xref: /openbmc/linux/net/socket.c (revision e8e0929d)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 			 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 			  unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106 
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 			      struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 			      unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 			     int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 			        struct pipe_inode_info *pipe, size_t len,
120 				unsigned int flags);
121 
122 /*
123  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124  *	in the operation structures but are done directly via the socketcall() multiplexor.
125  */
126 
127 static const struct file_operations socket_file_ops = {
128 	.owner =	THIS_MODULE,
129 	.llseek =	no_llseek,
130 	.aio_read =	sock_aio_read,
131 	.aio_write =	sock_aio_write,
132 	.poll =		sock_poll,
133 	.unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 	.compat_ioctl = compat_sock_ioctl,
136 #endif
137 	.mmap =		sock_mmap,
138 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
139 	.release =	sock_close,
140 	.fasync =	sock_fasync,
141 	.sendpage =	sock_sendpage,
142 	.splice_write = generic_splice_sendpage,
143 	.splice_read =	sock_splice_read,
144 };
145 
146 /*
147  *	The protocol list. Each protocol is registered in here.
148  */
149 
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152 
153 /*
154  *	Statistics counters of the socket lists
155  */
156 
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158 
159 /*
160  * Support routines.
161  * Move socket addresses back and forth across the kernel/user
162  * divide and look after the messy bits.
163  */
164 
165 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
166 					   16 for IP, 16 for IPX,
167 					   24 for IPv6,
168 					   about 80 for AX.25
169 					   must be at least one bigger than
170 					   the AF_UNIX size (see net/unix/af_unix.c
171 					   :unix_mkname()).
172 					 */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 		      int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	err = get_user(len, ulen);
220 	if (err)
221 		return err;
222 	if (len > klen)
223 		len = klen;
224 	if (len < 0 || len > sizeof(struct sockaddr_storage))
225 		return -EINVAL;
226 	if (len) {
227 		if (audit_sockaddr(klen, kaddr))
228 			return -ENOMEM;
229 		if (copy_to_user(uaddr, kaddr, len))
230 			return -EFAULT;
231 	}
232 	/*
233 	 *      "fromlen shall refer to the value before truncation.."
234 	 *                      1003.1g
235 	 */
236 	return __put_user(klen, ulen);
237 }
238 
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 	struct socket_alloc *ei;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	init_waitqueue_head(&ei->socket.wait);
249 
250 	ei->socket.fasync_list = NULL;
251 	ei->socket.state = SS_UNCONNECTED;
252 	ei->socket.flags = 0;
253 	ei->socket.ops = NULL;
254 	ei->socket.sk = NULL;
255 	ei->socket.file = NULL;
256 
257 	return &ei->vfs_inode;
258 }
259 
260 static void sock_destroy_inode(struct inode *inode)
261 {
262 	kmem_cache_free(sock_inode_cachep,
263 			container_of(inode, struct socket_alloc, vfs_inode));
264 }
265 
266 static void init_once(void *foo)
267 {
268 	struct socket_alloc *ei = (struct socket_alloc *)foo;
269 
270 	inode_init_once(&ei->vfs_inode);
271 }
272 
273 static int init_inodecache(void)
274 {
275 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 					      sizeof(struct socket_alloc),
277 					      0,
278 					      (SLAB_HWCACHE_ALIGN |
279 					       SLAB_RECLAIM_ACCOUNT |
280 					       SLAB_MEM_SPREAD),
281 					      init_once);
282 	if (sock_inode_cachep == NULL)
283 		return -ENOMEM;
284 	return 0;
285 }
286 
287 static const struct super_operations sockfs_ops = {
288 	.alloc_inode =	sock_alloc_inode,
289 	.destroy_inode =sock_destroy_inode,
290 	.statfs =	simple_statfs,
291 };
292 
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 			 int flags, const char *dev_name, void *data,
295 			 struct vfsmount *mnt)
296 {
297 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 			     mnt);
299 }
300 
301 static struct vfsmount *sock_mnt __read_mostly;
302 
303 static struct file_system_type sock_fs_type = {
304 	.name =		"sockfs",
305 	.get_sb =	sockfs_get_sb,
306 	.kill_sb =	kill_anon_super,
307 };
308 
309 static int sockfs_delete_dentry(struct dentry *dentry)
310 {
311 	/*
312 	 * At creation time, we pretended this dentry was hashed
313 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 	 * At delete time, we restore the truth : not hashed.
315 	 * (so that dput() can proceed correctly)
316 	 */
317 	dentry->d_flags |= DCACHE_UNHASHED;
318 	return 0;
319 }
320 
321 /*
322  * sockfs_dname() is called from d_path().
323  */
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 {
326 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 				dentry->d_inode->i_ino);
328 }
329 
330 static const struct dentry_operations sockfs_dentry_operations = {
331 	.d_delete = sockfs_delete_dentry,
332 	.d_dname  = sockfs_dname,
333 };
334 
335 /*
336  *	Obtains the first available file descriptor and sets it up for use.
337  *
338  *	These functions create file structures and maps them to fd space
339  *	of the current process. On success it returns file descriptor
340  *	and file struct implicitly stored in sock->file.
341  *	Note that another thread may close file descriptor before we return
342  *	from this function. We use the fact that now we do not refer
343  *	to socket after mapping. If one day we will need it, this
344  *	function will increment ref. count on file by 1.
345  *
346  *	In any case returned fd MAY BE not valid!
347  *	This race condition is unavoidable
348  *	with shared fd spaces, we cannot solve it inside kernel,
349  *	but we take care of internal coherence yet.
350  */
351 
352 static int sock_alloc_fd(struct file **filep, int flags)
353 {
354 	int fd;
355 
356 	fd = get_unused_fd_flags(flags);
357 	if (likely(fd >= 0)) {
358 		struct file *file = get_empty_filp();
359 
360 		*filep = file;
361 		if (unlikely(!file)) {
362 			put_unused_fd(fd);
363 			return -ENFILE;
364 		}
365 	} else
366 		*filep = NULL;
367 	return fd;
368 }
369 
370 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
371 {
372 	struct dentry *dentry;
373 	struct qstr name = { .name = "" };
374 
375 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 	if (unlikely(!dentry))
377 		return -ENOMEM;
378 
379 	dentry->d_op = &sockfs_dentry_operations;
380 	/*
381 	 * We dont want to push this dentry into global dentry hash table.
382 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 	 * This permits a working /proc/$pid/fd/XXX on sockets
384 	 */
385 	dentry->d_flags &= ~DCACHE_UNHASHED;
386 	d_instantiate(dentry, SOCK_INODE(sock));
387 
388 	sock->file = file;
389 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 		  &socket_file_ops);
391 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
393 	file->f_pos = 0;
394 	file->private_data = sock;
395 
396 	return 0;
397 }
398 
399 int sock_map_fd(struct socket *sock, int flags)
400 {
401 	struct file *newfile;
402 	int fd = sock_alloc_fd(&newfile, flags);
403 
404 	if (likely(fd >= 0)) {
405 		int err = sock_attach_fd(sock, newfile, flags);
406 
407 		if (unlikely(err < 0)) {
408 			put_filp(newfile);
409 			put_unused_fd(fd);
410 			return err;
411 		}
412 		fd_install(fd, newfile);
413 	}
414 	return fd;
415 }
416 
417 static struct socket *sock_from_file(struct file *file, int *err)
418 {
419 	if (file->f_op == &socket_file_ops)
420 		return file->private_data;	/* set in sock_map_fd */
421 
422 	*err = -ENOTSOCK;
423 	return NULL;
424 }
425 
426 /**
427  *	sockfd_lookup	- 	Go from a file number to its socket slot
428  *	@fd: file handle
429  *	@err: pointer to an error code return
430  *
431  *	The file handle passed in is locked and the socket it is bound
432  *	too is returned. If an error occurs the err pointer is overwritten
433  *	with a negative errno code and NULL is returned. The function checks
434  *	for both invalid handles and passing a handle which is not a socket.
435  *
436  *	On a success the socket object pointer is returned.
