xref: /openbmc/linux/net/socket.c (revision e657c18a)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 /**
388  *	sock_alloc_file - Bind a &socket to a &file
389  *	@sock: socket
390  *	@flags: file status flags
391  *	@dname: protocol name
392  *
393  *	Returns the &file bound with @sock, implicitly storing it
394  *	in sock->file. If dname is %NULL, sets to "".
395  *	On failure the return is a ERR pointer (see linux/err.h).
396  *	This function uses GFP_KERNEL internally.
397  */
398 
399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
400 {
401 	struct file *file;
402 
403 	if (!dname)
404 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
405 
406 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
407 				O_RDWR | (flags & O_NONBLOCK),
408 				&socket_file_ops);
409 	if (IS_ERR(file)) {
410 		sock_release(sock);
411 		return file;
412 	}
413 
414 	sock->file = file;
415 	file->private_data = sock;
416 	return file;
417 }
418 EXPORT_SYMBOL(sock_alloc_file);
419 
420 static int sock_map_fd(struct socket *sock, int flags)
421 {
422 	struct file *newfile;
423 	int fd = get_unused_fd_flags(flags);
424 	if (unlikely(fd < 0)) {
425 		sock_release(sock);
426 		return fd;
427 	}
428 
429 	newfile = sock_alloc_file(sock, flags, NULL);
430 	if (likely(!IS_ERR(newfile))) {
431 		fd_install(fd, newfile);
432 		return fd;
433 	}
434 
435 	put_unused_fd(fd);
436 	return PTR_ERR(newfile);
437 }
438 
439 /**
440  *	sock_from_file - Return the &socket bounded to @file.
441  *	@file: file
442  *	@err: pointer to an error code return
443  *
444  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
445  */
446 
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 	if (file->f_op == &socket_file_ops)
450 		return file->private_data;	/* set in sock_map_fd */
451 
452 	*err = -ENOTSOCK;
453 	return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456 
457 /**
458  *	sockfd_lookup - Go from a file number to its socket slot
459  *	@fd: file handle
460  *	@err: pointer to an error code return
461  *
462  *	The file handle passed in is locked and the socket it is bound
463  *	to is returned. If an error occurs the err pointer is overwritten
464  *	with a negative errno code and NULL is returned. The function checks
465  *	for both invalid handles and passing a handle which is not a socket.
466  *
467  *	On a success the socket object pointer is returned.
468  */
469 
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 	struct file *file;
473 	struct socket *sock;
474 
475 	file = fget(fd);
476 	if (!file) {
477 		*err = -EBADF;
478 		return NULL;
479 	}
480 
481 	sock = sock_from_file(file, err);
482 	if (!sock)
483 		fput(file);
484 	return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487 
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 	struct fd f = fdget(fd);
491 	struct socket *sock;
492 
493 	*err = -EBADF;
494 	if (f.file) {
495 		sock = sock_from_file(f.file, err);
496 		if (likely(sock)) {
497 			*fput_needed = f.flags;
498 			return sock;
499 		}
500 		fdput(f);
501 	}
502 	return NULL;
503 }
504 
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 				size_t size)
507 {
508 	ssize_t len;
509 	ssize_t used = 0;
510 
511 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 	if (len < 0)
513 		return len;
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		buffer += len;
519 	}
520 
521 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 		buffer += len;
528 	}
529 
530 	return used;
531 }
532 
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 	int err = simple_setattr(dentry, iattr);
536 
537 	if (!err && (iattr->ia_valid & ATTR_UID)) {
538 		struct socket *sock = SOCKET_I(d_inode(dentry));
539 
540 		if (sock->sk)
541 			sock->sk->sk_uid = iattr->ia_uid;
542 		else
543 			err = -ENOENT;
544 	}
545 
546 	return err;
547 }
548 
549 static const struct inode_operations sockfs_inode_ops = {
550 	.listxattr = sockfs_listxattr,
551 	.setattr = sockfs_setattr,
552 };
553 
554 /**
555  *	sock_alloc - allocate a socket
556  *
557  *	Allocate a new inode and socket object. The two are bound together
558  *	and initialised. The socket is then returned. If we are out of inodes
559  *	NULL is returned. This functions uses GFP_KERNEL internally.
560  */
561 
562 struct socket *sock_alloc(void)
563 {
564 	struct inode *inode;
565 	struct socket *sock;
566 
567 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 	if (!inode)
569 		return NULL;
570 
571 	sock = SOCKET_I(inode);
572 
573 	inode->i_ino = get_next_ino();
574 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 	inode->i_uid = current_fsuid();
576 	inode->i_gid = current_fsgid();
577 	inode->i_op = &sockfs_inode_ops;
578 
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release - close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		if (inode)
598 			inode_lock(inode);
599 		sock->ops->release(sock);
600 		sock->sk = NULL;
601 		if (inode)
602 			inode_unlock(inode);
603 		sock->ops = NULL;
604 		module_put(owner);
605 	}
606 
607 	if (sock->wq->fasync_list)
608 		pr_err("%s: fasync list not empty!\n", __func__);
609 
610 	if (!sock->file) {
611 		iput(SOCK_INODE(sock));
612 		return;
613 	}
614 	sock->file = NULL;
615 }
616 
617 void sock_release(struct socket *sock)
618 {
619 	__sock_release(sock, NULL);
620 }
621 EXPORT_SYMBOL(sock_release);
622 
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
624 {
625 	u8 flags = *tx_flags;
626 
627 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 		flags |= SKBTX_HW_TSTAMP;
629 
630 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 		flags |= SKBTX_SW_TSTAMP;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 		flags |= SKBTX_SCHED_TSTAMP;
635 
636 	*tx_flags = flags;
637 }
638 EXPORT_SYMBOL(__sock_tx_timestamp);
639 
640 /**
641  *	sock_sendmsg - send a message through @sock
642  *	@sock: socket
643  *	@msg: message to send
644  *
645  *	Sends @msg through @sock, passing through LSM.
646  *	Returns the number of bytes sent, or an error code.
647  */
648 
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
652 	BUG_ON(ret == -EIOCBQUEUED);
653 	return ret;
654 }
655 
656 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
657 {
658 	int err = security_socket_sendmsg(sock, msg,
659 					  msg_data_left(msg));
660 
661 	return err ?: sock_sendmsg_nosec(sock, msg);
662 }
663 EXPORT_SYMBOL(sock_sendmsg);
664 
665 /**
666  *	kernel_sendmsg - send a message through @sock (kernel-space)
667  *	@sock: socket
668  *	@msg: message header
669  *	@vec: kernel vec
670  *	@num: vec array length
671  *	@size: total message data size
672  *
673  *	Builds the message data with @vec and sends it through @sock.
674  *	Returns the number of bytes sent, or an error code.
675  */
676 
677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
678 		   struct kvec *vec, size_t num, size_t size)
679 {
680 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
681 	return sock_sendmsg(sock, msg);
682 }
683 EXPORT_SYMBOL(kernel_sendmsg);
684 
685 /**
686  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
687  *	@sk: sock
688  *	@msg: message header
689  *	@vec: output s/g array
690  *	@num: output s/g array length
691  *	@size: total message data size
692  *
693  *	Builds the message data with @vec and sends it through @sock.
694  *	Returns the number of bytes sent, or an error code.
695  *	Caller must hold @sk.
696  */
697 
698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
699 			  struct kvec *vec, size_t num, size_t size)
700 {
701 	struct socket *sock = sk->sk_socket;
702 
703 	if (!sock->ops->sendmsg_locked)
704 		return sock_no_sendmsg_locked(sk, msg, size);
705 
706 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
707 
708 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
709 }
710 EXPORT_SYMBOL(kernel_sendmsg_locked);
711 
712 static bool skb_is_err_queue(const struct sk_buff *skb)
713 {
714 	/* pkt_type of skbs enqueued on the error queue are set to
715 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
716 	 * in recvmsg, since skbs received on a local socket will never
717 	 * have a pkt_type of PACKET_OUTGOING.
718 	 */
719 	return skb->pkt_type == PACKET_OUTGOING;
720 }
721 
722 /* On transmit, software and hardware timestamps are returned independently.
723  * As the two skb clones share the hardware timestamp, which may be updated
724  * before the software timestamp is received, a hardware TX timestamp may be
725  * returned only if there is no software TX timestamp. Ignore false software
726  * timestamps, which may be made in the __sock_recv_timestamp() call when the
727  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
728  * hardware timestamp.
