582 rcu_read_unlock(); 1583 goto out_sock_release; 1584 } 1585 EXPORT_SYMBOL(__sock_create); 1586 1587 /** 1588 * sock_create - creates a socket 1589 * @family: protocol family (AF_INET, ...) 1590 * @type: communication type (SOCK_STREAM, ...) 1591 * @protocol: protocol (0, ...) 1592 * @res: new socket 1593 * 1594 * A wrapper around __sock_create(). 1595 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1596 */ 1597 1598 int sock_create(int family, int type, int protocol, struct socket **res) 1599 { 1600 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1601 } 1602 EXPORT_SYMBOL(sock_create); 1603 1604 /** 1605 * sock_create_kern - creates a socket (kernel space) 1606 * @net: net namespace 1607 * @family: protocol family (AF_INET, ...) 1608 * @type: communication type (SOCK_STREAM, ...) 1609 * @protocol: protocol (0, ...) 1610 * @res: new socket 1611 * 1612 * A wrapper around __sock_create(). 1613 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1614 */ 1615 1616 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1617 { 1618 return __sock_create(net, family, type, protocol, res, 1); 1619 } 1620 EXPORT_SYMBOL(sock_create_kern); 1621 1622 static struct socket *__sys_socket_create(int family, int type, int protocol) 1623 { 1624 struct socket *sock; 1625 int retval; 1626 1627 /* Check the SOCK_* constants for consistency. */ 1628 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1629 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1630 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1631 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1632 1633 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1634 return ERR_PTR(-EINVAL); 1635 type &= SOCK_TYPE_MASK; 1636 1637 retval = sock_create(family, type, protocol, &sock); 1638 if (retval < 0) 1639 return ERR_PTR(retval); 1640 1641 return sock; 1642 } 1643 1644 struct file *__sys_socket_file(int family, int type, int protocol) 1645 { 1646 struct socket *sock; 1647 int flags; 1648 1649 sock = __sys_socket_create(family, type, protocol); 1650 if (IS_ERR(sock)) 1651 return ERR_CAST(sock); 1652 1653 flags = type & ~SOCK_TYPE_MASK; 1654 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1655 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1656 1657 return sock_alloc_file(sock, flags, NULL); 1658 } 1659 1660 /* A hook for bpf progs to attach to and update socket protocol. 1661 * 1662 * A static noinline declaration here could cause the compiler to 1663 * optimize away the function. A global noinline declaration will 1664 * keep the definition, but may optimize away the callsite. 1665 * Therefore, __weak is needed to ensure that the call is still 1666 * emitted, by telling the compiler that we don't know what the 1667 * function might eventually be. 1668 * 1669 * __diag_* below are needed to dismiss the missing prototype warning. 1670 */ 1671 1672 __diag_push(); 1673 __diag_ignore_all("-Wmissing-prototypes", 1674 "A fmod_ret entry point for BPF programs"); 1675 1676 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1677 { 1678 return protocol; 1679 } 1680 1681 __diag_pop(); 1682 1683 int __sys_socket(int family, int type, int protocol) 1684 { 1685 struct socket *sock; 1686 int flags; 1687 1688 sock = __sys_socket_create(family, type, 1689 update_socket_protocol(family, type, protocol)); 1690 if (IS_ERR(sock)) 1691 return PTR_ERR(sock); 1692 1693 flags = type & ~SOCK_TYPE_MASK; 1694 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1695 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1696 1697 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1698 } 1699 1700 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1701 { 1702 return __sys_socket(family, type, protocol); 1703 } 1704 1705 /* 1706 * Create a pair of connected sockets. 1707 */ 1708 1709 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1710 { 1711 struct socket *sock1, *sock2; 1712 int fd1, fd2, err; 1713 struct file *newfile1, *newfile2; 1714 int flags; 1715 1716 flags = type & ~SOCK_TYPE_MASK; 1717 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1718 return -EINVAL; 1719 type &= SOCK_TYPE_MASK; 1720 1721 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1722 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1723 1724 /* 1725 * reserve descriptors and make sure we won't fail 1726 * to return them to userland. 1727 */ 1728 fd1 = get_unused_fd_flags(flags); 1729 if (unlikely(fd1 < 0)) 1730 return fd1; 1731 1732 fd2 = get_unused_fd_flags(flags); 1733 if (unlikely(fd2 < 0)) { 1734 put_unused_fd(fd1); 1735 return fd2; 1736 } 1737 1738 err = put_user(fd1, &usockvec[0]); 1739 if (err) 1740 goto out; 1741 1742 err = put_user(fd2, &usockvec[1]); 1743 if (err) 1744 goto out; 1745 1746 /* 1747 * Obtain the first socket and check if the underlying protocol 1748 * supports the socketpair call. 1749 */ 1750 1751 err = sock_create(family, type, protocol, &sock1); 1752 if (unlikely(err < 0)) 1753 goto out; 1754 1755 err = sock_create(family, type, protocol, &sock2); 1756 if (unlikely(err < 0)) { 1757 sock_release(sock1); 1758 goto out; 1759 } 1760 1761 err = security_socket_socketpair(sock1, sock2); 1762 if (unlikely(err)) { 1763 sock_release(sock2); 1764 sock_release(sock1); 1765 goto out; 1766 } 1767 1768 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1769 if (unlikely(err < 0)) { 1770 sock_release(sock2); 1771 sock_release(sock1); 1772 goto out; 1773 } 1774 1775 newfile1 = sock_alloc_file(sock1, flags, NULL); 1776 if (IS_ERR(newfile1)) { 1777 err = PTR_ERR(newfile1); 1778 sock_release(sock2); 1779 goto out; 1780 } 1781 1782 newfile2 = sock_alloc_file(sock2, flags, NULL); 1783 if (IS_ERR(newfile2)) { 1784 err = PTR_ERR(newfile2); 1785 fput(newfile1); 1786 goto out; 1787 } 1788 1789 audit_fd_pair(fd1, fd2); 1790 1791 fd_install(fd1, newfile1); 1792 fd_install(fd2, newfile2); 1793 return 0; 1794 1795 out: 1796 put_unused_fd(fd2); 1797 put_unused_fd(fd1); 1798 return err; 1799 } 1800 1801 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1802 int __user *, usockvec) 1803 { 1804 return __sys_socketpair(family, type, protocol, usockvec); 1805 } 1806 1807 /* 1808 * Bind a name to a socket. Nothing much to do here since it's 1809 * the protocol's responsibility to handle the local address. 1810 * 1811 * We move the socket address to kernel space before we call 1812 * the protocol layer (having also checked the address is ok). 1813 */ 1814 1815 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1816 { 1817 struct socket *sock; 1818 struct sockaddr_storage address; 1819 int err, fput_needed; 1820 1821 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1822 if (sock) { 1823 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1824 if (!err) { 1825 err = security_socket_bind(sock, 1826 (struct sockaddr *)&address, 1827 addrlen); 1828 if (!err) 1829 err = READ_ONCE(sock->ops)->bind(sock, 1830 (struct sockaddr *) 1831 &address, addrlen); 1832 } 1833 fput_light(sock->file, fput_needed); 1834 } 1835 return err; 1836 } 1837 1838 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1839 { 1840 return __sys_bind(fd, umyaddr, addrlen); 1841 } 1842 1843 /* 1844 * Perform a listen. Basically, we allow the protocol to do anything 1845 * necessary for a listen, and if that works, we mark the socket as 1846 * ready for listening. 