437  */
438 
439 struct socket *sockfd_lookup(int fd, int *err)
440 {
441 	struct file *file;
442 	struct socket *sock;
443 
444 	file = fget(fd);
445 	if (!file) {
446 		*err = -EBADF;
447 		return NULL;
448 	}
449 
450 	sock = sock_from_file(file, err);
451 	if (!sock)
452 		fput(file);
453 	return sock;
454 }
455 
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 {
458 	struct file *file;
459 	struct socket *sock;
460 
461 	*err = -EBADF;
462 	file = fget_light(fd, fput_needed);
463 	if (file) {
464 		sock = sock_from_file(file, err);
465 		if (sock)
466 			return sock;
467 		fput_light(file, *fput_needed);
468 	}
469 	return NULL;
470 }
471 
472 /**
473  *	sock_alloc	-	allocate a socket
474  *
475  *	Allocate a new inode and socket object. The two are bound together
476  *	and initialised. The socket is then returned. If we are out of inodes
477  *	NULL is returned.
478  */
479 
480 static struct socket *sock_alloc(void)
481 {
482 	struct inode *inode;
483 	struct socket *sock;
484 
485 	inode = new_inode(sock_mnt->mnt_sb);
486 	if (!inode)
487 		return NULL;
488 
489 	sock = SOCKET_I(inode);
490 
491 	kmemcheck_annotate_bitfield(sock, type);
492 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 	inode->i_uid = current_fsuid();
494 	inode->i_gid = current_fsgid();
495 
496 	percpu_add(sockets_in_use, 1);
497 	return sock;
498 }
499 
500 /*
501  *	In theory you can't get an open on this inode, but /proc provides
502  *	a back door. Remember to keep it shut otherwise you'll let the
503  *	creepy crawlies in.
504  */
505 
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 	return -ENXIO;
509 }
510 
511 const struct file_operations bad_sock_fops = {
512 	.owner = THIS_MODULE,
513 	.open = sock_no_open,
514 };
515 
516 /**
517  *	sock_release	-	close a socket
518  *	@sock: socket to close
519  *
520  *	The socket is released from the protocol stack if it has a release
521  *	callback, and the inode is then released if the socket is bound to
522  *	an inode not a file.
523  */
524 
525 void sock_release(struct socket *sock)
526 {
527 	if (sock->ops) {
528 		struct module *owner = sock->ops->owner;
529 
530 		sock->ops->release(sock);
531 		sock->ops = NULL;
532 		module_put(owner);
533 	}
534 
535 	if (sock->fasync_list)
536 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
537 
538 	percpu_sub(sockets_in_use, 1);
539 	if (!sock->file) {
540 		iput(SOCK_INODE(sock));
541 		return;
542 	}
543 	sock->file = NULL;
544 }
545 
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 		      union skb_shared_tx *shtx)
548 {
549 	shtx->flags = 0;
550 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 		shtx->hardware = 1;
552 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 		shtx->software = 1;
554 	return 0;
555 }
556 EXPORT_SYMBOL(sock_tx_timestamp);
557 
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 				 struct msghdr *msg, size_t size)
560 {
561 	struct sock_iocb *si = kiocb_to_siocb(iocb);
562 	int err;
563 
564 	si->sock = sock;
565 	si->scm = NULL;
566 	si->msg = msg;
567 	si->size = size;
568 
569 	err = security_socket_sendmsg(sock, msg, size);
570 	if (err)
571 		return err;
572 
573 	return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575 
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 	struct kiocb iocb;
579 	struct sock_iocb siocb;
580 	int ret;
581 
582 	init_sync_kiocb(&iocb, NULL);
583 	iocb.private = &siocb;
584 	ret = __sock_sendmsg(&iocb, sock, msg, size);
585 	if (-EIOCBQUEUED == ret)
586 		ret = wait_on_sync_kiocb(&iocb);
587 	return ret;
588 }
589 
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 		   struct kvec *vec, size_t num, size_t size)
592 {
593 	mm_segment_t oldfs = get_fs();
594 	int result;
595 
596 	set_fs(KERNEL_DS);
597 	/*
598 	 * the following is safe, since for compiler definitions of kvec and
599 	 * iovec are identical, yielding the same in-core layout and alignment
600 	 */
601 	msg->msg_iov = (struct iovec *)vec;
602 	msg->msg_iovlen = num;
603 	result = sock_sendmsg(sock, msg, size);
604 	set_fs(oldfs);
605 	return result;
606 }
607 
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 	if (kt.tv64) {
611 		*ts = ktime_to_timespec(kt);
612 		return 1;
613 	} else {
614 		return 0;
615 	}
616 }
617 
618 /*
619  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620  */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 	struct sk_buff *skb)
623 {
624 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 	struct timespec ts[3];
626 	int empty = 1;
627 	struct skb_shared_hwtstamps *shhwtstamps =
628 		skb_hwtstamps(skb);
629 
630 	/* Race occurred between timestamp enabling and packet
631 	   receiving.  Fill in the current time for now. */
632 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 		__net_timestamp(skb);
634 
635 	if (need_software_tstamp) {
636 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 			struct timeval tv;
638 			skb_get_timestamp(skb, &tv);
639 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 				 sizeof(tv), &tv);
641 		} else {
642 			struct timespec ts;
643 			skb_get_timestampns(skb, &ts);
644 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 				 sizeof(ts), &ts);
646 		}
647 	}
648 
649 
650 	memset(ts, 0, sizeof(ts));
651 	if (skb->tstamp.tv64 &&
652 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 		skb_get_timestampns(skb, ts + 0);
654 		empty = 0;
655 	}
656 	if (shhwtstamps) {
657 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
659 			empty = 0;
660 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 			empty = 0;
663 	}
664 	if (!empty)
665 		put_cmsg(msg, SOL_SOCKET,
666 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
667 }
668 
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
670 
671 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
672 				 struct msghdr *msg, size_t size, int flags)
673 {
674 	int err;
675 	struct sock_iocb *si = kiocb_to_siocb(iocb);
676 
677 	si->sock = sock;
678 	si->scm = NULL;
679 	si->msg = msg;
680 	si->size = size;
681 	si->flags = flags;
682 
683 	err = security_socket_recvmsg(sock, msg, size, flags);
684 	if (err)
685 		return err;
686 
687 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
688 }
689 
690 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
691 		 size_t size, int flags)
692 {
693 	struct kiocb iocb;
694 	struct sock_iocb siocb;
695 	int ret;
696 
697 	init_sync_kiocb(&iocb, NULL);
698 	iocb.private = &siocb;
699 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
700 	if (-EIOCBQUEUED == ret)
701 		ret = wait_on_sync_kiocb(&iocb);
702 	return ret;
703 }
704 
705 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
706 		   struct kvec *vec, size_t num, size_t size, int flags)
707 {
708 	mm_segment_t oldfs = get_fs();
709 	int result;
710 
711 	set_fs(KERNEL_DS);
712 	/*
713 	 * the following is safe, since for compiler definitions of kvec and
714 	 * iovec are identical, yielding the same in-core layout and alignment
715 	 */
716 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
717 	result = sock_recvmsg(sock, msg, size, flags);
718 	set_fs(oldfs);
719 	return result;
720 }
721 
722 static void sock_aio_dtor(struct kiocb *iocb)
723 {
724 	kfree(iocb->private);
725 }
726 
727 static ssize_t sock_sendpage(struct file *file, struct page *page,
728 			     int offset, size_t size, loff_t *ppos, int more)
729 {
730 	struct socket *sock;
731 	int flags;
732 
733 	sock = file->private_data;
734 
735 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 	if (more)
737 		flags |= MSG_MORE;
738 
739 	return kernel_sendpage(sock, page, offset, size, flags);
740 }
741 
742 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
743 			        struct pipe_inode_info *pipe, size_t len,
744 				unsigned int flags)
745 {
746 	struct socket *sock = file->private_data;
747 
748 	if (unlikely(!sock->ops->splice_read))
749 		return -EINVAL;
750 
751 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
752 }
753 
754 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
755 					 struct sock_iocb *siocb)
756 {
757 	if (!is_sync_kiocb(iocb)) {
758 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
759 		if (!siocb)
760 			return NULL;
761 		iocb->ki_dtor = sock_aio_dtor;
762 	}
763 
764 	siocb->kiocb = iocb;
765 	iocb->private = siocb;
766 	return siocb;
767 }
768 
769 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
770 		struct file *file, const struct iovec *iov,
771 		unsigned long nr_segs)
772 {
773 	struct socket *sock = file->private_data;
774 	size_t size = 0;
775 	int i;
776 
777 	for (i = 0; i < nr_segs; i++)
778 		size += iov[i].iov_len;
779 
780 	msg->msg_name = NULL;
781 	msg->msg_namelen = 0;
782 	msg->msg_control = NULL;
783 	msg->msg_controllen = 0;
784 	msg->msg_iov = (struct iovec *)iov;
785 	msg->msg_iovlen = nr_segs;
786 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
787 
788 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
789 }
790 
791 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
792 				unsigned long nr_segs, loff_t pos)
793 {
794 	struct sock_iocb siocb, *x;
795 
796 	if (pos != 0)
797 		return -ESPIPE;
798 
799 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
800 		return 0;
801 
802 
803 	x = alloc_sock_iocb(iocb, &siocb);
804 	if (!x)
805 		return -ENOMEM;
806 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
807 }
808 
809 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
810 			struct file *file, const struct iovec *iov,
811 			unsigned long nr_segs)
812 {
813 	struct socket *sock = file->private_data;
814 	size_t size = 0;
815 	int i;
816 
817 	for (i = 0; i < nr_segs; i++)
818 		size += iov[i].iov_len;
819 
820 	msg->msg_name = NULL;
821 	msg->msg_namelen = 0;
822 	msg->msg_control = NULL;
823 	msg->msg_controllen = 0;
824 	msg->msg_iov = (struct iovec *)iov;
825 	msg->msg_iovlen = nr_segs;
826 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
827 	if (sock->type == SOCK_SEQPACKET)
828 		msg->msg_flags |= MSG_EOR;
829 
830 	return __sock_sendmsg(iocb, sock, msg, size);
831 }
832 
833 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
834 			  unsigned long nr_segs, loff_t pos)
835 {
836 	struct sock_iocb siocb, *x;
837 
838 	if (pos != 0)
839 		return -ESPIPE;
840 
841 	x = alloc_sock_iocb(iocb, &siocb);
842 	if (!x)
843 		return -ENOMEM;
844 
845 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847 
848 /*
849  * Atomic setting of ioctl hooks to avoid race
850  * with module unload.
