xref: /openbmc/linux/net/socket.c (revision f47a3ca2)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 
355 	if (dname) {
356 		name.name = dname;
357 		name.len = strlen(name.name);
358 	} else if (sock->sk) {
359 		name.name = sock->sk->sk_prot_creator->name;
360 		name.len = strlen(name.name);
361 	}
362 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 	if (unlikely(!path.dentry))
364 		return ERR_PTR(-ENOMEM);
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(IS_ERR(file))) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		return file;
377 	}
378 
379 	sock->file = file;
380 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 	file->private_data = sock;
382 	return file;
383 }
384 EXPORT_SYMBOL(sock_alloc_file);
385 
386 static int sock_map_fd(struct socket *sock, int flags)
387 {
388 	struct file *newfile;
389 	int fd = get_unused_fd_flags(flags);
390 	if (unlikely(fd < 0))
391 		return fd;
392 
393 	newfile = sock_alloc_file(sock, flags, NULL);
394 	if (likely(!IS_ERR(newfile))) {
395 		fd_install(fd, newfile);
396 		return fd;
397 	}
398 
399 	put_unused_fd(fd);
400 	return PTR_ERR(newfile);
401 }
402 
403 struct socket *sock_from_file(struct file *file, int *err)
404 {
405 	if (file->f_op == &socket_file_ops)
406 		return file->private_data;	/* set in sock_map_fd */
407 
408 	*err = -ENOTSOCK;
409 	return NULL;
410 }
411 EXPORT_SYMBOL(sock_from_file);
412 
413 /**
414  *	sockfd_lookup - Go from a file number to its socket slot
415  *	@fd: file handle
416  *	@err: pointer to an error code return
417  *
418  *	The file handle passed in is locked and the socket it is bound
419  *	too is returned. If an error occurs the err pointer is overwritten
420  *	with a negative errno code and NULL is returned. The function checks
421  *	for both invalid handles and passing a handle which is not a socket.
422  *
423  *	On a success the socket object pointer is returned.
424  */
425 
426 struct socket *sockfd_lookup(int fd, int *err)
427 {
428 	struct file *file;
429 	struct socket *sock;
430 
431 	file = fget(fd);
432 	if (!file) {
433 		*err = -EBADF;
434 		return NULL;
435 	}
436 
437 	sock = sock_from_file(file, err);
438 	if (!sock)
439 		fput(file);
440 	return sock;
441 }
442 EXPORT_SYMBOL(sockfd_lookup);
443 
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445 {
446 	struct file *file;
447 	struct socket *sock;
448 
449 	*err = -EBADF;
450 	file = fget_light(fd, fput_needed);
451 	if (file) {
452 		sock = sock_from_file(file, err);
453 		if (sock)
454 			return sock;
455 		fput_light(file, *fput_needed);
456 	}
457 	return NULL;
458 }
459 
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 			       const char *name, void *value, size_t size)
465 {
466 	const char *proto_name;
467 	size_t proto_size;
468 	int error;
469 
470 	error = -ENODATA;
471 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 		proto_name = dentry->d_name.name;
473 		proto_size = strlen(proto_name);
474 
475 		if (value) {
476 			error = -ERANGE;
477 			if (proto_size + 1 > size)
478 				goto out;
479 
480 			strncpy(value, proto_name, proto_size + 1);
481 		}
482 		error = proto_size + 1;
483 	}
484 
485 out:
486 	return error;
487 }
488 
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 				size_t size)
491 {
492 	ssize_t len;
493 	ssize_t used = 0;
494 
495 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 	if (len < 0)
497 		return len;
498 	used += len;
499 	if (buffer) {
500 		if (size < used)
501 			return -ERANGE;
502 		buffer += len;
503 	}
504 
505 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 		buffer += len;
512 	}
513 
514 	return used;
515 }
516 
517 static const struct inode_operations sockfs_inode_ops = {
518 	.getxattr = sockfs_getxattr,
519 	.listxattr = sockfs_listxattr,
520 };
521 
522 /**
523  *	sock_alloc	-	allocate a socket
524  *
525  *	Allocate a new inode and socket object. The two are bound together
526  *	and initialised. The socket is then returned. If we are out of inodes
527  *	NULL is returned.
528  */
529 
530 static struct socket *sock_alloc(void)
531 {
532 	struct inode *inode;
533 	struct socket *sock;
534 
535 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 	if (!inode)
537 		return NULL;
538 
539 	sock = SOCKET_I(inode);
540 
541 	kmemcheck_annotate_bitfield(sock, type);
542 	inode->i_ino = get_next_ino();
543 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 	inode->i_uid = current_fsuid();
545 	inode->i_gid = current_fsgid();
546 	inode->i_op = &sockfs_inode_ops;
547 
548 	this_cpu_add(sockets_in_use, 1);
549 	return sock;
550 }
551 
552 /*
553  *	In theory you can't get an open on this inode, but /proc provides
554  *	a back door. Remember to keep it shut otherwise you'll let the
555  *	creepy crawlies in.
556  */
557 
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
559 {
560 	return -ENXIO;
561 }
562 
563 const struct file_operations bad_sock_fops = {
564 	.owner = THIS_MODULE,
565 	.open = sock_no_open,
566 	.llseek = noop_llseek,
567 };
568 
569 /**
570  *	sock_release	-	close a socket
571  *	@sock: socket to close
572  *
573  *	The socket is released from the protocol stack if it has a release
574  *	callback, and the inode is then released if the socket is bound to
575  *	an inode not a file.
576  */
577 
578 void sock_release(struct socket *sock)
579 {
580 	if (sock->ops) {
581 		struct module *owner = sock->ops->owner;
582 
583 		sock->ops->release(sock);
584 		sock->ops = NULL;
585 		module_put(owner);
586 	}
587 
588 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
590 
591 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 		return;
593 
594 	this_cpu_sub(sockets_in_use, 1);
595 	if (!sock->file) {
596 		iput(SOCK_INODE(sock));
597 		return;
598 	}
599 	sock->file = NULL;
600 }
601 EXPORT_SYMBOL(sock_release);
602 
603 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
604 {
605 	*tx_flags = 0;
606 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 		*tx_flags |= SKBTX_HW_TSTAMP;
608 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 		*tx_flags |= SKBTX_SW_TSTAMP;
610 	if (sock_flag(sk, SOCK_WIFI_STATUS))
611 		*tx_flags |= SKBTX_WIFI_STATUS;
612 }
613 EXPORT_SYMBOL(sock_tx_timestamp);
614 
615 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
616 				       struct msghdr *msg, size_t size)
617 {
618 	struct sock_iocb *si = kiocb_to_siocb(iocb);
619 
620 	si->sock = sock;
621 	si->scm = NULL;
622 	si->msg = msg;
623 	si->size = size;
624 
625 	return sock->ops->sendmsg(iocb, sock, msg, size);
626 }
627 
628 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
629 				 struct msghdr *msg, size_t size)
630 {
631 	int err = security_socket_sendmsg(sock, msg, size);
632 
633 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
634 }
635 
636 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
637 {
638 	struct kiocb iocb;
639 	struct sock_iocb siocb;
640 	int ret;
641 
642 	init_sync_kiocb(&iocb, NULL);
643 	iocb.private = &siocb;
644 	ret = __sock_sendmsg(&iocb, sock, msg, size);
645 	if (-EIOCBQUEUED == ret)
646 		ret = wait_on_sync_kiocb(&iocb);
647 	return ret;
648 }
649 EXPORT_SYMBOL(sock_sendmsg);
650 
651 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
652 {
653 	struct kiocb iocb;
654 	struct sock_iocb siocb;
655 	int ret;
656 
657 	init_sync_kiocb(&iocb, NULL);
658 	iocb.private = &siocb;
659 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
660 	if (-EIOCBQUEUED == ret)
661 		ret = wait_on_sync_kiocb(&iocb);
662 	return ret;
663 }
664 
665 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
666 		   struct kvec *vec, size_t num, size_t size)
667 {
668 	mm_segment_t oldfs = get_fs();
669 	int result;
670 
671 	set_fs(KERNEL_DS);
672 	/*
673 	 * the following is safe, since for compiler definitions of kvec and
674 	 * iovec are identical, yielding the same in-core layout and alignment
675 	 */
676 	msg->msg_iov = (struct iovec *)vec;
677 	msg->msg_iovlen = num;
678 	result = sock_sendmsg(sock, msg, size);
679 	set_fs(oldfs);
680 	return result;
681 }
682 EXPORT_SYMBOL(kernel_sendmsg);
683 
684 /*
685  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
686  */
687 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
688 	struct sk_buff *skb)
689 {
690 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
691 	struct timespec ts[3];
692 	int empty = 1;
693 	struct skb_shared_hwtstamps *shhwtstamps =
694 		skb_hwtstamps(skb);
695 
696 	/* Race occurred between timestamp enabling and packet
697 	   receiving.  Fill in the current time for now. */
698 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
699 		__net_timestamp(skb);
700 
701 	if (need_software_tstamp) {
702 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
703 			struct timeval tv;
704 			skb_get_timestamp(skb, &tv);
705 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
706 				 sizeof(tv), &tv);
707 		} else {
708 			skb_get_timestampns(skb, &ts[0]);
709 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
710 				 sizeof(ts[0]), &ts[0]);
711 		}
712 	}
713 
714 
715 	memset(ts, 0, sizeof(ts));
716 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
717 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
718 		empty = 0;
719 	if (shhwtstamps) {
720 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
721 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
722 			empty = 0;
723 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
724 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
725 			empty = 0;
726 	}
727 	if (!empty)
728 		put_cmsg(msg, SOL_SOCKET,
729 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
730 }
731 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
732 
733 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
734 	struct sk_buff *skb)
735 {
736 	int ack;
737 
738 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
739 		return;
740 	if (!skb->wifi_acked_valid)
741 		return;
742 
743 	ack = skb->wifi_acked;
744 
745 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
746 }
747 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
748 
749 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
750 				   struct sk_buff *skb)
751 {
752 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
753 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
754 			sizeof(__u32), &skb->dropcount);
755 }
756 
757 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
758 	struct sk_buff *skb)
759 {
760 	sock_recv_timestamp(msg, sk, skb);
761 	sock_recv_drops(msg, sk, skb);
762 }
763 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
764 
765 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
766 				       struct msghdr *msg, size_t size, int flags)
767 {
768 	struct sock_iocb *si = kiocb_to_siocb(iocb);
769 
770 	si->sock = sock;
771 	si->scm = NULL;
772 	si->msg = msg;
773 	si->size = size;
774 	si->flags = flags;
775 
776 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
777 }
778 
779 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
780 				 struct msghdr *msg, size_t size, int flags)
781 {
782 	int err = security_socket_recvmsg(sock, msg, size, flags);
783 
784 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
785 }
786 
787 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
788 		 size_t size, int flags)
789 {
790 	struct kiocb iocb;
791 	struct sock_iocb siocb;
792 	int ret;
793 
794 	init_sync_kiocb(&iocb, NULL);
795 	iocb.private = &siocb;
796 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
797 	if (-EIOCBQUEUED == ret)
798 		ret = wait_on_sync_kiocb(&iocb);
799 	return ret;
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802 
803 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 			      size_t size, int flags)
805 {
806 	struct kiocb iocb;
807 	struct sock_iocb siocb;
808 	int ret;
809 
810 	init_sync_kiocb(&iocb, NULL);
811 	iocb.private = &siocb;
812 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
813 	if (-EIOCBQUEUED == ret)
814 		ret = wait_on_sync_kiocb(&iocb);
815 	return ret;
816 }
817 
818 /**
819  * kernel_recvmsg - Receive a message from a socket (kernel space)
820  * @sock:       The socket to receive the message from
821  * @msg:        Received message
822  * @vec:        Input s/g array for message data
823  * @num:        Size of input s/g array
824  * @size:       Number of bytes to read
825  * @flags:      Message flags (MSG_DONTWAIT, etc...)
