1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/init.h> 74 #include <linux/poll.h> 75 #include <linux/cache.h> 76 #include <linux/module.h> 77 #include <linux/highmem.h> 78 #include <linux/divert.h> 79 #include <linux/mount.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/compat.h> 83 #include <linux/kmod.h> 84 #include <linux/audit.h> 85 86 #ifdef CONFIG_NET_RADIO 87 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 88 #endif /* CONFIG_NET_RADIO */ 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 static int sock_fasync(int fd, struct file *filp, int on); 111 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 112 unsigned long count, loff_t *ppos); 113 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_sendpage(struct file *file, struct page *page, 116 int offset, size_t size, loff_t *ppos, int more); 117 118 119 /* 120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 121 * in the operation structures but are done directly via the socketcall() multiplexor. 122 */ 123 124 static struct file_operations socket_file_ops = { 125 .owner = THIS_MODULE, 126 .llseek = no_llseek, 127 .aio_read = sock_aio_read, 128 .aio_write = sock_aio_write, 129 .poll = sock_poll, 130 .unlocked_ioctl = sock_ioctl, 131 .mmap = sock_mmap, 132 .open = sock_no_open, /* special open code to disallow open via /proc */ 133 .release = sock_close, 134 .fasync = sock_fasync, 135 .readv = sock_readv, 136 .writev = sock_writev, 137 .sendpage = sock_sendpage 138 }; 139 140 /* 141 * The protocol list. Each protocol is registered in here. 142 */ 143 144 static struct net_proto_family *net_families[NPROTO]; 145 146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 147 static atomic_t net_family_lockct = ATOMIC_INIT(0); 148 static DEFINE_SPINLOCK(net_family_lock); 149 150 /* The strategy is: modifications net_family vector are short, do not 151 sleep and veeery rare, but read access should be free of any exclusive 152 locks. 153 */ 154 155 static void net_family_write_lock(void) 156 { 157 spin_lock(&net_family_lock); 158 while (atomic_read(&net_family_lockct) != 0) { 159 spin_unlock(&net_family_lock); 160 161 yield(); 162 163 spin_lock(&net_family_lock); 164 } 165 } 166 167 static __inline__ void net_family_write_unlock(void) 168 { 169 spin_unlock(&net_family_lock); 170 } 171 172 static __inline__ void net_family_read_lock(void) 173 { 174 atomic_inc(&net_family_lockct); 175 spin_unlock_wait(&net_family_lock); 176 } 177 178 static __inline__ void net_family_read_unlock(void) 179 { 180 atomic_dec(&net_family_lockct); 181 } 182 183 #else 184 #define net_family_write_lock() do { } while(0) 185 #define net_family_write_unlock() do { } while(0) 186 #define net_family_read_lock() do { } while(0) 187 #define net_family_read_unlock() do { } while(0) 188 #endif 189 190 191 /* 192 * Statistics counters of the socket lists 193 */ 194 195 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 196 197 /* 198 * Support routines. Move socket addresses back and forth across the kernel/user 199 * divide and look after the messy bits. 200 */ 201 202 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 203 16 for IP, 16 for IPX, 204 24 for IPv6, 205 about 80 for AX.25 206 must be at least one bigger than 207 the AF_UNIX size (see net/unix/af_unix.c 208 :unix_mkname()). 209 */ 210 211 /** 212 * move_addr_to_kernel - copy a socket address into kernel space 213 * @uaddr: Address in user space 214 * @kaddr: Address in kernel space 215 * @ulen: Length in user space 216 * 217 * The address is copied into kernel space. If the provided address is 218 * too long an error code of -EINVAL is returned. If the copy gives 219 * invalid addresses -EFAULT is returned. On a success 0 is returned. 220 */ 221 222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 223 { 224 if(ulen<0||ulen>MAX_SOCK_ADDR) 225 return -EINVAL; 226 if(ulen==0) 227 return 0; 228 if(copy_from_user(kaddr,uaddr,ulen)) 229 return -EFAULT; 230 return audit_sockaddr(ulen, kaddr); 231 } 232 233 /** 234 * move_addr_to_user - copy an address to user space 235 * @kaddr: kernel space address 236 * @klen: length of address in kernel 237 * @uaddr: user space address 238 * @ulen: pointer to user length field 239 * 240 * The value pointed to by ulen on entry is the buffer length available. 241 * This is overwritten with the buffer space used. -EINVAL is returned 242 * if an overlong buffer is specified or a negative buffer size. -EFAULT 243 * is returned if either the buffer or the length field are not 244 * accessible. 245 * After copying the data up to the limit the user specifies, the true 246 * length of the data is written over the length limit the user 247 * specified. Zero is returned for a success. 248 */ 249 250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 251 { 252 int err; 253 int len; 254 255 if((err=get_user(len, ulen))) 256 return err; 257 if(len>klen) 258 len=klen; 259 if(len<0 || len> MAX_SOCK_ADDR) 260 return -EINVAL; 261 if(len) 262 { 263 if(copy_to_user(uaddr,kaddr,len)) 264 return -EFAULT; 265 } 266 /* 267 * "fromlen shall refer to the value before truncation.." 268 * 1003.1g 269 */ 270 return __put_user(klen, ulen); 271 } 272 273 #define SOCKFS_MAGIC 0x534F434B 274 275 static kmem_cache_t * sock_inode_cachep; 276 277 static struct inode *sock_alloc_inode(struct super_block *sb) 278 { 279 struct socket_alloc *ei; 280 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 281 if (!ei) 282 return NULL; 283 init_waitqueue_head(&ei->socket.wait); 284 285 ei->socket.fasync_list = NULL; 286 ei->socket.state = SS_UNCONNECTED; 287 ei->socket.flags = 0; 288 ei->socket.ops = NULL; 289 ei->socket.sk = NULL; 290 ei->socket.file = NULL; 291 ei->socket.flags = 0; 292 293 return &ei->vfs_inode; 294 } 295 296 static void sock_destroy_inode(struct inode *inode) 297 { 298 kmem_cache_free(sock_inode_cachep, 299 container_of(inode, struct socket_alloc, vfs_inode)); 300 } 301 302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 303 { 304 struct socket_alloc *ei = (struct socket_alloc *) foo; 305 306 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 307 SLAB_CTOR_CONSTRUCTOR) 308 inode_init_once(&ei->vfs_inode); 309 } 310 311 static int init_inodecache(void) 312 { 313 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 314 sizeof(struct socket_alloc), 315 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 316 init_once, NULL); 317 if (sock_inode_cachep == NULL) 318 return -ENOMEM; 319 return 0; 