1847 */ 1848 1849 int __sys_listen(int fd, int backlog) 1850 { 1851 struct socket *sock; 1852 int err, fput_needed; 1853 int somaxconn; 1854 1855 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1856 if (sock) { 1857 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1858 if ((unsigned int)backlog > somaxconn) 1859 backlog = somaxconn; 1860 1861 err = security_socket_listen(sock, backlog); 1862 if (!err) 1863 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1864 1865 fput_light(sock->file, fput_needed); 1866 } 1867 return err; 1868 } 1869 1870 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1871 { 1872 return __sys_listen(fd, backlog); 1873 } 1874 1875 struct file *do_accept(struct file *file, unsigned file_flags, 1876 struct sockaddr __user *upeer_sockaddr, 1877 int __user *upeer_addrlen, int flags) 1878 { 1879 struct socket *sock, *newsock; 1880 struct file *newfile; 1881 int err, len; 1882 struct sockaddr_storage address; 1883 const struct proto_ops *ops; 1884 1885 sock = sock_from_file(file); 1886 if (!sock) 1887 return ERR_PTR(-ENOTSOCK); 1888 1889 newsock = sock_alloc(); 1890 if (!newsock) 1891 return ERR_PTR(-ENFILE); 1892 ops = READ_ONCE(sock->ops); 1893 1894 newsock->type = sock->type; 1895 newsock->ops = ops; 1896 1897 /* 1898 * We don't need try_module_get here, as the listening socket (sock) 1899 * has the protocol module (sock->ops->owner) held. 1900 */ 1901 __module_get(ops->owner); 1902 1903 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1904 if (IS_ERR(newfile)) 1905 return newfile; 1906 1907 err = security_socket_accept(sock, newsock); 1908 if (err) 1909 goto out_fd; 1910 1911 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1912 false); 1913 if (err < 0) 1914 goto out_fd; 1915 1916 if (upeer_sockaddr) { 1917 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1918 if (len < 0) { 1919 err = -ECONNABORTED; 1920 goto out_fd; 1921 } 1922 err = move_addr_to_user(&address, 1923 len, upeer_sockaddr, upeer_addrlen); 1924 if (err < 0) 1925 goto out_fd; 1926 } 1927 1928 /* File flags are not inherited via accept() unlike another OSes. */ 1929 return newfile; 1930 out_fd: 1931 fput(newfile); 1932 return ERR_PTR(err); 1933 } 1934 1935 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1936 int __user *upeer_addrlen, int flags) 1937 { 1938 struct file *newfile; 1939 int newfd; 1940 1941 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1942 return -EINVAL; 1943 1944 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1945 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1946 1947 newfd = get_unused_fd_flags(flags); 1948 if (unlikely(newfd < 0)) 1949 return newfd; 1950 1951 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1952 flags); 1953 if (IS_ERR(newfile)) { 1954 put_unused_fd(newfd); 1955 return PTR_ERR(newfile); 1956 } 1957 fd_install(newfd, newfile); 1958 return newfd; 1959 } 1960 1961 /* 1962 * For accept, we attempt to create a new socket, set up the link 1963 * with the client, wake up the client, then return the new 1964 * connected fd. We collect the address of the connector in kernel 1965 * space and move it to user at the very end. This is unclean because 1966 * we open the socket then return an error. 1967 * 1968 * 1003.1g adds the ability to recvmsg() to query connection pending 1969 * status to recvmsg. We need to add that support in a way thats 1970 * clean when we restructure accept also. 1971 */ 1972 1973 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1974 int __user *upeer_addrlen, int flags) 1975 { 1976 int ret = -EBADF; 1977 struct fd f; 1978 1979 f = fdget(fd); 1980 if (f.file) { 1981 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1982 upeer_addrlen, flags); 1983 fdput(f); 1984 } 1985 1986 return ret; 1987 } 1988 1989 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1990 int __user *, upeer_addrlen, int, flags) 1991 { 1992 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1993 } 1994 1995 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1996 int __user *, upeer_addrlen) 1997 { 1998 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1999 } 2000 2001 /* 2002 * Attempt to connect to a socket with the server address. The address 2003 * is in user space so we verify it is OK and move it to kernel space. 2004 * 2005 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2006 * break bindings 2007 * 2008 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2009 * other SEQPACKET protocols that take time to connect() as it doesn't 2010 * include the -EINPROGRESS status for such sockets. 2011 */ 2012 2013 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2014 int addrlen, int file_flags) 2015 { 2016 struct socket *sock; 2017 int err; 2018 2019 sock = sock_from_file(file); 2020 if (!sock) { 2021 err = -ENOTSOCK; 2022 goto out; 2023 } 2024 2025 err = 2026 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2027 if (err) 2028 goto out; 2029 2030 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2031 addrlen, sock->file->f_flags | file_flags); 2032 out: 2033 return err; 2034 } 2035 2036 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2037 { 2038 int ret = -EBADF; 2039 struct fd f; 2040 2041 f = fdget(fd); 2042 if (f.file) { 2043 struct sockaddr_storage address; 2044 2045 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2046 if (!ret) 2047 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2048 fdput(f); 2049 } 2050 2051 return ret; 2052 } 2053 2054 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2055 int, addrlen) 2056 { 2057 return __sys_connect(fd, uservaddr, addrlen); 2058 } 2059 2060 /* 2061 * Get the local address ('name') of a socket object. Move the obtained 2062 * name to user space. 2063 */ 2064 2065 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2066 int __user *usockaddr_len) 2067 { 2068 struct socket *sock; 2069 struct sockaddr_storage address; 2070 int err, fput_needed; 2071 2072 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2073 if (!sock) 2074 goto out; 2075 2076 err = security_socket_getsockname(sock); 2077 if (err) 2078 goto out_put; 2079 2080 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2081 if (err < 0) 2082 goto out_put; 2083 /* "err" is actually length in this case */ 2084 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2085 2086 out_put: 2087 fput_light(sock->file, fput_needed); 2088 out: 2089 return err; 2090 } 2091 2092 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2093 int __user *, usockaddr_len) 2094 { 2095 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2096 } 2097 2098 /* 2099 * Get the remote address ('name') of a socket object. Move the obtained 2100 * name to user space. 