826  *
827  * On return the msg structure contains the scatter/gather array passed in the
828  * vec argument. The array is modified so that it consists of the unfilled
829  * portion of the original array.
830  *
831  * The returned value is the total number of bytes received, or an error.
832  */
833 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
834 		   struct kvec *vec, size_t num, size_t size, int flags)
835 {
836 	mm_segment_t oldfs = get_fs();
837 	int result;
838 
839 	set_fs(KERNEL_DS);
840 	/*
841 	 * the following is safe, since for compiler definitions of kvec and
842 	 * iovec are identical, yielding the same in-core layout and alignment
843 	 */
844 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
845 	result = sock_recvmsg(sock, msg, size, flags);
846 	set_fs(oldfs);
847 	return result;
848 }
849 EXPORT_SYMBOL(kernel_recvmsg);
850 
851 static void sock_aio_dtor(struct kiocb *iocb)
852 {
853 	kfree(iocb->private);
854 }
855 
856 static ssize_t sock_sendpage(struct file *file, struct page *page,
857 			     int offset, size_t size, loff_t *ppos, int more)
858 {
859 	struct socket *sock;
860 	int flags;
861 
862 	sock = file->private_data;
863 
864 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
865 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866 	flags |= more;
867 
868 	return kernel_sendpage(sock, page, offset, size, flags);
869 }
870 
871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
872 				struct pipe_inode_info *pipe, size_t len,
873 				unsigned int flags)
874 {
875 	struct socket *sock = file->private_data;
876 
877 	if (unlikely(!sock->ops->splice_read))
878 		return -EINVAL;
879 
880 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
881 }
882 
883 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
884 					 struct sock_iocb *siocb)
885 {
886 	if (!is_sync_kiocb(iocb)) {
887 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
888 		if (!siocb)
889 			return NULL;
890 		iocb->ki_dtor = sock_aio_dtor;
891 	}
892 
893 	siocb->kiocb = iocb;
894 	iocb->private = siocb;
895 	return siocb;
896 }
897 
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 		struct file *file, const struct iovec *iov,
900 		unsigned long nr_segs)
901 {
902 	struct socket *sock = file->private_data;
903 	size_t size = 0;
904 	int i;
905 
906 	for (i = 0; i < nr_segs; i++)
907 		size += iov[i].iov_len;
908 
909 	msg->msg_name = NULL;
910 	msg->msg_namelen = 0;
911 	msg->msg_control = NULL;
912 	msg->msg_controllen = 0;
913 	msg->msg_iov = (struct iovec *)iov;
914 	msg->msg_iovlen = nr_segs;
915 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916 
917 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 }
919 
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 				unsigned long nr_segs, loff_t pos)
922 {
923 	struct sock_iocb siocb, *x;
924 
925 	if (pos != 0)
926 		return -ESPIPE;
927 
928 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
929 		return 0;
930 
931 
932 	x = alloc_sock_iocb(iocb, &siocb);
933 	if (!x)
934 		return -ENOMEM;
935 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 }
937 
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 			struct file *file, const struct iovec *iov,
940 			unsigned long nr_segs)
941 {
942 	struct socket *sock = file->private_data;
943 	size_t size = 0;
944 	int i;
945 
946 	for (i = 0; i < nr_segs; i++)
947 		size += iov[i].iov_len;
948 
949 	msg->msg_name = NULL;
950 	msg->msg_namelen = 0;
951 	msg->msg_control = NULL;
952 	msg->msg_controllen = 0;
953 	msg->msg_iov = (struct iovec *)iov;
954 	msg->msg_iovlen = nr_segs;
955 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 	if (sock->type == SOCK_SEQPACKET)
957 		msg->msg_flags |= MSG_EOR;
958 
959 	return __sock_sendmsg(iocb, sock, msg, size);
960 }
961 
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 			  unsigned long nr_segs, loff_t pos)
964 {
965 	struct sock_iocb siocb, *x;
966 
967 	if (pos != 0)
968 		return -ESPIPE;
969 
970 	x = alloc_sock_iocb(iocb, &siocb);
971 	if (!x)
972 		return -ENOMEM;
973 
974 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976 
977 /*
978  * Atomic setting of ioctl hooks to avoid race
979  * with module unload.
980  */
981 
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984 
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 	mutex_lock(&br_ioctl_mutex);
988 	br_ioctl_hook = hook;
989 	mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992 
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995 
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 	mutex_lock(&vlan_ioctl_mutex);
999 	vlan_ioctl_hook = hook;
1000 	mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003 
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006 
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 	mutex_lock(&dlci_ioctl_mutex);
1010 	dlci_ioctl_hook = hook;
1011 	mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014 
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 				 unsigned int cmd, unsigned long arg)
1017 {
1018 	int err;
1019 	void __user *argp = (void __user *)arg;
1020 
1021 	err = sock->ops->ioctl(sock, cmd, arg);
1022 
1023 	/*
1024 	 * If this ioctl is unknown try to hand it down
1025 	 * to the NIC driver.
1026 	 */
1027 	if (err == -ENOIOCTLCMD)
1028 		err = dev_ioctl(net, cmd, argp);
1029 
1030 	return err;
1031 }
1032 
1033 /*
1034  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035  *	what to do with it - that's up to the protocol still.
1036  */
1037 
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 	struct socket *sock;
1041 	struct sock *sk;
1042 	void __user *argp = (void __user *)arg;
1043 	int pid, err;
1044 	struct net *net;
1045 
1046 	sock = file->private_data;
1047 	sk = sock->sk;
1048 	net = sock_net(sk);
1049 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 		err = dev_ioctl(net, cmd, argp);
1051 	} else
1052 #ifdef CONFIG_WEXT_CORE
1053 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 		err = dev_ioctl(net, cmd, argp);
1055 	} else
1056 #endif
1057 		switch (cmd) {
1058 		case FIOSETOWN:
1059 		case SIOCSPGRP:
1060 			err = -EFAULT;
1061 			if (get_user(pid, (int __user *)argp))
1062 				break;
1063 			err = f_setown(sock->file, pid, 1);
1064 			break;
1065 		case FIOGETOWN:
1066 		case SIOCGPGRP:
1067 			err = put_user(f_getown(sock->file),
1068 				       (int __user *)argp);
1069 			break;
1070 		case SIOCGIFBR:
1071 		case SIOCSIFBR:
1072 		case SIOCBRADDBR:
1073 		case SIOCBRDELBR:
1074 			err = -ENOPKG;
1075 			if (!br_ioctl_hook)
1076 				request_module("bridge");
1077 
1078 			mutex_lock(&br_ioctl_mutex);
1079 			if (br_ioctl_hook)
1080 				err = br_ioctl_hook(net, cmd, argp);
1081 			mutex_unlock(&br_ioctl_mutex);
1082 			break;
1083 		case SIOCGIFVLAN:
1084 		case SIOCSIFVLAN:
1085 			err = -ENOPKG;
1086 			if (!vlan_ioctl_hook)
1087 				request_module("8021q");
1088 
1089 			mutex_lock(&vlan_ioctl_mutex);
1090 			if (vlan_ioctl_hook)
1091 				err = vlan_ioctl_hook(net, argp);
1092 			mutex_unlock(&vlan_ioctl_mutex);
1093 			break;
1094 		case SIOCADDDLCI:
1095 		case SIOCDELDLCI:
1096 			err = -ENOPKG;
1097 			if (!dlci_ioctl_hook)
1098 				request_module("dlci");
1099 
1100 			mutex_lock(&dlci_ioctl_mutex);
1101 			if (dlci_ioctl_hook)
1102 				err = dlci_ioctl_hook(cmd, argp);
1103 			mutex_unlock(&dlci_ioctl_mutex);
1104 			break;
1105 		default:
1106 			err = sock_do_ioctl(net, sock, cmd, arg);
1107 			break;
1108 		}
1109 	return err;
1110 }
1111 
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113 {
1114 	int err;
1115 	struct socket *sock = NULL;
1116 
1117 	err = security_socket_create(family, type, protocol, 1);
1118 	if (err)
1119 		goto out;
1120 
1121 	sock = sock_alloc();
1122 	if (!sock) {
1123 		err = -ENOMEM;
1124 		goto out;
1125 	}
1126 
1127 	sock->type = type;
1128 	err = security_socket_post_create(sock, family, type, protocol, 1);
1129 	if (err)
1130 		goto out_release;
1131 
1132 out:
1133 	*res = sock;
1134 	return err;
1135 out_release:
1136 	sock_release(sock);
1137 	sock = NULL;
1138 	goto out;
1139 }
1140 EXPORT_SYMBOL(sock_create_lite);
1141 
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1144 {
1145 	struct socket *sock;
1146 
1147 	/*
1148 	 *      We can't return errors to poll, so it's either yes or no.
1149 	 */
1150 	sock = file->private_data;
1151 	return sock->ops->poll(file, sock, wait);
1152 }
1153 
1154 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1155 {
1156 	struct socket *sock = file->private_data;
1157 
1158 	return sock->ops->mmap(file, sock, vma);
1159 }
1160 
1161 static int sock_close(struct inode *inode, struct file *filp)
1162 {
1163 	sock_release(SOCKET_I(inode));
1164 	return 0;
1165 }
1166 
1167 /*
1168  *	Update the socket async list
1169  *
1170  *	Fasync_list locking strategy.
1171  *
1172  *	1. fasync_list is modified only under process context socket lock
1173  *	   i.e. under semaphore.
