1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 [PF_MCTP] = "PF_MCTP", 216 }; 217 218 /* 219 * The protocol list. Each protocol is registered in here. 220 */ 221 222 static DEFINE_SPINLOCK(net_family_lock); 223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 224 225 /* 226 * Support routines. 227 * Move socket addresses back and forth across the kernel/user 228 * divide and look after the messy bits. 229 */ 230 231 /** 232 * move_addr_to_kernel - copy a socket address into kernel space 233 * @uaddr: Address in user space 234 * @kaddr: Address in kernel space 235 * @ulen: Length in user space 236 * 237 * The address is copied into kernel space. If the provided address is 238 * too long an error code of -EINVAL is returned. If the copy gives 239 * invalid addresses -EFAULT is returned. On a success 0 is returned. 240 */ 241 242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 243 { 244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 245 return -EINVAL; 246 if (ulen == 0) 247 return 0; 248 if (copy_from_user(kaddr, uaddr, ulen)) 249 return -EFAULT; 250 return audit_sockaddr(ulen, kaddr); 251 } 252 253 /** 254 * move_addr_to_user - copy an address to user space 255 * @kaddr: kernel space address 256 * @klen: length of address in kernel 257 * @uaddr: user space address 258 * @ulen: pointer to user length field 259 * 260 * The value pointed to by ulen on entry is the buffer length available. 261 * This is overwritten with the buffer space used. -EINVAL is returned 262 * if an overlong buffer is specified or a negative buffer size. -EFAULT 263 * is returned if either the buffer or the length field are not 264 * accessible. 265 * After copying the data up to the limit the user specifies, the true 266 * length of the data is written over the length limit the user 267 * specified. Zero is returned for a success. 268 */ 269 270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 271 void __user *uaddr, int __user *ulen) 272 { 273 int err; 274 int len; 275 276 BUG_ON(klen > sizeof(struct sockaddr_storage)); 277 err = get_user(len, ulen); 278 if (err) 279 return err; 280 if (len > klen) 281 len = klen; 282 if (len < 0) 283 return -EINVAL; 284 if (len) { 285 if (audit_sockaddr(klen, kaddr)) 286 return -ENOMEM; 287 if (copy_to_user(uaddr, kaddr, len)) 288 return -EFAULT; 289 } 290 /* 291 * "fromlen shall refer to the value before truncation.." 292 * 1003.1g 293 */ 294 return __put_user(klen, ulen); 295 } 296 297 static struct kmem_cache *sock_inode_cachep __ro_after_init; 298 299 static struct inode *sock_alloc_inode(struct super_block *sb) 300 { 301 struct socket_alloc *ei; 302 303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 304 if (!ei) 305 return NULL; 306 init_waitqueue_head(&ei->socket.wq.wait); 307 ei->socket.wq.fasync_list = NULL; 308 ei->socket.wq.flags = 0; 309 310 ei->socket.state = SS_UNCONNECTED; 311 ei->socket.flags = 0; 312 ei->socket.ops = NULL; 313 ei->socket.sk = NULL; 314 ei->socket.file = NULL; 315 316 return &ei->vfs_inode; 317 } 318 319 static void sock_free_inode(struct inode *inode) 320 { 321 struct socket_alloc *ei; 322 323 ei = container_of(inode, struct socket_alloc, vfs_inode); 324 kmem_cache_free(sock_inode_cachep, ei); 325 } 326 327 static void init_once(void *foo) 328 { 329 struct socket_alloc *ei = (struct socket_alloc *)foo; 330 331 inode_init_once(&ei->vfs_inode); 332 } 333 334 static void init_inodecache(void) 335 { 336 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 337 sizeof(struct socket_alloc), 338 0, 339 (SLAB_HWCACHE_ALIGN | 340 SLAB_RECLAIM_ACCOUNT | 341 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 342 init_once); 343 BUG_ON(sock_inode_cachep == NULL); 344 } 345 346 static const struct super_operations sockfs_ops = { 347 .alloc_inode = sock_alloc_inode, 348 .free_inode = sock_free_inode, 349 .statfs = simple_statfs, 350 }; 351 352 /* 353 * sockfs_dname() is called from d_path(). 354 */ 355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 356 { 357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 358 d_inode(dentry)->i_ino); 359 } 360 361 static const struct dentry_operations sockfs_dentry_operations = { 362 .d_dname = sockfs_dname, 363 }; 364 365 static int sockfs_xattr_get(const struct xattr_handler *handler, 366 struct dentry *dentry, struct inode *inode, 367 const char *suffix, void *value, size_t size) 368 { 369 if (value) { 370 if (dentry->d_name.len + 1 > size) 371 return -ERANGE; 372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 373 } 374 return dentry->d_name.len + 1; 375 } 376 377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 380 381 static const struct xattr_handler sockfs_xattr_handler = { 382 .name = XATTR_NAME_SOCKPROTONAME, 383 .get = sockfs_xattr_get, 384 }; 385 386 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 387 struct user_namespace *mnt_userns, 388 struct dentry *dentry, struct inode *inode, 389 const char *suffix, const void *value, 390 size_t size, int flags) 391 { 392 /* Handled by LSM. */ 393 return -EAGAIN; 394 } 395 396 static const struct xattr_handler sockfs_security_xattr_handler = { 397 .prefix = XATTR_SECURITY_PREFIX, 398 .set = sockfs_security_xattr_set, 399 }; 400 401 static const struct xattr_handler *sockfs_xattr_handlers[] = { 402 &sockfs_xattr_handler, 403 &sockfs_security_xattr_handler, 404 NULL 405 }; 406 407 static int sockfs_init_fs_context(struct fs_context *fc) 408 { 409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 410 if (!ctx) 411 return -ENOMEM; 412 ctx->ops = &sockfs_ops; 413 ctx->dops = &sockfs_dentry_operations; 414 ctx->xattr = sockfs_xattr_handlers; 415 return 0; 416 } 417 418 static struct vfsmount *sock_mnt __read_mostly; 419 420 static struct file_system_type sock_fs_type = { 421 .name = "sockfs", 422 .init_fs_context = sockfs_init_fs_context, 423 .kill_sb = kill_anon_super, 424 }; 425 426 /* 427 * Obtains the first available file descriptor and sets it up for use. 428 * 429 * These functions create file structures and maps them to fd space 430 * of the current process. On success it returns file descriptor 431 * and file struct implicitly stored in sock->file. 432 * Note that another thread may close file descriptor before we return 433 * from this function. We use the fact that now we do not refer 434 * to socket after mapping. If one day we will need it, this 435 * function will increment ref. count on file by 1. 436 * 437 * In any case returned fd MAY BE not valid! 438 * This race condition is unavoidable 439 * with shared fd spaces, we cannot solve it inside kernel, 440 * but we take care of internal coherence yet. 441 */ 442 443 /** 444 * sock_alloc_file - Bind a &socket to a &file 445 * @sock: socket 446 * @flags: file status flags 447 * @dname: protocol name 448 * 449 * Returns the &file bound with @sock, implicitly storing it 450 * in sock->file. If dname is %NULL, sets to "". 451 * On failure the return is a ERR pointer (see linux/err.h). 452 * This function uses GFP_KERNEL internally. 453 */ 454 455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 456 { 457 struct file *file; 458 459 if (!dname) 460 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 461 462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 463 O_RDWR | (flags & O_NONBLOCK), 464 &socket_file_ops); 465 if (IS_ERR(file)) { 466 sock_release(sock); 467 return file; 468 } 469 470 sock->file = file; 471 file->private_data = sock; 472 stream_open(SOCK_INODE(sock), file); 473 return file; 474 } 475 EXPORT_SYMBOL(sock_alloc_file); 476 477 static int sock_map_fd(struct socket *sock, int flags) 478 { 479 struct file *newfile; 480 int fd = get_unused_fd_flags(flags); 481 if (unlikely(fd < 0)) { 482 sock_release(sock); 483 return fd; 484 } 485 486 newfile = sock_alloc_file(sock, flags, NULL); 487 if (!IS_ERR(newfile)) { 488 fd_install(fd, newfile); 489 return fd; 490 } 491 492 put_unused_fd(fd); 493 return PTR_ERR(newfile); 494 } 495 496 /** 497 * sock_from_file - Return the &socket bounded to @file. 498 * @file: file 499 * 500 * On failure returns %NULL. 501 */ 502 503 struct socket *sock_from_file(struct file *file) 504 { 505 if (file->f_op == &socket_file_ops) 506 return file->private_data; /* set in sock_map_fd */ 507 508 return NULL; 509 } 510 EXPORT_SYMBOL(sock_from_file); 511 512 /** 513 * sockfd_lookup - Go from a file number to its socket slot 514 * @fd: file handle 515 * @err: pointer to an error code return 516 * 517 * The file handle passed in is locked and the socket it is bound 518 * to is returned. If an error occurs the err pointer is overwritten 519 * with a negative errno code and NULL is returned. The function checks 520 * for both invalid handles and passing a handle which is not a socket. 521 * 522 * On a success the socket object pointer is returned. 523 */ 524 525 struct socket *sockfd_lookup(int fd, int *err) 526 { 527 struct file *file; 528 struct socket *sock; 529 530 file = fget(fd); 531 if (!file) { 532 *err = -EBADF; 533 return NULL; 534 } 535 536 sock = sock_from_file(file); 537 if (!sock) { 538 *err = -ENOTSOCK; 539 fput(file); 540 } 541 return sock; 542 } 543 EXPORT_SYMBOL(sockfd_lookup); 544 545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 546 { 547 struct fd f = fdget(fd); 548 struct socket *sock; 549 550 *err = -EBADF; 551 if (f.file) { 552 sock = sock_from_file(f.file); 553 if (likely(sock)) { 554 *fput_needed = f.flags & FDPUT_FPUT; 555 return sock; 556 } 557 *err = -ENOTSOCK; 558 fdput(f); 559 } 560 return NULL; 561 } 562 563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 564 size_t size) 565 { 566 ssize_t len; 567 ssize_t used = 0; 568 569 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 570 if (len < 0) 571 return len; 572 used += len; 573 if (buffer) { 574 if (size < used) 575 return -ERANGE; 576 buffer += len; 577 } 578 579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 585 buffer += len; 586 } 587 588 return used; 589 } 590 591 static int sockfs_setattr(struct user_namespace *mnt_userns, 592 struct dentry *dentry, struct iattr *iattr) 593 { 594 int err = simple_setattr(&init_user_ns, dentry, iattr); 595 596 if (!err && (iattr->ia_valid & ATTR_UID)) { 597 struct socket *sock = SOCKET_I(d_inode(dentry)); 598 599 if (sock->sk) 600 sock->sk->sk_uid = iattr->ia_uid; 601 else 602 err = -ENOENT; 603 } 604 605 return err; 606 } 607 608 static const struct inode_operations sockfs_inode_ops = { 609 .listxattr = sockfs_listxattr, 610 .setattr = sockfs_setattr, 611 }; 612 613 /** 614 * sock_alloc - allocate a socket 615 * 616 * Allocate a new inode and socket object. The two are bound together 617 * and initialised. The socket is then returned. If we are out of inodes 618 * NULL is returned. This functions uses GFP_KERNEL internally. 619 */ 620 621 struct socket *sock_alloc(void) 622 { 623 struct inode *inode; 624 struct socket *sock; 625 626 inode = new_inode_pseudo(sock_mnt->mnt_sb); 627 if (!inode) 628 return NULL; 629 630 sock = SOCKET_I(inode); 631 632 inode->i_ino = get_next_ino(); 633 inode->i_mode = S_IFSOCK | S_IRWXUGO; 634 inode->i_uid = current_fsuid(); 635 inode->i_gid = current_fsgid(); 636 inode->i_op = &sockfs_inode_ops; 637 638 return sock; 639 } 640 EXPORT_SYMBOL(sock_alloc); 641 642 static void __sock_release(struct socket *sock, struct inode *inode) 643 { 644 if (sock->ops) { 645 struct module *owner = sock->ops->owner; 646 647 if (inode) 648 inode_lock(inode); 649 sock->ops->release(sock); 650 sock->sk = NULL; 651 if (inode) 652 inode_unlock(inode); 653 sock->ops = NULL; 654 module_put(owner); 655 } 656 657 if (sock->wq.fasync_list) 658 pr_err("%s: fasync list not empty!