729  */
730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
731 {
732 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
733 }
734 
735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
736 {
737 	struct scm_ts_pktinfo ts_pktinfo;
738 	struct net_device *orig_dev;
739 
740 	if (!skb_mac_header_was_set(skb))
741 		return;
742 
743 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
744 
745 	rcu_read_lock();
746 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
747 	if (orig_dev)
748 		ts_pktinfo.if_index = orig_dev->ifindex;
749 	rcu_read_unlock();
750 
751 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
752 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
753 		 sizeof(ts_pktinfo), &ts_pktinfo);
754 }
755 
756 /*
757  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
758  */
759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
760 	struct sk_buff *skb)
761 {
762 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
763 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
764 	struct scm_timestamping_internal tss;
765 
766 	int empty = 1, false_tstamp = 0;
767 	struct skb_shared_hwtstamps *shhwtstamps =
768 		skb_hwtstamps(skb);
769 
770 	/* Race occurred between timestamp enabling and packet
771 	   receiving.  Fill in the current time for now. */
772 	if (need_software_tstamp && skb->tstamp == 0) {
773 		__net_timestamp(skb);
774 		false_tstamp = 1;
775 	}
776 
777 	if (need_software_tstamp) {
778 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
779 			if (new_tstamp) {
780 				struct __kernel_sock_timeval tv;
781 
782 				skb_get_new_timestamp(skb, &tv);
783 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
784 					 sizeof(tv), &tv);
785 			} else {
786 				struct __kernel_old_timeval tv;
787 
788 				skb_get_timestamp(skb, &tv);
789 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
790 					 sizeof(tv), &tv);
791 			}
792 		} else {
793 			if (new_tstamp) {
794 				struct __kernel_timespec ts;
795 
796 				skb_get_new_timestampns(skb, &ts);
797 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
798 					 sizeof(ts), &ts);
799 			} else {
800 				struct timespec ts;
801 
802 				skb_get_timestampns(skb, &ts);
803 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
804 					 sizeof(ts), &ts);
805 			}
806 		}
807 	}
808 
809 	memset(&tss, 0, sizeof(tss));
810 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
811 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
812 		empty = 0;
813 	if (shhwtstamps &&
814 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
815 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
816 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
817 		empty = 0;
818 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
819 		    !skb_is_err_queue(skb))
820 			put_ts_pktinfo(msg, skb);
821 	}
822 	if (!empty) {
823 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
824 			put_cmsg_scm_timestamping64(msg, &tss);
825 		else
826 			put_cmsg_scm_timestamping(msg, &tss);
827 
828 		if (skb_is_err_queue(skb) && skb->len &&
829 		    SKB_EXT_ERR(skb)->opt_stats)
830 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
831 				 skb->len, skb->data);
832 	}
833 }
834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
835 
836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
837 	struct sk_buff *skb)
838 {
839 	int ack;
840 
841 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
842 		return;
843 	if (!skb->wifi_acked_valid)
844 		return;
845 
846 	ack = skb->wifi_acked;
847 
848 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
849 }
850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
851 
852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
853 				   struct sk_buff *skb)
854 {
855 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
856 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
857 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
858 }
859 
860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
861 	struct sk_buff *skb)
862 {
863 	sock_recv_timestamp(msg, sk, skb);
864 	sock_recv_drops(msg, sk, skb);
865 }
866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
867 
868 /**
869  *	sock_recvmsg - receive a message from @sock
870  *	@sock: socket
871  *	@msg: message to receive
872  *	@flags: message flags
873  *
874  *	Receives @msg from @sock, passing through LSM. Returns the total number
875  *	of bytes received, or an error.
876  */
877 
878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
879 				     int flags)
880 {
881 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
882 }
883 
884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
885 {
886 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
887 
888 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
889 }
890 EXPORT_SYMBOL(sock_recvmsg);
891 
892 /**
893  *	kernel_recvmsg - Receive a message from a socket (kernel space)
894  *	@sock: The socket to receive the message from
895  *	@msg: Received message
896  *	@vec: Input s/g array for message data
897  *	@num: Size of input s/g array
898  *	@size: Number of bytes to read
899  *	@flags: Message flags (MSG_DONTWAIT, etc...)
900  *
901  *	On return the msg structure contains the scatter/gather array passed in the
902  *	vec argument. The array is modified so that it consists of the unfilled
903  *	portion of the original array.
904  *
905  *	The returned value is the total number of bytes received, or an error.
906  */
907 
908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
909 		   struct kvec *vec, size_t num, size_t size, int flags)
910 {
911 	mm_segment_t oldfs = get_fs();
912 	int result;
913 
914 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
915 	set_fs(KERNEL_DS);
916 	result = sock_recvmsg(sock, msg, flags);
917 	set_fs(oldfs);
918 	return result;
919 }
920 EXPORT_SYMBOL(kernel_recvmsg);
921 
922 static ssize_t sock_sendpage(struct file *file, struct page *page,
923 			     int offset, size_t size, loff_t *ppos, int more)
924 {
925 	struct socket *sock;
926 	int flags;
927 
928 	sock = file->private_data;
929 
930 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
932 	flags |= more;
933 
934 	return kernel_sendpage(sock, page, offset, size, flags);
935 }
936 
937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
938 				struct pipe_inode_info *pipe, size_t len,
939 				unsigned int flags)
940 {
941 	struct socket *sock = file->private_data;
942 
943 	if (unlikely(!sock->ops->splice_read))
944 		return generic_file_splice_read(file, ppos, pipe, len, flags);
945 
946 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
947 }
948 
949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
950 {
951 	struct file *file = iocb->ki_filp;
952 	struct socket *sock = file->private_data;
953 	struct msghdr msg = {.msg_iter = *to,
954 			     .msg_iocb = iocb};
955 	ssize_t res;
956 
957 	if (file->f_flags & O_NONBLOCK)
958 		msg.msg_flags = MSG_DONTWAIT;
959 
960 	if (iocb->ki_pos != 0)
961 		return -ESPIPE;
962 
963 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
964 		return 0;
965 
966 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
967 	*to = msg.msg_iter;
968 	return res;
969 }
970 
971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
972 {
973 	struct file *file = iocb->ki_filp;
974 	struct socket *sock = file->private_data;
975 	struct msghdr msg = {.msg_iter = *from,
976 			     .msg_iocb = iocb};
977 	ssize_t res;
978 
979 	if (iocb->ki_pos != 0)
980 		return -ESPIPE;
981 
982 	if (file->f_flags & O_NONBLOCK)
983 		msg.msg_flags = MSG_DONTWAIT;
984 
985 	if (sock->type == SOCK_SEQPACKET)
986 		msg.msg_flags |= MSG_EOR;
987 
988 	res = sock_sendmsg(sock, &msg);
989 	*from = msg.msg_iter;
990 	return res;
991 }
992 
993 /*
994  * Atomic setting of ioctl hooks to avoid race
995  * with module unload.
996  */
997 
998 static DEFINE_MUTEX(br_ioctl_mutex);
999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1000 
1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1002 {
1003 	mutex_lock(&br_ioctl_mutex);
1004 	br_ioctl_hook = hook;
1005 	mutex_unlock(&br_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(brioctl_set);
1008 
1009 static DEFINE_MUTEX(vlan_ioctl_mutex);
1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1011 
1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1013 {
1014 	mutex_lock(&vlan_ioctl_mutex);
1015 	vlan_ioctl_hook = hook;
1016 	mutex_unlock(&vlan_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(vlan_ioctl_set);
1019 
1020 static DEFINE_MUTEX(dlci_ioctl_mutex);
1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1022 
1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1024 {
1025 	mutex_lock(&dlci_ioctl_mutex);
1026 	dlci_ioctl_hook = hook;
1027 	mutex_unlock(&dlci_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(dlci_ioctl_set);
1030 
1031 static long sock_do_ioctl(struct net *net, struct socket *sock,
1032 			  unsigned int cmd, unsigned long arg)
1033 {
1034 	int err;
1035 	void __user *argp = (void __user *)arg;
1036 
1037 	err = sock->ops->ioctl(sock, cmd, arg);
1038 
1039 	/*
1040 	 * If this ioctl is unknown try to hand it down
1041 	 * to the NIC driver.
1042 	 */
1043 	if (err != -ENOIOCTLCMD)
1044 		return err;
1045 
1046 	if (cmd == SIOCGIFCONF) {
1047 		struct ifconf ifc;
1048 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1049 			return -EFAULT;
1050 		rtnl_lock();
1051 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1052 		rtnl_unlock();
1053 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1054 			err = -EFAULT;
1055 	} else {
1056 		struct ifreq ifr;
1057 		bool need_copyout;
1058 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1059 			return -EFAULT;
1060 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1061 		if (!err && need_copyout)
1062 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1063 				return -EFAULT;
1064 	}
1065 	return err;
1066 }
1067 
1068 /*
1069  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1070  *	what to do with it - that's up to the protocol still.
1071  */
1072 
1073 /**
1074  *	get_net_ns - increment the refcount of the network namespace
1075  *	@ns: common namespace (net)
1076  *
1077  *	Returns the net's common namespace.
