xref: /openbmc/linux/net/socket.c (revision f31f5f05)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/cache.h>
76 #include <linux/module.h>
77 #include <linux/highmem.h>
78 #include <linux/divert.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/compat.h>
83 #include <linux/kmod.h>
84 #include <linux/audit.h>
85 
86 #ifdef CONFIG_NET_RADIO
87 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
88 #endif	/* CONFIG_NET_RADIO */
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 			 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 			  size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 		      unsigned int cmd, unsigned long arg);
110 static int sock_fasync(int fd, struct file *filp, int on);
111 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
112 			  unsigned long count, loff_t *ppos);
113 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
114 			  unsigned long count, loff_t *ppos);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 	.mmap =		sock_mmap,
132 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
133 	.release =	sock_close,
134 	.fasync =	sock_fasync,
135 	.readv =	sock_readv,
136 	.writev =	sock_writev,
137 	.sendpage =	sock_sendpage
138 };
139 
140 /*
141  *	The protocol list. Each protocol is registered in here.
142  */
143 
144 static struct net_proto_family *net_families[NPROTO];
145 
146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
147 static atomic_t net_family_lockct = ATOMIC_INIT(0);
148 static DEFINE_SPINLOCK(net_family_lock);
149 
150 /* The strategy is: modifications net_family vector are short, do not
151    sleep and veeery rare, but read access should be free of any exclusive
152    locks.
153  */
154 
155 static void net_family_write_lock(void)
156 {
157 	spin_lock(&net_family_lock);
158 	while (atomic_read(&net_family_lockct) != 0) {
159 		spin_unlock(&net_family_lock);
160 
161 		yield();
162 
163 		spin_lock(&net_family_lock);
164 	}
165 }
166 
167 static __inline__ void net_family_write_unlock(void)
168 {
169 	spin_unlock(&net_family_lock);
170 }
171 
172 static __inline__ void net_family_read_lock(void)
173 {
174 	atomic_inc(&net_family_lockct);
175 	spin_unlock_wait(&net_family_lock);
176 }
177 
178 static __inline__ void net_family_read_unlock(void)
179 {
180 	atomic_dec(&net_family_lockct);
181 }
182 
183 #else
184 #define net_family_write_lock() do { } while(0)
185 #define net_family_write_unlock() do { } while(0)
186 #define net_family_read_lock() do { } while(0)
187 #define net_family_read_unlock() do { } while(0)
188 #endif
189 
190 
191 /*
192  *	Statistics counters of the socket lists
193  */
194 
195 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
196 
197 /*
198  *	Support routines. Move socket addresses back and forth across the kernel/user
199  *	divide and look after the messy bits.
200  */
201 
202 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
203 					   16 for IP, 16 for IPX,
204 					   24 for IPv6,
205 					   about 80 for AX.25
206 					   must be at least one bigger than
207 					   the AF_UNIX size (see net/unix/af_unix.c
208 					   :unix_mkname()).
209 					 */
210 
211 /**
212  *	move_addr_to_kernel	-	copy a socket address into kernel space
213  *	@uaddr: Address in user space
214  *	@kaddr: Address in kernel space
215  *	@ulen: Length in user space
216  *
217  *	The address is copied into kernel space. If the provided address is
218  *	too long an error code of -EINVAL is returned. If the copy gives
219  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
220  */
221 
222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 {
224 	if(ulen<0||ulen>MAX_SOCK_ADDR)
225 		return -EINVAL;
226 	if(ulen==0)
227 		return 0;
228 	if(copy_from_user(kaddr,uaddr,ulen))
229 		return -EFAULT;
230 	return audit_sockaddr(ulen, kaddr);
231 }
232 
233 /**
234  *	move_addr_to_user	-	copy an address to user space
235  *	@kaddr: kernel space address
236  *	@klen: length of address in kernel
237  *	@uaddr: user space address
238  *	@ulen: pointer to user length field
239  *
240  *	The value pointed to by ulen on entry is the buffer length available.
241  *	This is overwritten with the buffer space used. -EINVAL is returned
242  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
243  *	is returned if either the buffer or the length field are not
244  *	accessible.
245  *	After copying the data up to the limit the user specifies, the true
246  *	length of the data is written over the length limit the user
247  *	specified. Zero is returned for a success.
248  */
249 
250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
251 {
252 	int err;
253 	int len;
254 
255 	if((err=get_user(len, ulen)))
256 		return err;
257 	if(len>klen)
258 		len=klen;
259 	if(len<0 || len> MAX_SOCK_ADDR)
260 		return -EINVAL;
261 	if(len)
262 	{
263 		if(copy_to_user(uaddr,kaddr,len))
264 			return -EFAULT;
265 	}
266 	/*
267 	 *	"fromlen shall refer to the value before truncation.."
268 	 *			1003.1g
269 	 */
270 	return __put_user(klen, ulen);
271 }
272 
273 #define SOCKFS_MAGIC 0x534F434B
274 
275 static kmem_cache_t * sock_inode_cachep;
276 
277 static struct inode *sock_alloc_inode(struct super_block *sb)
278 {
279 	struct socket_alloc *ei;
280 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
281 	if (!ei)
282 		return NULL;
283 	init_waitqueue_head(&ei->socket.wait);
284 
285 	ei->socket.fasync_list = NULL;
286 	ei->socket.state = SS_UNCONNECTED;
287 	ei->socket.flags = 0;
288 	ei->socket.ops = NULL;
289 	ei->socket.sk = NULL;
290 	ei->socket.file = NULL;
291 	ei->socket.flags = 0;
292 
293 	return &ei->vfs_inode;
294 }
295 
296 static void sock_destroy_inode(struct inode *inode)
297 {
298 	kmem_cache_free(sock_inode_cachep,
299 			container_of(inode, struct socket_alloc, vfs_inode));
300 }
301 
302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 {
304 	struct socket_alloc *ei = (struct socket_alloc *) foo;
305 
306 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
307 	    SLAB_CTOR_CONSTRUCTOR)
308 		inode_init_once(&ei->vfs_inode);
309 }
310 
311 static int init_inodecache(void)
312 {
313 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
314 				sizeof(struct socket_alloc),
315 				0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 				init_once, NULL);
317 	if (sock_inode_cachep == NULL)
318 		return -ENOMEM;
319 	return 0;
320 }
321 
322 static struct super_operations sockfs_ops = {
323 	.alloc_inode =	sock_alloc_inode,
324 	.destroy_inode =sock_destroy_inode,
325 	.statfs =	simple_statfs,
326 };
327 
328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
329 	int flags, const char *dev_name, void *data)
330 {
331 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
332 }
333 
334 static struct vfsmount *sock_mnt;
335 
336 static struct file_system_type sock_fs_type = {
337 	.name =		"sockfs",
338 	.get_sb =	sockfs_get_sb,
339 	.kill_sb =	kill_anon_super,
340 };
341 static int sockfs_delete_dentry(struct dentry *dentry)
342 {
343 	return 1;
344 }
345 static struct dentry_operations sockfs_dentry_operations = {
346 	.d_delete =	sockfs_delete_dentry,
347 };
348 
349 /*
350  *	Obtains the first available file descriptor and sets it up for use.
