xref: /openbmc/linux/net/socket.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct user_namespace *mnt_userns,
338 				     struct dentry *dentry, struct inode *inode,
339 				     const char *suffix, const void *value,
340 				     size_t size, int flags)
341 {
342 	/* Handled by LSM. */
343 	return -EAGAIN;
344 }
345 
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 	.prefix = XATTR_SECURITY_PREFIX,
348 	.set = sockfs_security_xattr_set,
349 };
350 
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 	&sockfs_xattr_handler,
353 	&sockfs_security_xattr_handler,
354 	NULL
355 };
356 
357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 	if (!ctx)
361 		return -ENOMEM;
362 	ctx->ops = &sockfs_ops;
363 	ctx->dops = &sockfs_dentry_operations;
364 	ctx->xattr = sockfs_xattr_handlers;
365 	return 0;
366 }
367 
368 static struct vfsmount *sock_mnt __read_mostly;
369 
370 static struct file_system_type sock_fs_type = {
371 	.name =		"sockfs",
372 	.init_fs_context = sockfs_init_fs_context,
373 	.kill_sb =	kill_anon_super,
374 };
375 
376 /*
377  *	Obtains the first available file descriptor and sets it up for use.
378  *
379  *	These functions create file structures and maps them to fd space
380  *	of the current process. On success it returns file descriptor
381  *	and file struct implicitly stored in sock->file.
382  *	Note that another thread may close file descriptor before we return
383  *	from this function. We use the fact that now we do not refer
384  *	to socket after mapping. If one day we will need it, this
385  *	function will increment ref. count on file by 1.
386  *
387  *	In any case returned fd MAY BE not valid!
388  *	This race condition is unavoidable
389  *	with shared fd spaces, we cannot solve it inside kernel,
390  *	but we take care of internal coherence yet.
391  */
392 
393 /**
394  *	sock_alloc_file - Bind a &socket to a &file
395  *	@sock: socket
396  *	@flags: file status flags
397  *	@dname: protocol name
398  *
399  *	Returns the &file bound with @sock, implicitly storing it
400  *	in sock->file. If dname is %NULL, sets to "".
401  *	On failure the return is a ERR pointer (see linux/err.h).
402  *	This function uses GFP_KERNEL internally.
403  */
404 
405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 	struct file *file;
408 
409 	if (!dname)
410 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411 
412 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 				O_RDWR | (flags & O_NONBLOCK),
414 				&socket_file_ops);
415 	if (IS_ERR(file)) {
416 		sock_release(sock);
417 		return file;
418 	}
419 
420 	sock->file = file;
421 	file->private_data = sock;
422 	stream_open(SOCK_INODE(sock), file);
423 	return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426 
427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 	struct file *newfile;
430 	int fd = get_unused_fd_flags(flags);
431 	if (unlikely(fd < 0)) {
432 		sock_release(sock);
433 		return fd;
434 	}
435 
436 	newfile = sock_alloc_file(sock, flags, NULL);
437 	if (!IS_ERR(newfile)) {
438 		fd_install(fd, newfile);
439 		return fd;
440 	}
441 
442 	put_unused_fd(fd);
443 	return PTR_ERR(newfile);
444 }
445 
446 /**
447  *	sock_from_file - Return the &socket bounded to @file.
448  *	@file: file
449  *
450  *	On failure returns %NULL.
451  */
452 
453 struct socket *sock_from_file(struct file *file)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	return NULL;
459 }
460 EXPORT_SYMBOL(sock_from_file);
461 
462 /**
463  *	sockfd_lookup - Go from a file number to its socket slot
464  *	@fd: file handle
465  *	@err: pointer to an error code return
466  *
467  *	The file handle passed in is locked and the socket it is bound
468  *	to is returned. If an error occurs the err pointer is overwritten
469  *	with a negative errno code and NULL is returned. The function checks
470  *	for both invalid handles and passing a handle which is not a socket.
471  *
472  *	On a success the socket object pointer is returned.
473  */
474 
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 	struct file *file;
478 	struct socket *sock;
479 
480 	file = fget(fd);
481 	if (!file) {
482 		*err = -EBADF;
483 		return NULL;
484 	}
485 
486 	sock = sock_from_file(file);
487 	if (!sock) {
488 		*err = -ENOTSOCK;
489 		fput(file);
490 	}
491 	return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494 
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 	struct fd f = fdget(fd);
498 	struct socket *sock;
499 
500 	*err = -EBADF;
501 	if (f.file) {
502 		sock = sock_from_file(f.file);
503 		if (likely(sock)) {
504 			*fput_needed = f.flags & FDPUT_FPUT;
505 			return sock;
506 		}
507 		*err = -ENOTSOCK;
508 		fdput(f);
509 	}
510 	return NULL;
511 }
512 
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 				size_t size)
515 {
516 	ssize_t len;
517 	ssize_t used = 0;
518 
519 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 	if (len < 0)
521 		return len;
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		buffer += len;
527 	}
528 
529 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 	used += len;
531 	if (buffer) {
532 		if (size < used)
533 			return -ERANGE;
534 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 		buffer += len;
536 	}
537 
538 	return used;
539 }
540 
541 static int sockfs_setattr(struct user_namespace *mnt_userns,
542 			  struct dentry *dentry, struct iattr *iattr)
543 {
544 	int err = simple_setattr(&init_user_ns, dentry, iattr);
545 
546 	if (!err && (iattr->ia_valid & ATTR_UID)) {
547 		struct socket *sock = SOCKET_I(d_inode(dentry));
548 
549 		if (sock->sk)
550 			sock->sk->sk_uid = iattr->ia_uid;
551 		else
552 			err = -ENOENT;
553 	}
554 
555 	return err;
556 }
557 
558 static const struct inode_operations sockfs_inode_ops = {
559 	.listxattr = sockfs_listxattr,
560 	.setattr = sockfs_setattr,
561 };
562 
563 /**
564  *	sock_alloc - allocate a socket
565  *
566  *	Allocate a new inode and socket object. The two are bound together
567  *	and initialised. The socket is then returned. If we are out of inodes
568  *	NULL is returned. This functions uses GFP_KERNEL internally.
569  */
570 
571 struct socket *sock_alloc(void)
572 {
573 	struct inode *inode;
574 	struct socket *sock;
575 
576 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
577 	if (!inode)
578 		return NULL;
579 
580 	sock = SOCKET_I(inode);
581 
582 	inode->i_ino = get_next_ino();
583 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
584 	inode->i_uid = current_fsuid();
585 	inode->i_gid = current_fsgid();
586 	inode->i_op = &sockfs_inode_ops;
587 
588 	return sock;
589 }
590 EXPORT_SYMBOL(sock_alloc);
591 
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		if (inode)
598 			inode_lock(inode);
599 		sock->ops->release(sock);
600 		sock->sk = NULL;
601 		if (inode)
602 			inode_unlock(inode);
603 		sock->ops = NULL;
604 		module_put(owner);
605 	}
606 
607 	if (sock->wq.fasync_list)
608 		pr_err("%s: fasync list not empty!\n", __func__);
609 
610 	if (!sock->file) {
611 		iput(SOCK_INODE(sock));
612 		return;
613 	}
614 	sock->file = NULL;
615 }
616 
617 /**
618  *	sock_release - close a socket
619  *	@sock: socket to close
620  *
621  *	The socket is released from the protocol stack if it has a release
622  *	callback, and the inode is then released if the socket is bound to
623  *	an inode not a file.
624  */
625 void sock_release(struct socket *sock)
626 {
627 	__sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630 
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 	u8 flags = *tx_flags;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 		flags |= SKBTX_HW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 		flags |= SKBTX_SW_TSTAMP;
640 
641 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 		flags |= SKBTX_SCHED_TSTAMP;
643 
644 	*tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647 
648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
649 					   size_t));
650 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
651 					    size_t));
652 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
653 {
654 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
655 				     inet_sendmsg, sock, msg,
656 				     msg_data_left(msg));
657 	BUG_ON(ret == -EIOCBQUEUED);
658 	return ret;
659 }
660 
661 /**
662  *	sock_sendmsg - send a message through @sock
663  *	@sock: socket
664  *	@msg: message to send
665  *
666  *	Sends @msg through @sock, passing through LSM.
667  *	Returns the number of bytes sent, or an error code.
668  */
669 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
670 {
671 	int err = security_socket_sendmsg(sock, msg,
672 					  msg_data_left(msg));
673 
674 	return err ?: sock_sendmsg_nosec(sock, msg);
675 }
676 EXPORT_SYMBOL(sock_sendmsg);
677 
678 /**
679  *	kernel_sendmsg - send a message through @sock (kernel-space)
680  *	@sock: socket
681  *	@msg: message header
682  *	@vec: kernel vec
683  *	@num: vec array length
684  *	@size: total message data size
685  *
686  *	Builds the message data with @vec and sends it through @sock.
687  *	Returns the number of bytes sent, or an error code.
688  */
689 
690 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
691 		   struct kvec *vec, size_t num, size_t size)
692 {
693 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
694 	return sock_sendmsg(sock, msg);
695 }
696 EXPORT_SYMBOL(kernel_sendmsg);
697 
698 /**
699  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
700  *	@sk: sock
701  *	@msg: message header
702  *	@vec: output s/g array
703  *	@num: output s/g array length
704  *	@size: total message data size
705  *
706  *	Builds the message data with @vec and sends it through @sock.
707  *	Returns the number of bytes sent, or an error code.
708  *	Caller must hold @sk.
709  */
710 
711 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
712 			  struct kvec *vec, size_t num, size_t size)
713 {
714 	struct socket *sock = sk->sk_socket;
715 
716 	if (!sock->ops->sendmsg_locked)
717 		return sock_no_sendmsg_locked(sk, msg, size);
718 
719 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
720 
721 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
722 }
723 EXPORT_SYMBOL(kernel_sendmsg_locked);
724 
725 static bool skb_is_err_queue(const struct sk_buff *skb)
726 {
727 	/* pkt_type of skbs enqueued on the error queue are set to
728 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
729 	 * in recvmsg, since skbs received on a local socket will never
730 	 * have a pkt_type of PACKET_OUTGOING.
731 	 */
732 	return skb->pkt_type == PACKET_OUTGOING;
733 }
734 
735 /* On transmit, software and hardware timestamps are returned independently.
736  * As the two skb clones share the hardware timestamp, which may be updated
737  * before the software timestamp is received, a hardware TX timestamp may be
738  * returned only if there is no software TX timestamp. Ignore false software
739  * timestamps, which may be made in the __sock_recv_timestamp() call when the
740  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
741  * hardware timestamp.