1078  */
1079 
1080 struct ns_common *get_net_ns(struct ns_common *ns)
1081 {
1082 	return &get_net(container_of(ns, struct net, ns))->ns;
1083 }
1084 EXPORT_SYMBOL_GPL(get_net_ns);
1085 
1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087 {
1088 	struct socket *sock;
1089 	struct sock *sk;
1090 	void __user *argp = (void __user *)arg;
1091 	int pid, err;
1092 	struct net *net;
1093 
1094 	sock = file->private_data;
1095 	sk = sock->sk;
1096 	net = sock_net(sk);
1097 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098 		struct ifreq ifr;
1099 		bool need_copyout;
1100 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101 			return -EFAULT;
1102 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 		if (!err && need_copyout)
1104 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105 				return -EFAULT;
1106 	} else
1107 #ifdef CONFIG_WEXT_CORE
1108 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 		err = wext_handle_ioctl(net, cmd, argp);
1110 	} else
1111 #endif
1112 		switch (cmd) {
1113 		case FIOSETOWN:
1114 		case SIOCSPGRP:
1115 			err = -EFAULT;
1116 			if (get_user(pid, (int __user *)argp))
1117 				break;
1118 			err = f_setown(sock->file, pid, 1);
1119 			break;
1120 		case FIOGETOWN:
1121 		case SIOCGPGRP:
1122 			err = put_user(f_getown(sock->file),
1123 				       (int __user *)argp);
1124 			break;
1125 		case SIOCGIFBR:
1126 		case SIOCSIFBR:
1127 		case SIOCBRADDBR:
1128 		case SIOCBRDELBR:
1129 			err = -ENOPKG;
1130 			if (!br_ioctl_hook)
1131 				request_module("bridge");
1132 
1133 			mutex_lock(&br_ioctl_mutex);
1134 			if (br_ioctl_hook)
1135 				err = br_ioctl_hook(net, cmd, argp);
1136 			mutex_unlock(&br_ioctl_mutex);
1137 			break;
1138 		case SIOCGIFVLAN:
1139 		case SIOCSIFVLAN:
1140 			err = -ENOPKG;
1141 			if (!vlan_ioctl_hook)
1142 				request_module("8021q");
1143 
1144 			mutex_lock(&vlan_ioctl_mutex);
1145 			if (vlan_ioctl_hook)
1146 				err = vlan_ioctl_hook(net, argp);
1147 			mutex_unlock(&vlan_ioctl_mutex);
1148 			break;
1149 		case SIOCADDDLCI:
1150 		case SIOCDELDLCI:
1151 			err = -ENOPKG;
1152 			if (!dlci_ioctl_hook)
1153 				request_module("dlci");
1154 
1155 			mutex_lock(&dlci_ioctl_mutex);
1156 			if (dlci_ioctl_hook)
1157 				err = dlci_ioctl_hook(cmd, argp);
1158 			mutex_unlock(&dlci_ioctl_mutex);
1159 			break;
1160 		case SIOCGSKNS:
1161 			err = -EPERM;
1162 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1163 				break;
1164 
1165 			err = open_related_ns(&net->ns, get_net_ns);
1166 			break;
1167 		default:
1168 			err = sock_do_ioctl(net, sock, cmd, arg);
1169 			break;
1170 		}
1171 	return err;
1172 }
1173 
1174 /**
1175  *	sock_create_lite - creates a socket
1176  *	@family: protocol family (AF_INET, ...)
1177  *	@type: communication type (SOCK_STREAM, ...)
1178  *	@protocol: protocol (0, ...)
1179  *	@res: new socket
1180  *
1181  *	Creates a new socket and assigns it to @res, passing through LSM.
1182  *	The new socket initialization is not complete, see kernel_accept().
1183  *	Returns 0 or an error. On failure @res is set to %NULL.
1184  *	This function internally uses GFP_KERNEL.
1185  */
1186 
1187 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1188 {
1189 	int err;
1190 	struct socket *sock = NULL;
1191 
1192 	err = security_socket_create(family, type, protocol, 1);
1193 	if (err)
1194 		goto out;
1195 
1196 	sock = sock_alloc();
1197 	if (!sock) {
1198 		err = -ENOMEM;
1199 		goto out;
1200 	}
1201 
1202 	sock->type = type;
1203 	err = security_socket_post_create(sock, family, type, protocol, 1);
1204 	if (err)
1205 		goto out_release;
1206 
1207 out:
1208 	*res = sock;
1209 	return err;
1210 out_release:
1211 	sock_release(sock);
1212 	sock = NULL;
1213 	goto out;
1214 }
1215 EXPORT_SYMBOL(sock_create_lite);
1216 
1217 /* No kernel lock held - perfect */
1218 static __poll_t sock_poll(struct file *file, poll_table *wait)
1219 {
1220 	struct socket *sock = file->private_data;
1221 	__poll_t events = poll_requested_events(wait), flag = 0;
1222 
1223 	if (!sock->ops->poll)
1224 		return 0;
1225 
1226 	if (sk_can_busy_loop(sock->sk)) {
1227 		/* poll once if requested by the syscall */
1228 		if (events & POLL_BUSY_LOOP)
1229 			sk_busy_loop(sock->sk, 1);
1230 
1231 		/* if this socket can poll_ll, tell the system call */
1232 		flag = POLL_BUSY_LOOP;
1233 	}
1234 
1235 	return sock->ops->poll(file, sock, wait) | flag;
1236 }
1237 
1238 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1239 {
1240 	struct socket *sock = file->private_data;
1241 
1242 	return sock->ops->mmap(file, sock, vma);
1243 }
1244 
1245 static int sock_close(struct inode *inode, struct file *filp)
1246 {
1247 	__sock_release(SOCKET_I(inode), inode);
1248 	return 0;
1249 }
1250 
1251 /*
1252  *	Update the socket async list
1253  *
1254  *	Fasync_list locking strategy.
1255  *
1256  *	1. fasync_list is modified only under process context socket lock
1257  *	   i.e. under semaphore.
1258  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1259  *	   or under socket lock
1260  */
1261 
1262 static int sock_fasync(int fd, struct file *filp, int on)
1263 {
1264 	struct socket *sock = filp->private_data;
1265 	struct sock *sk = sock->sk;
1266 	struct socket_wq *wq;
1267 
1268 	if (sk == NULL)
1269 		return -EINVAL;
1270 
1271 	lock_sock(sk);
1272 	wq = sock->wq;
1273 	fasync_helper(fd, filp, on, &wq->fasync_list);
1274 
1275 	if (!wq->fasync_list)
1276 		sock_reset_flag(sk, SOCK_FASYNC);
1277 	else
1278 		sock_set_flag(sk, SOCK_FASYNC);
1279 
1280 	release_sock(sk);
1281 	return 0;
1282 }
1283 
1284 /* This function may be called only under rcu_lock */
1285 
1286 int sock_wake_async(struct socket_wq *wq, int how, int band)
1287 {
1288 	if (!wq || !wq->fasync_list)
1289 		return -1;
1290 
1291 	switch (how) {
1292 	case SOCK_WAKE_WAITD:
1293 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1294 			break;
1295 		goto call_kill;
1296 	case SOCK_WAKE_SPACE:
1297 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1298 			break;
1299 		/* fall through */
1300 	case SOCK_WAKE_IO:
1301 call_kill:
1302 		kill_fasync(&wq->fasync_list, SIGIO, band);
1303 		break;
1304 	case SOCK_WAKE_URG:
1305 		kill_fasync(&wq->fasync_list, SIGURG, band);
1306 	}
1307 
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL(sock_wake_async);
1311 
1312 /**
1313  *	__sock_create - creates a socket
1314  *	@net: net namespace
1315  *	@family: protocol family (AF_INET, ...)
1316  *	@type: communication type (SOCK_STREAM, ...)
1317  *	@protocol: protocol (0, ...)
1318  *	@res: new socket
1319  *	@kern: boolean for kernel space sockets
1320  *
1321  *	Creates a new socket and assigns it to @res, passing through LSM.
1322  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1323  *	be set to true if the socket resides in kernel space.
1324  *	This function internally uses GFP_KERNEL.
1325  */
1326 
1327 int __sock_create(struct net *net, int family, int type, int protocol,
1328 			 struct socket **res, int kern)
1329 {
1330 	int err;
1331 	struct socket *sock;
1332 	const struct net_proto_family *pf;
1333 
1334 	/*
1335 	 *      Check protocol is in range
1336 	 */
1337 	if (family < 0 || family >= NPROTO)
1338 		return -EAFNOSUPPORT;
1339 	if (type < 0 || type >= SOCK_MAX)
1340 		return -EINVAL;
1341 
1342 	/* Compatibility.
1343 
1344 	   This uglymoron is moved from INET layer to here to avoid
1345 	   deadlock in module load.
1346 	 */
1347 	if (family == PF_INET && type == SOCK_PACKET) {
1348 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1349 			     current->comm);
1350 		family = PF_PACKET;
1351 	}
1352 
1353 	err = security_socket_create(family, type, protocol, kern);
1354 	if (err)
1355 		return err;
1356 
1357 	/*
1358 	 *	Allocate the socket and allow the family to set things up. if
1359 	 *	the protocol is 0, the family is instructed to select an appropriate
1360 	 *	default.
1361 	 */
1362 	sock = sock_alloc();
1363 	if (!sock) {
1364 		net_warn_ratelimited("socket: no more sockets\n");
1365 		return -ENFILE;	/* Not exactly a match, but its the
1366 				   closest posix thing */
1367 	}
1368 
1369 	sock->type = type;
1370 
1371 #ifdef CONFIG_MODULES
1372 	/* Attempt to load a protocol module if the find failed.
1373 	 *
1374 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1375 	 * requested real, full-featured networking support upon configuration.
1376 	 * Otherwise module support will break!
1377 	 */
1378 	if (rcu_access_pointer(net_families[family]) == NULL)
1379 		request_module("net-pf-%d", family);
1380 #endif
1381 
1382 	rcu_read_lock();
1383 	pf = rcu_dereference(net_families[family]);
1384 	err = -EAFNOSUPPORT;
1385 	if (!pf)
1386 		goto out_release;
1387 
1388 	/*
1389 	 * We will call the ->create function, that possibly is in a loadable
1390 	 * module, so we have to bump that loadable module refcnt first.
1391 	 */
1392 	if (!try_module_get(pf->owner))
1393 		goto out_release;
1394 
1395 	/* Now protected by module ref count */
1396 	rcu_read_unlock();
1397 
1398 	err = pf->create(net, sock, protocol, kern);
1399 	if (err < 0)
1400 		goto out_module_put;
1401 
1402 	/*
1403 	 * Now to bump the refcnt of the [loadable] module that owns this
1404 	 * socket at sock_release time we decrement its refcnt.