351  *
352  *	This function creates file structure and maps it to fd space
353  *	of current process. On success it returns file descriptor
354  *	and file struct implicitly stored in sock->file.
355  *	Note that another thread may close file descriptor before we return
356  *	from this function. We use the fact that now we do not refer
357  *	to socket after mapping. If one day we will need it, this
358  *	function will increment ref. count on file by 1.
359  *
360  *	In any case returned fd MAY BE not valid!
361  *	This race condition is unavoidable
362  *	with shared fd spaces, we cannot solve it inside kernel,
363  *	but we take care of internal coherence yet.
364  */
365 
366 int sock_map_fd(struct socket *sock)
367 {
368 	int fd;
369 	struct qstr this;
370 	char name[32];
371 
372 	/*
373 	 *	Find a file descriptor suitable for return to the user.
374 	 */
375 
376 	fd = get_unused_fd();
377 	if (fd >= 0) {
378 		struct file *file = get_empty_filp();
379 
380 		if (!file) {
381 			put_unused_fd(fd);
382 			fd = -ENFILE;
383 			goto out;
384 		}
385 
386 		this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
387 		this.name = name;
388 		this.hash = SOCK_INODE(sock)->i_ino;
389 
390 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
391 		if (!file->f_dentry) {
392 			put_filp(file);
393 			put_unused_fd(fd);
394 			fd = -ENOMEM;
395 			goto out;
396 		}
397 		file->f_dentry->d_op = &sockfs_dentry_operations;
398 		d_add(file->f_dentry, SOCK_INODE(sock));
399 		file->f_vfsmnt = mntget(sock_mnt);
400 		file->f_mapping = file->f_dentry->d_inode->i_mapping;
401 
402 		sock->file = file;
403 		file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
404 		file->f_mode = FMODE_READ | FMODE_WRITE;
405 		file->f_flags = O_RDWR;
406 		file->f_pos = 0;
407 		fd_install(fd, file);
408 	}
409 
410 out:
411 	return fd;
412 }
413 
414 /**
415  *	sockfd_lookup	- 	Go from a file number to its socket slot
416  *	@fd: file handle
417  *	@err: pointer to an error code return
418  *
419  *	The file handle passed in is locked and the socket it is bound
420  *	too is returned. If an error occurs the err pointer is overwritten
421  *	with a negative errno code and NULL is returned. The function checks
422  *	for both invalid handles and passing a handle which is not a socket.
423  *
424  *	On a success the socket object pointer is returned.
425  */
426 
427 struct socket *sockfd_lookup(int fd, int *err)
428 {
429 	struct file *file;
430 	struct inode *inode;
431 	struct socket *sock;
432 
433 	if (!(file = fget(fd)))
434 	{
435 		*err = -EBADF;
436 		return NULL;
437 	}
438 
439 	inode = file->f_dentry->d_inode;
440 	if (!S_ISSOCK(inode->i_mode)) {
441 		*err = -ENOTSOCK;
442 		fput(file);
443 		return NULL;
444 	}
445 
446 	sock = SOCKET_I(inode);
447 	if (sock->file != file) {
448 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
449 		sock->file = file;
450 	}
451 	return sock;
452 }
453 
454 /**
455  *	sock_alloc	-	allocate a socket
456  *
457  *	Allocate a new inode and socket object. The two are bound together
458  *	and initialised. The socket is then returned. If we are out of inodes
459  *	NULL is returned.
460  */
461 
462 static struct socket *sock_alloc(void)
463 {
464 	struct inode * inode;
465 	struct socket * sock;
466 
467 	inode = new_inode(sock_mnt->mnt_sb);
468 	if (!inode)
469 		return NULL;
470 
471 	sock = SOCKET_I(inode);
472 
473 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
474 	inode->i_uid = current->fsuid;
475 	inode->i_gid = current->fsgid;
476 
477 	get_cpu_var(sockets_in_use)++;
478 	put_cpu_var(sockets_in_use);
479 	return sock;
480 }
481 
482 /*
483  *	In theory you can't get an open on this inode, but /proc provides
484  *	a back door. Remember to keep it shut otherwise you'll let the
485  *	creepy crawlies in.
486  */
487 
488 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
489 {
490 	return -ENXIO;
491 }
492 
493 struct file_operations bad_sock_fops = {
494 	.owner = THIS_MODULE,
495 	.open = sock_no_open,
496 };
497 
498 /**
499  *	sock_release	-	close a socket
500  *	@sock: socket to close
501  *
502  *	The socket is released from the protocol stack if it has a release
503  *	callback, and the inode is then released if the socket is bound to
504  *	an inode not a file.
505  */
506 
507 void sock_release(struct socket *sock)
508 {
509 	if (sock->ops) {
510 		struct module *owner = sock->ops->owner;
511 
512 		sock->ops->release(sock);
513 		sock->ops = NULL;
514 		module_put(owner);
515 	}
516 
517 	if (sock->fasync_list)
518 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
519 
520 	get_cpu_var(sockets_in_use)--;
521 	put_cpu_var(sockets_in_use);
522 	if (!sock->file) {
523 		iput(SOCK_INODE(sock));
524 		return;
525 	}
526 	sock->file=NULL;
527 }
528 
529 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
530 				 struct msghdr *msg, size_t size)
531 {
532 	struct sock_iocb *si = kiocb_to_siocb(iocb);
533 	int err;
534 
535 	si->sock = sock;
536 	si->scm = NULL;
537 	si->msg = msg;
538 	si->size = size;
539 
540 	err = security_socket_sendmsg(sock, msg, size);
541 	if (err)
542 		return err;
543 
544 	return sock->ops->sendmsg(iocb, sock, msg, size);
545 }
546 
547 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
548 {
549 	struct kiocb iocb;
550 	struct sock_iocb siocb;
551 	int ret;
552 
553 	init_sync_kiocb(&iocb, NULL);
554 	iocb.private = &siocb;
555 	ret = __sock_sendmsg(&iocb, sock, msg, size);
556 	if (-EIOCBQUEUED == ret)
557 		ret = wait_on_sync_kiocb(&iocb);
558 	return ret;
559 }
560 
561 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
562 		   struct kvec *vec, size_t num, size_t size)
563 {
564 	mm_segment_t oldfs = get_fs();
565 	int result;
566 
567 	set_fs(KERNEL_DS);
568 	/*
569 	 * the following is safe, since for compiler definitions of kvec and
570 	 * iovec are identical, yielding the same in-core layout and alignment
571 	 */
572 	msg->msg_iov = (struct iovec *)vec,
573 	msg->msg_iovlen = num;
574 	result = sock_sendmsg(sock, msg, size);
575 	set_fs(oldfs);
576 	return result;
577 }
578 
579 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
580 				 struct msghdr *msg, size_t size, int flags)
581 {
582 	int err;
583 	struct sock_iocb *si = kiocb_to_siocb(iocb);
584 
585 	si->sock = sock;
586 	si->scm = NULL;
587 	si->msg = msg;
588 	si->size = size;
589 	si->flags = flags;
590 
591 	err = security_socket_recvmsg(sock, msg, size, flags);
592 	if (err)
593 		return err;
594 
595 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
596 }
597 
598 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
599 		 size_t size, int flags)
600 {
601 	struct kiocb iocb;
602 	struct sock_iocb siocb;
603 	int ret;
604 
605         init_sync_kiocb(&iocb, NULL);
606 	iocb.private = &siocb;
607 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
608 	if (-EIOCBQUEUED == ret)
609 		ret = wait_on_sync_kiocb(&iocb);
610 	return ret;
611 }
612 
613 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
614 		   struct kvec *vec, size_t num,
615 		   size_t size, int flags)
616 {
617 	mm_segment_t oldfs = get_fs();
618 	int result;
619 
620 	set_fs(KERNEL_DS);
621 	/*
622 	 * the following is safe, since for compiler definitions of kvec and
623 	 * iovec are identical, yielding the same in-core layout and alignment
624 	 */
625 	msg->msg_iov = (struct iovec *)vec,
626 	msg->msg_iovlen = num;
627 	result = sock_recvmsg(sock, msg, size, flags);
628 	set_fs(oldfs);
629 	return result;
630 }
631 
632 static void sock_aio_dtor(struct kiocb *iocb)
633 {
634 	kfree(iocb->private);
635 }
636 
637 /*
638  *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
639  *	area ubuf...ubuf+size-1 is writable before asking the protocol.
