xref: /openbmc/linux/net/socket.c (revision e6dec923)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry))
410 		return ERR_PTR(-ENOMEM);
411 	path.mnt = mntget(sock_mnt);
412 
413 	d_instantiate(path.dentry, SOCK_INODE(sock));
414 
415 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 		  &socket_file_ops);
417 	if (IS_ERR(file)) {
418 		/* drop dentry, keep inode */
419 		ihold(d_inode(path.dentry));
420 		path_put(&path);
421 		return file;
422 	}
423 
424 	sock->file = file;
425 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0))
436 		return fd;
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	kmemcheck_annotate_bitfield(sock, type);
572 	inode->i_ino = get_next_ino();
573 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 	inode->i_uid = current_fsuid();
575 	inode->i_gid = current_fsgid();
576 	inode->i_op = &sockfs_inode_ops;
577 
578 	this_cpu_add(sockets_in_use, 1);
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release	-	close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 void sock_release(struct socket *sock)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		sock->ops->release(sock);
598 		sock->ops = NULL;
599 		module_put(owner);
600 	}
601 
602 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 		pr_err("%s: fasync list not empty!\n", __func__);
604 
605 	this_cpu_sub(sockets_in_use, 1);
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 	BUG_ON(ret == -EIOCBQUEUED);
635 	return ret;
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 	int err = security_socket_sendmsg(sock, msg,
641 					  msg_data_left(msg));
642 
643 	return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 		   struct kvec *vec, size_t num, size_t size)
649 {
650 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 	return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654 
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 	/* pkt_type of skbs enqueued on the error queue are set to
658 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 	 * in recvmsg, since skbs received on a local socket will never
660 	 * have a pkt_type of PACKET_OUTGOING.
661 	 */
662 	return skb->pkt_type == PACKET_OUTGOING;
663 }
664 
665 /* On transmit, software and hardware timestamps are returned independently.
666  * As the two skb clones share the hardware timestamp, which may be updated
667  * before the software timestamp is received, a hardware TX timestamp may be
668  * returned only if there is no software TX timestamp. Ignore false software
669  * timestamps, which may be made in the __sock_recv_timestamp() call when the
670  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671  * hardware timestamp.
672  */
673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
674 {
675 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
676 }
677 
678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
679 {
680 	struct scm_ts_pktinfo ts_pktinfo;
681 	struct net_device *orig_dev;
682 
683 	if (!skb_mac_header_was_set(skb))
684 		return;
685 
686 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
687 
688 	rcu_read_lock();
689 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
690 	if (orig_dev)
691 		ts_pktinfo.if_index = orig_dev->ifindex;
692 	rcu_read_unlock();
693 
694 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
695 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
696 		 sizeof(ts_pktinfo), &ts_pktinfo);
697 }
698 
699 /*
700  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701  */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 	struct scm_timestamping tss;
707 	int empty = 1, false_tstamp = 0;
708 	struct skb_shared_hwtstamps *shhwtstamps =
709 		skb_hwtstamps(skb);
710 
711 	/* Race occurred between timestamp enabling and packet
712 	   receiving.  Fill in the current time for now. */
713 	if (need_software_tstamp && skb->tstamp == 0) {
714 		__net_timestamp(skb);
715 		false_tstamp = 1;
716 	}
717 
718 	if (need_software_tstamp) {
719 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
720 			struct timeval tv;
721 			skb_get_timestamp(skb, &tv);
722 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
723 				 sizeof(tv), &tv);
724 		} else {
725 			struct timespec ts;
726 			skb_get_timestampns(skb, &ts);
727 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
728 				 sizeof(ts), &ts);
729 		}
730 	}
731 
732 	memset(&tss, 0, sizeof(tss));
733 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
734 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 		empty = 0;
736 	if (shhwtstamps &&
737 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
738 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
739 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
740 		empty = 0;
741 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
742 		    !skb_is_err_queue(skb))
743 			put_ts_pktinfo(msg, skb);
744 	}
745 	if (!empty) {
746 		put_cmsg(msg, SOL_SOCKET,
747 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
748 
749 		if (skb_is_err_queue(skb) && skb->len &&
750 		    SKB_EXT_ERR(skb)->opt_stats)
751 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
752 				 skb->len, skb->data);
753 	}
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
756 
757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
758 	struct sk_buff *skb)
759 {
760 	int ack;
761 
762 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
763 		return;
764 	if (!skb->wifi_acked_valid)
765 		return;
766 
767 	ack = skb->wifi_acked;
768 
769 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
772 
773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 				   struct sk_buff *skb)
775 {
776 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
777 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
778 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
779 }
780 
781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 	struct sk_buff *skb)
783 {
784 	sock_recv_timestamp(msg, sk, skb);
785 	sock_recv_drops(msg, sk, skb);
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
788 
789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
790 				     int flags)
791 {
792 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
793 }
794 
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
796 {
797 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
798 
799 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802 
803 /**
804  * kernel_recvmsg - Receive a message from a socket (kernel space)
805  * @sock:       The socket to receive the message from
806  * @msg:        Received message
807  * @vec:        Input s/g array for message data
808  * @num:        Size of input s/g array
809  * @size:       Number of bytes to read
810  * @flags:      Message flags (MSG_DONTWAIT, etc...)
811  *
812  * On return the msg structure contains the scatter/gather array passed in the
813  * vec argument. The array is modified so that it consists of the unfilled
814  * portion of the original array.
815  *
816  * The returned value is the total number of bytes received, or an error.
817  */
818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
819 		   struct kvec *vec, size_t num, size_t size, int flags)
820 {
821 	mm_segment_t oldfs = get_fs();
822 	int result;
823 
824 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
825 	set_fs(KERNEL_DS);
826 	result = sock_recvmsg(sock, msg, flags);
827 	set_fs(oldfs);
828 	return result;
829 }
830 EXPORT_SYMBOL(kernel_recvmsg);
831 
832 static ssize_t sock_sendpage(struct file *file, struct page *page,
833 			     int offset, size_t size, loff_t *ppos, int more)
834 {
835 	struct socket *sock;
836 	int flags;
837 
838 	sock = file->private_data;
839 
840 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
842 	flags |= more;
843 
844 	return kernel_sendpage(sock, page, offset, size, flags);
845 }
846 
847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
848 				struct pipe_inode_info *pipe, size_t len,
849 				unsigned int flags)
850 {
851 	struct socket *sock = file->private_data;
852 
853 	if (unlikely(!sock->ops->splice_read))
854 		return -EINVAL;
855 
856 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
857 }
858 
859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
860 {
861 	struct file *file = iocb->ki_filp;
862 	struct socket *sock = file->private_data;
863 	struct msghdr msg = {.msg_iter = *to,
864 			     .msg_iocb = iocb};
865 	ssize_t res;
866 
867 	if (file->f_flags & O_NONBLOCK)
868 		msg.msg_flags = MSG_DONTWAIT;
869 
870 	if (iocb->ki_pos != 0)
871 		return -ESPIPE;
872 
873 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
874 		return 0;
875 
876 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
877 	*to = msg.msg_iter;
878 	return res;
879 }
880 
881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
882 {
883 	struct file *file = iocb->ki_filp;
884 	struct socket *sock = file->private_data;
885 	struct msghdr msg = {.msg_iter = *from,
886 			     .msg_iocb = iocb};
887 	ssize_t res;
888 
889 	if (iocb->ki_pos != 0)
890 		return -ESPIPE;
891 
892 	if (file->f_flags & O_NONBLOCK)
893 		msg.msg_flags = MSG_DONTWAIT;
894 
895 	if (sock->type == SOCK_SEQPACKET)
896 		msg.msg_flags |= MSG_EOR;
897 
898 	res = sock_sendmsg(sock, &msg);
899 	*from = msg.msg_iter;
900 	return res;
901 }
902 
903 /*
904  * Atomic setting of ioctl hooks to avoid race
905  * with module unload.
906  */
907 
908 static DEFINE_MUTEX(br_ioctl_mutex);
909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
910 
911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
912 {
913 	mutex_lock(&br_ioctl_mutex);
914 	br_ioctl_hook = hook;
915 	mutex_unlock(&br_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(brioctl_set);
918 
919 static DEFINE_MUTEX(vlan_ioctl_mutex);
920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
921 
922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
923 {
924 	mutex_lock(&vlan_ioctl_mutex);
925 	vlan_ioctl_hook = hook;
926 	mutex_unlock(&vlan_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(vlan_ioctl_set);
929 
930 static DEFINE_MUTEX(dlci_ioctl_mutex);
931 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
932 
933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
934 {
935 	mutex_lock(&dlci_ioctl_mutex);
936 	dlci_ioctl_hook = hook;
937 	mutex_unlock(&dlci_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(dlci_ioctl_set);
940 
941 static long sock_do_ioctl(struct net *net, struct socket *sock,
942 				 unsigned int cmd, unsigned long arg)
943 {
944 	int err;
945 	void __user *argp = (void __user *)arg;
946 
947 	err = sock->ops->ioctl(sock, cmd, arg);
948 
949 	/*
950 	 * If this ioctl is unknown try to hand it down
951 	 * to the NIC driver.
952 	 */
953 	if (err == -ENOIOCTLCMD)
954 		err = dev_ioctl(net, cmd, argp);
955 
956 	return err;
957 }
958 
959 /*
960  *	With an ioctl, arg may well be a user mode pointer, but we don't know
961  *	what to do with it - that's up to the protocol still.