1405 	 */
1406 	if (!try_module_get(sock->ops->owner))
1407 		goto out_module_busy;
1408 
1409 	/*
1410 	 * Now that we're done with the ->create function, the [loadable]
1411 	 * module can have its refcnt decremented
1412 	 */
1413 	module_put(pf->owner);
1414 	err = security_socket_post_create(sock, family, type, protocol, kern);
1415 	if (err)
1416 		goto out_sock_release;
1417 	*res = sock;
1418 
1419 	return 0;
1420 
1421 out_module_busy:
1422 	err = -EAFNOSUPPORT;
1423 out_module_put:
1424 	sock->ops = NULL;
1425 	module_put(pf->owner);
1426 out_sock_release:
1427 	sock_release(sock);
1428 	return err;
1429 
1430 out_release:
1431 	rcu_read_unlock();
1432 	goto out_sock_release;
1433 }
1434 EXPORT_SYMBOL(__sock_create);
1435 
1436 /**
1437  *	sock_create - creates a socket
1438  *	@family: protocol family (AF_INET, ...)
1439  *	@type: communication type (SOCK_STREAM, ...)
1440  *	@protocol: protocol (0, ...)
1441  *	@res: new socket
1442  *
1443  *	A wrapper around __sock_create().
1444  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1445  */
1446 
1447 int sock_create(int family, int type, int protocol, struct socket **res)
1448 {
1449 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1450 }
1451 EXPORT_SYMBOL(sock_create);
1452 
1453 /**
1454  *	sock_create_kern - creates a socket (kernel space)
1455  *	@net: net namespace
1456  *	@family: protocol family (AF_INET, ...)
1457  *	@type: communication type (SOCK_STREAM, ...)
1458  *	@protocol: protocol (0, ...)
1459  *	@res: new socket
1460  *
1461  *	A wrapper around __sock_create().
1462  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1463  */
1464 
1465 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1466 {
1467 	return __sock_create(net, family, type, protocol, res, 1);
1468 }
1469 EXPORT_SYMBOL(sock_create_kern);
1470 
1471 int __sys_socket(int family, int type, int protocol)
1472 {
1473 	int retval;
1474 	struct socket *sock;
1475 	int flags;
1476 
1477 	/* Check the SOCK_* constants for consistency.  */
1478 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1479 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1480 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1481 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1482 
1483 	flags = type & ~SOCK_TYPE_MASK;
1484 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1485 		return -EINVAL;
1486 	type &= SOCK_TYPE_MASK;
1487 
1488 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1489 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1490 
1491 	retval = sock_create(family, type, protocol, &sock);
1492 	if (retval < 0)
1493 		return retval;
1494 
1495 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1496 }
1497 
1498 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1499 {
1500 	return __sys_socket(family, type, protocol);
1501 }
1502 
1503 /*
1504  *	Create a pair of connected sockets.
1505  */
1506 
1507 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1508 {
1509 	struct socket *sock1, *sock2;
1510 	int fd1, fd2, err;
1511 	struct file *newfile1, *newfile2;
1512 	int flags;
1513 
1514 	flags = type & ~SOCK_TYPE_MASK;
1515 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516 		return -EINVAL;
1517 	type &= SOCK_TYPE_MASK;
1518 
1519 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521 
1522 	/*
1523 	 * reserve descriptors and make sure we won't fail
1524 	 * to return them to userland.
1525 	 */
1526 	fd1 = get_unused_fd_flags(flags);
1527 	if (unlikely(fd1 < 0))
1528 		return fd1;
1529 
1530 	fd2 = get_unused_fd_flags(flags);
1531 	if (unlikely(fd2 < 0)) {
1532 		put_unused_fd(fd1);
1533 		return fd2;
1534 	}
1535 
1536 	err = put_user(fd1, &usockvec[0]);
1537 	if (err)
1538 		goto out;
1539 
1540 	err = put_user(fd2, &usockvec[1]);
1541 	if (err)
1542 		goto out;
1543 
1544 	/*
1545 	 * Obtain the first socket and check if the underlying protocol
1546 	 * supports the socketpair call.
1547 	 */
1548 
1549 	err = sock_create(family, type, protocol, &sock1);
1550 	if (unlikely(err < 0))
1551 		goto out;
1552 
1553 	err = sock_create(family, type, protocol, &sock2);
1554 	if (unlikely(err < 0)) {
1555 		sock_release(sock1);
1556 		goto out;
1557 	}
1558 
1559 	err = security_socket_socketpair(sock1, sock2);
1560 	if (unlikely(err)) {
1561 		sock_release(sock2);
1562 		sock_release(sock1);
1563 		goto out;
1564 	}
1565 
1566 	err = sock1->ops->socketpair(sock1, sock2);
1567 	if (unlikely(err < 0)) {
1568 		sock_release(sock2);
1569 		sock_release(sock1);
1570 		goto out;
1571 	}
1572 
1573 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1574 	if (IS_ERR(newfile1)) {
1575 		err = PTR_ERR(newfile1);
1576 		sock_release(sock2);
1577 		goto out;
1578 	}
1579 
1580 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1581 	if (IS_ERR(newfile2)) {
1582 		err = PTR_ERR(newfile2);
1583 		fput(newfile1);
1584 		goto out;
1585 	}
1586 
1587 	audit_fd_pair(fd1, fd2);
1588 
1589 	fd_install(fd1, newfile1);
1590 	fd_install(fd2, newfile2);
1591 	return 0;
1592 
1593 out:
1594 	put_unused_fd(fd2);
1595 	put_unused_fd(fd1);
1596 	return err;
1597 }
1598 
1599 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1600 		int __user *, usockvec)
1601 {
1602 	return __sys_socketpair(family, type, protocol, usockvec);
1603 }
1604 
1605 /*
1606  *	Bind a name to a socket. Nothing much to do here since it's
1607  *	the protocol's responsibility to handle the local address.
1608  *
1609  *	We move the socket address to kernel space before we call
1610  *	the protocol layer (having also checked the address is ok).
1611  */
1612 
1613 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1614 {
1615 	struct socket *sock;
1616 	struct sockaddr_storage address;
1617 	int err, fput_needed;
1618 
1619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 	if (sock) {
1621 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1622 		if (!err) {
1623 			err = security_socket_bind(sock,
1624 						   (struct sockaddr *)&address,
1625 						   addrlen);
1626 			if (!err)
1627 				err = sock->ops->bind(sock,
1628 						      (struct sockaddr *)
1629 						      &address, addrlen);
1630 		}
1631 		fput_light(sock->file, fput_needed);
1632 	}
1633 	return err;
1634 }
1635 
1636 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1637 {
1638 	return __sys_bind(fd, umyaddr, addrlen);
1639 }
1640 
1641 /*
1642  *	Perform a listen. Basically, we allow the protocol to do anything
1643  *	necessary for a listen, and if that works, we mark the socket as
1644  *	ready for listening.
1645  */
1646 
1647 int __sys_listen(int fd, int backlog)
1648 {
1649 	struct socket *sock;
1650 	int err, fput_needed;
1651 	int somaxconn;
1652 
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (sock) {
1655 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1656 		if ((unsigned int)backlog > somaxconn)
1657 			backlog = somaxconn;
1658 
1659 		err = security_socket_listen(sock, backlog);
1660 		if (!err)
1661 			err = sock->ops->listen(sock, backlog);
1662 
1663 		fput_light(sock->file, fput_needed);
1664 	}
1665 	return err;
1666 }
1667 
1668 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1669 {
1670 	return __sys_listen(fd, backlog);
1671 }
1672 
1673 /*
1674  *	For accept, we attempt to create a new socket, set up the link
1675  *	with the client, wake up the client, then return the new
1676  *	connected fd. We collect the address of the connector in kernel
1677  *	space and move it to user at the very end. This is unclean because
1678  *	we open the socket then return an error.
1679  *
1680  *	1003.1g adds the ability to recvmsg() to query connection pending
1681  *	status to recvmsg. We need to add that support in a way thats
1682  *	clean when we restructure accept also.
1683  */
1684 
1685 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1686 		  int __user *upeer_addrlen, int flags)
1687 {
1688 	struct socket *sock, *newsock;
1689 	struct file *newfile;
1690 	int err, len, newfd, fput_needed;
1691 	struct sockaddr_storage address;
1692 
1693 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 		return -EINVAL;
1695 
1696 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698 
1699 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 	if (!sock)
1701 		goto out;
1702 
1703 	err = -ENFILE;
1704 	newsock = sock_alloc();
1705 	if (!newsock)
1706 		goto out_put;
1707 
1708 	newsock->type = sock->type;
1709 	newsock->ops = sock->ops;
1710 
1711 	/*
1712 	 * We don't need try_module_get here, as the listening socket (sock)
1713 	 * has the protocol module (sock->ops->owner) held.