851  */
852 
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
855 
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 	mutex_lock(&br_ioctl_mutex);
859 	br_ioctl_hook = hook;
860 	mutex_unlock(&br_ioctl_mutex);
861 }
862 
863 EXPORT_SYMBOL(brioctl_set);
864 
865 static DEFINE_MUTEX(vlan_ioctl_mutex);
866 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
867 
868 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
869 {
870 	mutex_lock(&vlan_ioctl_mutex);
871 	vlan_ioctl_hook = hook;
872 	mutex_unlock(&vlan_ioctl_mutex);
873 }
874 
875 EXPORT_SYMBOL(vlan_ioctl_set);
876 
877 static DEFINE_MUTEX(dlci_ioctl_mutex);
878 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
879 
880 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
881 {
882 	mutex_lock(&dlci_ioctl_mutex);
883 	dlci_ioctl_hook = hook;
884 	mutex_unlock(&dlci_ioctl_mutex);
885 }
886 
887 EXPORT_SYMBOL(dlci_ioctl_set);
888 
889 /*
890  *	With an ioctl, arg may well be a user mode pointer, but we don't know
891  *	what to do with it - that's up to the protocol still.
892  */
893 
894 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
895 {
896 	struct socket *sock;
897 	struct sock *sk;
898 	void __user *argp = (void __user *)arg;
899 	int pid, err;
900 	struct net *net;
901 
902 	sock = file->private_data;
903 	sk = sock->sk;
904 	net = sock_net(sk);
905 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
906 		err = dev_ioctl(net, cmd, argp);
907 	} else
908 #ifdef CONFIG_WIRELESS_EXT
909 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
910 		err = dev_ioctl(net, cmd, argp);
911 	} else
912 #endif				/* CONFIG_WIRELESS_EXT */
913 		switch (cmd) {
914 		case FIOSETOWN:
915 		case SIOCSPGRP:
916 			err = -EFAULT;
917 			if (get_user(pid, (int __user *)argp))
918 				break;
919 			err = f_setown(sock->file, pid, 1);
920 			break;
921 		case FIOGETOWN:
922 		case SIOCGPGRP:
923 			err = put_user(f_getown(sock->file),
924 				       (int __user *)argp);
925 			break;
926 		case SIOCGIFBR:
927 		case SIOCSIFBR:
928 		case SIOCBRADDBR:
929 		case SIOCBRDELBR:
930 			err = -ENOPKG;
931 			if (!br_ioctl_hook)
932 				request_module("bridge");
933 
934 			mutex_lock(&br_ioctl_mutex);
935 			if (br_ioctl_hook)
936 				err = br_ioctl_hook(net, cmd, argp);
937 			mutex_unlock(&br_ioctl_mutex);
938 			break;
939 		case SIOCGIFVLAN:
940 		case SIOCSIFVLAN:
941 			err = -ENOPKG;
942 			if (!vlan_ioctl_hook)
943 				request_module("8021q");
944 
945 			mutex_lock(&vlan_ioctl_mutex);
946 			if (vlan_ioctl_hook)
947 				err = vlan_ioctl_hook(net, argp);
948 			mutex_unlock(&vlan_ioctl_mutex);
949 			break;
950 		case SIOCADDDLCI:
951 		case SIOCDELDLCI:
952 			err = -ENOPKG;
953 			if (!dlci_ioctl_hook)
954 				request_module("dlci");
955 
956 			mutex_lock(&dlci_ioctl_mutex);
957 			if (dlci_ioctl_hook)
958 				err = dlci_ioctl_hook(cmd, argp);
959 			mutex_unlock(&dlci_ioctl_mutex);
960 			break;
961 		default:
962 			err = sock->ops->ioctl(sock, cmd, arg);
963 
964 			/*
965 			 * If this ioctl is unknown try to hand it down
966 			 * to the NIC driver.
967 			 */
968 			if (err == -ENOIOCTLCMD)
969 				err = dev_ioctl(net, cmd, argp);
970 			break;
971 		}
972 	return err;
973 }
974 
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 	int err;
978 	struct socket *sock = NULL;
979 
980 	err = security_socket_create(family, type, protocol, 1);
981 	if (err)
982 		goto out;
983 
984 	sock = sock_alloc();
985 	if (!sock) {
986 		err = -ENOMEM;
987 		goto out;
988 	}
989 
990 	sock->type = type;
991 	err = security_socket_post_create(sock, family, type, protocol, 1);
992 	if (err)
993 		goto out_release;
994 
995 out:
996 	*res = sock;
997 	return err;
998 out_release:
999 	sock_release(sock);
1000 	sock = NULL;
1001 	goto out;
1002 }
1003 
1004 /* No kernel lock held - perfect */
1005 static unsigned int sock_poll(struct file *file, poll_table *wait)
1006 {
1007 	struct socket *sock;
1008 
1009 	/*
1010 	 *      We can't return errors to poll, so it's either yes or no.
1011 	 */
1012 	sock = file->private_data;
1013 	return sock->ops->poll(file, sock, wait);
1014 }
1015 
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 	struct socket *sock = file->private_data;
1019 
1020 	return sock->ops->mmap(file, sock, vma);
1021 }
1022 
1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 	/*
1026 	 *      It was possible the inode is NULL we were
1027 	 *      closing an unfinished socket.
1028 	 */
1029 
1030 	if (!inode) {
1031 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1032 		return 0;
1033 	}
1034 	sock_release(SOCKET_I(inode));
1035 	return 0;
1036 }
1037 
1038 /*
1039  *	Update the socket async list
1040  *
1041  *	Fasync_list locking strategy.
1042  *
1043  *	1. fasync_list is modified only under process context socket lock
1044  *	   i.e. under semaphore.
1045  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1046  *	   or under socket lock.
1047  *	3. fasync_list can be used from softirq context, so that
1048  *	   modification under socket lock have to be enhanced with
1049  *	   write_lock_bh(&sk->sk_callback_lock).
