1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 91 #include <asm/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 102 unsigned long nr_segs, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 104 unsigned long nr_segs, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 111 #ifdef CONFIG_COMPAT 112 static long compat_sock_ioctl(struct file *file, 113 unsigned int cmd, unsigned long arg); 114 #endif 115 static int sock_fasync(int fd, struct file *filp, int on); 116 static ssize_t sock_sendpage(struct file *file, struct page *page, 117 int offset, size_t size, loff_t *ppos, int more); 118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 119 struct pipe_inode_info *pipe, size_t len, 120 unsigned int flags); 121 122 /* 123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 124 * in the operation structures but are done directly via the socketcall() multiplexor. 125 */ 126 127 static const struct file_operations socket_file_ops = { 128 .owner = THIS_MODULE, 129 .llseek = no_llseek, 130 .aio_read = sock_aio_read, 131 .aio_write = sock_aio_write, 132 .poll = sock_poll, 133 .unlocked_ioctl = sock_ioctl, 134 #ifdef CONFIG_COMPAT 135 .compat_ioctl = compat_sock_ioctl, 136 #endif 137 .mmap = sock_mmap, 138 .open = sock_no_open, /* special open code to disallow open via /proc */ 139 .release = sock_close, 140 .fasync = sock_fasync, 141 .sendpage = sock_sendpage, 142 .splice_write = generic_splice_sendpage, 143 .splice_read = sock_splice_read, 144 }; 145 146 /* 147 * The protocol list. Each protocol is registered in here. 148 */ 149 150 static DEFINE_SPINLOCK(net_family_lock); 151 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 152 153 /* 154 * Statistics counters of the socket lists 155 */ 156 157 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 158 159 /* 160 * Support routines. 161 * Move socket addresses back and forth across the kernel/user 162 * divide and look after the messy bits. 163 */ 164 165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 166 16 for IP, 16 for IPX, 167 24 for IPv6, 168 about 80 for AX.25 169 must be at least one bigger than 170 the AF_UNIX size (see net/unix/af_unix.c 171 :unix_mkname()). 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 214 int __user *ulen) 215 { 216 int err; 217 int len; 218 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0 || len > sizeof(struct sockaddr_storage)) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 static struct kmem_cache *sock_inode_cachep __read_mostly; 240 241 static struct inode *sock_alloc_inode(struct super_block *sb) 242 { 243 struct socket_alloc *ei; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 init_waitqueue_head(&ei->socket.wait); 249 250 ei->socket.fasync_list = NULL; 251 ei->socket.state = SS_UNCONNECTED; 252 ei->socket.flags = 0; 253 ei->socket.ops = NULL; 254 ei->socket.sk = NULL; 255 ei->socket.file = NULL; 256 257 return &ei->vfs_inode; 258 } 259 260 static void sock_destroy_inode(struct inode *inode) 261 { 262 kmem_cache_free(sock_inode_cachep, 263 container_of(inode, struct socket_alloc, vfs_inode)); 264 } 265 266 static void init_once(void *foo) 267 { 268 struct socket_alloc *ei = (struct socket_alloc *)foo; 269 270 inode_init_once(&ei->vfs_inode); 271 } 272 273 static int init_inodecache(void) 274 { 275 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 276 sizeof(struct socket_alloc), 277 0, 278 (SLAB_HWCACHE_ALIGN | 279 SLAB_RECLAIM_ACCOUNT | 280 SLAB_MEM_SPREAD), 281 init_once); 282 if (sock_inode_cachep == NULL) 283 return -ENOMEM; 284 return 0; 285 } 286 287 static const struct super_operations sockfs_ops = { 288 .alloc_inode = sock_alloc_inode, 289 .destroy_inode =sock_destroy_inode, 290 .statfs = simple_statfs, 291 }; 292 293 static int sockfs_get_sb(struct file_system_type *fs_type, 294 int flags, const char *dev_name, void *data, 295 struct vfsmount *mnt) 296 { 297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 298 mnt); 299 } 300 301 static struct vfsmount *sock_mnt __read_mostly; 302 303 static struct file_system_type sock_fs_type = { 304 .name = "sockfs", 305 .get_sb = sockfs_get_sb, 306 .kill_sb = kill_anon_super, 307 }; 308 309 static int sockfs_delete_dentry(struct dentry *dentry) 310 { 311 /* 312 * At creation time, we pretended this dentry was hashed 313 * (by clearing DCACHE_UNHASHED bit in d_flags) 314 * At delete time, we restore the truth : not hashed. 315 * (so that dput() can proceed correctly) 316 */ 317 dentry->d_flags |= DCACHE_UNHASHED; 318 return 0; 319 } 320 321 /* 322 * sockfs_dname() is called from d_path(). 323 */ 324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 325 { 326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 327 dentry->d_inode->i_ino); 328 } 329 330 static const struct dentry_operations sockfs_dentry_operations = { 331 .d_delete = sockfs_delete_dentry, 332 .d_dname = sockfs_dname, 333 }; 334 335 /* 336 * Obtains the first available file descriptor and sets it up for use. 337 * 338 * These functions create file structures and maps them to fd space 339 * of the current process. On success it returns file descriptor 340 * and file struct implicitly stored in sock->file. 341 * Note that another thread may close file descriptor before we return 342 * from this function. We use the fact that now we do not refer 343 * to socket after mapping. If one day we will need it, this 344 * function will increment ref. count on file by 1. 345 * 346 * In any case returned fd MAY BE not valid! 347 * This race condition is unavoidable 348 * with shared fd spaces, we cannot solve it inside kernel, 349 * but we take care of internal coherence yet. 350 */ 351 352 static int sock_alloc_fd(struct file **filep, int flags) 353 { 354 int fd; 355 356 fd = get_unused_fd_flags(flags); 357 if (likely(fd >= 0)) { 358 struct file *file = get_empty_filp(); 359 360 *filep = file; 361 if (unlikely(!file)) { 362 put_unused_fd(fd); 363 return -ENFILE; 364 } 365 } else 366 *filep = NULL; 367 return fd; 368 } 369 370 static int sock_attach_fd(struct socket *sock, struct file *file, int flags) 371 { 372 struct dentry *dentry; 373 struct qstr name = { .name = "" }; 374 375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 376 if (unlikely(!dentry)) 377 return -ENOMEM; 378 379 dentry->d_op = &sockfs_dentry_operations; 380 /* 381 * We dont want to push this dentry into global dentry hash table. 382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 383 * This permits a working /proc/$pid/fd/XXX on sockets 384 */ 385 dentry->d_flags &= ~DCACHE_UNHASHED; 386 d_instantiate(dentry, SOCK_INODE(sock)); 387 388 sock->file = file; 389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 390 &socket_file_ops); 391 SOCK_INODE(sock)->i_fop = &socket_file_ops; 392 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 393 file->f_pos = 0; 394 file->private_data = sock; 395 396 return 0; 397 } 398 399 int sock_map_fd(struct socket *sock, int flags) 400 { 401 struct file *newfile; 402 int fd = sock_alloc_fd(&newfile, flags); 403 404 if (likely(fd >= 0)) { 405 int err = sock_attach_fd(sock, newfile, flags); 406 407 if (unlikely(err < 0)) { 408 put_filp(newfile); 409 put_unused_fd(fd); 410 return err; 411 } 412 fd_install(fd, newfile); 413 } 414 return fd; 415 } 416 417 static struct socket *sock_from_file(struct file *file, int *err) 418 { 419 if (file->f_op == &socket_file_ops) 420 return file->private_data; /* set in sock_map_fd */ 421 422 *err = -ENOTSOCK; 423 return NULL; 424 } 425 426 /** 427 * sockfd_lookup - Go from a file number to its socket slot 428 * @fd: file handle 429 * @err: pointer to an error code return 430 * 431 * The file handle passed in is locked and the socket it is bound 432 * too is returned. If an error occurs the err pointer is overwritten 433 * with a negative errno code and NULL is returned. The function checks 434 * for both invalid handles and passing a handle which is not a socket. 