1174  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1175  *	   or under socket lock
1176  */
1177 
1178 static int sock_fasync(int fd, struct file *filp, int on)
1179 {
1180 	struct socket *sock = filp->private_data;
1181 	struct sock *sk = sock->sk;
1182 	struct socket_wq *wq;
1183 
1184 	if (sk == NULL)
1185 		return -EINVAL;
1186 
1187 	lock_sock(sk);
1188 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1189 	fasync_helper(fd, filp, on, &wq->fasync_list);
1190 
1191 	if (!wq->fasync_list)
1192 		sock_reset_flag(sk, SOCK_FASYNC);
1193 	else
1194 		sock_set_flag(sk, SOCK_FASYNC);
1195 
1196 	release_sock(sk);
1197 	return 0;
1198 }
1199 
1200 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1201 
1202 int sock_wake_async(struct socket *sock, int how, int band)
1203 {
1204 	struct socket_wq *wq;
1205 
1206 	if (!sock)
1207 		return -1;
1208 	rcu_read_lock();
1209 	wq = rcu_dereference(sock->wq);
1210 	if (!wq || !wq->fasync_list) {
1211 		rcu_read_unlock();
1212 		return -1;
1213 	}
1214 	switch (how) {
1215 	case SOCK_WAKE_WAITD:
1216 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1217 			break;
1218 		goto call_kill;
1219 	case SOCK_WAKE_SPACE:
1220 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1221 			break;
1222 		/* fall through */
1223 	case SOCK_WAKE_IO:
1224 call_kill:
1225 		kill_fasync(&wq->fasync_list, SIGIO, band);
1226 		break;
1227 	case SOCK_WAKE_URG:
1228 		kill_fasync(&wq->fasync_list, SIGURG, band);
1229 	}
1230 	rcu_read_unlock();
1231 	return 0;
1232 }
1233 EXPORT_SYMBOL(sock_wake_async);
1234 
1235 int __sock_create(struct net *net, int family, int type, int protocol,
1236 			 struct socket **res, int kern)
1237 {
1238 	int err;
1239 	struct socket *sock;
1240 	const struct net_proto_family *pf;
1241 
1242 	/*
1243 	 *      Check protocol is in range
1244 	 */
1245 	if (family < 0 || family >= NPROTO)
1246 		return -EAFNOSUPPORT;
1247 	if (type < 0 || type >= SOCK_MAX)
1248 		return -EINVAL;
1249 
1250 	/* Compatibility.
1251 
1252 	   This uglymoron is moved from INET layer to here to avoid
1253 	   deadlock in module load.
1254 	 */
1255 	if (family == PF_INET && type == SOCK_PACKET) {
1256 		static int warned;
1257 		if (!warned) {
1258 			warned = 1;
1259 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1260 			       current->comm);
1261 		}
1262 		family = PF_PACKET;
1263 	}
1264 
1265 	err = security_socket_create(family, type, protocol, kern);
1266 	if (err)
1267 		return err;
1268 
1269 	/*
1270 	 *	Allocate the socket and allow the family to set things up. if
1271 	 *	the protocol is 0, the family is instructed to select an appropriate
1272 	 *	default.
1273 	 */
1274 	sock = sock_alloc();
1275 	if (!sock) {
1276 		net_warn_ratelimited("socket: no more sockets\n");
1277 		return -ENFILE;	/* Not exactly a match, but its the
1278 				   closest posix thing */
1279 	}
1280 
1281 	sock->type = type;
1282 
1283 #ifdef CONFIG_MODULES
1284 	/* Attempt to load a protocol module if the find failed.
1285 	 *
1286 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287 	 * requested real, full-featured networking support upon configuration.
1288 	 * Otherwise module support will break!
1289 	 */
1290 	if (rcu_access_pointer(net_families[family]) == NULL)
1291 		request_module("net-pf-%d", family);
1292 #endif
1293 
1294 	rcu_read_lock();
1295 	pf = rcu_dereference(net_families[family]);
1296 	err = -EAFNOSUPPORT;
1297 	if (!pf)
1298 		goto out_release;
1299 
1300 	/*
1301 	 * We will call the ->create function, that possibly is in a loadable
1302 	 * module, so we have to bump that loadable module refcnt first.
1303 	 */
1304 	if (!try_module_get(pf->owner))
1305 		goto out_release;
1306 
1307 	/* Now protected by module ref count */
1308 	rcu_read_unlock();
1309 
1310 	err = pf->create(net, sock, protocol, kern);
1311 	if (err < 0)
1312 		goto out_module_put;
1313 
1314 	/*
1315 	 * Now to bump the refcnt of the [loadable] module that owns this
1316 	 * socket at sock_release time we decrement its refcnt.
1317 	 */
1318 	if (!try_module_get(sock->ops->owner))
1319 		goto out_module_busy;
1320 
1321 	/*
1322 	 * Now that we're done with the ->create function, the [loadable]
1323 	 * module can have its refcnt decremented
1324 	 */
1325 	module_put(pf->owner);
1326 	err = security_socket_post_create(sock, family, type, protocol, kern);
1327 	if (err)
1328 		goto out_sock_release;
1329 	*res = sock;
1330 
1331 	return 0;
1332 
1333 out_module_busy:
1334 	err = -EAFNOSUPPORT;
1335 out_module_put:
1336 	sock->ops = NULL;
1337 	module_put(pf->owner);
1338 out_sock_release:
1339 	sock_release(sock);
1340 	return err;
1341 
1342 out_release:
1343 	rcu_read_unlock();
1344 	goto out_sock_release;
1345 }
1346 EXPORT_SYMBOL(__sock_create);
1347 
1348 int sock_create(int family, int type, int protocol, struct socket **res)
1349 {
1350 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1351 }
1352 EXPORT_SYMBOL(sock_create);
1353 
1354 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1355 {
1356 	return __sock_create(&init_net, family, type, protocol, res, 1);
1357 }
1358 EXPORT_SYMBOL(sock_create_kern);
1359 
1360 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1361 {
1362 	int retval;
1363 	struct socket *sock;
1364 	int flags;
1365 
1366 	/* Check the SOCK_* constants for consistency.  */
1367 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1371 
1372 	flags = type & ~SOCK_TYPE_MASK;
1373 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 		return -EINVAL;
1375 	type &= SOCK_TYPE_MASK;
1376 
1377 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379 
1380 	retval = sock_create(family, type, protocol, &sock);
1381 	if (retval < 0)
1382 		goto out;
1383 
1384 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385 	if (retval < 0)
1386 		goto out_release;
1387 
1388 out:
1389 	/* It may be already another descriptor 8) Not kernel problem. */
1390 	return retval;
1391 
1392 out_release:
1393 	sock_release(sock);
1394 	return retval;
1395 }
1396 
1397 /*
1398  *	Create a pair of connected sockets.
1399  */
1400 
1401 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1402 		int __user *, usockvec)
1403 {
1404 	struct socket *sock1, *sock2;
1405 	int fd1, fd2, err;
1406 	struct file *newfile1, *newfile2;
1407 	int flags;
1408 
1409 	flags = type & ~SOCK_TYPE_MASK;
1410 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1411 		return -EINVAL;
1412 	type &= SOCK_TYPE_MASK;
1413 
1414 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1415 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1416 
1417 	/*
1418 	 * Obtain the first socket and check if the underlying protocol
1419 	 * supports the socketpair call.
1420 	 */
1421 
1422 	err = sock_create(family, type, protocol, &sock1);
1423 	if (err < 0)
1424 		goto out;
1425 
1426 	err = sock_create(family, type, protocol, &sock2);
1427 	if (err < 0)
1428 		goto out_release_1;
1429 
1430 	err = sock1->ops->socketpair(sock1, sock2);
1431 	if (err < 0)
1432 		goto out_release_both;
1433 
1434 	fd1 = get_unused_fd_flags(flags);
1435 	if (unlikely(fd1 < 0)) {
1436 		err = fd1;
1437 		goto out_release_both;
1438 	}
1439 	fd2 = get_unused_fd_flags(flags);
1440 	if (unlikely(fd2 < 0)) {
1441 		err = fd2;
1442 		put_unused_fd(fd1);
1443 		goto out_release_both;
1444 	}
1445 
1446 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1447 	if (unlikely(IS_ERR(newfile1))) {
1448 		err = PTR_ERR(newfile1);
1449 		put_unused_fd(fd1);
1450 		put_unused_fd(fd2);
1451 		goto out_release_both;
1452 	}
1453 
1454 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1455 	if (IS_ERR(newfile2)) {
1456 		err = PTR_ERR(newfile2);
1457 		fput(newfile1);
1458 		put_unused_fd(fd1);
1459 		put_unused_fd(fd2);
1460 		sock_release(sock2);
1461 		goto out;
1462 	}
1463 
1464 	audit_fd_pair(fd1, fd2);
1465 	fd_install(fd1, newfile1);
1466 	fd_install(fd2, newfile2);
1467 	/* fd1 and fd2 may be already another descriptors.
1468 	 * Not kernel problem.
1469 	 */
1470 
1471 	err = put_user(fd1, &usockvec[0]);
1472 	if (!err)
1473 		err = put_user(fd2, &usockvec[1]);
1474 	if (!err)
1475 		return 0;
1476 
1477 	sys_close(fd2);
1478 	sys_close(fd1);
1479 	return err;
1480 
1481 out_release_both:
1482 	sock_release(sock2);
1483 out_release_1:
1484 	sock_release(sock1);
1485 out:
1486 	return err;
1487 }
1488 
1489 /*
1490  *	Bind a name to a socket. Nothing much to do here since it's
1491  *	the protocol's responsibility to handle the local address.
1492  *
1493  *	We move the socket address to kernel space before we call
1494  *	the protocol layer (having also checked the address is ok).
1495  */
1496 
1497 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1498 {
1499 	struct socket *sock;
1500 	struct sockaddr_storage address;
1501 	int err, fput_needed;
1502 
1503 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1504 	if (sock) {
1505 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1506 		if (err >= 0) {
1507 			err = security_socket_bind(sock,
1508 						   (struct sockaddr *)&address,
1509 						   addrlen);
1510 			if (!err)
1511 				err = sock->ops->bind(sock,
1512 						      (struct sockaddr *)
1513 						      &address, addrlen);
1514 		}
1515 		fput_light(sock->file, fput_needed);
1516 	}
1517 	return err;
1518 }
1519 
1520 /*
1521  *	Perform a listen. Basically, we allow the protocol to do anything
1522  *	necessary for a listen, and if that works, we mark the socket as
1523  *	ready for listening.
1524  */
1525 
1526 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1527 {
1528 	struct socket *sock;
1529 	int err, fput_needed;
1530 	int somaxconn;
1531 
1532 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 	if (sock) {
1534 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1535 		if ((unsigned int)backlog > somaxconn)
1536 			backlog = somaxconn;
1537 
1538 		err = security_socket_listen(sock, backlog);
1539 		if (!err)
1540 			err = sock->ops->listen(sock, backlog);
1541 
1542 		fput_light(sock->file, fput_needed);
1543 	}
1544 	return err;
1545 }
1546 
1547 /*
1548  *	For accept, we attempt to create a new socket, set up the link
1549  *	with the client, wake up the client, then return the new
1550  *	connected fd. We collect the address of the connector in kernel
1551  *	space and move it to user at the very end. This is unclean because
1552  *	we open the socket then return an error.
1553  *
1554  *	1003.1g adds the ability to recvmsg() to query connection pending
1555  *	status to recvmsg. We need to add that support in a way thats
1556  *	clean when we restucture accept also.