1050  *							--ANK (990710)
1051  */
1052 
1053 static int sock_fasync(int fd, struct file *filp, int on)
1054 {
1055 	struct fasync_struct *fa, *fna = NULL, **prev;
1056 	struct socket *sock;
1057 	struct sock *sk;
1058 
1059 	if (on) {
1060 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1061 		if (fna == NULL)
1062 			return -ENOMEM;
1063 	}
1064 
1065 	sock = filp->private_data;
1066 
1067 	sk = sock->sk;
1068 	if (sk == NULL) {
1069 		kfree(fna);
1070 		return -EINVAL;
1071 	}
1072 
1073 	lock_sock(sk);
1074 
1075 	spin_lock(&filp->f_lock);
1076 	if (on)
1077 		filp->f_flags |= FASYNC;
1078 	else
1079 		filp->f_flags &= ~FASYNC;
1080 	spin_unlock(&filp->f_lock);
1081 
1082 	prev = &(sock->fasync_list);
1083 
1084 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1085 		if (fa->fa_file == filp)
1086 			break;
1087 
1088 	if (on) {
1089 		if (fa != NULL) {
1090 			write_lock_bh(&sk->sk_callback_lock);
1091 			fa->fa_fd = fd;
1092 			write_unlock_bh(&sk->sk_callback_lock);
1093 
1094 			kfree(fna);
1095 			goto out;
1096 		}
1097 		fna->fa_file = filp;
1098 		fna->fa_fd = fd;
1099 		fna->magic = FASYNC_MAGIC;
1100 		fna->fa_next = sock->fasync_list;
1101 		write_lock_bh(&sk->sk_callback_lock);
1102 		sock->fasync_list = fna;
1103 		write_unlock_bh(&sk->sk_callback_lock);
1104 	} else {
1105 		if (fa != NULL) {
1106 			write_lock_bh(&sk->sk_callback_lock);
1107 			*prev = fa->fa_next;
1108 			write_unlock_bh(&sk->sk_callback_lock);
1109 			kfree(fa);
1110 		}
1111 	}
1112 
1113 out:
1114 	release_sock(sock->sk);
1115 	return 0;
1116 }
1117 
1118 /* This function may be called only under socket lock or callback_lock */
1119 
1120 int sock_wake_async(struct socket *sock, int how, int band)
1121 {
1122 	if (!sock || !sock->fasync_list)
1123 		return -1;
1124 	switch (how) {
1125 	case SOCK_WAKE_WAITD:
1126 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1127 			break;
1128 		goto call_kill;
1129 	case SOCK_WAKE_SPACE:
1130 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1131 			break;
1132 		/* fall through */
1133 	case SOCK_WAKE_IO:
1134 call_kill:
1135 		__kill_fasync(sock->fasync_list, SIGIO, band);
1136 		break;
1137 	case SOCK_WAKE_URG:
1138 		__kill_fasync(sock->fasync_list, SIGURG, band);
1139 	}
1140 	return 0;
1141 }
1142 
1143 static int __sock_create(struct net *net, int family, int type, int protocol,
1144 			 struct socket **res, int kern)
1145 {
1146 	int err;
1147 	struct socket *sock;
1148 	const struct net_proto_family *pf;
1149 
1150 	/*
1151 	 *      Check protocol is in range
1152 	 */
1153 	if (family < 0 || family >= NPROTO)
1154 		return -EAFNOSUPPORT;
1155 	if (type < 0 || type >= SOCK_MAX)
1156 		return -EINVAL;
1157 
1158 	/* Compatibility.
1159 
1160 	   This uglymoron is moved from INET layer to here to avoid
1161 	   deadlock in module load.
1162 	 */
1163 	if (family == PF_INET && type == SOCK_PACKET) {
1164 		static int warned;
1165 		if (!warned) {
1166 			warned = 1;
1167 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1168 			       current->comm);
1169 		}
1170 		family = PF_PACKET;
1171 	}
1172 
1173 	err = security_socket_create(family, type, protocol, kern);
1174 	if (err)
1175 		return err;
1176 
1177 	/*
1178 	 *	Allocate the socket and allow the family to set things up. if
1179 	 *	the protocol is 0, the family is instructed to select an appropriate
1180 	 *	default.
1181 	 */
1182 	sock = sock_alloc();
1183 	if (!sock) {
1184 		if (net_ratelimit())
1185 			printk(KERN_WARNING "socket: no more sockets\n");
1186 		return -ENFILE;	/* Not exactly a match, but its the
1187 				   closest posix thing */
1188 	}
1189 
1190 	sock->type = type;
1191 
1192 #ifdef CONFIG_MODULES
1193 	/* Attempt to load a protocol module if the find failed.
1194 	 *
1195 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1196 	 * requested real, full-featured networking support upon configuration.
1197 	 * Otherwise module support will break!
1198 	 */
1199 	if (net_families[family] == NULL)
1200 		request_module("net-pf-%d", family);
1201 #endif
1202 
1203 	rcu_read_lock();
1204 	pf = rcu_dereference(net_families[family]);
1205 	err = -EAFNOSUPPORT;
1206 	if (!pf)
1207 		goto out_release;
1208 
1209 	/*
1210 	 * We will call the ->create function, that possibly is in a loadable
1211 	 * module, so we have to bump that loadable module refcnt first.
1212 	 */
1213 	if (!try_module_get(pf->owner))
1214 		goto out_release;
1215 
1216 	/* Now protected by module ref count */
1217 	rcu_read_unlock();
1218 
1219 	err = pf->create(net, sock, protocol);
1220 	if (err < 0)
1221 		goto out_module_put;
1222 
1223 	/*
1224 	 * Now to bump the refcnt of the [loadable] module that owns this
1225 	 * socket at sock_release time we decrement its refcnt.
1226 	 */
1227 	if (!try_module_get(sock->ops->owner))
1228 		goto out_module_busy;
1229 
1230 	/*
1231 	 * Now that we're done with the ->create function, the [loadable]
1232 	 * module can have its refcnt decremented
1233 	 */
1234 	module_put(pf->owner);
1235 	err = security_socket_post_create(sock, family, type, protocol, kern);
1236 	if (err)
1237 		goto out_sock_release;
1238 	*res = sock;
1239 
1240 	return 0;
1241 
1242 out_module_busy:
1243 	err = -EAFNOSUPPORT;
1244 out_module_put:
1245 	sock->ops = NULL;
1246 	module_put(pf->owner);
1247 out_sock_release:
1248 	sock_release(sock);
1249 	return err;
1250 
1251 out_release:
1252 	rcu_read_unlock();
1253 	goto out_sock_release;
1254 }
1255 
1256 int sock_create(int family, int type, int protocol, struct socket **res)
1257 {
1258 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1259 }
1260 
1261 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1262 {
1263 	return __sock_create(&init_net, family, type, protocol, res, 1);
1264 }
1265 
1266 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1267 {
1268 	int retval;
1269 	struct socket *sock;
1270 	int flags;
1271 
1272 	/* Check the SOCK_* constants for consistency.  */
1273 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1274 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1275 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1276 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1277 
1278 	flags = type & ~SOCK_TYPE_MASK;
1279 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1280 		return -EINVAL;
1281 	type &= SOCK_TYPE_MASK;
1282 
1283 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1284 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1285 
1286 	retval = sock_create(family, type, protocol, &sock);
1287 	if (retval < 0)
1288 		goto out;
1289 
1290 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1291 	if (retval < 0)
1292 		goto out_release;
1293 
1294 out:
1295 	/* It may be already another descriptor 8) Not kernel problem. */
1296 	return retval;
1297 
1298 out_release:
1299 	sock_release(sock);
1300 	return retval;
1301 }
1302 
1303 /*
1304  *	Create a pair of connected sockets.
1305  */
1306 
1307 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1308 		int __user *, usockvec)
1309 {
1310 	struct socket *sock1, *sock2;
1311 	int fd1, fd2, err;
1312 	struct file *newfile1, *newfile2;
1313 	int flags;
1314 
1315 	flags = type & ~SOCK_TYPE_MASK;
1316 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1317 		return -EINVAL;
1318 	type &= SOCK_TYPE_MASK;
1319 
1320 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1321 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1322 
1323 	/*
1324 	 * Obtain the first socket and check if the underlying protocol
1325 	 * supports the socketpair call.