\n", __func__); 659 660 if (!sock->file) { 661 iput(SOCK_INODE(sock)); 662 return; 663 } 664 sock->file = NULL; 665 } 666 667 /** 668 * sock_release - close a socket 669 * @sock: socket to close 670 * 671 * The socket is released from the protocol stack if it has a release 672 * callback, and the inode is then released if the socket is bound to 673 * an inode not a file. 674 */ 675 void sock_release(struct socket *sock) 676 { 677 __sock_release(sock, NULL); 678 } 679 EXPORT_SYMBOL(sock_release); 680 681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 682 { 683 u8 flags = *tx_flags; 684 685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 686 flags |= SKBTX_HW_TSTAMP; 687 688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 689 flags |= SKBTX_SW_TSTAMP; 690 691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 692 flags |= SKBTX_SCHED_TSTAMP; 693 694 *tx_flags = flags; 695 } 696 EXPORT_SYMBOL(__sock_tx_timestamp); 697 698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 699 size_t)); 700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 701 size_t)); 702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 703 { 704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 705 inet_sendmsg, sock, msg, 706 msg_data_left(msg)); 707 BUG_ON(ret == -EIOCBQUEUED); 708 return ret; 709 } 710 711 /** 712 * sock_sendmsg - send a message through @sock 713 * @sock: socket 714 * @msg: message to send 715 * 716 * Sends @msg through @sock, passing through LSM. 717 * Returns the number of bytes sent, or an error code. 718 */ 719 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 720 { 721 int err = security_socket_sendmsg(sock, msg, 722 msg_data_left(msg)); 723 724 return err ?: sock_sendmsg_nosec(sock, msg); 725 } 726 EXPORT_SYMBOL(sock_sendmsg); 727 728 /** 729 * kernel_sendmsg - send a message through @sock (kernel-space) 730 * @sock: socket 731 * @msg: message header 732 * @vec: kernel vec 733 * @num: vec array length 734 * @size: total message data size 735 * 736 * Builds the message data with @vec and sends it through @sock. 737 * Returns the number of bytes sent, or an error code. 738 */ 739 740 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 741 struct kvec *vec, size_t num, size_t size) 742 { 743 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 744 return sock_sendmsg(sock, msg); 745 } 746 EXPORT_SYMBOL(kernel_sendmsg); 747 748 /** 749 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 750 * @sk: sock 751 * @msg: message header 752 * @vec: output s/g array 753 * @num: output s/g array length 754 * @size: total message data size 755 * 756 * Builds the message data with @vec and sends it through @sock. 757 * Returns the number of bytes sent, or an error code. 758 * Caller must hold @sk. 759 */ 760 761 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 762 struct kvec *vec, size_t num, size_t size) 763 { 764 struct socket *sock = sk->sk_socket; 765 766 if (!sock->ops->sendmsg_locked) 767 return sock_no_sendmsg_locked(sk, msg, size); 768 769 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 770 771 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 772 } 773 EXPORT_SYMBOL(kernel_sendmsg_locked); 774 775 static bool skb_is_err_queue(const struct sk_buff *skb) 776 { 777 /* pkt_type of skbs enqueued on the error queue are set to 778 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 779 * in recvmsg, since skbs received on a local socket will never 780 * have a pkt_type of PACKET_OUTGOING. 781 */ 782 return skb->pkt_type == PACKET_OUTGOING; 783 } 784 785 /* On transmit, software and hardware timestamps are returned independently. 786 * As the two skb clones share the hardware timestamp, which may be updated 787 * before the software timestamp is received, a hardware TX timestamp may be 788 * returned only if there is no software TX timestamp. Ignore false software 789 * timestamps, which may be made in the __sock_recv_timestamp() call when the 790 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 791 * hardware timestamp. 792 */ 793 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 794 { 795 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 796 } 797 798 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 799 { 800 struct scm_ts_pktinfo ts_pktinfo; 801 struct net_device *orig_dev; 802 803 if (!skb_mac_header_was_set(skb)) 804 return; 805 806 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 807 808 rcu_read_lock(); 809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 810 if (orig_dev) 811 ts_pktinfo.if_index = orig_dev->ifindex; 812 rcu_read_unlock(); 813 814 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 815 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 816 sizeof(ts_pktinfo), &ts_pktinfo); 817 } 818 819 /* 820 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 821 */ 822 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 823 struct sk_buff *skb) 824 { 825 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 826 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 827 struct scm_timestamping_internal tss; 828 829 int empty = 1, false_tstamp = 0; 830 struct skb_shared_hwtstamps *shhwtstamps = 831 skb_hwtstamps(skb); 832 833 /* Race occurred between timestamp enabling and packet 834 receiving. Fill in the current time for now. */ 835 if (need_software_tstamp && skb->tstamp == 0) { 836 __net_timestamp(skb); 837 false_tstamp = 1; 838 } 839 840 if (need_software_tstamp) { 841 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 842 if (new_tstamp) { 843 struct __kernel_sock_timeval tv; 844 845 skb_get_new_timestamp(skb, &tv); 846 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 847 sizeof(tv), &tv); 848 } else { 849 struct __kernel_old_timeval tv; 850 851 skb_get_timestamp(skb, &tv); 852 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 853 sizeof(tv), &tv); 854 } 855 } else { 856 if (new_tstamp) { 857 struct __kernel_timespec ts; 858 859 skb_get_new_timestampns(skb, &ts); 860 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 861 sizeof(ts), &ts); 862 } else { 863 struct __kernel_old_timespec ts; 864 865 skb_get_timestampns(skb, &ts); 866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 867 sizeof(ts), &ts); 868 } 869 } 870 } 871 872 memset(&tss, 0, sizeof(tss)); 873 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 874 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 875 empty = 0; 876 if (shhwtstamps && 877 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 878 !skb_is_swtx_tstamp(skb, false_tstamp)) { 879 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 880 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 881 882 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 883 tss.ts + 2)) { 884 empty = 0; 885 886 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 887 !skb_is_err_queue(skb)) 888 put_ts_pktinfo(msg, skb); 889 } 890 } 891 if (!empty) { 892 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 893 put_cmsg_scm_timestamping64(msg, &tss); 894 else 895 put_cmsg_scm_timestamping(msg, &tss); 896 897 if (skb_is_err_queue(skb) && skb->len && 898 SKB_EXT_ERR(skb)->opt_stats) 899 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 900 skb->len, skb->data); 901 } 902 } 903 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 904 905 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 906 struct sk_buff *skb) 907 { 908 int ack; 909 910 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 911 return; 912 if (!skb->wifi_acked_valid) 913 return; 914 915 ack = skb->wifi_acked; 916 917 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 918 } 919 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 920 921 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 922 struct sk_buff *skb) 923 { 924 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 925 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 926 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 927 } 928 929 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 930 struct sk_buff *skb) 931 { 932 sock_recv_timestamp(msg, sk, skb); 933 sock_recv_drops(msg, sk, skb); 934 } 935 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 936 937 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 938 size_t, int)); 939 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 940 size_t, int)); 941 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 942 int flags) 943 { 944 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 945 inet_recvmsg, sock, msg, msg_data_left(msg), 946 flags); 947 } 948 949 /** 950 * sock_recvmsg - receive a message from @sock 951 * @sock: socket 952 * @msg: message to receive 953 * @flags: message flags 954 * 955 * Receives @msg from @sock, passing through LSM. Returns the total number 956 * of bytes received, or an error. 957 */ 958 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 959 { 960 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 961 962 return err ?: sock_recvmsg_nosec(sock, msg, flags); 963 } 964 EXPORT_SYMBOL(sock_recvmsg); 965 966 /** 967 * kernel_recvmsg - Receive a message from a socket (kernel space) 968 * @sock: The socket to receive the message from 969 * @msg: Received message 970 * @vec: Input s/g array for message data 971 * @num: Size of input s/g array 972 * @size: Number of bytes to read 973 * @flags: Message flags (MSG_DONTWAIT, etc...) 974 * 975 * On return the msg structure contains the scatter/gather array passed in the 976 * vec argument. The array is modified so that it consists of the unfilled 977 * portion of the original array. 978 * 979 * The returned value is the total number of bytes received, or an error. 980 */ 981 982 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 983 struct kvec *vec, size_t num, size_t size, int flags) 984 { 985 msg->msg_control_is_user = false; 986 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 987 return sock_recvmsg(sock, msg, flags); 988 } 989 EXPORT_SYMBOL(kernel_recvmsg); 990 991 static ssize_t sock_sendpage(struct file *file, struct page *page, 992 int offset, size_t size, loff_t *ppos, int more) 993 { 994 struct socket *sock; 995 int flags; 996 997 sock = file->private_data; 998 999 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1000 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1001 flags |= more; 1002 1003 return kernel_sendpage(sock, page, offset, size, flags); 1004 } 1005 1006 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1007 struct pipe_inode_info *pipe, size_t len, 1008 unsigned int flags) 1009 { 1010 struct socket *sock = file->private_data; 1011 1012 if (unlikely(!sock->ops->splice_read)) 1013 return generic_file_splice_read(file, ppos, pipe, len, flags); 1014 1015 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1016 } 1017 1018 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1019 { 1020 struct file *file = iocb->ki_filp; 1021 struct socket *sock = file->private_data; 1022 struct msghdr msg = {.msg_iter = *to, 1023 .msg_iocb = iocb}; 1024 ssize_t res; 1025 1026 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1027 msg.msg_flags = MSG_DONTWAIT; 1028 1029 if (iocb->ki_pos != 0) 1030 return -ESPIPE; 1031 1032 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1033 return 0; 1034 1035 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1036 *to = msg.msg_iter; 1037 return res; 1038 } 1039 1040 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1041 { 1042 struct file *file = iocb->ki_filp; 1043 struct socket *sock = file->private_data; 1044 struct msghdr msg = {.msg_iter = *from, 1045 .msg_iocb = iocb}; 1046 ssize_t res; 1047 1048 if (iocb->ki_pos != 0) 1049 return -ESPIPE; 1050 1051 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1052 msg.msg_flags = MSG_DONTWAIT; 1053 1054 if (sock->type == SOCK_SEQPACKET) 1055 msg.msg_flags |= MSG_EOR; 1056 1057 res = sock_sendmsg(sock, &msg); 1058 *from = msg.msg_iter; 1059 return res; 1060 } 1061 1062 /* 1063 * Atomic setting of ioctl hooks to avoid race 1064 * with module unload. 