435 * 436 * On a success the socket object pointer is returned. 437 */ 438 439 struct socket *sockfd_lookup(int fd, int *err) 440 { 441 struct file *file; 442 struct socket *sock; 443 444 file = fget(fd); 445 if (!file) { 446 *err = -EBADF; 447 return NULL; 448 } 449 450 sock = sock_from_file(file, err); 451 if (!sock) 452 fput(file); 453 return sock; 454 } 455 456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 457 { 458 struct file *file; 459 struct socket *sock; 460 461 *err = -EBADF; 462 file = fget_light(fd, fput_needed); 463 if (file) { 464 sock = sock_from_file(file, err); 465 if (sock) 466 return sock; 467 fput_light(file, *fput_needed); 468 } 469 return NULL; 470 } 471 472 /** 473 * sock_alloc - allocate a socket 474 * 475 * Allocate a new inode and socket object. The two are bound together 476 * and initialised. The socket is then returned. If we are out of inodes 477 * NULL is returned. 478 */ 479 480 static struct socket *sock_alloc(void) 481 { 482 struct inode *inode; 483 struct socket *sock; 484 485 inode = new_inode(sock_mnt->mnt_sb); 486 if (!inode) 487 return NULL; 488 489 sock = SOCKET_I(inode); 490 491 kmemcheck_annotate_bitfield(sock, type); 492 inode->i_mode = S_IFSOCK | S_IRWXUGO; 493 inode->i_uid = current_fsuid(); 494 inode->i_gid = current_fsgid(); 495 496 percpu_add(sockets_in_use, 1); 497 return sock; 498 } 499 500 /* 501 * In theory you can't get an open on this inode, but /proc provides 502 * a back door. Remember to keep it shut otherwise you'll let the 503 * creepy crawlies in. 504 */ 505 506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 507 { 508 return -ENXIO; 509 } 510 511 const struct file_operations bad_sock_fops = { 512 .owner = THIS_MODULE, 513 .open = sock_no_open, 514 }; 515 516 /** 517 * sock_release - close a socket 518 * @sock: socket to close 519 * 520 * The socket is released from the protocol stack if it has a release 521 * callback, and the inode is then released if the socket is bound to 522 * an inode not a file. 523 */ 524 525 void sock_release(struct socket *sock) 526 { 527 if (sock->ops) { 528 struct module *owner = sock->ops->owner; 529 530 sock->ops->release(sock); 531 sock->ops = NULL; 532 module_put(owner); 533 } 534 535 if (sock->fasync_list) 536 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 537 538 percpu_sub(sockets_in_use, 1); 539 if (!sock->file) { 540 iput(SOCK_INODE(sock)); 541 return; 542 } 543 sock->file = NULL; 544 } 545 546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk, 547 union skb_shared_tx *shtx) 548 { 549 shtx->flags = 0; 550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 551 shtx->hardware = 1; 552 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 553 shtx->software = 1; 554 return 0; 555 } 556 EXPORT_SYMBOL(sock_tx_timestamp); 557 558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 559 struct msghdr *msg, size_t size) 560 { 561 struct sock_iocb *si = kiocb_to_siocb(iocb); 562 int err; 563 564 si->sock = sock; 565 si->scm = NULL; 566 si->msg = msg; 567 si->size = size; 568 569 err = security_socket_sendmsg(sock, msg, size); 570 if (err) 571 return err; 572 573 return sock->ops->sendmsg(iocb, sock, msg, size); 574 } 575 576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 577 { 578 struct kiocb iocb; 579 struct sock_iocb siocb; 580 int ret; 581 582 init_sync_kiocb(&iocb, NULL); 583 iocb.private = &siocb; 584 ret = __sock_sendmsg(&iocb, sock, msg, size); 585 if (-EIOCBQUEUED == ret) 586 ret = wait_on_sync_kiocb(&iocb); 587 return ret; 588 } 589 590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 591 struct kvec *vec, size_t num, size_t size) 592 { 593 mm_segment_t oldfs = get_fs(); 594 int result; 595 596 set_fs(KERNEL_DS); 597 /* 598 * the following is safe, since for compiler definitions of kvec and 599 * iovec are identical, yielding the same in-core layout and alignment 600 */ 601 msg->msg_iov = (struct iovec *)vec; 602 msg->msg_iovlen = num; 603 result = sock_sendmsg(sock, msg, size); 604 set_fs(oldfs); 605 return result; 606 } 607 608 static int ktime2ts(ktime_t kt, struct timespec *ts) 609 { 610 if (kt.tv64) { 611 *ts = ktime_to_timespec(kt); 612 return 1; 613 } else { 614 return 0; 615 } 616 } 617 618 /* 619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 620 */ 621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 622 struct sk_buff *skb) 623 { 624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 625 struct timespec ts[3]; 626 int empty = 1; 627 struct skb_shared_hwtstamps *shhwtstamps = 628 skb_hwtstamps(skb); 629 630 /* Race occurred between timestamp enabling and packet 631 receiving. Fill in the current time for now. */ 632 if (need_software_tstamp && skb->tstamp.tv64 == 0) 633 __net_timestamp(skb); 634 635 if (need_software_tstamp) { 636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 637 struct timeval tv; 638 skb_get_timestamp(skb, &tv); 639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 640 sizeof(tv), &tv); 641 } else { 642 struct timespec ts; 643 skb_get_timestampns(skb, &ts); 644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 645 sizeof(ts), &ts); 646 } 647 } 648 649 650 memset(ts, 0, sizeof(ts)); 651 if (skb->tstamp.tv64 && 652 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 653 skb_get_timestampns(skb, ts + 0); 654 empty = 0; 655 } 656 if (shhwtstamps) { 657 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 658 ktime2ts(shhwtstamps->syststamp, ts + 1)) 659 empty = 0; 660 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 661 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 662 empty = 0; 663 } 664 if (!empty) 665 put_cmsg(msg, SOL_SOCKET, 666 SCM_TIMESTAMPING, sizeof(ts), &ts); 667 } 668 669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 670 671 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 672 struct msghdr *msg, size_t size, int flags) 673 { 674 int err; 675 struct sock_iocb *si = kiocb_to_siocb(iocb); 676 677 si->sock = sock; 678 si->scm = NULL; 679 si->msg = msg; 680 si->size = size; 681 si->flags = flags; 682 683 err = security_socket_recvmsg(sock, msg, size, flags); 684 if (err) 685 return err; 686 687 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 688 } 689 690 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 691 size_t size, int flags) 692 { 693 struct kiocb iocb; 694 struct sock_iocb siocb; 695 int ret; 696 697 init_sync_kiocb(&iocb, NULL); 698 iocb.private = &siocb; 699 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 700 if (-EIOCBQUEUED == ret) 701 ret = wait_on_sync_kiocb(&iocb); 702 return ret; 703 } 704 705 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 706 struct kvec *vec, size_t num, size_t size, int flags) 707 { 708 mm_segment_t oldfs = get_fs(); 709 int result; 710 711 set_fs(KERNEL_DS); 712 /* 713 * the following is safe, since for compiler definitions of kvec and 714 * iovec are identical, yielding the same in-core layout and alignment 715 */ 716 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 717 result = sock_recvmsg(sock, msg, size, flags); 718 set_fs(oldfs); 719 return result; 720 } 721 722 static void sock_aio_dtor(struct kiocb *iocb) 723 { 724 kfree(iocb->private); 725 } 726 727 static ssize_t