1714 	 */
1715 	__module_get(newsock->ops->owner);
1716 
1717 	newfd = get_unused_fd_flags(flags);
1718 	if (unlikely(newfd < 0)) {
1719 		err = newfd;
1720 		sock_release(newsock);
1721 		goto out_put;
1722 	}
1723 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1724 	if (IS_ERR(newfile)) {
1725 		err = PTR_ERR(newfile);
1726 		put_unused_fd(newfd);
1727 		goto out_put;
1728 	}
1729 
1730 	err = security_socket_accept(sock, newsock);
1731 	if (err)
1732 		goto out_fd;
1733 
1734 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1735 	if (err < 0)
1736 		goto out_fd;
1737 
1738 	if (upeer_sockaddr) {
1739 		len = newsock->ops->getname(newsock,
1740 					(struct sockaddr *)&address, 2);
1741 		if (len < 0) {
1742 			err = -ECONNABORTED;
1743 			goto out_fd;
1744 		}
1745 		err = move_addr_to_user(&address,
1746 					len, upeer_sockaddr, upeer_addrlen);
1747 		if (err < 0)
1748 			goto out_fd;
1749 	}
1750 
1751 	/* File flags are not inherited via accept() unlike another OSes. */
1752 
1753 	fd_install(newfd, newfile);
1754 	err = newfd;
1755 
1756 out_put:
1757 	fput_light(sock->file, fput_needed);
1758 out:
1759 	return err;
1760 out_fd:
1761 	fput(newfile);
1762 	put_unused_fd(newfd);
1763 	goto out_put;
1764 }
1765 
1766 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1767 		int __user *, upeer_addrlen, int, flags)
1768 {
1769 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1770 }
1771 
1772 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1773 		int __user *, upeer_addrlen)
1774 {
1775 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1776 }
1777 
1778 /*
1779  *	Attempt to connect to a socket with the server address.  The address
1780  *	is in user space so we verify it is OK and move it to kernel space.
1781  *
1782  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1783  *	break bindings
1784  *
1785  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1786  *	other SEQPACKET protocols that take time to connect() as it doesn't
1787  *	include the -EINPROGRESS status for such sockets.
1788  */
1789 
1790 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1791 {
1792 	struct socket *sock;
1793 	struct sockaddr_storage address;
1794 	int err, fput_needed;
1795 
1796 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 	if (!sock)
1798 		goto out;
1799 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1800 	if (err < 0)
1801 		goto out_put;
1802 
1803 	err =
1804 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1805 	if (err)
1806 		goto out_put;
1807 
1808 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1809 				 sock->file->f_flags);
1810 out_put:
1811 	fput_light(sock->file, fput_needed);
1812 out:
1813 	return err;
1814 }
1815 
1816 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1817 		int, addrlen)
1818 {
1819 	return __sys_connect(fd, uservaddr, addrlen);
1820 }
1821 
1822 /*
1823  *	Get the local address ('name') of a socket object. Move the obtained
1824  *	name to user space.
1825  */
1826 
1827 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1828 		      int __user *usockaddr_len)
1829 {
1830 	struct socket *sock;
1831 	struct sockaddr_storage address;
1832 	int err, fput_needed;
1833 
1834 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 	if (!sock)
1836 		goto out;
1837 
1838 	err = security_socket_getsockname(sock);
1839 	if (err)
1840 		goto out_put;
1841 
1842 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1843 	if (err < 0)
1844 		goto out_put;
1845         /* "err" is actually length in this case */
1846 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1847 
1848 out_put:
1849 	fput_light(sock->file, fput_needed);
1850 out:
1851 	return err;
1852 }
1853 
1854 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1855 		int __user *, usockaddr_len)
1856 {
1857 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1858 }
1859 
1860 /*
1861  *	Get the remote address ('name') of a socket object. Move the obtained
1862  *	name to user space.
1863  */
1864 
1865 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1866 		      int __user *usockaddr_len)
1867 {
1868 	struct socket *sock;
1869 	struct sockaddr_storage address;
1870 	int err, fput_needed;
1871 
1872 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 	if (sock != NULL) {
1874 		err = security_socket_getpeername(sock);
1875 		if (err) {
1876 			fput_light(sock->file, fput_needed);
1877 			return err;
1878 		}
1879 
1880 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1881 		if (err >= 0)
1882 			/* "err" is actually length in this case */
1883 			err = move_addr_to_user(&address, err, usockaddr,
1884 						usockaddr_len);
1885 		fput_light(sock->file, fput_needed);
1886 	}
1887 	return err;
1888 }
1889 
1890 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1891 		int __user *, usockaddr_len)
1892 {
1893 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1894 }
1895 
1896 /*
1897  *	Send a datagram to a given address. We move the address into kernel
1898  *	space and check the user space data area is readable before invoking
1899  *	the protocol.
1900  */
1901 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1902 		 struct sockaddr __user *addr,  int addr_len)
1903 {
1904 	struct socket *sock;
1905 	struct sockaddr_storage address;
1906 	int err;
1907 	struct msghdr msg;
1908 	struct iovec iov;
1909 	int fput_needed;
1910 
1911 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1912 	if (unlikely(err))
1913 		return err;
1914 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1915 	if (!sock)
1916 		goto out;
1917 
1918 	msg.msg_name = NULL;
1919 	msg.msg_control = NULL;
1920 	msg.msg_controllen = 0;
1921 	msg.msg_namelen = 0;
1922 	if (addr) {
1923 		err = move_addr_to_kernel(addr, addr_len, &address);
1924 		if (err < 0)
1925 			goto out_put;
1926 		msg.msg_name = (struct sockaddr *)&address;
1927 		msg.msg_namelen = addr_len;
1928 	}
1929 	if (sock->file->f_flags & O_NONBLOCK)
1930 		flags |= MSG_DONTWAIT;
1931 	msg.msg_flags = flags;
1932 	err = sock_sendmsg(sock, &msg);
1933 
1934 out_put:
1935 	fput_light(sock->file, fput_needed);
1936 out:
1937 	return err;
1938 }
1939 
1940 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1941 		unsigned int, flags, struct sockaddr __user *, addr,
1942 		int, addr_len)
1943 {
1944 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1945 }
1946 
1947 /*
1948  *	Send a datagram down a socket.
1949  */
1950 
1951 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1952 		unsigned int, flags)
1953 {
1954 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1955 }
1956 
1957 /*
1958  *	Receive a frame from the socket and optionally record the address of the
1959  *	sender. We verify the buffers are writable and if needed move the
1960  *	sender address from kernel to user space.
1961  */
1962 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1963 		   struct sockaddr __user *addr, int __user *addr_len)
1964 {
1965 	struct socket *sock;
1966 	struct iovec iov;
1967 	struct msghdr msg;
1968 	struct sockaddr_storage address;
1969 	int err, err2;
1970 	int fput_needed;
1971 
1972 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1973 	if (unlikely(err))
1974 		return err;
1975 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1976 	if (!sock)
1977 		goto out;
1978 
1979 	msg.msg_control = NULL;
1980 	msg.msg_controllen = 0;
1981 	/* Save some cycles and don't copy the address if not needed */
1982 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1983 	/* We assume all kernel code knows the size of sockaddr_storage */
1984 	msg.msg_namelen = 0;
1985 	msg.msg_iocb = NULL;
1986 	msg.msg_flags = 0;
1987 	if (sock->file->f_flags & O_NONBLOCK)
1988 		flags |= MSG_DONTWAIT;
1989 	err = sock_recvmsg(sock, &msg, flags);
1990 
1991 	if (err >= 0 && addr != NULL) {
1992 		err2 = move_addr_to_user(&address,
1993 					 msg.msg_namelen, addr, addr_len);
1994 		if (err2 < 0)
1995 			err = err2;
1996 	}
1997 
1998 	fput_light(sock->file, fput_needed);
1999 out:
2000 	return err;
2001 }
2002 
2003 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2004 		unsigned int, flags, struct sockaddr __user *, addr,
2005 		int __user *, addr_len)
2006 {
2007 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2008 }
2009 
2010 /*
2011  *	Receive a datagram from a socket.
2012  */
2013 
2014 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2015 		unsigned int, flags)
2016 {
2017 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2018 }
2019 
2020 /*
2021  *	Set a socket option. Because we don't know the option lengths we have
2022  *	to pass the user mode parameter for the protocols to sort out.
2023  */
2024 
2025 static int __sys_setsockopt(int fd, int level, int optname,
2026 			    char __user *optval, int optlen)
2027 {
2028 	int err, fput_needed;
2029 	struct socket *sock;
2030 
2031 	if (optlen < 0)
2032 		return -EINVAL;
2033 
2034 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2035 	if (sock != NULL) {
2036 		err = security_socket_setsockopt(sock, level, optname);
2037 		if (err)
2038 			goto out_put;
2039 
2040 		if (level == SOL_SOCKET)
2041 			err =
2042 			    sock_setsockopt(sock, level, optname, optval,
2043 					    optlen);
2044 		else
2045 			err =
2046 			    sock->ops->setsockopt(sock, level, optname, optval,
2047 						  optlen);
2048 out_put:
2049 		fput_light(sock->file, fput_needed);
2050 	}
2051 	return err;
2052 }
2053 
2054 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2055 		char __user *, optval, int, optlen)
2056 {
2057 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2058 }
2059 
2060 /*
2061  *	Get a socket option. Because we don't know the option lengths we have
2062  *	to pass a user mode parameter for the protocols to sort out.
2063  */
2064 
2065 static int __sys_getsockopt(int fd, int level, int optname,
2066 			    char __user *optval, int __user *optlen)
2067 {
2068 	int err, fput_needed;
2069 	struct socket *sock;
2070 
2071 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 	if (sock != NULL) {
2073 		err = security_socket_getsockopt(sock, level, optname);
2074 		if (err)
2075 			goto out_put;
2076 
2077 		if (level == SOL_SOCKET)
2078 			err =
2079 			    sock_getsockopt(sock, level, optname, optval,
2080 					    optlen);
2081 		else
2082 			err =
2083 			    sock->ops->getsockopt(sock, level, optname, optval,
2084 						  optlen);
2085 out_put:
2086 		fput_light(sock->file, fput_needed);
2087 	}
2088 	return err;
2089 }
2090 
2091 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2092 		char __user *, optval, int __user *, optlen)
2093 {
2094 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2095 }
2096 
2097 /*
2098  *	Shutdown a socket.