1557  */
1558 
1559 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1560 		int __user *, upeer_addrlen, int, flags)
1561 {
1562 	struct socket *sock, *newsock;
1563 	struct file *newfile;
1564 	int err, len, newfd, fput_needed;
1565 	struct sockaddr_storage address;
1566 
1567 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1568 		return -EINVAL;
1569 
1570 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1571 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1572 
1573 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1574 	if (!sock)
1575 		goto out;
1576 
1577 	err = -ENFILE;
1578 	newsock = sock_alloc();
1579 	if (!newsock)
1580 		goto out_put;
1581 
1582 	newsock->type = sock->type;
1583 	newsock->ops = sock->ops;
1584 
1585 	/*
1586 	 * We don't need try_module_get here, as the listening socket (sock)
1587 	 * has the protocol module (sock->ops->owner) held.
1588 	 */
1589 	__module_get(newsock->ops->owner);
1590 
1591 	newfd = get_unused_fd_flags(flags);
1592 	if (unlikely(newfd < 0)) {
1593 		err = newfd;
1594 		sock_release(newsock);
1595 		goto out_put;
1596 	}
1597 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1598 	if (unlikely(IS_ERR(newfile))) {
1599 		err = PTR_ERR(newfile);
1600 		put_unused_fd(newfd);
1601 		sock_release(newsock);
1602 		goto out_put;
1603 	}
1604 
1605 	err = security_socket_accept(sock, newsock);
1606 	if (err)
1607 		goto out_fd;
1608 
1609 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1610 	if (err < 0)
1611 		goto out_fd;
1612 
1613 	if (upeer_sockaddr) {
1614 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1615 					  &len, 2) < 0) {
1616 			err = -ECONNABORTED;
1617 			goto out_fd;
1618 		}
1619 		err = move_addr_to_user(&address,
1620 					len, upeer_sockaddr, upeer_addrlen);
1621 		if (err < 0)
1622 			goto out_fd;
1623 	}
1624 
1625 	/* File flags are not inherited via accept() unlike another OSes. */
1626 
1627 	fd_install(newfd, newfile);
1628 	err = newfd;
1629 
1630 out_put:
1631 	fput_light(sock->file, fput_needed);
1632 out:
1633 	return err;
1634 out_fd:
1635 	fput(newfile);
1636 	put_unused_fd(newfd);
1637 	goto out_put;
1638 }
1639 
1640 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1641 		int __user *, upeer_addrlen)
1642 {
1643 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1644 }
1645 
1646 /*
1647  *	Attempt to connect to a socket with the server address.  The address
1648  *	is in user space so we verify it is OK and move it to kernel space.
1649  *
1650  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1651  *	break bindings
1652  *
1653  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1654  *	other SEQPACKET protocols that take time to connect() as it doesn't
1655  *	include the -EINPROGRESS status for such sockets.
1656  */
1657 
1658 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1659 		int, addrlen)
1660 {
1661 	struct socket *sock;
1662 	struct sockaddr_storage address;
1663 	int err, fput_needed;
1664 
1665 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666 	if (!sock)
1667 		goto out;
1668 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1669 	if (err < 0)
1670 		goto out_put;
1671 
1672 	err =
1673 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1674 	if (err)
1675 		goto out_put;
1676 
1677 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1678 				 sock->file->f_flags);
1679 out_put:
1680 	fput_light(sock->file, fput_needed);
1681 out:
1682 	return err;
1683 }
1684 
1685 /*
1686  *	Get the local address ('name') of a socket object. Move the obtained
1687  *	name to user space.
1688  */
1689 
1690 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1691 		int __user *, usockaddr_len)
1692 {
1693 	struct socket *sock;
1694 	struct sockaddr_storage address;
1695 	int len, err, fput_needed;
1696 
1697 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 	if (!sock)
1699 		goto out;
1700 
1701 	err = security_socket_getsockname(sock);
1702 	if (err)
1703 		goto out_put;
1704 
1705 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1706 	if (err)
1707 		goto out_put;
1708 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1709 
1710 out_put:
1711 	fput_light(sock->file, fput_needed);
1712 out:
1713 	return err;
1714 }
1715 
1716 /*
1717  *	Get the remote address ('name') of a socket object. Move the obtained
1718  *	name to user space.
1719  */
1720 
1721 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1722 		int __user *, usockaddr_len)
1723 {
1724 	struct socket *sock;
1725 	struct sockaddr_storage address;
1726 	int len, err, fput_needed;
1727 
1728 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 	if (sock != NULL) {
1730 		err = security_socket_getpeername(sock);
1731 		if (err) {
1732 			fput_light(sock->file, fput_needed);
1733 			return err;
1734 		}
1735 
1736 		err =
1737 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1738 				       1);
1739 		if (!err)
1740 			err = move_addr_to_user(&address, len, usockaddr,
1741 						usockaddr_len);
1742 		fput_light(sock->file, fput_needed);
1743 	}
1744 	return err;
1745 }
1746 
1747 /*
1748  *	Send a datagram to a given address. We move the address into kernel
1749  *	space and check the user space data area is readable before invoking
1750  *	the protocol.
1751  */
1752 
1753 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1754 		unsigned int, flags, struct sockaddr __user *, addr,
1755 		int, addr_len)
1756 {
1757 	struct socket *sock;
1758 	struct sockaddr_storage address;
1759 	int err;
1760 	struct msghdr msg;
1761 	struct iovec iov;
1762 	int fput_needed;
1763 
1764 	if (len > INT_MAX)
1765 		len = INT_MAX;
1766 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 	if (!sock)
1768 		goto out;
1769 
1770 	iov.iov_base = buff;
1771 	iov.iov_len = len;
1772 	msg.msg_name = NULL;
1773 	msg.msg_iov = &iov;
1774 	msg.msg_iovlen = 1;
1775 	msg.msg_control = NULL;
1776 	msg.msg_controllen = 0;
1777 	msg.msg_namelen = 0;
1778 	if (addr) {
1779 		err = move_addr_to_kernel(addr, addr_len, &address);
1780 		if (err < 0)
1781 			goto out_put;
1782 		msg.msg_name = (struct sockaddr *)&address;
1783 		msg.msg_namelen = addr_len;
1784 	}
1785 	if (sock->file->f_flags & O_NONBLOCK)
1786 		flags |= MSG_DONTWAIT;
1787 	msg.msg_flags = flags;
1788 	err = sock_sendmsg(sock, &msg, len);
1789 
1790 out_put:
1791 	fput_light(sock->file, fput_needed);
1792 out:
1793 	return err;
1794 }
1795 
1796 /*
1797  *	Send a datagram down a socket.
1798  */
1799 
1800 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1801 		unsigned int, flags)
1802 {
1803 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1804 }
1805 
1806 /*
1807  *	Receive a frame from the socket and optionally record the address of the
1808  *	sender. We verify the buffers are writable and if needed move the
1809  *	sender address from kernel to user space.
1810  */
1811 
1812 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1813 		unsigned int, flags, struct sockaddr __user *, addr,
1814 		int __user *, addr_len)
1815 {
1816 	struct socket *sock;
1817 	struct iovec iov;
1818 	struct msghdr msg;
1819 	struct sockaddr_storage address;
1820 	int err, err2;
1821 	int fput_needed;
1822 
1823 	if (size > INT_MAX)
1824 		size = INT_MAX;
1825 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 	if (!sock)
1827 		goto out;
1828 
1829 	msg.msg_control = NULL;
1830 	msg.msg_controllen = 0;
1831 	msg.msg_iovlen = 1;
1832 	msg.msg_iov = &iov;
1833 	iov.iov_len = size;
1834 	iov.iov_base = ubuf;
1835 	msg.msg_name = (struct sockaddr *)&address;
1836 	msg.msg_namelen = sizeof(address);
1837 	if (sock->file->f_flags & O_NONBLOCK)
1838 		flags |= MSG_DONTWAIT;
1839 	err = sock_recvmsg(sock, &msg, size, flags);
1840 
1841 	if (err >= 0 && addr != NULL) {
1842 		err2 = move_addr_to_user(&address,
1843 					 msg.msg_namelen, addr, addr_len);
1844 		if (err2 < 0)
1845 			err = err2;
1846 	}
1847 
1848 	fput_light(sock->file, fput_needed);
1849 out:
1850 	return err;
1851 }
1852 
1853 /*
1854  *	Receive a datagram from a socket.
1855  */
1856 
1857 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1858 			 unsigned int flags)
1859 {
1860 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1861 }
1862 
1863 /*
1864  *	Set a socket option. Because we don't know the option lengths we have
1865  *	to pass the user mode parameter for the protocols to sort out.
1866  */
1867 
1868 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1869 		char __user *, optval, int, optlen)
1870 {
1871 	int err, fput_needed;
1872 	struct socket *sock;
1873 
1874 	if (optlen < 0)
1875 		return -EINVAL;
1876 
1877 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 	if (sock != NULL) {
1879 		err = security_socket_setsockopt(sock, level, optname);
1880 		if (err)
1881 			goto out_put;
1882 
1883 		if (level == SOL_SOCKET)
1884 			err =
1885 			    sock_setsockopt(sock, level, optname, optval,
1886 					    optlen);
1887 		else
1888 			err =
1889 			    sock->ops->setsockopt(sock, level, optname, optval,
1890 						  optlen);
1891 out_put:
1892 		fput_light(sock->file, fput_needed);
1893 	}
1894 	return err;
1895 }
1896 
1897 /*
1898  *	Get a socket option. Because we don't know the option lengths we have
1899  *	to pass a user mode parameter for the protocols to sort out.
1900  */
1901 
1902 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1903 		char __user *, optval, int __user *, optlen)
1904 {
1905 	int err, fput_needed;
1906 	struct socket *sock;
1907 
1908 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 	if (sock != NULL) {
1910 		err = security_socket_getsockopt(sock, level, optname);
1911 		if (err)
1912 			goto out_put;
1913 
1914 		if (level == SOL_SOCKET)
1915 			err =
1916 			    sock_getsockopt(sock, level, optname, optval,
1917 					    optlen);
1918 		else
1919 			err =
1920 			    sock->ops->getsockopt(sock, level, optname, optval,
1921 						  optlen);
1922 out_put:
1923 		fput_light(sock->file, fput_needed);
1924 	}
1925 	return err;
1926 }
1927 
1928 /*
1929  *	Shutdown a socket.
1930  */
1931 
1932 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1933 {
1934 	int err, fput_needed;
1935 	struct socket *sock;
1936 
1937 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 	if (sock != NULL) {
1939 		err = security_socket_shutdown(sock, how);
1940 		if (!err)
1941 			err = sock->ops->shutdown(sock, how);
1942 		fput_light(sock->file, fput_needed);
1943 	}
1944 	return err;
1945 }
1946 
1947 /* A couple of helpful macros for getting the address of the 32/64 bit
1948  * fields which are the same type (int / unsigned) on our platforms.