1326 	 */
1327 
1328 	err = sock_create(family, type, protocol, &sock1);
1329 	if (err < 0)
1330 		goto out;
1331 
1332 	err = sock_create(family, type, protocol, &sock2);
1333 	if (err < 0)
1334 		goto out_release_1;
1335 
1336 	err = sock1->ops->socketpair(sock1, sock2);
1337 	if (err < 0)
1338 		goto out_release_both;
1339 
1340 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1341 	if (unlikely(fd1 < 0)) {
1342 		err = fd1;
1343 		goto out_release_both;
1344 	}
1345 
1346 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1347 	if (unlikely(fd2 < 0)) {
1348 		err = fd2;
1349 		put_filp(newfile1);
1350 		put_unused_fd(fd1);
1351 		goto out_release_both;
1352 	}
1353 
1354 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1355 	if (unlikely(err < 0)) {
1356 		goto out_fd2;
1357 	}
1358 
1359 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1360 	if (unlikely(err < 0)) {
1361 		fput(newfile1);
1362 		goto out_fd1;
1363 	}
1364 
1365 	audit_fd_pair(fd1, fd2);
1366 	fd_install(fd1, newfile1);
1367 	fd_install(fd2, newfile2);
1368 	/* fd1 and fd2 may be already another descriptors.
1369 	 * Not kernel problem.
1370 	 */
1371 
1372 	err = put_user(fd1, &usockvec[0]);
1373 	if (!err)
1374 		err = put_user(fd2, &usockvec[1]);
1375 	if (!err)
1376 		return 0;
1377 
1378 	sys_close(fd2);
1379 	sys_close(fd1);
1380 	return err;
1381 
1382 out_release_both:
1383 	sock_release(sock2);
1384 out_release_1:
1385 	sock_release(sock1);
1386 out:
1387 	return err;
1388 
1389 out_fd2:
1390 	put_filp(newfile1);
1391 	sock_release(sock1);
1392 out_fd1:
1393 	put_filp(newfile2);
1394 	sock_release(sock2);
1395 	put_unused_fd(fd1);
1396 	put_unused_fd(fd2);
1397 	goto out;
1398 }
1399 
1400 /*
1401  *	Bind a name to a socket. Nothing much to do here since it's
1402  *	the protocol's responsibility to handle the local address.
1403  *
1404  *	We move the socket address to kernel space before we call
1405  *	the protocol layer (having also checked the address is ok).
1406  */
1407 
1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 {
1410 	struct socket *sock;
1411 	struct sockaddr_storage address;
1412 	int err, fput_needed;
1413 
1414 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 	if (sock) {
1416 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1417 		if (err >= 0) {
1418 			err = security_socket_bind(sock,
1419 						   (struct sockaddr *)&address,
1420 						   addrlen);
1421 			if (!err)
1422 				err = sock->ops->bind(sock,
1423 						      (struct sockaddr *)
1424 						      &address, addrlen);
1425 		}
1426 		fput_light(sock->file, fput_needed);
1427 	}
1428 	return err;
1429 }
1430 
1431 /*
1432  *	Perform a listen. Basically, we allow the protocol to do anything
1433  *	necessary for a listen, and if that works, we mark the socket as
1434  *	ready for listening.
1435  */
1436 
1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 {
1439 	struct socket *sock;
1440 	int err, fput_needed;
1441 	int somaxconn;
1442 
1443 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 	if (sock) {
1445 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1446 		if ((unsigned)backlog > somaxconn)
1447 			backlog = somaxconn;
1448 
1449 		err = security_socket_listen(sock, backlog);
1450 		if (!err)
1451 			err = sock->ops->listen(sock, backlog);
1452 
1453 		fput_light(sock->file, fput_needed);
1454 	}
1455 	return err;
1456 }
1457 
1458 /*
1459  *	For accept, we attempt to create a new socket, set up the link
1460  *	with the client, wake up the client, then return the new
1461  *	connected fd. We collect the address of the connector in kernel
1462  *	space and move it to user at the very end. This is unclean because
1463  *	we open the socket then return an error.
1464  *
1465  *	1003.1g adds the ability to recvmsg() to query connection pending
1466  *	status to recvmsg. We need to add that support in a way thats
1467  *	clean when we restucture accept also.
1468  */
1469 
1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1471 		int __user *, upeer_addrlen, int, flags)
1472 {
1473 	struct socket *sock, *newsock;
1474 	struct file *newfile;
1475 	int err, len, newfd, fput_needed;
1476 	struct sockaddr_storage address;
1477 
1478 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1479 		return -EINVAL;
1480 
1481 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1482 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483 
1484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 	if (!sock)
1486 		goto out;
1487 
1488 	err = -ENFILE;
1489 	if (!(newsock = sock_alloc()))
1490 		goto out_put;
1491 
1492 	newsock->type = sock->type;
1493 	newsock->ops = sock->ops;
1494 
1495 	/*
1496 	 * We don't need try_module_get here, as the listening socket (sock)
1497 	 * has the protocol module (sock->ops->owner) held.
1498 	 */
1499 	__module_get(newsock->ops->owner);
1500 
1501 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1502 	if (unlikely(newfd < 0)) {
1503 		err = newfd;
1504 		sock_release(newsock);
1505 		goto out_put;
1506 	}
1507 
1508 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1509 	if (err < 0)
1510 		goto out_fd_simple;
1511 
1512 	err = security_socket_accept(sock, newsock);
1513 	if (err)
1514 		goto out_fd;
1515 
1516 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1517 	if (err < 0)
1518 		goto out_fd;
1519 
1520 	if (upeer_sockaddr) {
1521 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1522 					  &len, 2) < 0) {
1523 			err = -ECONNABORTED;
1524 			goto out_fd;
1525 		}
1526 		err = move_addr_to_user((struct sockaddr *)&address,
1527 					len, upeer_sockaddr, upeer_addrlen);
1528 		if (err < 0)
1529 			goto out_fd;
1530 	}
1531 
1532 	/* File flags are not inherited via accept() unlike another OSes. */
1533 
1534 	fd_install(newfd, newfile);
1535 	err = newfd;
1536 
1537 out_put:
1538 	fput_light(sock->file, fput_needed);
1539 out:
1540 	return err;
1541 out_fd_simple:
1542 	sock_release(newsock);
1543 	put_filp(newfile);
1544 	put_unused_fd(newfd);
1545 	goto out_put;
1546 out_fd:
1547 	fput(newfile);
1548 	put_unused_fd(newfd);
1549 	goto out_put;
1550 }
1551 
1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1553 		int __user *, upeer_addrlen)
1554 {
1555 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1556 }
1557 
1558 /*
1559  *	Attempt to connect to a socket with the server address.  The address
1560  *	is in user space so we verify it is OK and move it to kernel space.
1561  *
1562  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1563  *	break bindings
1564  *
1565  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566  *	other SEQPACKET protocols that take time to connect() as it doesn't
1567  *	include the -EINPROGRESS status for such sockets.
1568  */
1569 
1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1571 		int, addrlen)
1572 {
1573 	struct socket *sock;
1574 	struct sockaddr_storage address;
1575 	int err, fput_needed;
1576 
1577 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 	if (!sock)
1579 		goto out;
1580 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1581 	if (err < 0)
1582 		goto out_put;
1583 
1584 	err =
1585 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1586 	if (err)
1587 		goto out_put;
1588 
1589 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1590 				 sock->file->f_flags);
1591 out_put:
1592 	fput_light(sock->file, fput_needed);
1593 out:
1594 	return err;
1595 }
1596 
1597 /*
1598  *	Get the local address ('name') of a socket object. Move the obtained
1599  *	name to user space.
1600  */
1601 
1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1603 		int __user *, usockaddr_len)
1604 {
1605 	struct socket *sock;
1606 	struct sockaddr_storage address;
1607 	int len, err, fput_needed;
1608 
1609 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 	if (!sock)
1611 		goto out;
1612 
1613 	err = security_socket_getsockname(sock);
1614 	if (err)
1615 		goto out_put;
1616 
1617 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1618 	if (err)
1619 		goto out_put;
1620 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1621 
1622 out_put:
1623 	fput_light(sock->file, fput_needed);
1624 out:
1625 	return err;
1626 }
1627 
1628 /*
1629  *	Get the remote address ('name') of a socket object. Move the obtained
1630  *	name to user space.