962  */
963 
964 static struct ns_common *get_net_ns(struct ns_common *ns)
965 {
966 	return &get_net(container_of(ns, struct net, ns))->ns;
967 }
968 
969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
970 {
971 	struct socket *sock;
972 	struct sock *sk;
973 	void __user *argp = (void __user *)arg;
974 	int pid, err;
975 	struct net *net;
976 
977 	sock = file->private_data;
978 	sk = sock->sk;
979 	net = sock_net(sk);
980 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
981 		err = dev_ioctl(net, cmd, argp);
982 	} else
983 #ifdef CONFIG_WEXT_CORE
984 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
985 		err = dev_ioctl(net, cmd, argp);
986 	} else
987 #endif
988 		switch (cmd) {
989 		case FIOSETOWN:
990 		case SIOCSPGRP:
991 			err = -EFAULT;
992 			if (get_user(pid, (int __user *)argp))
993 				break;
994 			err = f_setown(sock->file, pid, 1);
995 			break;
996 		case FIOGETOWN:
997 		case SIOCGPGRP:
998 			err = put_user(f_getown(sock->file),
999 				       (int __user *)argp);
1000 			break;
1001 		case SIOCGIFBR:
1002 		case SIOCSIFBR:
1003 		case SIOCBRADDBR:
1004 		case SIOCBRDELBR:
1005 			err = -ENOPKG;
1006 			if (!br_ioctl_hook)
1007 				request_module("bridge");
1008 
1009 			mutex_lock(&br_ioctl_mutex);
1010 			if (br_ioctl_hook)
1011 				err = br_ioctl_hook(net, cmd, argp);
1012 			mutex_unlock(&br_ioctl_mutex);
1013 			break;
1014 		case SIOCGIFVLAN:
1015 		case SIOCSIFVLAN:
1016 			err = -ENOPKG;
1017 			if (!vlan_ioctl_hook)
1018 				request_module("8021q");
1019 
1020 			mutex_lock(&vlan_ioctl_mutex);
1021 			if (vlan_ioctl_hook)
1022 				err = vlan_ioctl_hook(net, argp);
1023 			mutex_unlock(&vlan_ioctl_mutex);
1024 			break;
1025 		case SIOCADDDLCI:
1026 		case SIOCDELDLCI:
1027 			err = -ENOPKG;
1028 			if (!dlci_ioctl_hook)
1029 				request_module("dlci");
1030 
1031 			mutex_lock(&dlci_ioctl_mutex);
1032 			if (dlci_ioctl_hook)
1033 				err = dlci_ioctl_hook(cmd, argp);
1034 			mutex_unlock(&dlci_ioctl_mutex);
1035 			break;
1036 		case SIOCGSKNS:
1037 			err = -EPERM;
1038 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1039 				break;
1040 
1041 			err = open_related_ns(&net->ns, get_net_ns);
1042 			break;
1043 		default:
1044 			err = sock_do_ioctl(net, sock, cmd, arg);
1045 			break;
1046 		}
1047 	return err;
1048 }
1049 
1050 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1051 {
1052 	int err;
1053 	struct socket *sock = NULL;
1054 
1055 	err = security_socket_create(family, type, protocol, 1);
1056 	if (err)
1057 		goto out;
1058 
1059 	sock = sock_alloc();
1060 	if (!sock) {
1061 		err = -ENOMEM;
1062 		goto out;
1063 	}
1064 
1065 	sock->type = type;
1066 	err = security_socket_post_create(sock, family, type, protocol, 1);
1067 	if (err)
1068 		goto out_release;
1069 
1070 out:
1071 	*res = sock;
1072 	return err;
1073 out_release:
1074 	sock_release(sock);
1075 	sock = NULL;
1076 	goto out;
1077 }
1078 EXPORT_SYMBOL(sock_create_lite);
1079 
1080 /* No kernel lock held - perfect */
1081 static unsigned int sock_poll(struct file *file, poll_table *wait)
1082 {
1083 	unsigned int busy_flag = 0;
1084 	struct socket *sock;
1085 
1086 	/*
1087 	 *      We can't return errors to poll, so it's either yes or no.
1088 	 */
1089 	sock = file->private_data;
1090 
1091 	if (sk_can_busy_loop(sock->sk)) {
1092 		/* this socket can poll_ll so tell the system call */
1093 		busy_flag = POLL_BUSY_LOOP;
1094 
1095 		/* once, only if requested by syscall */
1096 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1097 			sk_busy_loop(sock->sk, 1);
1098 	}
1099 
1100 	return busy_flag | sock->ops->poll(file, sock, wait);
1101 }
1102 
1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1104 {
1105 	struct socket *sock = file->private_data;
1106 
1107 	return sock->ops->mmap(file, sock, vma);
1108 }
1109 
1110 static int sock_close(struct inode *inode, struct file *filp)
1111 {
1112 	sock_release(SOCKET_I(inode));
1113 	return 0;
1114 }
1115 
1116 /*
1117  *	Update the socket async list
1118  *
1119  *	Fasync_list locking strategy.
1120  *
1121  *	1. fasync_list is modified only under process context socket lock
1122  *	   i.e. under semaphore.
1123  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1124  *	   or under socket lock
1125  */
1126 
1127 static int sock_fasync(int fd, struct file *filp, int on)
1128 {
1129 	struct socket *sock = filp->private_data;
1130 	struct sock *sk = sock->sk;
1131 	struct socket_wq *wq;
1132 
1133 	if (sk == NULL)
1134 		return -EINVAL;
1135 
1136 	lock_sock(sk);
1137 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1138 	fasync_helper(fd, filp, on, &wq->fasync_list);
1139 
1140 	if (!wq->fasync_list)
1141 		sock_reset_flag(sk, SOCK_FASYNC);
1142 	else
1143 		sock_set_flag(sk, SOCK_FASYNC);
1144 
1145 	release_sock(sk);
1146 	return 0;
1147 }
1148 
1149 /* This function may be called only under rcu_lock */
1150 
1151 int sock_wake_async(struct socket_wq *wq, int how, int band)
1152 {
1153 	if (!wq || !wq->fasync_list)
1154 		return -1;
1155 
1156 	switch (how) {
1157 	case SOCK_WAKE_WAITD:
1158 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1159 			break;
1160 		goto call_kill;
1161 	case SOCK_WAKE_SPACE:
1162 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1163 			break;
1164 		/* fall through */
1165 	case SOCK_WAKE_IO:
1166 call_kill:
1167 		kill_fasync(&wq->fasync_list, SIGIO, band);
1168 		break;
1169 	case SOCK_WAKE_URG:
1170 		kill_fasync(&wq->fasync_list, SIGURG, band);
1171 	}
1172 
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL(sock_wake_async);
1176 
1177 int __sock_create(struct net *net, int family, int type, int protocol,
1178 			 struct socket **res, int kern)
1179 {
1180 	int err;
1181 	struct socket *sock;
1182 	const struct net_proto_family *pf;
1183 
1184 	/*
1185 	 *      Check protocol is in range
1186 	 */
1187 	if (family < 0 || family >= NPROTO)
1188 		return -EAFNOSUPPORT;
1189 	if (type < 0 || type >= SOCK_MAX)
1190 		return -EINVAL;
1191 
1192 	/* Compatibility.
1193 
1194 	   This uglymoron is moved from INET layer to here to avoid
1195 	   deadlock in module load.
1196 	 */
1197 	if (family == PF_INET && type == SOCK_PACKET) {
1198 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1199 			     current->comm);
1200 		family = PF_PACKET;
1201 	}
1202 
1203 	err = security_socket_create(family, type, protocol, kern);
1204 	if (err)
1205 		return err;
1206 
1207 	/*
1208 	 *	Allocate the socket and allow the family to set things up. if
1209 	 *	the protocol is 0, the family is instructed to select an appropriate
1210 	 *	default.
1211 	 */
1212 	sock = sock_alloc();
1213 	if (!sock) {
1214 		net_warn_ratelimited("socket: no more sockets\n");
1215 		return -ENFILE;	/* Not exactly a match, but its the
1216 				   closest posix thing */
1217 	}
1218 
1219 	sock->type = type;
1220 
1221 #ifdef CONFIG_MODULES
1222 	/* Attempt to load a protocol module if the find failed.
1223 	 *
1224 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1225 	 * requested real, full-featured networking support upon configuration.
1226 	 * Otherwise module support will break!
1227 	 */
1228 	if (rcu_access_pointer(net_families[family]) == NULL)
1229 		request_module("net-pf-%d", family);
1230 #endif
1231 
1232 	rcu_read_lock();
1233 	pf = rcu_dereference(net_families[family]);
1234 	err = -EAFNOSUPPORT;
1235 	if (!pf)
1236 		goto out_release;
1237 
1238 	/*
1239 	 * We will call the ->create function, that possibly is in a loadable
1240 	 * module, so we have to bump that loadable module refcnt first.
1241 	 */
1242 	if (!try_module_get(pf->owner))
1243 		goto out_release;
1244 
1245 	/* Now protected by module ref count */
1246 	rcu_read_unlock();
1247 
1248 	err = pf->create(net, sock, protocol, kern);
1249 	if (err < 0)
1250 		goto out_module_put;
1251 
1252 	/*
1253 	 * Now to bump the refcnt of the [loadable] module that owns this
1254 	 * socket at sock_release time we decrement its refcnt.
1255 	 */
1256 	if (!try_module_get(sock->ops->owner))
1257 		goto out_module_busy;
1258 
1259 	/*
1260 	 * Now that we're done with the ->create function, the [loadable]
1261 	 * module can have its refcnt decremented
1262 	 */
1263 	module_put(pf->owner);
1264 	err = security_socket_post_create(sock, family, type, protocol, kern);
1265 	if (err)
1266 		goto out_sock_release;
1267 	*res = sock;
1268 
1269 	return 0;
1270 
1271 out_module_busy:
1272 	err = -EAFNOSUPPORT;
1273 out_module_put:
1274 	sock->ops = NULL;
1275 	module_put(pf->owner);
1276 out_sock_release:
1277 	sock_release(sock);
1278 	return err;
1279 
1280 out_release:
1281 	rcu_read_unlock();
1282 	goto out_sock_release;
1283 }
1284 EXPORT_SYMBOL(__sock_create);
1285 
1286 int sock_create(int family, int type, int protocol, struct socket **res)
1287 {
1288 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1289 }
1290 EXPORT_SYMBOL(sock_create);
1291 
1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1293 {
1294 	return __sock_create(net, family, type, protocol, res, 1);
1295 }
1296 EXPORT_SYMBOL(sock_create_kern);
1297 
1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1299 {
1300 	int retval;
1301 	struct socket *sock;
1302 	int flags;
1303 
1304 	/* Check the SOCK_* constants for consistency.  */
1305 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1306 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1307 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1308 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1309 
1310 	flags = type & ~SOCK_TYPE_MASK;
1311 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1312 		return -EINVAL;
1313 	type &= SOCK_TYPE_MASK;
1314 
1315 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1316 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1317 
1318 	retval = sock_create(family, type, protocol, &sock);
1319 	if (retval < 0)
1320 		goto out;
1321 
1322 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1323 	if (retval < 0)
1324 		goto out_release;
1325 
1326 out:
1327 	/* It may be already another descriptor 8) Not kernel problem. */
1328 	return retval;
1329 
1330 out_release:
1331 	sock_release(sock);
1332 	return retval;
1333 }
1334 
1335 /*
1336  *	Create a pair of connected sockets.