742  */
743 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
744 {
745 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
746 }
747 
748 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
749 {
750 	struct scm_ts_pktinfo ts_pktinfo;
751 	struct net_device *orig_dev;
752 
753 	if (!skb_mac_header_was_set(skb))
754 		return;
755 
756 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
757 
758 	rcu_read_lock();
759 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
760 	if (orig_dev)
761 		ts_pktinfo.if_index = orig_dev->ifindex;
762 	rcu_read_unlock();
763 
764 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
765 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
766 		 sizeof(ts_pktinfo), &ts_pktinfo);
767 }
768 
769 /*
770  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
771  */
772 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
773 	struct sk_buff *skb)
774 {
775 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
776 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
777 	struct scm_timestamping_internal tss;
778 
779 	int empty = 1, false_tstamp = 0;
780 	struct skb_shared_hwtstamps *shhwtstamps =
781 		skb_hwtstamps(skb);
782 
783 	/* Race occurred between timestamp enabling and packet
784 	   receiving.  Fill in the current time for now. */
785 	if (need_software_tstamp && skb->tstamp == 0) {
786 		__net_timestamp(skb);
787 		false_tstamp = 1;
788 	}
789 
790 	if (need_software_tstamp) {
791 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
792 			if (new_tstamp) {
793 				struct __kernel_sock_timeval tv;
794 
795 				skb_get_new_timestamp(skb, &tv);
796 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
797 					 sizeof(tv), &tv);
798 			} else {
799 				struct __kernel_old_timeval tv;
800 
801 				skb_get_timestamp(skb, &tv);
802 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
803 					 sizeof(tv), &tv);
804 			}
805 		} else {
806 			if (new_tstamp) {
807 				struct __kernel_timespec ts;
808 
809 				skb_get_new_timestampns(skb, &ts);
810 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
811 					 sizeof(ts), &ts);
812 			} else {
813 				struct __kernel_old_timespec ts;
814 
815 				skb_get_timestampns(skb, &ts);
816 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
817 					 sizeof(ts), &ts);
818 			}
819 		}
820 	}
821 
822 	memset(&tss, 0, sizeof(tss));
823 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
824 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
825 		empty = 0;
826 	if (shhwtstamps &&
827 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
828 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
829 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
830 		empty = 0;
831 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
832 		    !skb_is_err_queue(skb))
833 			put_ts_pktinfo(msg, skb);
834 	}
835 	if (!empty) {
836 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
837 			put_cmsg_scm_timestamping64(msg, &tss);
838 		else
839 			put_cmsg_scm_timestamping(msg, &tss);
840 
841 		if (skb_is_err_queue(skb) && skb->len &&
842 		    SKB_EXT_ERR(skb)->opt_stats)
843 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
844 				 skb->len, skb->data);
845 	}
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
848 
849 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
850 	struct sk_buff *skb)
851 {
852 	int ack;
853 
854 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
855 		return;
856 	if (!skb->wifi_acked_valid)
857 		return;
858 
859 	ack = skb->wifi_acked;
860 
861 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
864 
865 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
866 				   struct sk_buff *skb)
867 {
868 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
869 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
870 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
871 }
872 
873 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
874 	struct sk_buff *skb)
875 {
876 	sock_recv_timestamp(msg, sk, skb);
877 	sock_recv_drops(msg, sk, skb);
878 }
879 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
880 
881 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
882 					   size_t, int));
883 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
884 					    size_t, int));
885 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
886 				     int flags)
887 {
888 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
889 				  inet_recvmsg, sock, msg, msg_data_left(msg),
890 				  flags);
891 }
892 
893 /**
894  *	sock_recvmsg - receive a message from @sock
895  *	@sock: socket
896  *	@msg: message to receive
897  *	@flags: message flags
898  *
899  *	Receives @msg from @sock, passing through LSM. Returns the total number
900  *	of bytes received, or an error.
901  */
902 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
903 {
904 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
905 
906 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
907 }
908 EXPORT_SYMBOL(sock_recvmsg);
909 
910 /**
911  *	kernel_recvmsg - Receive a message from a socket (kernel space)
912  *	@sock: The socket to receive the message from
913  *	@msg: Received message
914  *	@vec: Input s/g array for message data
915  *	@num: Size of input s/g array
916  *	@size: Number of bytes to read
917  *	@flags: Message flags (MSG_DONTWAIT, etc...)
918  *
919  *	On return the msg structure contains the scatter/gather array passed in the
920  *	vec argument. The array is modified so that it consists of the unfilled
921  *	portion of the original array.
922  *
923  *	The returned value is the total number of bytes received, or an error.
924  */
925 
926 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
927 		   struct kvec *vec, size_t num, size_t size, int flags)
928 {
929 	msg->msg_control_is_user = false;
930 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 	return sock_recvmsg(sock, msg, flags);
932 }
933 EXPORT_SYMBOL(kernel_recvmsg);
934 
935 static ssize_t sock_sendpage(struct file *file, struct page *page,
936 			     int offset, size_t size, loff_t *ppos, int more)
937 {
938 	struct socket *sock;
939 	int flags;
940 
941 	sock = file->private_data;
942 
943 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
944 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
945 	flags |= more;
946 
947 	return kernel_sendpage(sock, page, offset, size, flags);
948 }
949 
950 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
951 				struct pipe_inode_info *pipe, size_t len,
952 				unsigned int flags)
953 {
954 	struct socket *sock = file->private_data;
955 
956 	if (unlikely(!sock->ops->splice_read))
957 		return generic_file_splice_read(file, ppos, pipe, len, flags);
958 
959 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
960 }
961 
962 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
963 {
964 	struct file *file = iocb->ki_filp;
965 	struct socket *sock = file->private_data;
966 	struct msghdr msg = {.msg_iter = *to,
967 			     .msg_iocb = iocb};
968 	ssize_t res;
969 
970 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
971 		msg.msg_flags = MSG_DONTWAIT;
972 
973 	if (iocb->ki_pos != 0)
974 		return -ESPIPE;
975 
976 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
977 		return 0;
978 
979 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
980 	*to = msg.msg_iter;
981 	return res;
982 }
983 
984 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
985 {
986 	struct file *file = iocb->ki_filp;
987 	struct socket *sock = file->private_data;
988 	struct msghdr msg = {.msg_iter = *from,
989 			     .msg_iocb = iocb};
990 	ssize_t res;
991 
992 	if (iocb->ki_pos != 0)
993 		return -ESPIPE;
994 
995 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
996 		msg.msg_flags = MSG_DONTWAIT;
997 
998 	if (sock->type == SOCK_SEQPACKET)
999 		msg.msg_flags |= MSG_EOR;
1000 
1001 	res = sock_sendmsg(sock, &msg);
1002 	*from = msg.msg_iter;
1003 	return res;
1004 }
1005 
1006 /*
1007  * Atomic setting of ioctl hooks to avoid race
1008  * with module unload.
1009  */
1010 
1011 static DEFINE_MUTEX(br_ioctl_mutex);
1012 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1013 
1014 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1015 {
1016 	mutex_lock(&br_ioctl_mutex);
1017 	br_ioctl_hook = hook;
1018 	mutex_unlock(&br_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(brioctl_set);
1021 
1022 static DEFINE_MUTEX(vlan_ioctl_mutex);
1023 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1024 
1025 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1026 {
1027 	mutex_lock(&vlan_ioctl_mutex);
1028 	vlan_ioctl_hook = hook;
1029 	mutex_unlock(&vlan_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(vlan_ioctl_set);
1032 
1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 			  unsigned int cmd, unsigned long arg)
1035 {
1036 	int err;
1037 	void __user *argp = (void __user *)arg;
1038 
1039 	err = sock->ops->ioctl(sock, cmd, arg);
1040 
1041 	/*
1042 	 * If this ioctl is unknown try to hand it down
1043 	 * to the NIC driver.
1044 	 */
1045 	if (err != -ENOIOCTLCMD)
1046 		return err;
1047 
1048 	if (cmd == SIOCGIFCONF) {
1049 		struct ifconf ifc;
1050 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 			return -EFAULT;
1052 		rtnl_lock();
1053 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 		rtnl_unlock();
1055 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 			err = -EFAULT;
1057 	} else {
1058 		struct ifreq ifr;
1059 		bool need_copyout;
1060 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 			return -EFAULT;
1062 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 		if (!err && need_copyout)
1064 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 				return -EFAULT;
1066 	}
1067 	return err;
1068 }
1069 
1070 /*
1071  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1072  *	what to do with it - that's up to the protocol still.
1073  */
1074 
1075 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1076 {
1077 	struct socket *sock;
1078 	struct sock *sk;
1079 	void __user *argp = (void __user *)arg;
1080 	int pid, err;
1081 	struct net *net;
1082 
1083 	sock = file->private_data;
1084 	sk = sock->sk;
1085 	net = sock_net(sk);
1086 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1087 		struct ifreq ifr;
1088 		bool need_copyout;
1089 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1090 			return -EFAULT;
1091 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1092 		if (!err && need_copyout)
1093 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1094 				return -EFAULT;
1095 	} else
1096 #ifdef CONFIG_WEXT_CORE
1097 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1098 		err = wext_handle_ioctl(net, cmd, argp);
1099 	} else
1100 #endif
1101 		switch (cmd) {
1102 		case FIOSETOWN:
1103 		case SIOCSPGRP:
1104 			err = -EFAULT;
1105 			if (get_user(pid, (int __user *)argp))
1106 				break;
1107 			err = f_setown(sock->file, pid, 1);
1108 			break;
1109 		case FIOGETOWN:
1110 		case SIOCGPGRP:
1111 			err = put_user(f_getown(sock->file),
1112 				       (int __user *)argp);
1113 			break;
1114 		case SIOCGIFBR:
1115 		case SIOCSIFBR:
1116 		case SIOCBRADDBR:
1117 		case SIOCBRDELBR:
1118 			err = -ENOPKG;
1119 			if (!br_ioctl_hook)
1120 				request_module("bridge");
1121 
1122 			mutex_lock(&br_ioctl_mutex);
1123 			if (br_ioctl_hook)
1124 				err = br_ioctl_hook(net, cmd, argp);
1125 			mutex_unlock(&br_ioctl_mutex);
1126 			break;
1127 		case SIOCGIFVLAN:
1128 		case SIOCSIFVLAN:
1129 			err = -ENOPKG;
1130 			if (!vlan_ioctl_hook)
1131 				request_module("8021q");
1132 
1133 			mutex_lock(&vlan_ioctl_mutex);
1134 			if (vlan_ioctl_hook)
1135 				err = vlan_ioctl_hook(net, argp);
1136 			mutex_unlock(&vlan_ioctl_mutex);
1137 			break;
1138 		case SIOCGSKNS:
1139 			err = -EPERM;
1140 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1141 				break;
1142 
1143 			err = open_related_ns(&net->ns, get_net_ns);
1144 			break;
1145 		case SIOCGSTAMP_OLD:
1146 		case SIOCGSTAMPNS_OLD:
1147 			if (!sock->ops->gettstamp) {
1148 				err = -ENOIOCTLCMD;
1149 				break;
1150 			}
1151 			err = sock->ops->gettstamp(sock, argp,
1152 						   cmd == SIOCGSTAMP_OLD,
1153 						   !IS_ENABLED(CONFIG_64BIT));
1154 			break;
1155 		case SIOCGSTAMP_NEW:
1156 		case SIOCGSTAMPNS_NEW:
1157 			if (!sock->ops->gettstamp) {
1158 				err = -ENOIOCTLCMD;
1159 				break;
1160 			}
1161 			err = sock->ops->gettstamp(sock, argp,
1162 						   cmd == SIOCGSTAMP_NEW,
1163 						   false);
1164 			break;
1165 		default:
1166 			err = sock_do_ioctl(net, sock, cmd, arg);
1167 			break;
1168 		}
1169 	return err;
1170 }
1171 
1172 /**
1173  *	sock_create_lite - creates a socket
1174  *	@family: protocol family (AF_INET, ...)
1175  *	@type: communication type (SOCK_STREAM, ...)
1176  *	@protocol: protocol (0, ...)
1177  *	@res: new socket
1178  *
1179  *	Creates a new socket and assigns it to @res, passing through LSM.
1180  *	The new socket initialization is not complete, see kernel_accept().
1181  *	Returns 0 or an error. On failure @res is set to %NULL.
1182  *	This function internally uses GFP_KERNEL.
1183  */
1184 
1185 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1186 {
1187 	int err;
1188 	struct socket *sock = NULL;
1189 
1190 	err = security_socket_create(family, type, protocol, 1);
1191 	if (err)
1192 		goto out;
1193 
1194 	sock = sock_alloc();
1195 	if (!sock) {
1196 		err = -ENOMEM;
1197 		goto out;
1198 	}
1199 
1200 	sock->type = type;
1201 	err = security_socket_post_create(sock, family, type, protocol, 1);
1202 	if (err)
1203 		goto out_release;
1204 
1205 out:
1206 	*res = sock;
1207 	return err;
1208 out_release:
1209 	sock_release(sock);
1210 	sock = NULL;
1211 	goto out;
1212 }
1213 EXPORT_SYMBOL(sock_create_lite);
1214 
1215 /* No kernel lock held - perfect */
1216 static __poll_t sock_poll(struct file *file, poll_table *wait)
1217 {
1218 	struct socket *sock = file->private_data;
1219 	__poll_t events = poll_requested_events(wait), flag = 0;
1220 
1221 	if (!sock->ops->poll)
1222 		return 0;
1223 
1224 	if (sk_can_busy_loop(sock->sk)) {
1225 		/* poll once if requested by the syscall */
1226 		if (events & POLL_BUSY_LOOP)
1227 			sk_busy_loop(sock->sk, 1);
1228 
1229 		/* if this socket can poll_ll, tell the system call */
1230 		flag = POLL_BUSY_LOOP;
1231 	}
1232 
1233 	return sock->ops->poll(file, sock, wait) | flag;
1234 }
1235 
1236 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1237 {
1238 	struct socket *sock = file->private_data;
1239 
1240 	return sock->ops->mmap(file, sock, vma);
1241 }
1242 
1243 static int sock_close(struct inode *inode, struct file *filp)
1244 {
1245 	__sock_release(SOCKET_I(inode), inode);
1246 	return 0;
1247 }
1248 
1249 /*
1250  *	Update the socket async list
1251  *
1252  *	Fasync_list locking strategy.