320 } 321 322 static struct super_operations sockfs_ops = { 323 .alloc_inode = sock_alloc_inode, 324 .destroy_inode =sock_destroy_inode, 325 .statfs = simple_statfs, 326 }; 327 328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 329 int flags, const char *dev_name, void *data) 330 { 331 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 332 } 333 334 static struct vfsmount *sock_mnt; 335 336 static struct file_system_type sock_fs_type = { 337 .name = "sockfs", 338 .get_sb = sockfs_get_sb, 339 .kill_sb = kill_anon_super, 340 }; 341 static int sockfs_delete_dentry(struct dentry *dentry) 342 { 343 return 1; 344 } 345 static struct dentry_operations sockfs_dentry_operations = { 346 .d_delete = sockfs_delete_dentry, 347 }; 348 349 /* 350 * Obtains the first available file descriptor and sets it up for use. 351 * 352 * This function creates file structure and maps it to fd space 353 * of current process. On success it returns file descriptor 354 * and file struct implicitly stored in sock->file. 355 * Note that another thread may close file descriptor before we return 356 * from this function. We use the fact that now we do not refer 357 * to socket after mapping. If one day we will need it, this 358 * function will increment ref. count on file by 1. 359 * 360 * In any case returned fd MAY BE not valid! 361 * This race condition is unavoidable 362 * with shared fd spaces, we cannot solve it inside kernel, 363 * but we take care of internal coherence yet. 364 */ 365 366 int sock_map_fd(struct socket *sock) 367 { 368 int fd; 369 struct qstr this; 370 char name[32]; 371 372 /* 373 * Find a file descriptor suitable for return to the user. 374 */ 375 376 fd = get_unused_fd(); 377 if (fd >= 0) { 378 struct file *file = get_empty_filp(); 379 380 if (!file) { 381 put_unused_fd(fd); 382 fd = -ENFILE; 383 goto out; 384 } 385 386 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 387 this.name = name; 388 this.hash = SOCK_INODE(sock)->i_ino; 389 390 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 391 if (!file->f_dentry) { 392 put_filp(file); 393 put_unused_fd(fd); 394 fd = -ENOMEM; 395 goto out; 396 } 397 file->f_dentry->d_op = &sockfs_dentry_operations; 398 d_add(file->f_dentry, SOCK_INODE(sock)); 399 file->f_vfsmnt = mntget(sock_mnt); 400 file->f_mapping = file->f_dentry->d_inode->i_mapping; 401 402 sock->file = file; 403 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 404 file->f_mode = FMODE_READ | FMODE_WRITE; 405 file->f_flags = O_RDWR; 406 file->f_pos = 0; 407 fd_install(fd, file); 408 } 409 410 out: 411 return fd; 412 } 413 414 /** 415 * sockfd_lookup - Go from a file number to its socket slot 416 * @fd: file handle 417 * @err: pointer to an error code return 418 * 419 * The file handle passed in is locked and the socket it is bound 420 * too is returned. If an error occurs the err pointer is overwritten 421 * with a negative errno code and NULL is returned. The function checks 422 * for both invalid handles and passing a handle which is not a socket. 423 * 424 * On a success the socket object pointer is returned. 425 */ 426 427 struct socket *sockfd_lookup(int fd, int *err) 428 { 429 struct file *file; 430 struct inode *inode; 431 struct socket *sock; 432 433 if (!(file = fget(fd))) 434 { 435 *err = -EBADF; 436 return NULL; 437 } 438 439 inode = file->f_dentry->d_inode; 440 if (!S_ISSOCK(inode->i_mode)) { 441 *err = -ENOTSOCK; 442 fput(file); 443 return NULL; 444 } 445 446 sock = SOCKET_I(inode); 447 if (sock->file != file) { 448 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 449 sock->file = file; 450 } 451 return sock; 452 } 453 454 /** 455 * sock_alloc - allocate a socket 456 * 457 * Allocate a new inode and socket object. The two are bound together 458 * and initialised. The socket is then returned. If we are out of inodes 459 * NULL is returned. 460 */ 461 462 static struct socket *sock_alloc(void) 463 { 464 struct inode * inode; 465 struct socket * sock; 466 467 inode = new_inode(sock_mnt->mnt_sb); 468 if (!inode) 469 return NULL; 470 471 sock = SOCKET_I(inode); 472 473 inode->i_mode = S_IFSOCK|S_IRWXUGO; 474 inode->i_uid = current->fsuid; 475 inode->i_gid = current->fsgid; 476 477 get_cpu_var(sockets_in_use)++; 478 put_cpu_var(sockets_in_use); 479 return sock; 480 } 481 482 /* 483 * In theory you can't get an open on this inode, but /proc provides 484 * a back door. Remember to keep it shut otherwise you'll let the 485 * creepy crawlies in. 486 */ 487 488 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 489 { 490 return -ENXIO; 491 } 492 493 struct file_operations bad_sock_fops = { 494 .owner = THIS_MODULE, 495 .open = sock_no_open, 496 }; 497 498 /** 499 * sock_release - close a socket 500 * @sock: socket to close 501 * 502 * The socket is released from the protocol stack if it has a release 503 * callback, and the inode is then released if the socket is bound to 504 * an inode not a file. 505 */ 506 507 void sock_release(struct socket *sock) 508 { 509 if (sock->ops) { 510 struct module *owner = sock->ops->owner; 511 512 sock->ops->release(sock); 513 sock->ops = NULL; 514 module_put(owner); 515 } 516 517 if (sock->fasync_list) 518 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 519 520 get_cpu_var(sockets_in_use)--; 521 put_cpu_var(sockets_in_use); 522 if (!sock->file) { 523 iput(SOCK_INODE(sock)); 524 return; 525 } 526 sock->file=NULL; 527 } 528 529 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 530 struct msghdr *msg, size_t size) 531 { 532 struct sock_iocb *si = kiocb_to_siocb(iocb); 533 int err; 534 535 si->sock = sock; 536 si->scm = NULL; 537 si->msg = msg; 538 si->size = size; 539 540 err = security_socket_sendmsg(sock, msg, size); 541 if (err) 542 return err; 543 544 return sock->ops->sendmsg(iocb, sock, msg, size); 545 } 546 547 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 548 { 549 struct kiocb iocb; 550 struct sock_iocb siocb; 551 int ret; 552 553 init_sync_kiocb(&iocb, NULL); 554 iocb.private = &siocb; 555 ret = __sock_sendmsg(&iocb, sock, msg, size); 556 if (-EIOCBQUEUED == ret) 557 ret = wait_on_sync_kiocb(&iocb); 558 return ret; 559 } 560 561 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 562 struct kvec *vec, size_t num, size_t size) 563 { 564 mm_segment_t oldfs = get_fs(); 565 int result; 566 567 set_fs(KERNEL_DS); 568 /* 569 * the following is safe, since for compiler definitions of kvec and 570 * iovec are identical, yielding the same in-core layout