sock_sendpage(struct file *file, struct page *page, 728 int offset, size_t size, loff_t *ppos, int more) 729 { 730 struct socket *sock; 731 int flags; 732 733 sock = file->private_data; 734 735 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 736 if (more) 737 flags |= MSG_MORE; 738 739 return kernel_sendpage(sock, page, offset, size, flags); 740 } 741 742 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 743 struct pipe_inode_info *pipe, size_t len, 744 unsigned int flags) 745 { 746 struct socket *sock = file->private_data; 747 748 if (unlikely(!sock->ops->splice_read)) 749 return -EINVAL; 750 751 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 752 } 753 754 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 755 struct sock_iocb *siocb) 756 { 757 if (!is_sync_kiocb(iocb)) { 758 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 759 if (!siocb) 760 return NULL; 761 iocb->ki_dtor = sock_aio_dtor; 762 } 763 764 siocb->kiocb = iocb; 765 iocb->private = siocb; 766 return siocb; 767 } 768 769 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 770 struct file *file, const struct iovec *iov, 771 unsigned long nr_segs) 772 { 773 struct socket *sock = file->private_data; 774 size_t size = 0; 775 int i; 776 777 for (i = 0; i < nr_segs; i++) 778 size += iov[i].iov_len; 779 780 msg->msg_name = NULL; 781 msg->msg_namelen = 0; 782 msg->msg_control = NULL; 783 msg->msg_controllen = 0; 784 msg->msg_iov = (struct iovec *)iov; 785 msg->msg_iovlen = nr_segs; 786 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 787 788 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 789 } 790 791 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 792 unsigned long nr_segs, loff_t pos) 793 { 794 struct sock_iocb siocb, *x; 795 796 if (pos != 0) 797 return -ESPIPE; 798 799 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 800 return 0; 801 802 803 x = alloc_sock_iocb(iocb, &siocb); 804 if (!x) 805 return -ENOMEM; 806 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 807 } 808 809 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 810 struct file *file, const struct iovec *iov, 811 unsigned long nr_segs) 812 { 813 struct socket *sock = file->private_data; 814 size_t size = 0; 815 int i; 816 817 for (i = 0; i < nr_segs; i++) 818 size += iov[i].iov_len; 819 820 msg->msg_name = NULL; 821 msg->msg_namelen = 0; 822 msg->msg_control = NULL; 823 msg->msg_controllen = 0; 824 msg->msg_iov = (struct iovec *)iov; 825 msg->msg_iovlen = nr_segs; 826 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 827 if (sock->type == SOCK_SEQPACKET) 828 msg->msg_flags |= MSG_EOR; 829 830 return __sock_sendmsg(iocb, sock, msg, size); 831 } 832 833 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 834 unsigned long nr_segs, loff_t pos) 835 { 836 struct sock_iocb siocb, *x; 837 838 if (pos != 0) 839 return -ESPIPE; 840 841 x = alloc_sock_iocb(iocb, &siocb); 842 if (!x) 843 return -ENOMEM; 844 845 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 846 } 847 848 /* 849 * Atomic setting of ioctl hooks to avoid race 850 * with module unload. 851 */ 852 853 static DEFINE_MUTEX(br_ioctl_mutex); 854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 855 856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 857 { 858 mutex_lock(&br_ioctl_mutex); 859 br_ioctl_hook = hook; 860 mutex_unlock(&br_ioctl_mutex); 861 } 862 863 EXPORT_SYMBOL(brioctl_set); 864 865 static DEFINE_MUTEX(vlan_ioctl_mutex); 866 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 867 868 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 869 { 870 mutex_lock(&vlan_ioctl_mutex); 871 vlan_ioctl_hook = hook; 872 mutex_unlock(&vlan_ioctl_mutex); 873 } 874 875 EXPORT_SYMBOL(vlan_ioctl_set); 876 877 static DEFINE_MUTEX(dlci_ioctl_mutex); 878 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 879 880 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 881 { 882 mutex_lock(&dlci_ioctl_mutex); 883 dlci_ioctl_hook = hook; 884 mutex_unlock(&dlci_ioctl_mutex); 885 } 886 887 EXPORT_SYMBOL(dlci_ioctl_set); 888 889 /* 890 * With an ioctl, arg may well be a user mode pointer, but we don't know 891 * what to do with it - that's up to the protocol still. 892 */ 893 894 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 895 { 896 struct socket *sock; 897 struct sock *sk; 898 void __user *argp = (void __user *)arg; 899 int pid, err; 900 struct net *net; 901 902 sock = file->private_data; 903 sk = sock->sk; 904 net = sock_net(sk); 905 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 906 err = dev_ioctl(net, cmd, argp); 907 } else 908 #ifdef CONFIG_WIRELESS_EXT 909 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 910 err = dev_ioctl(net, cmd, argp); 911 } else 912 #endif /* CONFIG_WIRELESS_EXT */ 913 switch (cmd) { 914 case FIOSETOWN: 915 case SIOCSPGRP: 916 err = -EFAULT; 917 if (get_user(pid, (int __user *)argp)) 918 break; 919 err = f_setown(sock->file, pid, 1); 920 break; 921 case FIOGETOWN: 922 case SIOCGPGRP: 923 err = put_user(f_getown(sock->file), 924 (int __user *)argp); 925 break; 926 case SIOCGIFBR: 927 case SIOCSIFBR: 928 case SIOCBRADDBR: 929 case SIOCBRDELBR: 930 err = -ENOPKG; 931 if (!br_ioctl_hook) 932 request_module("bridge"); 933 934 mutex_lock(&br_ioctl_mutex); 935 if (br_ioctl_hook) 936 err = br_ioctl_hook(net, cmd, argp); 937 mutex_unlock(&br_ioctl_mutex); 938 break; 939 case SIOCGIFVLAN: 940 case SIOCSIFVLAN: 941 err = -ENOPKG; 942 if (!vlan_ioctl_hook) 943 request_module("8021q"); 944 945 mutex_lock(&vlan_ioctl_mutex); 946 if (vlan_ioctl_hook) 947 err = vlan_ioctl_hook(net, argp); 948 mutex_unlock(&vlan_ioctl_mutex); 949 break; 950 case SIOCADDDLCI: 951 case SIOCDELDLCI: 952 err = -ENOPKG; 953 if (!dlci_ioctl_hook) 954 request_module("dlci"); 955 956 mutex_lock(&dlci_ioctl_mutex); 957 if (dlci_ioctl_hook) 958 err = dlci_ioctl_hook(cmd, argp); 959 mutex_unlock(&dlci_ioctl_mutex); 960 break; 961 default: 962 err = sock->ops->ioctl(sock, cmd, arg); 963 964 /* 965 * If this ioctl is unknown try to hand it down 966 * to the NIC driver. 967 */ 968 if (err == -ENOIOCTLCMD) 969 err = dev_ioctl(net, cmd, argp); 970 break; 971 } 972 return err; 973 } 974 975 int sock_create_lite(int family, int type, int protocol, struct socket **res) 976 { 977 int err; 978 struct socket *sock = NULL; 979 980 err = security_socket_create(family, type, protocol, 1); 981 if (err) 982 goto out; 983 984 sock = sock_alloc(); 985 if (!sock) { 986 err = -ENOMEM; 987 goto out; 988 } 989 990 sock->type = type; 991 err = security_socket_post_create(sock, family, type, protocol, 1); 992 if (err) 993 goto out_release; 994 995 out: 996 *res = sock; 997 return err; 998 out_release: 999 sock_release(sock); 1000 sock = NULL; 1001 goto out; 1002 } 1003 1004 /* No kernel lock held - perfect */ 1005 static unsigned int sock_poll(struct file *file, poll_table *wait) 1006 { 1007 struct socket *sock; 1008 1009 /* 1010 * We can't return errors to poll, so it's either yes or no. 1011 */ 1012 sock = file->private_data; 1013 return sock->ops->poll(file, sock, wait); 1014 } 1015 1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1017 { 1018 struct socket *sock = file->private_data; 1019 1020 return sock->ops->mmap(file, sock, vma); 1021 } 1022 1023 static int sock_close(struct inode *inode, struct file *filp) 1024 { 1025 /* 1026 * It was possible the inode is NULL we were 1027 * closing an unfinished socket. 1028 */ 1029 1030 if (!inode) { 1031 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1032 return 0; 1033 } 1034 sock_release(SOCKET_I(inode)); 1035 return 0; 1036 } 1037 1038 /* 1039 * Update the socket async list 1040 * 1041 * Fasync_list locking strategy. 