1949  */
1950 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1951 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1952 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1953 
1954 struct used_address {
1955 	struct sockaddr_storage name;
1956 	unsigned int name_len;
1957 };
1958 
1959 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1960 			 struct msghdr *msg_sys, unsigned int flags,
1961 			 struct used_address *used_address)
1962 {
1963 	struct compat_msghdr __user *msg_compat =
1964 	    (struct compat_msghdr __user *)msg;
1965 	struct sockaddr_storage address;
1966 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1969 	/* 20 is size of ipv6_pktinfo */
1970 	unsigned char *ctl_buf = ctl;
1971 	int err, ctl_len, total_len;
1972 
1973 	err = -EFAULT;
1974 	if (MSG_CMSG_COMPAT & flags) {
1975 		if (get_compat_msghdr(msg_sys, msg_compat))
1976 			return -EFAULT;
1977 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1978 		return -EFAULT;
1979 
1980 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1981 		err = -EMSGSIZE;
1982 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1983 			goto out;
1984 		err = -ENOMEM;
1985 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1986 			      GFP_KERNEL);
1987 		if (!iov)
1988 			goto out;
1989 	}
1990 
1991 	/* This will also move the address data into kernel space */
1992 	if (MSG_CMSG_COMPAT & flags) {
1993 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1994 	} else
1995 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1996 	if (err < 0)
1997 		goto out_freeiov;
1998 	total_len = err;
1999 
2000 	err = -ENOBUFS;
2001 
2002 	if (msg_sys->msg_controllen > INT_MAX)
2003 		goto out_freeiov;
2004 	ctl_len = msg_sys->msg_controllen;
2005 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006 		err =
2007 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2008 						     sizeof(ctl));
2009 		if (err)
2010 			goto out_freeiov;
2011 		ctl_buf = msg_sys->msg_control;
2012 		ctl_len = msg_sys->msg_controllen;
2013 	} else if (ctl_len) {
2014 		if (ctl_len > sizeof(ctl)) {
2015 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016 			if (ctl_buf == NULL)
2017 				goto out_freeiov;
2018 		}
2019 		err = -EFAULT;
2020 		/*
2021 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023 		 * checking falls down on this.
2024 		 */
2025 		if (copy_from_user(ctl_buf,
2026 				   (void __user __force *)msg_sys->msg_control,
2027 				   ctl_len))
2028 			goto out_freectl;
2029 		msg_sys->msg_control = ctl_buf;
2030 	}
2031 	msg_sys->msg_flags = flags;
2032 
2033 	if (sock->file->f_flags & O_NONBLOCK)
2034 		msg_sys->msg_flags |= MSG_DONTWAIT;
2035 	/*
2036 	 * If this is sendmmsg() and current destination address is same as
2037 	 * previously succeeded address, omit asking LSM's decision.
2038 	 * used_address->name_len is initialized to UINT_MAX so that the first
2039 	 * destination address never matches.
2040 	 */
2041 	if (used_address && msg_sys->msg_name &&
2042 	    used_address->name_len == msg_sys->msg_namelen &&
2043 	    !memcmp(&used_address->name, msg_sys->msg_name,
2044 		    used_address->name_len)) {
2045 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2046 		goto out_freectl;
2047 	}
2048 	err = sock_sendmsg(sock, msg_sys, total_len);
2049 	/*
2050 	 * If this is sendmmsg() and sending to current destination address was
2051 	 * successful, remember it.
2052 	 */
2053 	if (used_address && err >= 0) {
2054 		used_address->name_len = msg_sys->msg_namelen;
2055 		if (msg_sys->msg_name)
2056 			memcpy(&used_address->name, msg_sys->msg_name,
2057 			       used_address->name_len);
2058 	}
2059 
2060 out_freectl:
2061 	if (ctl_buf != ctl)
2062 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063 out_freeiov:
2064 	if (iov != iovstack)
2065 		kfree(iov);
2066 out:
2067 	return err;
2068 }
2069 
2070 /*
2071  *	BSD sendmsg interface
2072  */
2073 
2074 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2075 {
2076 	int fput_needed, err;
2077 	struct msghdr msg_sys;
2078 	struct socket *sock;
2079 
2080 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2081 	if (!sock)
2082 		goto out;
2083 
2084 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2085 
2086 	fput_light(sock->file, fput_needed);
2087 out:
2088 	return err;
2089 }
2090 
2091 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2092 {
2093 	if (flags & MSG_CMSG_COMPAT)
2094 		return -EINVAL;
2095 	return __sys_sendmsg(fd, msg, flags);
2096 }
2097 
2098 /*
2099  *	Linux sendmmsg interface
2100  */
2101 
2102 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2103 		   unsigned int flags)
2104 {
2105 	int fput_needed, err, datagrams;
2106 	struct socket *sock;
2107 	struct mmsghdr __user *entry;
2108 	struct compat_mmsghdr __user *compat_entry;
2109 	struct msghdr msg_sys;
2110 	struct used_address used_address;
2111 
2112 	if (vlen > UIO_MAXIOV)
2113 		vlen = UIO_MAXIOV;
2114 
2115 	datagrams = 0;
2116 
2117 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118 	if (!sock)
2119 		return err;
2120 
2121 	used_address.name_len = UINT_MAX;
2122 	entry = mmsg;
2123 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2124 	err = 0;
2125 
2126 	while (datagrams < vlen) {
2127 		if (MSG_CMSG_COMPAT & flags) {
2128 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2129 					     &msg_sys, flags, &used_address);
2130 			if (err < 0)
2131 				break;
2132 			err = __put_user(err, &compat_entry->msg_len);
2133 			++compat_entry;
2134 		} else {
2135 			err = ___sys_sendmsg(sock,
2136 					     (struct msghdr __user *)entry,
2137 					     &msg_sys, flags, &used_address);
2138 			if (err < 0)
2139 				break;
2140 			err = put_user(err, &entry->msg_len);
2141 			++entry;
2142 		}
2143 
2144 		if (err)
2145 			break;
2146 		++datagrams;
2147 	}
2148 
2149 	fput_light(sock->file, fput_needed);
2150 
2151 	/* We only return an error if no datagrams were able to be sent */
2152 	if (datagrams != 0)
2153 		return datagrams;
2154 
2155 	return err;
2156 }
2157 
2158 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2159 		unsigned int, vlen, unsigned int, flags)
2160 {
2161 	if (flags & MSG_CMSG_COMPAT)
2162 		return -EINVAL;
2163 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2164 }
2165 
2166 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2167 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2168 {
2169 	struct compat_msghdr __user *msg_compat =
2170 	    (struct compat_msghdr __user *)msg;
2171 	struct iovec iovstack[UIO_FASTIOV];
2172 	struct iovec *iov = iovstack;
2173 	unsigned long cmsg_ptr;
2174 	int err, total_len, len;
2175 
2176 	/* kernel mode address */
2177 	struct sockaddr_storage addr;
2178 
2179 	/* user mode address pointers */
2180 	struct sockaddr __user *uaddr;
2181 	int __user *uaddr_len;
2182 
2183 	if (MSG_CMSG_COMPAT & flags) {
2184 		if (get_compat_msghdr(msg_sys, msg_compat))
2185 			return -EFAULT;
2186 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2187 		return -EFAULT;
2188 
2189 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2190 		err = -EMSGSIZE;
2191 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2192 			goto out;
2193 		err = -ENOMEM;
2194 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2195 			      GFP_KERNEL);
2196 		if (!iov)
2197 			goto out;
2198 	}
2199 
2200 	/*
2201 	 *      Save the user-mode address (verify_iovec will change the
2202 	 *      kernel msghdr to use the kernel address space)
2203 	 */
2204 
2205 	uaddr = (__force void __user *)msg_sys->msg_name;
2206 	uaddr_len = COMPAT_NAMELEN(msg);
2207 	if (MSG_CMSG_COMPAT & flags) {
2208 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2209 	} else
2210 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2211 	if (err < 0)
2212 		goto out_freeiov;
2213 	total_len = err;
2214 
2215 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2216 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2217 
2218 	if (sock->file->f_flags & O_NONBLOCK)
2219 		flags |= MSG_DONTWAIT;
2220 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2221 							  total_len, flags);
2222 	if (err < 0)
2223 		goto out_freeiov;
2224 	len = err;
2225 
2226 	if (uaddr != NULL) {
2227 		err = move_addr_to_user(&addr,
2228 					msg_sys->msg_namelen, uaddr,
2229 					uaddr_len);
2230 		if (err < 0)
2231 			goto out_freeiov;
2232 	}
2233 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2234 			 COMPAT_FLAGS(msg));
2235 	if (err)
2236 		goto out_freeiov;
2237 	if (MSG_CMSG_COMPAT & flags)
2238 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2239 				 &msg_compat->msg_controllen);
2240 	else
2241 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242 				 &msg->msg_controllen);
2243 	if (err)
2244 		goto out_freeiov;
2245 	err = len;
2246 
2247 out_freeiov:
2248 	if (iov != iovstack)
2249 		kfree(iov);
2250 out:
2251 	return err;
2252 }
2253 
2254 /*
2255  *	BSD recvmsg interface
2256  */
2257 
2258 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2259 {
2260 	int fput_needed, err;
2261 	struct msghdr msg_sys;
2262 	struct socket *sock;
2263 
2264 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2265 	if (!sock)
2266 		goto out;
2267 
2268 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2269 
2270 	fput_light(sock->file, fput_needed);
2271 out:
2272 	return err;
2273 }
2274 
2275 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2276 		unsigned int, flags)
2277 {
2278 	if (flags & MSG_CMSG_COMPAT)
2279 		return -EINVAL;
2280 	return __sys_recvmsg(fd, msg, flags);
2281 }
2282 
2283 /*
2284  *     Linux recvmmsg interface
2285  */
2286 
2287 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2288 		   unsigned int flags, struct timespec *timeout)
2289 {
2290 	int fput_needed, err, datagrams;
2291 	struct socket *sock;
2292 	struct mmsghdr __user *entry;
2293 	struct compat_mmsghdr __user *compat_entry;
2294 	struct msghdr msg_sys;
2295 	struct timespec end_time;
2296 
2297 	if (timeout &&
2298 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2299 				    timeout->tv_nsec))
2300 		return -EINVAL;
2301 
2302 	datagrams = 0;
2303 
2304 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2305 	if (!sock)
2306 		return err;
2307 
2308 	err = sock_error(sock->sk);
2309 	if (err)
2310 		goto out_put;
2311 
2312 	entry = mmsg;
2313 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2314 
2315 	while (datagrams < vlen) {
2316 		/*
2317 		 * No need to ask LSM for more than the first datagram.
2318 		 */
2319 		if (MSG_CMSG_COMPAT & flags) {
2320 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2321 					     &msg_sys, flags & ~MSG_WAITFORONE,
2322 					     datagrams);
2323 			if (err < 0)
2324 				break;
2325 			err = __put_user(err, &compat_entry->msg_len);
2326 			++compat_entry;
2327 		} else {
2328 			err = ___sys_recvmsg(sock,
2329 					     (struct msghdr __user *)entry,
2330 					     &msg_sys, flags & ~MSG_WAITFORONE,
2331 					     datagrams);
2332 			if (err < 0)
2333 				break;
2334 			err = put_user(err, &entry->msg_len);
2335 			++entry;
2336 		}
2337 
2338 		if (err)
2339 			break;
2340 		++datagrams;
2341 
2342 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2343 		if (flags & MSG_WAITFORONE)
2344 			flags |= MSG_DONTWAIT;
2345 
2346 		if (timeout) {
2347 			ktime_get_ts(timeout);
2348 			*timeout = timespec_sub(end_time, *timeout);
2349 			if (timeout->tv_sec < 0) {
2350 				timeout->tv_sec = timeout->tv_nsec = 0;
2351 				break;
2352 			}
2353 
2354 			/* Timeout, return less than vlen datagrams */
2355 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2356 				break;
2357 		}
2358 
2359 		/* Out of band data, return right away */
2360 		if (msg_sys.msg_flags & MSG_OOB)
2361 			break;
2362 	}
2363 
2364 out_put:
2365 	fput_light(sock->file, fput_needed);
2366 
2367 	if (err == 0)
2368 		return datagrams;
2369 
2370 	if (datagrams != 0) {
2371 		/*
2372 		 * We may return less entries than requested (vlen) if the
2373 		 * sock is non block and there aren't enough datagrams...