1065 */ 1066 1067 static DEFINE_MUTEX(br_ioctl_mutex); 1068 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1069 unsigned int cmd, struct ifreq *ifr, 1070 void __user *uarg); 1071 1072 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1073 unsigned int cmd, struct ifreq *ifr, 1074 void __user *uarg)) 1075 { 1076 mutex_lock(&br_ioctl_mutex); 1077 br_ioctl_hook = hook; 1078 mutex_unlock(&br_ioctl_mutex); 1079 } 1080 EXPORT_SYMBOL(brioctl_set); 1081 1082 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1083 struct ifreq *ifr, void __user *uarg) 1084 { 1085 int err = -ENOPKG; 1086 1087 if (!br_ioctl_hook) 1088 request_module("bridge"); 1089 1090 mutex_lock(&br_ioctl_mutex); 1091 if (br_ioctl_hook) 1092 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1093 mutex_unlock(&br_ioctl_mutex); 1094 1095 return err; 1096 } 1097 1098 static DEFINE_MUTEX(vlan_ioctl_mutex); 1099 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1100 1101 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1102 { 1103 mutex_lock(&vlan_ioctl_mutex); 1104 vlan_ioctl_hook = hook; 1105 mutex_unlock(&vlan_ioctl_mutex); 1106 } 1107 EXPORT_SYMBOL(vlan_ioctl_set); 1108 1109 static long sock_do_ioctl(struct net *net, struct socket *sock, 1110 unsigned int cmd, unsigned long arg) 1111 { 1112 struct ifreq ifr; 1113 bool need_copyout; 1114 int err; 1115 void __user *argp = (void __user *)arg; 1116 void __user *data; 1117 1118 err = sock->ops->ioctl(sock, cmd, arg); 1119 1120 /* 1121 * If this ioctl is unknown try to hand it down 1122 * to the NIC driver. 1123 */ 1124 if (err != -ENOIOCTLCMD) 1125 return err; 1126 1127 if (get_user_ifreq(&ifr, &data, argp)) 1128 return -EFAULT; 1129 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1130 if (!err && need_copyout) 1131 if (put_user_ifreq(&ifr, argp)) 1132 return -EFAULT; 1133 1134 return err; 1135 } 1136 1137 /* 1138 * With an ioctl, arg may well be a user mode pointer, but we don't know 1139 * what to do with it - that's up to the protocol still. 1140 */ 1141 1142 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1143 { 1144 struct socket *sock; 1145 struct sock *sk; 1146 void __user *argp = (void __user *)arg; 1147 int pid, err; 1148 struct net *net; 1149 1150 sock = file->private_data; 1151 sk = sock->sk; 1152 net = sock_net(sk); 1153 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1154 struct ifreq ifr; 1155 void __user *data; 1156 bool need_copyout; 1157 if (get_user_ifreq(&ifr, &data, argp)) 1158 return -EFAULT; 1159 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1160 if (!err && need_copyout) 1161 if (put_user_ifreq(&ifr, argp)) 1162 return -EFAULT; 1163 } else 1164 #ifdef CONFIG_WEXT_CORE 1165 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1166 err = wext_handle_ioctl(net, cmd, argp); 1167 } else 1168 #endif 1169 switch (cmd) { 1170 case FIOSETOWN: 1171 case SIOCSPGRP: 1172 err = -EFAULT; 1173 if (get_user(pid, (int __user *)argp)) 1174 break; 1175 err = f_setown(sock->file, pid, 1); 1176 break; 1177 case FIOGETOWN: 1178 case SIOCGPGRP: 1179 err = put_user(f_getown(sock->file), 1180 (int __user *)argp); 1181 break; 1182 case SIOCGIFBR: 1183 case SIOCSIFBR: 1184 case SIOCBRADDBR: 1185 case SIOCBRDELBR: 1186 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1187 break; 1188 case SIOCGIFVLAN: 1189 case SIOCSIFVLAN: 1190 err = -ENOPKG; 1191 if (!vlan_ioctl_hook) 1192 request_module("8021q"); 1193 1194 mutex_lock(&vlan_ioctl_mutex); 1195 if (vlan_ioctl_hook) 1196 err = vlan_ioctl_hook(net, argp); 1197 mutex_unlock(&vlan_ioctl_mutex); 1198 break; 1199 case SIOCGSKNS: 1200 err = -EPERM; 1201 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1202 break; 1203 1204 err = open_related_ns(&net->ns, get_net_ns); 1205 break; 1206 case SIOCGSTAMP_OLD: 1207 case SIOCGSTAMPNS_OLD: 1208 if (!sock->ops->gettstamp) { 1209 err = -ENOIOCTLCMD; 1210 break; 1211 } 1212 err = sock->ops->gettstamp(sock, argp, 1213 cmd == SIOCGSTAMP_OLD, 1214 !IS_ENABLED(CONFIG_64BIT)); 1215 break; 1216 case SIOCGSTAMP_NEW: 1217 case SIOCGSTAMPNS_NEW: 1218 if (!sock->ops->gettstamp) { 1219 err = -ENOIOCTLCMD; 1220 break; 1221 } 1222 err = sock->ops->gettstamp(sock, argp, 1223 cmd == SIOCGSTAMP_NEW, 1224 false); 1225 break; 1226 1227 case SIOCGIFCONF: 1228 err = dev_ifconf(net, argp); 1229 break; 1230 1231 default: 1232 err = sock_do_ioctl(net, sock, cmd, arg); 1233 break; 1234 } 1235 return err; 1236 } 1237 1238 /** 1239 * sock_create_lite - creates a socket 1240 * @family: protocol family (AF_INET, ...) 1241 * @type: communication type (SOCK_STREAM, ...) 1242 * @protocol: protocol (0, ...) 1243 * @res: new socket 1244 * 1245 * Creates a new socket and assigns it to @res, passing through LSM. 1246 * The new socket initialization is not complete, see kernel_accept(). 1247 * Returns 0 or an error. On failure @res is set to %NULL. 1248 * This function internally uses GFP_KERNEL. 1249 */ 1250 1251 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1252 { 1253 int err; 1254 struct socket *sock = NULL; 1255 1256 err = security_socket_create(family, type, protocol, 1); 1257 if (err) 1258 goto out; 1259 1260 sock = sock_alloc(); 1261 if (!sock) { 1262 err = -ENOMEM; 1263 goto out; 1264 } 1265 1266 sock->type = type; 1267 err = security_socket_post_create(sock, family, type, protocol, 1); 1268 if (err) 1269 goto out_release; 1270 1271 out: 1272 *res = sock; 1273 return err; 1274 out_release: 1275 sock_release(sock); 1276 sock = NULL; 1277 goto out; 1278 } 1279 EXPORT_SYMBOL(sock_create_lite); 1280 1281 /* No kernel lock held - perfect */ 1282 static __poll_t sock_poll(struct file *file, poll_table *wait) 1283 { 1284 struct socket *sock = file->private_data; 1285 __poll_t events = poll_requested_events(wait), flag = 0; 1286 1287 if (!sock->ops->poll) 1288 return 0; 1289 1290 if (sk_can_busy_loop(sock->sk)) { 1291 /* poll once if requested by the syscall */ 1292 if (events & POLL_BUSY_LOOP) 1293 sk_busy_loop(sock->sk, 1); 1294 1295 /* if this socket can poll_ll, tell the system call */ 1296 flag = POLL_BUSY_LOOP; 1297 } 1298 1299 return sock->ops->poll(file, sock, wait) | flag; 1300 } 1301 1302 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1303 { 1304 struct socket *sock = file->private_data; 1305 1306 return sock->ops->mmap(file, sock, vma); 1307 } 1308 1309 static int sock_close(struct inode *inode, struct file *filp) 1310 { 1311 __sock_release(SOCKET_I(inode), inode); 1312 return 0; 1313 } 1314 1315 /* 1316 * Update the socket async list 1317 * 1318 * Fasync_list locking strategy. 1319 * 1320 * 1. fasync_list is modified only under process context socket lock 1321 * i.e. under semaphore. 1322 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1323 * or under socket lock 1324 */ 1325 1326 static int sock_fasync(int fd, struct file *filp, int on) 1327 { 1328 struct socket *sock = filp->private_data; 1329 struct sock *sk = sock->sk; 1330 struct socket_wq *wq = &sock->wq; 1331 1332 if (sk == NULL) 1333 return -EINVAL; 1334 1335 lock_sock(sk); 1336 fasync_helper(fd, filp, on, &wq->fasync_list); 1337 1338 if (!wq->fasync_list) 1339 sock_reset_flag(sk, SOCK_FASYNC); 1340 else 1341 sock_set_flag(sk, SOCK_FASYNC); 1342 1343 release_sock(sk); 1344 return 0; 1345 } 1346 1347 /* This function may be called only under rcu_lock */ 1348 1349 int sock_wake_async(struct socket_wq *wq, int how, int band) 1350 { 1351 if (!wq || !wq->fasync_list) 1352 return -1; 1353 1354 switch (how) { 1355 case SOCK_WAKE_WAITD: 1356 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1357 break; 1358 goto call_kill; 1359 case SOCK_WAKE_SPACE: 1360 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1361 break; 1362 fallthrough; 1363 case SOCK_WAKE_IO: 1364 call_kill: 1365 kill_fasync(&wq->fasync_list, SIGIO, band); 1366 break; 1367 case SOCK_WAKE_URG: 1368 kill_fasync(&wq->fasync_list, SIGURG, band); 1369 } 1370 1371 return 0; 1372 } 1373 EXPORT_SYMBOL(sock_wake_async); 1374 1375 /** 1376 * __sock_create - creates a socket 1377 * @net: net namespace 1378 * @family: protocol family (AF_INET, ...) 1379 * @type: communication type (SOCK_STREAM, ...) 1380 * @protocol: protocol (0, ...) 1381 * @res: new socket 1382 * @kern: boolean for kernel space sockets 1383 * 1384 * Creates a new socket and assigns it to @res, passing through LSM. 1385 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1386 * be set to true if the socket resides in kernel space. 1387 * This function internally uses GFP_KERNEL. 1388 */ 1389 1390 int __sock_create(struct net *net, int family, int type, int protocol, 1391 struct socket **res, int kern) 1392 { 1393 int err; 1394 struct socket *sock; 1395 const struct net_proto_family *pf; 1396 1397 /* 1398 * Check protocol is in range 1399 */ 1400 if (family < 0 || family >= NPROTO) 1401 return -EAFNOSUPPORT; 1402 if (type < 0 || type >= SOCK_MAX) 1403 return -EINVAL; 1404 1405 /* Compatibility. 1406 1407 This uglymoron is moved from INET layer to here to avoid 1408 deadlock in module load. 1409 */ 1410 if (family == PF_INET && type == SOCK_PACKET) { 1411 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1412 current->comm); 1413 family = PF_PACKET; 1414 } 1415 1416 err = security_socket_create(family, type, protocol, kern); 1417 if (err) 1418 return err; 1419 1420 /* 1421 * Allocate the socket and allow the family to set things up. if 1422 * the protocol is 0, the family is instructed to select an appropriate 1423 * default. 1424 */ 1425 sock = sock_alloc(); 1426 if (!sock) { 1427 net_warn_ratelimited("socket: no more sockets\n"); 1428 return -ENFILE; /* Not exactly a match, but its the 1429 closest posix thing */ 1430 } 1431 1432 sock->type = type; 1433 1434 #ifdef CONFIG_MODULES 1435 /* Attempt to load a protocol module if the find failed. 1436 * 1437 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1438 * requested real, full-featured networking support upon configuration. 1439 * Otherwise module support will break! 1440 */ 1441 if (rcu_access_pointer(net_families[family]) == NULL) 1442 request_module("net-pf-%d", family); 1443 #endif 1444 1445 rcu_read_lock(); 1446 pf = rcu_dereference(net_families[family]); 1447 err = -EAFNOSUPPORT; 1448 if (!pf) 1449 goto out_release; 1450 1451 /* 1452 * We will call the ->create function, that possibly is in a loadable 1453 * module, so we have to bump that loadable module refcnt first. 1454 */ 1455 if (!try_module_get(pf->owner)) 1456 goto out_release; 1457 1458 /* Now protected by module ref count */ 1459 rcu_read_unlock(); 1460 1461 err = pf->create(net, sock, protocol, kern); 1462 if (err < 0) 1463 goto out_module_put; 1464 1465 /* 1466 * Now to bump the refcnt of the [loadable] module that owns this 1467 * socket at sock_release time we decrement its refcnt. 