1042 * 1043 * 1. fasync_list is modified only under process context socket lock 1044 * i.e. under semaphore. 1045 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1046 * or under socket lock. 1047 * 3. fasync_list can be used from softirq context, so that 1048 * modification under socket lock have to be enhanced with 1049 * write_lock_bh(&sk->sk_callback_lock). 1050 * --ANK (990710) 1051 */ 1052 1053 static int sock_fasync(int fd, struct file *filp, int on) 1054 { 1055 struct fasync_struct *fa, *fna = NULL, **prev; 1056 struct socket *sock; 1057 struct sock *sk; 1058 1059 if (on) { 1060 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1061 if (fna == NULL) 1062 return -ENOMEM; 1063 } 1064 1065 sock = filp->private_data; 1066 1067 sk = sock->sk; 1068 if (sk == NULL) { 1069 kfree(fna); 1070 return -EINVAL; 1071 } 1072 1073 lock_sock(sk); 1074 1075 spin_lock(&filp->f_lock); 1076 if (on) 1077 filp->f_flags |= FASYNC; 1078 else 1079 filp->f_flags &= ~FASYNC; 1080 spin_unlock(&filp->f_lock); 1081 1082 prev = &(sock->fasync_list); 1083 1084 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1085 if (fa->fa_file == filp) 1086 break; 1087 1088 if (on) { 1089 if (fa != NULL) { 1090 write_lock_bh(&sk->sk_callback_lock); 1091 fa->fa_fd = fd; 1092 write_unlock_bh(&sk->sk_callback_lock); 1093 1094 kfree(fna); 1095 goto out; 1096 } 1097 fna->fa_file = filp; 1098 fna->fa_fd = fd; 1099 fna->magic = FASYNC_MAGIC; 1100 fna->fa_next = sock->fasync_list; 1101 write_lock_bh(&sk->sk_callback_lock); 1102 sock->fasync_list = fna; 1103 write_unlock_bh(&sk->sk_callback_lock); 1104 } else { 1105 if (fa != NULL) { 1106 write_lock_bh(&sk->sk_callback_lock); 1107 *prev = fa->fa_next; 1108 write_unlock_bh(&sk->sk_callback_lock); 1109 kfree(fa); 1110 } 1111 } 1112 1113 out: 1114 release_sock(sock->sk); 1115 return 0; 1116 } 1117 1118 /* This function may be called only under socket lock or callback_lock */ 1119 1120 int sock_wake_async(struct socket *sock, int how, int band) 1121 { 1122 if (!sock || !sock->fasync_list) 1123 return -1; 1124 switch (how) { 1125 case SOCK_WAKE_WAITD: 1126 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1127 break; 1128 goto call_kill; 1129 case SOCK_WAKE_SPACE: 1130 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1131 break; 1132 /* fall through */ 1133 case SOCK_WAKE_IO: 1134 call_kill: 1135 __kill_fasync(sock->fasync_list, SIGIO, band); 1136 break; 1137 case SOCK_WAKE_URG: 1138 __kill_fasync(sock->fasync_list, SIGURG, band); 1139 } 1140 return 0; 1141 } 1142 1143 static int __sock_create(struct net *net, int family, int type, int protocol, 1144 struct socket **res, int kern) 1145 { 1146 int err; 1147 struct socket *sock; 1148 const struct net_proto_family *pf; 1149 1150 /* 1151 * Check protocol is in range 1152 */ 1153 if (family < 0 || family >= NPROTO) 1154 return -EAFNOSUPPORT; 1155 if (type < 0 || type >= SOCK_MAX) 1156 return -EINVAL; 1157 1158 /* Compatibility. 1159 1160 This uglymoron is moved from INET layer to here to avoid 1161 deadlock in module load. 1162 */ 1163 if (family == PF_INET && type == SOCK_PACKET) { 1164 static int warned; 1165 if (!warned) { 1166 warned = 1; 1167 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1168 current->comm); 1169 } 1170 family = PF_PACKET; 1171 } 1172 1173 err = security_socket_create(family, type, protocol, kern); 1174 if (err) 1175 return err; 1176 1177 /* 1178 * Allocate the socket and allow the family to set things up. if 1179 * the protocol is 0, the family is instructed to select an appropriate 1180 * default. 1181 */ 1182 sock = sock_alloc(); 1183 if (!sock) { 1184 if (net_ratelimit()) 1185 printk(KERN_WARNING "socket: no more sockets\n"); 1186 return -ENFILE; /* Not exactly a match, but its the 1187 closest posix thing */ 1188 } 1189 1190 sock->type = type; 1191 1192 #ifdef CONFIG_MODULES 1193 /* Attempt to load a protocol module if the find failed. 1194 * 1195 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1196 * requested real, full-featured networking support upon configuration. 1197 * Otherwise module support will break! 1198 */ 1199 if (net_families[family] == NULL) 1200 request_module("net-pf-%d", family); 1201 #endif 1202 1203 rcu_read_lock(); 1204 pf = rcu_dereference(net_families[family]); 1205 err = -EAFNOSUPPORT; 1206 if (!pf) 1207 goto out_release; 1208 1209 /* 1210 * We will call the ->create function, that possibly is in a loadable 1211 * module, so we have to bump that loadable module refcnt first. 1212 */ 1213 if (!try_module_get(pf->owner)) 1214 goto out_release; 1215 1216 /* Now protected by module ref count */ 1217 rcu_read_unlock(); 1218 1219 err = pf->create(net, sock, protocol); 1220 if (err < 0) 1221 goto out_module_put; 1222 1223 /* 1224 * Now to bump the refcnt of the [loadable] module that owns this 1225 * socket at sock_release time we decrement its refcnt. 1226 */ 1227 if (!try_module_get(sock->ops->owner)) 1228 goto out_module_busy; 1229 1230 /* 1231 * Now that we're done with the ->create function, the [loadable] 1232 * module can have its refcnt decremented 1233 */ 1234 module_put(pf->owner); 1235 err = security_socket_post_create(sock, family, type, protocol, kern); 1236 if (err) 1237 goto out_sock_release; 1238 *res = sock; 1239 1240 return 0; 1241 1242 out_module_busy: 1243 err = -EAFNOSUPPORT; 1244 out_module_put: 1245 sock->ops = NULL; 1246 module_put(pf->owner); 1247 out_sock_release: 1248 sock_release(sock); 1249 return err; 1250 1251 out_release: 1252 rcu_read_unlock(); 1253 goto out_sock_release; 1254 } 1255 1256 int sock_create(int family, int type, int protocol, struct socket **res) 1257 { 1258 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1259 } 1260 1261 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1262 { 1263 return __sock_create(&init_net, family, type, protocol, res, 1); 1264 } 1265 1266 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1267 { 1268 int retval; 1269 struct socket *sock; 1270 int flags; 1271 1272 /* Check the SOCK_* constants for consistency. */ 1273 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1274 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1275 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1276 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1277 1278 flags = type & ~SOCK_TYPE_MASK; 1279 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1280 return -EINVAL; 1281 type &= SOCK_TYPE_MASK; 1282 1283 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1284 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1285 1286 retval = sock_create(family, type, protocol, &sock); 1287 if (retval < 0) 1288 goto out; 1289 1290 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1291 if (retval < 0) 1292 goto out_release; 1293 1294 out: 1295 /* It may be already another descriptor 8) Not kernel problem. */ 1296 return retval; 1297 1298 out_release: 1299 sock_release(sock); 1300 return retval; 1301 } 1302 1303 /* 1304 * Create a pair of connected sockets. 