2101 */ 2102 2103 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2104 int __user *usockaddr_len) 2105 { 2106 struct socket *sock; 2107 struct sockaddr_storage address; 2108 int err, fput_needed; 2109 2110 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2111 if (sock != NULL) { 2112 const struct proto_ops *ops = READ_ONCE(sock->ops); 2113 2114 err = security_socket_getpeername(sock); 2115 if (err) { 2116 fput_light(sock->file, fput_needed); 2117 return err; 2118 } 2119 2120 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2121 if (err >= 0) 2122 /* "err" is actually length in this case */ 2123 err = move_addr_to_user(&address, err, usockaddr, 2124 usockaddr_len); 2125 fput_light(sock->file, fput_needed); 2126 } 2127 return err; 2128 } 2129 2130 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2131 int __user *, usockaddr_len) 2132 { 2133 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2134 } 2135 2136 /* 2137 * Send a datagram to a given address. We move the address into kernel 2138 * space and check the user space data area is readable before invoking 2139 * the protocol. 2140 */ 2141 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2142 struct sockaddr __user *addr, int addr_len) 2143 { 2144 struct socket *sock; 2145 struct sockaddr_storage address; 2146 int err; 2147 struct msghdr msg; 2148 struct iovec iov; 2149 int fput_needed; 2150 2151 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2152 if (unlikely(err)) 2153 return err; 2154 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2155 if (!sock) 2156 goto out; 2157 2158 msg.msg_name = NULL; 2159 msg.msg_control = NULL; 2160 msg.msg_controllen = 0; 2161 msg.msg_namelen = 0; 2162 msg.msg_ubuf = NULL; 2163 if (addr) { 2164 err = move_addr_to_kernel(addr, addr_len, &address); 2165 if (err < 0) 2166 goto out_put; 2167 msg.msg_name = (struct sockaddr *)&address; 2168 msg.msg_namelen = addr_len; 2169 } 2170 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2171 if (sock->file->f_flags & O_NONBLOCK) 2172 flags |= MSG_DONTWAIT; 2173 msg.msg_flags = flags; 2174 err = sock_sendmsg(sock, &msg); 2175 2176 out_put: 2177 fput_light(sock->file, fput_needed); 2178 out: 2179 return err; 2180 } 2181 2182 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2183 unsigned int, flags, struct sockaddr __user *, addr, 2184 int, addr_len) 2185 { 2186 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2187 } 2188 2189 /* 2190 * Send a datagram down a socket. 2191 */ 2192 2193 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2194 unsigned int, flags) 2195 { 2196 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2197 } 2198 2199 /* 2200 * Receive a frame from the socket and optionally record the address of the 2201 * sender. We verify the buffers are writable and if needed move the 2202 * sender address from kernel to user space. 2203 */ 2204 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2205 struct sockaddr __user *addr, int __user *addr_len) 2206 { 2207 struct sockaddr_storage address; 2208 struct msghdr msg = { 2209 /* Save some cycles and don't copy the address if not needed */ 2210 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2211 }; 2212 struct socket *sock; 2213 struct iovec iov; 2214 int err, err2; 2215 int fput_needed; 2216 2217 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2218 if (unlikely(err)) 2219 return err; 2220 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2221 if (!sock) 2222 goto out; 2223 2224 if (sock->file->f_flags & O_NONBLOCK) 2225 flags |= MSG_DONTWAIT; 2226 err = sock_recvmsg(sock, &msg, flags); 2227 2228 if (err >= 0 && addr != NULL) { 2229 err2 = move_addr_to_user(&address, 2230 msg.msg_namelen, addr, addr_len); 2231 if (err2 < 0) 2232 err = err2; 2233 } 2234 2235 fput_light(sock->file, fput_needed); 2236 out: 2237 return err; 2238 } 2239 2240 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2241 unsigned int, flags, struct sockaddr __user *, addr, 2242 int __user *, addr_len) 2243 { 2244 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2245 } 2246 2247 /* 2248 * Receive a datagram from a socket. 2249 */ 2250 2251 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2252 unsigned int, flags) 2253 { 2254 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2255 } 2256 2257 static bool sock_use_custom_sol_socket(const struct socket *sock) 2258 { 2259 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2260 } 2261 2262 /* 2263 * Set a socket option. Because we don't know the option lengths we have 2264 * to pass the user mode parameter for the protocols to sort out. 2265 */ 2266 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2267 int optlen) 2268 { 2269 sockptr_t optval = USER_SOCKPTR(user_optval); 2270 const struct proto_ops *ops; 2271 char *kernel_optval = NULL; 2272 int err, fput_needed; 2273 struct socket *sock; 2274 2275 if (optlen < 0) 2276 return -EINVAL; 2277 2278 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2279 if (!sock) 2280 return err; 2281 2282 err = security_socket_setsockopt(sock, level, optname); 2283 if (err) 2284 goto out_put; 2285 2286 if (!in_compat_syscall()) 2287 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2288 user_optval, &optlen, 2289 &kernel_optval); 2290 if (err < 0) 2291 goto out_put; 2292 if (err > 0) { 2293 err = 0; 2294 goto out_put; 2295 } 2296 2297 if (kernel_optval) 2298 optval = KERNEL_SOCKPTR(kernel_optval); 2299 ops = READ_ONCE(sock->ops); 2300 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2301 err = sock_setsockopt(sock, level, optname, optval, optlen); 2302 else if (unlikely(!ops->setsockopt)) 2303 err = -EOPNOTSUPP; 2304 else 2305 err = ops->setsockopt(sock, level, optname, optval, 2306 optlen); 2307 kfree(kernel_optval); 2308 out_put: 2309 fput_light(sock->file, fput_needed); 2310 return err; 2311 } 2312 2313 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2314 char __user *, optval, int, optlen) 2315 { 2316 return __sys_setsockopt(fd, level, optname, optval, optlen); 2317 } 2318 2319 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2320 int optname)); 2321 2322 /* 2323 * Get a socket option. Because we don't know the option lengths we have 2324 * to pass a user mode parameter for the protocols to sort out. 2325 */ 2326 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2327 int __user *optlen) 2328 { 2329 int max_optlen __maybe_unused; 2330 const struct proto_ops *ops; 2331 int err, fput_needed; 2332 struct socket *sock; 2333 2334 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2335 if (!sock) 2336 return err; 2337 2338 err = security_socket_getsockopt(sock, level, optname); 2339 if (err) 2340 goto out_put; 2341 2342 if (!in_compat_syscall()) 2343 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2344 2345 ops = READ_ONCE(sock->ops); 2346 if (level == SOL_SOCKET) 2347 err = sock_getsockopt(sock, level, optname, optval, optlen); 2348 else if (unlikely(!ops->getsockopt)) 2349 err = -EOPNOTSUPP; 2350 else 2351 err = ops->getsockopt(sock, level, optname, optval, 2352 optlen); 2353 2354 if (!in_compat_syscall()) 2355 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2356 optval, optlen, max_optlen, 2357 err); 2358 out_put: 2359 fput_light(sock->file, fput_needed); 2360 return err; 2361 } 2362 2363 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2364 char __user *, optval, int __user *, optlen) 2365 { 2366 return __sys_getsockopt(fd, level, optname, optval, optlen); 2367 } 2368 2369 /* 2370 * Shutdown a socket. 