640  */
641 
642 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
643 			 size_t size, loff_t pos)
644 {
645 	struct sock_iocb *x, siocb;
646 	struct socket *sock;
647 	int flags;
648 
649 	if (pos != 0)
650 		return -ESPIPE;
651 	if (size==0)		/* Match SYS5 behaviour */
652 		return 0;
653 
654 	if (is_sync_kiocb(iocb))
655 		x = &siocb;
656 	else {
657 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
658 		if (!x)
659 			return -ENOMEM;
660 		iocb->ki_dtor = sock_aio_dtor;
661 	}
662 	iocb->private = x;
663 	x->kiocb = iocb;
664 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
665 
666 	x->async_msg.msg_name = NULL;
667 	x->async_msg.msg_namelen = 0;
668 	x->async_msg.msg_iov = &x->async_iov;
669 	x->async_msg.msg_iovlen = 1;
670 	x->async_msg.msg_control = NULL;
671 	x->async_msg.msg_controllen = 0;
672 	x->async_iov.iov_base = ubuf;
673 	x->async_iov.iov_len = size;
674 	flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
675 
676 	return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
677 }
678 
679 
680 /*
681  *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
682  *	is readable by the user process.
683  */
684 
685 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
686 			  size_t size, loff_t pos)
687 {
688 	struct sock_iocb *x, siocb;
689 	struct socket *sock;
690 
691 	if (pos != 0)
692 		return -ESPIPE;
693 	if(size==0)		/* Match SYS5 behaviour */
694 		return 0;
695 
696 	if (is_sync_kiocb(iocb))
697 		x = &siocb;
698 	else {
699 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
700 		if (!x)
701 			return -ENOMEM;
702 		iocb->ki_dtor = sock_aio_dtor;
703 	}
704 	iocb->private = x;
705 	x->kiocb = iocb;
706 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
707 
708 	x->async_msg.msg_name = NULL;
709 	x->async_msg.msg_namelen = 0;
710 	x->async_msg.msg_iov = &x->async_iov;
711 	x->async_msg.msg_iovlen = 1;
712 	x->async_msg.msg_control = NULL;
713 	x->async_msg.msg_controllen = 0;
714 	x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
715 	if (sock->type == SOCK_SEQPACKET)
716 		x->async_msg.msg_flags |= MSG_EOR;
717 	x->async_iov.iov_base = (void __user *)ubuf;
718 	x->async_iov.iov_len = size;
719 
720 	return __sock_sendmsg(iocb, sock, &x->async_msg, size);
721 }
722 
723 ssize_t sock_sendpage(struct file *file, struct page *page,
724 		      int offset, size_t size, loff_t *ppos, int more)
725 {
726 	struct socket *sock;
727 	int flags;
728 
729 	sock = SOCKET_I(file->f_dentry->d_inode);
730 
731 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
732 	if (more)
733 		flags |= MSG_MORE;
734 
735 	return sock->ops->sendpage(sock, page, offset, size, flags);
736 }
737 
738 static int sock_readv_writev(int type, struct inode * inode,
739 			     struct file * file, const struct iovec * iov,
740 			     long count, size_t size)
741 {
742 	struct msghdr msg;
743 	struct socket *sock;
744 
745 	sock = SOCKET_I(inode);
746 
747 	msg.msg_name = NULL;
748 	msg.msg_namelen = 0;
749 	msg.msg_control = NULL;
750 	msg.msg_controllen = 0;
751 	msg.msg_iov = (struct iovec *) iov;
752 	msg.msg_iovlen = count;
753 	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
754 
755 	/* read() does a VERIFY_WRITE */
756 	if (type == VERIFY_WRITE)
757 		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
758 
759 	if (sock->type == SOCK_SEQPACKET)
760 		msg.msg_flags |= MSG_EOR;
761 
762 	return sock_sendmsg(sock, &msg, size);
763 }
764 
765 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
766 			  unsigned long count, loff_t *ppos)
767 {
768 	size_t tot_len = 0;
769 	int i;
770         for (i = 0 ; i < count ; i++)
771                 tot_len += vector[i].iov_len;
772 	return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
773 				 file, vector, count, tot_len);
774 }
775 
776 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
777 			   unsigned long count, loff_t *ppos)
778 {
779 	size_t tot_len = 0;
780 	int i;
781         for (i = 0 ; i < count ; i++)
782                 tot_len += vector[i].iov_len;
783 	return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
784 				 file, vector, count, tot_len);
785 }
786 
787 
788 /*
789  * Atomic setting of ioctl hooks to avoid race
790  * with module unload.
791  */
792 
793 static DECLARE_MUTEX(br_ioctl_mutex);
794 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
795 
796 void brioctl_set(int (*hook)(unsigned int, void __user *))
797 {
798 	down(&br_ioctl_mutex);
799 	br_ioctl_hook = hook;
800 	up(&br_ioctl_mutex);
801 }
802 EXPORT_SYMBOL(brioctl_set);
803 
804 static DECLARE_MUTEX(vlan_ioctl_mutex);
805 static int (*vlan_ioctl_hook)(void __user *arg);
806 
807 void vlan_ioctl_set(int (*hook)(void __user *))
808 {
809 	down(&vlan_ioctl_mutex);
810 	vlan_ioctl_hook = hook;
811 	up(&vlan_ioctl_mutex);
812 }
813 EXPORT_SYMBOL(vlan_ioctl_set);
814 
815 static DECLARE_MUTEX(dlci_ioctl_mutex);
816 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
817 
818 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
819 {
820 	down(&dlci_ioctl_mutex);
821 	dlci_ioctl_hook = hook;
822 	up(&dlci_ioctl_mutex);
823 }
824 EXPORT_SYMBOL(dlci_ioctl_set);
825 
826 /*
827  *	With an ioctl, arg may well be a user mode pointer, but we don't know
828  *	what to do with it - that's up to the protocol still.