1305 */ 1306 1307 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1308 int __user *, usockvec) 1309 { 1310 struct socket *sock1, *sock2; 1311 int fd1, fd2, err; 1312 struct file *newfile1, *newfile2; 1313 int flags; 1314 1315 flags = type & ~SOCK_TYPE_MASK; 1316 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1317 return -EINVAL; 1318 type &= SOCK_TYPE_MASK; 1319 1320 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1321 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1322 1323 /* 1324 * Obtain the first socket and check if the underlying protocol 1325 * supports the socketpair call. 1326 */ 1327 1328 err = sock_create(family, type, protocol, &sock1); 1329 if (err < 0) 1330 goto out; 1331 1332 err = sock_create(family, type, protocol, &sock2); 1333 if (err < 0) 1334 goto out_release_1; 1335 1336 err = sock1->ops->socketpair(sock1, sock2); 1337 if (err < 0) 1338 goto out_release_both; 1339 1340 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC); 1341 if (unlikely(fd1 < 0)) { 1342 err = fd1; 1343 goto out_release_both; 1344 } 1345 1346 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC); 1347 if (unlikely(fd2 < 0)) { 1348 err = fd2; 1349 put_filp(newfile1); 1350 put_unused_fd(fd1); 1351 goto out_release_both; 1352 } 1353 1354 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK); 1355 if (unlikely(err < 0)) { 1356 goto out_fd2; 1357 } 1358 1359 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK); 1360 if (unlikely(err < 0)) { 1361 fput(newfile1); 1362 goto out_fd1; 1363 } 1364 1365 audit_fd_pair(fd1, fd2); 1366 fd_install(fd1, newfile1); 1367 fd_install(fd2, newfile2); 1368 /* fd1 and fd2 may be already another descriptors. 1369 * Not kernel problem. 1370 */ 1371 1372 err = put_user(fd1, &usockvec[0]); 1373 if (!err) 1374 err = put_user(fd2, &usockvec[1]); 1375 if (!err) 1376 return 0; 1377 1378 sys_close(fd2); 1379 sys_close(fd1); 1380 return err; 1381 1382 out_release_both: 1383 sock_release(sock2); 1384 out_release_1: 1385 sock_release(sock1); 1386 out: 1387 return err; 1388 1389 out_fd2: 1390 put_filp(newfile1); 1391 sock_release(sock1); 1392 out_fd1: 1393 put_filp(newfile2); 1394 sock_release(sock2); 1395 put_unused_fd(fd1); 1396 put_unused_fd(fd2); 1397 goto out; 1398 } 1399 1400 /* 1401 * Bind a name to a socket. Nothing much to do here since it's 1402 * the protocol's responsibility to handle the local address. 1403 * 1404 * We move the socket address to kernel space before we call 1405 * the protocol layer (having also checked the address is ok). 1406 */ 1407 1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1409 { 1410 struct socket *sock; 1411 struct sockaddr_storage address; 1412 int err, fput_needed; 1413 1414 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1415 if (sock) { 1416 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1417 if (err >= 0) { 1418 err = security_socket_bind(sock, 1419 (struct sockaddr *)&address, 1420 addrlen); 1421 if (!err) 1422 err = sock->ops->bind(sock, 1423 (struct sockaddr *) 1424 &address, addrlen); 1425 } 1426 fput_light(sock->file, fput_needed); 1427 } 1428 return err; 1429 } 1430 1431 /* 1432 * Perform a listen. Basically, we allow the protocol to do anything 1433 * necessary for a listen, and if that works, we mark the socket as 1434 * ready for listening. 1435 */ 1436 1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1438 { 1439 struct socket *sock; 1440 int err, fput_needed; 1441 int somaxconn; 1442 1443 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1444 if (sock) { 1445 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1446 if ((unsigned)backlog > somaxconn) 1447 backlog = somaxconn; 1448 1449 err = security_socket_listen(sock, backlog); 1450 if (!err) 1451 err = sock->ops->listen(sock, backlog); 1452 1453 fput_light(sock->file, fput_needed); 1454 } 1455 return err; 1456 } 1457 1458 /* 1459 * For accept, we attempt to create a new socket, set up the link 1460 * with the client, wake up the client, then return the new 1461 * connected fd. We collect the address of the connector in kernel 1462 * space and move it to user at the very end. This is unclean because 1463 * we open the socket then return an error. 1464 * 1465 * 1003.1g adds the ability to recvmsg() to query connection pending 1466 * status to recvmsg. We need to add that support in a way thats 1467 * clean when we restucture accept also. 1468 */ 1469 1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1471 int __user *, upeer_addrlen, int, flags) 1472 { 1473 struct socket *sock, *newsock; 1474 struct file *newfile; 1475 int err, len, newfd, fput_needed; 1476 struct sockaddr_storage address; 1477 1478 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1479 return -EINVAL; 1480 1481 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1482 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1483 1484 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1485 if (!sock) 1486 goto out; 1487 1488 err = -ENFILE; 1489 if (!(newsock = sock_alloc())) 1490 goto out_put; 1491 1492 newsock->type = sock->type; 1493 newsock->ops = sock->ops; 1494 1495 /* 1496 * We don't need try_module_get here, as the listening socket (sock) 1497 * has the protocol module (sock->ops->owner) held. 1498 */ 1499 __module_get(newsock->ops->owner); 1500 1501 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC); 1502 if (unlikely(newfd < 0)) { 1503 err = newfd; 1504 sock_release(newsock); 1505 goto out_put; 1506 } 1507 1508 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK); 1509 if (err < 0) 1510 goto out_fd_simple; 1511 1512 err = security_socket_accept(sock, newsock); 1513 if (err) 1514 goto out_fd; 1515 1516 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1517 if (err < 0) 1518 goto out_fd; 1519 1520 if (upeer_sockaddr) { 1521 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1522 &len, 2) < 0) { 1523 err = -ECONNABORTED; 1524 goto out_fd; 1525 } 1526 err = move_addr_to_user((struct sockaddr *)&address, 1527 len, upeer_sockaddr, upeer_addrlen); 1528 if (err < 0) 1529 goto out_fd; 1530 } 1531 1532 /* File flags are not inherited via accept() unlike another OSes. */ 1533 1534 fd_install(newfd, newfile); 1535 err = newfd; 1536 1537 out_put: 1538 fput_light(sock->file, fput_needed); 1539 out: 1540 return err; 1541 out_fd_simple: 1542 sock_release(newsock); 1543 put_filp(newfile); 1544 put_unused_fd(newfd); 1545 goto out_put; 1546 out_fd: 1547 fput(newfile); 1548 put_unused_fd(newfd); 1549 goto out_put; 1550 } 1551 1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1553 int __user *, upeer_addrlen) 1554 { 1555 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1556 } 1557 1558 /* 1559 * Attempt to connect to a socket with the server address. The address 1560 * is in user space so we verify it is OK and move it to kernel space. 1561 * 1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1563 * break bindings 1564 * 1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1566 * other SEQPACKET protocols that take time to connect() as it doesn't 1567 * include the -EINPROGRESS status for such sockets. 1568 */ 1569 1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1571 int, addrlen) 1572 { 1573 struct socket *sock; 1574 struct sockaddr_storage address; 1575 int err, fput_needed; 1576 1577 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1578 if (!sock) 1579 goto out; 1580 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1581 if (err < 0) 1582 goto out_put; 1583 1584 err = 1585 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1586 if (err) 1587 goto out_put; 1588 1589 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1590 sock->file->f_flags); 1591 out_put: 1592 fput_light(sock->file, fput_needed); 1593 out: 1594 return err; 1595 } 1596 1597 /* 1598 * Get the local address ('name') of a socket object. Move the obtained 1599 * name to user space. 