1337  */
1338 
1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1340 		int __user *, usockvec)
1341 {
1342 	struct socket *sock1, *sock2;
1343 	int fd1, fd2, err;
1344 	struct file *newfile1, *newfile2;
1345 	int flags;
1346 
1347 	flags = type & ~SOCK_TYPE_MASK;
1348 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 		return -EINVAL;
1350 	type &= SOCK_TYPE_MASK;
1351 
1352 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354 
1355 	/*
1356 	 * Obtain the first socket and check if the underlying protocol
1357 	 * supports the socketpair call.
1358 	 */
1359 
1360 	err = sock_create(family, type, protocol, &sock1);
1361 	if (err < 0)
1362 		goto out;
1363 
1364 	err = sock_create(family, type, protocol, &sock2);
1365 	if (err < 0)
1366 		goto out_release_1;
1367 
1368 	err = sock1->ops->socketpair(sock1, sock2);
1369 	if (err < 0)
1370 		goto out_release_both;
1371 
1372 	fd1 = get_unused_fd_flags(flags);
1373 	if (unlikely(fd1 < 0)) {
1374 		err = fd1;
1375 		goto out_release_both;
1376 	}
1377 
1378 	fd2 = get_unused_fd_flags(flags);
1379 	if (unlikely(fd2 < 0)) {
1380 		err = fd2;
1381 		goto out_put_unused_1;
1382 	}
1383 
1384 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1385 	if (IS_ERR(newfile1)) {
1386 		err = PTR_ERR(newfile1);
1387 		goto out_put_unused_both;
1388 	}
1389 
1390 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1391 	if (IS_ERR(newfile2)) {
1392 		err = PTR_ERR(newfile2);
1393 		goto out_fput_1;
1394 	}
1395 
1396 	err = put_user(fd1, &usockvec[0]);
1397 	if (err)
1398 		goto out_fput_both;
1399 
1400 	err = put_user(fd2, &usockvec[1]);
1401 	if (err)
1402 		goto out_fput_both;
1403 
1404 	audit_fd_pair(fd1, fd2);
1405 
1406 	fd_install(fd1, newfile1);
1407 	fd_install(fd2, newfile2);
1408 	/* fd1 and fd2 may be already another descriptors.
1409 	 * Not kernel problem.
1410 	 */
1411 
1412 	return 0;
1413 
1414 out_fput_both:
1415 	fput(newfile2);
1416 	fput(newfile1);
1417 	put_unused_fd(fd2);
1418 	put_unused_fd(fd1);
1419 	goto out;
1420 
1421 out_fput_1:
1422 	fput(newfile1);
1423 	put_unused_fd(fd2);
1424 	put_unused_fd(fd1);
1425 	sock_release(sock2);
1426 	goto out;
1427 
1428 out_put_unused_both:
1429 	put_unused_fd(fd2);
1430 out_put_unused_1:
1431 	put_unused_fd(fd1);
1432 out_release_both:
1433 	sock_release(sock2);
1434 out_release_1:
1435 	sock_release(sock1);
1436 out:
1437 	return err;
1438 }
1439 
1440 /*
1441  *	Bind a name to a socket. Nothing much to do here since it's
1442  *	the protocol's responsibility to handle the local address.
1443  *
1444  *	We move the socket address to kernel space before we call
1445  *	the protocol layer (having also checked the address is ok).
1446  */
1447 
1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449 {
1450 	struct socket *sock;
1451 	struct sockaddr_storage address;
1452 	int err, fput_needed;
1453 
1454 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455 	if (sock) {
1456 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457 		if (err >= 0) {
1458 			err = security_socket_bind(sock,
1459 						   (struct sockaddr *)&address,
1460 						   addrlen);
1461 			if (!err)
1462 				err = sock->ops->bind(sock,
1463 						      (struct sockaddr *)
1464 						      &address, addrlen);
1465 		}
1466 		fput_light(sock->file, fput_needed);
1467 	}
1468 	return err;
1469 }
1470 
1471 /*
1472  *	Perform a listen. Basically, we allow the protocol to do anything
1473  *	necessary for a listen, and if that works, we mark the socket as
1474  *	ready for listening.
1475  */
1476 
1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478 {
1479 	struct socket *sock;
1480 	int err, fput_needed;
1481 	int somaxconn;
1482 
1483 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 	if (sock) {
1485 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486 		if ((unsigned int)backlog > somaxconn)
1487 			backlog = somaxconn;
1488 
1489 		err = security_socket_listen(sock, backlog);
1490 		if (!err)
1491 			err = sock->ops->listen(sock, backlog);
1492 
1493 		fput_light(sock->file, fput_needed);
1494 	}
1495 	return err;
1496 }
1497 
1498 /*
1499  *	For accept, we attempt to create a new socket, set up the link
1500  *	with the client, wake up the client, then return the new
1501  *	connected fd. We collect the address of the connector in kernel
1502  *	space and move it to user at the very end. This is unclean because
1503  *	we open the socket then return an error.
1504  *
1505  *	1003.1g adds the ability to recvmsg() to query connection pending
1506  *	status to recvmsg. We need to add that support in a way thats
1507  *	clean when we restucture accept also.
1508  */
1509 
1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511 		int __user *, upeer_addrlen, int, flags)
1512 {
1513 	struct socket *sock, *newsock;
1514 	struct file *newfile;
1515 	int err, len, newfd, fput_needed;
1516 	struct sockaddr_storage address;
1517 
1518 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 		return -EINVAL;
1520 
1521 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523 
1524 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 	if (!sock)
1526 		goto out;
1527 
1528 	err = -ENFILE;
1529 	newsock = sock_alloc();
1530 	if (!newsock)
1531 		goto out_put;
1532 
1533 	newsock->type = sock->type;
1534 	newsock->ops = sock->ops;
1535 
1536 	/*
1537 	 * We don't need try_module_get here, as the listening socket (sock)
1538 	 * has the protocol module (sock->ops->owner) held.
1539 	 */
1540 	__module_get(newsock->ops->owner);
1541 
1542 	newfd = get_unused_fd_flags(flags);
1543 	if (unlikely(newfd < 0)) {
1544 		err = newfd;
1545 		sock_release(newsock);
1546 		goto out_put;
1547 	}
1548 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1549 	if (IS_ERR(newfile)) {
1550 		err = PTR_ERR(newfile);
1551 		put_unused_fd(newfd);
1552 		sock_release(newsock);
1553 		goto out_put;
1554 	}
1555 
1556 	err = security_socket_accept(sock, newsock);
1557 	if (err)
1558 		goto out_fd;
1559 
1560 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1561 	if (err < 0)
1562 		goto out_fd;
1563 
1564 	if (upeer_sockaddr) {
1565 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1566 					  &len, 2) < 0) {
1567 			err = -ECONNABORTED;
1568 			goto out_fd;
1569 		}
1570 		err = move_addr_to_user(&address,
1571 					len, upeer_sockaddr, upeer_addrlen);
1572 		if (err < 0)
1573 			goto out_fd;
1574 	}
1575 
1576 	/* File flags are not inherited via accept() unlike another OSes. */
1577 
1578 	fd_install(newfd, newfile);
1579 	err = newfd;
1580 
1581 out_put:
1582 	fput_light(sock->file, fput_needed);
1583 out:
1584 	return err;
1585 out_fd:
1586 	fput(newfile);
1587 	put_unused_fd(newfd);
1588 	goto out_put;
1589 }
1590 
1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 		int __user *, upeer_addrlen)
1593 {
1594 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1595 }
1596 
1597 /*
1598  *	Attempt to connect to a socket with the server address.  The address
1599  *	is in user space so we verify it is OK and move it to kernel space.
1600  *
1601  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1602  *	break bindings
1603  *
1604  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1605  *	other SEQPACKET protocols that take time to connect() as it doesn't
1606  *	include the -EINPROGRESS status for such sockets.
1607  */
1608 
1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1610 		int, addrlen)
1611 {
1612 	struct socket *sock;
1613 	struct sockaddr_storage address;
1614 	int err, fput_needed;
1615 
1616 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 	if (!sock)
1618 		goto out;
1619 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1620 	if (err < 0)
1621 		goto out_put;
1622 
1623 	err =
1624 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1625 	if (err)
1626 		goto out_put;
1627 
1628 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1629 				 sock->file->f_flags);
1630 out_put:
1631 	fput_light(sock->file, fput_needed);
1632 out:
1633 	return err;
1634 }
1635 
1636 /*
1637  *	Get the local address ('name') of a socket object. Move the obtained
1638  *	name to user space.
1639  */
1640 
1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1642 		int __user *, usockaddr_len)
1643 {
1644 	struct socket *sock;
1645 	struct sockaddr_storage address;
1646 	int len, err, fput_needed;
1647 
1648 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 	if (!sock)
1650 		goto out;
1651 
1652 	err = security_socket_getsockname(sock);
1653 	if (err)
1654 		goto out_put;
1655 
1656 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1657 	if (err)
1658 		goto out_put;
1659 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1660 
1661 out_put:
1662 	fput_light(sock->file, fput_needed);
1663 out:
1664 	return err;
1665 }
1666 
1667 /*
1668  *	Get the remote address ('name') of a socket object. Move the obtained
1669  *	name to user space.
1670  */
1671 
1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1673 		int __user *, usockaddr_len)
1674 {
1675 	struct socket *sock;
1676 	struct sockaddr_storage address;
1677 	int len, err, fput_needed;
1678 
1679 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 	if (sock != NULL) {
1681 		err = security_socket_getpeername(sock);
1682 		if (err) {
1683 			fput_light(sock->file, fput_needed);
1684 			return err;
1685 		}
1686 
1687 		err =
1688 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1689 				       1);
1690 		if (!err)
1691 			err = move_addr_to_user(&address, len, usockaddr,
1692 						usockaddr_len);
1693 		fput_light(sock->file, fput_needed);
1694 	}
1695 	return err;
1696 }
1697 
1698 /*
1699  *	Send a datagram to a given address. We move the address into kernel
1700  *	space and check the user space data area is readable before invoking
1701  *	the protocol.