1468 */ 1469 if (!try_module_get(sock->ops->owner)) 1470 goto out_module_busy; 1471 1472 /* 1473 * Now that we're done with the ->create function, the [loadable] 1474 * module can have its refcnt decremented 1475 */ 1476 module_put(pf->owner); 1477 err = security_socket_post_create(sock, family, type, protocol, kern); 1478 if (err) 1479 goto out_sock_release; 1480 *res = sock; 1481 1482 return 0; 1483 1484 out_module_busy: 1485 err = -EAFNOSUPPORT; 1486 out_module_put: 1487 sock->ops = NULL; 1488 module_put(pf->owner); 1489 out_sock_release: 1490 sock_release(sock); 1491 return err; 1492 1493 out_release: 1494 rcu_read_unlock(); 1495 goto out_sock_release; 1496 } 1497 EXPORT_SYMBOL(__sock_create); 1498 1499 /** 1500 * sock_create - creates a socket 1501 * @family: protocol family (AF_INET, ...) 1502 * @type: communication type (SOCK_STREAM, ...) 1503 * @protocol: protocol (0, ...) 1504 * @res: new socket 1505 * 1506 * A wrapper around __sock_create(). 1507 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1508 */ 1509 1510 int sock_create(int family, int type, int protocol, struct socket **res) 1511 { 1512 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1513 } 1514 EXPORT_SYMBOL(sock_create); 1515 1516 /** 1517 * sock_create_kern - creates a socket (kernel space) 1518 * @net: net namespace 1519 * @family: protocol family (AF_INET, ...) 1520 * @type: communication type (SOCK_STREAM, ...) 1521 * @protocol: protocol (0, ...) 1522 * @res: new socket 1523 * 1524 * A wrapper around __sock_create(). 1525 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1526 */ 1527 1528 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1529 { 1530 return __sock_create(net, family, type, protocol, res, 1); 1531 } 1532 EXPORT_SYMBOL(sock_create_kern); 1533 1534 int __sys_socket(int family, int type, int protocol) 1535 { 1536 int retval; 1537 struct socket *sock; 1538 int flags; 1539 1540 /* Check the SOCK_* constants for consistency. */ 1541 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1542 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1543 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1544 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1545 1546 flags = type & ~SOCK_TYPE_MASK; 1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1548 return -EINVAL; 1549 type &= SOCK_TYPE_MASK; 1550 1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1553 1554 retval = sock_create(family, type, protocol, &sock); 1555 if (retval < 0) 1556 return retval; 1557 1558 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1559 } 1560 1561 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1562 { 1563 return __sys_socket(family, type, protocol); 1564 } 1565 1566 /* 1567 * Create a pair of connected sockets. 1568 */ 1569 1570 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1571 { 1572 struct socket *sock1, *sock2; 1573 int fd1, fd2, err; 1574 struct file *newfile1, *newfile2; 1575 int flags; 1576 1577 flags = type & ~SOCK_TYPE_MASK; 1578 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1579 return -EINVAL; 1580 type &= SOCK_TYPE_MASK; 1581 1582 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1583 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1584 1585 /* 1586 * reserve descriptors and make sure we won't fail 1587 * to return them to userland. 1588 */ 1589 fd1 = get_unused_fd_flags(flags); 1590 if (unlikely(fd1 < 0)) 1591 return fd1; 1592 1593 fd2 = get_unused_fd_flags(flags); 1594 if (unlikely(fd2 < 0)) { 1595 put_unused_fd(fd1); 1596 return fd2; 1597 } 1598 1599 err = put_user(fd1, &usockvec[0]); 1600 if (err) 1601 goto out; 1602 1603 err = put_user(fd2, &usockvec[1]); 1604 if (err) 1605 goto out; 1606 1607 /* 1608 * Obtain the first socket and check if the underlying protocol 1609 * supports the socketpair call. 1610 */ 1611 1612 err = sock_create(family, type, protocol, &sock1); 1613 if (unlikely(err < 0)) 1614 goto out; 1615 1616 err = sock_create(family, type, protocol, &sock2); 1617 if (unlikely(err < 0)) { 1618 sock_release(sock1); 1619 goto out; 1620 } 1621 1622 err = security_socket_socketpair(sock1, sock2); 1623 if (unlikely(err)) { 1624 sock_release(sock2); 1625 sock_release(sock1); 1626 goto out; 1627 } 1628 1629 err = sock1->ops->socketpair(sock1, sock2); 1630 if (unlikely(err < 0)) { 1631 sock_release(sock2); 1632 sock_release(sock1); 1633 goto out; 1634 } 1635 1636 newfile1 = sock_alloc_file(sock1, flags, NULL); 1637 if (IS_ERR(newfile1)) { 1638 err = PTR_ERR(newfile1); 1639 sock_release(sock2); 1640 goto out; 1641 } 1642 1643 newfile2 = sock_alloc_file(sock2, flags, NULL); 1644 if (IS_ERR(newfile2)) { 1645 err = PTR_ERR(newfile2); 1646 fput(newfile1); 1647 goto out; 1648 } 1649 1650 audit_fd_pair(fd1, fd2); 1651 1652 fd_install(fd1, newfile1); 1653 fd_install(fd2, newfile2); 1654 return 0; 1655 1656 out: 1657 put_unused_fd(fd2); 1658 put_unused_fd(fd1); 1659 return err; 1660 } 1661 1662 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1663 int __user *, usockvec) 1664 { 1665 return __sys_socketpair(family, type, protocol, usockvec); 1666 } 1667 1668 /* 1669 * Bind a name to a socket. Nothing much to do here since it's 1670 * the protocol's responsibility to handle the local address. 1671 * 1672 * We move the socket address to kernel space before we call 1673 * the protocol layer (having also checked the address is ok). 1674 */ 1675 1676 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1677 { 1678 struct socket *sock; 1679 struct sockaddr_storage address; 1680 int err, fput_needed; 1681 1682 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1683 if (sock) { 1684 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1685 if (!err) { 1686 err = security_socket_bind(sock, 1687 (struct sockaddr *)&address, 1688 addrlen); 1689 if (!err) 1690 err = sock->ops->bind(sock, 1691 (struct sockaddr *) 1692 &address, addrlen); 1693 } 1694 fput_light(sock->file, fput_needed); 1695 } 1696 return err; 1697 } 1698 1699 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1700 { 1701 return __sys_bind(fd, umyaddr, addrlen); 1702 } 1703 1704 /* 1705 * Perform a listen. Basically, we allow the protocol to do anything 1706 * necessary for a listen, and if that works, we mark the socket as 1707 * ready for listening. 1708 */ 1709 1710 int __sys_listen(int fd, int backlog) 1711 { 1712 struct socket *sock; 1713 int err, fput_needed; 1714 int somaxconn; 1715 1716 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1717 if (sock) { 1718 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1719 if ((unsigned int)backlog > somaxconn) 1720 backlog = somaxconn; 1721 1722 err = security_socket_listen(sock, backlog); 1723 if (!err) 1724 err = sock->ops->listen(sock, backlog); 1725 1726 fput_light(sock->file, fput_needed); 1727 } 1728 return err; 1729 } 1730 1731 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1732 { 1733 return __sys_listen(fd, backlog); 1734 } 1735 1736 int __sys_accept4_file(struct file *file, unsigned file_flags, 1737 struct sockaddr __user *upeer_sockaddr, 1738 int __user *upeer_addrlen, int flags, 1739 unsigned long nofile) 1740 { 1741 struct socket *sock, *newsock; 1742 struct file *newfile; 1743 int err, len, newfd; 1744 struct sockaddr_storage address; 1745 1746 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1747 return -EINVAL; 1748 1749 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1750 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1751 1752 sock = sock_from_file(file); 1753 if (!sock) { 1754 err = -ENOTSOCK; 1755 goto out; 1756 } 1757 1758 err = -ENFILE; 1759 newsock = sock_alloc(); 1760 if (!newsock) 1761 goto out; 1762 1763 newsock->type = sock->type; 1764 newsock->ops = sock->ops; 1765 1766 /* 1767 * We don't need try_module_get here, as the listening socket (sock) 1768 * has the protocol module (sock->ops->owner) held. 1769 */ 1770 __module_get(newsock->ops->owner); 1771 1772 newfd = __get_unused_fd_flags(flags, nofile); 1773 if (unlikely(newfd < 0)) { 1774 err = newfd; 1775 sock_release(newsock); 1776 goto out; 1777 } 1778 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1779 if (IS_ERR(newfile)) { 1780 err = PTR_ERR(newfile); 1781 put_unused_fd(newfd); 1782 goto out; 1783 } 1784 1785 err = security_socket_accept(sock, newsock); 1786 if (err) 1787 goto out_fd; 1788 1789 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1790 false); 1791 if (err < 0) 1792 goto out_fd; 1793 1794 if (upeer_sockaddr) { 1795 len = newsock->ops->getname(newsock, 1796 (struct sockaddr *)&address, 2); 1797 if (len < 0) { 1798 err = -ECONNABORTED; 1799 goto out_fd; 1800 } 1801 err = move_addr_to_user(&address, 1802 len, upeer_sockaddr, upeer_addrlen); 1803 if (err < 0) 1804 goto out_fd; 1805 } 1806 1807 /* File flags are not inherited via accept() unlike another OSes. */ 1808 1809 fd_install(newfd, newfile); 1810 err = newfd; 1811 out: 1812 return err; 1813 out_fd: 1814 fput(newfile); 1815 put_unused_fd(newfd); 1816 goto out; 1817 1818 } 1819 1820 /* 1821 * For accept, we attempt to create a new socket, set up the link 1822 * with the client, wake up the client, then return the new 1823 * connected fd. We collect the address of the connector in kernel 1824 * space and move it to user at the very end. This is unclean because 1825 * we open the socket then return an error. 1826 * 1827 * 1003.1g adds the ability to recvmsg() to query connection pending 1828 * status to recvmsg. We need to add that support in a way thats 1829 * clean when we restructure accept also. 1830 */ 1831 1832 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1833 int __user *upeer_addrlen, int flags) 1834 { 1835 int ret = -EBADF; 1836 struct fd f; 1837 1838 f = fdget(fd); 1839 if (f.file) { 1840 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1841 upeer_addrlen, flags, 1842 rlimit(RLIMIT_NOFILE)); 1843 fdput(f); 1844 } 1845 1846 return ret; 1847 } 1848 1849 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1850 int __user *, upeer_addrlen, int, flags) 1851 { 1852 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1853 } 1854 1855 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1856 int __user *, upeer_addrlen) 1857 { 1858 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1859 } 1860 1861 /* 1862 * Attempt to connect to a socket with the server address. The address 1863 * is in user space so we verify it is OK and move it to kernel space. 1864 * 1865 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1866 * break bindings 1867 * 1868 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1869 * other SEQPACKET protocols that take time to connect() as it doesn't 1870 * include the -EINPROGRESS status for such sockets. 