1631  */
1632 
1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1634 		int __user *, usockaddr_len)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int len, err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock != NULL) {
1642 		err = security_socket_getpeername(sock);
1643 		if (err) {
1644 			fput_light(sock->file, fput_needed);
1645 			return err;
1646 		}
1647 
1648 		err =
1649 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1650 				       1);
1651 		if (!err)
1652 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1653 						usockaddr_len);
1654 		fput_light(sock->file, fput_needed);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Send a datagram to a given address. We move the address into kernel
1661  *	space and check the user space data area is readable before invoking
1662  *	the protocol.
1663  */
1664 
1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1666 		unsigned, flags, struct sockaddr __user *, addr,
1667 		int, addr_len)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err;
1672 	struct msghdr msg;
1673 	struct iovec iov;
1674 	int fput_needed;
1675 
1676 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1677 	if (!sock)
1678 		goto out;
1679 
1680 	iov.iov_base = buff;
1681 	iov.iov_len = len;
1682 	msg.msg_name = NULL;
1683 	msg.msg_iov = &iov;
1684 	msg.msg_iovlen = 1;
1685 	msg.msg_control = NULL;
1686 	msg.msg_controllen = 0;
1687 	msg.msg_namelen = 0;
1688 	if (addr) {
1689 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1690 		if (err < 0)
1691 			goto out_put;
1692 		msg.msg_name = (struct sockaddr *)&address;
1693 		msg.msg_namelen = addr_len;
1694 	}
1695 	if (sock->file->f_flags & O_NONBLOCK)
1696 		flags |= MSG_DONTWAIT;
1697 	msg.msg_flags = flags;
1698 	err = sock_sendmsg(sock, &msg, len);
1699 
1700 out_put:
1701 	fput_light(sock->file, fput_needed);
1702 out:
1703 	return err;
1704 }
1705 
1706 /*
1707  *	Send a datagram down a socket.
1708  */
1709 
1710 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1711 		unsigned, flags)
1712 {
1713 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1714 }
1715 
1716 /*
1717  *	Receive a frame from the socket and optionally record the address of the
1718  *	sender. We verify the buffers are writable and if needed move the
1719  *	sender address from kernel to user space.
1720  */
1721 
1722 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1723 		unsigned, flags, struct sockaddr __user *, addr,
1724 		int __user *, addr_len)
1725 {
1726 	struct socket *sock;
1727 	struct iovec iov;
1728 	struct msghdr msg;
1729 	struct sockaddr_storage address;
1730 	int err, err2;
1731 	int fput_needed;
1732 
1733 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 	if (!sock)
1735 		goto out;
1736 
1737 	msg.msg_control = NULL;
1738 	msg.msg_controllen = 0;
1739 	msg.msg_iovlen = 1;
1740 	msg.msg_iov = &iov;
1741 	iov.iov_len = size;
1742 	iov.iov_base = ubuf;
1743 	msg.msg_name = (struct sockaddr *)&address;
1744 	msg.msg_namelen = sizeof(address);
1745 	if (sock->file->f_flags & O_NONBLOCK)
1746 		flags |= MSG_DONTWAIT;
1747 	err = sock_recvmsg(sock, &msg, size, flags);
1748 
1749 	if (err >= 0 && addr != NULL) {
1750 		err2 = move_addr_to_user((struct sockaddr *)&address,
1751 					 msg.msg_namelen, addr, addr_len);
1752 		if (err2 < 0)
1753 			err = err2;
1754 	}
1755 
1756 	fput_light(sock->file, fput_needed);
1757 out:
1758 	return err;
1759 }
1760 
1761 /*
1762  *	Receive a datagram from a socket.
1763  */
1764 
1765 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1766 			 unsigned flags)
1767 {
1768 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1769 }
1770 
1771 /*
1772  *	Set a socket option. Because we don't know the option lengths we have
1773  *	to pass the user mode parameter for the protocols to sort out.
1774  */
1775 
1776 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1777 		char __user *, optval, int, optlen)
1778 {
1779 	int err, fput_needed;
1780 	struct socket *sock;
1781 
1782 	if (optlen < 0)
1783 		return -EINVAL;
1784 
1785 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1786 	if (sock != NULL) {
1787 		err = security_socket_setsockopt(sock, level, optname);
1788 		if (err)
1789 			goto out_put;
1790 
1791 		if (level == SOL_SOCKET)
1792 			err =
1793 			    sock_setsockopt(sock, level, optname, optval,
1794 					    optlen);
1795 		else
1796 			err =
1797 			    sock->ops->setsockopt(sock, level, optname, optval,
1798 						  optlen);
1799 out_put:
1800 		fput_light(sock->file, fput_needed);
1801 	}
1802 	return err;
1803 }
1804 
1805 /*
1806  *	Get a socket option. Because we don't know the option lengths we have
1807  *	to pass a user mode parameter for the protocols to sort out.
1808  */
1809 
1810 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1811 		char __user *, optval, int __user *, optlen)
1812 {
1813 	int err, fput_needed;
1814 	struct socket *sock;
1815 
1816 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 	if (sock != NULL) {
1818 		err = security_socket_getsockopt(sock, level, optname);
1819 		if (err)
1820 			goto out_put;
1821 
1822 		if (level == SOL_SOCKET)
1823 			err =
1824 			    sock_getsockopt(sock, level, optname, optval,
1825 					    optlen);
1826 		else
1827 			err =
1828 			    sock->ops->getsockopt(sock, level, optname, optval,
1829 						  optlen);
1830 out_put:
1831 		fput_light(sock->file, fput_needed);
1832 	}
1833 	return err;
1834 }
1835 
1836 /*
1837  *	Shutdown a socket.
1838  */
1839 
1840 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1841 {
1842 	int err, fput_needed;
1843 	struct socket *sock;
1844 
1845 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1846 	if (sock != NULL) {
1847 		err = security_socket_shutdown(sock, how);
1848 		if (!err)
1849 			err = sock->ops->shutdown(sock, how);
1850 		fput_light(sock->file, fput_needed);
1851 	}
1852 	return err;
1853 }
1854 
1855 /* A couple of helpful macros for getting the address of the 32/64 bit
1856  * fields which are the same type (int / unsigned) on our platforms.
1857  */
1858 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1859 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1860 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1861 
1862 /*
1863  *	BSD sendmsg interface
1864  */
1865 
1866 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1867 {
1868 	struct compat_msghdr __user *msg_compat =
1869 	    (struct compat_msghdr __user *)msg;
1870 	struct socket *sock;
1871 	struct sockaddr_storage address;
1872 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1873 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1874 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1875 	/* 20 is size of ipv6_pktinfo */
1876 	unsigned char *ctl_buf = ctl;
1877 	struct msghdr msg_sys;
1878 	int err, ctl_len, iov_size, total_len;
1879 	int fput_needed;
1880 
1881 	err = -EFAULT;
1882 	if (MSG_CMSG_COMPAT & flags) {
1883 		if (get_compat_msghdr(&msg_sys, msg_compat))
1884 			return -EFAULT;
1885 	}
1886 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1887 		return -EFAULT;
1888 
1889 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 	if (!sock)
1891 		goto out;
1892 
1893 	/* do not move before msg_sys is valid */
1894 	err = -EMSGSIZE;
1895 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1896 		goto out_put;
1897 
1898 	/* Check whether to allocate the iovec area */
1899 	err = -ENOMEM;
1900 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1901 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1902 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1903 		if (!iov)
1904 			goto out_put;
1905 	}
1906 
1907 	/* This will also move the address data into kernel space */
1908 	if (MSG_CMSG_COMPAT & flags) {
1909 		err = verify_compat_iovec(&msg_sys, iov,
1910 					  (struct sockaddr *)&address,
1911 					  VERIFY_READ);
1912 	} else
1913 		err = verify_iovec(&msg_sys, iov,
1914 				   (struct sockaddr *)&address,
1915 				   VERIFY_READ);
1916 	if (err < 0)
1917 		goto out_freeiov;
1918 	total_len = err;
1919 
1920 	err = -ENOBUFS;
1921 
1922 	if (msg_sys.msg_controllen > INT_MAX)
1923 		goto out_freeiov;
1924 	ctl_len = msg_sys.msg_controllen;
1925 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1926 		err =
1927 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1928 						     sizeof(ctl));
1929 		if (err)
1930 			goto out_freeiov;
1931 		ctl_buf = msg_sys.msg_control;
1932 		ctl_len = msg_sys.msg_controllen;
1933 	} else if (ctl_len) {
1934 		if (ctl_len > sizeof(ctl)) {
1935 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1936 			if (ctl_buf == NULL)
1937 				goto out_freeiov;
1938 		}
1939 		err = -EFAULT;
1940 		/*
1941 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1942 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1943 		 * checking falls down on this.