2374 		 */
2375 		if (err != -EAGAIN) {
2376 			/*
2377 			 * ... or  if recvmsg returns an error after we
2378 			 * received some datagrams, where we record the
2379 			 * error to return on the next call or if the
2380 			 * app asks about it using getsockopt(SO_ERROR).
2381 			 */
2382 			sock->sk->sk_err = -err;
2383 		}
2384 
2385 		return datagrams;
2386 	}
2387 
2388 	return err;
2389 }
2390 
2391 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2392 		unsigned int, vlen, unsigned int, flags,
2393 		struct timespec __user *, timeout)
2394 {
2395 	int datagrams;
2396 	struct timespec timeout_sys;
2397 
2398 	if (flags & MSG_CMSG_COMPAT)
2399 		return -EINVAL;
2400 
2401 	if (!timeout)
2402 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2403 
2404 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2405 		return -EFAULT;
2406 
2407 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2408 
2409 	if (datagrams > 0 &&
2410 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2411 		datagrams = -EFAULT;
2412 
2413 	return datagrams;
2414 }
2415 
2416 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2417 /* Argument list sizes for sys_socketcall */
2418 #define AL(x) ((x) * sizeof(unsigned long))
2419 static const unsigned char nargs[21] = {
2420 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2421 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2422 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2423 	AL(4), AL(5), AL(4)
2424 };
2425 
2426 #undef AL
2427 
2428 /*
2429  *	System call vectors.
2430  *
2431  *	Argument checking cleaned up. Saved 20% in size.
2432  *  This function doesn't need to set the kernel lock because
2433  *  it is set by the callees.
2434  */
2435 
2436 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2437 {
2438 	unsigned long a[AUDITSC_ARGS];
2439 	unsigned long a0, a1;
2440 	int err;
2441 	unsigned int len;
2442 
2443 	if (call < 1 || call > SYS_SENDMMSG)
2444 		return -EINVAL;
2445 
2446 	len = nargs[call];
2447 	if (len > sizeof(a))
2448 		return -EINVAL;
2449 
2450 	/* copy_from_user should be SMP safe. */
2451 	if (copy_from_user(a, args, len))
2452 		return -EFAULT;
2453 
2454 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2455 	if (err)
2456 		return err;
2457 
2458 	a0 = a[0];
2459 	a1 = a[1];
2460 
2461 	switch (call) {
2462 	case SYS_SOCKET:
2463 		err = sys_socket(a0, a1, a[2]);
2464 		break;
2465 	case SYS_BIND:
2466 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2467 		break;
2468 	case SYS_CONNECT:
2469 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2470 		break;
2471 	case SYS_LISTEN:
2472 		err = sys_listen(a0, a1);
2473 		break;
2474 	case SYS_ACCEPT:
2475 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2476 				  (int __user *)a[2], 0);
2477 		break;
2478 	case SYS_GETSOCKNAME:
2479 		err =
2480 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2481 				    (int __user *)a[2]);
2482 		break;
2483 	case SYS_GETPEERNAME:
2484 		err =
2485 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2486 				    (int __user *)a[2]);
2487 		break;
2488 	case SYS_SOCKETPAIR:
2489 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2490 		break;
2491 	case SYS_SEND:
2492 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2493 		break;
2494 	case SYS_SENDTO:
2495 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2496 				 (struct sockaddr __user *)a[4], a[5]);
2497 		break;
2498 	case SYS_RECV:
2499 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2500 		break;
2501 	case SYS_RECVFROM:
2502 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2503 				   (struct sockaddr __user *)a[4],
2504 				   (int __user *)a[5]);
2505 		break;
2506 	case SYS_SHUTDOWN:
2507 		err = sys_shutdown(a0, a1);
2508 		break;
2509 	case SYS_SETSOCKOPT:
2510 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2511 		break;
2512 	case SYS_GETSOCKOPT:
2513 		err =
2514 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2515 				   (int __user *)a[4]);
2516 		break;
2517 	case SYS_SENDMSG:
2518 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2519 		break;
2520 	case SYS_SENDMMSG:
2521 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2522 		break;
2523 	case SYS_RECVMSG:
2524 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2525 		break;
2526 	case SYS_RECVMMSG:
2527 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2528 				   (struct timespec __user *)a[4]);
2529 		break;
2530 	case SYS_ACCEPT4:
2531 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532 				  (int __user *)a[2], a[3]);
2533 		break;
2534 	default:
2535 		err = -EINVAL;
2536 		break;
2537 	}
2538 	return err;
2539 }
2540 
2541 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2542 
2543 /**
2544  *	sock_register - add a socket protocol handler
2545  *	@ops: description of protocol
2546  *
2547  *	This function is called by a protocol handler that wants to
2548  *	advertise its address family, and have it linked into the
2549  *	socket interface. The value ops->family coresponds to the
2550  *	socket system call protocol family.
2551  */
2552 int sock_register(const struct net_proto_family *ops)
2553 {
2554 	int err;
2555 
2556 	if (ops->family >= NPROTO) {
2557 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2558 		       NPROTO);
2559 		return -ENOBUFS;
2560 	}
2561 
2562 	spin_lock(&net_family_lock);
2563 	if (rcu_dereference_protected(net_families[ops->family],
2564 				      lockdep_is_held(&net_family_lock)))
2565 		err = -EEXIST;
2566 	else {
2567 		rcu_assign_pointer(net_families[ops->family], ops);
2568 		err = 0;
2569 	}
2570 	spin_unlock(&net_family_lock);
2571 
2572 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2573 	return err;
2574 }
2575 EXPORT_SYMBOL(sock_register);
2576 
2577 /**
2578  *	sock_unregister - remove a protocol handler
2579  *	@family: protocol family to remove
2580  *
2581  *	This function is called by a protocol handler that wants to
2582  *	remove its address family, and have it unlinked from the
2583  *	new socket creation.
2584  *
2585  *	If protocol handler is a module, then it can use module reference
2586  *	counts to protect against new references. If protocol handler is not
2587  *	a module then it needs to provide its own protection in
2588  *	the ops->create routine.
2589  */
2590 void sock_unregister(int family)
2591 {
2592 	BUG_ON(family < 0 || family >= NPROTO);
2593 
2594 	spin_lock(&net_family_lock);
2595 	RCU_INIT_POINTER(net_families[family], NULL);
2596 	spin_unlock(&net_family_lock);
2597 
2598 	synchronize_rcu();
2599 
2600 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2601 }
2602 EXPORT_SYMBOL(sock_unregister);
2603 
2604 static int __init sock_init(void)
2605 {
2606 	int err;
2607 	/*
2608 	 *      Initialize the network sysctl infrastructure.
2609 	 */
2610 	err = net_sysctl_init();
2611 	if (err)
2612 		goto out;
2613 
2614 	/*
2615 	 *      Initialize skbuff SLAB cache
2616 	 */
2617 	skb_init();
2618 
2619 	/*
2620 	 *      Initialize the protocols module.
2621 	 */
2622 
2623 	init_inodecache();
2624 
2625 	err = register_filesystem(&sock_fs_type);
2626 	if (err)
2627 		goto out_fs;
2628 	sock_mnt = kern_mount(&sock_fs_type);
2629 	if (IS_ERR(sock_mnt)) {
2630 		err = PTR_ERR(sock_mnt);
2631 		goto out_mount;
2632 	}
2633 
2634 	/* The real protocol initialization is performed in later initcalls.
2635 	 */
2636 
2637 #ifdef CONFIG_NETFILTER
2638 	netfilter_init();
2639 #endif
2640 
2641 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2642 	skb_timestamping_init();
2643 #endif
2644 
2645 out:
2646 	return err;
2647 
2648 out_mount:
2649 	unregister_filesystem(&sock_fs_type);
2650 out_fs:
2651 	goto out;
2652 }
2653 
2654 core_initcall(sock_init);	/* early initcall */
2655 
2656 #ifdef CONFIG_PROC_FS
2657 void socket_seq_show(struct seq_file *seq)
2658 {
2659 	int cpu;
2660 	int counter = 0;
2661 
2662 	for_each_possible_cpu(cpu)
2663 	    counter += per_cpu(sockets_in_use, cpu);
2664 
2665 	/* It can be negative, by the way. 8) */
2666 	if (counter < 0)
2667 		counter = 0;
2668 
2669 	seq_printf(seq, "sockets: used %d\n", counter);
2670 }
2671 #endif				/* CONFIG_PROC_FS */
2672 
2673 #ifdef CONFIG_COMPAT
2674 static int do_siocgstamp(struct net *net, struct socket *sock,
2675 			 unsigned int cmd, void __user *up)
2676 {
2677 	mm_segment_t old_fs = get_fs();
2678 	struct timeval ktv;
2679 	int err;
2680 
2681 	set_fs(KERNEL_DS);
2682 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2683 	set_fs(old_fs);
2684 	if (!err)
2685 		err = compat_put_timeval(&ktv, up);
2686 
2687 	return err;
2688 }
2689 
2690 static int do_siocgstampns(struct net *net, struct socket *sock,
2691 			   unsigned int cmd, void __user *up)
2692 {
2693 	mm_segment_t old_fs = get_fs();
2694 	struct timespec kts;
2695 	int err;
2696 
2697 	set_fs(KERNEL_DS);
2698 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2699 	set_fs(old_fs);
2700 	if (!err)
2701 		err = compat_put_timespec(&kts, up);
2702 
2703 	return err;
2704 }
2705 
2706 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2707 {
2708 	struct ifreq __user *uifr;
2709 	int err;
2710 
2711 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2712 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2713 		return -EFAULT;
2714 
2715 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2716 	if (err)
2717 		return err;
2718 
2719 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2720 		return -EFAULT;
2721 
2722 	return 0;
2723 }
2724 
2725 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2726 {
2727 	struct compat_ifconf ifc32;
2728 	struct ifconf ifc;
2729 	struct ifconf __user *uifc;
2730 	struct compat_ifreq __user *ifr32;
2731 	struct ifreq __user *ifr;
2732 	unsigned int i, j;
2733 	int err;
2734 
2735 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2736 		return -EFAULT;
2737 
2738 	memset(&ifc, 0, sizeof(ifc));
2739 	if (ifc32.ifcbuf == 0) {
2740 		ifc32.ifc_len = 0;
2741 		ifc.ifc_len = 0;
2742 		ifc.ifc_req = NULL;
2743 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2744 	} else {
2745 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2746 			sizeof(struct ifreq);
2747 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2748 		ifc.ifc_len = len;
2749 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2750 		ifr32 = compat_ptr(ifc32.ifcbuf);
2751 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2752 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2753 				return -EFAULT;
2754 			ifr++;
2755 			ifr32++;
2756 		}
2757 	}
2758 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2759 		return -EFAULT;
2760 
2761 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2762 	if (err)
2763 		return err;
2764 
2765 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2766 		return -EFAULT;
2767 
2768 	ifr = ifc.ifc_req;
2769 	ifr32 = compat_ptr(ifc32.ifcbuf);
2770 	for (i = 0, j = 0;
2771 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2772 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2773 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2774 			return -EFAULT;
2775 		ifr32++;
2776 		ifr++;
2777 	}
2778 
2779 	if (ifc32.ifcbuf == 0) {
2780 		/* Translate from 64-bit structure multiple to
2781 		 * a 32-bit one.