and alignment 571 */ 572 msg->msg_iov = (struct iovec *)vec, 573 msg->msg_iovlen = num; 574 result = sock_sendmsg(sock, msg, size); 575 set_fs(oldfs); 576 return result; 577 } 578 579 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 580 struct msghdr *msg, size_t size, int flags) 581 { 582 int err; 583 struct sock_iocb *si = kiocb_to_siocb(iocb); 584 585 si->sock = sock; 586 si->scm = NULL; 587 si->msg = msg; 588 si->size = size; 589 si->flags = flags; 590 591 err = security_socket_recvmsg(sock, msg, size, flags); 592 if (err) 593 return err; 594 595 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 596 } 597 598 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 599 size_t size, int flags) 600 { 601 struct kiocb iocb; 602 struct sock_iocb siocb; 603 int ret; 604 605 init_sync_kiocb(&iocb, NULL); 606 iocb.private = &siocb; 607 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 608 if (-EIOCBQUEUED == ret) 609 ret = wait_on_sync_kiocb(&iocb); 610 return ret; 611 } 612 613 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 614 struct kvec *vec, size_t num, 615 size_t size, int flags) 616 { 617 mm_segment_t oldfs = get_fs(); 618 int result; 619 620 set_fs(KERNEL_DS); 621 /* 622 * the following is safe, since for compiler definitions of kvec and 623 * iovec are identical, yielding the same in-core layout and alignment 624 */ 625 msg->msg_iov = (struct iovec *)vec, 626 msg->msg_iovlen = num; 627 result = sock_recvmsg(sock, msg, size, flags); 628 set_fs(oldfs); 629 return result; 630 } 631 632 static void sock_aio_dtor(struct kiocb *iocb) 633 { 634 kfree(iocb->private); 635 } 636 637 /* 638 * Read data from a socket. ubuf is a user mode pointer. We make sure the user 639 * area ubuf...ubuf+size-1 is writable before asking the protocol. 640 */ 641 642 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 643 size_t size, loff_t pos) 644 { 645 struct sock_iocb *x, siocb; 646 struct socket *sock; 647 int flags; 648 649 if (pos != 0) 650 return -ESPIPE; 651 if (size==0) /* Match SYS5 behaviour */ 652 return 0; 653 654 if (is_sync_kiocb(iocb)) 655 x = &siocb; 656 else { 657 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 658 if (!x) 659 return -ENOMEM; 660 iocb->ki_dtor = sock_aio_dtor; 661 } 662 iocb->private = x; 663 x->kiocb = iocb; 664 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 665 666 x->async_msg.msg_name = NULL; 667 x->async_msg.msg_namelen = 0; 668 x->async_msg.msg_iov = &x->async_iov; 669 x->async_msg.msg_iovlen = 1; 670 x->async_msg.msg_control = NULL; 671 x->async_msg.msg_controllen = 0; 672 x->async_iov.iov_base = ubuf; 673 x->async_iov.iov_len = size; 674 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 675 676 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags); 677 } 678 679 680 /* 681 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 682 * is readable by the user process. 683 */ 684 685 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 686 size_t size, loff_t pos) 687 { 688 struct sock_iocb *x, siocb; 689 struct socket *sock; 690 691 if (pos != 0) 692 return -ESPIPE; 693 if(size==0) /* Match SYS5 behaviour */ 694 return 0; 695 696 if (is_sync_kiocb(iocb)) 697 x = &siocb; 698 else { 699 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 700 if (!x) 701 return -ENOMEM; 702 iocb->ki_dtor = sock_aio_dtor; 703 } 704 iocb->private = x; 705 x->kiocb = iocb; 706 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 707 708 x->async_msg.msg_name = NULL; 709 x->async_msg.msg_namelen = 0; 710 x->async_msg.msg_iov = &x->async_iov; 711 x->async_msg.msg_iovlen = 1; 712 x->async_msg.msg_control = NULL; 713 x->async_msg.msg_controllen = 0; 714 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 715 if (sock->type == SOCK_SEQPACKET) 716 x->async_msg.msg_flags |= MSG_EOR; 717 x->async_iov.iov_base = (void __user *)ubuf; 718 x->async_iov.iov_len = size; 719 720 return __sock_sendmsg(iocb, sock, &x->async_msg, size); 721 } 722 723 ssize_t sock_sendpage(struct file *file, struct page *page, 724 int offset, size_t size, loff_t *ppos, int more) 725 { 726 struct socket *sock; 727 int flags; 728 729 sock = SOCKET_I(file->f_dentry->d_inode); 730 731 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 732 if (more) 733 flags |= MSG_MORE; 734 735 return sock->ops->sendpage(sock, page, offset, size, flags); 736 } 737 738 static int sock_readv_writev(int type, struct inode * inode, 739 struct file * file, const struct iovec * iov, 740 long count, size_t size) 741 { 742 struct msghdr msg; 743 struct socket *sock; 744 745 sock = SOCKET_I(inode); 746 747 msg.msg_name = NULL; 748 msg.msg_namelen = 0; 749 msg.msg_control = NULL; 750 msg.msg_controllen = 0; 751 msg.msg_iov = (struct iovec *) iov; 752 msg.msg_iovlen = count; 753 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 754 755 /* read() does a VERIFY_WRITE */ 756 if (type == VERIFY_WRITE) 757 return sock_recvmsg(sock, &msg, size, msg.msg_flags); 758 759 if (sock->type == SOCK_SEQPACKET) 760 msg.msg_flags |= MSG_EOR; 761 762 return sock_sendmsg(sock, &msg, size); 763 } 764 765 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 766 unsigned long count, loff_t *ppos) 767 { 768 size_t tot_len = 0; 769 int i; 770 for (i = 0 ; i < count ; i++) 771 tot_len += vector[i].iov_len; 772 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode, 773 file, vector, count, tot_len); 774 } 775 776 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 777 unsigned long count, loff_t *ppos) 778 { 779 size_t tot_len = 0; 780 int i; 781 for (i = 0 ; i < count ; i++) 782 tot_len += vector[i].iov_len; 783 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode, 784 file, vector, count, tot_len); 785 } 786 787 788 /* 789 * Atomic setting of ioctl hooks to avoid race 790 * with module unload. 791 */ 792 793 static DECLARE_MUTEX(br_ioctl_mutex); 794 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 795 796 void brioctl_set(int (*hook)(unsigned int, void __user *)) 797 { 798 down(&br_ioctl_mutex); 799 br_ioctl_hook = hook; 800 up(&br_ioctl_mutex); 801 } 802 EXPORT_SYMBOL(brioctl_set); 803 804 static DECLARE_MUTEX(vlan_ioctl_mutex); 805 static int (*vlan_ioctl_hook)(void __user *arg); 806 807 void vlan_ioctl_set(int (*hook)(void __user *)) 808 { 809 down(&vlan_ioctl_mutex); 810 vlan_ioctl_hook = hook; 811 up(&vlan_ioctl_mutex); 812 } 813 EXPORT_SYMBOL(vlan_ioctl_set); 814 815 static DECLARE_MUTEX(dlci_ioctl_mutex); 816 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 817 818 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 819 { 820 down(&dlci_ioctl_mutex); 821 dlci_ioctl_hook = hook; 822 up(&dlci_ioctl_mutex); 823 } 824 EXPORT_SYMBOL(dlci_ioctl_set); 825 826 /* 827 * With an ioctl, arg may well be a user mode pointer, but we don't know 828 * what to do with it - that's up to the protocol still. 