829  */
830 
831 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
832 {
833 	struct socket *sock;
834 	void __user *argp = (void __user *)arg;
835 	int pid, err;
836 
837 	sock = SOCKET_I(file->f_dentry->d_inode);
838 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
839 		err = dev_ioctl(cmd, argp);
840 	} else
841 #ifdef WIRELESS_EXT
842 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
843 		err = dev_ioctl(cmd, argp);
844 	} else
845 #endif	/* WIRELESS_EXT */
846 	switch (cmd) {
847 		case FIOSETOWN:
848 		case SIOCSPGRP:
849 			err = -EFAULT;
850 			if (get_user(pid, (int __user *)argp))
851 				break;
852 			err = f_setown(sock->file, pid, 1);
853 			break;
854 		case FIOGETOWN:
855 		case SIOCGPGRP:
856 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
857 			break;
858 		case SIOCGIFBR:
859 		case SIOCSIFBR:
860 		case SIOCBRADDBR:
861 		case SIOCBRDELBR:
862 			err = -ENOPKG;
863 			if (!br_ioctl_hook)
864 				request_module("bridge");
865 
866 			down(&br_ioctl_mutex);
867 			if (br_ioctl_hook)
868 				err = br_ioctl_hook(cmd, argp);
869 			up(&br_ioctl_mutex);
870 			break;
871 		case SIOCGIFVLAN:
872 		case SIOCSIFVLAN:
873 			err = -ENOPKG;
874 			if (!vlan_ioctl_hook)
875 				request_module("8021q");
876 
877 			down(&vlan_ioctl_mutex);
878 			if (vlan_ioctl_hook)
879 				err = vlan_ioctl_hook(argp);
880 			up(&vlan_ioctl_mutex);
881 			break;
882 		case SIOCGIFDIVERT:
883 		case SIOCSIFDIVERT:
884 		/* Convert this to call through a hook */
885 			err = divert_ioctl(cmd, argp);
886 			break;
887 		case SIOCADDDLCI:
888 		case SIOCDELDLCI:
889 			err = -ENOPKG;
890 			if (!dlci_ioctl_hook)
891 				request_module("dlci");
892 
893 			if (dlci_ioctl_hook) {
894 				down(&dlci_ioctl_mutex);
895 				err = dlci_ioctl_hook(cmd, argp);
896 				up(&dlci_ioctl_mutex);
897 			}
898 			break;
899 		default:
900 			err = sock->ops->ioctl(sock, cmd, arg);
901 			break;
902 	}
903 	return err;
904 }
905 
906 int sock_create_lite(int family, int type, int protocol, struct socket **res)
907 {
908 	int err;
909 	struct socket *sock = NULL;
910 
911 	err = security_socket_create(family, type, protocol, 1);
912 	if (err)
913 		goto out;
914 
915 	sock = sock_alloc();
916 	if (!sock) {
917 		err = -ENOMEM;
918 		goto out;
919 	}
920 
921 	security_socket_post_create(sock, family, type, protocol, 1);
922 	sock->type = type;
923 out:
924 	*res = sock;
925 	return err;
926 }
927 
928 /* No kernel lock held - perfect */
929 static unsigned int sock_poll(struct file *file, poll_table * wait)
930 {
931 	struct socket *sock;
932 
933 	/*
934 	 *	We can't return errors to poll, so it's either yes or no.
935 	 */
936 	sock = SOCKET_I(file->f_dentry->d_inode);
937 	return sock->ops->poll(file, sock, wait);
938 }
939 
940 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
941 {
942 	struct socket *sock = SOCKET_I(file->f_dentry->d_inode);
943 
944 	return sock->ops->mmap(file, sock, vma);
945 }
946 
947 int sock_close(struct inode *inode, struct file *filp)
948 {
949 	/*
950 	 *	It was possible the inode is NULL we were
951 	 *	closing an unfinished socket.
952 	 */
953 
954 	if (!inode)
955 	{
956 		printk(KERN_DEBUG "sock_close: NULL inode\n");
957 		return 0;
958 	}
959 	sock_fasync(-1, filp, 0);
960 	sock_release(SOCKET_I(inode));
961 	return 0;
962 }
963 
964 /*
965  *	Update the socket async list
966  *
967  *	Fasync_list locking strategy.
968  *
969  *	1. fasync_list is modified only under process context socket lock
970  *	   i.e. under semaphore.
971  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
972  *	   or under socket lock.
973  *	3. fasync_list can be used from softirq context, so that
974  *	   modification under socket lock have to be enhanced with
975  *	   write_lock_bh(&sk->sk_callback_lock).
976  *							--ANK (990710)
977  */
978 
979 static int sock_fasync(int fd, struct file *filp, int on)
980 {
981 	struct fasync_struct *fa, *fna=NULL, **prev;
982 	struct socket *sock;
983 	struct sock *sk;
984 
985 	if (on)
986 	{
987 		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
988 		if(fna==NULL)
989 			return -ENOMEM;
990 	}
991 
992 	sock = SOCKET_I(filp->f_dentry->d_inode);
993 
994 	if ((sk=sock->sk) == NULL) {
995 		kfree(fna);
996 		return -EINVAL;
997 	}
998 
999 	lock_sock(sk);
1000 
1001 	prev=&(sock->fasync_list);
1002 
1003 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1004 		if (fa->fa_file==filp)
1005 			break;
1006 
1007 	if(on)
1008 	{
1009 		if(fa!=NULL)
1010 		{
1011 			write_lock_bh(&sk->sk_callback_lock);
1012 			fa->fa_fd=fd;
1013 			write_unlock_bh(&sk->sk_callback_lock);
1014 
1015 			kfree(fna);
1016 			goto out;
1017 		}
1018 		fna->fa_file=filp;
1019 		fna->fa_fd=fd;
1020 		fna->magic=FASYNC_MAGIC;
1021 		fna->fa_next=sock->fasync_list;
1022 		write_lock_bh(&sk->sk_callback_lock);
1023 		sock->fasync_list=fna;
1024 		write_unlock_bh(&sk->sk_callback_lock);
1025 	}
1026 	else
1027 	{
1028 		if (fa!=NULL)
1029 		{
1030 			write_lock_bh(&sk->sk_callback_lock);
1031 			*prev=fa->fa_next;
1032 			write_unlock_bh(&sk->sk_callback_lock);
1033 			kfree(fa);
1034 		}
1035 	}
1036 
1037 out:
1038 	release_sock(sock->sk);
1039 	return 0;
1040 }
1041 
1042 /* This function may be called only under socket lock or callback_lock */
1043 
1044 int sock_wake_async(struct socket *sock, int how, int band)
1045 {
1046 	if (!sock || !sock->fasync_list)
1047 		return -1;
1048 	switch (how)
1049 	{
1050 	case 1:
1051 
1052 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1053 			break;
1054 		goto call_kill;
1055 	case 2:
1056 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1057 			break;
1058 		/* fall through */
1059 	case 0:
1060 	call_kill:
1061 		__kill_fasync(sock->fasync_list, SIGIO, band);
1062 		break;
1063 	case 3:
1064 		__kill_fasync(sock->fasync_list, SIGURG, band);
1065 	}
1066 	return 0;
1067 }
1068 
1069 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1070 {
1071 	int err;
1072 	struct socket *sock;
1073 
1074 	/*
1075 	 *	Check protocol is in range
1076 	 */
1077 	if (family < 0 || family >= NPROTO)
1078 		return -EAFNOSUPPORT;
1079 	if (type < 0 || type >= SOCK_MAX)
1080 		return -EINVAL;
1081 
1082 	/* Compatibility.