1871 */ 1872 1873 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1874 int addrlen, int file_flags) 1875 { 1876 struct socket *sock; 1877 int err; 1878 1879 sock = sock_from_file(file); 1880 if (!sock) { 1881 err = -ENOTSOCK; 1882 goto out; 1883 } 1884 1885 err = 1886 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1887 if (err) 1888 goto out; 1889 1890 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1891 sock->file->f_flags | file_flags); 1892 out: 1893 return err; 1894 } 1895 1896 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1897 { 1898 int ret = -EBADF; 1899 struct fd f; 1900 1901 f = fdget(fd); 1902 if (f.file) { 1903 struct sockaddr_storage address; 1904 1905 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1906 if (!ret) 1907 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1908 fdput(f); 1909 } 1910 1911 return ret; 1912 } 1913 1914 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1915 int, addrlen) 1916 { 1917 return __sys_connect(fd, uservaddr, addrlen); 1918 } 1919 1920 /* 1921 * Get the local address ('name') of a socket object. Move the obtained 1922 * name to user space. 1923 */ 1924 1925 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1926 int __user *usockaddr_len) 1927 { 1928 struct socket *sock; 1929 struct sockaddr_storage address; 1930 int err, fput_needed; 1931 1932 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1933 if (!sock) 1934 goto out; 1935 1936 err = security_socket_getsockname(sock); 1937 if (err) 1938 goto out_put; 1939 1940 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1941 if (err < 0) 1942 goto out_put; 1943 /* "err" is actually length in this case */ 1944 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1945 1946 out_put: 1947 fput_light(sock->file, fput_needed); 1948 out: 1949 return err; 1950 } 1951 1952 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1953 int __user *, usockaddr_len) 1954 { 1955 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1956 } 1957 1958 /* 1959 * Get the remote address ('name') of a socket object. Move the obtained 1960 * name to user space. 1961 */ 1962 1963 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1964 int __user *usockaddr_len) 1965 { 1966 struct socket *sock; 1967 struct sockaddr_storage address; 1968 int err, fput_needed; 1969 1970 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1971 if (sock != NULL) { 1972 err = security_socket_getpeername(sock); 1973 if (err) { 1974 fput_light(sock->file, fput_needed); 1975 return err; 1976 } 1977 1978 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1979 if (err >= 0) 1980 /* "err" is actually length in this case */ 1981 err = move_addr_to_user(&address, err, usockaddr, 1982 usockaddr_len); 1983 fput_light(sock->file, fput_needed); 1984 } 1985 return err; 1986 } 1987 1988 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1989 int __user *, usockaddr_len) 1990 { 1991 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1992 } 1993 1994 /* 1995 * Send a datagram to a given address. We move the address into kernel 1996 * space and check the user space data area is readable before invoking 1997 * the protocol. 1998 */ 1999 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2000 struct sockaddr __user *addr, int addr_len) 2001 { 2002 struct socket *sock; 2003 struct sockaddr_storage address; 2004 int err; 2005 struct msghdr msg; 2006 struct iovec iov; 2007 int fput_needed; 2008 2009 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 2010 if (unlikely(err)) 2011 return err; 2012 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2013 if (!sock) 2014 goto out; 2015 2016 msg.msg_name = NULL; 2017 msg.msg_control = NULL; 2018 msg.msg_controllen = 0; 2019 msg.msg_namelen = 0; 2020 if (addr) { 2021 err = move_addr_to_kernel(addr, addr_len, &address); 2022 if (err < 0) 2023 goto out_put; 2024 msg.msg_name = (struct sockaddr *)&address; 2025 msg.msg_namelen = addr_len; 2026 } 2027 if (sock->file->f_flags & O_NONBLOCK) 2028 flags |= MSG_DONTWAIT; 2029 msg.msg_flags = flags; 2030 err = sock_sendmsg(sock, &msg); 2031 2032 out_put: 2033 fput_light(sock->file, fput_needed); 2034 out: 2035 return err; 2036 } 2037 2038 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2039 unsigned int, flags, struct sockaddr __user *, addr, 2040 int, addr_len) 2041 { 2042 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2043 } 2044 2045 /* 2046 * Send a datagram down a socket. 2047 */ 2048 2049 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2050 unsigned int, flags) 2051 { 2052 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2053 } 2054 2055 /* 2056 * Receive a frame from the socket and optionally record the address of the 2057 * sender. We verify the buffers are writable and if needed move the 2058 * sender address from kernel to user space. 2059 */ 2060 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2061 struct sockaddr __user *addr, int __user *addr_len) 2062 { 2063 struct socket *sock; 2064 struct iovec iov; 2065 struct msghdr msg; 2066 struct sockaddr_storage address; 2067 int err, err2; 2068 int fput_needed; 2069 2070 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2071 if (unlikely(err)) 2072 return err; 2073 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2074 if (!sock) 2075 goto out; 2076 2077 msg.msg_control = NULL; 2078 msg.msg_controllen = 0; 2079 /* Save some cycles and don't copy the address if not needed */ 2080 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2081 /* We assume all kernel code knows the size of sockaddr_storage */ 2082 msg.msg_namelen = 0; 2083 msg.msg_iocb = NULL; 2084 msg.msg_flags = 0; 2085 if (sock->file->f_flags & O_NONBLOCK) 2086 flags |= MSG_DONTWAIT; 2087 err = sock_recvmsg(sock, &msg, flags); 2088 2089 if (err >= 0 && addr != NULL) { 2090 err2 = move_addr_to_user(&address, 2091 msg.msg_namelen, addr, addr_len); 2092 if (err2 < 0) 2093 err = err2; 2094 } 2095 2096 fput_light(sock->file, fput_needed); 2097 out: 2098 return err; 2099 } 2100 2101 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2102 unsigned int, flags, struct sockaddr __user *, addr, 2103 int __user *, addr_len) 2104 { 2105 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2106 } 2107 2108 /* 2109 * Receive a datagram from a socket. 2110 */ 2111 2112 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2113 unsigned int, flags) 2114 { 2115 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2116 } 2117 2118 static bool sock_use_custom_sol_socket(const struct socket *sock) 2119 { 2120 const struct sock *sk = sock->sk; 2121 2122 /* Use sock->ops->setsockopt() for MPTCP */ 2123 return IS_ENABLED(CONFIG_MPTCP) && 2124 sk->sk_protocol == IPPROTO_MPTCP && 2125 sk->sk_type == SOCK_STREAM && 2126 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2127 } 2128 2129 /* 2130 * Set a socket option. Because we don't know the option lengths we have 2131 * to pass the user mode parameter for the protocols to sort out. 2132 */ 2133 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2134 int optlen) 2135 { 2136 sockptr_t optval = USER_SOCKPTR(user_optval); 2137 char *kernel_optval = NULL; 2138 int err, fput_needed; 2139 struct socket *sock; 2140 2141 if (optlen < 0) 2142 return -EINVAL; 2143 2144 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2145 if (!sock) 2146 return err; 2147 2148 err = security_socket_setsockopt(sock, level, optname); 2149 if (err) 2150 goto out_put; 2151 2152 if (!in_compat_syscall()) 2153 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2154 user_optval, &optlen, 2155 &kernel_optval); 2156 if (err < 0) 2157 goto out_put; 2158 if (err > 0) { 2159 err = 0; 2160 goto out_put; 2161 } 2162 2163 if (kernel_optval) 2164 optval = KERNEL_SOCKPTR(kernel_optval); 2165 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2166 err = sock_setsockopt(sock, level, optname, optval, optlen); 2167 else if (unlikely(!sock->ops->setsockopt)) 2168 err = -EOPNOTSUPP; 2169 else 2170 err = sock->ops->setsockopt(sock, level, optname, optval, 2171 optlen); 2172 kfree(kernel_optval); 2173 out_put: 2174 fput_light(sock->file, fput_needed); 2175 return err; 2176 } 2177 2178 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2179 char __user *, optval, int, optlen) 2180 { 2181 return __sys_setsockopt(fd, level, optname, optval, optlen); 2182 } 2183 2184 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2185 int optname)); 2186 2187 /* 2188 * Get a socket option. Because we don't know the option lengths we have 2189 * to pass a user mode parameter for the protocols to sort out. 2190 */ 2191 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2192 int __user *optlen) 2193 { 2194 int err, fput_needed; 2195 struct socket *sock; 2196 int max_optlen; 2197 2198 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2199 if (!sock) 2200 return err; 2201 2202 err = security_socket_getsockopt(sock, level, optname); 2203 if (err) 2204 goto out_put; 2205 2206 if (!in_compat_syscall()) 2207 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2208 2209 if (level == SOL_SOCKET) 2210 err = sock_getsockopt(sock, level, optname, optval, optlen); 2211 else if (unlikely(!sock->ops->getsockopt)) 2212 err = -EOPNOTSUPP; 2213 else 2214 err = sock->ops->getsockopt(sock, level, optname, optval, 2215 optlen); 2216 2217 if (!in_compat_syscall()) 2218 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2219 optval, optlen, max_optlen, 2220 err); 2221 out_put: 2222 fput_light(sock->file, fput_needed); 2223 return err; 2224 } 2225 2226 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2227 char __user *, optval, int __user *, optlen) 2228 { 2229 return __sys_getsockopt(fd, level, optname, optval, optlen); 2230 } 2231 2232 /* 2233 * Shutdown a socket. 2234 */ 2235 2236 int __sys_shutdown_sock(struct socket *sock, int how) 2237 { 2238 int err; 2239 2240 err = security_socket_shutdown(sock, how); 2241 if (!err) 2242 err = sock->ops->shutdown(sock, how); 2243 2244 return err; 2245 } 2246 2247 int __sys_shutdown(int fd, int how) 2248 { 2249 int err, fput_needed; 2250 struct socket *sock; 2251 2252 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2253 if (sock != NULL) { 2254 err = __sys_shutdown_sock(sock, how); 2255 fput_light(sock->file, fput_needed); 2256 } 2257 return err; 2258 } 2259 2260 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2261 { 2262 return __sys_shutdown(fd, how); 2263 } 2264 2265 /* A couple of helpful macros for getting the address of the 32/64 bit 2266 * fields which are the same type (int / unsigned) on our platforms. 