2371 */ 2372 2373 int __sys_shutdown_sock(struct socket *sock, int how) 2374 { 2375 int err; 2376 2377 err = security_socket_shutdown(sock, how); 2378 if (!err) 2379 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2380 2381 return err; 2382 } 2383 2384 int __sys_shutdown(int fd, int how) 2385 { 2386 int err, fput_needed; 2387 struct socket *sock; 2388 2389 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2390 if (sock != NULL) { 2391 err = __sys_shutdown_sock(sock, how); 2392 fput_light(sock->file, fput_needed); 2393 } 2394 return err; 2395 } 2396 2397 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2398 { 2399 return __sys_shutdown(fd, how); 2400 } 2401 2402 /* A couple of helpful macros for getting the address of the 32/64 bit 2403 * fields which are the same type (int / unsigned) on our platforms. 2404 */ 2405 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2406 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2407 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2408 2409 struct used_address { 2410 struct sockaddr_storage name; 2411 unsigned int name_len; 2412 }; 2413 2414 int __copy_msghdr(struct msghdr *kmsg, 2415 struct user_msghdr *msg, 2416 struct sockaddr __user **save_addr) 2417 { 2418 ssize_t err; 2419 2420 kmsg->msg_control_is_user = true; 2421 kmsg->msg_get_inq = 0; 2422 kmsg->msg_control_user = msg->msg_control; 2423 kmsg->msg_controllen = msg->msg_controllen; 2424 kmsg->msg_flags = msg->msg_flags; 2425 2426 kmsg->msg_namelen = msg->msg_namelen; 2427 if (!msg->msg_name) 2428 kmsg->msg_namelen = 0; 2429 2430 if (kmsg->msg_namelen < 0) 2431 return -EINVAL; 2432 2433 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2434 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2435 2436 if (save_addr) 2437 *save_addr = msg->msg_name; 2438 2439 if (msg->msg_name && kmsg->msg_namelen) { 2440 if (!save_addr) { 2441 err = move_addr_to_kernel(msg->msg_name, 2442 kmsg->msg_namelen, 2443 kmsg->msg_name); 2444 if (err < 0) 2445 return err; 2446 } 2447 } else { 2448 kmsg->msg_name = NULL; 2449 kmsg->msg_namelen = 0; 2450 } 2451 2452 if (msg->msg_iovlen > UIO_MAXIOV) 2453 return -EMSGSIZE; 2454 2455 kmsg->msg_iocb = NULL; 2456 kmsg->msg_ubuf = NULL; 2457 return 0; 2458 } 2459 2460 static int copy_msghdr_from_user(struct msghdr *kmsg, 2461 struct user_msghdr __user *umsg, 2462 struct sockaddr __user **save_addr, 2463 struct iovec **iov) 2464 { 2465 struct user_msghdr msg; 2466 ssize_t err; 2467 2468 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2469 return -EFAULT; 2470 2471 err = __copy_msghdr(kmsg, &msg, save_addr); 2472 if (err) 2473 return err; 2474 2475 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2476 msg.msg_iov, msg.msg_iovlen, 2477 UIO_FASTIOV, iov, &kmsg->msg_iter); 2478 return err < 0 ? err : 0; 2479 } 2480 2481 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2482 unsigned int flags, struct used_address *used_address, 2483 unsigned int allowed_msghdr_flags) 2484 { 2485 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2486 __aligned(sizeof(__kernel_size_t)); 2487 /* 20 is size of ipv6_pktinfo */ 2488 unsigned char *ctl_buf = ctl; 2489 int ctl_len; 2490 ssize_t err; 2491 2492 err = -ENOBUFS; 2493 2494 if (msg_sys->msg_controllen > INT_MAX) 2495 goto out; 2496 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2497 ctl_len = msg_sys->msg_controllen; 2498 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2499 err = 2500 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2501 sizeof(ctl)); 2502 if (err) 2503 goto out; 2504 ctl_buf = msg_sys->msg_control; 2505 ctl_len = msg_sys->msg_controllen; 2506 } else if (ctl_len) { 2507 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2508 CMSG_ALIGN(sizeof(struct cmsghdr))); 2509 if (ctl_len > sizeof(ctl)) { 2510 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2511 if (ctl_buf == NULL) 2512 goto out; 2513 } 2514 err = -EFAULT; 2515 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2516 goto out_freectl; 2517 msg_sys->msg_control = ctl_buf; 2518 msg_sys->msg_control_is_user = false; 2519 } 2520 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2521 msg_sys->msg_flags = flags; 2522 2523 if (sock->file->f_flags & O_NONBLOCK) 2524 msg_sys->msg_flags |= MSG_DONTWAIT; 2525 /* 2526 * If this is sendmmsg() and current destination address is same as 2527 * previously succeeded address, omit asking LSM's decision. 2528 * used_address->name_len is initialized to UINT_MAX so that the first 2529 * destination address never matches. 2530 */ 2531 if (used_address && msg_sys->msg_name && 2532 used_address->name_len == msg_sys->msg_namelen && 2533 !memcmp(&used_address->name, msg_sys->msg_name, 2534 used_address->name_len)) { 2535 err = sock_sendmsg_nosec(sock, msg_sys); 2536 goto out_freectl; 2537 } 2538 err = sock_sendmsg(sock, msg_sys); 2539 /* 2540 * If this is sendmmsg() and sending to current destination address was 2541 * successful, remember it. 2542 */ 2543 if (used_address && err >= 0) { 2544 used_address->name_len = msg_sys->msg_namelen; 2545 if (msg_sys->msg_name) 2546 memcpy(&used_address->name, msg_sys->msg_name, 2547 used_address->name_len); 2548 } 2549 2550 out_freectl: 2551 if (ctl_buf != ctl) 2552 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2553 out: 2554 return err; 2555 } 2556 2557 int sendmsg_copy_msghdr(struct msghdr *msg, 2558 struct user_msghdr __user *umsg, unsigned flags, 2559 struct iovec **iov) 2560 { 2561 int err; 2562 2563 if (flags & MSG_CMSG_COMPAT) { 2564 struct compat_msghdr __user *msg_compat; 2565 2566 msg_compat = (struct compat_msghdr __user *) umsg; 2567 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2568 } else { 2569 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2570 } 2571 if (err < 0) 2572 return err; 2573 2574 return 0; 2575 } 2576 2577 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2578 struct msghdr *msg_sys, unsigned int flags, 2579 struct used_address *used_address, 2580 unsigned int allowed_msghdr_flags) 2581 { 2582 struct sockaddr_storage address; 2583 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2584 ssize_t err; 2585 2586 msg_sys->msg_name = &address; 2587 2588 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2589 if (err < 0) 2590 return err; 2591 2592 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2593 allowed_msghdr_flags); 2594 kfree(iov); 2595 return err; 2596 } 2597 2598 /* 2599 * BSD sendmsg interface 2600 */ 2601 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2602 unsigned int flags) 2603 { 2604 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2605 } 2606 2607 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2608 bool