2099  */
2100 
2101 int __sys_shutdown(int fd, int how)
2102 {
2103 	int err, fput_needed;
2104 	struct socket *sock;
2105 
2106 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107 	if (sock != NULL) {
2108 		err = security_socket_shutdown(sock, how);
2109 		if (!err)
2110 			err = sock->ops->shutdown(sock, how);
2111 		fput_light(sock->file, fput_needed);
2112 	}
2113 	return err;
2114 }
2115 
2116 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2117 {
2118 	return __sys_shutdown(fd, how);
2119 }
2120 
2121 /* A couple of helpful macros for getting the address of the 32/64 bit
2122  * fields which are the same type (int / unsigned) on our platforms.
2123  */
2124 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2125 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2126 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2127 
2128 struct used_address {
2129 	struct sockaddr_storage name;
2130 	unsigned int name_len;
2131 };
2132 
2133 static int copy_msghdr_from_user(struct msghdr *kmsg,
2134 				 struct user_msghdr __user *umsg,
2135 				 struct sockaddr __user **save_addr,
2136 				 struct iovec **iov)
2137 {
2138 	struct user_msghdr msg;
2139 	ssize_t err;
2140 
2141 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2142 		return -EFAULT;
2143 
2144 	kmsg->msg_control = (void __force *)msg.msg_control;
2145 	kmsg->msg_controllen = msg.msg_controllen;
2146 	kmsg->msg_flags = msg.msg_flags;
2147 
2148 	kmsg->msg_namelen = msg.msg_namelen;
2149 	if (!msg.msg_name)
2150 		kmsg->msg_namelen = 0;
2151 
2152 	if (kmsg->msg_namelen < 0)
2153 		return -EINVAL;
2154 
2155 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2156 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2157 
2158 	if (save_addr)
2159 		*save_addr = msg.msg_name;
2160 
2161 	if (msg.msg_name && kmsg->msg_namelen) {
2162 		if (!save_addr) {
2163 			err = move_addr_to_kernel(msg.msg_name,
2164 						  kmsg->msg_namelen,
2165 						  kmsg->msg_name);
2166 			if (err < 0)
2167 				return err;
2168 		}
2169 	} else {
2170 		kmsg->msg_name = NULL;
2171 		kmsg->msg_namelen = 0;
2172 	}
2173 
2174 	if (msg.msg_iovlen > UIO_MAXIOV)
2175 		return -EMSGSIZE;
2176 
2177 	kmsg->msg_iocb = NULL;
2178 
2179 	return import_iovec(save_addr ? READ : WRITE,
2180 			    msg.msg_iov, msg.msg_iovlen,
2181 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2182 }
2183 
2184 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2185 			 struct msghdr *msg_sys, unsigned int flags,
2186 			 struct used_address *used_address,
2187 			 unsigned int allowed_msghdr_flags)
2188 {
2189 	struct compat_msghdr __user *msg_compat =
2190 	    (struct compat_msghdr __user *)msg;
2191 	struct sockaddr_storage address;
2192 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2193 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2194 				__aligned(sizeof(__kernel_size_t));
2195 	/* 20 is size of ipv6_pktinfo */
2196 	unsigned char *ctl_buf = ctl;
2197 	int ctl_len;
2198 	ssize_t err;
2199 
2200 	msg_sys->msg_name = &address;
2201 
2202 	if (MSG_CMSG_COMPAT & flags)
2203 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2204 	else
2205 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2206 	if (err < 0)
2207 		return err;
2208 
2209 	err = -ENOBUFS;
2210 
2211 	if (msg_sys->msg_controllen > INT_MAX)
2212 		goto out_freeiov;
2213 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2214 	ctl_len = msg_sys->msg_controllen;
2215 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2216 		err =
2217 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2218 						     sizeof(ctl));
2219 		if (err)
2220 			goto out_freeiov;
2221 		ctl_buf = msg_sys->msg_control;
2222 		ctl_len = msg_sys->msg_controllen;
2223 	} else if (ctl_len) {
2224 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2225 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2226 		if (ctl_len > sizeof(ctl)) {
2227 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2228 			if (ctl_buf == NULL)
2229 				goto out_freeiov;
2230 		}
2231 		err = -EFAULT;
2232 		/*
2233 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2234 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2235 		 * checking falls down on this.
2236 		 */
2237 		if (copy_from_user(ctl_buf,
2238 				   (void __user __force *)msg_sys->msg_control,
2239 				   ctl_len))
2240 			goto out_freectl;
2241 		msg_sys->msg_control = ctl_buf;
2242 	}
2243 	msg_sys->msg_flags = flags;
2244 
2245 	if (sock->file->f_flags & O_NONBLOCK)
2246 		msg_sys->msg_flags |= MSG_DONTWAIT;
2247 	/*
2248 	 * If this is sendmmsg() and current destination address is same as
2249 	 * previously succeeded address, omit asking LSM's decision.
2250 	 * used_address->name_len is initialized to UINT_MAX so that the first
2251 	 * destination address never matches.
2252 	 */
2253 	if (used_address && msg_sys->msg_name &&
2254 	    used_address->name_len == msg_sys->msg_namelen &&
2255 	    !memcmp(&used_address->name, msg_sys->msg_name,
2256 		    used_address->name_len)) {
2257 		err = sock_sendmsg_nosec(sock, msg_sys);
2258 		goto out_freectl;
2259 	}
2260 	err = sock_sendmsg(sock, msg_sys);
2261 	/*
2262 	 * If this is sendmmsg() and sending to current destination address was
2263 	 * successful, remember it.
2264 	 */
2265 	if (used_address && err >= 0) {
2266 		used_address->name_len = msg_sys->msg_namelen;
2267 		if (msg_sys->msg_name)
2268 			memcpy(&used_address->name, msg_sys->msg_name,
2269 			       used_address->name_len);
2270 	}
2271 
2272 out_freectl:
2273 	if (ctl_buf != ctl)
2274 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2275 out_freeiov:
2276 	kfree(iov);
2277 	return err;
2278 }
2279 
2280 /*
2281  *	BSD sendmsg interface
2282  */
2283 
2284 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2285 		   bool forbid_cmsg_compat)
2286 {
2287 	int fput_needed, err;
2288 	struct msghdr msg_sys;
2289 	struct socket *sock;
2290 
2291 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2292 		return -EINVAL;
2293 
2294 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2295 	if (!sock)
2296 		goto out;
2297 
2298 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2299 
2300 	fput_light(sock->file, fput_needed);
2301 out:
2302 	return err;
2303 }
2304 
2305 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2306 {
2307 	return __sys_sendmsg(fd, msg, flags, true);
2308 }
2309 
2310 /*
2311  *	Linux sendmmsg interface
2312  */
2313 
2314 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2315 		   unsigned int flags, bool forbid_cmsg_compat)
2316 {
2317 	int fput_needed, err, datagrams;
2318 	struct socket *sock;
2319 	struct mmsghdr __user *entry;
2320 	struct compat_mmsghdr __user *compat_entry;
2321 	struct msghdr msg_sys;
2322 	struct used_address used_address;
2323 	unsigned int oflags = flags;
2324 
2325 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2326 		return -EINVAL;
2327 
2328 	if (vlen > UIO_MAXIOV)
2329 		vlen = UIO_MAXIOV;
2330 
2331 	datagrams = 0;
2332 
2333 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2334 	if (!sock)
2335 		return err;
2336 
2337 	used_address.name_len = UINT_MAX;
2338 	entry = mmsg;
2339 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2340 	err = 0;
2341 	flags |= MSG_BATCH;
2342 
2343 	while (datagrams < vlen) {
2344 		if (datagrams == vlen - 1)
2345 			flags = oflags;
2346 
2347 		if (MSG_CMSG_COMPAT & flags) {
2348 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2349 					     &msg_sys, flags, &used_address, MSG_EOR);
2350 			if (err < 0)
2351 				break;
2352 			err = __put_user(err, &compat_entry->msg_len);
2353 			++compat_entry;
2354 		} else {
2355 			err = ___sys_sendmsg(sock,
2356 					     (struct user_msghdr __user *)entry,
2357 					     &msg_sys, flags, &used_address, MSG_EOR);
2358 			if (err < 0)
2359 				break;
2360 			err = put_user(err, &entry->msg_len);
2361 			++entry;
2362 		}
2363 
2364 		if (err)
2365 			break;
2366 		++datagrams;
2367 		if (msg_data_left(&msg_sys))
2368 			break;
2369 		cond_resched();
2370 	}
2371 
2372 	fput_light(sock->file, fput_needed);
2373 
2374 	/* We only return an error if no datagrams were able to be sent */
2375 	if (datagrams != 0)
2376 		return datagrams;
2377 
2378 	return err;
2379 }
2380 
2381 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2382 		unsigned int, vlen, unsigned int, flags)
2383 {
2384 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2385 }
2386 
2387 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2388 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2389 {
2390 	struct compat_msghdr __user *msg_compat =
2391 	    (struct compat_msghdr __user *)msg;
2392 	struct iovec iovstack[UIO_FASTIOV];
2393 	struct iovec *iov = iovstack;
2394 	unsigned long cmsg_ptr;
2395 	int len;
2396 	ssize_t err;
2397 
2398 	/* kernel mode address */
2399 	struct sockaddr_storage addr;
2400 
2401 	/* user mode address pointers */
2402 	struct sockaddr __user *uaddr;
2403 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2404 
2405 	msg_sys->msg_name = &addr;
2406 
2407 	if (MSG_CMSG_COMPAT & flags)
2408 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2409 	else
2410 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2411 	if (err < 0)
2412 		return err;
2413 
2414 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2415 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2416 
2417 	/* We assume all kernel code knows the size of sockaddr_storage */
2418 	msg_sys->msg_namelen = 0;
2419 
2420 	if (sock->file->f_flags & O_NONBLOCK)
2421 		flags |= MSG_DONTWAIT;
2422 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2423 	if (err < 0)
2424 		goto out_freeiov;
2425 	len = err;
2426 
2427 	if (uaddr != NULL) {
2428 		err = move_addr_to_user(&addr,
2429 					msg_sys->msg_namelen, uaddr,
2430 					uaddr_len);
2431 		if (err < 0)
2432 			goto out_freeiov;
2433 	}
2434 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2435 			 COMPAT_FLAGS(msg));
2436 	if (err)
2437 		goto out_freeiov;
2438 	if (MSG_CMSG_COMPAT & flags)
2439 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2440 				 &msg_compat->msg_controllen);