2267 */ 2268 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2269 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2270 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2271 2272 struct used_address { 2273 struct sockaddr_storage name; 2274 unsigned int name_len; 2275 }; 2276 2277 int __copy_msghdr_from_user(struct msghdr *kmsg, 2278 struct user_msghdr __user *umsg, 2279 struct sockaddr __user **save_addr, 2280 struct iovec __user **uiov, size_t *nsegs) 2281 { 2282 struct user_msghdr msg; 2283 ssize_t err; 2284 2285 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2286 return -EFAULT; 2287 2288 kmsg->msg_control_is_user = true; 2289 kmsg->msg_control_user = msg.msg_control; 2290 kmsg->msg_controllen = msg.msg_controllen; 2291 kmsg->msg_flags = msg.msg_flags; 2292 2293 kmsg->msg_namelen = msg.msg_namelen; 2294 if (!msg.msg_name) 2295 kmsg->msg_namelen = 0; 2296 2297 if (kmsg->msg_namelen < 0) 2298 return -EINVAL; 2299 2300 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2301 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2302 2303 if (save_addr) 2304 *save_addr = msg.msg_name; 2305 2306 if (msg.msg_name && kmsg->msg_namelen) { 2307 if (!save_addr) { 2308 err = move_addr_to_kernel(msg.msg_name, 2309 kmsg->msg_namelen, 2310 kmsg->msg_name); 2311 if (err < 0) 2312 return err; 2313 } 2314 } else { 2315 kmsg->msg_name = NULL; 2316 kmsg->msg_namelen = 0; 2317 } 2318 2319 if (msg.msg_iovlen > UIO_MAXIOV) 2320 return -EMSGSIZE; 2321 2322 kmsg->msg_iocb = NULL; 2323 *uiov = msg.msg_iov; 2324 *nsegs = msg.msg_iovlen; 2325 return 0; 2326 } 2327 2328 static int copy_msghdr_from_user(struct msghdr *kmsg, 2329 struct user_msghdr __user *umsg, 2330 struct sockaddr __user **save_addr, 2331 struct iovec **iov) 2332 { 2333 struct user_msghdr msg; 2334 ssize_t err; 2335 2336 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2337 &msg.msg_iovlen); 2338 if (err) 2339 return err; 2340 2341 err = import_iovec(save_addr ? READ : WRITE, 2342 msg.msg_iov, msg.msg_iovlen, 2343 UIO_FASTIOV, iov, &kmsg->msg_iter); 2344 return err < 0 ? err : 0; 2345 } 2346 2347 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2348 unsigned int flags, struct used_address *used_address, 2349 unsigned int allowed_msghdr_flags) 2350 { 2351 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2352 __aligned(sizeof(__kernel_size_t)); 2353 /* 20 is size of ipv6_pktinfo */ 2354 unsigned char *ctl_buf = ctl; 2355 int ctl_len; 2356 ssize_t err; 2357 2358 err = -ENOBUFS; 2359 2360 if (msg_sys->msg_controllen > INT_MAX) 2361 goto out; 2362 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2363 ctl_len = msg_sys->msg_controllen; 2364 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2365 err = 2366 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2367 sizeof(ctl)); 2368 if (err) 2369 goto out; 2370 ctl_buf = msg_sys->msg_control; 2371 ctl_len = msg_sys->msg_controllen; 2372 } else if (ctl_len) { 2373 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2374 CMSG_ALIGN(sizeof(struct cmsghdr))); 2375 if (ctl_len > sizeof(ctl)) { 2376 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2377 if (ctl_buf == NULL) 2378 goto out; 2379 } 2380 err = -EFAULT; 2381 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2382 goto out_freectl; 2383 msg_sys->msg_control = ctl_buf; 2384 msg_sys->msg_control_is_user = false; 2385 } 2386 msg_sys->msg_flags = flags; 2387 2388 if (sock->file->f_flags & O_NONBLOCK) 2389 msg_sys->msg_flags |= MSG_DONTWAIT; 2390 /* 2391 * If this is sendmmsg() and current destination address is same as 2392 * previously succeeded address, omit asking LSM's decision. 2393 * used_address->name_len is initialized to UINT_MAX so that the first 2394 * destination address never matches. 2395 */ 2396 if (used_address && msg_sys->msg_name && 2397 used_address->name_len == msg_sys->msg_namelen && 2398 !memcmp(&used_address->name, msg_sys->msg_name, 2399 used_address->name_len)) { 2400 err = sock_sendmsg_nosec(sock, msg_sys); 2401 goto out_freectl; 2402 } 2403 err = sock_sendmsg(sock, msg_sys); 2404 /* 2405 * If this is sendmmsg() and sending to current destination address was 2406 * successful, remember it. 2407 */ 2408 if (used_address && err >= 0) { 2409 used_address->name_len = msg_sys->msg_namelen; 2410 if (msg_sys->msg_name) 2411 memcpy(&used_address->name, msg_sys->msg_name, 2412 used_address->name_len); 2413 } 2414 2415 out_freectl: 2416 if (ctl_buf != ctl) 2417 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2418 out: 2419 return err; 2420 } 2421 2422 int sendmsg_copy_msghdr(struct msghdr *msg, 2423 struct user_msghdr __user *umsg, unsigned flags, 2424 struct iovec **iov) 2425 { 2426 int err; 2427 2428 if (flags & MSG_CMSG_COMPAT) { 2429 struct compat_msghdr __user *msg_compat; 2430 2431 msg_compat = (struct compat_msghdr __user *) umsg; 2432 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2433 } else { 2434 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2435 } 2436 if (err < 0) 2437 return err; 2438 2439 return 0; 2440 } 2441 2442 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2443 struct msghdr *msg_sys, unsigned int flags, 2444 struct used_address *used_address, 2445 unsigned int allowed_msghdr_flags) 2446 { 2447 struct sockaddr_storage address; 2448 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2449 ssize_t err; 2450 2451 msg_sys->msg_name = &address; 2452 2453 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2454 if (err < 0) 2455 return err; 2456 2457 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2458 allowed_msghdr_flags); 2459 kfree(iov); 2460 return err; 2461 } 2462 2463 /* 2464 * BSD sendmsg interface 2465 */ 2466 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2467 unsigned int flags) 2468 { 2469 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2470 } 2471 2472 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2473 bool forbid_cmsg_compat) 2474 { 2475 int fput_needed, err; 2476 struct msghdr msg_sys; 2477 struct socket *sock; 2478 2479 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2480 return -EINVAL; 2481 2482 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2483 if (!sock) 2484 goto out; 2485 2486 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2487 2488 fput_light(sock->file, fput_needed); 2489 out: 2490 return err; 2491 } 2492 2493 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2494 { 2495 return __sys_sendmsg(fd, msg, flags, true); 2496 } 2497 2498 /* 2499 * Linux sendmmsg interface 2500 */ 2501 2502 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2503 unsigned int flags, bool forbid_cmsg_compat) 2504 { 2505 int fput_needed, err, datagrams; 2506 struct socket *sock; 2507 struct mmsghdr __user *entry; 2508 struct compat_mmsghdr __user *compat_entry; 2509 struct msghdr msg_sys; 2510 struct used_address used_address; 2511 unsigned int oflags = flags; 2512 2513 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2514 return -EINVAL; 2515 2516 if (vlen > UIO_MAXIOV) 2517 vlen = UIO_MAXIOV; 2518 2519 datagrams = 0; 2520 2521 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2522 if (!sock) 2523 return err; 2524 2525 used_address.name_len = UINT_MAX; 2526 entry = mmsg; 2527 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2528 err = 0; 2529 flags |= MSG_BATCH; 2530 2531 while (datagrams < vlen) { 2532 if (datagrams == vlen - 1) 2533 flags = oflags; 2534 2535 if (MSG_CMSG_COMPAT & flags) { 2536 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2537 &msg_sys, flags, &used_address, MSG_EOR); 2538 if (err < 0) 2539 break; 2540 err = __put_user(err, &compat_entry->msg_len); 2541 ++compat_entry; 2542 } else { 2543 err = ___sys_sendmsg(sock, 2544 (struct user_msghdr __user *)entry, 2545 &msg_sys, flags, &used_address, MSG_EOR); 2546 if (err < 0) 2547 break; 2548 err = put_user(err, &entry->msg_len); 2549 ++entry; 2550 } 2551 2552 if (err) 2553 break; 2554 ++datagrams; 2555 if (msg_data_left(&msg_sys)) 2556 break; 2557 cond_resched(); 2558 } 2559 2560 fput_light(sock->file, fput_needed); 2561 2562 /* We only return an error if no datagrams were able to be sent */ 2563 if (datagrams != 0) 2564 return datagrams; 2565 2566 return err; 2567 } 2568 2569 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2570 unsigned int, vlen, unsigned int, flags) 2571 { 2572 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2573 } 2574 2575 int recvmsg_copy_msghdr(struct msghdr *msg, 2576 struct user_msghdr __user *umsg, unsigned flags, 2577 struct sockaddr __user **uaddr, 2578 struct iovec **iov) 2579 { 2580 ssize_t err; 2581 2582 if (MSG_CMSG_COMPAT & flags) { 2583 struct compat_msghdr __user *msg_compat; 2584 2585 msg_compat = (struct compat_msghdr __user *) umsg; 2586 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2587 } else { 2588 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2589 } 2590 if (err < 0) 2591 return err; 2592 2593 return 0; 2594 } 2595 2596 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2597 struct user_msghdr __user *msg, 2598 struct sockaddr __user *uaddr, 2599 unsigned int flags, int nosec) 2600 { 2601 struct compat_msghdr __user *msg_compat = 2602 (struct compat_msghdr __user *) msg; 2603 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2604 struct sockaddr_storage addr; 2605 unsigned long cmsg_ptr; 2606 int len; 2607 ssize_t err; 2608 2609 msg_sys->msg_name = &addr; 2610 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2611 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2612 2613 /* We assume all kernel code knows the size of sockaddr_storage */ 2614 msg_sys->msg_namelen = 0; 2615 2616 if (sock->file->f_flags & O_NONBLOCK) 2617 flags |= MSG_DONTWAIT; 2618 2619 if (unlikely(nosec)) 2620 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2621 else 2622 err = sock_recvmsg(sock, msg_sys, flags); 2623 2624 if (err < 0) 2625 goto out; 2626 len = err; 2627 2628 if (uaddr != NULL) { 2629 err = move_addr_to_user(&addr, 2630 msg_sys->msg_namelen, uaddr, 2631 uaddr_len); 2632 if (err < 0) 2633 goto out; 2634 } 2635 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2636 COMPAT_FLAGS(msg)); 2637 if (err) 2638 goto out; 2639 if (MSG_CMSG_COMPAT & flags) 2640 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2641 &msg_compat->msg_controllen); 2642 else 2643 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2644 &msg->msg_controllen); 2645 if (err) 2646 goto out; 2647 err = len; 2648 out: 2649 return err; 2650 } 2651 2652 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2653 struct msghdr *msg_sys, unsigned int flags, int nosec) 2654 { 2655 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2656 /* user mode address pointers */ 2657 struct sockaddr __user *uaddr; 2658 ssize_t err; 2659 2660 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2661 if (err < 0) 2662 return err; 2663 2664 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2665 kfree(iov); 2666 return err; 2667 } 2668 2669 /* 2670 * BSD recvmsg interface 2671 */ 2672 2673 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2674 struct user_msghdr __user *umsg, 2675 struct sockaddr __user *uaddr, unsigned int flags) 2676 { 2677 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2678 } 2679 2680 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2681 bool forbid_cmsg_compat) 2682 { 2683 int fput_needed, err; 2684 struct msghdr msg_sys; 2685 struct socket *sock; 2686 2687 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2688 return -EINVAL; 2689 2690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2691 if (!sock) 2692 goto out; 2693 2694 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2695 2696 fput_light(sock->file, fput_needed); 2697 out: 2698 return err; 2699 } 2700 2701 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2702 unsigned int, flags) 2703 { 2704 return __sys_recvmsg(fd, msg, flags, true); 2705 } 2706 2707 /* 2708 * Linux recvmmsg interface 2709 */ 2710 2711 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2712 unsigned int vlen, unsigned int flags, 2713 struct timespec64 *timeout) 2714 { 2715 int fput_needed, err, datagrams; 2716 struct socket *sock; 2717 struct mmsghdr __user *entry; 2718 struct compat_mmsghdr __user *compat_entry; 2719 struct msghdr msg_sys; 2720 struct timespec64 end_time; 2721 struct timespec64 timeout64; 2722 2723 if (timeout && 2724 poll_select_set_timeout(&end_time, timeout->tv_sec, 2725 timeout->tv_nsec)) 2726 return -EINVAL; 2727 2728 datagrams = 0; 2729 2730 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2731 if (!sock) 2732 return err; 2733 2734 if (likely(!(flags & MSG_ERRQUEUE))) { 2735 err = sock_error(sock->sk); 2736 if (err) { 2737 datagrams = err; 2738 goto out_put; 2739 } 2740 } 2741 2742 entry = mmsg; 2743 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2744 2745 while (datagrams < vlen) { 2746 /* 2747 * No need to ask LSM for more than the first datagram. 