forbid_cmsg_compat) 2609 { 2610 int fput_needed, err; 2611 struct msghdr msg_sys; 2612 struct socket *sock; 2613 2614 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2615 return -EINVAL; 2616 2617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2618 if (!sock) 2619 goto out; 2620 2621 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2622 2623 fput_light(sock->file, fput_needed); 2624 out: 2625 return err; 2626 } 2627 2628 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2629 { 2630 return __sys_sendmsg(fd, msg, flags, true); 2631 } 2632 2633 /* 2634 * Linux sendmmsg interface 2635 */ 2636 2637 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2638 unsigned int flags, bool forbid_cmsg_compat) 2639 { 2640 int fput_needed, err, datagrams; 2641 struct socket *sock; 2642 struct mmsghdr __user *entry; 2643 struct compat_mmsghdr __user *compat_entry; 2644 struct msghdr msg_sys; 2645 struct used_address used_address; 2646 unsigned int oflags = flags; 2647 2648 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2649 return -EINVAL; 2650 2651 if (vlen > UIO_MAXIOV) 2652 vlen = UIO_MAXIOV; 2653 2654 datagrams = 0; 2655 2656 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2657 if (!sock) 2658 return err; 2659 2660 used_address.name_len = UINT_MAX; 2661 entry = mmsg; 2662 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2663 err = 0; 2664 flags |= MSG_BATCH; 2665 2666 while (datagrams < vlen) { 2667 if (datagrams == vlen - 1) 2668 flags = oflags; 2669 2670 if (MSG_CMSG_COMPAT & flags) { 2671 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2672 &msg_sys, flags, &used_address, MSG_EOR); 2673 if (err < 0) 2674 break; 2675 err = __put_user(err, &compat_entry->msg_len); 2676 ++compat_entry; 2677 } else { 2678 err = ___sys_sendmsg(sock, 2679 (struct user_msghdr __user *)entry, 2680 &msg_sys, flags, &used_address, MSG_EOR); 2681 if (err < 0) 2682 break; 2683 err = put_user(err, &entry->msg_len); 2684 ++entry; 2685 } 2686 2687 if (err) 2688 break; 2689 ++datagrams; 2690 if (msg_data_left(&msg_sys)) 2691 break; 2692 cond_resched(); 2693 } 2694 2695 fput_light(sock->file, fput_needed); 2696 2697 /* We only return an error if no datagrams were able to be sent */ 2698 if (datagrams != 0) 2699 return datagrams; 2700 2701 return err; 2702 } 2703 2704 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2705 unsigned int, vlen, unsigned int, flags) 2706 { 2707 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2708 } 2709 2710 int recvmsg_copy_msghdr(struct msghdr *msg, 2711 struct user_msghdr __user *umsg, unsigned flags, 2712 struct sockaddr __user **uaddr, 2713 struct iovec **iov) 2714 { 2715 ssize_t err; 2716 2717 if (MSG_CMSG_COMPAT & flags) { 2718 struct compat_msghdr __user *msg_compat; 2719 2720 msg_compat = (struct compat_msghdr __user *) umsg; 2721 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2722 } else { 2723 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2724 } 2725 if (err < 0) 2726 return err; 2727 2728 return 0; 2729 } 2730 2731 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2732 struct user_msghdr __user *msg, 2733 struct sockaddr __user *uaddr, 2734 unsigned int flags, int nosec) 2735 { 2736 struct compat_msghdr __user *msg_compat = 2737 (struct compat_msghdr __user *) msg; 2738 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2739 struct sockaddr_storage addr; 2740 unsigned long cmsg_ptr; 2741 int len; 2742 ssize_t err; 2743 2744 msg_sys->msg_name = &addr; 2745 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2746 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2747 2748 /* We assume all kernel code knows the size of sockaddr_storage */ 2749 msg_sys->msg_namelen = 0; 2750 2751 if (sock->file->f_flags & O_NONBLOCK) 2752 flags |= MSG_DONTWAIT; 2753 2754 if (unlikely(nosec)) 2755 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2756 else 2757 err = sock_recvmsg(sock, msg_sys, flags); 2758 2759 if (err < 0) 2760 goto out; 2761 len = err; 2762 2763 if (uaddr != NULL) { 2764 err = move_addr_to_user(&addr, 2765 msg_sys->msg_namelen, uaddr, 2766 uaddr_len); 2767 if (err < 0) 2768 goto out; 2769 } 2770 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2771 COMPAT_FLAGS(msg)); 2772 if (err) 2773 goto out; 2774 if (MSG_CMSG_COMPAT & flags) 2775 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2776 &msg_compat->msg_controllen); 2777 else 2778 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2779 &msg->msg_controllen); 2780 if (err) 2781 goto out; 2782 err = len; 2783 out: 2784 return err; 2785 } 2786 2787 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2788 struct msghdr *msg_sys, unsigned int flags, int nosec) 2789 { 2790 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2791 /* user mode address pointers */ 2792 struct sockaddr __user *uaddr; 2793 ssize_t err; 2794 2795 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2796 if (err < 0) 2797 return err; 2798 2799 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2800 kfree(iov); 2801 return err; 2802 } 2803 2804 /* 2805 * BSD recvmsg interface 2806 */ 2807 2808 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2809 struct user_msghdr __user *umsg, 2810 struct sockaddr __user *uaddr, unsigned int flags) 2811 { 2812 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2813 } 2814 2815 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2816 bool forbid_cmsg_compat) 2817 { 2818 int fput_needed, err; 2819 struct msghdr msg_sys; 2820 struct socket *sock; 2821 2822 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2823 return -EINVAL; 2824 2825 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2826 if (!sock) 2827 goto out; 2828 2829 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2830 2831 fput_light(sock->file, fput_needed); 2832 out: 2833 return err; 2834 } 2835 2836 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2837 unsigned int, flags) 2838 { 2839 return __sys_recvmsg(fd, msg, flags, true); 2840 } 2841 2842 /* 2843 * Linux recvmmsg interface 2844 */ 2845 2846 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2847 unsigned int vlen, unsigned int flags, 2848 struct timespec64 *timeout) 2849 { 2850 int fput_needed, err, datagrams; 2851 struct socket *sock; 2852 struct mmsghdr __user *entry; 2853 struct compat_mmsghdr __user *compat_entry; 2854 struct msghdr msg_sys; 2855 struct timespec64 end_time; 2856 struct timespec64 timeout64; 2857 2858 if (timeout && 2859 poll_select_set_timeout(&end_time, timeout->tv_sec, 2860 timeout->tv_nsec)) 2861 return -EINVAL; 2862 2863 datagrams = 0; 2864 2865 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2866 if (!sock) 2867 return err; 2868 2869 if (likely(!(flags & MSG_ERRQUEUE))) { 2870 err = sock_error(sock->sk); 2871 if (err) { 2872 datagrams = err; 2873 goto out_put; 2874 } 2875 } 2876 2877 entry = mmsg; 2878 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2879 2880 while (datagrams < vlen) { 2881 /* 2882 * No need to ask LSM for more than the first datagram. 