1253  *
1254  *	1. fasync_list is modified only under process context socket lock
1255  *	   i.e. under semaphore.
1256  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1257  *	   or under socket lock
1258  */
1259 
1260 static int sock_fasync(int fd, struct file *filp, int on)
1261 {
1262 	struct socket *sock = filp->private_data;
1263 	struct sock *sk = sock->sk;
1264 	struct socket_wq *wq = &sock->wq;
1265 
1266 	if (sk == NULL)
1267 		return -EINVAL;
1268 
1269 	lock_sock(sk);
1270 	fasync_helper(fd, filp, on, &wq->fasync_list);
1271 
1272 	if (!wq->fasync_list)
1273 		sock_reset_flag(sk, SOCK_FASYNC);
1274 	else
1275 		sock_set_flag(sk, SOCK_FASYNC);
1276 
1277 	release_sock(sk);
1278 	return 0;
1279 }
1280 
1281 /* This function may be called only under rcu_lock */
1282 
1283 int sock_wake_async(struct socket_wq *wq, int how, int band)
1284 {
1285 	if (!wq || !wq->fasync_list)
1286 		return -1;
1287 
1288 	switch (how) {
1289 	case SOCK_WAKE_WAITD:
1290 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1291 			break;
1292 		goto call_kill;
1293 	case SOCK_WAKE_SPACE:
1294 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1295 			break;
1296 		fallthrough;
1297 	case SOCK_WAKE_IO:
1298 call_kill:
1299 		kill_fasync(&wq->fasync_list, SIGIO, band);
1300 		break;
1301 	case SOCK_WAKE_URG:
1302 		kill_fasync(&wq->fasync_list, SIGURG, band);
1303 	}
1304 
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(sock_wake_async);
1308 
1309 /**
1310  *	__sock_create - creates a socket
1311  *	@net: net namespace
1312  *	@family: protocol family (AF_INET, ...)
1313  *	@type: communication type (SOCK_STREAM, ...)
1314  *	@protocol: protocol (0, ...)
1315  *	@res: new socket
1316  *	@kern: boolean for kernel space sockets
1317  *
1318  *	Creates a new socket and assigns it to @res, passing through LSM.
1319  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1320  *	be set to true if the socket resides in kernel space.
1321  *	This function internally uses GFP_KERNEL.
1322  */
1323 
1324 int __sock_create(struct net *net, int family, int type, int protocol,
1325 			 struct socket **res, int kern)
1326 {
1327 	int err;
1328 	struct socket *sock;
1329 	const struct net_proto_family *pf;
1330 
1331 	/*
1332 	 *      Check protocol is in range
1333 	 */
1334 	if (family < 0 || family >= NPROTO)
1335 		return -EAFNOSUPPORT;
1336 	if (type < 0 || type >= SOCK_MAX)
1337 		return -EINVAL;
1338 
1339 	/* Compatibility.
1340 
1341 	   This uglymoron is moved from INET layer to here to avoid
1342 	   deadlock in module load.
1343 	 */
1344 	if (family == PF_INET && type == SOCK_PACKET) {
1345 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1346 			     current->comm);
1347 		family = PF_PACKET;
1348 	}
1349 
1350 	err = security_socket_create(family, type, protocol, kern);
1351 	if (err)
1352 		return err;
1353 
1354 	/*
1355 	 *	Allocate the socket and allow the family to set things up. if
1356 	 *	the protocol is 0, the family is instructed to select an appropriate
1357 	 *	default.
1358 	 */
1359 	sock = sock_alloc();
1360 	if (!sock) {
1361 		net_warn_ratelimited("socket: no more sockets\n");
1362 		return -ENFILE;	/* Not exactly a match, but its the
1363 				   closest posix thing */
1364 	}
1365 
1366 	sock->type = type;
1367 
1368 #ifdef CONFIG_MODULES
1369 	/* Attempt to load a protocol module if the find failed.
1370 	 *
1371 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1372 	 * requested real, full-featured networking support upon configuration.
1373 	 * Otherwise module support will break!
1374 	 */
1375 	if (rcu_access_pointer(net_families[family]) == NULL)
1376 		request_module("net-pf-%d", family);
1377 #endif
1378 
1379 	rcu_read_lock();
1380 	pf = rcu_dereference(net_families[family]);
1381 	err = -EAFNOSUPPORT;
1382 	if (!pf)
1383 		goto out_release;
1384 
1385 	/*
1386 	 * We will call the ->create function, that possibly is in a loadable
1387 	 * module, so we have to bump that loadable module refcnt first.
1388 	 */
1389 	if (!try_module_get(pf->owner))
1390 		goto out_release;
1391 
1392 	/* Now protected by module ref count */
1393 	rcu_read_unlock();
1394 
1395 	err = pf->create(net, sock, protocol, kern);
1396 	if (err < 0)
1397 		goto out_module_put;
1398 
1399 	/*
1400 	 * Now to bump the refcnt of the [loadable] module that owns this
1401 	 * socket at sock_release time we decrement its refcnt.
1402 	 */
1403 	if (!try_module_get(sock->ops->owner))
1404 		goto out_module_busy;
1405 
1406 	/*
1407 	 * Now that we're done with the ->create function, the [loadable]
1408 	 * module can have its refcnt decremented
1409 	 */
1410 	module_put(pf->owner);
1411 	err = security_socket_post_create(sock, family, type, protocol, kern);
1412 	if (err)
1413 		goto out_sock_release;
1414 	*res = sock;
1415 
1416 	return 0;
1417 
1418 out_module_busy:
1419 	err = -EAFNOSUPPORT;
1420 out_module_put:
1421 	sock->ops = NULL;
1422 	module_put(pf->owner);
1423 out_sock_release:
1424 	sock_release(sock);
1425 	return err;
1426 
1427 out_release:
1428 	rcu_read_unlock();
1429 	goto out_sock_release;
1430 }
1431 EXPORT_SYMBOL(__sock_create);
1432 
1433 /**
1434  *	sock_create - creates a socket
1435  *	@family: protocol family (AF_INET, ...)
1436  *	@type: communication type (SOCK_STREAM, ...)
1437  *	@protocol: protocol (0, ...)
1438  *	@res: new socket
1439  *
1440  *	A wrapper around __sock_create().
1441  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1442  */
1443 
1444 int sock_create(int family, int type, int protocol, struct socket **res)
1445 {
1446 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1447 }
1448 EXPORT_SYMBOL(sock_create);
1449 
1450 /**
1451  *	sock_create_kern - creates a socket (kernel space)
1452  *	@net: net namespace
1453  *	@family: protocol family (AF_INET, ...)
1454  *	@type: communication type (SOCK_STREAM, ...)
1455  *	@protocol: protocol (0, ...)
1456  *	@res: new socket
1457  *
1458  *	A wrapper around __sock_create().
1459  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1460  */
1461 
1462 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1463 {
1464 	return __sock_create(net, family, type, protocol, res, 1);
1465 }
1466 EXPORT_SYMBOL(sock_create_kern);
1467 
1468 int __sys_socket(int family, int type, int protocol)
1469 {
1470 	int retval;
1471 	struct socket *sock;
1472 	int flags;
1473 
1474 	/* Check the SOCK_* constants for consistency.  */
1475 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1476 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1477 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1478 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1479 
1480 	flags = type & ~SOCK_TYPE_MASK;
1481 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1482 		return -EINVAL;
1483 	type &= SOCK_TYPE_MASK;
1484 
1485 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1486 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1487 
1488 	retval = sock_create(family, type, protocol, &sock);
1489 	if (retval < 0)
1490 		return retval;
1491 
1492 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1493 }
1494 
1495 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1496 {
1497 	return __sys_socket(family, type, protocol);
1498 }
1499 
1500 /*
1501  *	Create a pair of connected sockets.
1502  */
1503 
1504 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1505 {
1506 	struct socket *sock1, *sock2;
1507 	int fd1, fd2, err;
1508 	struct file *newfile1, *newfile2;
1509 	int flags;
1510 
1511 	flags = type & ~SOCK_TYPE_MASK;
1512 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1513 		return -EINVAL;
1514 	type &= SOCK_TYPE_MASK;
1515 
1516 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1517 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1518 
1519 	/*
1520 	 * reserve descriptors and make sure we won't fail
1521 	 * to return them to userland.
1522 	 */
1523 	fd1 = get_unused_fd_flags(flags);
1524 	if (unlikely(fd1 < 0))
1525 		return fd1;
1526 
1527 	fd2 = get_unused_fd_flags(flags);
1528 	if (unlikely(fd2 < 0)) {
1529 		put_unused_fd(fd1);
1530 		return fd2;
1531 	}
1532 
1533 	err = put_user(fd1, &usockvec[0]);
1534 	if (err)
1535 		goto out;
1536 
1537 	err = put_user(fd2, &usockvec[1]);
1538 	if (err)
1539 		goto out;
1540 
1541 	/*
1542 	 * Obtain the first socket and check if the underlying protocol
1543 	 * supports the socketpair call.
1544 	 */
1545 
1546 	err = sock_create(family, type, protocol, &sock1);
1547 	if (unlikely(err < 0))
1548 		goto out;
1549 
1550 	err = sock_create(family, type, protocol, &sock2);
1551 	if (unlikely(err < 0)) {
1552 		sock_release(sock1);
1553 		goto out;
1554 	}
1555 
1556 	err = security_socket_socketpair(sock1, sock2);
1557 	if (unlikely(err)) {
1558 		sock_release(sock2);
1559 		sock_release(sock1);
1560 		goto out;
1561 	}
1562 
1563 	err = sock1->ops->socketpair(sock1, sock2);
1564 	if (unlikely(err < 0)) {
1565 		sock_release(sock2);
1566 		sock_release(sock1);
1567 		goto out;
1568 	}
1569 
1570 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1571 	if (IS_ERR(newfile1)) {
1572 		err = PTR_ERR(newfile1);
1573 		sock_release(sock2);
1574 		goto out;
1575 	}
1576 
1577 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1578 	if (IS_ERR(newfile2)) {
1579 		err = PTR_ERR(newfile2);
1580 		fput(newfile1);
1581 		goto out;
1582 	}
1583 
1584 	audit_fd_pair(fd1, fd2);
1585 
1586 	fd_install(fd1, newfile1);
1587 	fd_install(fd2, newfile2);
1588 	return 0;
1589 
1590 out:
1591 	put_unused_fd(fd2);
1592 	put_unused_fd(fd1);
1593 	return err;
1594 }
1595 
1596 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1597 		int __user *, usockvec)
1598 {
1599 	return __sys_socketpair(family, type, protocol, usockvec);
1600 }
1601 
1602 /*
1603  *	Bind a name to a socket. Nothing much to do here since it's
1604  *	the protocol's responsibility to handle the local address.
1605  *
1606  *	We move the socket address to kernel space before we call
1607  *	the protocol layer (having also checked the address is ok).
1608  */
1609 
1610 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1611 {
1612 	struct socket *sock;
1613 	struct sockaddr_storage address;
1614 	int err, fput_needed;
1615 
1616 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 	if (sock) {
1618 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1619 		if (!err) {
1620 			err = security_socket_bind(sock,
1621 						   (struct sockaddr *)&address,
1622 						   addrlen);
1623 			if (!err)
1624 				err = sock->ops->bind(sock,
1625 						      (struct sockaddr *)
1626 						      &address, addrlen);
1627 		}
1628 		fput_light(sock->file, fput_needed);
1629 	}
1630 	return err;
1631 }
1632 
1633 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1634 {
1635 	return __sys_bind(fd, umyaddr, addrlen);
1636 }
1637 
1638 /*
1639  *	Perform a listen. Basically, we allow the protocol to do anything
1640  *	necessary for a listen, and if that works, we mark the socket as
1641  *	ready for listening.