829 */ 830 831 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 832 { 833 struct socket *sock; 834 void __user *argp = (void __user *)arg; 835 int pid, err; 836 837 sock = SOCKET_I(file->f_dentry->d_inode); 838 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 839 err = dev_ioctl(cmd, argp); 840 } else 841 #ifdef WIRELESS_EXT 842 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 843 err = dev_ioctl(cmd, argp); 844 } else 845 #endif /* WIRELESS_EXT */ 846 switch (cmd) { 847 case FIOSETOWN: 848 case SIOCSPGRP: 849 err = -EFAULT; 850 if (get_user(pid, (int __user *)argp)) 851 break; 852 err = f_setown(sock->file, pid, 1); 853 break; 854 case FIOGETOWN: 855 case SIOCGPGRP: 856 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 857 break; 858 case SIOCGIFBR: 859 case SIOCSIFBR: 860 case SIOCBRADDBR: 861 case SIOCBRDELBR: 862 err = -ENOPKG; 863 if (!br_ioctl_hook) 864 request_module("bridge"); 865 866 down(&br_ioctl_mutex); 867 if (br_ioctl_hook) 868 err = br_ioctl_hook(cmd, argp); 869 up(&br_ioctl_mutex); 870 break; 871 case SIOCGIFVLAN: 872 case SIOCSIFVLAN: 873 err = -ENOPKG; 874 if (!vlan_ioctl_hook) 875 request_module("8021q"); 876 877 down(&vlan_ioctl_mutex); 878 if (vlan_ioctl_hook) 879 err = vlan_ioctl_hook(argp); 880 up(&vlan_ioctl_mutex); 881 break; 882 case SIOCGIFDIVERT: 883 case SIOCSIFDIVERT: 884 /* Convert this to call through a hook */ 885 err = divert_ioctl(cmd, argp); 886 break; 887 case SIOCADDDLCI: 888 case SIOCDELDLCI: 889 err = -ENOPKG; 890 if (!dlci_ioctl_hook) 891 request_module("dlci"); 892 893 if (dlci_ioctl_hook) { 894 down(&dlci_ioctl_mutex); 895 err = dlci_ioctl_hook(cmd, argp); 896 up(&dlci_ioctl_mutex); 897 } 898 break; 899 default: 900 err = sock->ops->ioctl(sock, cmd, arg); 901 break; 902 } 903 return err; 904 } 905 906 int sock_create_lite(int family, int type, int protocol, struct socket **res) 907 { 908 int err; 909 struct socket *sock = NULL; 910 911 err = security_socket_create(family, type, protocol, 1); 912 if (err) 913 goto out; 914 915 sock = sock_alloc(); 916 if (!sock) { 917 err = -ENOMEM; 918 goto out; 919 } 920 921 security_socket_post_create(sock, family, type, protocol, 1); 922 sock->type = type; 923 out: 924 *res = sock; 925 return err; 926 } 927 928 /* No kernel lock held - perfect */ 929 static unsigned int sock_poll(struct file *file, poll_table * wait) 930 { 931 struct socket *sock; 932 933 /* 934 * We can't return errors to poll, so it's either yes or no. 935 */ 936 sock = SOCKET_I(file->f_dentry->d_inode); 937 return sock->ops->poll(file, sock, wait); 938 } 939 940 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 941 { 942 struct socket *sock = SOCKET_I(file->f_dentry->d_inode); 943 944 return sock->ops->mmap(file, sock, vma); 945 } 946 947 int sock_close(struct inode *inode, struct file *filp) 948 { 949 /* 950 * It was possible the inode is NULL we were 951 * closing an unfinished socket. 952 */ 953 954 if (!inode) 955 { 956 printk(KERN_DEBUG "sock_close: NULL inode\n"); 957 return 0; 958 } 959 sock_fasync(-1, filp, 0); 960 sock_release(SOCKET_I(inode)); 961 return 0; 962 } 963 964 /* 965 * Update the socket async list 966 * 967 * Fasync_list locking strategy. 968 * 969 * 1. fasync_list is modified only under process context socket lock 970 * i.e. under semaphore. 971 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 972 * or under socket lock. 973 * 3. fasync_list can be used from softirq context, so that 974 * modification under socket lock have to be enhanced with 975 * write_lock_bh(&sk->sk_callback_lock). 976 * --ANK (990710) 977 */ 978 979 static int sock_fasync(int fd, struct file *filp, int on) 980 { 981 struct fasync_struct *fa, *fna=NULL, **prev; 982 struct socket *sock; 983 struct sock *sk; 984 985 if (on) 986 { 987 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 988 if(fna==NULL) 989 return -ENOMEM; 990 } 991 992 sock = SOCKET_I(filp->f_dentry->d_inode); 993 994 if ((sk=sock->sk) == NULL) { 995 kfree(fna); 996 return -EINVAL; 997 } 998 999 lock_sock(sk); 1000 1001 prev=&(sock->fasync_list); 1002 1003 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1004 if (fa->fa_file==filp) 1005 break; 1006 1007 if(on) 1008 { 1009 if(fa!=NULL) 1010 { 1011 write_lock_bh(&sk->sk_callback_lock); 1012 fa->fa_fd=fd; 1013 write_unlock_bh(&sk->sk_callback_lock); 1014 1015 kfree(fna); 1016 goto out; 1017 } 1018 fna->fa_file=filp; 1019 fna->fa_fd=fd; 1020 fna->magic=FASYNC_MAGIC; 1021 fna->fa_next=sock->fasync_list; 1022 write_lock_bh(&sk->sk_callback_lock); 1023 sock->fasync_list=fna; 1024 write_unlock_bh(&sk->sk_callback_lock); 1025 } 1026 else 1027 { 1028 if (fa!=NULL) 1029 { 1030 write_lock_bh(&sk->sk_callback_lock); 1031 *prev=fa->fa_next; 1032 write_unlock_bh(&sk->sk_callback_lock); 1033 kfree(fa); 1034 } 1035 } 1036 1037 out: 1038 release_sock(sock->sk); 1039 return 0; 1040 } 1041 1042 /* This function may be called only under socket lock or callback_lock */ 1043 1044 int sock_wake_async(struct socket *sock, int how, int band) 1045 { 1046 if (!sock || !sock->fasync_list) 1047 return -1; 1048 switch (how) 1049 { 1050 case 1: 1051 1052 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1053 break; 1054 goto call_kill; 1055 case 2: 1056 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1057 break; 1058 /* fall through */ 1059 case 0: 1060 call_kill: 1061 __kill_fasync(sock->fasync_list, SIGIO, band); 1062 break; 1063 case 3: 1064 __kill_fasync(sock->fasync_list, SIGURG, band); 1065 } 1066 return 0; 1067 } 1068 1069 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1070 { 1071 int err; 1072 struct socket *sock; 1073 1074 /* 1075 * Check protocol is in range 1076 */ 1077 if (family < 0 || family >= NPROTO) 1078 return -EAFNOSUPPORT; 1079 if (type < 0 || type >= SOCK_MAX) 1080 return -EINVAL; 1081 1082 /* Compatibility. 1083 1084 This uglymoron is moved from INET layer to here to avoid 1085 deadlock in module load. 1086 */ 1087 if (family == PF_INET && type == SOCK_PACKET) { 1088 static int warned; 1089 if (!warned) { 1090 warned = 1; 1091 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1092 } 1093 family = PF_PACKET; 1094 } 1095 1096 err = security_socket_create(family, type, protocol, kern); 1097 if (err) 1098 return err; 1099 1100 #if defined(CONFIG_KMOD) 1101 /* Attempt to load a protocol module if the find failed. 