2883 */ 2884 if (MSG_CMSG_COMPAT & flags) { 2885 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2886 &msg_sys, flags & ~MSG_WAITFORONE, 2887 datagrams); 2888 if (err < 0) 2889 break; 2890 err = __put_user(err, &compat_entry->msg_len); 2891 ++compat_entry; 2892 } else { 2893 err = ___sys_recvmsg(sock, 2894 (struct user_msghdr __user *)entry, 2895 &msg_sys, flags & ~MSG_WAITFORONE, 2896 datagrams); 2897 if (err < 0) 2898 break; 2899 err = put_user(err, &entry->msg_len); 2900 ++entry; 2901 } 2902 2903 if (err) 2904 break; 2905 ++datagrams; 2906 2907 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2908 if (flags & MSG_WAITFORONE) 2909 flags |= MSG_DONTWAIT; 2910 2911 if (timeout) { 2912 ktime_get_ts64(&timeout64); 2913 *timeout = timespec64_sub(end_time, timeout64); 2914 if (timeout->tv_sec < 0) { 2915 timeout->tv_sec = timeout->tv_nsec = 0; 2916 break; 2917 } 2918 2919 /* Timeout, return less than vlen datagrams */ 2920 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2921 break; 2922 } 2923 2924 /* Out of band data, return right away */ 2925 if (msg_sys.msg_flags & MSG_OOB) 2926 break; 2927 cond_resched(); 2928 } 2929 2930 if (err == 0) 2931 goto out_put; 2932 2933 if (datagrams == 0) { 2934 datagrams = err; 2935 goto out_put; 2936 } 2937 2938 /* 2939 * We may return less entries than requested (vlen) if the 2940 * sock is non block and there aren't enough datagrams... 2941 */ 2942 if (err != -EAGAIN) { 2943 /* 2944 * ... or if recvmsg returns an error after we 2945 * received some datagrams, where we record the 2946 * error to return on the next call or if the 2947 * app asks about it using getsockopt(SO_ERROR). 2948 */ 2949 WRITE_ONCE(sock->sk->sk_err, -err); 2950 } 2951 out_put: 2952 fput_light(sock->file, fput_needed); 2953 2954 return datagrams; 2955 } 2956 2957 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2958 unsigned int vlen, unsigned int flags, 2959 struct __kernel_timespec __user *timeout, 2960 struct old_timespec32 __user *timeout32) 2961 { 2962 int datagrams; 2963 struct timespec64 timeout_sys; 2964 2965 if (timeout && get_timespec64(&timeout_sys, timeout)) 2966 return -EFAULT; 2967 2968 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2969 return -EFAULT; 2970 2971 if (!timeout && !timeout32) 2972 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2973 2974 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2975 2976 if (datagrams <= 0) 2977 return datagrams; 2978 2979 if (timeout && put_timespec64(&timeout_sys, timeout)) 2980 datagrams = -EFAULT; 2981 2982 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2983 datagrams = -EFAULT; 2984 2985 return datagrams; 2986 } 2987 2988 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2989 unsigned int, vlen, unsigned int, flags, 2990 struct __kernel_timespec __user *, timeout) 2991 { 2992 if (flags & MSG_CMSG_COMPAT) 2993 return -EINVAL; 2994 2995 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2996 } 2997 2998 #ifdef CONFIG_COMPAT_32BIT_TIME 2999 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3000 unsigned int, vlen, unsigned int, flags, 3001 struct old_timespec32 __user *, timeout) 3002 { 3003 if (flags & MSG_CMSG_COMPAT) 3004 return -EINVAL; 3005 3006 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3007 } 3008 #endif 3009 3010 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3011 /* Argument list sizes for sys_socketcall */ 3012 #define AL(x) ((x) * sizeof(unsigned long)) 3013 static const unsigned char nargs[21] = { 3014 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3015 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3016 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3017 AL(4), AL(5), AL(4) 3018 }; 3019 3020 #undef AL 3021 3022 /* 3023 * System call vectors. 3024 * 3025 * Argument checking cleaned up. Saved 20% in size. 3026 * This function doesn't need to set the kernel lock because 3027 * it is set by the callees. 3028 */ 3029 3030 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3031 { 3032 unsigned long a[AUDITSC_ARGS]; 3033 unsigned long a0, a1; 3034 int err; 3035 unsigned int len; 3036 3037 if (call < 1 || call > SYS_SENDMMSG) 3038 return -EINVAL; 3039 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3040 3041 len = nargs[call]; 3042 if (len > sizeof(a)) 3043 return -EINVAL; 3044 3045 /* copy_from_user should be SMP safe. */ 3046 if (copy_from_user(a, args, len)) 3047 return -EFAULT; 3048 3049 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3050 if (err) 3051 return err; 3052 3053 a0 = a[0]; 3054 a1 = a[1]; 3055 3056 switch (call) { 3057 case SYS_SOCKET: 3058 err = __sys_socket(a0, a1, a[2]); 3059 break; 3060 case SYS_BIND: 3061 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3062 break; 3063 case SYS_CONNECT: 3064 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3065 break; 3066 case SYS_LISTEN: 3067 err = __sys_listen(a0, a1); 3068 break; 3069 case SYS_ACCEPT: 3070 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3071 (int __user *)a[2], 0); 3072 break; 3073 case SYS_GETSOCKNAME: 3074 err = 3075 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3076 (int __user *)a[2]); 3077 break; 3078 case SYS_GETPEERNAME: 3079 err = 3080 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3081 (int __user *)a[2]); 3082 break; 3083 case SYS_SOCKETPAIR: 3084 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3085 break; 3086 case SYS_SEND: 3087 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3088 NULL, 0); 3089 break; 3090 case SYS_SENDTO: 3091 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3092 (struct sockaddr __user *)a[4], a[5]); 3093 break; 3094 case SYS_RECV: 3095 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3096 NULL, NULL); 3097 break; 3098 case SYS_RECVFROM: 3099 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3100 (struct sockaddr __user *)a[4], 3101 (int __user *)a[5]); 3102 break; 3103 case SYS_SHUTDOWN: 3104 err = __sys_shutdown(a0, a1); 3105 break; 3106 case SYS_SETSOCKOPT: 3107 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3108 a[4]); 3109 break; 3110 case SYS_GETSOCKOPT: 3111 err = 3112 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3113 (int __user *)a[4]); 3114 break; 3115 case SYS_SENDMSG: 3116 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3117 a[2], true); 3118 break; 3119 case SYS_SENDMMSG: 3120 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3121 a[3], true); 3122 break; 3123 case SYS_RECVMSG: 3124 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3125 a[2], true); 3126 break; 3127 case SYS_RECVMMSG: 3128 if (IS_ENABLED(CONFIG_64BIT)) 3129 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3130 a[2], a[3], 3131 (struct __kernel_timespec __user *)a[4], 3132 NULL); 3133 else 3134 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3135 a[2], a[3], NULL, 3136 (struct old_timespec32 __user *)a[4]); 3137 break; 3138 case SYS_ACCEPT4: 3139 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3140 (int __user *)a[2], a[3]); 3141 break; 3142 default: 3143 err = -EINVAL; 3144 break; 3145 } 3146 return err; 3147 } 3148 3149 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3150 3151 /** 3152 * sock_register - add a socket protocol handler 3153 * @ops: description of protocol 3154 * 3155 * This function is called by a protocol handler that wants to 3156 * advertise its address family, and have it linked into the 3157 * socket interface. The value ops->family corresponds to the 3158 * socket system call protocol family. 