1642  */
1643 
1644 int __sys_listen(int fd, int backlog)
1645 {
1646 	struct socket *sock;
1647 	int err, fput_needed;
1648 	int somaxconn;
1649 
1650 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651 	if (sock) {
1652 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1653 		if ((unsigned int)backlog > somaxconn)
1654 			backlog = somaxconn;
1655 
1656 		err = security_socket_listen(sock, backlog);
1657 		if (!err)
1658 			err = sock->ops->listen(sock, backlog);
1659 
1660 		fput_light(sock->file, fput_needed);
1661 	}
1662 	return err;
1663 }
1664 
1665 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1666 {
1667 	return __sys_listen(fd, backlog);
1668 }
1669 
1670 int __sys_accept4_file(struct file *file, unsigned file_flags,
1671 		       struct sockaddr __user *upeer_sockaddr,
1672 		       int __user *upeer_addrlen, int flags,
1673 		       unsigned long nofile)
1674 {
1675 	struct socket *sock, *newsock;
1676 	struct file *newfile;
1677 	int err, len, newfd;
1678 	struct sockaddr_storage address;
1679 
1680 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1681 		return -EINVAL;
1682 
1683 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1684 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1685 
1686 	sock = sock_from_file(file);
1687 	if (!sock) {
1688 		err = -ENOTSOCK;
1689 		goto out;
1690 	}
1691 
1692 	err = -ENFILE;
1693 	newsock = sock_alloc();
1694 	if (!newsock)
1695 		goto out;
1696 
1697 	newsock->type = sock->type;
1698 	newsock->ops = sock->ops;
1699 
1700 	/*
1701 	 * We don't need try_module_get here, as the listening socket (sock)
1702 	 * has the protocol module (sock->ops->owner) held.
1703 	 */
1704 	__module_get(newsock->ops->owner);
1705 
1706 	newfd = __get_unused_fd_flags(flags, nofile);
1707 	if (unlikely(newfd < 0)) {
1708 		err = newfd;
1709 		sock_release(newsock);
1710 		goto out;
1711 	}
1712 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1713 	if (IS_ERR(newfile)) {
1714 		err = PTR_ERR(newfile);
1715 		put_unused_fd(newfd);
1716 		goto out;
1717 	}
1718 
1719 	err = security_socket_accept(sock, newsock);
1720 	if (err)
1721 		goto out_fd;
1722 
1723 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1724 					false);
1725 	if (err < 0)
1726 		goto out_fd;
1727 
1728 	if (upeer_sockaddr) {
1729 		len = newsock->ops->getname(newsock,
1730 					(struct sockaddr *)&address, 2);
1731 		if (len < 0) {
1732 			err = -ECONNABORTED;
1733 			goto out_fd;
1734 		}
1735 		err = move_addr_to_user(&address,
1736 					len, upeer_sockaddr, upeer_addrlen);
1737 		if (err < 0)
1738 			goto out_fd;
1739 	}
1740 
1741 	/* File flags are not inherited via accept() unlike another OSes. */
1742 
1743 	fd_install(newfd, newfile);
1744 	err = newfd;
1745 out:
1746 	return err;
1747 out_fd:
1748 	fput(newfile);
1749 	put_unused_fd(newfd);
1750 	goto out;
1751 
1752 }
1753 
1754 /*
1755  *	For accept, we attempt to create a new socket, set up the link
1756  *	with the client, wake up the client, then return the new
1757  *	connected fd. We collect the address of the connector in kernel
1758  *	space and move it to user at the very end. This is unclean because
1759  *	we open the socket then return an error.
1760  *
1761  *	1003.1g adds the ability to recvmsg() to query connection pending
1762  *	status to recvmsg. We need to add that support in a way thats
1763  *	clean when we restructure accept also.
1764  */
1765 
1766 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1767 		  int __user *upeer_addrlen, int flags)
1768 {
1769 	int ret = -EBADF;
1770 	struct fd f;
1771 
1772 	f = fdget(fd);
1773 	if (f.file) {
1774 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1775 						upeer_addrlen, flags,
1776 						rlimit(RLIMIT_NOFILE));
1777 		fdput(f);
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1784 		int __user *, upeer_addrlen, int, flags)
1785 {
1786 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1787 }
1788 
1789 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1790 		int __user *, upeer_addrlen)
1791 {
1792 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1793 }
1794 
1795 /*
1796  *	Attempt to connect to a socket with the server address.  The address
1797  *	is in user space so we verify it is OK and move it to kernel space.
1798  *
1799  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1800  *	break bindings
1801  *
1802  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1803  *	other SEQPACKET protocols that take time to connect() as it doesn't
1804  *	include the -EINPROGRESS status for such sockets.
1805  */
1806 
1807 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1808 		       int addrlen, int file_flags)
1809 {
1810 	struct socket *sock;
1811 	int err;
1812 
1813 	sock = sock_from_file(file);
1814 	if (!sock) {
1815 		err = -ENOTSOCK;
1816 		goto out;
1817 	}
1818 
1819 	err =
1820 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1821 	if (err)
1822 		goto out;
1823 
1824 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1825 				 sock->file->f_flags | file_flags);
1826 out:
1827 	return err;
1828 }
1829 
1830 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1831 {
1832 	int ret = -EBADF;
1833 	struct fd f;
1834 
1835 	f = fdget(fd);
1836 	if (f.file) {
1837 		struct sockaddr_storage address;
1838 
1839 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1840 		if (!ret)
1841 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1842 		fdput(f);
1843 	}
1844 
1845 	return ret;
1846 }
1847 
1848 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1849 		int, addrlen)
1850 {
1851 	return __sys_connect(fd, uservaddr, addrlen);
1852 }
1853 
1854 /*
1855  *	Get the local address ('name') of a socket object. Move the obtained
1856  *	name to user space.
1857  */
1858 
1859 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1860 		      int __user *usockaddr_len)
1861 {
1862 	struct socket *sock;
1863 	struct sockaddr_storage address;
1864 	int err, fput_needed;
1865 
1866 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 	if (!sock)
1868 		goto out;
1869 
1870 	err = security_socket_getsockname(sock);
1871 	if (err)
1872 		goto out_put;
1873 
1874 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1875 	if (err < 0)
1876 		goto out_put;
1877         /* "err" is actually length in this case */
1878 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1879 
1880 out_put:
1881 	fput_light(sock->file, fput_needed);
1882 out:
1883 	return err;
1884 }
1885 
1886 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1887 		int __user *, usockaddr_len)
1888 {
1889 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1890 }
1891 
1892 /*
1893  *	Get the remote address ('name') of a socket object. Move the obtained
1894  *	name to user space.
1895  */
1896 
1897 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1898 		      int __user *usockaddr_len)
1899 {
1900 	struct socket *sock;
1901 	struct sockaddr_storage address;
1902 	int err, fput_needed;
1903 
1904 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 	if (sock != NULL) {
1906 		err = security_socket_getpeername(sock);
1907 		if (err) {
1908 			fput_light(sock->file, fput_needed);
1909 			return err;
1910 		}
1911 
1912 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1913 		if (err >= 0)
1914 			/* "err" is actually length in this case */
1915 			err = move_addr_to_user(&address, err, usockaddr,
1916 						usockaddr_len);
1917 		fput_light(sock->file, fput_needed);
1918 	}
1919 	return err;
1920 }
1921 
1922 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1923 		int __user *, usockaddr_len)
1924 {
1925 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1926 }
1927 
1928 /*
1929  *	Send a datagram to a given address. We move the address into kernel
1930  *	space and check the user space data area is readable before invoking
1931  *	the protocol.
1932  */
1933 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1934 		 struct sockaddr __user *addr,  int addr_len)
1935 {
1936 	struct socket *sock;
1937 	struct sockaddr_storage address;
1938 	int err;
1939 	struct msghdr msg;
1940 	struct iovec iov;
1941 	int fput_needed;
1942 
1943 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1944 	if (unlikely(err))
1945 		return err;
1946 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 	if (!sock)
1948 		goto out;
1949 
1950 	msg.msg_name = NULL;
1951 	msg.msg_control = NULL;
1952 	msg.msg_controllen = 0;
1953 	msg.msg_namelen = 0;
1954 	if (addr) {
1955 		err = move_addr_to_kernel(addr, addr_len, &address);
1956 		if (err < 0)
1957 			goto out_put;
1958 		msg.msg_name = (struct sockaddr *)&address;
1959 		msg.msg_namelen = addr_len;
1960 	}
1961 	if (sock->file->f_flags & O_NONBLOCK)
1962 		flags |= MSG_DONTWAIT;
1963 	msg.msg_flags = flags;
1964 	err = sock_sendmsg(sock, &msg);
1965 
1966 out_put:
1967 	fput_light(sock->file, fput_needed);
1968 out:
1969 	return err;
1970 }
1971 
1972 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1973 		unsigned int, flags, struct sockaddr __user *, addr,
1974 		int, addr_len)
1975 {
1976 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1977 }
1978 
1979 /*
1980  *	Send a datagram down a socket.
1981  */
1982 
1983 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1984 		unsigned int, flags)
1985 {
1986 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1987 }
1988 
1989 /*
1990  *	Receive a frame from the socket and optionally record the address of the
1991  *	sender. We verify the buffers are writable and if needed move the
1992  *	sender address from kernel to user space.
1993  */
1994 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1995 		   struct sockaddr __user *addr, int __user *addr_len)
1996 {
1997 	struct socket *sock;
1998 	struct iovec iov;
1999 	struct msghdr msg;
2000 	struct sockaddr_storage address;
2001 	int err, err2;
2002 	int fput_needed;
2003 
2004 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2005 	if (unlikely(err))
2006 		return err;
2007 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 	if (!sock)
2009 		goto out;
2010 
2011 	msg.msg_control = NULL;
2012 	msg.msg_controllen = 0;
2013 	/* Save some cycles and don't copy the address if not needed */
2014 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2015 	/* We assume all kernel code knows the size of sockaddr_storage */
2016 	msg.msg_namelen = 0;
2017 	msg.msg_iocb = NULL;
2018 	msg.msg_flags = 0;
2019 	if (sock->file->f_flags & O_NONBLOCK)
2020 		flags |= MSG_DONTWAIT;
2021 	err = sock_recvmsg(sock, &msg, flags);
2022 
2023 	if (err >= 0 && addr != NULL) {
2024 		err2 = move_addr_to_user(&address,
2025 					 msg.msg_namelen, addr, addr_len);
2026 		if (err2 < 0)
2027 			err = err2;
2028 	}
2029 
2030 	fput_light(sock->file, fput_needed);
2031 out:
2032 	return err;
2033 }
2034 
2035 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2036 		unsigned int, flags, struct sockaddr __user *, addr,
2037 		int __user *, addr_len)
2038 {
2039 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2040 }
2041 
2042 /*
2043  *	Receive a datagram from a socket.
2044  */
2045 
2046 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2047 		unsigned int, flags)
2048 {
2049 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2050 }
2051 
2052 static bool sock_use_custom_sol_socket(const struct socket *sock)
2053 {
2054 	const struct sock *sk = sock->sk;
2055 
2056 	/* Use sock->ops->setsockopt() for MPTCP */
2057 	return IS_ENABLED(CONFIG_MPTCP) &&
2058 	       sk->sk_protocol == IPPROTO_MPTCP &&
2059 	       sk->sk_type == SOCK_STREAM &&
2060 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2061 }
2062 
2063 /*
2064  *	Set a socket option. Because we don't know the option lengths we have
2065  *	to pass the user mode parameter for the protocols to sort out.