1102 * 1103 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1104 * requested real, full-featured networking support upon configuration. 1105 * Otherwise module support will break! 1106 */ 1107 if (net_families[family]==NULL) 1108 { 1109 request_module("net-pf-%d",family); 1110 } 1111 #endif 1112 1113 net_family_read_lock(); 1114 if (net_families[family] == NULL) { 1115 err = -EAFNOSUPPORT; 1116 goto out; 1117 } 1118 1119 /* 1120 * Allocate the socket and allow the family to set things up. if 1121 * the protocol is 0, the family is instructed to select an appropriate 1122 * default. 1123 */ 1124 1125 if (!(sock = sock_alloc())) { 1126 printk(KERN_WARNING "socket: no more sockets\n"); 1127 err = -ENFILE; /* Not exactly a match, but its the 1128 closest posix thing */ 1129 goto out; 1130 } 1131 1132 sock->type = type; 1133 1134 /* 1135 * We will call the ->create function, that possibly is in a loadable 1136 * module, so we have to bump that loadable module refcnt first. 1137 */ 1138 err = -EAFNOSUPPORT; 1139 if (!try_module_get(net_families[family]->owner)) 1140 goto out_release; 1141 1142 if ((err = net_families[family]->create(sock, protocol)) < 0) 1143 goto out_module_put; 1144 /* 1145 * Now to bump the refcnt of the [loadable] module that owns this 1146 * socket at sock_release time we decrement its refcnt. 1147 */ 1148 if (!try_module_get(sock->ops->owner)) { 1149 sock->ops = NULL; 1150 goto out_module_put; 1151 } 1152 /* 1153 * Now that we're done with the ->create function, the [loadable] 1154 * module can have its refcnt decremented 1155 */ 1156 module_put(net_families[family]->owner); 1157 *res = sock; 1158 security_socket_post_create(sock, family, type, protocol, kern); 1159 1160 out: 1161 net_family_read_unlock(); 1162 return err; 1163 out_module_put: 1164 module_put(net_families[family]->owner); 1165 out_release: 1166 sock_release(sock); 1167 goto out; 1168 } 1169 1170 int sock_create(int family, int type, int protocol, struct socket **res) 1171 { 1172 return __sock_create(family, type, protocol, res, 0); 1173 } 1174 1175 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1176 { 1177 return __sock_create(family, type, protocol, res, 1); 1178 } 1179 1180 asmlinkage long sys_socket(int family, int type, int protocol) 1181 { 1182 int retval; 1183 struct socket *sock; 1184 1185 retval = sock_create(family, type, protocol, &sock); 1186 if (retval < 0) 1187 goto out; 1188 1189 retval = sock_map_fd(sock); 1190 if (retval < 0) 1191 goto out_release; 1192 1193 out: 1194 /* It may be already another descriptor 8) Not kernel problem. */ 1195 return retval; 1196 1197 out_release: 1198 sock_release(sock); 1199 return retval; 1200 } 1201 1202 /* 1203 * Create a pair of connected sockets. 1204 */ 1205 1206 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1207 { 1208 struct socket *sock1, *sock2; 1209 int fd1, fd2, err; 1210 1211 /* 1212 * Obtain the first socket and check if the underlying protocol 1213 * supports the socketpair call. 1214 */ 1215 1216 err = sock_create(family, type, protocol, &sock1); 1217 if (err < 0) 1218 goto out; 1219 1220 err = sock_create(family, type, protocol, &sock2); 1221 if (err < 0) 1222 goto out_release_1; 1223 1224 err = sock1->ops->socketpair(sock1, sock2); 1225 if (err < 0) 1226 goto out_release_both; 1227 1228 fd1 = fd2 = -1; 1229 1230 err = sock_map_fd(sock1); 1231 if (err < 0) 1232 goto out_release_both; 1233 fd1 = err; 1234 1235 err = sock_map_fd(sock2); 1236 if (err < 0) 1237 goto out_close_1; 1238 fd2 = err; 1239 1240 /* fd1 and fd2 may be already another descriptors. 1241 * Not kernel problem. 1242 */ 1243 1244 err = put_user(fd1, &usockvec[0]); 1245 if (!err) 1246 err = put_user(fd2, &usockvec[1]); 1247 if (!err) 1248 return 0; 1249 1250 sys_close(fd2); 1251 sys_close(fd1); 1252 return err; 1253 1254 out_close_1: 1255 sock_release(sock2); 1256 sys_close(fd1); 1257 return err; 1258 1259 out_release_both: 1260 sock_release(sock2); 1261 out_release_1: 1262 sock_release(sock1); 1263 out: 1264 return err; 1265 } 1266 1267 1268 /* 1269 * Bind a name to a socket. Nothing much to do here since it's 1270 * the protocol's responsibility to handle the local address. 1271 * 1272 * We move the socket address to kernel space before we call 1273 * the protocol layer (having also checked the address is ok). 1274 */ 1275 1276 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1277 { 1278 struct socket *sock; 1279 char address[MAX_SOCK_ADDR]; 1280 int err; 1281 1282 if((sock = sockfd_lookup(fd,&err))!=NULL) 1283 { 1284 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1285 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1286 if (err) { 1287 sockfd_put(sock); 1288 return err; 1289 } 1290 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1291 } 1292 sockfd_put(sock); 1293 } 1294 return err; 1295 } 1296 1297 1298 /* 1299 * Perform a listen. Basically, we allow the protocol to do anything 1300 * necessary for a listen, and if that works, we mark the socket as 1301 * ready for listening. 1302 */ 1303 1304 int sysctl_somaxconn = SOMAXCONN; 1305 1306 asmlinkage long sys_listen(int fd, int backlog) 1307 { 1308 struct socket *sock; 1309 int err; 1310 1311 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1312 if ((unsigned) backlog > sysctl_somaxconn) 1313 backlog = sysctl_somaxconn; 1314 1315 err = security_socket_listen(sock, backlog); 1316 if (err) { 1317 sockfd_put(sock); 1318 return err; 1319 } 1320 1321 err=sock->ops->listen(sock, backlog); 1322 sockfd_put(sock); 1323 } 1324 return err; 1325 } 1326 1327 1328 /* 1329 * For accept, we attempt to create a new socket, set up the link 1330 * with the client, wake up the client, then return the new 1331 * connected fd. We collect the address of the connector in kernel 1332 * space and move it to user at the very end. This is unclean because 1333 * we open the socket then return an error. 1334 * 1335 * 1003.1g adds the ability to recvmsg() to query connection pending 1336 * status to recvmsg. We need to add that support in a way thats 1337 * clean when we restucture accept also. 1338 */ 1339 1340 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1341 { 1342 struct socket *sock, *newsock; 1343 int err, len; 1344 char address[MAX_SOCK_ADDR]; 1345 1346 sock = sockfd_lookup(fd, &err); 1347 if (!sock) 1348 goto out; 1349 1350 err = -ENFILE; 1351 if (!