1083 
1084 	   This uglymoron is moved from INET layer to here to avoid
1085 	   deadlock in module load.
1086 	 */
1087 	if (family == PF_INET && type == SOCK_PACKET) {
1088 		static int warned;
1089 		if (!warned) {
1090 			warned = 1;
1091 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1092 		}
1093 		family = PF_PACKET;
1094 	}
1095 
1096 	err = security_socket_create(family, type, protocol, kern);
1097 	if (err)
1098 		return err;
1099 
1100 #if defined(CONFIG_KMOD)
1101 	/* Attempt to load a protocol module if the find failed.
1102 	 *
1103 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1104 	 * requested real, full-featured networking support upon configuration.
1105 	 * Otherwise module support will break!
1106 	 */
1107 	if (net_families[family]==NULL)
1108 	{
1109 		request_module("net-pf-%d",family);
1110 	}
1111 #endif
1112 
1113 	net_family_read_lock();
1114 	if (net_families[family] == NULL) {
1115 		err = -EAFNOSUPPORT;
1116 		goto out;
1117 	}
1118 
1119 /*
1120  *	Allocate the socket and allow the family to set things up. if
1121  *	the protocol is 0, the family is instructed to select an appropriate
1122  *	default.
1123  */
1124 
1125 	if (!(sock = sock_alloc())) {
1126 		printk(KERN_WARNING "socket: no more sockets\n");
1127 		err = -ENFILE;		/* Not exactly a match, but its the
1128 					   closest posix thing */
1129 		goto out;
1130 	}
1131 
1132 	sock->type  = type;
1133 
1134 	/*
1135 	 * We will call the ->create function, that possibly is in a loadable
1136 	 * module, so we have to bump that loadable module refcnt first.
1137 	 */
1138 	err = -EAFNOSUPPORT;
1139 	if (!try_module_get(net_families[family]->owner))
1140 		goto out_release;
1141 
1142 	if ((err = net_families[family]->create(sock, protocol)) < 0)
1143 		goto out_module_put;
1144 	/*
1145 	 * Now to bump the refcnt of the [loadable] module that owns this
1146 	 * socket at sock_release time we decrement its refcnt.
1147 	 */
1148 	if (!try_module_get(sock->ops->owner)) {
1149 		sock->ops = NULL;
1150 		goto out_module_put;
1151 	}
1152 	/*
1153 	 * Now that we're done with the ->create function, the [loadable]
1154 	 * module can have its refcnt decremented
1155 	 */
1156 	module_put(net_families[family]->owner);
1157 	*res = sock;
1158 	security_socket_post_create(sock, family, type, protocol, kern);
1159 
1160 out:
1161 	net_family_read_unlock();
1162 	return err;
1163 out_module_put:
1164 	module_put(net_families[family]->owner);
1165 out_release:
1166 	sock_release(sock);
1167 	goto out;
1168 }
1169 
1170 int sock_create(int family, int type, int protocol, struct socket **res)
1171 {
1172 	return __sock_create(family, type, protocol, res, 0);
1173 }
1174 
1175 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1176 {
1177 	return __sock_create(family, type, protocol, res, 1);
1178 }
1179 
1180 asmlinkage long sys_socket(int family, int type, int protocol)
1181 {
1182 	int retval;
1183 	struct socket *sock;
1184 
1185 	retval = sock_create(family, type, protocol, &sock);
1186 	if (retval < 0)
1187 		goto out;
1188 
1189 	retval = sock_map_fd(sock);
1190 	if (retval < 0)
1191 		goto out_release;
1192 
1193 out:
1194 	/* It may be already another descriptor 8) Not kernel problem. */
1195 	return retval;
1196 
1197 out_release:
1198 	sock_release(sock);
1199 	return retval;
1200 }
1201 
1202 /*
1203  *	Create a pair of connected sockets.
1204  */
1205 
1206 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1207 {
1208 	struct socket *sock1, *sock2;
1209 	int fd1, fd2, err;
1210 
1211 	/*
1212 	 * Obtain the first socket and check if the underlying protocol
1213 	 * supports the socketpair call.
1214 	 */
1215 
1216 	err = sock_create(family, type, protocol, &sock1);
1217 	if (err < 0)
1218 		goto out;
1219 
1220 	err = sock_create(family, type, protocol, &sock2);
1221 	if (err < 0)
1222 		goto out_release_1;
1223 
1224 	err = sock1->ops->socketpair(sock1, sock2);
1225 	if (err < 0)
1226 		goto out_release_both;
1227 
1228 	fd1 = fd2 = -1;
1229 
1230 	err = sock_map_fd(sock1);
1231 	if (err < 0)
1232 		goto out_release_both;
1233 	fd1 = err;
1234 
1235 	err = sock_map_fd(sock2);
1236 	if (err < 0)
1237 		goto out_close_1;
1238 	fd2 = err;
1239 
1240 	/* fd1 and fd2 may be already another descriptors.
1241 	 * Not kernel problem.
1242 	 */
1243 
1244 	err = put_user(fd1, &usockvec[0]);
1245 	if (!err)
1246 		err = put_user(fd2, &usockvec[1]);
1247 	if (!err)
1248 		return 0;
1249 
1250 	sys_close(fd2);
1251 	sys_close(fd1);
1252 	return err;
1253 
1254 out_close_1:
1255         sock_release(sock2);
1256 	sys_close(fd1);
1257 	return err;
1258 
1259 out_release_both:
1260         sock_release(sock2);
1261 out_release_1:
1262         sock_release(sock1);
1263 out:
1264 	return err;
1265 }
1266 
1267 
1268 /*
1269  *	Bind a name to a socket. Nothing much to do here since it's
1270  *	the protocol's responsibility to handle the local address.
1271  *
1272  *	We move the socket address to kernel space before we call
1273  *	the protocol layer (having also checked the address is ok).
1274  */
1275 
1276 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1277 {
1278 	struct socket *sock;
1279 	char address[MAX_SOCK_ADDR];
1280 	int err;
1281 
1282 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1283 	{
1284 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1285 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1286 			if (err) {
1287 				sockfd_put(sock);
1288 				return err;
1289 			}
1290 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1291 		}
1292 		sockfd_put(sock);
1293 	}
1294 	return err;
1295 }
1296 
1297 
1298 /*
1299  *	Perform a listen. Basically, we allow the protocol to do anything
1300  *	necessary for a listen, and if that works, we mark the socket as
1301  *	ready for listening.
1302  */
1303 
1304 int sysctl_somaxconn = SOMAXCONN;
1305 
1306 asmlinkage long sys_listen(int fd, int backlog)
1307 {
1308 	struct socket *sock;
1309 	int err;
1310 
1311 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1312 		if ((unsigned) backlog > sysctl_somaxconn)
1313 			backlog = sysctl_somaxconn;
1314 
1315 		err = security_socket_listen(sock, backlog);
1316 		if (err) {
1317 			sockfd_put(sock);
1318 			return err;
1319 		}
1320 
1321 		err=sock->ops->listen(sock, backlog);
1322 		sockfd_put(sock);
1323 	}
1324 	return err;
1325 }
1326 
1327 
1328 /*
1329  *	For accept, we attempt to create a new socket, set up the link
1330  *	with the client, wake up the client, then return the new
1331  *	connected fd. We collect the address of the connector in kernel
1332  *	space and move it to user at the very end. This is unclean because
1333  *	we open the socket then return an error.