1702  */
1703 
1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1705 		unsigned int, flags, struct sockaddr __user *, addr,
1706 		int, addr_len)
1707 {
1708 	struct socket *sock;
1709 	struct sockaddr_storage address;
1710 	int err;
1711 	struct msghdr msg;
1712 	struct iovec iov;
1713 	int fput_needed;
1714 
1715 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1716 	if (unlikely(err))
1717 		return err;
1718 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1719 	if (!sock)
1720 		goto out;
1721 
1722 	msg.msg_name = NULL;
1723 	msg.msg_control = NULL;
1724 	msg.msg_controllen = 0;
1725 	msg.msg_namelen = 0;
1726 	if (addr) {
1727 		err = move_addr_to_kernel(addr, addr_len, &address);
1728 		if (err < 0)
1729 			goto out_put;
1730 		msg.msg_name = (struct sockaddr *)&address;
1731 		msg.msg_namelen = addr_len;
1732 	}
1733 	if (sock->file->f_flags & O_NONBLOCK)
1734 		flags |= MSG_DONTWAIT;
1735 	msg.msg_flags = flags;
1736 	err = sock_sendmsg(sock, &msg);
1737 
1738 out_put:
1739 	fput_light(sock->file, fput_needed);
1740 out:
1741 	return err;
1742 }
1743 
1744 /*
1745  *	Send a datagram down a socket.
1746  */
1747 
1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1749 		unsigned int, flags)
1750 {
1751 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1752 }
1753 
1754 /*
1755  *	Receive a frame from the socket and optionally record the address of the
1756  *	sender. We verify the buffers are writable and if needed move the
1757  *	sender address from kernel to user space.
1758  */
1759 
1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1761 		unsigned int, flags, struct sockaddr __user *, addr,
1762 		int __user *, addr_len)
1763 {
1764 	struct socket *sock;
1765 	struct iovec iov;
1766 	struct msghdr msg;
1767 	struct sockaddr_storage address;
1768 	int err, err2;
1769 	int fput_needed;
1770 
1771 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1772 	if (unlikely(err))
1773 		return err;
1774 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 	if (!sock)
1776 		goto out;
1777 
1778 	msg.msg_control = NULL;
1779 	msg.msg_controllen = 0;
1780 	/* Save some cycles and don't copy the address if not needed */
1781 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1782 	/* We assume all kernel code knows the size of sockaddr_storage */
1783 	msg.msg_namelen = 0;
1784 	msg.msg_iocb = NULL;
1785 	msg.msg_flags = 0;
1786 	if (sock->file->f_flags & O_NONBLOCK)
1787 		flags |= MSG_DONTWAIT;
1788 	err = sock_recvmsg(sock, &msg, flags);
1789 
1790 	if (err >= 0 && addr != NULL) {
1791 		err2 = move_addr_to_user(&address,
1792 					 msg.msg_namelen, addr, addr_len);
1793 		if (err2 < 0)
1794 			err = err2;
1795 	}
1796 
1797 	fput_light(sock->file, fput_needed);
1798 out:
1799 	return err;
1800 }
1801 
1802 /*
1803  *	Receive a datagram from a socket.
1804  */
1805 
1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1807 		unsigned int, flags)
1808 {
1809 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1810 }
1811 
1812 /*
1813  *	Set a socket option. Because we don't know the option lengths we have
1814  *	to pass the user mode parameter for the protocols to sort out.
1815  */
1816 
1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1818 		char __user *, optval, int, optlen)
1819 {
1820 	int err, fput_needed;
1821 	struct socket *sock;
1822 
1823 	if (optlen < 0)
1824 		return -EINVAL;
1825 
1826 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 	if (sock != NULL) {
1828 		err = security_socket_setsockopt(sock, level, optname);
1829 		if (err)
1830 			goto out_put;
1831 
1832 		if (level == SOL_SOCKET)
1833 			err =
1834 			    sock_setsockopt(sock, level, optname, optval,
1835 					    optlen);
1836 		else
1837 			err =
1838 			    sock->ops->setsockopt(sock, level, optname, optval,
1839 						  optlen);
1840 out_put:
1841 		fput_light(sock->file, fput_needed);
1842 	}
1843 	return err;
1844 }
1845 
1846 /*
1847  *	Get a socket option. Because we don't know the option lengths we have
1848  *	to pass a user mode parameter for the protocols to sort out.
1849  */
1850 
1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1852 		char __user *, optval, int __user *, optlen)
1853 {
1854 	int err, fput_needed;
1855 	struct socket *sock;
1856 
1857 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 	if (sock != NULL) {
1859 		err = security_socket_getsockopt(sock, level, optname);
1860 		if (err)
1861 			goto out_put;
1862 
1863 		if (level == SOL_SOCKET)
1864 			err =
1865 			    sock_getsockopt(sock, level, optname, optval,
1866 					    optlen);
1867 		else
1868 			err =
1869 			    sock->ops->getsockopt(sock, level, optname, optval,
1870 						  optlen);
1871 out_put:
1872 		fput_light(sock->file, fput_needed);
1873 	}
1874 	return err;
1875 }
1876 
1877 /*
1878  *	Shutdown a socket.
1879  */
1880 
1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1882 {
1883 	int err, fput_needed;
1884 	struct socket *sock;
1885 
1886 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 	if (sock != NULL) {
1888 		err = security_socket_shutdown(sock, how);
1889 		if (!err)
1890 			err = sock->ops->shutdown(sock, how);
1891 		fput_light(sock->file, fput_needed);
1892 	}
1893 	return err;
1894 }
1895 
1896 /* A couple of helpful macros for getting the address of the 32/64 bit
1897  * fields which are the same type (int / unsigned) on our platforms.
1898  */
1899 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1900 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1901 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1902 
1903 struct used_address {
1904 	struct sockaddr_storage name;
1905 	unsigned int name_len;
1906 };
1907 
1908 static int copy_msghdr_from_user(struct msghdr *kmsg,
1909 				 struct user_msghdr __user *umsg,
1910 				 struct sockaddr __user **save_addr,
1911 				 struct iovec **iov)
1912 {
1913 	struct user_msghdr msg;
1914 	ssize_t err;
1915 
1916 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1917 		return -EFAULT;
1918 
1919 	kmsg->msg_control = msg.msg_control;
1920 	kmsg->msg_controllen = msg.msg_controllen;
1921 	kmsg->msg_flags = msg.msg_flags;
1922 
1923 	kmsg->msg_namelen = msg.msg_namelen;
1924 	if (!msg.msg_name)
1925 		kmsg->msg_namelen = 0;
1926 
1927 	if (kmsg->msg_namelen < 0)
1928 		return -EINVAL;
1929 
1930 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1931 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1932 
1933 	if (save_addr)
1934 		*save_addr = msg.msg_name;
1935 
1936 	if (msg.msg_name && kmsg->msg_namelen) {
1937 		if (!save_addr) {
1938 			err = move_addr_to_kernel(msg.msg_name, kmsg->msg_namelen,
1939 						  kmsg->msg_name);
1940 			if (err < 0)
1941 				return err;
1942 		}
1943 	} else {
1944 		kmsg->msg_name = NULL;
1945 		kmsg->msg_namelen = 0;
1946 	}
1947 
1948 	if (msg.msg_iovlen > UIO_MAXIOV)
1949 		return -EMSGSIZE;
1950 
1951 	kmsg->msg_iocb = NULL;
1952 
1953 	return import_iovec(save_addr ? READ : WRITE,
1954 			    msg.msg_iov, msg.msg_iovlen,
1955 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1956 }
1957 
1958 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1959 			 struct msghdr *msg_sys, unsigned int flags,
1960 			 struct used_address *used_address,
1961 			 unsigned int allowed_msghdr_flags)
1962 {
1963 	struct compat_msghdr __user *msg_compat =
1964 	    (struct compat_msghdr __user *)msg;
1965 	struct sockaddr_storage address;
1966 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968 				__aligned(sizeof(__kernel_size_t));
1969 	/* 20 is size of ipv6_pktinfo */
1970 	unsigned char *ctl_buf = ctl;
1971 	int ctl_len;
1972 	ssize_t err;
1973 
1974 	msg_sys->msg_name = &address;
1975 
1976 	if (MSG_CMSG_COMPAT & flags)
1977 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1978 	else
1979 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1980 	if (err < 0)
1981 		return err;
1982 
1983 	err = -ENOBUFS;
1984 
1985 	if (msg_sys->msg_controllen > INT_MAX)
1986 		goto out_freeiov;
1987 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1988 	ctl_len = msg_sys->msg_controllen;
1989 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1990 		err =
1991 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1992 						     sizeof(ctl));
1993 		if (err)
1994 			goto out_freeiov;
1995 		ctl_buf = msg_sys->msg_control;
1996 		ctl_len = msg_sys->msg_controllen;
1997 	} else if (ctl_len) {
1998 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1999 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2000 		if (ctl_len > sizeof(ctl)) {
2001 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2002 			if (ctl_buf == NULL)
2003 				goto out_freeiov;
2004 		}
2005 		err = -EFAULT;
2006 		/*
2007 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2008 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2009 		 * checking falls down on this.
2010 		 */
2011 		if (copy_from_user(ctl_buf,
2012 				   (void __user __force *)msg_sys->msg_control,
2013 				   ctl_len))
2014 			goto out_freectl;
2015 		msg_sys->msg_control = ctl_buf;
2016 	}
2017 	msg_sys->msg_flags = flags;
2018 
2019 	if (sock->file->f_flags & O_NONBLOCK)
2020 		msg_sys->msg_flags |= MSG_DONTWAIT;
2021 	/*
2022 	 * If this is sendmmsg() and current destination address is same as
2023 	 * previously succeeded address, omit asking LSM's decision.
2024 	 * used_address->name_len is initialized to UINT_MAX so that the first
2025 	 * destination address never matches.
2026 	 */
2027 	if (used_address && msg_sys->msg_name &&
2028 	    used_address->name_len == msg_sys->msg_namelen &&
2029 	    !memcmp(&used_address->name, msg_sys->msg_name,
2030 		    used_address->name_len)) {
2031 		err = sock_sendmsg_nosec(sock, msg_sys);
2032 		goto out_freectl;
2033 	}
2034 	err = sock_sendmsg(sock, msg_sys);
2035 	/*
2036 	 * If this is sendmmsg() and sending to current destination address was
2037 	 * successful, remember it.