(newsock = sock_alloc())) 1352 goto out_put; 1353 1354 newsock->type = sock->type; 1355 newsock->ops = sock->ops; 1356 1357 err = security_socket_accept(sock, newsock); 1358 if (err) 1359 goto out_release; 1360 1361 /* 1362 * We don't need try_module_get here, as the listening socket (sock) 1363 * has the protocol module (sock->ops->owner) held. 1364 */ 1365 __module_get(newsock->ops->owner); 1366 1367 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1368 if (err < 0) 1369 goto out_release; 1370 1371 if (upeer_sockaddr) { 1372 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1373 err = -ECONNABORTED; 1374 goto out_release; 1375 } 1376 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1377 if (err < 0) 1378 goto out_release; 1379 } 1380 1381 /* File flags are not inherited via accept() unlike another OSes. */ 1382 1383 if ((err = sock_map_fd(newsock)) < 0) 1384 goto out_release; 1385 1386 security_socket_post_accept(sock, newsock); 1387 1388 out_put: 1389 sockfd_put(sock); 1390 out: 1391 return err; 1392 out_release: 1393 sock_release(newsock); 1394 goto out_put; 1395 } 1396 1397 1398 /* 1399 * Attempt to connect to a socket with the server address. The address 1400 * is in user space so we verify it is OK and move it to kernel space. 1401 * 1402 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1403 * break bindings 1404 * 1405 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1406 * other SEQPACKET protocols that take time to connect() as it doesn't 1407 * include the -EINPROGRESS status for such sockets. 1408 */ 1409 1410 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1411 { 1412 struct socket *sock; 1413 char address[MAX_SOCK_ADDR]; 1414 int err; 1415 1416 sock = sockfd_lookup(fd, &err); 1417 if (!sock) 1418 goto out; 1419 err = move_addr_to_kernel(uservaddr, addrlen, address); 1420 if (err < 0) 1421 goto out_put; 1422 1423 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1424 if (err) 1425 goto out_put; 1426 1427 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1428 sock->file->f_flags); 1429 out_put: 1430 sockfd_put(sock); 1431 out: 1432 return err; 1433 } 1434 1435 /* 1436 * Get the local address ('name') of a socket object. Move the obtained 1437 * name to user space. 1438 */ 1439 1440 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1441 { 1442 struct socket *sock; 1443 char address[MAX_SOCK_ADDR]; 1444 int len, err; 1445 1446 sock = sockfd_lookup(fd, &err); 1447 if (!sock) 1448 goto out; 1449 1450 err = security_socket_getsockname(sock); 1451 if (err) 1452 goto out_put; 1453 1454 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1455 if (err) 1456 goto out_put; 1457 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1458 1459 out_put: 1460 sockfd_put(sock); 1461 out: 1462 return err; 1463 } 1464 1465 /* 1466 * Get the remote address ('name') of a socket object. Move the obtained 1467 * name to user space. 1468 */ 1469 1470 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1471 { 1472 struct socket *sock; 1473 char address[MAX_SOCK_ADDR]; 1474 int len, err; 1475 1476 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1477 { 1478 err = security_socket_getpeername(sock); 1479 if (err) { 1480 sockfd_put(sock); 1481 return err; 1482 } 1483 1484 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1485 if (!err) 1486 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1487 sockfd_put(sock); 1488 } 1489 return err; 1490 } 1491 1492 /* 1493 * Send a datagram to a given address. We move the address into kernel 1494 * space and check the user space data area is readable before invoking 1495 * the protocol. 1496 */ 1497 1498 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1499 struct sockaddr __user *addr, int addr_len) 1500 { 1501 struct socket *sock; 1502 char address[MAX_SOCK_ADDR]; 1503 int err; 1504 struct msghdr msg; 1505 struct iovec iov; 1506 1507 sock = sockfd_lookup(fd, &err); 1508 if (!sock) 1509 goto out; 1510 iov.iov_base=buff; 1511 iov.iov_len=len; 1512 msg.msg_name=NULL; 1513 msg.msg_iov=&iov; 1514 msg.msg_iovlen=1; 1515 msg.msg_control=NULL; 1516 msg.msg_controllen=0; 1517 msg.msg_namelen=0; 1518 if(addr) 1519 { 1520 err = move_addr_to_kernel(addr, addr_len, address); 1521 if (err < 0) 1522 goto out_put; 1523 msg.msg_name=address; 1524 msg.msg_namelen=addr_len; 1525 } 1526 if (sock->file->f_flags & O_NONBLOCK) 1527 flags |= MSG_DONTWAIT; 1528 msg.msg_flags = flags; 1529 err = sock_sendmsg(sock, &msg, len); 1530 1531 out_put: 1532 sockfd_put(sock); 1533 out: 1534 return err; 1535 } 1536 1537 /* 1538 * Send a datagram down a socket. 1539 */ 1540 1541 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1542 { 1543 return sys_sendto(fd, buff, len, flags, NULL, 0); 1544 } 1545 1546 /* 1547 * Receive a frame from the socket and optionally record the address of the 1548 * sender. We verify the buffers are writable and if needed move the 1549 * sender address from kernel to user space. 1550 */ 1551 1552 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1553 struct sockaddr __user *addr, int __user *addr_len) 1554 { 1555 struct socket *sock; 1556 struct iovec iov; 1557 struct msghdr msg; 1558 char address[MAX_SOCK_ADDR]; 1559 int err,err2; 1560 1561 sock = sockfd_lookup(fd, &err); 1562 if (!sock) 1563 goto out; 1564 1565 msg.msg_control=NULL; 1566 msg.msg_controllen=0; 1567 msg.msg_iovlen=1; 1568 msg.msg_iov=&iov; 1569 iov.iov_len=size; 1570 iov.iov_base=ubuf; 1571 msg.msg_name=address; 1572 msg.msg_namelen=MAX_SOCK_ADDR; 1573 if (sock->file->f_flags & O_NONBLOCK) 1574 flags |= MSG_DONTWAIT; 1575 err=sock_recvmsg(sock, &msg, size, flags); 1576 1577 if(err >= 0 && addr != NULL) 1578 { 1579 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1580 if(err2<0) 1581 err=err2; 1582 } 1583 sockfd_put(sock); 1584 out: 1585 return err; 1586 } 1587 1588 /* 1589 * Receive a datagram from a socket. 