1334  *
1335  *	1003.1g adds the ability to recvmsg() to query connection pending
1336  *	status to recvmsg. We need to add that support in a way thats
1337  *	clean when we restucture accept also.
1338  */
1339 
1340 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1341 {
1342 	struct socket *sock, *newsock;
1343 	int err, len;
1344 	char address[MAX_SOCK_ADDR];
1345 
1346 	sock = sockfd_lookup(fd, &err);
1347 	if (!sock)
1348 		goto out;
1349 
1350 	err = -ENFILE;
1351 	if (!(newsock = sock_alloc()))
1352 		goto out_put;
1353 
1354 	newsock->type = sock->type;
1355 	newsock->ops = sock->ops;
1356 
1357 	err = security_socket_accept(sock, newsock);
1358 	if (err)
1359 		goto out_release;
1360 
1361 	/*
1362 	 * We don't need try_module_get here, as the listening socket (sock)
1363 	 * has the protocol module (sock->ops->owner) held.
1364 	 */
1365 	__module_get(newsock->ops->owner);
1366 
1367 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1368 	if (err < 0)
1369 		goto out_release;
1370 
1371 	if (upeer_sockaddr) {
1372 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1373 			err = -ECONNABORTED;
1374 			goto out_release;
1375 		}
1376 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1377 		if (err < 0)
1378 			goto out_release;
1379 	}
1380 
1381 	/* File flags are not inherited via accept() unlike another OSes. */
1382 
1383 	if ((err = sock_map_fd(newsock)) < 0)
1384 		goto out_release;
1385 
1386 	security_socket_post_accept(sock, newsock);
1387 
1388 out_put:
1389 	sockfd_put(sock);
1390 out:
1391 	return err;
1392 out_release:
1393 	sock_release(newsock);
1394 	goto out_put;
1395 }
1396 
1397 
1398 /*
1399  *	Attempt to connect to a socket with the server address.  The address
1400  *	is in user space so we verify it is OK and move it to kernel space.
1401  *
1402  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1403  *	break bindings
1404  *
1405  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1406  *	other SEQPACKET protocols that take time to connect() as it doesn't
1407  *	include the -EINPROGRESS status for such sockets.
1408  */
1409 
1410 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1411 {
1412 	struct socket *sock;
1413 	char address[MAX_SOCK_ADDR];
1414 	int err;
1415 
1416 	sock = sockfd_lookup(fd, &err);
1417 	if (!sock)
1418 		goto out;
1419 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1420 	if (err < 0)
1421 		goto out_put;
1422 
1423 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1424 	if (err)
1425 		goto out_put;
1426 
1427 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1428 				 sock->file->f_flags);
1429 out_put:
1430 	sockfd_put(sock);
1431 out:
1432 	return err;
1433 }
1434 
1435 /*
1436  *	Get the local address ('name') of a socket object. Move the obtained
1437  *	name to user space.
1438  */
1439 
1440 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1441 {
1442 	struct socket *sock;
1443 	char address[MAX_SOCK_ADDR];
1444 	int len, err;
1445 
1446 	sock = sockfd_lookup(fd, &err);
1447 	if (!sock)
1448 		goto out;
1449 
1450 	err = security_socket_getsockname(sock);
1451 	if (err)
1452 		goto out_put;
1453 
1454 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1455 	if (err)
1456 		goto out_put;
1457 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1458 
1459 out_put:
1460 	sockfd_put(sock);
1461 out:
1462 	return err;
1463 }
1464 
1465 /*
1466  *	Get the remote address ('name') of a socket object. Move the obtained
1467  *	name to user space.
1468  */
1469 
1470 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1471 {
1472 	struct socket *sock;
1473 	char address[MAX_SOCK_ADDR];
1474 	int len, err;
1475 
1476 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1477 	{
1478 		err = security_socket_getpeername(sock);
1479 		if (err) {
1480 			sockfd_put(sock);
1481 			return err;
1482 		}
1483 
1484 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1485 		if (!err)
1486 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1487 		sockfd_put(sock);
1488 	}
1489 	return err;
1490 }
1491 
1492 /*
1493  *	Send a datagram to a given address. We move the address into kernel
1494  *	space and check the user space data area is readable before invoking
1495  *	the protocol.
1496  */
1497 
1498 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1499 			   struct sockaddr __user *addr, int addr_len)
1500 {
1501 	struct socket *sock;
1502 	char address[MAX_SOCK_ADDR];
1503 	int err;
1504 	struct msghdr msg;
1505 	struct iovec iov;
1506 
1507 	sock = sockfd_lookup(fd, &err);
1508 	if (!sock)
1509 		goto out;
1510 	iov.iov_base=buff;
1511 	iov.iov_len=len;
1512 	msg.msg_name=NULL;
1513 	msg.msg_iov=&iov;
1514 	msg.msg_iovlen=1;
1515 	msg.msg_control=NULL;
1516 	msg.msg_controllen=0;
1517 	msg.msg_namelen=0;
1518 	if(addr)
1519 	{
1520 		err = move_addr_to_kernel(addr, addr_len, address);
1521 		if (err < 0)
1522 			goto out_put;
1523 		msg.msg_name=address;
1524 		msg.msg_namelen=addr_len;
1525 	}
1526 	if (sock->file->f_flags & O_NONBLOCK)
1527 		flags |= MSG_DONTWAIT;
1528 	msg.msg_flags = flags;
1529 	err = sock_sendmsg(sock, &msg, len);
1530 
1531 out_put:
1532 	sockfd_put(sock);
1533 out:
1534 	return err;
1535 }
1536 
1537 /*
1538  *	Send a datagram down a socket.
1539  */
1540 
1541 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1542 {
1543 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1544 }
1545 
1546 /*
1547  *	Receive a frame from the socket and optionally record the address of the
1548  *	sender. We verify the buffers are writable and if needed move the
1549  *	sender address from kernel to user space.
1550  */
1551 
1552 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1553 			     struct sockaddr __user *addr, int __user *addr_len)
1554 {
1555 	struct socket *sock;
1556 	struct iovec iov;
1557 	struct msghdr msg;
1558 	char address[MAX_SOCK_ADDR];
1559 	int err,err2;
1560 
1561 	sock = sockfd_lookup(fd, &err);
1562 	if (!sock)
1563 		goto out;
1564 
1565 	msg.msg_control=NULL;
1566 	msg.msg_controllen=0;
1567 	msg.msg_iovlen=1;
1568 	msg.msg_iov=&iov;
1569 	iov.iov_len=size;
1570 	iov.iov_base=ubuf;
1571 	msg.msg_name=address;
1572 	msg.msg_namelen=MAX_SOCK_ADDR;
1573 	if (sock->file->f_flags & O_NONBLOCK)
1574 		flags |= MSG_DONTWAIT;
1575 	err=sock_recvmsg(sock, &msg, size, flags);
1576 
1577 	if(err >= 0 && addr != NULL)
1578 	{
1579 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1580 		if(err2<0)
1581 			err=err2;
1582 	}
1583 	sockfd_put(sock);
1584 out:
1585 	return err;
1586 }
1587 
1588 /*
1589  *	Receive a datagram from a socket.