1600 */ 1601 1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1603 int __user *, usockaddr_len) 1604 { 1605 struct socket *sock; 1606 struct sockaddr_storage address; 1607 int len, err, fput_needed; 1608 1609 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1610 if (!sock) 1611 goto out; 1612 1613 err = security_socket_getsockname(sock); 1614 if (err) 1615 goto out_put; 1616 1617 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1618 if (err) 1619 goto out_put; 1620 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1621 1622 out_put: 1623 fput_light(sock->file, fput_needed); 1624 out: 1625 return err; 1626 } 1627 1628 /* 1629 * Get the remote address ('name') of a socket object. Move the obtained 1630 * name to user space. 1631 */ 1632 1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1634 int __user *, usockaddr_len) 1635 { 1636 struct socket *sock; 1637 struct sockaddr_storage address; 1638 int len, err, fput_needed; 1639 1640 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1641 if (sock != NULL) { 1642 err = security_socket_getpeername(sock); 1643 if (err) { 1644 fput_light(sock->file, fput_needed); 1645 return err; 1646 } 1647 1648 err = 1649 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1650 1); 1651 if (!err) 1652 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1653 usockaddr_len); 1654 fput_light(sock->file, fput_needed); 1655 } 1656 return err; 1657 } 1658 1659 /* 1660 * Send a datagram to a given address. We move the address into kernel 1661 * space and check the user space data area is readable before invoking 1662 * the protocol. 1663 */ 1664 1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1666 unsigned, flags, struct sockaddr __user *, addr, 1667 int, addr_len) 1668 { 1669 struct socket *sock; 1670 struct sockaddr_storage address; 1671 int err; 1672 struct msghdr msg; 1673 struct iovec iov; 1674 int fput_needed; 1675 1676 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1677 if (!sock) 1678 goto out; 1679 1680 iov.iov_base = buff; 1681 iov.iov_len = len; 1682 msg.msg_name = NULL; 1683 msg.msg_iov = &iov; 1684 msg.msg_iovlen = 1; 1685 msg.msg_control = NULL; 1686 msg.msg_controllen = 0; 1687 msg.msg_namelen = 0; 1688 if (addr) { 1689 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1690 if (err < 0) 1691 goto out_put; 1692 msg.msg_name = (struct sockaddr *)&address; 1693 msg.msg_namelen = addr_len; 1694 } 1695 if (sock->file->f_flags & O_NONBLOCK) 1696 flags |= MSG_DONTWAIT; 1697 msg.msg_flags = flags; 1698 err = sock_sendmsg(sock, &msg, len); 1699 1700 out_put: 1701 fput_light(sock->file, fput_needed); 1702 out: 1703 return err; 1704 } 1705 1706 /* 1707 * Send a datagram down a socket. 1708 */ 1709 1710 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1711 unsigned, flags) 1712 { 1713 return sys_sendto(fd, buff, len, flags, NULL, 0); 1714 } 1715 1716 /* 1717 * Receive a frame from the socket and optionally record the address of the 1718 * sender. We verify the buffers are writable and if needed move the 1719 * sender address from kernel to user space. 1720 */ 1721 1722 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1723 unsigned, flags, struct sockaddr __user *, addr, 1724 int __user *, addr_len) 1725 { 1726 struct socket *sock; 1727 struct iovec iov; 1728 struct msghdr msg; 1729 struct sockaddr_storage address; 1730 int err, err2; 1731 int fput_needed; 1732 1733 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1734 if (!sock) 1735 goto out; 1736 1737 msg.msg_control = NULL; 1738 msg.msg_controllen = 0; 1739 msg.msg_iovlen = 1; 1740 msg.msg_iov = &iov; 1741 iov.iov_len = size; 1742 iov.iov_base = ubuf; 1743 msg.msg_name = (struct sockaddr *)&address; 1744 msg.msg_namelen = sizeof(address); 1745 if (sock->file->f_flags & O_NONBLOCK) 1746 flags |= MSG_DONTWAIT; 1747 err = sock_recvmsg(sock, &msg, size, flags); 1748 1749 if (err >= 0 && addr != NULL) { 1750 err2 = move_addr_to_user((struct sockaddr *)&address, 1751 msg.msg_namelen, addr, addr_len); 1752 if (err2 < 0) 1753 err = err2; 1754 } 1755 1756 fput_light(sock->file, fput_needed); 1757 out: 1758 return err; 1759 } 1760 1761 /* 1762 * Receive a datagram from a socket. 1763 */ 1764 1765 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1766 unsigned flags) 1767 { 1768 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1769 } 1770 1771 /* 1772 * Set a socket option. Because we don't know the option lengths we have 1773 * to pass the user mode parameter for the protocols to sort out. 1774 */ 1775 1776 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1777 char __user *, optval, int, optlen) 1778 { 1779 int err, fput_needed; 1780 struct socket *sock; 1781 1782 if (optlen < 0) 1783 return -EINVAL; 1784 1785 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1786 if (sock != NULL) { 1787 err = security_socket_setsockopt(sock, level, optname); 1788 if (err) 1789 goto out_put; 1790 1791 if (level == SOL_SOCKET) 1792 err = 1793 sock_setsockopt(sock, level, optname, optval, 1794 optlen); 1795 else 1796 err = 1797 sock->ops->setsockopt(sock, level, optname, optval, 1798 optlen); 1799 out_put: 1800 fput_light(sock->file, fput_needed); 1801 } 1802 return err; 1803 } 1804 1805 /* 1806 * Get a socket option. Because we don't know the option lengths we have 1807 * to pass a user mode parameter for the protocols to sort out. 1808 */ 1809 1810 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1811 char __user *, optval, int __user *, optlen) 1812 { 1813 int err, fput_needed; 1814 struct socket *sock; 1815 1816 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1817 if (sock != NULL) { 1818 err = security_socket_getsockopt(sock, level, optname); 1819 if (err) 1820 goto out_put; 1821 1822 if (level == SOL_SOCKET) 1823 err = 1824 sock_getsockopt(sock, level, optname, optval, 1825 optlen); 1826 else 1827 err = 1828 sock->ops->getsockopt(sock, level, optname, optval, 1829 optlen); 1830 out_put: 1831 fput_light(sock->file, fput_needed); 1832 } 1833 return err; 1834 } 1835 1836 /* 1837 * Shutdown a socket. 1838 */ 1839 1840 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1841 { 1842 int err, fput_needed; 1843 struct socket *sock; 1844 1845 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1846 if (sock != NULL) { 1847 err = security_socket_shutdown(sock, how); 1848 if (!err) 1849 err = sock->ops->shutdown(sock, how); 1850 fput_light(sock->file, fput_needed); 1851 } 1852 return err; 1853 } 1854 1855 /* A couple of helpful macros for getting the address of the 32/64 bit 1856 * fields which are the same type (int / unsigned) on our platforms. 1857 */ 1858 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1859 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1860 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1861 1862 /* 1863 * BSD sendmsg interface 1864 */ 1865 1866 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1867 { 1868 struct compat_msghdr __user *msg_compat = 1869 (struct compat_msghdr __user *)msg; 1870 struct socket *sock; 1871 struct sockaddr_storage address; 1872 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1873 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1874 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1875 /* 20 is size of ipv6_pktinfo */ 1876 unsigned char *ctl_buf = ctl; 1877 struct msghdr msg_sys; 1878 int err, ctl_len, iov_size, total_len; 1879 int fput_needed; 1880 1881 err = -EFAULT; 1882 if (MSG_CMSG_COMPAT & flags) { 1883 if (get_compat_msghdr(&msg_sys, msg_compat)) 1884 return -EFAULT; 1885 } 1886 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1887 return -EFAULT; 1888 1889 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1890 if (!sock) 1891 goto out; 1892 1893 /* do not move before