1590 */ 1591 1592 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1593 { 1594 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1595 } 1596 1597 /* 1598 * Set a socket option. Because we don't know the option lengths we have 1599 * to pass the user mode parameter for the protocols to sort out. 1600 */ 1601 1602 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1603 { 1604 int err; 1605 struct socket *sock; 1606 1607 if (optlen < 0) 1608 return -EINVAL; 1609 1610 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1611 { 1612 err = security_socket_setsockopt(sock,level,optname); 1613 if (err) { 1614 sockfd_put(sock); 1615 return err; 1616 } 1617 1618 if (level == SOL_SOCKET) 1619 err=sock_setsockopt(sock,level,optname,optval,optlen); 1620 else 1621 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1622 sockfd_put(sock); 1623 } 1624 return err; 1625 } 1626 1627 /* 1628 * Get a socket option. Because we don't know the option lengths we have 1629 * to pass a user mode parameter for the protocols to sort out. 1630 */ 1631 1632 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1633 { 1634 int err; 1635 struct socket *sock; 1636 1637 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1638 { 1639 err = security_socket_getsockopt(sock, level, 1640 optname); 1641 if (err) { 1642 sockfd_put(sock); 1643 return err; 1644 } 1645 1646 if (level == SOL_SOCKET) 1647 err=sock_getsockopt(sock,level,optname,optval,optlen); 1648 else 1649 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1650 sockfd_put(sock); 1651 } 1652 return err; 1653 } 1654 1655 1656 /* 1657 * Shutdown a socket. 1658 */ 1659 1660 asmlinkage long sys_shutdown(int fd, int how) 1661 { 1662 int err; 1663 struct socket *sock; 1664 1665 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1666 { 1667 err = security_socket_shutdown(sock, how); 1668 if (err) { 1669 sockfd_put(sock); 1670 return err; 1671 } 1672 1673 err=sock->ops->shutdown(sock, how); 1674 sockfd_put(sock); 1675 } 1676 return err; 1677 } 1678 1679 /* A couple of helpful macros for getting the address of the 32/64 bit 1680 * fields which are the same type (int / unsigned) on our platforms. 1681 */ 1682 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1683 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1684 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1685 1686 1687 /* 1688 * BSD sendmsg interface 1689 */ 1690 1691 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1692 { 1693 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1694 struct socket *sock; 1695 char address[MAX_SOCK_ADDR]; 1696 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1697 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ 1698 unsigned char *ctl_buf = ctl; 1699 struct msghdr msg_sys; 1700 int err, ctl_len, iov_size, total_len; 1701 1702 err = -EFAULT; 1703 if (MSG_CMSG_COMPAT & flags) { 1704 if (get_compat_msghdr(&msg_sys, msg_compat)) 1705 return -EFAULT; 1706 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1707 return -EFAULT; 1708 1709 sock = sockfd_lookup(fd, &err); 1710 if (!sock) 1711 goto out; 1712 1713 /* do not move before msg_sys is valid */ 1714 err = -EMSGSIZE; 1715 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1716 goto out_put; 1717 1718 /* Check whether to allocate the iovec area*/ 1719 err = -ENOMEM; 1720 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1721 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1722 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1723 if (!iov) 1724 goto out_put; 1725 } 1726 1727 /* This will also move the address data into kernel space */ 1728 if (MSG_CMSG_COMPAT & flags) { 1729 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1730 } else 1731 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1732 if (err < 0) 1733 goto out_freeiov; 1734 total_len = err; 1735 1736 err = -ENOBUFS; 1737 1738 if (msg_sys.msg_controllen > INT_MAX) 1739 goto out_freeiov; 1740 ctl_len = msg_sys.msg_controllen; 1741 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1742 err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl)); 1743 if (err) 1744 goto out_freeiov; 1745 ctl_buf = msg_sys.msg_control; 1746 } else if (ctl_len) { 1747 if (ctl_len > sizeof(ctl)) 1748 { 1749 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1750 if (ctl_buf == NULL) 1751 goto out_freeiov; 1752 } 1753 err = -EFAULT; 1754 /* 1755 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1756 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1757 * checking falls down on this. 1758 */ 1759 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1760 goto out_freectl; 1761 msg_sys.msg_control = ctl_buf; 1762 } 1763 msg_sys.msg_flags = flags; 1764 1765 if (sock->file->f_flags & O_NONBLOCK) 1766 msg_sys.msg_flags |= MSG_DONTWAIT; 1767 err = sock_sendmsg(sock, &msg_sys, total_len); 1768 1769 out_freectl: 1770 if (ctl_buf != ctl) 1771 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1772 out_freeiov: 1773 if (iov != iovstack) 1774 sock_kfree_s(sock->sk, iov, iov_size); 1775 out_put: 1776 sockfd_put(sock); 1777 out: 1778 return err; 1779 } 1780 1781 /* 1782 * BSD recvmsg interface 1783 */ 1784 1785 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1786 { 1787 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1788 struct socket *sock; 1789 struct iovec iovstack[UIO_FASTIOV]; 1790 struct iovec *iov=iovstack; 1791 struct msghdr msg_sys; 1792 unsigned long cmsg_ptr; 1793 int err, iov_size, total_len, len; 1794 1795 /* kernel mode address */ 1796 char addr[MAX_SOCK_ADDR]; 1797 1798 /* user mode address pointers */ 1799 struct sockaddr __user *uaddr; 1800 int __user *uaddr_len; 1801 1802 if (MSG_CMSG_COMPAT & flags) { 1803 if (get_compat_msghdr(&msg_sys, msg_compat)) 1804 return -EFAULT; 1805 } else 1806 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1807 return -EFAULT; 1808 1809 sock = sockfd_lookup(fd, &err); 1810 if (!sock) 1811 goto out; 1812 1813 err = -EMSGSIZE; 1814 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1815 goto out_put; 1816 1817 /* Check whether to allocate the iovec area*/ 1818 err = -ENOMEM; 1819 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1820 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1821 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1822 if (!iov) 1823 goto out_put; 1824 } 1825 1826 /* 1827 * Save the user-mode address (verify_iovec will change the 1828 * kernel msghdr to use the kernel address space) 1829 */ 1830 1831 uaddr = (void __user *) msg_sys.msg_name; 1832 uaddr_len = COMPAT_NAMELEN(msg); 1833 if (MSG_CMSG_COMPAT & flags) { 1834 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1835 } else 1836 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1837 if (err < 0) 1838 goto out_freeiov; 1839 total_len=err; 1840 1841 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1842 msg_sys.msg_flags = 0; 1843 if (MSG_CMSG_COMPAT & flags) 1844 