2066  */
2067 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2068 		int optlen)
2069 {
2070 	sockptr_t optval = USER_SOCKPTR(user_optval);
2071 	char *kernel_optval = NULL;
2072 	int err, fput_needed;
2073 	struct socket *sock;
2074 
2075 	if (optlen < 0)
2076 		return -EINVAL;
2077 
2078 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079 	if (!sock)
2080 		return err;
2081 
2082 	err = security_socket_setsockopt(sock, level, optname);
2083 	if (err)
2084 		goto out_put;
2085 
2086 	if (!in_compat_syscall())
2087 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2088 						     user_optval, &optlen,
2089 						     &kernel_optval);
2090 	if (err < 0)
2091 		goto out_put;
2092 	if (err > 0) {
2093 		err = 0;
2094 		goto out_put;
2095 	}
2096 
2097 	if (kernel_optval)
2098 		optval = KERNEL_SOCKPTR(kernel_optval);
2099 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2100 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2101 	else if (unlikely(!sock->ops->setsockopt))
2102 		err = -EOPNOTSUPP;
2103 	else
2104 		err = sock->ops->setsockopt(sock, level, optname, optval,
2105 					    optlen);
2106 	kfree(kernel_optval);
2107 out_put:
2108 	fput_light(sock->file, fput_needed);
2109 	return err;
2110 }
2111 
2112 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2113 		char __user *, optval, int, optlen)
2114 {
2115 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2116 }
2117 
2118 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2119 							 int optname));
2120 
2121 /*
2122  *	Get a socket option. Because we don't know the option lengths we have
2123  *	to pass a user mode parameter for the protocols to sort out.
2124  */
2125 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2126 		int __user *optlen)
2127 {
2128 	int err, fput_needed;
2129 	struct socket *sock;
2130 	int max_optlen;
2131 
2132 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 	if (!sock)
2134 		return err;
2135 
2136 	err = security_socket_getsockopt(sock, level, optname);
2137 	if (err)
2138 		goto out_put;
2139 
2140 	if (!in_compat_syscall())
2141 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2142 
2143 	if (level == SOL_SOCKET)
2144 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2145 	else if (unlikely(!sock->ops->getsockopt))
2146 		err = -EOPNOTSUPP;
2147 	else
2148 		err = sock->ops->getsockopt(sock, level, optname, optval,
2149 					    optlen);
2150 
2151 	if (!in_compat_syscall())
2152 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2153 						     optval, optlen, max_optlen,
2154 						     err);
2155 out_put:
2156 	fput_light(sock->file, fput_needed);
2157 	return err;
2158 }
2159 
2160 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2161 		char __user *, optval, int __user *, optlen)
2162 {
2163 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2164 }
2165 
2166 /*
2167  *	Shutdown a socket.
2168  */
2169 
2170 int __sys_shutdown_sock(struct socket *sock, int how)
2171 {
2172 	int err;
2173 
2174 	err = security_socket_shutdown(sock, how);
2175 	if (!err)
2176 		err = sock->ops->shutdown(sock, how);
2177 
2178 	return err;
2179 }
2180 
2181 int __sys_shutdown(int fd, int how)
2182 {
2183 	int err, fput_needed;
2184 	struct socket *sock;
2185 
2186 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 	if (sock != NULL) {
2188 		err = __sys_shutdown_sock(sock, how);
2189 		fput_light(sock->file, fput_needed);
2190 	}
2191 	return err;
2192 }
2193 
2194 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2195 {
2196 	return __sys_shutdown(fd, how);
2197 }
2198 
2199 /* A couple of helpful macros for getting the address of the 32/64 bit
2200  * fields which are the same type (int / unsigned) on our platforms.
2201  */
2202 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2203 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2204 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2205 
2206 struct used_address {
2207 	struct sockaddr_storage name;
2208 	unsigned int name_len;
2209 };
2210 
2211 int __copy_msghdr_from_user(struct msghdr *kmsg,
2212 			    struct user_msghdr __user *umsg,
2213 			    struct sockaddr __user **save_addr,
2214 			    struct iovec __user **uiov, size_t *nsegs)
2215 {
2216 	struct user_msghdr msg;
2217 	ssize_t err;
2218 
2219 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2220 		return -EFAULT;
2221 
2222 	kmsg->msg_control_is_user = true;
2223 	kmsg->msg_control_user = msg.msg_control;
2224 	kmsg->msg_controllen = msg.msg_controllen;
2225 	kmsg->msg_flags = msg.msg_flags;
2226 
2227 	kmsg->msg_namelen = msg.msg_namelen;
2228 	if (!msg.msg_name)
2229 		kmsg->msg_namelen = 0;
2230 
2231 	if (kmsg->msg_namelen < 0)
2232 		return -EINVAL;
2233 
2234 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2235 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2236 
2237 	if (save_addr)
2238 		*save_addr = msg.msg_name;
2239 
2240 	if (msg.msg_name && kmsg->msg_namelen) {
2241 		if (!save_addr) {
2242 			err = move_addr_to_kernel(msg.msg_name,
2243 						  kmsg->msg_namelen,
2244 						  kmsg->msg_name);
2245 			if (err < 0)
2246 				return err;
2247 		}
2248 	} else {
2249 		kmsg->msg_name = NULL;
2250 		kmsg->msg_namelen = 0;
2251 	}
2252 
2253 	if (msg.msg_iovlen > UIO_MAXIOV)
2254 		return -EMSGSIZE;
2255 
2256 	kmsg->msg_iocb = NULL;
2257 	*uiov = msg.msg_iov;
2258 	*nsegs = msg.msg_iovlen;
2259 	return 0;
2260 }
2261 
2262 static int copy_msghdr_from_user(struct msghdr *kmsg,
2263 				 struct user_msghdr __user *umsg,
2264 				 struct sockaddr __user **save_addr,
2265 				 struct iovec **iov)
2266 {
2267 	struct user_msghdr msg;
2268 	ssize_t err;
2269 
2270 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2271 					&msg.msg_iovlen);
2272 	if (err)
2273 		return err;
2274 
2275 	err = import_iovec(save_addr ? READ : WRITE,
2276 			    msg.msg_iov, msg.msg_iovlen,
2277 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2278 	return err < 0 ? err : 0;
2279 }
2280 
2281 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2282 			   unsigned int flags, struct used_address *used_address,
2283 			   unsigned int allowed_msghdr_flags)
2284 {
2285 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2286 				__aligned(sizeof(__kernel_size_t));
2287 	/* 20 is size of ipv6_pktinfo */
2288 	unsigned char *ctl_buf = ctl;
2289 	int ctl_len;
2290 	ssize_t err;
2291 
2292 	err = -ENOBUFS;
2293 
2294 	if (msg_sys->msg_controllen > INT_MAX)
2295 		goto out;
2296 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2297 	ctl_len = msg_sys->msg_controllen;
2298 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2299 		err =
2300 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2301 						     sizeof(ctl));
2302 		if (err)
2303 			goto out;
2304 		ctl_buf = msg_sys->msg_control;
2305 		ctl_len = msg_sys->msg_controllen;
2306 	} else if (ctl_len) {
2307 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2308 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2309 		if (ctl_len > sizeof(ctl)) {
2310 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2311 			if (ctl_buf == NULL)
2312 				goto out;
2313 		}
2314 		err = -EFAULT;
2315 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2316 			goto out_freectl;
2317 		msg_sys->msg_control = ctl_buf;
2318 		msg_sys->msg_control_is_user = false;
2319 	}
2320 	msg_sys->msg_flags = flags;
2321 
2322 	if (sock->file->f_flags & O_NONBLOCK)
2323 		msg_sys->msg_flags |= MSG_DONTWAIT;
2324 	/*
2325 	 * If this is sendmmsg() and current destination address is same as
2326 	 * previously succeeded address, omit asking LSM's decision.
2327 	 * used_address->name_len is initialized to UINT_MAX so that the first
2328 	 * destination address never matches.
2329 	 */
2330 	if (used_address && msg_sys->msg_name &&
2331 	    used_address->name_len == msg_sys->msg_namelen &&
2332 	    !memcmp(&used_address->name, msg_sys->msg_name,
2333 		    used_address->name_len)) {
2334 		err = sock_sendmsg_nosec(sock, msg_sys);
2335 		goto out_freectl;
2336 	}
2337 	err = sock_sendmsg(sock, msg_sys);
2338 	/*
2339 	 * If this is sendmmsg() and sending to current destination address was
2340 	 * successful, remember it.
2341 	 */
2342 	if (used_address && err >= 0) {
2343 		used_address->name_len = msg_sys->msg_namelen;
2344 		if (msg_sys->msg_name)
2345 			memcpy(&used_address->name, msg_sys->msg_name,
2346 			       used_address->name_len);
2347 	}
2348 
2349 out_freectl:
2350 	if (ctl_buf != ctl)
2351 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2352 out:
2353 	return err;
2354 }
2355 
2356 int sendmsg_copy_msghdr(struct msghdr *msg,
2357 			struct user_msghdr __user *umsg, unsigned flags,
2358 			struct iovec **iov)
2359 {
2360 	int err;
2361 
2362 	if (flags & MSG_CMSG_COMPAT) {
2363 		struct compat_msghdr __user *msg_compat;
2364 
2365 		msg_compat = (struct compat_msghdr __user *) umsg;
2366 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2367 	} else {
2368 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2369 	}
2370 	if (err < 0)
2371 		return err;
2372 
2373 	return 0;
2374 }
2375 
2376 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2377 			 struct msghdr *msg_sys, unsigned int flags,
2378 			 struct used_address *used_address,
2379 			 unsigned int allowed_msghdr_flags)
2380 {
2381 	struct sockaddr_storage address;
2382 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2383 	ssize_t err;
2384 
2385 	msg_sys->msg_name = &address;
2386 
2387 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2388 	if (err < 0)
2389 		return err;
2390 
2391 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2392 				allowed_msghdr_flags);
2393 	kfree(iov);
2394 	return err;
2395 }
2396 
2397 /*
2398  *	BSD sendmsg interface
2399  */
2400 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2401 			unsigned int flags)
2402 {
2403 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2404 }
2405 
2406 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2407 		   bool forbid_cmsg_compat)
2408 {
2409 	int fput_needed, err;
2410 	struct msghdr msg_sys;
2411 	struct socket *sock;
2412 
2413 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2414 		return -EINVAL;
2415 
2416 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2417 	if (!sock)
2418 		goto out;
2419 
2420 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2421 
2422 	fput_light(sock->file, fput_needed);
2423 out:
2424 	return err;
2425 }
2426 
2427 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2428 {
2429 	return __sys_sendmsg(fd, msg, flags, true);
2430 }
2431 
2432 /*
2433  *	Linux sendmmsg interface
2434  */
2435 
2436 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2437 		   unsigned int flags, bool forbid_cmsg_compat)
2438 {
2439 	int fput_needed, err, datagrams;
2440 	struct socket *sock;
2441 	struct mmsghdr __user *entry;
2442 	struct compat_mmsghdr __user *compat_entry;
2443 	struct msghdr msg_sys;
2444 	struct used_address used_address;
2445 	unsigned int oflags = flags;
2446 
2447 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2448 		return -EINVAL;
2449 
2450 	if (vlen > UIO_MAXIOV)
2451 		vlen = UIO_MAXIOV;
2452 
2453 	datagrams = 0;
2454 
2455 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2456 	if (!sock)
2457 		return err;
2458 
2459 	used_address.name_len = UINT_MAX;
2460 	entry = mmsg;
2461 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2462 	err = 0;
2463 	flags |= MSG_BATCH;
2464 
2465 	while (datagrams < vlen) {
2466 		if (datagrams == vlen - 1)
2467 			flags = oflags;
2468 
2469 		if (MSG_CMSG_COMPAT & flags) {
2470 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2471 					     &msg_sys, flags, &used_address, MSG_EOR);
2472 			if (err < 0)
2473 				break;
2474 			err = __put_user(err, &compat_entry->msg_len);
2475 			++compat_entry;
2476 		} else {
2477 			err = ___sys_sendmsg(sock,
2478 					     (struct user_msghdr __user *)entry,
2479 					     &msg_sys, flags, &used_address, MSG_EOR);
2480 			if (err < 0)
2481 				break;
2482 			err = put_user(err, &entry->msg_len);
2483 			++entry;
2484 		}
2485 
2486 		if (err)
2487 			break;
2488 		++datagrams;
2489 		if (msg_data_left(&msg_sys))
2490 			break;
2491 		cond_resched();
2492 	}
2493 
2494 	fput_light(sock->file, fput_needed);
2495 
2496 	/* We only return an error if no datagrams were able to be sent */
2497 	if (datagrams != 0)
2498 		return datagrams;
2499 
2500 	return err;
2501 }
2502 
2503 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2504 		unsigned int, vlen, unsigned int, flags)
2505 {
2506 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2507 }
2508 
2509 int recvmsg_copy_msghdr(struct msghdr *msg,
2510 			struct user_msghdr __user *umsg, unsigned flags,