msg_sys is valid */ 1894 err = -EMSGSIZE; 1895 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1896 goto out_put; 1897 1898 /* Check whether to allocate the iovec area */ 1899 err = -ENOMEM; 1900 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1901 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1902 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1903 if (!iov) 1904 goto out_put; 1905 } 1906 1907 /* This will also move the address data into kernel space */ 1908 if (MSG_CMSG_COMPAT & flags) { 1909 err = verify_compat_iovec(&msg_sys, iov, 1910 (struct sockaddr *)&address, 1911 VERIFY_READ); 1912 } else 1913 err = verify_iovec(&msg_sys, iov, 1914 (struct sockaddr *)&address, 1915 VERIFY_READ); 1916 if (err < 0) 1917 goto out_freeiov; 1918 total_len = err; 1919 1920 err = -ENOBUFS; 1921 1922 if (msg_sys.msg_controllen > INT_MAX) 1923 goto out_freeiov; 1924 ctl_len = msg_sys.msg_controllen; 1925 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1926 err = 1927 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1928 sizeof(ctl)); 1929 if (err) 1930 goto out_freeiov; 1931 ctl_buf = msg_sys.msg_control; 1932 ctl_len = msg_sys.msg_controllen; 1933 } else if (ctl_len) { 1934 if (ctl_len > sizeof(ctl)) { 1935 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1936 if (ctl_buf == NULL) 1937 goto out_freeiov; 1938 } 1939 err = -EFAULT; 1940 /* 1941 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1942 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1943 * checking falls down on this. 1944 */ 1945 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1946 ctl_len)) 1947 goto out_freectl; 1948 msg_sys.msg_control = ctl_buf; 1949 } 1950 msg_sys.msg_flags = flags; 1951 1952 if (sock->file->f_flags & O_NONBLOCK) 1953 msg_sys.msg_flags |= MSG_DONTWAIT; 1954 err = sock_sendmsg(sock, &msg_sys, total_len); 1955 1956 out_freectl: 1957 if (ctl_buf != ctl) 1958 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1959 out_freeiov: 1960 if (iov != iovstack) 1961 sock_kfree_s(sock->sk, iov, iov_size); 1962 out_put: 1963 fput_light(sock->file, fput_needed); 1964 out: 1965 return err; 1966 } 1967 1968 /* 1969 * BSD recvmsg interface 1970 */ 1971 1972 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 1973 unsigned int, flags) 1974 { 1975 struct compat_msghdr __user *msg_compat = 1976 (struct compat_msghdr __user *)msg; 1977 struct socket *sock; 1978 struct iovec iovstack[UIO_FASTIOV]; 1979 struct iovec *iov = iovstack; 1980 struct msghdr msg_sys; 1981 unsigned long cmsg_ptr; 1982 int err, iov_size, total_len, len; 1983 int fput_needed; 1984 1985 /* kernel mode address */ 1986 struct sockaddr_storage addr; 1987 1988 /* user mode address pointers */ 1989 struct sockaddr __user *uaddr; 1990 int __user *uaddr_len; 1991 1992 if (MSG_CMSG_COMPAT & flags) { 1993 if (get_compat_msghdr(&msg_sys, msg_compat)) 1994 return -EFAULT; 1995 } 1996 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1997 return -EFAULT; 1998 1999 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2000 if (!sock) 2001 goto out; 2002 2003 err = -EMSGSIZE; 2004 if (msg_sys.msg_iovlen > UIO_MAXIOV) 2005 goto out_put; 2006 2007 /* Check whether to allocate the iovec area */ 2008 err = -ENOMEM; 2009 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 2010 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 2011 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2012 if (!iov) 2013 goto out_put; 2014 } 2015 2016 /* 2017 * Save the user-mode address (verify_iovec will change the 2018 * kernel msghdr to use the kernel address space) 2019 */ 2020 2021 uaddr = (__force void __user *)msg_sys.msg_name; 2022 uaddr_len = COMPAT_NAMELEN(msg); 2023 if (MSG_CMSG_COMPAT & flags) { 2024 err = verify_compat_iovec(&msg_sys, iov, 2025 (struct sockaddr *)&addr, 2026 VERIFY_WRITE); 2027 } else 2028 err = verify_iovec(&msg_sys, iov, 2029 (struct sockaddr *)&addr, 2030 VERIFY_WRITE); 2031 if (err < 0) 2032 goto out_freeiov; 2033 total_len = err; 2034 2035 cmsg_ptr = (unsigned long)msg_sys.msg_control; 2036 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2037 2038 if (sock->file->f_flags & O_NONBLOCK) 2039 flags |= MSG_DONTWAIT; 2040 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 2041 if (err < 0) 2042 goto out_freeiov; 2043 len = err; 2044 2045 if (uaddr != NULL) { 2046 err = move_addr_to_user((struct sockaddr *)&addr, 2047 msg_sys.msg_namelen, uaddr, 2048 uaddr_len); 2049 if (err < 0) 2050 goto out_freeiov; 2051 } 2052 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 2053 COMPAT_FLAGS(msg)); 2054 if (err) 2055 goto out_freeiov; 2056 if (MSG_CMSG_COMPAT & flags) 2057 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2058 &msg_compat->msg_controllen); 2059 else 2060 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2061 &msg->msg_controllen); 2062 if (err) 2063 goto out_freeiov; 2064 err = len; 2065 2066 out_freeiov: 2067 if (iov != iovstack) 2068 sock_kfree_s(sock->sk, iov, iov_size); 2069 out_put: 2070 fput_light(sock->file, fput_needed); 2071 out: 2072 return err; 2073 } 2074 2075 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2076 2077 /* Argument list sizes for sys_socketcall */ 2078 #define AL(x) ((x) * sizeof(unsigned long)) 2079 static const unsigned char nargs[19]={ 2080 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2081 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2082 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2083 AL(4) 2084 }; 2085 2086 #undef AL 2087 2088 /* 2089 * System call vectors. 2090 * 2091 * Argument checking cleaned up. Saved 20% in size. 2092 * This function doesn't need to set the kernel lock because 2093 * it is set by the callees. 2094 */ 2095 2096 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2097 { 2098 unsigned long a[6]; 2099 unsigned long a0, a1; 2100 int err; 2101 unsigned int len; 2102 2103 if (call < 1 || call > SYS_ACCEPT4) 2104 return -EINVAL; 2105 2106 len = nargs[call]; 2107 if (len > sizeof(a)) 2108 return -EINVAL; 2109 2110 /* copy_from_user should be SMP safe. */ 2111 if (copy_from_user(a, args, len)) 2112 return -EFAULT; 2113 2114 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2115 2116 a0 = a[0]; 2117 a1 = a[1]; 2118 2119 switch (call) { 2120 case SYS_SOCKET: 2121 err = sys_socket(a0, a1, a[2]); 2122 break; 2123 case SYS_BIND: 2124 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2125 break; 2126 case SYS_CONNECT: 2127 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2128 break; 2129 case SYS_LISTEN: 2130 err = sys_listen(a0, a1); 2131 break; 2132 case SYS_ACCEPT: 2133 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2134 (int __user *)a[2], 0); 2135 break; 2136 case SYS_GETSOCKNAME: 2137 err = 2138 sys_getsockname(a0, (struct sockaddr __user *)a1, 2139 (int __user *)a[2]); 2140 break; 2141 case SYS_GETPEERNAME: 2142 err = 2143 sys_getpeername(a0, (struct sockaddr __user *)a1, 2144 (int __user *)a[2]); 2145 break; 2146 case SYS_SOCKETPAIR: 2147 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2148 break; 2149 case SYS_SEND: 2150 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2151 break; 2152 case SYS_SENDTO: 2153 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2154 (struct sockaddr __user *)a[4], a[5]); 2155 break; 2156 case SYS_RECV: 2157 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2158 break; 2159 case SYS_RECVFROM: 2160 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2161 (struct sockaddr __user *)a[4], 2162 (int __user *)a[5]); 2163 break; 2164 case SYS_SHUTDOWN: 2165 err = sys_shutdown(a0, a1); 2166 break; 2167 case SYS_SETSOCKOPT: 2168 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2169 break; 2170 case SYS_GETSOCKOPT: 2171 err = 2172 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2173 (int __user *)a[4]); 2174 break; 2175 case SYS_SENDMSG: 2176 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2177 break; 2178 case SYS_RECVMSG: 2179 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2180 break; 2181 case SYS_ACCEPT4: 2182 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2183 (int __user *)a[2], a[3]); 2184 break; 2185 default: 2186 err = -EINVAL; 2187 break; 2188 } 2189 return err; 2190 } 2191 2192 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2193 2194 /** 2195 * sock_register - add a socket protocol handler 2196 * @ops: description of protocol 2197 * 2198 * This function is called by a protocol handler that wants to 2199 * advertise its address family, and have it linked into the 2200 * socket interface. The value ops->family coresponds to the 2201 * socket system call protocol family. 