1944 		 */
1945 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1946 				   ctl_len))
1947 			goto out_freectl;
1948 		msg_sys.msg_control = ctl_buf;
1949 	}
1950 	msg_sys.msg_flags = flags;
1951 
1952 	if (sock->file->f_flags & O_NONBLOCK)
1953 		msg_sys.msg_flags |= MSG_DONTWAIT;
1954 	err = sock_sendmsg(sock, &msg_sys, total_len);
1955 
1956 out_freectl:
1957 	if (ctl_buf != ctl)
1958 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1959 out_freeiov:
1960 	if (iov != iovstack)
1961 		sock_kfree_s(sock->sk, iov, iov_size);
1962 out_put:
1963 	fput_light(sock->file, fput_needed);
1964 out:
1965 	return err;
1966 }
1967 
1968 /*
1969  *	BSD recvmsg interface
1970  */
1971 
1972 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1973 		unsigned int, flags)
1974 {
1975 	struct compat_msghdr __user *msg_compat =
1976 	    (struct compat_msghdr __user *)msg;
1977 	struct socket *sock;
1978 	struct iovec iovstack[UIO_FASTIOV];
1979 	struct iovec *iov = iovstack;
1980 	struct msghdr msg_sys;
1981 	unsigned long cmsg_ptr;
1982 	int err, iov_size, total_len, len;
1983 	int fput_needed;
1984 
1985 	/* kernel mode address */
1986 	struct sockaddr_storage addr;
1987 
1988 	/* user mode address pointers */
1989 	struct sockaddr __user *uaddr;
1990 	int __user *uaddr_len;
1991 
1992 	if (MSG_CMSG_COMPAT & flags) {
1993 		if (get_compat_msghdr(&msg_sys, msg_compat))
1994 			return -EFAULT;
1995 	}
1996 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1997 		return -EFAULT;
1998 
1999 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2000 	if (!sock)
2001 		goto out;
2002 
2003 	err = -EMSGSIZE;
2004 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
2005 		goto out_put;
2006 
2007 	/* Check whether to allocate the iovec area */
2008 	err = -ENOMEM;
2009 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2010 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2011 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2012 		if (!iov)
2013 			goto out_put;
2014 	}
2015 
2016 	/*
2017 	 *      Save the user-mode address (verify_iovec will change the
2018 	 *      kernel msghdr to use the kernel address space)
2019 	 */
2020 
2021 	uaddr = (__force void __user *)msg_sys.msg_name;
2022 	uaddr_len = COMPAT_NAMELEN(msg);
2023 	if (MSG_CMSG_COMPAT & flags) {
2024 		err = verify_compat_iovec(&msg_sys, iov,
2025 					  (struct sockaddr *)&addr,
2026 					  VERIFY_WRITE);
2027 	} else
2028 		err = verify_iovec(&msg_sys, iov,
2029 				   (struct sockaddr *)&addr,
2030 				   VERIFY_WRITE);
2031 	if (err < 0)
2032 		goto out_freeiov;
2033 	total_len = err;
2034 
2035 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
2036 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2037 
2038 	if (sock->file->f_flags & O_NONBLOCK)
2039 		flags |= MSG_DONTWAIT;
2040 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2041 	if (err < 0)
2042 		goto out_freeiov;
2043 	len = err;
2044 
2045 	if (uaddr != NULL) {
2046 		err = move_addr_to_user((struct sockaddr *)&addr,
2047 					msg_sys.msg_namelen, uaddr,
2048 					uaddr_len);
2049 		if (err < 0)
2050 			goto out_freeiov;
2051 	}
2052 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2053 			 COMPAT_FLAGS(msg));
2054 	if (err)
2055 		goto out_freeiov;
2056 	if (MSG_CMSG_COMPAT & flags)
2057 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2058 				 &msg_compat->msg_controllen);
2059 	else
2060 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2061 				 &msg->msg_controllen);
2062 	if (err)
2063 		goto out_freeiov;
2064 	err = len;
2065 
2066 out_freeiov:
2067 	if (iov != iovstack)
2068 		sock_kfree_s(sock->sk, iov, iov_size);
2069 out_put:
2070 	fput_light(sock->file, fput_needed);
2071 out:
2072 	return err;
2073 }
2074 
2075 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2076 
2077 /* Argument list sizes for sys_socketcall */
2078 #define AL(x) ((x) * sizeof(unsigned long))
2079 static const unsigned char nargs[19]={
2080 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2081 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2082 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2083 	AL(4)
2084 };
2085 
2086 #undef AL
2087 
2088 /*
2089  *	System call vectors.
2090  *
2091  *	Argument checking cleaned up. Saved 20% in size.
2092  *  This function doesn't need to set the kernel lock because
2093  *  it is set by the callees.
2094  */
2095 
2096 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2097 {
2098 	unsigned long a[6];
2099 	unsigned long a0, a1;
2100 	int err;
2101 	unsigned int len;
2102 
2103 	if (call < 1 || call > SYS_ACCEPT4)
2104 		return -EINVAL;
2105 
2106 	len = nargs[call];
2107 	if (len > sizeof(a))
2108 		return -EINVAL;
2109 
2110 	/* copy_from_user should be SMP safe. */
2111 	if (copy_from_user(a, args, len))
2112 		return -EFAULT;
2113 
2114 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2115 
2116 	a0 = a[0];
2117 	a1 = a[1];
2118 
2119 	switch (call) {
2120 	case SYS_SOCKET:
2121 		err = sys_socket(a0, a1, a[2]);
2122 		break;
2123 	case SYS_BIND:
2124 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2125 		break;
2126 	case SYS_CONNECT:
2127 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2128 		break;
2129 	case SYS_LISTEN:
2130 		err = sys_listen(a0, a1);
2131 		break;
2132 	case SYS_ACCEPT:
2133 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2134 				  (int __user *)a[2], 0);
2135 		break;
2136 	case SYS_GETSOCKNAME:
2137 		err =
2138 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2139 				    (int __user *)a[2]);
2140 		break;
2141 	case SYS_GETPEERNAME:
2142 		err =
2143 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2144 				    (int __user *)a[2]);
2145 		break;
2146 	case SYS_SOCKETPAIR:
2147 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2148 		break;
2149 	case SYS_SEND:
2150 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2151 		break;
2152 	case SYS_SENDTO:
2153 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2154 				 (struct sockaddr __user *)a[4], a[5]);
2155 		break;
2156 	case SYS_RECV:
2157 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2158 		break;
2159 	case SYS_RECVFROM:
2160 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2161 				   (struct sockaddr __user *)a[4],
2162 				   (int __user *)a[5]);
2163 		break;
2164 	case SYS_SHUTDOWN:
2165 		err = sys_shutdown(a0, a1);
2166 		break;
2167 	case SYS_SETSOCKOPT:
2168 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2169 		break;
2170 	case SYS_GETSOCKOPT:
2171 		err =
2172 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2173 				   (int __user *)a[4]);
2174 		break;
2175 	case SYS_SENDMSG:
2176 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2177 		break;
2178 	case SYS_RECVMSG:
2179 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2180 		break;
2181 	case SYS_ACCEPT4:
2182 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2183 				  (int __user *)a[2], a[3]);
2184 		break;
2185 	default:
2186 		err = -EINVAL;
2187 		break;
2188 	}
2189 	return err;
2190 }
2191 
2192 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2193 
2194 /**
2195  *	sock_register - add a socket protocol handler
2196  *	@ops: description of protocol
2197  *
2198  *	This function is called by a protocol handler that wants to
2199  *	advertise its address family, and have it linked into the
2200  *	socket interface. The value ops->family coresponds to the
2201  *	socket system call protocol family.