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1845 1846 if (sock->file->f_flags & O_NONBLOCK) 1847 flags |= MSG_DONTWAIT; 1848 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1849 if (err < 0) 1850 goto out_freeiov; 1851 len = err; 1852 1853 if (uaddr != NULL) { 1854 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1855 if (err < 0) 1856 goto out_freeiov; 1857 } 1858 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg)); 1859 if (err) 1860 goto out_freeiov; 1861 if (MSG_CMSG_COMPAT & flags) 1862 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1863 &msg_compat->msg_controllen); 1864 else 1865 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1866 &msg->msg_controllen); 1867 if (err) 1868 goto out_freeiov; 1869 err = len; 1870 1871 out_freeiov: 1872 if (iov != iovstack) 1873 sock_kfree_s(sock->sk, iov, iov_size); 1874 out_put: 1875 sockfd_put(sock); 1876 out: 1877 return err; 1878 } 1879 1880 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1881 1882 /* Argument list sizes for sys_socketcall */ 1883 #define AL(x) ((x) * sizeof(unsigned long)) 1884 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1885 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1886 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1887 #undef AL 1888 1889 /* 1890 * System call vectors. 1891 * 1892 * Argument checking cleaned up. Saved 20% in size. 1893 * This function doesn't need to set the kernel lock because 1894 * it is set by the callees. 1895 */ 1896 1897 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1898 { 1899 unsigned long a[6]; 1900 unsigned long a0,a1; 1901 int err; 1902 1903 if(call<1||call>SYS_RECVMSG) 1904 return -EINVAL; 1905 1906 /* copy_from_user should be SMP safe. */ 1907 if (copy_from_user(a, args, nargs[call])) 1908 return -EFAULT; 1909 1910 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1911 if (err) 1912 return err; 1913 1914 a0=a[0]; 1915 a1=a[1]; 1916 1917 switch(call) 1918 { 1919 case SYS_SOCKET: 1920 err = sys_socket(a0,a1,a[2]); 1921 break; 1922 case SYS_BIND: 1923 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1924 break; 1925 case SYS_CONNECT: 1926 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1927 break; 1928 case SYS_LISTEN: 1929 err = sys_listen(a0,a1); 1930 break; 1931 case SYS_ACCEPT: 1932 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1933 break; 1934 case SYS_GETSOCKNAME: 1935 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1936 break; 1937 case SYS_GETPEERNAME: 1938 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1939 break; 1940 case SYS_SOCKETPAIR: 1941 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1942 break; 1943 case SYS_SEND: 1944 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1945 break; 1946 case SYS_SENDTO: 1947 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1948 (struct sockaddr __user *)a[4], a[5]); 1949 break; 1950 case SYS_RECV: 1951 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1952 break; 1953 case SYS_RECVFROM: 1954 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1955 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1956 break; 1957 case SYS_SHUTDOWN: 1958 err = sys_shutdown(a0,a1); 1959 break; 1960 case SYS_SETSOCKOPT: 1961 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1962 break; 1963 case SYS_GETSOCKOPT: 1964 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1965 break; 1966 case SYS_SENDMSG: 1967 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1968 break; 1969 case SYS_RECVMSG: 1970 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1971 break; 1972 default: 1973 err = -EINVAL; 1974 break; 1975 } 1976 return err; 1977 } 1978 1979 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1980 1981 /* 1982 * This function is called by a protocol handler that wants to 1983 * advertise its address family, and have it linked into the 1984 * SOCKET module. 1985 */ 1986 1987 int sock_register(struct net_proto_family *ops) 1988 { 1989 int err; 1990 1991 if (ops->family >= NPROTO) { 1992 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 1993 return -ENOBUFS; 1994 } 1995 net_family_write_lock(); 1996 err = -EEXIST; 1997 if (net_families[ops->family] == NULL) { 1998 net_families[ops->family]=ops; 1999 err = 0; 2000 } 2001 net_family_write_unlock(); 2002 printk(KERN_INFO "NET: Registered protocol family %d\n", 2003 ops->family); 2004 return err; 2005 } 2006 2007 /* 2008 * This function is called by a protocol handler that wants to 2009 * remove its address family, and have it unlinked from the 2010 * SOCKET module. 2011 */ 2012 2013 int sock_unregister(int family) 2014 { 2015 if (family < 0 || family >= NPROTO) 2016 return -1; 2017 2018 net_family_write_lock(); 2019 net_families[family]=NULL; 2020 net_family_write_unlock(); 2021 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2022 family); 2023 return 0; 2024 } 2025 2026 2027 extern void sk_init(void); 2028 2029 void __init sock_init(void) 2030 { 2031 /* 2032 * Initialize sock SLAB cache. 2033 */ 2034 2035 sk_init(); 2036 2037 #ifdef SLAB_SKB 2038 /* 2039 * Initialize skbuff SLAB cache 2040 */ 2041 skb_init(); 2042 #endif 2043 2044 /* 2045 * Initialize the protocols module. 2046 */ 2047 2048 init_inodecache(); 2049 register_filesystem(&sock_fs_type); 2050 sock_mnt = kern_mount(&sock_fs_type); 2051 /* The real protocol initialization is performed when 2052 * do_initcalls is run. 2053 */ 2054 2055 #ifdef CONFIG_NETFILTER 2056 netfilter_init(); 2057 #endif 2058 } 2059 2060 #ifdef CONFIG_PROC_FS 2061 void socket_seq_show(struct seq_file *seq) 2062 { 2063 int cpu; 2064 int counter = 0; 2065 2066 for (cpu = 0; cpu < NR_CPUS; cpu++) 2067 counter += per_cpu(sockets_in_use, cpu); 2068 2069 /* It can be negative, by the way. 8) */ 2070 if (counter < 0) 2071 counter = 0; 2072 2073 seq_printf(seq, "sockets: used %d\n", counter); 2074 } 2075 #endif /* CONFIG_PROC_FS */ 2076 2077 /* ABI emulation layers need these two */ 2078 EXPORT_SYMBOL(move_addr_to_kernel); 2079 EXPORT_SYMBOL(move_addr_to_user); 2080 EXPORT_SYMBOL(sock_create); 2081 EXPORT_SYMBOL(sock_create_kern); 2082 EXPORT_SYMBOL(sock_create_lite); 2083 EXPORT_SYMBOL(sock_map_fd); 2084 EXPORT_SYMBOL(sock_recvmsg); 2085 EXPORT_SYMBOL(sock_register); 2086 EXPORT_SYMBOL(sock_release); 2087 EXPORT_SYMBOL(sock_sendmsg); 2088 EXPORT_SYMBOL(sock_unregister); 2089 EXPORT_SYMBOL(sock_wake_async); 2090 EXPORT_SYMBOL(sockfd_lookup); 2091 EXPORT_SYMBOL(kernel_sendmsg); 2092 EXPORT_SYMBOL(kernel_recvmsg); 2093