3159 */ 3160 int sock_register(const struct net_proto_family *ops) 3161 { 3162 int err; 3163 3164 if (ops->family >= NPROTO) { 3165 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3166 return -ENOBUFS; 3167 } 3168 3169 spin_lock(&net_family_lock); 3170 if (rcu_dereference_protected(net_families[ops->family], 3171 lockdep_is_held(&net_family_lock))) 3172 err = -EEXIST; 3173 else { 3174 rcu_assign_pointer(net_families[ops->family], ops); 3175 err = 0; 3176 } 3177 spin_unlock(&net_family_lock); 3178 3179 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3180 return err; 3181 } 3182 EXPORT_SYMBOL(sock_register); 3183 3184 /** 3185 * sock_unregister - remove a protocol handler 3186 * @family: protocol family to remove 3187 * 3188 * This function is called by a protocol handler that wants to 3189 * remove its address family, and have it unlinked from the 3190 * new socket creation. 3191 * 3192 * If protocol handler is a module, then it can use module reference 3193 * counts to protect against new references. If protocol handler is not 3194 * a module then it needs to provide its own protection in 3195 * the ops->create routine. 3196 */ 3197 void sock_unregister(int family) 3198 { 3199 BUG_ON(family < 0 || family >= NPROTO); 3200 3201 spin_lock(&net_family_lock); 3202 RCU_INIT_POINTER(net_families[family], NULL); 3203 spin_unlock(&net_family_lock); 3204 3205 synchronize_rcu(); 3206 3207 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3208 } 3209 EXPORT_SYMBOL(sock_unregister); 3210 3211 bool sock_is_registered(int family) 3212 { 3213 return family < NPROTO && rcu_access_pointer(net_families[family]); 3214 } 3215 3216 static int __init sock_init(void) 3217 { 3218 int err; 3219 /* 3220 * Initialize the network sysctl infrastructure. 3221 */ 3222 err = net_sysctl_init(); 3223 if (err) 3224 goto out; 3225 3226 /* 3227 * Initialize skbuff SLAB cache 3228 */ 3229 skb_init(); 3230 3231 /* 3232 * Initialize the protocols module. 3233 */ 3234 3235 init_inodecache(); 3236 3237 err = register_filesystem(&sock_fs_type); 3238 if (err) 3239 goto out; 3240 sock_mnt = kern_mount(&sock_fs_type); 3241 if (IS_ERR(sock_mnt)) { 3242 err = PTR_ERR(sock_mnt); 3243 goto out_mount; 3244 } 3245 3246 /* The real protocol initialization is performed in later initcalls. 3247 */ 3248 3249 #ifdef CONFIG_NETFILTER 3250 err = netfilter_init(); 3251 if (err) 3252 goto out; 3253 #endif 3254 3255 ptp_classifier_init(); 3256 3257 out: 3258 return err; 3259 3260 out_mount: 3261 unregister_filesystem(&sock_fs_type); 3262 goto out; 3263 } 3264 3265 core_initcall(sock_init); /* early initcall */ 3266 3267 #ifdef CONFIG_PROC_FS 3268 void socket_seq_show(struct seq_file *seq) 3269 { 3270 seq_printf(seq, "sockets: used %d\n", 3271 sock_inuse_get(seq->private)); 3272 } 3273 #endif /* CONFIG_PROC_FS */ 3274 3275 /* Handle the fact that while struct ifreq has the same *layout* on 3276 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3277 * which are handled elsewhere, it still has different *size* due to 3278 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3279 * resulting in struct ifreq being 32 and 40 bytes respectively). 3280 * As a result, if the struct happens to be at the end of a page and 3281 * the next page isn't readable/writable, we get a fault. To prevent 3282 * that, copy back and forth to the full size. 3283 */ 3284 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3285 { 3286 if (in_compat_syscall()) { 3287 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3288 3289 memset(ifr, 0, sizeof(*ifr)); 3290 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3291 return -EFAULT; 3292 3293 if (ifrdata) 3294 *ifrdata = compat_ptr(ifr32->ifr_data); 3295 3296 return 0; 3297 } 3298 3299 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3300 return -EFAULT; 3301 3302 if (ifrdata) 3303 *ifrdata = ifr->ifr_data; 3304 3305 return 0; 3306 } 3307 EXPORT_SYMBOL(get_user_ifreq); 3308 3309 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3310 { 3311 size_t size = sizeof(*ifr); 3312 3313 if (in_compat_syscall()) 3314 size = sizeof(struct compat_ifreq); 3315 3316 if (copy_to_user(arg, ifr, size)) 3317 return -EFAULT; 3318 3319 return 0; 3320 } 3321 EXPORT_SYMBOL(put_user_ifreq); 3322 3323 #ifdef CONFIG_COMPAT 3324 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3325 { 3326 compat_uptr_t uptr32; 3327 struct ifreq ifr; 3328 void __user *saved; 3329 int err; 3330 3331 if (get_user_ifreq(&ifr, NULL, uifr32)) 3332 return -EFAULT; 3333 3334 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3335 return -EFAULT; 3336 3337 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3338 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3339 3340 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3341 if (!err) { 3342 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3343 if (put_user_ifreq(&ifr, uifr32)) 3344 err = -EFAULT; 3345 } 3346 return err; 3347 } 3348 3349 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3350 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3351 struct compat_ifreq __user *u_ifreq32) 3352 { 3353 struct ifreq ifreq; 3354 void __user *data; 3355 3356 if (!is_socket_ioctl_cmd(cmd)) 3357 return -ENOTTY; 3358 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3359 return -EFAULT; 3360 ifreq.ifr_data = data; 3361 3362 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3363 } 3364 3365 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3366 unsigned int cmd, unsigned long arg) 3367 { 3368 void __user *argp = compat_ptr(arg); 3369 struct sock *sk = sock->sk; 3370 struct net *net = sock_net(sk); 3371 const struct proto_ops *ops; 3372 3373 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3374 return sock_ioctl(file, cmd, (unsigned long)argp); 3375 3376 switch (cmd) { 3377 case SIOCWANDEV: 3378 return compat_siocwandev(net, argp); 3379 case SIOCGSTAMP_OLD: 3380 case SIOCGSTAMPNS_OLD: 3381 ops = READ_ONCE(sock->ops); 3382 if (!ops->gettstamp) 3383 return -ENOIOCTLCMD; 3384 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3385 !COMPAT_USE_64BIT_TIME); 3386 3387 case SIOCETHTOOL: 3388 case SIOCBONDSLAVEINFOQUERY: 3389 case SIOCBONDINFOQUERY: 3390 case SIOCSHWTSTAMP: 3391 case SIOCGHWTSTAMP: 3392 return compat_ifr_data_ioctl(net, cmd, argp); 3393 3394 case FIOSETOWN: 3395 case SIOCSPGRP: 3396 case FIOGETOWN: 3397 case SIOCGPGRP: 3398 case SIOCBRADDBR: 3399 case SIOCBRDELBR: 3400 case SIOCGIFVLAN: 3401 case SIOCSIFVLAN: 3402 case SIOCGSKNS: 3403 case SIOCGSTAMP_NEW: 3404 case SIOCGSTAMPNS_NEW: 3405 case SIOCGIFCONF: 3406 case SIOCSIFBR: 3407 case SIOCGIFBR: 3408 return