2782 		 */
2783 		i = ifc.ifc_len;
2784 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2785 		ifc32.ifc_len = i;
2786 	} else {
2787 		ifc32.ifc_len = i;
2788 	}
2789 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2790 		return -EFAULT;
2791 
2792 	return 0;
2793 }
2794 
2795 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2796 {
2797 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2798 	bool convert_in = false, convert_out = false;
2799 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2800 	struct ethtool_rxnfc __user *rxnfc;
2801 	struct ifreq __user *ifr;
2802 	u32 rule_cnt = 0, actual_rule_cnt;
2803 	u32 ethcmd;
2804 	u32 data;
2805 	int ret;
2806 
2807 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2808 		return -EFAULT;
2809 
2810 	compat_rxnfc = compat_ptr(data);
2811 
2812 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2813 		return -EFAULT;
2814 
2815 	/* Most ethtool structures are defined without padding.
2816 	 * Unfortunately struct ethtool_rxnfc is an exception.
2817 	 */
2818 	switch (ethcmd) {
2819 	default:
2820 		break;
2821 	case ETHTOOL_GRXCLSRLALL:
2822 		/* Buffer size is variable */
2823 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2824 			return -EFAULT;
2825 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2826 			return -ENOMEM;
2827 		buf_size += rule_cnt * sizeof(u32);
2828 		/* fall through */
2829 	case ETHTOOL_GRXRINGS:
2830 	case ETHTOOL_GRXCLSRLCNT:
2831 	case ETHTOOL_GRXCLSRULE:
2832 	case ETHTOOL_SRXCLSRLINS:
2833 		convert_out = true;
2834 		/* fall through */
2835 	case ETHTOOL_SRXCLSRLDEL:
2836 		buf_size += sizeof(struct ethtool_rxnfc);
2837 		convert_in = true;
2838 		break;
2839 	}
2840 
2841 	ifr = compat_alloc_user_space(buf_size);
2842 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2843 
2844 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2845 		return -EFAULT;
2846 
2847 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2848 		     &ifr->ifr_ifru.ifru_data))
2849 		return -EFAULT;
2850 
2851 	if (convert_in) {
2852 		/* We expect there to be holes between fs.m_ext and
2853 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2854 		 */
2855 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2856 			     sizeof(compat_rxnfc->fs.m_ext) !=
2857 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2858 			     sizeof(rxnfc->fs.m_ext));
2859 		BUILD_BUG_ON(
2860 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2861 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2862 			offsetof(struct ethtool_rxnfc, fs.location) -
2863 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2864 
2865 		if (copy_in_user(rxnfc, compat_rxnfc,
2866 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2867 				 (void __user *)rxnfc) ||
2868 		    copy_in_user(&rxnfc->fs.ring_cookie,
2869 				 &compat_rxnfc->fs.ring_cookie,
2870 				 (void __user *)(&rxnfc->fs.location + 1) -
2871 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2872 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2873 				 sizeof(rxnfc->rule_cnt)))
2874 			return -EFAULT;
2875 	}
2876 
2877 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2878 	if (ret)
2879 		return ret;
2880 
2881 	if (convert_out) {
2882 		if (copy_in_user(compat_rxnfc, rxnfc,
2883 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2884 				 (const void __user *)rxnfc) ||
2885 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2886 				 &rxnfc->fs.ring_cookie,
2887 				 (const void __user *)(&rxnfc->fs.location + 1) -
2888 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2889 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2890 				 sizeof(rxnfc->rule_cnt)))
2891 			return -EFAULT;
2892 
2893 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2894 			/* As an optimisation, we only copy the actual
2895 			 * number of rules that the underlying
2896 			 * function returned.  Since Mallory might
2897 			 * change the rule count in user memory, we
2898 			 * check that it is less than the rule count
2899 			 * originally given (as the user buffer size),
2900 			 * which has been range-checked.
2901 			 */
2902 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2903 				return -EFAULT;
2904 			if (actual_rule_cnt < rule_cnt)
2905 				rule_cnt = actual_rule_cnt;
2906 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2907 					 &rxnfc->rule_locs[0],
2908 					 rule_cnt * sizeof(u32)))
2909 				return -EFAULT;
2910 		}
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2917 {
2918 	void __user *uptr;
2919 	compat_uptr_t uptr32;
2920 	struct ifreq __user *uifr;
2921 
2922 	uifr = compat_alloc_user_space(sizeof(*uifr));
2923 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2924 		return -EFAULT;
2925 
2926 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2927 		return -EFAULT;
2928 
2929 	uptr = compat_ptr(uptr32);
2930 
2931 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2932 		return -EFAULT;
2933 
2934 	return dev_ioctl(net, SIOCWANDEV, uifr);
2935 }
2936 
2937 static int bond_ioctl(struct net *net, unsigned int cmd,
2938 			 struct compat_ifreq __user *ifr32)
2939 {
2940 	struct ifreq kifr;
2941 	struct ifreq __user *uifr;
2942 	mm_segment_t old_fs;
2943 	int err;
2944 	u32 data;
2945 	void __user *datap;
2946 
2947 	switch (cmd) {
2948 	case SIOCBONDENSLAVE:
2949 	case SIOCBONDRELEASE:
2950 	case SIOCBONDSETHWADDR:
2951 	case SIOCBONDCHANGEACTIVE:
2952 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2953 			return -EFAULT;
2954 
2955 		old_fs = get_fs();
2956 		set_fs(KERNEL_DS);
2957 		err = dev_ioctl(net, cmd,
2958 				(struct ifreq __user __force *) &kifr);
2959 		set_fs(old_fs);
2960 
2961 		return err;
2962 	case SIOCBONDSLAVEINFOQUERY:
2963 	case SIOCBONDINFOQUERY:
2964 		uifr = compat_alloc_user_space(sizeof(*uifr));
2965 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2966 			return -EFAULT;
2967 
2968 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2969 			return -EFAULT;
2970 
2971 		datap = compat_ptr(data);
2972 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2973 			return -EFAULT;
2974 
2975 		return dev_ioctl(net, cmd, uifr);
2976 	default:
2977 		return -ENOIOCTLCMD;
2978 	}
2979 }
2980 
2981 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2982 				 struct compat_ifreq __user *u_ifreq32)
2983 {
2984 	struct ifreq __user *u_ifreq64;
2985 	char tmp_buf[IFNAMSIZ];
2986 	void __user *data64;
2987 	u32 data32;
2988 
2989 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2990 			   IFNAMSIZ))
2991 		return -EFAULT;
2992 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2993 		return -EFAULT;
2994 	data64 = compat_ptr(data32);
2995 
2996 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2997 
2998 	/* Don't check these user accesses, just let that get trapped
2999 	 * in the ioctl handler instead.
3000 	 */
3001 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3002 			 IFNAMSIZ))
3003 		return -EFAULT;
3004 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3005 		return -EFAULT;
3006 
3007 	return dev_ioctl(net, cmd, u_ifreq64);
3008 }
3009 
3010 static int dev_ifsioc(struct net *net, struct socket *sock,
3011 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3012 {
3013 	struct ifreq __user *uifr;
3014 	int err;
3015 
3016 	uifr = compat_alloc_user_space(sizeof(*uifr));
3017 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3018 		return -EFAULT;
3019 
3020 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3021 
3022 	if (!err) {
3023 		switch (cmd) {
3024 		case SIOCGIFFLAGS:
3025 		case SIOCGIFMETRIC:
3026 		case SIOCGIFMTU:
3027 		case SIOCGIFMEM:
3028 		case SIOCGIFHWADDR:
3029 		case SIOCGIFINDEX:
3030 		case SIOCGIFADDR:
3031 		case SIOCGIFBRDADDR:
3032 		case SIOCGIFDSTADDR:
3033 		case SIOCGIFNETMASK:
3034 		case SIOCGIFPFLAGS:
3035 		case SIOCGIFTXQLEN:
3036 		case SIOCGMIIPHY:
3037 		case SIOCGMIIREG:
3038 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3039 				err = -EFAULT;
3040 			break;
3041 		}
3042 	}
3043 	return err;
3044 }
3045 
3046 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3047 			struct compat_ifreq __user *uifr32)
3048 {
3049 	struct ifreq ifr;
3050 	struct compat_ifmap __user *uifmap32;
3051 	mm_segment_t old_fs;
3052 	int err;
3053 
3054 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3055 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3056 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3057 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3058 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3059 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3060 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3061 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3062 	if (err)
3063 		return -EFAULT;
3064 
3065 	old_fs = get_fs();
3066 	set_fs(KERNEL_DS);
3067 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3068 	set_fs(old_fs);
3069 
3070 	if (cmd == SIOCGIFMAP && !err) {
3071 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3072 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3073 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3074 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3075 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3076 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3077 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3078 		if (err)
3079 			err = -EFAULT;
3080 	}
3081 	return err;
3082 }
3083 
3084 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3085 {
3086 	void __user *uptr;
3087 	compat_uptr_t uptr32;
3088 	struct ifreq __user *uifr;
3089 
3090 	uifr = compat_alloc_user_space(sizeof(*uifr));
3091 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3092 		return -EFAULT;
3093 
3094 	if (get_user(uptr32, &uifr32->ifr_data))
3095 		return -EFAULT;
3096 
3097 	uptr = compat_ptr(uptr32);
3098 
3099 	if (put_user(uptr, &uifr->ifr_data))
3100 		return -EFAULT;
3101 
3102 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3103 }
3104 
3105 struct rtentry32 {
3106 	u32		rt_pad1;
3107 	struct sockaddr rt_dst;         /* target address               */