2038 	 */
2039 	if (used_address && err >= 0) {
2040 		used_address->name_len = msg_sys->msg_namelen;
2041 		if (msg_sys->msg_name)
2042 			memcpy(&used_address->name, msg_sys->msg_name,
2043 			       used_address->name_len);
2044 	}
2045 
2046 out_freectl:
2047 	if (ctl_buf != ctl)
2048 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2049 out_freeiov:
2050 	kfree(iov);
2051 	return err;
2052 }
2053 
2054 /*
2055  *	BSD sendmsg interface
2056  */
2057 
2058 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2059 {
2060 	int fput_needed, err;
2061 	struct msghdr msg_sys;
2062 	struct socket *sock;
2063 
2064 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 	if (!sock)
2066 		goto out;
2067 
2068 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2069 
2070 	fput_light(sock->file, fput_needed);
2071 out:
2072 	return err;
2073 }
2074 
2075 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2076 {
2077 	if (flags & MSG_CMSG_COMPAT)
2078 		return -EINVAL;
2079 	return __sys_sendmsg(fd, msg, flags);
2080 }
2081 
2082 /*
2083  *	Linux sendmmsg interface
2084  */
2085 
2086 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2087 		   unsigned int flags)
2088 {
2089 	int fput_needed, err, datagrams;
2090 	struct socket *sock;
2091 	struct mmsghdr __user *entry;
2092 	struct compat_mmsghdr __user *compat_entry;
2093 	struct msghdr msg_sys;
2094 	struct used_address used_address;
2095 	unsigned int oflags = flags;
2096 
2097 	if (vlen > UIO_MAXIOV)
2098 		vlen = UIO_MAXIOV;
2099 
2100 	datagrams = 0;
2101 
2102 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 	if (!sock)
2104 		return err;
2105 
2106 	used_address.name_len = UINT_MAX;
2107 	entry = mmsg;
2108 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2109 	err = 0;
2110 	flags |= MSG_BATCH;
2111 
2112 	while (datagrams < vlen) {
2113 		if (datagrams == vlen - 1)
2114 			flags = oflags;
2115 
2116 		if (MSG_CMSG_COMPAT & flags) {
2117 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2118 					     &msg_sys, flags, &used_address, MSG_EOR);
2119 			if (err < 0)
2120 				break;
2121 			err = __put_user(err, &compat_entry->msg_len);
2122 			++compat_entry;
2123 		} else {
2124 			err = ___sys_sendmsg(sock,
2125 					     (struct user_msghdr __user *)entry,
2126 					     &msg_sys, flags, &used_address, MSG_EOR);
2127 			if (err < 0)
2128 				break;
2129 			err = put_user(err, &entry->msg_len);
2130 			++entry;
2131 		}
2132 
2133 		if (err)
2134 			break;
2135 		++datagrams;
2136 		if (msg_data_left(&msg_sys))
2137 			break;
2138 		cond_resched();
2139 	}
2140 
2141 	fput_light(sock->file, fput_needed);
2142 
2143 	/* We only return an error if no datagrams were able to be sent */
2144 	if (datagrams != 0)
2145 		return datagrams;
2146 
2147 	return err;
2148 }
2149 
2150 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2151 		unsigned int, vlen, unsigned int, flags)
2152 {
2153 	if (flags & MSG_CMSG_COMPAT)
2154 		return -EINVAL;
2155 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2156 }
2157 
2158 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2159 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2160 {
2161 	struct compat_msghdr __user *msg_compat =
2162 	    (struct compat_msghdr __user *)msg;
2163 	struct iovec iovstack[UIO_FASTIOV];
2164 	struct iovec *iov = iovstack;
2165 	unsigned long cmsg_ptr;
2166 	int len;
2167 	ssize_t err;
2168 
2169 	/* kernel mode address */
2170 	struct sockaddr_storage addr;
2171 
2172 	/* user mode address pointers */
2173 	struct sockaddr __user *uaddr;
2174 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2175 
2176 	msg_sys->msg_name = &addr;
2177 
2178 	if (MSG_CMSG_COMPAT & flags)
2179 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2180 	else
2181 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2186 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2187 
2188 	/* We assume all kernel code knows the size of sockaddr_storage */
2189 	msg_sys->msg_namelen = 0;
2190 
2191 	if (sock->file->f_flags & O_NONBLOCK)
2192 		flags |= MSG_DONTWAIT;
2193 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2194 	if (err < 0)
2195 		goto out_freeiov;
2196 	len = err;
2197 
2198 	if (uaddr != NULL) {
2199 		err = move_addr_to_user(&addr,
2200 					msg_sys->msg_namelen, uaddr,
2201 					uaddr_len);
2202 		if (err < 0)
2203 			goto out_freeiov;
2204 	}
2205 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2206 			 COMPAT_FLAGS(msg));
2207 	if (err)
2208 		goto out_freeiov;
2209 	if (MSG_CMSG_COMPAT & flags)
2210 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2211 				 &msg_compat->msg_controllen);
2212 	else
2213 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2214 				 &msg->msg_controllen);
2215 	if (err)
2216 		goto out_freeiov;
2217 	err = len;
2218 
2219 out_freeiov:
2220 	kfree(iov);
2221 	return err;
2222 }
2223 
2224 /*
2225  *	BSD recvmsg interface
2226  */
2227 
2228 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2229 {
2230 	int fput_needed, err;
2231 	struct msghdr msg_sys;
2232 	struct socket *sock;
2233 
2234 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2235 	if (!sock)
2236 		goto out;
2237 
2238 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2239 
2240 	fput_light(sock->file, fput_needed);
2241 out:
2242 	return err;
2243 }
2244 
2245 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2246 		unsigned int, flags)
2247 {
2248 	if (flags & MSG_CMSG_COMPAT)
2249 		return -EINVAL;
2250 	return __sys_recvmsg(fd, msg, flags);
2251 }
2252 
2253 /*
2254  *     Linux recvmmsg interface
2255  */
2256 
2257 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2258 		   unsigned int flags, struct timespec *timeout)
2259 {
2260 	int fput_needed, err, datagrams;
2261 	struct socket *sock;
2262 	struct mmsghdr __user *entry;
2263 	struct compat_mmsghdr __user *compat_entry;
2264 	struct msghdr msg_sys;
2265 	struct timespec64 end_time;
2266 	struct timespec64 timeout64;
2267 
2268 	if (timeout &&
2269 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2270 				    timeout->tv_nsec))
2271 		return -EINVAL;
2272 
2273 	datagrams = 0;
2274 
2275 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2276 	if (!sock)
2277 		return err;
2278 
2279 	err = sock_error(sock->sk);
2280 	if (err) {
2281 		datagrams = err;
2282 		goto out_put;
2283 	}
2284 
2285 	entry = mmsg;
2286 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2287 
2288 	while (datagrams < vlen) {
2289 		/*
2290 		 * No need to ask LSM for more than the first datagram.
2291 		 */
2292 		if (MSG_CMSG_COMPAT & flags) {
2293 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2294 					     &msg_sys, flags & ~MSG_WAITFORONE,
2295 					     datagrams);
2296 			if (err < 0)
2297 				break;
2298 			err = __put_user(err, &compat_entry->msg_len);
2299 			++compat_entry;
2300 		} else {
2301 			err = ___sys_recvmsg(sock,
2302 					     (struct user_msghdr __user *)entry,
2303 					     &msg_sys, flags & ~MSG_WAITFORONE,
2304 					     datagrams);
2305 			if (err < 0)
2306 				break;
2307 			err = put_user(err, &entry->msg_len);
2308 			++entry;
2309 		}
2310 
2311 		if (err)
2312 			break;
2313 		++datagrams;
2314 
2315 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2316 		if (flags & MSG_WAITFORONE)
2317 			flags |= MSG_DONTWAIT;
2318 
2319 		if (timeout) {
2320 			ktime_get_ts64(&timeout64);
2321 			*timeout = timespec64_to_timespec(
2322 					timespec64_sub(end_time, timeout64));
2323 			if (timeout->tv_sec < 0) {
2324 				timeout->tv_sec = timeout->tv_nsec = 0;
2325 				break;
2326 			}
2327 
2328 			/* Timeout, return less than vlen datagrams */
2329 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2330 				break;
2331 		}
2332 
2333 		/* Out of band data, return right away */
2334 		if (msg_sys.msg_flags & MSG_OOB)
2335 			break;
2336 		cond_resched();
2337 	}
2338 
2339 	if (err == 0)
2340 		goto out_put;
2341 
2342 	if (datagrams == 0) {
2343 		datagrams = err;
2344 		goto out_put;
2345 	}
2346 
2347 	/*
2348 	 * We may return less entries than requested (vlen) if the
2349 	 * sock is non block and there aren't enough datagrams...
2350 	 */
2351 	if (err != -EAGAIN) {
2352 		/*
2353 		 * ... or  if recvmsg returns an error after we
2354 		 * received some datagrams, where we record the
2355 		 * error to return on the next call or if the
2356 		 * app asks about it using getsockopt(SO_ERROR).
2357 		 */
2358 		sock->sk->sk_err = -err;
2359 	}
2360 out_put:
2361 	fput_light(sock->file, fput_needed);
2362 
2363 	return datagrams;
2364 }
2365 
2366 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2367 		unsigned int, vlen, unsigned int, flags,
2368 		struct timespec __user *, timeout)
2369 {
2370 	int datagrams;
2371 	struct timespec timeout_sys;
2372 
2373 	if (flags & MSG_CMSG_COMPAT)
2374 		return -EINVAL;
2375 
2376 	if (!timeout)
2377 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2378 
2379 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2380 		return -EFAULT;
2381 
2382 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2383 
2384 	if (datagrams > 0 &&
2385 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2386 		datagrams = -EFAULT;
2387 
2388 	return datagrams;
2389 }
2390 
2391 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2392 /* Argument list sizes for sys_socketcall */
2393 #define AL(x) ((x) * sizeof(unsigned long))
2394 static const unsigned char nargs[21] = {
2395 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2396 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2397 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2398 	AL(4), AL(5), AL(4)
2399 };
2400 
2401 #undef AL
2402 
2403 /*
2404  *	System call vectors.
2405  *
2406  *	Argument checking cleaned up. Saved 20% in size.
2407  *  This function doesn't need to set the kernel lock because
2408  *  it is set by the callees.