sock_ioctl(file, cmd, arg); 3409 3410 case SIOCGIFFLAGS: 3411 case SIOCSIFFLAGS: 3412 case SIOCGIFMAP: 3413 case SIOCSIFMAP: 3414 case SIOCGIFMETRIC: 3415 case SIOCSIFMETRIC: 3416 case SIOCGIFMTU: 3417 case SIOCSIFMTU: 3418 case SIOCGIFMEM: 3419 case SIOCSIFMEM: 3420 case SIOCGIFHWADDR: 3421 case SIOCSIFHWADDR: 3422 case SIOCADDMULTI: 3423 case SIOCDELMULTI: 3424 case SIOCGIFINDEX: 3425 case SIOCGIFADDR: 3426 case SIOCSIFADDR: 3427 case SIOCSIFHWBROADCAST: 3428 case SIOCDIFADDR: 3429 case SIOCGIFBRDADDR: 3430 case SIOCSIFBRDADDR: 3431 case SIOCGIFDSTADDR: 3432 case SIOCSIFDSTADDR: 3433 case SIOCGIFNETMASK: 3434 case SIOCSIFNETMASK: 3435 case SIOCSIFPFLAGS: 3436 case SIOCGIFPFLAGS: 3437 case SIOCGIFTXQLEN: 3438 case SIOCSIFTXQLEN: 3439 case SIOCBRADDIF: 3440 case SIOCBRDELIF: 3441 case SIOCGIFNAME: 3442 case SIOCSIFNAME: 3443 case SIOCGMIIPHY: 3444 case SIOCGMIIREG: 3445 case SIOCSMIIREG: 3446 case SIOCBONDENSLAVE: 3447 case SIOCBONDRELEASE: 3448 case SIOCBONDSETHWADDR: 3449 case SIOCBONDCHANGEACTIVE: 3450 case SIOCSARP: 3451 case SIOCGARP: 3452 case SIOCDARP: 3453 case SIOCOUTQ: 3454 case SIOCOUTQNSD: 3455 case SIOCATMARK: 3456 return sock_do_ioctl(net, sock, cmd, arg); 3457 } 3458 3459 return -ENOIOCTLCMD; 3460 } 3461 3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3463 unsigned long arg) 3464 { 3465 struct socket *sock = file->private_data; 3466 const struct proto_ops *ops = READ_ONCE(sock->ops); 3467 int ret = -ENOIOCTLCMD; 3468 struct sock *sk; 3469 struct net *net; 3470 3471 sk = sock->sk; 3472 net = sock_net(sk); 3473 3474 if (ops->compat_ioctl) 3475 ret = ops->compat_ioctl(sock, cmd, arg); 3476 3477 if (ret == -ENOIOCTLCMD && 3478 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3479 ret = compat_wext_handle_ioctl(net, cmd, arg); 3480 3481 if (ret == -ENOIOCTLCMD) 3482 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3483 3484 return ret; 3485 } 3486 #endif 3487 3488 /** 3489 * kernel_bind - bind an address to a socket (kernel space) 3490 * @sock: socket 3491 * @addr: address 3492 * @addrlen: length of address 3493 * 3494 * Returns 0 or an error. 3495 */ 3496 3497 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3498 { 3499 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen); 3500 } 3501 EXPORT_SYMBOL(kernel_bind); 3502 3503 /** 3504 * kernel_listen - move socket to listening state (kernel space) 3505 * @sock: socket 3506 * @backlog: pending connections queue size 3507 * 3508 * Returns 0 or an error. 3509 */ 3510 3511 int kernel_listen(struct socket *sock, int backlog) 3512 { 3513 return READ_ONCE(sock->ops)->listen(sock, backlog); 3514 } 3515 EXPORT_SYMBOL(kernel_listen); 3516 3517 /** 3518 * kernel_accept - accept a connection (kernel space) 3519 * @sock: listening socket 3520 * @newsock: new connected socket 3521 * @flags: flags 3522 * 3523 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3524 * If it fails, @newsock is guaranteed to be %NULL. 3525 * Returns 0 or an error. 3526 */ 3527 3528 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3529 { 3530 struct sock *sk = sock->sk; 3531 const struct proto_ops *ops = READ_ONCE(sock->ops); 3532 int err; 3533 3534 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3535 newsock); 3536 if (err < 0) 3537 goto done; 3538 3539 err = ops->accept(sock, *newsock, flags, true); 3540 if (err < 0) { 3541 sock_release(*newsock); 3542 *newsock = NULL; 3543 goto done; 3544 } 3545 3546 (*newsock)->ops = ops; 3547 __module_get(ops->owner); 3548 3549 done: 3550 return err; 3551 } 3552 EXPORT_SYMBOL(kernel_accept); 3553 3554 /** 3555 * kernel_connect - connect a socket (kernel space) 3556 * @sock: socket 3557 * @addr: address 3558 * @addrlen: address length 3559 * @flags: flags (O_NONBLOCK, ...) 3560 * 3561 * For datagram sockets, @addr is the address to which datagrams are sent 3562 * by default, and the only address from which datagrams are received. 3563 * For stream sockets, attempts to connect to @addr. 3564 * Returns 0 or an error code. 3565 */ 3566 3567 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3568 int flags) 3569 { 3570 return READ_ONCE(sock->ops)->connect(sock, addr, addrlen, flags); 3571 } 3572 EXPORT_SYMBOL(kernel_connect); 3573 3574 /** 3575 * kernel_getsockname - get the address which the socket is bound (kernel space) 3576 * @sock: socket 3577 * @addr: address holder 3578 * 3579 * Fills the @addr pointer with the address which the socket is bound. 3580 * Returns the length of the address in bytes or an error code. 3581 */ 3582 3583 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3584 { 3585 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3586 } 3587 EXPORT_SYMBOL(kernel_getsockname); 3588 3589 /** 3590 * kernel_getpeername - get the address which the socket is connected (kernel space) 3591 * @sock: socket 3592 * @addr: address holder 3593 * 3594 * Fills the @addr pointer with the address which the socket is connected. 3595 * Returns the length of the address in bytes or an error code. 3596 */ 3597 3598 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3599 { 3600 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3601 } 3602 EXPORT_SYMBOL(kernel_getpeername); 3603 3604 /** 3605 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3606 * @sock: socket 3607 * @how: connection part 3608 * 3609 * Returns 0 or an error. 3610 */ 3611 3612 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3613 { 3614 return READ_ONCE(sock->ops)->shutdown(sock, how); 3615 } 3616 EXPORT_SYMBOL(kernel_sock_shutdown); 3617 3618 /** 3619 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3620 * @sk: socket 3621 * 3622 * This routine returns the IP overhead imposed by a socket i.e. 3623 * the length of the underlying IP header, depending on whether 3624 * this is an IPv4 or IPv6 socket and the length from IP options turned 3625 * on at the socket. Assumes that the caller has a lock on the socket. 3626 */ 3627 3628 u32 kernel_sock_ip_overhead(struct sock *sk) 3629 { 3630 struct inet_sock *inet; 3631 struct ip_options_rcu *opt; 3632 u32 overhead = 0; 3633 #if IS_ENABLED(CONFIG_IPV6) 3634 struct ipv6_pinfo *np; 3635 struct ipv6_txoptions *optv6 = NULL; 3636 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3637 3638 if (!sk) 3639 return overhead; 3640 3641 switch (sk->sk_family) { 3642 case AF_INET: 3643 inet = inet_sk(sk); 3644 overhead += sizeof(struct iphdr); 3645 opt = rcu_dereference_protected(inet->inet_opt, 3646 sock_owned_by_user(sk)); 3647 if (opt) 3648 overhead += opt->opt.optlen; 3649 return overhead; 3650 #if IS_ENABLED(CONFIG_IPV6) 3651 case AF_INET6: 3652 np = inet6_sk(sk); 3653 overhead += sizeof(struct ipv6hdr); 3654 if (np) 3655 optv6 = rcu_dereference_protected(np->opt, 3656 sock_owned_by_user(sk)); 3657 if (optv6) 3658 overhead += (optv6->opt_flen + optv6->opt_nflen); 3659 return overhead; 3660 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3661 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3662 return overhead; 3663 } 3664 } 3665 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3666