2511 			struct sockaddr __user **uaddr,
2512 			struct iovec **iov)
2513 {
2514 	ssize_t err;
2515 
2516 	if (MSG_CMSG_COMPAT & flags) {
2517 		struct compat_msghdr __user *msg_compat;
2518 
2519 		msg_compat = (struct compat_msghdr __user *) umsg;
2520 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2521 	} else {
2522 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2523 	}
2524 	if (err < 0)
2525 		return err;
2526 
2527 	return 0;
2528 }
2529 
2530 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2531 			   struct user_msghdr __user *msg,
2532 			   struct sockaddr __user *uaddr,
2533 			   unsigned int flags, int nosec)
2534 {
2535 	struct compat_msghdr __user *msg_compat =
2536 					(struct compat_msghdr __user *) msg;
2537 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2538 	struct sockaddr_storage addr;
2539 	unsigned long cmsg_ptr;
2540 	int len;
2541 	ssize_t err;
2542 
2543 	msg_sys->msg_name = &addr;
2544 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2545 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2546 
2547 	/* We assume all kernel code knows the size of sockaddr_storage */
2548 	msg_sys->msg_namelen = 0;
2549 
2550 	if (sock->file->f_flags & O_NONBLOCK)
2551 		flags |= MSG_DONTWAIT;
2552 
2553 	if (unlikely(nosec))
2554 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2555 	else
2556 		err = sock_recvmsg(sock, msg_sys, flags);
2557 
2558 	if (err < 0)
2559 		goto out;
2560 	len = err;
2561 
2562 	if (uaddr != NULL) {
2563 		err = move_addr_to_user(&addr,
2564 					msg_sys->msg_namelen, uaddr,
2565 					uaddr_len);
2566 		if (err < 0)
2567 			goto out;
2568 	}
2569 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2570 			 COMPAT_FLAGS(msg));
2571 	if (err)
2572 		goto out;
2573 	if (MSG_CMSG_COMPAT & flags)
2574 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2575 				 &msg_compat->msg_controllen);
2576 	else
2577 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2578 				 &msg->msg_controllen);
2579 	if (err)
2580 		goto out;
2581 	err = len;
2582 out:
2583 	return err;
2584 }
2585 
2586 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2587 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2588 {
2589 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2590 	/* user mode address pointers */
2591 	struct sockaddr __user *uaddr;
2592 	ssize_t err;
2593 
2594 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2595 	if (err < 0)
2596 		return err;
2597 
2598 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2599 	kfree(iov);
2600 	return err;
2601 }
2602 
2603 /*
2604  *	BSD recvmsg interface
2605  */
2606 
2607 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2608 			struct user_msghdr __user *umsg,
2609 			struct sockaddr __user *uaddr, unsigned int flags)
2610 {
2611 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2612 }
2613 
2614 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2615 		   bool forbid_cmsg_compat)
2616 {
2617 	int fput_needed, err;
2618 	struct msghdr msg_sys;
2619 	struct socket *sock;
2620 
2621 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2622 		return -EINVAL;
2623 
2624 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2625 	if (!sock)
2626 		goto out;
2627 
2628 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2629 
2630 	fput_light(sock->file, fput_needed);
2631 out:
2632 	return err;
2633 }
2634 
2635 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2636 		unsigned int, flags)
2637 {
2638 	return __sys_recvmsg(fd, msg, flags, true);
2639 }
2640 
2641 /*
2642  *     Linux recvmmsg interface
2643  */
2644 
2645 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2646 			  unsigned int vlen, unsigned int flags,
2647 			  struct timespec64 *timeout)
2648 {
2649 	int fput_needed, err, datagrams;
2650 	struct socket *sock;
2651 	struct mmsghdr __user *entry;
2652 	struct compat_mmsghdr __user *compat_entry;
2653 	struct msghdr msg_sys;
2654 	struct timespec64 end_time;
2655 	struct timespec64 timeout64;
2656 
2657 	if (timeout &&
2658 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2659 				    timeout->tv_nsec))
2660 		return -EINVAL;
2661 
2662 	datagrams = 0;
2663 
2664 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2665 	if (!sock)
2666 		return err;
2667 
2668 	if (likely(!(flags & MSG_ERRQUEUE))) {
2669 		err = sock_error(sock->sk);
2670 		if (err) {
2671 			datagrams = err;
2672 			goto out_put;
2673 		}
2674 	}
2675 
2676 	entry = mmsg;
2677 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2678 
2679 	while (datagrams < vlen) {
2680 		/*
2681 		 * No need to ask LSM for more than the first datagram.
2682 		 */
2683 		if (MSG_CMSG_COMPAT & flags) {
2684 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2685 					     &msg_sys, flags & ~MSG_WAITFORONE,
2686 					     datagrams);
2687 			if (err < 0)
2688 				break;
2689 			err = __put_user(err, &compat_entry->msg_len);
2690 			++compat_entry;
2691 		} else {
2692 			err = ___sys_recvmsg(sock,
2693 					     (struct user_msghdr __user *)entry,
2694 					     &msg_sys, flags & ~MSG_WAITFORONE,
2695 					     datagrams);
2696 			if (err < 0)
2697 				break;
2698 			err = put_user(err, &entry->msg_len);
2699 			++entry;
2700 		}
2701 
2702 		if (err)
2703 			break;
2704 		++datagrams;
2705 
2706 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2707 		if (flags & MSG_WAITFORONE)
2708 			flags |= MSG_DONTWAIT;
2709 
2710 		if (timeout) {
2711 			ktime_get_ts64(&timeout64);
2712 			*timeout = timespec64_sub(end_time, timeout64);
2713 			if (timeout->tv_sec < 0) {
2714 				timeout->tv_sec = timeout->tv_nsec = 0;
2715 				break;
2716 			}
2717 
2718 			/* Timeout, return less than vlen datagrams */
2719 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2720 				break;
2721 		}
2722 
2723 		/* Out of band data, return right away */
2724 		if (msg_sys.msg_flags & MSG_OOB)
2725 			break;
2726 		cond_resched();
2727 	}
2728 
2729 	if (err == 0)
2730 		goto out_put;
2731 
2732 	if (datagrams == 0) {
2733 		datagrams = err;
2734 		goto out_put;
2735 	}
2736 
2737 	/*
2738 	 * We may return less entries than requested (vlen) if the
2739 	 * sock is non block and there aren't enough datagrams...
2740 	 */
2741 	if (err != -EAGAIN) {
2742 		/*
2743 		 * ... or  if recvmsg returns an error after we
2744 		 * received some datagrams, where we record the
2745 		 * error to return on the next call or if the
2746 		 * app asks about it using getsockopt(SO_ERROR).
2747 		 */
2748 		sock->sk->sk_err = -err;
2749 	}
2750 out_put:
2751 	fput_light(sock->file, fput_needed);
2752 
2753 	return datagrams;
2754 }
2755 
2756 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2757 		   unsigned int vlen, unsigned int flags,
2758 		   struct __kernel_timespec __user *timeout,
2759 		   struct old_timespec32 __user *timeout32)
2760 {
2761 	int datagrams;
2762 	struct timespec64 timeout_sys;
2763 
2764 	if (timeout && get_timespec64(&timeout_sys, timeout))
2765 		return -EFAULT;
2766 
2767 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2768 		return -EFAULT;
2769 
2770 	if (!timeout && !timeout32)
2771 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2772 
2773 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2774 
2775 	if (datagrams <= 0)
2776 		return datagrams;
2777 
2778 	if (timeout && put_timespec64(&timeout_sys, timeout))
2779 		datagrams = -EFAULT;
2780 
2781 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2782 		datagrams = -EFAULT;
2783 
2784 	return datagrams;
2785 }
2786 
2787 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2788 		unsigned int, vlen, unsigned int, flags,
2789 		struct __kernel_timespec __user *, timeout)
2790 {
2791 	if (flags & MSG_CMSG_COMPAT)
2792 		return -EINVAL;
2793 
2794 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2795 }
2796 
2797 #ifdef CONFIG_COMPAT_32BIT_TIME
2798 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2799 		unsigned int, vlen, unsigned int, flags,
2800 		struct old_timespec32 __user *, timeout)
2801 {
2802 	if (flags & MSG_CMSG_COMPAT)
2803 		return -EINVAL;
2804 
2805 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2806 }
2807 #endif
2808 
2809 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2810 /* Argument list sizes for sys_socketcall */
2811 #define AL(x) ((x) * sizeof(unsigned long))
2812 static const unsigned char nargs[21] = {
2813 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2814 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2815 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2816 	AL(4), AL(5), AL(4)
2817 };
2818 
2819 #undef AL
2820 
2821 /*
2822  *	System call vectors.
2823  *
2824  *	Argument checking cleaned up. Saved 20% in size.
2825  *  This function doesn't need to set the kernel lock because
2826  *  it is set by the callees.
2827  */
2828 
2829 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2830 {
2831 	unsigned long a[AUDITSC_ARGS];
2832 	unsigned long a0, a1;
2833 	int err;
2834 	unsigned int len;
2835 
2836 	if (call < 1 || call > SYS_SENDMMSG)
2837 		return -EINVAL;
2838 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2839 
2840 	len = nargs[call];
2841 	if (len > sizeof(a))
2842 		return -EINVAL;
2843 
2844 	/* copy_from_user should be SMP safe. */
2845 	if (copy_from_user(a, args, len))
2846 		return -EFAULT;
2847 
2848 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2849 	if (err)
2850 		return err;
2851 
2852 	a0 = a[0];
2853 	a1 = a[1];
2854 
2855 	switch (call) {
2856 	case SYS_SOCKET:
2857 		err = __sys_socket(a0, a1, a[2]);
2858 		break;
2859 	case SYS_BIND:
2860 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2861 		break;
2862 	case SYS_CONNECT:
2863 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2864 		break;
2865 	case SYS_LISTEN:
2866 		err = __sys_listen(a0, a1);
2867 		break;
2868 	case SYS_ACCEPT:
2869 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2870 				    (int __user *)a[2], 0);
2871 		break;
2872 	case SYS_GETSOCKNAME:
2873 		err =
2874 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2875 				      (int __user *)a[2]);
2876 		break;
2877 	case SYS_GETPEERNAME:
2878 		err =
2879 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2880 				      (int __user *)a[2]);
2881 		break;
2882 	case SYS_SOCKETPAIR:
2883 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2884 		break;
2885 	case SYS_SEND:
2886 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2887 				   NULL, 0);
2888 		break;
2889 	case SYS_SENDTO:
2890 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2891 				   (struct sockaddr __user *)a[4], a[5]);
2892 		break;
2893 	case SYS_RECV:
2894 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2895 				     NULL, NULL);
2896 		break;
2897 	case SYS_RECVFROM:
2898 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2899 				     (struct sockaddr __user *)a[4],
2900 				     (int __user *)a[5]);
2901 		break;
2902 	case SYS_SHUTDOWN:
2903 		err = __sys_shutdown(a0, a1);
2904 		break;
2905 	case SYS_SETSOCKOPT:
2906 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2907 				       a[4]);
2908 		break;
2909 	case SYS_GETSOCKOPT:
2910 		err =
2911 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2912 				     (int __user *)a[4]);
2913 		break;
2914 	case SYS_SENDMSG:
2915 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2916 				    a[2], true);
2917 		break;
2918 	case SYS_SENDMMSG:
2919 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2920 				     a[3], true);
2921 		break;
2922 	case SYS_RECVMSG:
2923 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2924 				    a[2], true);
2925 		break;
2926 	case SYS_RECVMMSG:
2927 		if (IS_ENABLED(CONFIG_64BIT))
2928 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2929 					     a[2], a[3],
2930 					     (struct __kernel_timespec __user *)a[4],
2931 					     NULL);
2932 		else
2933 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2934 					     a[2], a[3], NULL,
2935 					     (struct old_timespec32 __user *)a[4]);
2936 		break;
2937 	case SYS_ACCEPT4:
2938 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2939 				    (int __user *)a[2], a[3]);
2940 		break;
2941 	default:
2942 		err = -EINVAL;
2943 		break;
2944 	}
2945 	return err;
2946 }
2947 
2948 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2949 
2950 /**
2951  *	sock_register - add a socket protocol handler
2952  *	@ops: description of protocol
2953  *
2954  *	This function is called by a protocol handler that wants to
2955  *	advertise its address family, and have it linked into the
2956  *	socket interface. The value ops->family corresponds to the
2957  *	socket system call protocol family.