2202  */
2203 int sock_register(const struct net_proto_family *ops)
2204 {
2205 	int err;
2206 
2207 	if (ops->family >= NPROTO) {
2208 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2209 		       NPROTO);
2210 		return -ENOBUFS;
2211 	}
2212 
2213 	spin_lock(&net_family_lock);
2214 	if (net_families[ops->family])
2215 		err = -EEXIST;
2216 	else {
2217 		net_families[ops->family] = ops;
2218 		err = 0;
2219 	}
2220 	spin_unlock(&net_family_lock);
2221 
2222 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2223 	return err;
2224 }
2225 
2226 /**
2227  *	sock_unregister - remove a protocol handler
2228  *	@family: protocol family to remove
2229  *
2230  *	This function is called by a protocol handler that wants to
2231  *	remove its address family, and have it unlinked from the
2232  *	new socket creation.
2233  *
2234  *	If protocol handler is a module, then it can use module reference
2235  *	counts to protect against new references. If protocol handler is not
2236  *	a module then it needs to provide its own protection in
2237  *	the ops->create routine.
2238  */
2239 void sock_unregister(int family)
2240 {
2241 	BUG_ON(family < 0 || family >= NPROTO);
2242 
2243 	spin_lock(&net_family_lock);
2244 	net_families[family] = NULL;
2245 	spin_unlock(&net_family_lock);
2246 
2247 	synchronize_rcu();
2248 
2249 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2250 }
2251 
2252 static int __init sock_init(void)
2253 {
2254 	/*
2255 	 *      Initialize sock SLAB cache.
2256 	 */
2257 
2258 	sk_init();
2259 
2260 	/*
2261 	 *      Initialize skbuff SLAB cache
2262 	 */
2263 	skb_init();
2264 
2265 	/*
2266 	 *      Initialize the protocols module.
2267 	 */
2268 
2269 	init_inodecache();
2270 	register_filesystem(&sock_fs_type);
2271 	sock_mnt = kern_mount(&sock_fs_type);
2272 
2273 	/* The real protocol initialization is performed in later initcalls.
2274 	 */
2275 
2276 #ifdef CONFIG_NETFILTER
2277 	netfilter_init();
2278 #endif
2279 
2280 	return 0;
2281 }
2282 
2283 core_initcall(sock_init);	/* early initcall */
2284 
2285 #ifdef CONFIG_PROC_FS
2286 void socket_seq_show(struct seq_file *seq)
2287 {
2288 	int cpu;
2289 	int counter = 0;
2290 
2291 	for_each_possible_cpu(cpu)
2292 	    counter += per_cpu(sockets_in_use, cpu);
2293 
2294 	/* It can be negative, by the way. 8) */
2295 	if (counter < 0)
2296 		counter = 0;
2297 
2298 	seq_printf(seq, "sockets: used %d\n", counter);
2299 }
2300 #endif				/* CONFIG_PROC_FS */
2301 
2302 #ifdef CONFIG_COMPAT
2303 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2304 			      unsigned long arg)
2305 {
2306 	struct socket *sock = file->private_data;
2307 	int ret = -ENOIOCTLCMD;
2308 	struct sock *sk;
2309 	struct net *net;
2310 
2311 	sk = sock->sk;
2312 	net = sock_net(sk);
2313 
2314 	if (sock->ops->compat_ioctl)
2315 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2316 
2317 	if (ret == -ENOIOCTLCMD &&
2318 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2319 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2320 
2321 	return ret;
2322 }
2323 #endif
2324 
2325 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2326 {
2327 	return sock->ops->bind(sock, addr, addrlen);
2328 }
2329 
2330 int kernel_listen(struct socket *sock, int backlog)
2331 {
2332 	return sock->ops->listen(sock, backlog);
2333 }
2334 
2335 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2336 {
2337 	struct sock *sk = sock->sk;
2338 	int err;
2339 
2340 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2341 			       newsock);
2342 	if (err < 0)
2343 		goto done;
2344 
2345 	err = sock->ops->accept(sock, *newsock, flags);
2346 	if (err < 0) {
2347 		sock_release(*newsock);
2348 		*newsock = NULL;
2349 		goto done;
2350 	}
2351 
2352 	(*newsock)->ops = sock->ops;
2353 	__module_get((*newsock)->ops->owner);
2354 
2355 done:
2356 	return err;
2357 }
2358 
2359 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2360 		   int flags)
2361 {
2362 	return sock->ops->connect(sock, addr, addrlen, flags);
2363 }
2364 
2365 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2366 			 int *addrlen)
2367 {
2368 	return sock->ops->getname(sock, addr, addrlen, 0);
2369 }
2370 
2371 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2372 			 int *addrlen)
2373 {
2374 	return sock->ops->getname(sock, addr, addrlen, 1);
2375 }
2376 
2377 int kernel_getsockopt(struct socket *sock, int level, int optname,
2378 			char *optval, int *optlen)
2379 {
2380 	mm_segment_t oldfs = get_fs();
2381 	int err;
2382 
2383 	set_fs(KERNEL_DS);
2384 	if (level == SOL_SOCKET)
2385 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2386 	else
2387 		err = sock->ops->getsockopt(sock, level, optname, optval,
2388 					    optlen);
2389 	set_fs(oldfs);
2390 	return err;
2391 }
2392 
2393 int kernel_setsockopt(struct socket *sock, int level, int optname,
2394 			char *optval, unsigned int optlen)
2395 {
2396 	mm_segment_t oldfs = get_fs();
2397 	int err;
2398 
2399 	set_fs(KERNEL_DS);
2400 	if (level == SOL_SOCKET)
2401 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2402 	else
2403 		err = sock->ops->setsockopt(sock, level, optname, optval,
2404 					    optlen);
2405 	set_fs(oldfs);
2406 	return err;
2407 }
2408 
2409 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2410 		    size_t size, int flags)
2411 {
2412 	if (sock->ops->sendpage)
2413 		return sock->ops->sendpage(sock, page, offset, size, flags);
2414 
2415 	return sock_no_sendpage(sock, page, offset, size, flags);
2416 }
2417 
2418 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2419 {
2420 	mm_segment_t oldfs = get_fs();
2421 	int err;
2422 
2423 	set_fs(KERNEL_DS);
2424 	err = sock->ops->ioctl(sock, cmd, arg);
2425 	set_fs(oldfs);
2426 
2427 	return err;
2428 }
2429 
2430 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2431 {
2432 	return sock->ops->shutdown(sock, how);
2433 }
2434 
2435 EXPORT_SYMBOL(sock_create);
2436 EXPORT_SYMBOL(sock_create_kern);
2437 EXPORT_SYMBOL(sock_create_lite);
2438 EXPORT_SYMBOL(sock_map_fd);
2439 EXPORT_SYMBOL(sock_recvmsg);
2440 EXPORT_SYMBOL(sock_register);
2441 EXPORT_SYMBOL(sock_release);
2442 EXPORT_SYMBOL(sock_sendmsg);
2443 EXPORT_SYMBOL(sock_unregister);
2444 EXPORT_SYMBOL(sock_wake_async);
2445 EXPORT_SYMBOL(sockfd_lookup);
2446 EXPORT_SYMBOL(kernel_sendmsg);
2447 EXPORT_SYMBOL(kernel_recvmsg);
2448 EXPORT_SYMBOL(kernel_bind);
2449 EXPORT_SYMBOL(kernel_listen);
2450 EXPORT_SYMBOL(kernel_accept);
2451 EXPORT_SYMBOL(kernel_connect);
2452 EXPORT_SYMBOL(kernel_getsockname);
2453 EXPORT_SYMBOL(kernel_getpeername);
2454 EXPORT_SYMBOL(kernel_getsockopt);
2455 EXPORT_SYMBOL(kernel_setsockopt);
2456 EXPORT_SYMBOL(kernel_sendpage);
2457 EXPORT_SYMBOL(kernel_sock_ioctl);
2458 EXPORT_SYMBOL(kernel_sock_shutdown);
2459