2409  */
2410 
2411 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2412 {
2413 	unsigned long a[AUDITSC_ARGS];
2414 	unsigned long a0, a1;
2415 	int err;
2416 	unsigned int len;
2417 
2418 	if (call < 1 || call > SYS_SENDMMSG)
2419 		return -EINVAL;
2420 
2421 	len = nargs[call];
2422 	if (len > sizeof(a))
2423 		return -EINVAL;
2424 
2425 	/* copy_from_user should be SMP safe. */
2426 	if (copy_from_user(a, args, len))
2427 		return -EFAULT;
2428 
2429 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2430 	if (err)
2431 		return err;
2432 
2433 	a0 = a[0];
2434 	a1 = a[1];
2435 
2436 	switch (call) {
2437 	case SYS_SOCKET:
2438 		err = sys_socket(a0, a1, a[2]);
2439 		break;
2440 	case SYS_BIND:
2441 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2442 		break;
2443 	case SYS_CONNECT:
2444 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2445 		break;
2446 	case SYS_LISTEN:
2447 		err = sys_listen(a0, a1);
2448 		break;
2449 	case SYS_ACCEPT:
2450 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2451 				  (int __user *)a[2], 0);
2452 		break;
2453 	case SYS_GETSOCKNAME:
2454 		err =
2455 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2456 				    (int __user *)a[2]);
2457 		break;
2458 	case SYS_GETPEERNAME:
2459 		err =
2460 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2461 				    (int __user *)a[2]);
2462 		break;
2463 	case SYS_SOCKETPAIR:
2464 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2465 		break;
2466 	case SYS_SEND:
2467 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2468 		break;
2469 	case SYS_SENDTO:
2470 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2471 				 (struct sockaddr __user *)a[4], a[5]);
2472 		break;
2473 	case SYS_RECV:
2474 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2475 		break;
2476 	case SYS_RECVFROM:
2477 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2478 				   (struct sockaddr __user *)a[4],
2479 				   (int __user *)a[5]);
2480 		break;
2481 	case SYS_SHUTDOWN:
2482 		err = sys_shutdown(a0, a1);
2483 		break;
2484 	case SYS_SETSOCKOPT:
2485 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2486 		break;
2487 	case SYS_GETSOCKOPT:
2488 		err =
2489 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2490 				   (int __user *)a[4]);
2491 		break;
2492 	case SYS_SENDMSG:
2493 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2494 		break;
2495 	case SYS_SENDMMSG:
2496 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2497 		break;
2498 	case SYS_RECVMSG:
2499 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2500 		break;
2501 	case SYS_RECVMMSG:
2502 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2503 				   (struct timespec __user *)a[4]);
2504 		break;
2505 	case SYS_ACCEPT4:
2506 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2507 				  (int __user *)a[2], a[3]);
2508 		break;
2509 	default:
2510 		err = -EINVAL;
2511 		break;
2512 	}
2513 	return err;
2514 }
2515 
2516 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2517 
2518 /**
2519  *	sock_register - add a socket protocol handler
2520  *	@ops: description of protocol
2521  *
2522  *	This function is called by a protocol handler that wants to
2523  *	advertise its address family, and have it linked into the
2524  *	socket interface. The value ops->family corresponds to the
2525  *	socket system call protocol family.
2526  */
2527 int sock_register(const struct net_proto_family *ops)
2528 {
2529 	int err;
2530 
2531 	if (ops->family >= NPROTO) {
2532 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2533 		return -ENOBUFS;
2534 	}
2535 
2536 	spin_lock(&net_family_lock);
2537 	if (rcu_dereference_protected(net_families[ops->family],
2538 				      lockdep_is_held(&net_family_lock)))
2539 		err = -EEXIST;
2540 	else {
2541 		rcu_assign_pointer(net_families[ops->family], ops);
2542 		err = 0;
2543 	}
2544 	spin_unlock(&net_family_lock);
2545 
2546 	pr_info("NET: Registered protocol family %d\n", ops->family);
2547 	return err;
2548 }
2549 EXPORT_SYMBOL(sock_register);
2550 
2551 /**
2552  *	sock_unregister - remove a protocol handler
2553  *	@family: protocol family to remove
2554  *
2555  *	This function is called by a protocol handler that wants to
2556  *	remove its address family, and have it unlinked from the
2557  *	new socket creation.
2558  *
2559  *	If protocol handler is a module, then it can use module reference
2560  *	counts to protect against new references. If protocol handler is not
2561  *	a module then it needs to provide its own protection in
2562  *	the ops->create routine.
2563  */
2564 void sock_unregister(int family)
2565 {
2566 	BUG_ON(family < 0 || family >= NPROTO);
2567 
2568 	spin_lock(&net_family_lock);
2569 	RCU_INIT_POINTER(net_families[family], NULL);
2570 	spin_unlock(&net_family_lock);
2571 
2572 	synchronize_rcu();
2573 
2574 	pr_info("NET: Unregistered protocol family %d\n", family);
2575 }
2576 EXPORT_SYMBOL(sock_unregister);
2577 
2578 static int __init sock_init(void)
2579 {
2580 	int err;
2581 	/*
2582 	 *      Initialize the network sysctl infrastructure.
2583 	 */
2584 	err = net_sysctl_init();
2585 	if (err)
2586 		goto out;
2587 
2588 	/*
2589 	 *      Initialize skbuff SLAB cache
2590 	 */
2591 	skb_init();
2592 
2593 	/*
2594 	 *      Initialize the protocols module.
2595 	 */
2596 
2597 	init_inodecache();
2598 
2599 	err = register_filesystem(&sock_fs_type);
2600 	if (err)
2601 		goto out_fs;
2602 	sock_mnt = kern_mount(&sock_fs_type);
2603 	if (IS_ERR(sock_mnt)) {
2604 		err = PTR_ERR(sock_mnt);
2605 		goto out_mount;
2606 	}
2607 
2608 	/* The real protocol initialization is performed in later initcalls.
2609 	 */
2610 
2611 #ifdef CONFIG_NETFILTER
2612 	err = netfilter_init();
2613 	if (err)
2614 		goto out;
2615 #endif
2616 
2617 	ptp_classifier_init();
2618 
2619 out:
2620 	return err;
2621 
2622 out_mount:
2623 	unregister_filesystem(&sock_fs_type);
2624 out_fs:
2625 	goto out;
2626 }
2627 
2628 core_initcall(sock_init);	/* early initcall */
2629 
2630 #ifdef CONFIG_PROC_FS
2631 void socket_seq_show(struct seq_file *seq)
2632 {
2633 	int cpu;
2634 	int counter = 0;
2635 
2636 	for_each_possible_cpu(cpu)
2637 	    counter += per_cpu(sockets_in_use, cpu);
2638 
2639 	/* It can be negative, by the way. 8) */
2640 	if (counter < 0)
2641 		counter = 0;
2642 
2643 	seq_printf(seq, "sockets: used %d\n", counter);
2644 }
2645 #endif				/* CONFIG_PROC_FS */
2646 
2647 #ifdef CONFIG_COMPAT
2648 static int do_siocgstamp(struct net *net, struct socket *sock,
2649 			 unsigned int cmd, void __user *up)
2650 {
2651 	mm_segment_t old_fs = get_fs();
2652 	struct timeval ktv;
2653 	int err;
2654 
2655 	set_fs(KERNEL_DS);
2656 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2657 	set_fs(old_fs);
2658 	if (!err)
2659 		err = compat_put_timeval(&ktv, up);
2660 
2661 	return err;
2662 }
2663 
2664 static int do_siocgstampns(struct net *net, struct socket *sock,
2665 			   unsigned int cmd, void __user *up)
2666 {
2667 	mm_segment_t old_fs = get_fs();
2668 	struct timespec kts;
2669 	int err;
2670 
2671 	set_fs(KERNEL_DS);
2672 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2673 	set_fs(old_fs);
2674 	if (!err)
2675 		err = compat_put_timespec(&kts, up);
2676 
2677 	return err;
2678 }
2679 
2680 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2681 {
2682 	struct ifreq __user *uifr;
2683 	int err;
2684 
2685 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2686 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2687 		return -EFAULT;
2688 
2689 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2690 	if (err)
2691 		return err;
2692 
2693 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2694 		return -EFAULT;
2695 
2696 	return 0;
2697 }
2698 
2699 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2700 {
2701 	struct compat_ifconf ifc32;
2702 	struct ifconf ifc;
2703 	struct ifconf __user *uifc;
2704 	struct compat_ifreq __user *ifr32;
2705 	struct ifreq __user *ifr;
2706 	unsigned int i, j;
2707 	int err;
2708 
2709 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2710 		return -EFAULT;
2711 
2712 	memset(&ifc, 0, sizeof(ifc));
2713 	if (ifc32.ifcbuf == 0) {
2714 		ifc32.ifc_len = 0;
2715 		ifc.ifc_len = 0;
2716 		ifc.ifc_req = NULL;
2717 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2718 	} else {
2719 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2720 			sizeof(struct ifreq);
2721 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2722 		ifc.ifc_len = len;
2723 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2724 		ifr32 = compat_ptr(ifc32.ifcbuf);
2725 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2726 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2727 				return -EFAULT;
2728 			ifr++;
2729 			ifr32++;
2730 		}
2731 	}
2732 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2733 		return -EFAULT;
2734 
2735 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2736 	if (err)
2737 		return err;
2738 
2739 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2740 		return -EFAULT;
2741 
2742 	ifr = ifc.ifc_req;
2743 	ifr32 = compat_ptr(ifc32.ifcbuf);
2744 	for (i = 0, j = 0;
2745 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2746 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2747 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2748 			return -EFAULT;
2749 		ifr32++;
2750 		ifr++;
2751 	}
2752 
2753 	if (ifc32.ifcbuf == 0) {
2754 		/* Translate from 64-bit structure multiple to
2755 		 * a 32-bit one.
2756 		 */
2757 		i = ifc.ifc_len;
2758 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2759 		ifc32.ifc_len = i;
2760 	} else {
2761 		ifc32.ifc_len = i;
2762 	}
2763 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2764 		return -EFAULT;
2765 
2766 	return 0;
2767 }
2768 
2769 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2770 {
2771 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2772 	bool convert_in = false, convert_out = false;
2773 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2774 	struct ethtool_rxnfc __user *rxnfc;
2775 	struct ifreq __user *ifr;
2776 	u32 rule_cnt = 0, actual_rule_cnt;
2777 	u32 ethcmd;
2778 	u32 data;
2779 	int ret;
2780 
2781 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2782 		return -EFAULT;
2783 
2784 	compat_rxnfc = compat_ptr(data);
2785 
2786 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2787 		return -EFAULT;
2788 
2789 	/* Most ethtool structures are defined without padding.
2790 	 * Unfortunately struct ethtool_rxnfc is an exception.