2748 */ 2749 if (MSG_CMSG_COMPAT & flags) { 2750 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2751 &msg_sys, flags & ~MSG_WAITFORONE, 2752 datagrams); 2753 if (err < 0) 2754 break; 2755 err = __put_user(err, &compat_entry->msg_len); 2756 ++compat_entry; 2757 } else { 2758 err = ___sys_recvmsg(sock, 2759 (struct user_msghdr __user *)entry, 2760 &msg_sys, flags & ~MSG_WAITFORONE, 2761 datagrams); 2762 if (err < 0) 2763 break; 2764 err = put_user(err, &entry->msg_len); 2765 ++entry; 2766 } 2767 2768 if (err) 2769 break; 2770 ++datagrams; 2771 2772 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2773 if (flags & MSG_WAITFORONE) 2774 flags |= MSG_DONTWAIT; 2775 2776 if (timeout) { 2777 ktime_get_ts64(&timeout64); 2778 *timeout = timespec64_sub(end_time, timeout64); 2779 if (timeout->tv_sec < 0) { 2780 timeout->tv_sec = timeout->tv_nsec = 0; 2781 break; 2782 } 2783 2784 /* Timeout, return less than vlen datagrams */ 2785 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2786 break; 2787 } 2788 2789 /* Out of band data, return right away */ 2790 if (msg_sys.msg_flags & MSG_OOB) 2791 break; 2792 cond_resched(); 2793 } 2794 2795 if (err == 0) 2796 goto out_put; 2797 2798 if (datagrams == 0) { 2799 datagrams = err; 2800 goto out_put; 2801 } 2802 2803 /* 2804 * We may return less entries than requested (vlen) if the 2805 * sock is non block and there aren't enough datagrams... 2806 */ 2807 if (err != -EAGAIN) { 2808 /* 2809 * ... or if recvmsg returns an error after we 2810 * received some datagrams, where we record the 2811 * error to return on the next call or if the 2812 * app asks about it using getsockopt(SO_ERROR). 2813 */ 2814 sock->sk->sk_err = -err; 2815 } 2816 out_put: 2817 fput_light(sock->file, fput_needed); 2818 2819 return datagrams; 2820 } 2821 2822 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2823 unsigned int vlen, unsigned int flags, 2824 struct __kernel_timespec __user *timeout, 2825 struct old_timespec32 __user *timeout32) 2826 { 2827 int datagrams; 2828 struct timespec64 timeout_sys; 2829 2830 if (timeout && get_timespec64(&timeout_sys, timeout)) 2831 return -EFAULT; 2832 2833 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2834 return -EFAULT; 2835 2836 if (!timeout && !timeout32) 2837 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2838 2839 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2840 2841 if (datagrams <= 0) 2842 return datagrams; 2843 2844 if (timeout && put_timespec64(&timeout_sys, timeout)) 2845 datagrams = -EFAULT; 2846 2847 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2848 datagrams = -EFAULT; 2849 2850 return datagrams; 2851 } 2852 2853 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2854 unsigned int, vlen, unsigned int, flags, 2855 struct __kernel_timespec __user *, timeout) 2856 { 2857 if (flags & MSG_CMSG_COMPAT) 2858 return -EINVAL; 2859 2860 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2861 } 2862 2863 #ifdef CONFIG_COMPAT_32BIT_TIME 2864 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2865 unsigned int, vlen, unsigned int, flags, 2866 struct old_timespec32 __user *, timeout) 2867 { 2868 if (flags & MSG_CMSG_COMPAT) 2869 return -EINVAL; 2870 2871 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2872 } 2873 #endif 2874 2875 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2876 /* Argument list sizes for sys_socketcall */ 2877 #define AL(x) ((x) * sizeof(unsigned long)) 2878 static const unsigned char nargs[21] = { 2879 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2880 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2881 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2882 AL(4), AL(5), AL(4) 2883 }; 2884 2885 #undef AL 2886 2887 /* 2888 * System call vectors. 2889 * 2890 * Argument checking cleaned up. Saved 20% in size. 2891 * This function doesn't need to set the kernel lock because 2892 * it is set by the callees. 2893 */ 2894 2895 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2896 { 2897 unsigned long a[AUDITSC_ARGS]; 2898 unsigned long a0, a1; 2899 int err; 2900 unsigned int len; 2901 2902 if (call < 1 || call > SYS_SENDMMSG) 2903 return -EINVAL; 2904 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2905 2906 len = nargs[call]; 2907 if (len > sizeof(a)) 2908 return -EINVAL; 2909 2910 /* copy_from_user should be SMP safe. */ 2911 if (copy_from_user(a, args, len)) 2912 return -EFAULT; 2913 2914 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2915 if (err) 2916 return err; 2917 2918 a0 = a[0]; 2919 a1 = a[1]; 2920 2921 switch (call) { 2922 case SYS_SOCKET: 2923 err = __sys_socket(a0, a1, a[2]); 2924 break; 2925 case SYS_BIND: 2926 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2927 break; 2928 case SYS_CONNECT: 2929 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2930 break; 2931 case SYS_LISTEN: 2932 err = __sys_listen(a0, a1); 2933 break; 2934 case SYS_ACCEPT: 2935 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2936 (int __user *)a[2], 0); 2937 break; 2938 case SYS_GETSOCKNAME: 2939 err = 2940 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2941 (int __user *)a[2]); 2942 break; 2943 case SYS_GETPEERNAME: 2944 err = 2945 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2946 (int __user *)a[2]); 2947 break; 2948 case SYS_SOCKETPAIR: 2949 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2950 break; 2951 case SYS_SEND: 2952 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2953 NULL, 0); 2954 break; 2955 case SYS_SENDTO: 2956 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2957 (struct sockaddr __user *)a[4], a[5]); 2958 break; 2959 case SYS_RECV: 2960 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2961 NULL, NULL); 2962 break; 2963 case SYS_RECVFROM: 2964 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2965 (struct sockaddr __user *)a[4], 2966 (int __user *)a[5]); 2967 break; 2968 case SYS_SHUTDOWN: 2969 err = __sys_shutdown(a0, a1); 2970 break; 2971 case SYS_SETSOCKOPT: 2972 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2973 a[4]); 2974 break; 2975 case SYS_GETSOCKOPT: 2976 err = 2977 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2978 (int __user *)a[4]); 2979 break; 2980 case SYS_SENDMSG: 2981 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2982 a[2], true); 2983 break; 2984 case SYS_SENDMMSG: 2985 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2986 a[3], true); 2987 break; 2988 case SYS_RECVMSG: 2989 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2990 a[2], true); 2991 break; 2992 case SYS_RECVMMSG: 2993 if (IS_ENABLED(CONFIG_64BIT)) 2994 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2995 a[2], a[3], 2996 (struct __kernel_timespec __user *)a[4], 2997 NULL); 2998 else 2999 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3000 a[2], a[3], NULL, 3001 (struct old_timespec32 __user *)a[4]); 3002 break; 3003 case SYS_ACCEPT4: 3004 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3005 (int __user *)a[2], a[3]); 3006 break; 3007 default: 3008 err = -EINVAL; 3009 break; 3010 } 3011 return err; 3012 } 3013 3014 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3015 3016 /** 3017 * sock_register - add a socket protocol handler 3018 * @ops: description of protocol 3019 * 3020 * This function is called by a protocol handler that wants to 3021 * advertise its address family, and have it linked into the 3022 * socket interface. The value ops->family corresponds to the 3023 * socket system call protocol family. 3024 */ 3025 int sock_register(const struct net_proto_family *ops) 3026 { 3027 int err; 3028 3029 if (ops->family >= NPROTO) { 3030 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3031 return -ENOBUFS; 3032 } 3033 3034 spin_lock(&net_family_lock); 3035 if (rcu_dereference_protected(net_families[ops->family], 3036 lockdep_is_held(&net_family_lock))) 3037 err = -EEXIST; 3038 else { 3039 rcu_assign_pointer(net_families[ops->family], ops); 3040 err = 0; 3041 } 3042 spin_unlock(&net_family_lock); 3043 3044 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3045 return err; 3046 } 3047 EXPORT_SYMBOL(sock_register); 3048 3049 /** 3050 * sock_unregister - remove a protocol handler 3051 * @family: protocol family to remove 3052 * 3053 * This function is called by a protocol handler that wants to 3054 * remove its address family, and have it unlinked from the 3055 * new socket creation. 3056 * 3057 * If protocol handler is a module, then it can use module reference 3058 * counts to protect against new references. If protocol handler is not 3059 * a module then it needs to provide its own protection in 3060 * the ops->create routine. 3061 */ 3062 void sock_unregister(int family) 3063 { 3064 BUG_ON(family < 0 || family >= NPROTO); 3065 3066 spin_lock(&net_family_lock); 3067 RCU_INIT_POINTER(net_families[family], NULL); 3068 spin_unlock(&net_family_lock); 3069 3070 synchronize_rcu(); 3071 3072 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3073 } 3074 EXPORT_SYMBOL(sock_unregister); 3075 3076 bool sock_is_registered(int family) 3077 { 3078 return family < NPROTO && rcu_access_pointer(net_families[family]); 3079 } 3080 3081 static int __init sock_init(void) 3082 { 3083 int err; 3084 /* 3085 * Initialize the network sysctl infrastructure. 3086 */ 3087 err = net_sysctl_init(); 3088 if (err) 3089 goto out; 3090 3091 /* 3092 * Initialize skbuff SLAB cache 3093 */ 3094 skb_init(); 3095 3096 /* 3097 * Initialize the protocols module. 3098 */ 3099 3100 init_inodecache(); 3101 3102 err = register_filesystem(&sock_fs_type); 3103 if (err) 3104 goto out; 3105 sock_mnt = kern_mount(&sock_fs_type); 3106 if (IS_ERR(sock_mnt)) { 3107 err = PTR_ERR(sock_mnt); 3108 goto out_mount; 3109 } 3110 3111 /* The real protocol initialization is performed in later initcalls. 3112 */ 3113 3114 #ifdef CONFIG_NETFILTER 3115 err = netfilter_init(); 3116 if (err) 3117 goto out; 3118 #endif 3119 3120 ptp_classifier_init(); 3121 3122 out: 3123 return err; 3124 3125 out_mount: 3126 unregister_filesystem(&sock_fs_type); 3127 goto out; 3128 } 3129 3130 core_initcall(sock_init); /* early initcall */ 3131 3132 #ifdef CONFIG_PROC_FS 3133 void socket_seq_show(struct seq_file *seq) 3134 { 3135 seq_printf(seq, "sockets: used %d\n", 3136 sock_inuse_get(seq->private)); 3137 } 3138 #endif /* CONFIG_PROC_FS */ 3139 3140 /* Handle the fact that while struct ifreq has the same *layout* on 3141 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3142 * which are handled elsewhere, it still has different *size* due to 3143 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3144 * resulting in struct ifreq being 32 and 40 bytes respectively). 