2958  */
2959 int sock_register(const struct net_proto_family *ops)
2960 {
2961 	int err;
2962 
2963 	if (ops->family >= NPROTO) {
2964 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2965 		return -ENOBUFS;
2966 	}
2967 
2968 	spin_lock(&net_family_lock);
2969 	if (rcu_dereference_protected(net_families[ops->family],
2970 				      lockdep_is_held(&net_family_lock)))
2971 		err = -EEXIST;
2972 	else {
2973 		rcu_assign_pointer(net_families[ops->family], ops);
2974 		err = 0;
2975 	}
2976 	spin_unlock(&net_family_lock);
2977 
2978 	pr_info("NET: Registered protocol family %d\n", ops->family);
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(sock_register);
2982 
2983 /**
2984  *	sock_unregister - remove a protocol handler
2985  *	@family: protocol family to remove
2986  *
2987  *	This function is called by a protocol handler that wants to
2988  *	remove its address family, and have it unlinked from the
2989  *	new socket creation.
2990  *
2991  *	If protocol handler is a module, then it can use module reference
2992  *	counts to protect against new references. If protocol handler is not
2993  *	a module then it needs to provide its own protection in
2994  *	the ops->create routine.
2995  */
2996 void sock_unregister(int family)
2997 {
2998 	BUG_ON(family < 0 || family >= NPROTO);
2999 
3000 	spin_lock(&net_family_lock);
3001 	RCU_INIT_POINTER(net_families[family], NULL);
3002 	spin_unlock(&net_family_lock);
3003 
3004 	synchronize_rcu();
3005 
3006 	pr_info("NET: Unregistered protocol family %d\n", family);
3007 }
3008 EXPORT_SYMBOL(sock_unregister);
3009 
3010 bool sock_is_registered(int family)
3011 {
3012 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3013 }
3014 
3015 static int __init sock_init(void)
3016 {
3017 	int err;
3018 	/*
3019 	 *      Initialize the network sysctl infrastructure.
3020 	 */
3021 	err = net_sysctl_init();
3022 	if (err)
3023 		goto out;
3024 
3025 	/*
3026 	 *      Initialize skbuff SLAB cache
3027 	 */
3028 	skb_init();
3029 
3030 	/*
3031 	 *      Initialize the protocols module.
3032 	 */
3033 
3034 	init_inodecache();
3035 
3036 	err = register_filesystem(&sock_fs_type);
3037 	if (err)
3038 		goto out;
3039 	sock_mnt = kern_mount(&sock_fs_type);
3040 	if (IS_ERR(sock_mnt)) {
3041 		err = PTR_ERR(sock_mnt);
3042 		goto out_mount;
3043 	}
3044 
3045 	/* The real protocol initialization is performed in later initcalls.
3046 	 */
3047 
3048 #ifdef CONFIG_NETFILTER
3049 	err = netfilter_init();
3050 	if (err)
3051 		goto out;
3052 #endif
3053 
3054 	ptp_classifier_init();
3055 
3056 out:
3057 	return err;
3058 
3059 out_mount:
3060 	unregister_filesystem(&sock_fs_type);
3061 	goto out;
3062 }
3063 
3064 core_initcall(sock_init);	/* early initcall */
3065 
3066 #ifdef CONFIG_PROC_FS
3067 void socket_seq_show(struct seq_file *seq)
3068 {
3069 	seq_printf(seq, "sockets: used %d\n",
3070 		   sock_inuse_get(seq->private));
3071 }
3072 #endif				/* CONFIG_PROC_FS */
3073 
3074 #ifdef CONFIG_COMPAT
3075 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3076 {
3077 	struct compat_ifconf ifc32;
3078 	struct ifconf ifc;
3079 	int err;
3080 
3081 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3082 		return -EFAULT;
3083 
3084 	ifc.ifc_len = ifc32.ifc_len;
3085 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3086 
3087 	rtnl_lock();
3088 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3089 	rtnl_unlock();
3090 	if (err)
3091 		return err;
3092 
3093 	ifc32.ifc_len = ifc.ifc_len;
3094 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3095 		return -EFAULT;
3096 
3097 	return 0;
3098 }
3099 
3100 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3101 {
3102 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3103 	bool convert_in = false, convert_out = false;
3104 	size_t buf_size = 0;
3105 	struct ethtool_rxnfc __user *rxnfc = NULL;
3106 	struct ifreq ifr;
3107 	u32 rule_cnt = 0, actual_rule_cnt;
3108 	u32 ethcmd;
3109 	u32 data;
3110 	int ret;
3111 
3112 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3113 		return -EFAULT;
3114 
3115 	compat_rxnfc = compat_ptr(data);
3116 
3117 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3118 		return -EFAULT;
3119 
3120 	/* Most ethtool structures are defined without padding.
3121 	 * Unfortunately struct ethtool_rxnfc is an exception.
3122 	 */
3123 	switch (ethcmd) {
3124 	default:
3125 		break;
3126 	case ETHTOOL_GRXCLSRLALL:
3127 		/* Buffer size is variable */
3128 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3129 			return -EFAULT;
3130 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3131 			return -ENOMEM;
3132 		buf_size += rule_cnt * sizeof(u32);
3133 		fallthrough;
3134 	case ETHTOOL_GRXRINGS:
3135 	case ETHTOOL_GRXCLSRLCNT:
3136 	case ETHTOOL_GRXCLSRULE:
3137 	case ETHTOOL_SRXCLSRLINS:
3138 		convert_out = true;
3139 		fallthrough;
3140 	case ETHTOOL_SRXCLSRLDEL:
3141 		buf_size += sizeof(struct ethtool_rxnfc);
3142 		convert_in = true;
3143 		rxnfc = compat_alloc_user_space(buf_size);
3144 		break;
3145 	}
3146 
3147 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3148 		return -EFAULT;
3149 
3150 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3151 
3152 	if (convert_in) {
3153 		/* We expect there to be holes between fs.m_ext and
3154 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3155 		 */
3156 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3157 			     sizeof(compat_rxnfc->fs.m_ext) !=
3158 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3159 			     sizeof(rxnfc->fs.m_ext));
3160 		BUILD_BUG_ON(
3161 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3162 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3163 			offsetof(struct ethtool_rxnfc, fs.location) -
3164 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3165 
3166 		if (copy_in_user(rxnfc, compat_rxnfc,
3167 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3168 				 (void __user *)rxnfc) ||
3169 		    copy_in_user(&rxnfc->fs.ring_cookie,
3170 				 &compat_rxnfc->fs.ring_cookie,
3171 				 (void __user *)(&rxnfc->fs.location + 1) -
3172 				 (void __user *)&rxnfc->fs.ring_cookie))
3173 			return -EFAULT;
3174 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3175 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3176 				return -EFAULT;
3177 		} else if (copy_in_user(&rxnfc->rule_cnt,
3178 					&compat_rxnfc->rule_cnt,
3179 					sizeof(rxnfc->rule_cnt)))
3180 			return -EFAULT;
3181 	}
3182 
3183 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3184 	if (ret)
3185 		return ret;
3186 
3187 	if (convert_out) {
3188 		if (copy_in_user(compat_rxnfc, rxnfc,
3189 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3190 				 (const void __user *)rxnfc) ||
3191 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3192 				 &rxnfc->fs.ring_cookie,
3193 				 (const void __user *)(&rxnfc->fs.location + 1) -
3194 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3195 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3196 				 sizeof(rxnfc->rule_cnt)))
3197 			return -EFAULT;
3198 
3199 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3200 			/* As an optimisation, we only copy the actual
3201 			 * number of rules that the underlying
3202 			 * function returned.  Since Mallory might
3203 			 * change the rule count in user memory, we
3204 			 * check that it is less than the rule count
3205 			 * originally given (as the user buffer size),
3206 			 * which has been range-checked.
3207 			 */
3208 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3209 				return -EFAULT;
3210 			if (actual_rule_cnt < rule_cnt)
3211 				rule_cnt = actual_rule_cnt;
3212 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3213 					 &rxnfc->rule_locs[0],
3214 					 rule_cnt * sizeof(u32)))
3215 				return -EFAULT;
3216 		}
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3223 {
3224 	compat_uptr_t uptr32;
3225 	struct ifreq ifr;
3226 	void __user *saved;
3227 	int err;
3228 
3229 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3230 		return -EFAULT;
3231 
3232 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3233 		return -EFAULT;
3234 
3235 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3236 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3237 
3238 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3239 	if (!err) {
3240 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3241 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3242 			err = -EFAULT;
3243 	}
3244 	return err;
3245 }
3246 
3247 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3248 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3249 				 struct compat_ifreq __user *u_ifreq32)
3250 {
3251 	struct ifreq ifreq;
3252 	u32 data32;
3253 
3254 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3255 		return -EFAULT;
3256 	if (get_user(data32, &u_ifreq32->ifr_data))
3257 		return -EFAULT;
3258 	ifreq.ifr_data = compat_ptr(data32);
3259 
3260 	return dev_ioctl(net, cmd, &ifreq, NULL);
3261 }
3262 
3263 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3264 			      unsigned int cmd,
3265 			      struct compat_ifreq __user *uifr32)
3266 {
3267 	struct ifreq __user *uifr;
3268 	int err;
3269 
3270 	/* Handle the fact that while struct ifreq has the same *layout* on
3271 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3272 	 * which are handled elsewhere, it still has different *size* due to
3273 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3274 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3275 	 * As a result, if the struct happens to be at the end of a page and
3276 	 * the next page isn't readable/writable, we get a fault. To prevent
3277 	 * that, copy back and forth to the full size.