2791 	 */
2792 	switch (ethcmd) {
2793 	default:
2794 		break;
2795 	case ETHTOOL_GRXCLSRLALL:
2796 		/* Buffer size is variable */
2797 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2798 			return -EFAULT;
2799 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2800 			return -ENOMEM;
2801 		buf_size += rule_cnt * sizeof(u32);
2802 		/* fall through */
2803 	case ETHTOOL_GRXRINGS:
2804 	case ETHTOOL_GRXCLSRLCNT:
2805 	case ETHTOOL_GRXCLSRULE:
2806 	case ETHTOOL_SRXCLSRLINS:
2807 		convert_out = true;
2808 		/* fall through */
2809 	case ETHTOOL_SRXCLSRLDEL:
2810 		buf_size += sizeof(struct ethtool_rxnfc);
2811 		convert_in = true;
2812 		break;
2813 	}
2814 
2815 	ifr = compat_alloc_user_space(buf_size);
2816 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2817 
2818 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2819 		return -EFAULT;
2820 
2821 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2822 		     &ifr->ifr_ifru.ifru_data))
2823 		return -EFAULT;
2824 
2825 	if (convert_in) {
2826 		/* We expect there to be holes between fs.m_ext and
2827 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2828 		 */
2829 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2830 			     sizeof(compat_rxnfc->fs.m_ext) !=
2831 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2832 			     sizeof(rxnfc->fs.m_ext));
2833 		BUILD_BUG_ON(
2834 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2835 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2836 			offsetof(struct ethtool_rxnfc, fs.location) -
2837 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2838 
2839 		if (copy_in_user(rxnfc, compat_rxnfc,
2840 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2841 				 (void __user *)rxnfc) ||
2842 		    copy_in_user(&rxnfc->fs.ring_cookie,
2843 				 &compat_rxnfc->fs.ring_cookie,
2844 				 (void __user *)(&rxnfc->fs.location + 1) -
2845 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2846 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2847 				 sizeof(rxnfc->rule_cnt)))
2848 			return -EFAULT;
2849 	}
2850 
2851 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2852 	if (ret)
2853 		return ret;
2854 
2855 	if (convert_out) {
2856 		if (copy_in_user(compat_rxnfc, rxnfc,
2857 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2858 				 (const void __user *)rxnfc) ||
2859 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2860 				 &rxnfc->fs.ring_cookie,
2861 				 (const void __user *)(&rxnfc->fs.location + 1) -
2862 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2863 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2864 				 sizeof(rxnfc->rule_cnt)))
2865 			return -EFAULT;
2866 
2867 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2868 			/* As an optimisation, we only copy the actual
2869 			 * number of rules that the underlying
2870 			 * function returned.  Since Mallory might
2871 			 * change the rule count in user memory, we
2872 			 * check that it is less than the rule count
2873 			 * originally given (as the user buffer size),
2874 			 * which has been range-checked.
2875 			 */
2876 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2877 				return -EFAULT;
2878 			if (actual_rule_cnt < rule_cnt)
2879 				rule_cnt = actual_rule_cnt;
2880 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2881 					 &rxnfc->rule_locs[0],
2882 					 rule_cnt * sizeof(u32)))
2883 				return -EFAULT;
2884 		}
2885 	}
2886 
2887 	return 0;
2888 }
2889 
2890 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2891 {
2892 	void __user *uptr;
2893 	compat_uptr_t uptr32;
2894 	struct ifreq __user *uifr;
2895 
2896 	uifr = compat_alloc_user_space(sizeof(*uifr));
2897 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2898 		return -EFAULT;
2899 
2900 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2901 		return -EFAULT;
2902 
2903 	uptr = compat_ptr(uptr32);
2904 
2905 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2906 		return -EFAULT;
2907 
2908 	return dev_ioctl(net, SIOCWANDEV, uifr);
2909 }
2910 
2911 static int bond_ioctl(struct net *net, unsigned int cmd,
2912 			 struct compat_ifreq __user *ifr32)
2913 {
2914 	struct ifreq kifr;
2915 	mm_segment_t old_fs;
2916 	int err;
2917 
2918 	switch (cmd) {
2919 	case SIOCBONDENSLAVE:
2920 	case SIOCBONDRELEASE:
2921 	case SIOCBONDSETHWADDR:
2922 	case SIOCBONDCHANGEACTIVE:
2923 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2924 			return -EFAULT;
2925 
2926 		old_fs = get_fs();
2927 		set_fs(KERNEL_DS);
2928 		err = dev_ioctl(net, cmd,
2929 				(struct ifreq __user __force *) &kifr);
2930 		set_fs(old_fs);
2931 
2932 		return err;
2933 	default:
2934 		return -ENOIOCTLCMD;
2935 	}
2936 }
2937 
2938 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2939 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2940 				 struct compat_ifreq __user *u_ifreq32)
2941 {
2942 	struct ifreq __user *u_ifreq64;
2943 	char tmp_buf[IFNAMSIZ];
2944 	void __user *data64;
2945 	u32 data32;
2946 
2947 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2948 			   IFNAMSIZ))
2949 		return -EFAULT;
2950 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2951 		return -EFAULT;
2952 	data64 = compat_ptr(data32);
2953 
2954 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2955 
2956 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2957 			 IFNAMSIZ))
2958 		return -EFAULT;
2959 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2960 		return -EFAULT;
2961 
2962 	return dev_ioctl(net, cmd, u_ifreq64);
2963 }
2964 
2965 static int dev_ifsioc(struct net *net, struct socket *sock,
2966 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2967 {
2968 	struct ifreq __user *uifr;
2969 	int err;
2970 
2971 	uifr = compat_alloc_user_space(sizeof(*uifr));
2972 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2973 		return -EFAULT;
2974 
2975 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2976 
2977 	if (!err) {
2978 		switch (cmd) {
2979 		case SIOCGIFFLAGS:
2980 		case SIOCGIFMETRIC:
2981 		case SIOCGIFMTU:
2982 		case SIOCGIFMEM:
2983 		case SIOCGIFHWADDR:
2984 		case SIOCGIFINDEX:
2985 		case SIOCGIFADDR:
2986 		case SIOCGIFBRDADDR:
2987 		case SIOCGIFDSTADDR:
2988 		case SIOCGIFNETMASK:
2989 		case SIOCGIFPFLAGS:
2990 		case SIOCGIFTXQLEN:
2991 		case SIOCGMIIPHY:
2992 		case SIOCGMIIREG:
2993 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2994 				err = -EFAULT;
2995 			break;
2996 		}
2997 	}
2998 	return err;
2999 }
3000 
3001 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3002 			struct compat_ifreq __user *uifr32)
3003 {
3004 	struct ifreq ifr;
3005 	struct compat_ifmap __user *uifmap32;
3006 	mm_segment_t old_fs;
3007 	int err;
3008 
3009 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3010 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3011 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3012 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3013 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3014 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3015 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3016 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3017 	if (err)
3018 		return -EFAULT;
3019 
3020 	old_fs = get_fs();
3021 	set_fs(KERNEL_DS);
3022 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3023 	set_fs(old_fs);
3024 
3025 	if (cmd == SIOCGIFMAP && !err) {
3026 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3027 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3028 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3029 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3030 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3031 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3032 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3033 		if (err)
3034 			err = -EFAULT;
3035 	}
3036 	return err;
3037 }
3038 
3039 struct rtentry32 {
3040 	u32		rt_pad1;
3041 	struct sockaddr rt_dst;         /* target address               */
3042 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3043 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3044 	unsigned short	rt_flags;
3045 	short		rt_pad2;
3046 	u32		rt_pad3;
3047 	unsigned char	rt_tos;
3048 	unsigned char	rt_class;
3049 	short		rt_pad4;
3050 	short		rt_metric;      /* +1 for binary compatibility! */
3051 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3052 	u32		rt_mtu;         /* per route MTU/Window         */
3053 	u32		rt_window;      /* Window clamping              */
3054 	unsigned short  rt_irtt;        /* Initial RTT                  */
3055 };
3056 
3057 struct in6_rtmsg32 {
3058 	struct in6_addr		rtmsg_dst;
3059 	struct in6_addr		rtmsg_src;
3060 	struct in6_addr		rtmsg_gateway;
3061 	u32			rtmsg_type;
3062 	u16			rtmsg_dst_len;
3063 	u16			rtmsg_src_len;
3064 	u32			rtmsg_metric;
3065 	u32			rtmsg_info;
3066 	u32			rtmsg_flags;
3067 	s32			rtmsg_ifindex;
3068 };
3069 
3070 static int routing_ioctl(struct net *net, struct socket *sock,
3071 			 unsigned int cmd, void __user *argp)
3072 {
3073 	int ret;
3074 	void *r = NULL;
3075 	struct in6_rtmsg r6;
3076 	struct rtentry r4;
3077 	char devname[16];
3078 	u32 rtdev;
3079 	mm_segment_t old_fs = get_fs();
3080 
3081 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3082 		struct in6_rtmsg32 __user *ur6 = argp;
3083 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3084 			3 * sizeof(struct in6_addr));
3085 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3086 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3087 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3088 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3089 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3090 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3091 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3092 