3145 * As a result, if the struct happens to be at the end of a page and 3146 * the next page isn't readable/writable, we get a fault. To prevent 3147 * that, copy back and forth to the full size. 3148 */ 3149 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3150 { 3151 if (in_compat_syscall()) { 3152 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3153 3154 memset(ifr, 0, sizeof(*ifr)); 3155 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3156 return -EFAULT; 3157 3158 if (ifrdata) 3159 *ifrdata = compat_ptr(ifr32->ifr_data); 3160 3161 return 0; 3162 } 3163 3164 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3165 return -EFAULT; 3166 3167 if (ifrdata) 3168 *ifrdata = ifr->ifr_data; 3169 3170 return 0; 3171 } 3172 EXPORT_SYMBOL(get_user_ifreq); 3173 3174 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3175 { 3176 size_t size = sizeof(*ifr); 3177 3178 if (in_compat_syscall()) 3179 size = sizeof(struct compat_ifreq); 3180 3181 if (copy_to_user(arg, ifr, size)) 3182 return -EFAULT; 3183 3184 return 0; 3185 } 3186 EXPORT_SYMBOL(put_user_ifreq); 3187 3188 #ifdef CONFIG_COMPAT 3189 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3190 { 3191 compat_uptr_t uptr32; 3192 struct ifreq ifr; 3193 void __user *saved; 3194 int err; 3195 3196 if (get_user_ifreq(&ifr, NULL, uifr32)) 3197 return -EFAULT; 3198 3199 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3200 return -EFAULT; 3201 3202 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3203 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3204 3205 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3206 if (!err) { 3207 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3208 if (put_user_ifreq(&ifr, uifr32)) 3209 err = -EFAULT; 3210 } 3211 return err; 3212 } 3213 3214 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3215 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3216 struct compat_ifreq __user *u_ifreq32) 3217 { 3218 struct ifreq ifreq; 3219 void __user *data; 3220 3221 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3222 return -EFAULT; 3223 ifreq.ifr_data = data; 3224 3225 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3226 } 3227 3228 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3229 * for some operations; this forces use of the newer bridge-utils that 3230 * use compatible ioctls 3231 */ 3232 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3233 { 3234 compat_ulong_t tmp; 3235 3236 if (get_user(tmp, argp)) 3237 return -EFAULT; 3238 if (tmp == BRCTL_GET_VERSION) 3239 return BRCTL_VERSION + 1; 3240 return -EINVAL; 3241 } 3242 3243 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3244 unsigned int cmd, unsigned long arg) 3245 { 3246 void __user *argp = compat_ptr(arg); 3247 struct sock *sk = sock->sk; 3248 struct net *net = sock_net(sk); 3249 3250 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3251 return sock_ioctl(file, cmd, (unsigned long)argp); 3252 3253 switch (cmd) { 3254 case SIOCSIFBR: 3255 case SIOCGIFBR: 3256 return old_bridge_ioctl(argp); 3257 case SIOCWANDEV: 3258 return compat_siocwandev(net, argp); 3259 case SIOCGSTAMP_OLD: 3260 case SIOCGSTAMPNS_OLD: 3261 if (!sock->ops->gettstamp) 3262 return -ENOIOCTLCMD; 3263 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3264 !COMPAT_USE_64BIT_TIME); 3265 3266 case SIOCETHTOOL: 3267 case SIOCBONDSLAVEINFOQUERY: 3268 case SIOCBONDINFOQUERY: 3269 case SIOCSHWTSTAMP: 3270 case SIOCGHWTSTAMP: 3271 return compat_ifr_data_ioctl(net, cmd, argp); 3272 3273 case FIOSETOWN: 3274 case SIOCSPGRP: 3275 case FIOGETOWN: 3276 case SIOCGPGRP: 3277 case SIOCBRADDBR: 3278 case SIOCBRDELBR: 3279 case SIOCGIFVLAN: 3280 case SIOCSIFVLAN: 3281 case SIOCGSKNS: 3282 case SIOCGSTAMP_NEW: 3283 case SIOCGSTAMPNS_NEW: 3284 case SIOCGIFCONF: 3285 return sock_ioctl(file, cmd, arg); 3286 3287 case SIOCGIFFLAGS: 3288 case SIOCSIFFLAGS: 3289 case SIOCGIFMAP: 3290 case SIOCSIFMAP: 3291 case SIOCGIFMETRIC: 3292 case SIOCSIFMETRIC: 3293 case SIOCGIFMTU: 3294 case SIOCSIFMTU: 3295 case SIOCGIFMEM: 3296 case SIOCSIFMEM: 3297 case SIOCGIFHWADDR: 3298 case SIOCSIFHWADDR: 3299 case SIOCADDMULTI: 3300 case SIOCDELMULTI: 3301 case SIOCGIFINDEX: 3302 case SIOCGIFADDR: 3303 case SIOCSIFADDR: 3304 case SIOCSIFHWBROADCAST: 3305 case SIOCDIFADDR: 3306 case SIOCGIFBRDADDR: 3307 case SIOCSIFBRDADDR: 3308 case SIOCGIFDSTADDR: 3309 case SIOCSIFDSTADDR: 3310 case SIOCGIFNETMASK: 3311 case SIOCSIFNETMASK: 3312 case SIOCSIFPFLAGS: 3313 case SIOCGIFPFLAGS: 3314 case SIOCGIFTXQLEN: 3315 case SIOCSIFTXQLEN: 3316 case SIOCBRADDIF: 3317 case SIOCBRDELIF: 3318 case SIOCGIFNAME: 3319 case SIOCSIFNAME: 3320 case SIOCGMIIPHY: 3321 case SIOCGMIIREG: 3322 case SIOCSMIIREG: 3323 case SIOCBONDENSLAVE: 3324 case SIOCBONDRELEASE: 3325 case SIOCBONDSETHWADDR: 3326 case SIOCBONDCHANGEACTIVE: 3327 case SIOCSARP: 3328 case SIOCGARP: 3329 case SIOCDARP: 3330 case SIOCOUTQ: 3331 case SIOCOUTQNSD: 3332 case SIOCATMARK: 3333 return sock_do_ioctl(net, sock, cmd, arg); 3334 } 3335 3336 return -ENOIOCTLCMD; 3337 } 3338 3339 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3340 unsigned long arg) 3341 { 3342 struct socket *sock = file->private_data; 3343 int ret = -ENOIOCTLCMD; 3344 struct sock *sk; 3345 struct net *net; 3346 3347 sk = sock->sk; 3348 net = sock_net(sk); 3349 3350 if (sock->ops->compat_ioctl) 3351 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3352 3353 if (ret == -ENOIOCTLCMD && 3354 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3355 ret = compat_wext_handle_ioctl(net, cmd, arg); 3356 3357 if (ret == -ENOIOCTLCMD) 3358 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3359 3360 return ret; 3361 } 3362 #endif 3363 3364 /** 3365 * kernel_bind - bind an address to a socket (kernel space) 3366 * @sock: socket 3367 * @addr: address 3368 * @addrlen: length of address 3369 * 3370 * Returns 0 or an error. 3371 */ 3372 3373 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3374 { 3375 return sock->ops->bind(sock, addr, addrlen); 3376 } 3377 EXPORT_SYMBOL(kernel_bind); 3378 3379 /** 3380 * kernel_listen - move socket to listening state (kernel space) 3381 * @sock: socket 3382 * @backlog: pending connections queue size 3383 * 3384 * Returns 0 or an error. 3385 */ 3386 3387 int kernel_listen(struct socket *sock, int backlog) 3388 { 3389 return sock->ops->listen(sock, backlog); 3390 } 3391 EXPORT_SYMBOL(kernel_listen); 3392 3393 /** 3394 * kernel_accept - accept a connection (kernel space) 3395 * @sock: listening socket 3396 * @newsock: new connected socket 3397 * @flags: flags 3398 * 3399 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3400 * If it fails, @newsock is guaranteed to be %NULL. 3401 * Returns 0 or an error. 3402 */ 3403 3404 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3405 { 3406 struct sock *sk = sock->sk; 3407 int err; 3408 3409 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3410 newsock); 3411 if (err < 0) 3412 goto done; 3413 3414 err = sock->ops->accept(sock, *newsock, flags, true); 3415 if (err < 0) { 3416 sock_release(*newsock); 3417 *newsock = NULL; 3418 goto done; 3419 } 3420 3421 (*newsock)->ops = sock->ops; 3422 __module_get((*newsock)->ops->owner); 3423 3424 done: 3425 return err; 3426 } 3427 EXPORT_SYMBOL(kernel_accept); 3428 3429 /** 3430 * kernel_connect - connect a socket (kernel space) 3431 * @sock: socket 3432 * @addr: address 3433 * @addrlen: address length 3434 * @flags: flags (O_NONBLOCK, ...) 3435 * 3436 * For datagram sockets, @addr is the address to which datagrams are sent 3437 * by default, and the only address from which datagrams are received. 3438 * For stream sockets, attempts to connect to @addr. 3439 * Returns 0 or an error code. 3440 */ 3441 3442 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3443 int flags) 3444 { 3445 return sock->ops->connect(sock, addr, addrlen, flags); 3446 } 3447 EXPORT_SYMBOL(kernel_connect); 3448 3449 /** 3450 * kernel_getsockname - get the address which the socket is bound (kernel space) 3451 * @sock: socket 3452 * @addr: address holder 3453 * 3454 * Fills the @addr pointer with the address which the socket is bound. 3455 * Returns 0 or an error code. 3456 */ 3457 3458 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3459 { 3460 return sock->ops->getname(sock, addr, 0); 3461 } 3462 EXPORT_SYMBOL(kernel_getsockname); 3463 3464 /** 3465 * kernel_getpeername - get the address which the socket is connected (kernel space) 3466 * @sock: socket 3467 * @addr: address holder 3468 * 3469 * Fills the @addr pointer with the address which the socket is connected. 3470 * Returns 0 or an error code. 3471 */ 3472 3473 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3474 { 3475 return sock->ops->getname(sock, addr, 1); 3476 } 3477 EXPORT_SYMBOL(kernel_getpeername); 3478 3479 /** 3480 * kernel_sendpage - send a &page through a socket (kernel space) 3481 * @sock: socket 3482 * @page: page 3483 * @offset: page offset 3484 * @size: total size in bytes 3485 * @flags: flags (MSG_DONTWAIT, ...) 3486 * 3487 * Returns the total amount sent in bytes or an error. 3488 */ 3489 3490 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3491 size_t size, int flags) 3492 { 3493 if (sock->ops->sendpage) { 3494 /* Warn in case the improper page to zero-copy send */ 3495 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3496 return sock->ops->sendpage(sock, page, offset, size, flags); 3497 } 3498 return sock_no_sendpage(sock, page, offset, size, flags); 3499 } 3500 EXPORT_SYMBOL(kernel_sendpage); 3501 3502 /** 3503 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3504 * @sk: sock 3505 * @page: page 3506 * @offset: page offset 3507 * @size: total size in bytes 3508 * @flags: flags (MSG_DONTWAIT, ...) 3509 * 3510 * Returns the total amount sent in bytes or an error. 3511 * Caller must hold @sk. 3512 */ 3513 3514 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3515 size_t size, int flags) 3516 { 3517 struct socket *sock = sk->sk_socket; 3518 3519 if (sock->ops->sendpage_locked) 3520 return sock->ops->sendpage_locked(sk, page, offset, size, 3521 flags); 3522 3523 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3524 } 3525 EXPORT_SYMBOL(kernel_sendpage_locked); 3526 3527 /** 3528 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3529 * @sock: socket 3530 * @how: connection part 3531 * 3532 * Returns 0 or an error. 3533 */ 3534 3535 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3536 { 3537 return sock->ops->shutdown(sock, how); 3538 } 3539 EXPORT_SYMBOL(kernel_sock_shutdown); 3540 3541 /** 3542 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3543 * @sk: socket 3544 * 3545 * This routine returns the IP overhead imposed by a socket i.e. 3546 * the length of the underlying IP header, depending on whether 3547 * this is an IPv4 or IPv6 socket and the length from IP options turned 3548 * on at the socket. Assumes that the caller has a lock on the socket. 3549 */ 3550 3551 u32 kernel_sock_ip_overhead(struct sock *sk) 3552 { 3553 struct inet_sock *inet; 3554 struct ip_options_rcu *opt; 3555 u32 overhead = 0; 3556 #if IS_ENABLED(CONFIG_IPV6) 3557 struct ipv6_pinfo *np; 3558 struct ipv6_txoptions *optv6 = NULL; 3559 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3560 3561 if (!sk) 3562 return overhead; 3563 3564 switch (sk->sk_family) { 3565 case AF_INET: 3566 inet = inet_sk(sk); 3567 overhead += sizeof(struct iphdr); 3568 opt = rcu_dereference_protected(inet->inet_opt, 3569 sock_owned_by_user(sk)); 3570 if (opt) 3571 overhead += opt->opt.optlen; 3572 return overhead; 3573 #if IS_ENABLED(CONFIG_IPV6) 3574 case AF_INET6: 3575 np = inet6_sk(sk); 3576 overhead += sizeof(struct ipv6hdr); 3577 if (np) 3578 optv6 = rcu_dereference_protected(np->opt, 3579 sock_owned_by_user(sk)); 3580 if (optv6) 3581 overhead += (optv6->opt_flen + optv6->opt_nflen); 3582 return overhead; 3583 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3584 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3585 return overhead; 3586 } 3587 } 3588 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3589