3108 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3109 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3110 	unsigned short	rt_flags;
3111 	short		rt_pad2;
3112 	u32		rt_pad3;
3113 	unsigned char	rt_tos;
3114 	unsigned char	rt_class;
3115 	short		rt_pad4;
3116 	short		rt_metric;      /* +1 for binary compatibility! */
3117 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3118 	u32		rt_mtu;         /* per route MTU/Window         */
3119 	u32		rt_window;      /* Window clamping              */
3120 	unsigned short  rt_irtt;        /* Initial RTT                  */
3121 };
3122 
3123 struct in6_rtmsg32 {
3124 	struct in6_addr		rtmsg_dst;
3125 	struct in6_addr		rtmsg_src;
3126 	struct in6_addr		rtmsg_gateway;
3127 	u32			rtmsg_type;
3128 	u16			rtmsg_dst_len;
3129 	u16			rtmsg_src_len;
3130 	u32			rtmsg_metric;
3131 	u32			rtmsg_info;
3132 	u32			rtmsg_flags;
3133 	s32			rtmsg_ifindex;
3134 };
3135 
3136 static int routing_ioctl(struct net *net, struct socket *sock,
3137 			 unsigned int cmd, void __user *argp)
3138 {
3139 	int ret;
3140 	void *r = NULL;
3141 	struct in6_rtmsg r6;
3142 	struct rtentry r4;
3143 	char devname[16];
3144 	u32 rtdev;
3145 	mm_segment_t old_fs = get_fs();
3146 
3147 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3148 		struct in6_rtmsg32 __user *ur6 = argp;
3149 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3150 			3 * sizeof(struct in6_addr));
3151 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3152 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3153 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3154 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3155 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3156 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3157 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3158 
3159 		r = (void *) &r6;
3160 	} else { /* ipv4 */
3161 		struct rtentry32 __user *ur4 = argp;
3162 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3163 					3 * sizeof(struct sockaddr));
3164 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3165 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3166 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3167 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3168 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3169 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3170 		if (rtdev) {
3171 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3172 			r4.rt_dev = (char __user __force *)devname;
3173 			devname[15] = 0;
3174 		} else
3175 			r4.rt_dev = NULL;
3176 
3177 		r = (void *) &r4;
3178 	}
3179 
3180 	if (ret) {
3181 		ret = -EFAULT;
3182 		goto out;
3183 	}
3184 
3185 	set_fs(KERNEL_DS);
3186 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3187 	set_fs(old_fs);
3188 
3189 out:
3190 	return ret;
3191 }
3192 
3193 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3194  * for some operations; this forces use of the newer bridge-utils that
3195  * use compatible ioctls
3196  */
3197 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3198 {
3199 	compat_ulong_t tmp;
3200 
3201 	if (get_user(tmp, argp))
3202 		return -EFAULT;
3203 	if (tmp == BRCTL_GET_VERSION)
3204 		return BRCTL_VERSION + 1;
3205 	return -EINVAL;
3206 }
3207 
3208 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3209 			 unsigned int cmd, unsigned long arg)
3210 {
3211 	void __user *argp = compat_ptr(arg);
3212 	struct sock *sk = sock->sk;
3213 	struct net *net = sock_net(sk);
3214 
3215 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3216 		return siocdevprivate_ioctl(net, cmd, argp);
3217 
3218 	switch (cmd) {
3219 	case SIOCSIFBR:
3220 	case SIOCGIFBR:
3221 		return old_bridge_ioctl(argp);
3222 	case SIOCGIFNAME:
3223 		return dev_ifname32(net, argp);
3224 	case SIOCGIFCONF:
3225 		return dev_ifconf(net, argp);
3226 	case SIOCETHTOOL:
3227 		return ethtool_ioctl(net, argp);
3228 	case SIOCWANDEV:
3229 		return compat_siocwandev(net, argp);
3230 	case SIOCGIFMAP:
3231 	case SIOCSIFMAP:
3232 		return compat_sioc_ifmap(net, cmd, argp);
3233 	case SIOCBONDENSLAVE:
3234 	case SIOCBONDRELEASE:
3235 	case SIOCBONDSETHWADDR:
3236 	case SIOCBONDSLAVEINFOQUERY:
3237 	case SIOCBONDINFOQUERY:
3238 	case SIOCBONDCHANGEACTIVE:
3239 		return bond_ioctl(net, cmd, argp);
3240 	case SIOCADDRT:
3241 	case SIOCDELRT:
3242 		return routing_ioctl(net, sock, cmd, argp);
3243 	case SIOCGSTAMP:
3244 		return do_siocgstamp(net, sock, cmd, argp);
3245 	case SIOCGSTAMPNS:
3246 		return do_siocgstampns(net, sock, cmd, argp);
3247 	case SIOCSHWTSTAMP:
3248 		return compat_siocshwtstamp(net, argp);
3249 
3250 	case FIOSETOWN:
3251 	case SIOCSPGRP:
3252 	case FIOGETOWN:
3253 	case SIOCGPGRP:
3254 	case SIOCBRADDBR:
3255 	case SIOCBRDELBR:
3256 	case SIOCGIFVLAN:
3257 	case SIOCSIFVLAN:
3258 	case SIOCADDDLCI:
3259 	case SIOCDELDLCI:
3260 		return sock_ioctl(file, cmd, arg);
3261 
3262 	case SIOCGIFFLAGS:
3263 	case SIOCSIFFLAGS:
3264 	case SIOCGIFMETRIC:
3265 	case SIOCSIFMETRIC:
3266 	case SIOCGIFMTU:
3267 	case SIOCSIFMTU:
3268 	case SIOCGIFMEM:
3269 	case SIOCSIFMEM:
3270 	case SIOCGIFHWADDR:
3271 	case SIOCSIFHWADDR:
3272 	case SIOCADDMULTI:
3273 	case SIOCDELMULTI:
3274 	case SIOCGIFINDEX:
3275 	case SIOCGIFADDR:
3276 	case SIOCSIFADDR:
3277 	case SIOCSIFHWBROADCAST:
3278 	case SIOCDIFADDR:
3279 	case SIOCGIFBRDADDR:
3280 	case SIOCSIFBRDADDR:
3281 	case SIOCGIFDSTADDR:
3282 	case SIOCSIFDSTADDR:
3283 	case SIOCGIFNETMASK:
3284 	case SIOCSIFNETMASK:
3285 	case SIOCSIFPFLAGS:
3286 	case SIOCGIFPFLAGS:
3287 	case SIOCGIFTXQLEN:
3288 	case SIOCSIFTXQLEN:
3289 	case SIOCBRADDIF:
3290 	case SIOCBRDELIF:
3291 	case SIOCSIFNAME:
3292 	case SIOCGMIIPHY:
3293 	case SIOCGMIIREG:
3294 	case SIOCSMIIREG:
3295 		return dev_ifsioc(net, sock, cmd, argp);
3296 
3297 	case SIOCSARP:
3298 	case SIOCGARP:
3299 	case SIOCDARP:
3300 	case SIOCATMARK:
3301 		return sock_do_ioctl(net, sock, cmd, arg);
3302 	}
3303 
3304 	return -ENOIOCTLCMD;
3305 }
3306 
3307 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3308 			      unsigned long arg)
3309 {
3310 	struct socket *sock = file->private_data;
3311 	int ret = -ENOIOCTLCMD;
3312 	struct sock *sk;
3313 	struct net *net;
3314 
3315 	sk = sock->sk;
3316 	net = sock_net(sk);
3317 
3318 	if (sock->ops->compat_ioctl)
3319 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3320 
3321 	if (ret == -ENOIOCTLCMD &&
3322 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3323 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3324 
3325 	if (ret == -ENOIOCTLCMD)
3326 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3327 
3328 	return ret;
3329 }
3330 #endif
3331 
3332 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3333 {
3334 	return sock->ops->bind(sock, addr, addrlen);
3335 }
3336 EXPORT_SYMBOL(kernel_bind);
3337 
3338 int kernel_listen(struct socket *sock, int backlog)
3339 {
3340 	return sock->ops->listen(sock, backlog);
3341 }
3342 EXPORT_SYMBOL(kernel_listen);
3343 
3344 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3345 {
3346 	struct sock *sk = sock->sk;
3347 	int err;
3348 
3349 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3350 			       newsock);
3351 	if (err < 0)
3352 		goto done;
3353 
3354 	err = sock->ops->accept(sock, *newsock, flags);
3355 	if (err < 0) {
3356 		sock_release(*newsock);
3357 		*newsock = NULL;
3358 		goto done;
3359 	}
3360 
3361 	(*newsock)->ops = sock->ops;
3362 	__module_get((*newsock)->ops->owner);
3363 
3364 done:
3365 	return err;
3366 }
3367 EXPORT_SYMBOL(kernel_accept);
3368 
3369 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3370 		   int flags)
3371 {
3372 	return sock->ops->connect(sock, addr, addrlen, flags);
3373 }
3374 EXPORT_SYMBOL(kernel_connect);
3375 
3376 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3377 			 int *addrlen)
3378 {
3379 	return sock->ops->getname(sock, addr, addrlen, 0);
3380 }
3381 EXPORT_SYMBOL(kernel_getsockname);
3382 
3383 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3384 			 int *addrlen)
3385 {
3386 	return sock->ops->getname(sock, addr, addrlen, 1);
3387 }
3388 EXPORT_SYMBOL(kernel_getpeername);
3389 
3390 int kernel_getsockopt(struct socket *sock, int level, int optname,
3391 			char *optval, int *optlen)
3392 {
3393 	mm_segment_t oldfs = get_fs();
3394 	char __user *uoptval;
3395 	int __user *uoptlen;
3396 	int err;
3397 
3398 	uoptval = (char __user __force *) optval;
3399 	uoptlen = (int __user __force *) optlen;
3400 
3401 	set_fs(KERNEL_DS);
3402 	if (level == SOL_SOCKET)
3403 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3404 	else
3405 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3406 					    uoptlen);
3407 	set_fs(oldfs);
3408 	return err;
3409 }
3410 EXPORT_SYMBOL(kernel_getsockopt);
3411 
3412 int kernel_setsockopt(struct socket *sock, int level, int optname,
3413 			char *optval, unsigned int optlen)
3414 {
3415 	mm_segment_t oldfs = get_fs();
3416 	char __user *uoptval;
3417 	int err;
3418 
3419 	uoptval = (char __user __force *) optval;
3420 
3421 	set_fs(KERNEL_DS);
3422 	if (level == SOL_SOCKET)
3423 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3424 	else
3425 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3426 					    optlen);
3427 	set_fs(oldfs);
3428 	return err;
3429 }
3430 EXPORT_SYMBOL(kernel_setsockopt);
3431 
3432 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3433 		    size_t size, int flags)
3434 {
3435 	if (sock->ops->sendpage)
3436 		return sock->ops->sendpage(sock, page, offset, size, flags);
3437 
3438 	return sock_no_sendpage(sock, page, offset, size, flags);
3439 }
3440 EXPORT_SYMBOL(kernel_sendpage);
3441 
3442 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3443 {
3444 	mm_segment_t oldfs = get_fs();
3445 	int err;
3446 
3447 	set_fs(KERNEL_DS);
3448 	err = sock->ops->ioctl(sock, cmd, arg);
3449 	set_fs(oldfs);
3450 
3451 	return err;
3452 }
3453 EXPORT_SYMBOL(kernel_sock_ioctl);
3454 
3455 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3456 {
3457 	return sock->ops->shutdown(sock, how);
3458 }
3459 EXPORT_SYMBOL(kernel_sock_shutdown);
3460