3278 	 */
3279 
3280 	uifr = compat_alloc_user_space(sizeof(*uifr));
3281 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3282 		return -EFAULT;
3283 
3284 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3285 
3286 	if (!err) {
3287 		switch (cmd) {
3288 		case SIOCGIFFLAGS:
3289 		case SIOCGIFMETRIC:
3290 		case SIOCGIFMTU:
3291 		case SIOCGIFMEM:
3292 		case SIOCGIFHWADDR:
3293 		case SIOCGIFINDEX:
3294 		case SIOCGIFADDR:
3295 		case SIOCGIFBRDADDR:
3296 		case SIOCGIFDSTADDR:
3297 		case SIOCGIFNETMASK:
3298 		case SIOCGIFPFLAGS:
3299 		case SIOCGIFTXQLEN:
3300 		case SIOCGMIIPHY:
3301 		case SIOCGMIIREG:
3302 		case SIOCGIFNAME:
3303 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3304 				err = -EFAULT;
3305 			break;
3306 		}
3307 	}
3308 	return err;
3309 }
3310 
3311 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3312 			struct compat_ifreq __user *uifr32)
3313 {
3314 	struct ifreq ifr;
3315 	struct compat_ifmap __user *uifmap32;
3316 	int err;
3317 
3318 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3319 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3320 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3321 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3322 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3323 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3324 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3325 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3326 	if (err)
3327 		return -EFAULT;
3328 
3329 	err = dev_ioctl(net, cmd, &ifr, NULL);
3330 
3331 	if (cmd == SIOCGIFMAP && !err) {
3332 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3333 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3334 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3335 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3336 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3337 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3338 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3339 		if (err)
3340 			err = -EFAULT;
3341 	}
3342 	return err;
3343 }
3344 
3345 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3346  * for some operations; this forces use of the newer bridge-utils that
3347  * use compatible ioctls
3348  */
3349 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3350 {
3351 	compat_ulong_t tmp;
3352 
3353 	if (get_user(tmp, argp))
3354 		return -EFAULT;
3355 	if (tmp == BRCTL_GET_VERSION)
3356 		return BRCTL_VERSION + 1;
3357 	return -EINVAL;
3358 }
3359 
3360 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3361 			 unsigned int cmd, unsigned long arg)
3362 {
3363 	void __user *argp = compat_ptr(arg);
3364 	struct sock *sk = sock->sk;
3365 	struct net *net = sock_net(sk);
3366 
3367 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3368 		return compat_ifr_data_ioctl(net, cmd, argp);
3369 
3370 	switch (cmd) {
3371 	case SIOCSIFBR:
3372 	case SIOCGIFBR:
3373 		return old_bridge_ioctl(argp);
3374 	case SIOCGIFCONF:
3375 		return compat_dev_ifconf(net, argp);
3376 	case SIOCETHTOOL:
3377 		return ethtool_ioctl(net, argp);
3378 	case SIOCWANDEV:
3379 		return compat_siocwandev(net, argp);
3380 	case SIOCGIFMAP:
3381 	case SIOCSIFMAP:
3382 		return compat_sioc_ifmap(net, cmd, argp);
3383 	case SIOCGSTAMP_OLD:
3384 	case SIOCGSTAMPNS_OLD:
3385 		if (!sock->ops->gettstamp)
3386 			return -ENOIOCTLCMD;
3387 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3388 					    !COMPAT_USE_64BIT_TIME);
3389 
3390 	case SIOCBONDSLAVEINFOQUERY:
3391 	case SIOCBONDINFOQUERY:
3392 	case SIOCSHWTSTAMP:
3393 	case SIOCGHWTSTAMP:
3394 		return compat_ifr_data_ioctl(net, cmd, argp);
3395 
3396 	case FIOSETOWN:
3397 	case SIOCSPGRP:
3398 	case FIOGETOWN:
3399 	case SIOCGPGRP:
3400 	case SIOCBRADDBR:
3401 	case SIOCBRDELBR:
3402 	case SIOCGIFVLAN:
3403 	case SIOCSIFVLAN:
3404 	case SIOCGSKNS:
3405 	case SIOCGSTAMP_NEW:
3406 	case SIOCGSTAMPNS_NEW:
3407 		return sock_ioctl(file, cmd, arg);
3408 
3409 	case SIOCGIFFLAGS:
3410 	case SIOCSIFFLAGS:
3411 	case SIOCGIFMETRIC:
3412 	case SIOCSIFMETRIC:
3413 	case SIOCGIFMTU:
3414 	case SIOCSIFMTU:
3415 	case SIOCGIFMEM:
3416 	case SIOCSIFMEM:
3417 	case SIOCGIFHWADDR:
3418 	case SIOCSIFHWADDR:
3419 	case SIOCADDMULTI:
3420 	case SIOCDELMULTI:
3421 	case SIOCGIFINDEX:
3422 	case SIOCGIFADDR:
3423 	case SIOCSIFADDR:
3424 	case SIOCSIFHWBROADCAST:
3425 	case SIOCDIFADDR:
3426 	case SIOCGIFBRDADDR:
3427 	case SIOCSIFBRDADDR:
3428 	case SIOCGIFDSTADDR:
3429 	case SIOCSIFDSTADDR:
3430 	case SIOCGIFNETMASK:
3431 	case SIOCSIFNETMASK:
3432 	case SIOCSIFPFLAGS:
3433 	case SIOCGIFPFLAGS:
3434 	case SIOCGIFTXQLEN:
3435 	case SIOCSIFTXQLEN:
3436 	case SIOCBRADDIF:
3437 	case SIOCBRDELIF:
3438 	case SIOCGIFNAME:
3439 	case SIOCSIFNAME:
3440 	case SIOCGMIIPHY:
3441 	case SIOCGMIIREG:
3442 	case SIOCSMIIREG:
3443 	case SIOCBONDENSLAVE:
3444 	case SIOCBONDRELEASE:
3445 	case SIOCBONDSETHWADDR:
3446 	case SIOCBONDCHANGEACTIVE:
3447 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3448 
3449 	case SIOCSARP:
3450 	case SIOCGARP:
3451 	case SIOCDARP:
3452 	case SIOCOUTQ:
3453 	case SIOCOUTQNSD:
3454 	case SIOCATMARK:
3455 		return sock_do_ioctl(net, sock, cmd, arg);
3456 	}
3457 
3458 	return -ENOIOCTLCMD;
3459 }
3460 
3461 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3462 			      unsigned long arg)
3463 {
3464 	struct socket *sock = file->private_data;
3465 	int ret = -ENOIOCTLCMD;
3466 	struct sock *sk;
3467 	struct net *net;
3468 
3469 	sk = sock->sk;
3470 	net = sock_net(sk);
3471 
3472 	if (sock->ops->compat_ioctl)
3473 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3474 
3475 	if (ret == -ENOIOCTLCMD &&
3476 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3477 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3478 
3479 	if (ret == -ENOIOCTLCMD)
3480 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3481 
3482 	return ret;
3483 }
3484 #endif
3485 
3486 /**
3487  *	kernel_bind - bind an address to a socket (kernel space)
3488  *	@sock: socket
3489  *	@addr: address
3490  *	@addrlen: length of address
3491  *
3492  *	Returns 0 or an error.
3493  */
3494 
3495 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3496 {
3497 	return sock->ops->bind(sock, addr, addrlen);
3498 }
3499 EXPORT_SYMBOL(kernel_bind);
3500 
3501 /**
3502  *	kernel_listen - move socket to listening state (kernel space)
3503  *	@sock: socket
3504  *	@backlog: pending connections queue size
3505  *
3506  *	Returns 0 or an error.
3507  */
3508 
3509 int kernel_listen(struct socket *sock, int backlog)
3510 {
3511 	return sock->ops->listen(sock, backlog);
3512 }
3513 EXPORT_SYMBOL(kernel_listen);
3514 
3515 /**
3516  *	kernel_accept - accept a connection (kernel space)
3517  *	@sock: listening socket
3518  *	@newsock: new connected socket
3519  *	@flags: flags
3520  *
3521  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3522  *	If it fails, @newsock is guaranteed to be %NULL.
3523  *	Returns 0 or an error.
3524  */
3525 
3526 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3527 {
3528 	struct sock *sk = sock->sk;
3529 	int err;
3530 
3531 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3532 			       newsock);
3533 	if (err < 0)
3534 		goto done;
3535 
3536 	err = sock->ops->accept(sock, *newsock, flags, true);
3537 	if (err < 0) {
3538 		sock_release(*newsock);
3539 		*newsock = NULL;
3540 		goto done;
3541 	}
3542 
3543 	(*newsock)->ops = sock->ops;
3544 	__module_get((*newsock)->ops->owner);
3545 
3546 done:
3547 	return err;
3548 }
3549 EXPORT_SYMBOL(kernel_accept);
3550 
3551 /**
3552  *	kernel_connect - connect a socket (kernel space)
3553  *	@sock: socket
3554  *	@addr: address
3555  *	@addrlen: address length
3556  *	@flags: flags (O_NONBLOCK, ...)
3557  *
3558  *	For datagram sockets, @addr is the address to which datagrams are sent
3559  *	by default, and the only address from which datagrams are received.
3560  *	For stream sockets, attempts to connect to @addr.
3561  *	Returns 0 or an error code.
3562  */
3563 
3564 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3565 		   int flags)
3566 {
3567 	return sock->ops->connect(sock, addr, addrlen, flags);
3568 }
3569 EXPORT_SYMBOL(kernel_connect);
3570 
3571 /**
3572  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3573  *	@sock: socket
3574  *	@addr: address holder
3575  *
3576  * 	Fills the @addr pointer with the address which the socket is bound.
3577  *	Returns 0 or an error code.
3578  */
3579 
3580 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3581 {
3582 	return sock->ops->getname(sock, addr, 0);
3583 }
3584 EXPORT_SYMBOL(kernel_getsockname);
3585 
3586 /**
3587  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3588  *	@sock: socket
3589  *	@addr: address holder
3590  *
3591  * 	Fills the @addr pointer with the address which the socket is connected.
3592  *	Returns 0 or an error code.
3593  */
3594 
3595 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3596 {
3597 	return sock->ops->getname(sock, addr, 1);
3598 }
3599 EXPORT_SYMBOL(kernel_getpeername);
3600 
3601 /**
3602  *	kernel_sendpage - send a &page through a socket (kernel space)
3603  *	@sock: socket
3604  *	@page: page
3605  *	@offset: page offset
3606  *	@size: total size in bytes
3607  *	@flags: flags (MSG_DONTWAIT, ...)
3608  *
3609  *	Returns the total amount sent in bytes or an error.
3610  */
3611 
3612 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3613 		    size_t size, int flags)
3614 {
3615 	if (sock->ops->sendpage) {
3616 		/* Warn in case the improper page to zero-copy send */
3617 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3618 		return sock->ops->sendpage(sock, page, offset, size, flags);
3619 	}
3620 	return sock_no_sendpage(sock, page, offset, size, flags);
3621 }
3622 EXPORT_SYMBOL(kernel_sendpage);
3623 
3624 /**
3625  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3626  *	@sk: sock
3627  *	@page: page
3628  *	@offset: page offset
3629  *	@size: total size in bytes
3630  *	@flags: flags (MSG_DONTWAIT, ...)
3631  *
3632  *	Returns the total amount sent in bytes or an error.
3633  *	Caller must hold @sk.
3634  */
3635 
3636 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3637 			   size_t size, int flags)
3638 {
3639 	struct socket *sock = sk->sk_socket;
3640 
3641 	if (sock->ops->sendpage_locked)
3642 		return sock->ops->sendpage_locked(sk, page, offset, size,
3643 						  flags);
3644 
3645 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3646 }
3647 EXPORT_SYMBOL(kernel_sendpage_locked);
3648 
3649 /**
3650  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3651  *	@sock: socket
3652  *	@how: connection part
3653  *
3654  *	Returns 0 or an error.
3655  */
3656 
3657 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3658 {
3659 	return sock->ops->shutdown(sock, how);
3660 }
3661 EXPORT_SYMBOL(kernel_sock_shutdown);
3662 
3663 /**
3664  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3665  *	@sk: socket
3666  *
3667  *	This routine returns the IP overhead imposed by a socket i.e.
3668  *	the length of the underlying IP header, depending on whether
3669  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3670  *	on at the socket. Assumes that the caller has a lock on the socket.
3671  */
3672 
3673 u32 kernel_sock_ip_overhead(struct sock *sk)
3674 {
3675 	struct inet_sock *inet;
3676 	struct ip_options_rcu *opt;
3677 	u32 overhead = 0;
3678 #if IS_ENABLED(CONFIG_IPV6)
3679 	struct ipv6_pinfo *np;
3680 	struct ipv6_txoptions *optv6 = NULL;
3681 #endif /* IS_ENABLED(CONFIG_IPV6) */
3682 
3683 	if (!sk)
3684 		return overhead;
3685 
3686 	switch (sk->sk_family) {
3687 	case AF_INET:
3688 		inet = inet_sk(sk);
3689 		overhead += sizeof(struct iphdr);
3690 		opt = rcu_dereference_protected(inet->inet_opt,
3691 						sock_owned_by_user(sk));
3692 		if (opt)
3693 			overhead += opt->opt.optlen;
3694 		return overhead;
3695 #if IS_ENABLED(CONFIG_IPV6)
3696 	case AF_INET6:
3697 		np = inet6_sk(sk);
3698 		overhead += sizeof(struct ipv6hdr);
3699 		if (np)
3700 			optv6 = rcu_dereference_protected(np->opt,
3701 							  sock_owned_by_user(sk));
3702 		if (optv6)
3703 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3704 		return overhead;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3706 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3707 		return overhead;
3708 	}
3709 }
3710 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3711