2441 	else
2442 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2443 				 &msg->msg_controllen);
2444 	if (err)
2445 		goto out_freeiov;
2446 	err = len;
2447 
2448 out_freeiov:
2449 	kfree(iov);
2450 	return err;
2451 }
2452 
2453 /*
2454  *	BSD recvmsg interface
2455  */
2456 
2457 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2458 		   bool forbid_cmsg_compat)
2459 {
2460 	int fput_needed, err;
2461 	struct msghdr msg_sys;
2462 	struct socket *sock;
2463 
2464 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2465 		return -EINVAL;
2466 
2467 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2468 	if (!sock)
2469 		goto out;
2470 
2471 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2472 
2473 	fput_light(sock->file, fput_needed);
2474 out:
2475 	return err;
2476 }
2477 
2478 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2479 		unsigned int, flags)
2480 {
2481 	return __sys_recvmsg(fd, msg, flags, true);
2482 }
2483 
2484 /*
2485  *     Linux recvmmsg interface
2486  */
2487 
2488 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2489 			  unsigned int vlen, unsigned int flags,
2490 			  struct timespec64 *timeout)
2491 {
2492 	int fput_needed, err, datagrams;
2493 	struct socket *sock;
2494 	struct mmsghdr __user *entry;
2495 	struct compat_mmsghdr __user *compat_entry;
2496 	struct msghdr msg_sys;
2497 	struct timespec64 end_time;
2498 	struct timespec64 timeout64;
2499 
2500 	if (timeout &&
2501 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2502 				    timeout->tv_nsec))
2503 		return -EINVAL;
2504 
2505 	datagrams = 0;
2506 
2507 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2508 	if (!sock)
2509 		return err;
2510 
2511 	if (likely(!(flags & MSG_ERRQUEUE))) {
2512 		err = sock_error(sock->sk);
2513 		if (err) {
2514 			datagrams = err;
2515 			goto out_put;
2516 		}
2517 	}
2518 
2519 	entry = mmsg;
2520 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2521 
2522 	while (datagrams < vlen) {
2523 		/*
2524 		 * No need to ask LSM for more than the first datagram.
2525 		 */
2526 		if (MSG_CMSG_COMPAT & flags) {
2527 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 					     &msg_sys, flags & ~MSG_WAITFORONE,
2529 					     datagrams);
2530 			if (err < 0)
2531 				break;
2532 			err = __put_user(err, &compat_entry->msg_len);
2533 			++compat_entry;
2534 		} else {
2535 			err = ___sys_recvmsg(sock,
2536 					     (struct user_msghdr __user *)entry,
2537 					     &msg_sys, flags & ~MSG_WAITFORONE,
2538 					     datagrams);
2539 			if (err < 0)
2540 				break;
2541 			err = put_user(err, &entry->msg_len);
2542 			++entry;
2543 		}
2544 
2545 		if (err)
2546 			break;
2547 		++datagrams;
2548 
2549 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2550 		if (flags & MSG_WAITFORONE)
2551 			flags |= MSG_DONTWAIT;
2552 
2553 		if (timeout) {
2554 			ktime_get_ts64(&timeout64);
2555 			*timeout = timespec64_sub(end_time, timeout64);
2556 			if (timeout->tv_sec < 0) {
2557 				timeout->tv_sec = timeout->tv_nsec = 0;
2558 				break;
2559 			}
2560 
2561 			/* Timeout, return less than vlen datagrams */
2562 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2563 				break;
2564 		}
2565 
2566 		/* Out of band data, return right away */
2567 		if (msg_sys.msg_flags & MSG_OOB)
2568 			break;
2569 		cond_resched();
2570 	}
2571 
2572 	if (err == 0)
2573 		goto out_put;
2574 
2575 	if (datagrams == 0) {
2576 		datagrams = err;
2577 		goto out_put;
2578 	}
2579 
2580 	/*
2581 	 * We may return less entries than requested (vlen) if the
2582 	 * sock is non block and there aren't enough datagrams...
2583 	 */
2584 	if (err != -EAGAIN) {
2585 		/*
2586 		 * ... or  if recvmsg returns an error after we
2587 		 * received some datagrams, where we record the
2588 		 * error to return on the next call or if the
2589 		 * app asks about it using getsockopt(SO_ERROR).
2590 		 */
2591 		sock->sk->sk_err = -err;
2592 	}
2593 out_put:
2594 	fput_light(sock->file, fput_needed);
2595 
2596 	return datagrams;
2597 }
2598 
2599 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2600 		   unsigned int vlen, unsigned int flags,
2601 		   struct __kernel_timespec __user *timeout,
2602 		   struct old_timespec32 __user *timeout32)
2603 {
2604 	int datagrams;
2605 	struct timespec64 timeout_sys;
2606 
2607 	if (timeout && get_timespec64(&timeout_sys, timeout))
2608 		return -EFAULT;
2609 
2610 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2611 		return -EFAULT;
2612 
2613 	if (!timeout && !timeout32)
2614 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2615 
2616 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2617 
2618 	if (datagrams <= 0)
2619 		return datagrams;
2620 
2621 	if (timeout && put_timespec64(&timeout_sys, timeout))
2622 		datagrams = -EFAULT;
2623 
2624 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2625 		datagrams = -EFAULT;
2626 
2627 	return datagrams;
2628 }
2629 
2630 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2631 		unsigned int, vlen, unsigned int, flags,
2632 		struct __kernel_timespec __user *, timeout)
2633 {
2634 	if (flags & MSG_CMSG_COMPAT)
2635 		return -EINVAL;
2636 
2637 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2638 }
2639 
2640 #ifdef CONFIG_COMPAT_32BIT_TIME
2641 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2642 		unsigned int, vlen, unsigned int, flags,
2643 		struct old_timespec32 __user *, timeout)
2644 {
2645 	if (flags & MSG_CMSG_COMPAT)
2646 		return -EINVAL;
2647 
2648 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2649 }
2650 #endif
2651 
2652 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2653 /* Argument list sizes for sys_socketcall */
2654 #define AL(x) ((x) * sizeof(unsigned long))
2655 static const unsigned char nargs[21] = {
2656 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2657 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2658 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2659 	AL(4), AL(5), AL(4)
2660 };
2661 
2662 #undef AL
2663 
2664 /*
2665  *	System call vectors.
2666  *
2667  *	Argument checking cleaned up. Saved 20% in size.
2668  *  This function doesn't need to set the kernel lock because
2669  *  it is set by the callees.
2670  */
2671 
2672 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2673 {
2674 	unsigned long a[AUDITSC_ARGS];
2675 	unsigned long a0, a1;
2676 	int err;
2677 	unsigned int len;
2678 
2679 	if (call < 1 || call > SYS_SENDMMSG)
2680 		return -EINVAL;
2681 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2682 
2683 	len = nargs[call];
2684 	if (len > sizeof(a))
2685 		return -EINVAL;
2686 
2687 	/* copy_from_user should be SMP safe. */
2688 	if (copy_from_user(a, args, len))
2689 		return -EFAULT;
2690 
2691 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2692 	if (err)
2693 		return err;
2694 
2695 	a0 = a[0];
2696 	a1 = a[1];
2697 
2698 	switch (call) {
2699 	case SYS_SOCKET:
2700 		err = __sys_socket(a0, a1, a[2]);
2701 		break;
2702 	case SYS_BIND:
2703 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2704 		break;
2705 	case SYS_CONNECT:
2706 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2707 		break;
2708 	case SYS_LISTEN:
2709 		err = __sys_listen(a0, a1);
2710 		break;
2711 	case SYS_ACCEPT:
2712 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2713 				    (int __user *)a[2], 0);
2714 		break;
2715 	case SYS_GETSOCKNAME:
2716 		err =
2717 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2718 				      (int __user *)a[2]);
2719 		break;
2720 	case SYS_GETPEERNAME:
2721 		err =
2722 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2723 				      (int __user *)a[2]);
2724 		break;
2725 	case SYS_SOCKETPAIR:
2726 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2727 		break;
2728 	case SYS_SEND:
2729 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2730 				   NULL, 0);
2731 		break;
2732 	case SYS_SENDTO:
2733 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2734 				   (struct sockaddr __user *)a[4], a[5]);
2735 		break;
2736 	case SYS_RECV:
2737 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2738 				     NULL, NULL);
2739 		break;
2740 	case SYS_RECVFROM:
2741 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2742 				     (struct sockaddr __user *)a[4],
2743 				     (int __user *)a[5]);
2744 		break;
2745 	case SYS_SHUTDOWN:
2746 		err = __sys_shutdown(a0, a1);
2747 		break;
2748 	case SYS_SETSOCKOPT:
2749 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2750 				       a[4]);
2751 		break;
2752 	case SYS_GETSOCKOPT:
2753 		err =
2754 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2755 				     (int __user *)a[4]);
2756 		break;
2757 	case SYS_SENDMSG:
2758 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2759 				    a[2], true);
2760 		break;
2761 	case SYS_SENDMMSG:
2762 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2763 				     a[3], true);
2764 		break;
2765 	case SYS_RECVMSG:
2766 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2767 				    a[2], true);
2768 		break;
2769 	case SYS_RECVMMSG:
2770 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2771 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2772 					     a[2], a[3],
2773 					     (struct __kernel_timespec __user *)a[4],
2774 					     NULL);
2775 		else
2776 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2777 					     a[2], a[3], NULL,
2778 					     (struct old_timespec32 __user *)a[4]);
2779 		break;
2780 	case SYS_ACCEPT4:
2781 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2782 				    (int __user *)a[2], a[3]);
2783 		break;
2784 	default:
2785 		err = -EINVAL;
2786 		break;
2787 	}
2788 	return err;
2789 }
2790 
2791 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2792 
2793 /**
2794  *	sock_register - add a socket protocol handler
2795  *	@ops: description of protocol
2796  *
2797  *	This function is called by a protocol handler that wants to
2798  *	advertise its address family, and have it linked into the
2799  *	socket interface. The value ops->family corresponds to the
2800  *	socket system call protocol family.