3093 		r = (void *) &r6;
3094 	} else { /* ipv4 */
3095 		struct rtentry32 __user *ur4 = argp;
3096 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3097 					3 * sizeof(struct sockaddr));
3098 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3099 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3100 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3101 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3102 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3103 		ret |= get_user(rtdev, &(ur4->rt_dev));
3104 		if (rtdev) {
3105 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3106 			r4.rt_dev = (char __user __force *)devname;
3107 			devname[15] = 0;
3108 		} else
3109 			r4.rt_dev = NULL;
3110 
3111 		r = (void *) &r4;
3112 	}
3113 
3114 	if (ret) {
3115 		ret = -EFAULT;
3116 		goto out;
3117 	}
3118 
3119 	set_fs(KERNEL_DS);
3120 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3121 	set_fs(old_fs);
3122 
3123 out:
3124 	return ret;
3125 }
3126 
3127 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3128  * for some operations; this forces use of the newer bridge-utils that
3129  * use compatible ioctls
3130  */
3131 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3132 {
3133 	compat_ulong_t tmp;
3134 
3135 	if (get_user(tmp, argp))
3136 		return -EFAULT;
3137 	if (tmp == BRCTL_GET_VERSION)
3138 		return BRCTL_VERSION + 1;
3139 	return -EINVAL;
3140 }
3141 
3142 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3143 			 unsigned int cmd, unsigned long arg)
3144 {
3145 	void __user *argp = compat_ptr(arg);
3146 	struct sock *sk = sock->sk;
3147 	struct net *net = sock_net(sk);
3148 
3149 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3150 		return compat_ifr_data_ioctl(net, cmd, argp);
3151 
3152 	switch (cmd) {
3153 	case SIOCSIFBR:
3154 	case SIOCGIFBR:
3155 		return old_bridge_ioctl(argp);
3156 	case SIOCGIFNAME:
3157 		return dev_ifname32(net, argp);
3158 	case SIOCGIFCONF:
3159 		return dev_ifconf(net, argp);
3160 	case SIOCETHTOOL:
3161 		return ethtool_ioctl(net, argp);
3162 	case SIOCWANDEV:
3163 		return compat_siocwandev(net, argp);
3164 	case SIOCGIFMAP:
3165 	case SIOCSIFMAP:
3166 		return compat_sioc_ifmap(net, cmd, argp);
3167 	case SIOCBONDENSLAVE:
3168 	case SIOCBONDRELEASE:
3169 	case SIOCBONDSETHWADDR:
3170 	case SIOCBONDCHANGEACTIVE:
3171 		return bond_ioctl(net, cmd, argp);
3172 	case SIOCADDRT:
3173 	case SIOCDELRT:
3174 		return routing_ioctl(net, sock, cmd, argp);
3175 	case SIOCGSTAMP:
3176 		return do_siocgstamp(net, sock, cmd, argp);
3177 	case SIOCGSTAMPNS:
3178 		return do_siocgstampns(net, sock, cmd, argp);
3179 	case SIOCBONDSLAVEINFOQUERY:
3180 	case SIOCBONDINFOQUERY:
3181 	case SIOCSHWTSTAMP:
3182 	case SIOCGHWTSTAMP:
3183 		return compat_ifr_data_ioctl(net, cmd, argp);
3184 
3185 	case FIOSETOWN:
3186 	case SIOCSPGRP:
3187 	case FIOGETOWN:
3188 	case SIOCGPGRP:
3189 	case SIOCBRADDBR:
3190 	case SIOCBRDELBR:
3191 	case SIOCGIFVLAN:
3192 	case SIOCSIFVLAN:
3193 	case SIOCADDDLCI:
3194 	case SIOCDELDLCI:
3195 	case SIOCGSKNS:
3196 		return sock_ioctl(file, cmd, arg);
3197 
3198 	case SIOCGIFFLAGS:
3199 	case SIOCSIFFLAGS:
3200 	case SIOCGIFMETRIC:
3201 	case SIOCSIFMETRIC:
3202 	case SIOCGIFMTU:
3203 	case SIOCSIFMTU:
3204 	case SIOCGIFMEM:
3205 	case SIOCSIFMEM:
3206 	case SIOCGIFHWADDR:
3207 	case SIOCSIFHWADDR:
3208 	case SIOCADDMULTI:
3209 	case SIOCDELMULTI:
3210 	case SIOCGIFINDEX:
3211 	case SIOCGIFADDR:
3212 	case SIOCSIFADDR:
3213 	case SIOCSIFHWBROADCAST:
3214 	case SIOCDIFADDR:
3215 	case SIOCGIFBRDADDR:
3216 	case SIOCSIFBRDADDR:
3217 	case SIOCGIFDSTADDR:
3218 	case SIOCSIFDSTADDR:
3219 	case SIOCGIFNETMASK:
3220 	case SIOCSIFNETMASK:
3221 	case SIOCSIFPFLAGS:
3222 	case SIOCGIFPFLAGS:
3223 	case SIOCGIFTXQLEN:
3224 	case SIOCSIFTXQLEN:
3225 	case SIOCBRADDIF:
3226 	case SIOCBRDELIF:
3227 	case SIOCSIFNAME:
3228 	case SIOCGMIIPHY:
3229 	case SIOCGMIIREG:
3230 	case SIOCSMIIREG:
3231 		return dev_ifsioc(net, sock, cmd, argp);
3232 
3233 	case SIOCSARP:
3234 	case SIOCGARP:
3235 	case SIOCDARP:
3236 	case SIOCATMARK:
3237 		return sock_do_ioctl(net, sock, cmd, arg);
3238 	}
3239 
3240 	return -ENOIOCTLCMD;
3241 }
3242 
3243 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3244 			      unsigned long arg)
3245 {
3246 	struct socket *sock = file->private_data;
3247 	int ret = -ENOIOCTLCMD;
3248 	struct sock *sk;
3249 	struct net *net;
3250 
3251 	sk = sock->sk;
3252 	net = sock_net(sk);
3253 
3254 	if (sock->ops->compat_ioctl)
3255 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3256 
3257 	if (ret == -ENOIOCTLCMD &&
3258 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3259 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3260 
3261 	if (ret == -ENOIOCTLCMD)
3262 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3263 
3264 	return ret;
3265 }
3266 #endif
3267 
3268 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3269 {
3270 	return sock->ops->bind(sock, addr, addrlen);
3271 }
3272 EXPORT_SYMBOL(kernel_bind);
3273 
3274 int kernel_listen(struct socket *sock, int backlog)
3275 {
3276 	return sock->ops->listen(sock, backlog);
3277 }
3278 EXPORT_SYMBOL(kernel_listen);
3279 
3280 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3281 {
3282 	struct sock *sk = sock->sk;
3283 	int err;
3284 
3285 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3286 			       newsock);
3287 	if (err < 0)
3288 		goto done;
3289 
3290 	err = sock->ops->accept(sock, *newsock, flags, true);
3291 	if (err < 0) {
3292 		sock_release(*newsock);
3293 		*newsock = NULL;
3294 		goto done;
3295 	}
3296 
3297 	(*newsock)->ops = sock->ops;
3298 	__module_get((*newsock)->ops->owner);
3299 
3300 done:
3301 	return err;
3302 }
3303 EXPORT_SYMBOL(kernel_accept);
3304 
3305 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3306 		   int flags)
3307 {
3308 	return sock->ops->connect(sock, addr, addrlen, flags);
3309 }
3310 EXPORT_SYMBOL(kernel_connect);
3311 
3312 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3313 			 int *addrlen)
3314 {
3315 	return sock->ops->getname(sock, addr, addrlen, 0);
3316 }
3317 EXPORT_SYMBOL(kernel_getsockname);
3318 
3319 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3320 			 int *addrlen)
3321 {
3322 	return sock->ops->getname(sock, addr, addrlen, 1);
3323 }
3324 EXPORT_SYMBOL(kernel_getpeername);
3325 
3326 int kernel_getsockopt(struct socket *sock, int level, int optname,
3327 			char *optval, int *optlen)
3328 {
3329 	mm_segment_t oldfs = get_fs();
3330 	char __user *uoptval;
3331 	int __user *uoptlen;
3332 	int err;
3333 
3334 	uoptval = (char __user __force *) optval;
3335 	uoptlen = (int __user __force *) optlen;
3336 
3337 	set_fs(KERNEL_DS);
3338 	if (level == SOL_SOCKET)
3339 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3340 	else
3341 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3342 					    uoptlen);
3343 	set_fs(oldfs);
3344 	return err;
3345 }
3346 EXPORT_SYMBOL(kernel_getsockopt);
3347 
3348 int kernel_setsockopt(struct socket *sock, int level, int optname,
3349 			char *optval, unsigned int optlen)
3350 {
3351 	mm_segment_t oldfs = get_fs();
3352 	char __user *uoptval;
3353 	int err;
3354 
3355 	uoptval = (char __user __force *) optval;
3356 
3357 	set_fs(KERNEL_DS);
3358 	if (level == SOL_SOCKET)
3359 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3360 	else
3361 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3362 					    optlen);
3363 	set_fs(oldfs);
3364 	return err;
3365 }
3366 EXPORT_SYMBOL(kernel_setsockopt);
3367 
3368 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3369 		    size_t size, int flags)
3370 {
3371 	if (sock->ops->sendpage)
3372 		return sock->ops->sendpage(sock, page, offset, size, flags);
3373 
3374 	return sock_no_sendpage(sock, page, offset, size, flags);
3375 }
3376 EXPORT_SYMBOL(kernel_sendpage);
3377 
3378 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3379 {
3380 	mm_segment_t oldfs = get_fs();
3381 	int err;
3382 
3383 	set_fs(KERNEL_DS);
3384 	err = sock->ops->ioctl(sock, cmd, arg);
3385 	set_fs(oldfs);
3386 
3387 	return err;
3388 }
3389 EXPORT_SYMBOL(kernel_sock_ioctl);
3390 
3391 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3392 {
3393 	return sock->ops->shutdown(sock, how);
3394 }
3395 EXPORT_SYMBOL(kernel_sock_shutdown);
3396 
3397 /* This routine returns the IP overhead imposed by a socket i.e.
3398  * the length of the underlying IP header, depending on whether
3399  * this is an IPv4 or IPv6 socket and the length from IP options turned
3400  * on at the socket. Assumes that the caller has a lock on the socket.
3401  */
3402 u32 kernel_sock_ip_overhead(struct sock *sk)
3403 {
3404 	struct inet_sock *inet;
3405 	struct ip_options_rcu *opt;
3406 	u32 overhead = 0;
3407 	bool owned_by_user;
3408 #if IS_ENABLED(CONFIG_IPV6)
3409 	struct ipv6_pinfo *np;
3410 	struct ipv6_txoptions *optv6 = NULL;
3411 #endif /* IS_ENABLED(CONFIG_IPV6) */
3412 
3413 	if (!sk)
3414 		return overhead;
3415 
3416 	owned_by_user = sock_owned_by_user(sk);
3417 	switch (sk->sk_family) {
3418 	case AF_INET:
3419 		inet = inet_sk(sk);
3420 		overhead += sizeof(struct iphdr);
3421 		opt = rcu_dereference_protected(inet->inet_opt,
3422 						owned_by_user);
3423 		if (opt)
3424 			overhead += opt->opt.optlen;
3425 		return overhead;
3426 #if IS_ENABLED(CONFIG_IPV6)
3427 	case AF_INET6:
3428 		np = inet6_sk(sk);
3429 		overhead += sizeof(struct ipv6hdr);
3430 		if (np)
3431 			optv6 = rcu_dereference_protected(np->opt,
3432 							  owned_by_user);
3433 		if (optv6)
3434 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3435 		return overhead;
3436 #endif /* IS_ENABLED(CONFIG_IPV6) */
3437 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3438 		return overhead;
3439 	}
3440 }
3441 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3442