1590  */
1591 
1592 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1593 {
1594 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1595 }
1596 
1597 /*
1598  *	Set a socket option. Because we don't know the option lengths we have
1599  *	to pass the user mode parameter for the protocols to sort out.
1600  */
1601 
1602 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1603 {
1604 	int err;
1605 	struct socket *sock;
1606 
1607 	if (optlen < 0)
1608 		return -EINVAL;
1609 
1610 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1611 	{
1612 		err = security_socket_setsockopt(sock,level,optname);
1613 		if (err) {
1614 			sockfd_put(sock);
1615 			return err;
1616 		}
1617 
1618 		if (level == SOL_SOCKET)
1619 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1620 		else
1621 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1622 		sockfd_put(sock);
1623 	}
1624 	return err;
1625 }
1626 
1627 /*
1628  *	Get a socket option. Because we don't know the option lengths we have
1629  *	to pass a user mode parameter for the protocols to sort out.
1630  */
1631 
1632 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1633 {
1634 	int err;
1635 	struct socket *sock;
1636 
1637 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1638 	{
1639 		err = security_socket_getsockopt(sock, level,
1640 							   optname);
1641 		if (err) {
1642 			sockfd_put(sock);
1643 			return err;
1644 		}
1645 
1646 		if (level == SOL_SOCKET)
1647 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1648 		else
1649 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1650 		sockfd_put(sock);
1651 	}
1652 	return err;
1653 }
1654 
1655 
1656 /*
1657  *	Shutdown a socket.
1658  */
1659 
1660 asmlinkage long sys_shutdown(int fd, int how)
1661 {
1662 	int err;
1663 	struct socket *sock;
1664 
1665 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1666 	{
1667 		err = security_socket_shutdown(sock, how);
1668 		if (err) {
1669 			sockfd_put(sock);
1670 			return err;
1671 		}
1672 
1673 		err=sock->ops->shutdown(sock, how);
1674 		sockfd_put(sock);
1675 	}
1676 	return err;
1677 }
1678 
1679 /* A couple of helpful macros for getting the address of the 32/64 bit
1680  * fields which are the same type (int / unsigned) on our platforms.
1681  */
1682 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1683 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1684 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1685 
1686 
1687 /*
1688  *	BSD sendmsg interface
1689  */
1690 
1691 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1692 {
1693 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1694 	struct socket *sock;
1695 	char address[MAX_SOCK_ADDR];
1696 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1697 	unsigned char ctl[sizeof(struct cmsghdr) + 20];	/* 20 is size of ipv6_pktinfo */
1698 	unsigned char *ctl_buf = ctl;
1699 	struct msghdr msg_sys;
1700 	int err, ctl_len, iov_size, total_len;
1701 
1702 	err = -EFAULT;
1703 	if (MSG_CMSG_COMPAT & flags) {
1704 		if (get_compat_msghdr(&msg_sys, msg_compat))
1705 			return -EFAULT;
1706 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1707 		return -EFAULT;
1708 
1709 	sock = sockfd_lookup(fd, &err);
1710 	if (!sock)
1711 		goto out;
1712 
1713 	/* do not move before msg_sys is valid */
1714 	err = -EMSGSIZE;
1715 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1716 		goto out_put;
1717 
1718 	/* Check whether to allocate the iovec area*/
1719 	err = -ENOMEM;
1720 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1721 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1722 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1723 		if (!iov)
1724 			goto out_put;
1725 	}
1726 
1727 	/* This will also move the address data into kernel space */
1728 	if (MSG_CMSG_COMPAT & flags) {
1729 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1730 	} else
1731 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1732 	if (err < 0)
1733 		goto out_freeiov;
1734 	total_len = err;
1735 
1736 	err = -ENOBUFS;
1737 
1738 	if (msg_sys.msg_controllen > INT_MAX)
1739 		goto out_freeiov;
1740 	ctl_len = msg_sys.msg_controllen;
1741 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1742 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl));
1743 		if (err)
1744 			goto out_freeiov;
1745 		ctl_buf = msg_sys.msg_control;
1746 	} else if (ctl_len) {
1747 		if (ctl_len > sizeof(ctl))
1748 		{
1749 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1750 			if (ctl_buf == NULL)
1751 				goto out_freeiov;
1752 		}
1753 		err = -EFAULT;
1754 		/*
1755 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1756 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1757 		 * checking falls down on this.
1758 		 */
1759 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1760 			goto out_freectl;
1761 		msg_sys.msg_control = ctl_buf;
1762 	}
1763 	msg_sys.msg_flags = flags;
1764 
1765 	if (sock->file->f_flags & O_NONBLOCK)
1766 		msg_sys.msg_flags |= MSG_DONTWAIT;
1767 	err = sock_sendmsg(sock, &msg_sys, total_len);
1768 
1769 out_freectl:
1770 	if (ctl_buf != ctl)
1771 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1772 out_freeiov:
1773 	if (iov != iovstack)
1774 		sock_kfree_s(sock->sk, iov, iov_size);
1775 out_put:
1776 	sockfd_put(sock);
1777 out:
1778 	return err;
1779 }
1780 
1781 /*
1782  *	BSD recvmsg interface
1783  */
1784 
1785 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1786 {
1787 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1788 	struct socket *sock;
1789 	struct iovec iovstack[UIO_FASTIOV];
1790 	struct iovec *iov=iovstack;
1791 	struct msghdr msg_sys;
1792 	unsigned long cmsg_ptr;
1793 	int err, iov_size, total_len, len;
1794 
1795 	/* kernel mode address */
1796 	char addr[MAX_SOCK_ADDR];
1797 
1798 	/* user mode address pointers */
1799 	struct sockaddr __user *uaddr;
1800 	int __user *uaddr_len;
1801 
1802 	if (MSG_CMSG_COMPAT & flags) {
1803 		if (get_compat_msghdr(&msg_sys, msg_compat))
1804 			return -EFAULT;
1805 	} else
1806 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1807 			return -EFAULT;
1808 
1809 	sock = sockfd_lookup(fd, &err);
1810 	if (!sock)
1811 		goto out;
1812 
1813 	err = -EMSGSIZE;
1814 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1815 		goto out_put;
1816 
1817 	/* Check whether to allocate the iovec area*/
1818 	err = -ENOMEM;
1819 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1820 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1821 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1822 		if (!iov)
1823 			goto out_put;
1824 	}
1825 
1826 	/*
1827 	 *	Save the user-mode address (verify_iovec will change the
1828 	 *	kernel msghdr to use the kernel address space)
1829 	 */
1830 
1831 	uaddr = (void __user *) msg_sys.msg_name;
1832 	uaddr_len = COMPAT_NAMELEN(msg);
1833 	if (MSG_CMSG_COMPAT & flags) {
1834 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1835 	} else
1836 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1837 	if (err < 0)
1838 		goto out_freeiov;
1839 	total_len=err;
1840 
1841 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1842 	msg_sys.msg_flags = 0;
1843 	if (MSG_CMSG_COMPAT & flags)
1844 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1845 
1846 	if (sock->file->f_flags & O_NONBLOCK)
1847 		flags |= MSG_DONTWAIT;
1848 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1849 	if (err < 0)
1850 		goto out_freeiov;
1851 	len = err;
1852 
1853 	if (uaddr != NULL) {
1854 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1855 		if (err < 0)
1856 			goto out_freeiov;
1857 	}
1858 	err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg));
1859 	if (err)
1860 		goto out_freeiov;
1861 	if (MSG_CMSG_COMPAT & flags)
1862 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1863 				 &msg_compat->msg_controllen);
1864 	else
1865 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1866 				 &msg->msg_controllen);
1867 	if (err)
1868 		goto out_freeiov;
1869 	err = len;
1870 
1871 out_freeiov:
1872 	if (iov != iovstack)
1873 		sock_kfree_s(sock->sk, iov, iov_size);
1874 out_put:
1875 	sockfd_put(sock);
1876 out:
1877 	return err;
1878 }
1879 
1880 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1881 
1882 /* Argument list sizes for sys_socketcall */
1883 #define AL(x) ((x) * sizeof(unsigned long))
1884 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1885 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1886 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1887 #undef AL
1888 
1889 /*
1890  *	System call vectors.