2202 */ 2203 int sock_register(const struct net_proto_family *ops) 2204 { 2205 int err; 2206 2207 if (ops->family >= NPROTO) { 2208 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2209 NPROTO); 2210 return -ENOBUFS; 2211 } 2212 2213 spin_lock(&net_family_lock); 2214 if (net_families[ops->family]) 2215 err = -EEXIST; 2216 else { 2217 net_families[ops->family] = ops; 2218 err = 0; 2219 } 2220 spin_unlock(&net_family_lock); 2221 2222 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2223 return err; 2224 } 2225 2226 /** 2227 * sock_unregister - remove a protocol handler 2228 * @family: protocol family to remove 2229 * 2230 * This function is called by a protocol handler that wants to 2231 * remove its address family, and have it unlinked from the 2232 * new socket creation. 2233 * 2234 * If protocol handler is a module, then it can use module reference 2235 * counts to protect against new references. If protocol handler is not 2236 * a module then it needs to provide its own protection in 2237 * the ops->create routine. 2238 */ 2239 void sock_unregister(int family) 2240 { 2241 BUG_ON(family < 0 || family >= NPROTO); 2242 2243 spin_lock(&net_family_lock); 2244 net_families[family] = NULL; 2245 spin_unlock(&net_family_lock); 2246 2247 synchronize_rcu(); 2248 2249 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2250 } 2251 2252 static int __init sock_init(void) 2253 { 2254 /* 2255 * Initialize sock SLAB cache. 2256 */ 2257 2258 sk_init(); 2259 2260 /* 2261 * Initialize skbuff SLAB cache 2262 */ 2263 skb_init(); 2264 2265 /* 2266 * Initialize the protocols module. 2267 */ 2268 2269 init_inodecache(); 2270 register_filesystem(&sock_fs_type); 2271 sock_mnt = kern_mount(&sock_fs_type); 2272 2273 /* The real protocol initialization is performed in later initcalls. 2274 */ 2275 2276 #ifdef CONFIG_NETFILTER 2277 netfilter_init(); 2278 #endif 2279 2280 return 0; 2281 } 2282 2283 core_initcall(sock_init); /* early initcall */ 2284 2285 #ifdef CONFIG_PROC_FS 2286 void socket_seq_show(struct seq_file *seq) 2287 { 2288 int cpu; 2289 int counter = 0; 2290 2291 for_each_possible_cpu(cpu) 2292 counter += per_cpu(sockets_in_use, cpu); 2293 2294 /* It can be negative, by the way. 8) */ 2295 if (counter < 0) 2296 counter = 0; 2297 2298 seq_printf(seq, "sockets: used %d\n", counter); 2299 } 2300 #endif /* CONFIG_PROC_FS */ 2301 2302 #ifdef CONFIG_COMPAT 2303 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2304 unsigned long arg) 2305 { 2306 struct socket *sock = file->private_data; 2307 int ret = -ENOIOCTLCMD; 2308 struct sock *sk; 2309 struct net *net; 2310 2311 sk = sock->sk; 2312 net = sock_net(sk); 2313 2314 if (sock->ops->compat_ioctl) 2315 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2316 2317 if (ret == -ENOIOCTLCMD && 2318 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2319 ret = compat_wext_handle_ioctl(net, cmd, arg); 2320 2321 return ret; 2322 } 2323 #endif 2324 2325 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2326 { 2327 return sock->ops->bind(sock, addr, addrlen); 2328 } 2329 2330 int kernel_listen(struct socket *sock, int backlog) 2331 { 2332 return sock->ops->listen(sock, backlog); 2333 } 2334 2335 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2336 { 2337 struct sock *sk = sock->sk; 2338 int err; 2339 2340 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2341 newsock); 2342 if (err < 0) 2343 goto done; 2344 2345 err = sock->ops->accept(sock, *newsock, flags); 2346 if (err < 0) { 2347 sock_release(*newsock); 2348 *newsock = NULL; 2349 goto done; 2350 } 2351 2352 (*newsock)->ops = sock->ops; 2353 __module_get((*newsock)->ops->owner); 2354 2355 done: 2356 return err; 2357 } 2358 2359 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2360 int flags) 2361 { 2362 return sock->ops->connect(sock, addr, addrlen, flags); 2363 } 2364 2365 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2366 int *addrlen) 2367 { 2368 return sock->ops->getname(sock, addr, addrlen, 0); 2369 } 2370 2371 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2372 int *addrlen) 2373 { 2374 return sock->ops->getname(sock, addr, addrlen, 1); 2375 } 2376 2377 int kernel_getsockopt(struct socket *sock, int level, int optname, 2378 char *optval, int *optlen) 2379 { 2380 mm_segment_t oldfs = get_fs(); 2381 int err; 2382 2383 set_fs(KERNEL_DS); 2384 if (level == SOL_SOCKET) 2385 err = sock_getsockopt(sock, level, optname, optval, optlen); 2386 else 2387 err = sock->ops->getsockopt(sock, level, optname, optval, 2388 optlen); 2389 set_fs(oldfs); 2390 return err; 2391 } 2392 2393 int kernel_setsockopt(struct socket *sock, int level, int optname, 2394 char *optval, unsigned int optlen) 2395 { 2396 mm_segment_t oldfs = get_fs(); 2397 int err; 2398 2399 set_fs(KERNEL_DS); 2400 if (level == SOL_SOCKET) 2401 err = sock_setsockopt(sock, level, optname, optval, optlen); 2402 else 2403 err = sock->ops->setsockopt(sock, level, optname, optval, 2404 optlen); 2405 set_fs(oldfs); 2406 return err; 2407 } 2408 2409 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2410 size_t size, int flags) 2411 { 2412 if (sock->ops->sendpage) 2413 return sock->ops->sendpage(sock, page, offset, size, flags); 2414 2415 return sock_no_sendpage(sock, page, offset, size, flags); 2416 } 2417 2418 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2419 { 2420 mm_segment_t oldfs = get_fs(); 2421 int err; 2422 2423 set_fs(KERNEL_DS); 2424 err = sock->ops->ioctl(sock, cmd, arg); 2425 set_fs(oldfs); 2426 2427 return err; 2428 } 2429 2430 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2431 { 2432 return sock->ops->shutdown(sock, how); 2433 } 2434 2435 EXPORT_SYMBOL(sock_create); 2436 EXPORT_SYMBOL(sock_create_kern); 2437 EXPORT_SYMBOL(sock_create_lite); 2438 EXPORT_SYMBOL(sock_map_fd); 2439 EXPORT_SYMBOL(sock_recvmsg); 2440 EXPORT_SYMBOL(sock_register); 2441 EXPORT_SYMBOL(sock_release); 2442 EXPORT_SYMBOL(sock_sendmsg); 2443 EXPORT_SYMBOL(sock_unregister); 2444 EXPORT_SYMBOL(sock_wake_async); 2445 EXPORT_SYMBOL(sockfd_lookup); 2446 EXPORT_SYMBOL(kernel_sendmsg); 2447 EXPORT_SYMBOL(kernel_recvmsg); 2448 EXPORT_SYMBOL(kernel_bind); 2449 EXPORT_SYMBOL(kernel_listen); 2450 EXPORT_SYMBOL(kernel_accept); 2451 EXPORT_SYMBOL(kernel_connect); 2452 EXPORT_SYMBOL(kernel_getsockname); 2453 EXPORT_SYMBOL(kernel_getpeername); 2454 EXPORT_SYMBOL(kernel_getsockopt); 2455 EXPORT_SYMBOL(kernel_setsockopt); 2456 EXPORT_SYMBOL(kernel_sendpage); 2457 EXPORT_SYMBOL(kernel_sock_ioctl); 2458 EXPORT_SYMBOL(kernel_sock_shutdown); 2459