1891  *
1892  *	Argument checking cleaned up. Saved 20% in size.
1893  *  This function doesn't need to set the kernel lock because
1894  *  it is set by the callees.
1895  */
1896 
1897 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1898 {
1899 	unsigned long a[6];
1900 	unsigned long a0,a1;
1901 	int err;
1902 
1903 	if(call<1||call>SYS_RECVMSG)
1904 		return -EINVAL;
1905 
1906 	/* copy_from_user should be SMP safe. */
1907 	if (copy_from_user(a, args, nargs[call]))
1908 		return -EFAULT;
1909 
1910 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1911 	if (err)
1912 		return err;
1913 
1914 	a0=a[0];
1915 	a1=a[1];
1916 
1917 	switch(call)
1918 	{
1919 		case SYS_SOCKET:
1920 			err = sys_socket(a0,a1,a[2]);
1921 			break;
1922 		case SYS_BIND:
1923 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1924 			break;
1925 		case SYS_CONNECT:
1926 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1927 			break;
1928 		case SYS_LISTEN:
1929 			err = sys_listen(a0,a1);
1930 			break;
1931 		case SYS_ACCEPT:
1932 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1933 			break;
1934 		case SYS_GETSOCKNAME:
1935 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1936 			break;
1937 		case SYS_GETPEERNAME:
1938 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1939 			break;
1940 		case SYS_SOCKETPAIR:
1941 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1942 			break;
1943 		case SYS_SEND:
1944 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1945 			break;
1946 		case SYS_SENDTO:
1947 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1948 					 (struct sockaddr __user *)a[4], a[5]);
1949 			break;
1950 		case SYS_RECV:
1951 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1952 			break;
1953 		case SYS_RECVFROM:
1954 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1955 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
1956 			break;
1957 		case SYS_SHUTDOWN:
1958 			err = sys_shutdown(a0,a1);
1959 			break;
1960 		case SYS_SETSOCKOPT:
1961 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1962 			break;
1963 		case SYS_GETSOCKOPT:
1964 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1965 			break;
1966 		case SYS_SENDMSG:
1967 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1968 			break;
1969 		case SYS_RECVMSG:
1970 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1971 			break;
1972 		default:
1973 			err = -EINVAL;
1974 			break;
1975 	}
1976 	return err;
1977 }
1978 
1979 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1980 
1981 /*
1982  *	This function is called by a protocol handler that wants to
1983  *	advertise its address family, and have it linked into the
1984  *	SOCKET module.
1985  */
1986 
1987 int sock_register(struct net_proto_family *ops)
1988 {
1989 	int err;
1990 
1991 	if (ops->family >= NPROTO) {
1992 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1993 		return -ENOBUFS;
1994 	}
1995 	net_family_write_lock();
1996 	err = -EEXIST;
1997 	if (net_families[ops->family] == NULL) {
1998 		net_families[ops->family]=ops;
1999 		err = 0;
2000 	}
2001 	net_family_write_unlock();
2002 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2003 	       ops->family);
2004 	return err;
2005 }
2006 
2007 /*
2008  *	This function is called by a protocol handler that wants to
2009  *	remove its address family, and have it unlinked from the
2010  *	SOCKET module.
2011  */
2012 
2013 int sock_unregister(int family)
2014 {
2015 	if (family < 0 || family >= NPROTO)
2016 		return -1;
2017 
2018 	net_family_write_lock();
2019 	net_families[family]=NULL;
2020 	net_family_write_unlock();
2021 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2022 	       family);
2023 	return 0;
2024 }
2025 
2026 
2027 extern void sk_init(void);
2028 
2029 void __init sock_init(void)
2030 {
2031 	/*
2032 	 *	Initialize sock SLAB cache.
2033 	 */
2034 
2035 	sk_init();
2036 
2037 #ifdef SLAB_SKB
2038 	/*
2039 	 *	Initialize skbuff SLAB cache
2040 	 */
2041 	skb_init();
2042 #endif
2043 
2044 	/*
2045 	 *	Initialize the protocols module.
2046 	 */
2047 
2048 	init_inodecache();
2049 	register_filesystem(&sock_fs_type);
2050 	sock_mnt = kern_mount(&sock_fs_type);
2051 	/* The real protocol initialization is performed when
2052 	 *  do_initcalls is run.
2053 	 */
2054 
2055 #ifdef CONFIG_NETFILTER
2056 	netfilter_init();
2057 #endif
2058 }
2059 
2060 #ifdef CONFIG_PROC_FS
2061 void socket_seq_show(struct seq_file *seq)
2062 {
2063 	int cpu;
2064 	int counter = 0;
2065 
2066 	for (cpu = 0; cpu < NR_CPUS; cpu++)
2067 		counter += per_cpu(sockets_in_use, cpu);
2068 
2069 	/* It can be negative, by the way. 8) */
2070 	if (counter < 0)
2071 		counter = 0;
2072 
2073 	seq_printf(seq, "sockets: used %d\n", counter);
2074 }
2075 #endif /* CONFIG_PROC_FS */
2076 
2077 /* ABI emulation layers need these two */
2078 EXPORT_SYMBOL(move_addr_to_kernel);
2079 EXPORT_SYMBOL(move_addr_to_user);
2080 EXPORT_SYMBOL(sock_create);
2081 EXPORT_SYMBOL(sock_create_kern);
2082 EXPORT_SYMBOL(sock_create_lite);
2083 EXPORT_SYMBOL(sock_map_fd);
2084 EXPORT_SYMBOL(sock_recvmsg);
2085 EXPORT_SYMBOL(sock_register);
2086 EXPORT_SYMBOL(sock_release);
2087 EXPORT_SYMBOL(sock_sendmsg);
2088 EXPORT_SYMBOL(sock_unregister);
2089 EXPORT_SYMBOL(sock_wake_async);
2090 EXPORT_SYMBOL(sockfd_lookup);
2091 EXPORT_SYMBOL(kernel_sendmsg);
2092 EXPORT_SYMBOL(kernel_recvmsg);
2093