2801  */
2802 int sock_register(const struct net_proto_family *ops)
2803 {
2804 	int err;
2805 
2806 	if (ops->family >= NPROTO) {
2807 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2808 		return -ENOBUFS;
2809 	}
2810 
2811 	spin_lock(&net_family_lock);
2812 	if (rcu_dereference_protected(net_families[ops->family],
2813 				      lockdep_is_held(&net_family_lock)))
2814 		err = -EEXIST;
2815 	else {
2816 		rcu_assign_pointer(net_families[ops->family], ops);
2817 		err = 0;
2818 	}
2819 	spin_unlock(&net_family_lock);
2820 
2821 	pr_info("NET: Registered protocol family %d\n", ops->family);
2822 	return err;
2823 }
2824 EXPORT_SYMBOL(sock_register);
2825 
2826 /**
2827  *	sock_unregister - remove a protocol handler
2828  *	@family: protocol family to remove
2829  *
2830  *	This function is called by a protocol handler that wants to
2831  *	remove its address family, and have it unlinked from the
2832  *	new socket creation.
2833  *
2834  *	If protocol handler is a module, then it can use module reference
2835  *	counts to protect against new references. If protocol handler is not
2836  *	a module then it needs to provide its own protection in
2837  *	the ops->create routine.
2838  */
2839 void sock_unregister(int family)
2840 {
2841 	BUG_ON(family < 0 || family >= NPROTO);
2842 
2843 	spin_lock(&net_family_lock);
2844 	RCU_INIT_POINTER(net_families[family], NULL);
2845 	spin_unlock(&net_family_lock);
2846 
2847 	synchronize_rcu();
2848 
2849 	pr_info("NET: Unregistered protocol family %d\n", family);
2850 }
2851 EXPORT_SYMBOL(sock_unregister);
2852 
2853 bool sock_is_registered(int family)
2854 {
2855 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2856 }
2857 
2858 static int __init sock_init(void)
2859 {
2860 	int err;
2861 	/*
2862 	 *      Initialize the network sysctl infrastructure.
2863 	 */
2864 	err = net_sysctl_init();
2865 	if (err)
2866 		goto out;
2867 
2868 	/*
2869 	 *      Initialize skbuff SLAB cache
2870 	 */
2871 	skb_init();
2872 
2873 	/*
2874 	 *      Initialize the protocols module.
2875 	 */
2876 
2877 	init_inodecache();
2878 
2879 	err = register_filesystem(&sock_fs_type);
2880 	if (err)
2881 		goto out_fs;
2882 	sock_mnt = kern_mount(&sock_fs_type);
2883 	if (IS_ERR(sock_mnt)) {
2884 		err = PTR_ERR(sock_mnt);
2885 		goto out_mount;
2886 	}
2887 
2888 	/* The real protocol initialization is performed in later initcalls.
2889 	 */
2890 
2891 #ifdef CONFIG_NETFILTER
2892 	err = netfilter_init();
2893 	if (err)
2894 		goto out;
2895 #endif
2896 
2897 	ptp_classifier_init();
2898 
2899 out:
2900 	return err;
2901 
2902 out_mount:
2903 	unregister_filesystem(&sock_fs_type);
2904 out_fs:
2905 	goto out;
2906 }
2907 
2908 core_initcall(sock_init);	/* early initcall */
2909 
2910 #ifdef CONFIG_PROC_FS
2911 void socket_seq_show(struct seq_file *seq)
2912 {
2913 	seq_printf(seq, "sockets: used %d\n",
2914 		   sock_inuse_get(seq->private));
2915 }
2916 #endif				/* CONFIG_PROC_FS */
2917 
2918 #ifdef CONFIG_COMPAT
2919 static int do_siocgstamp(struct net *net, struct socket *sock,
2920 			 unsigned int cmd, void __user *up)
2921 {
2922 	mm_segment_t old_fs = get_fs();
2923 	struct timeval ktv;
2924 	int err;
2925 
2926 	set_fs(KERNEL_DS);
2927 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2928 	set_fs(old_fs);
2929 	if (!err)
2930 		err = compat_put_timeval(&ktv, up);
2931 
2932 	return err;
2933 }
2934 
2935 static int do_siocgstampns(struct net *net, struct socket *sock,
2936 			   unsigned int cmd, void __user *up)
2937 {
2938 	mm_segment_t old_fs = get_fs();
2939 	struct timespec kts;
2940 	int err;
2941 
2942 	set_fs(KERNEL_DS);
2943 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2944 	set_fs(old_fs);
2945 	if (!err)
2946 		err = compat_put_timespec(&kts, up);
2947 
2948 	return err;
2949 }
2950 
2951 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2952 {
2953 	struct compat_ifconf ifc32;
2954 	struct ifconf ifc;
2955 	int err;
2956 
2957 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2958 		return -EFAULT;
2959 
2960 	ifc.ifc_len = ifc32.ifc_len;
2961 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2962 
2963 	rtnl_lock();
2964 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2965 	rtnl_unlock();
2966 	if (err)
2967 		return err;
2968 
2969 	ifc32.ifc_len = ifc.ifc_len;
2970 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2971 		return -EFAULT;
2972 
2973 	return 0;
2974 }
2975 
2976 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2977 {
2978 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2979 	bool convert_in = false, convert_out = false;
2980 	size_t buf_size = 0;
2981 	struct ethtool_rxnfc __user *rxnfc = NULL;
2982 	struct ifreq ifr;
2983 	u32 rule_cnt = 0, actual_rule_cnt;
2984 	u32 ethcmd;
2985 	u32 data;
2986 	int ret;
2987 
2988 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2989 		return -EFAULT;
2990 
2991 	compat_rxnfc = compat_ptr(data);
2992 
2993 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2994 		return -EFAULT;
2995 
2996 	/* Most ethtool structures are defined without padding.
2997 	 * Unfortunately struct ethtool_rxnfc is an exception.
2998 	 */
2999 	switch (ethcmd) {
3000 	default:
3001 		break;
3002 	case ETHTOOL_GRXCLSRLALL:
3003 		/* Buffer size is variable */
3004 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3005 			return -EFAULT;
3006 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3007 			return -ENOMEM;
3008 		buf_size += rule_cnt * sizeof(u32);
3009 		/* fall through */
3010 	case ETHTOOL_GRXRINGS:
3011 	case ETHTOOL_GRXCLSRLCNT:
3012 	case ETHTOOL_GRXCLSRULE:
3013 	case ETHTOOL_SRXCLSRLINS:
3014 		convert_out = true;
3015 		/* fall through */
3016 	case ETHTOOL_SRXCLSRLDEL:
3017 		buf_size += sizeof(struct ethtool_rxnfc);
3018 		convert_in = true;
3019 		rxnfc = compat_alloc_user_space(buf_size);
3020 		break;
3021 	}
3022 
3023 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3024 		return -EFAULT;
3025 
3026 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3027 
3028 	if (convert_in) {
3029 		/* We expect there to be holes between fs.m_ext and
3030 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3031 		 */
3032 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3033 			     sizeof(compat_rxnfc->fs.m_ext) !=
3034 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3035 			     sizeof(rxnfc->fs.m_ext));
3036 		BUILD_BUG_ON(
3037 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3038 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3039 			offsetof(struct ethtool_rxnfc, fs.location) -
3040 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3041 
3042 		if (copy_in_user(rxnfc, compat_rxnfc,
3043 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3044 				 (void __user *)rxnfc) ||
3045 		    copy_in_user(&rxnfc->fs.ring_cookie,
3046 				 &compat_rxnfc->fs.ring_cookie,
3047 				 (void __user *)(&rxnfc->fs.location + 1) -
3048 				 (void __user *)&rxnfc->fs.ring_cookie))
3049 			return -EFAULT;
3050 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3051 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3052 				return -EFAULT;
3053 		} else if (copy_in_user(&rxnfc->rule_cnt,
3054 					&compat_rxnfc->rule_cnt,
3055 					sizeof(rxnfc->rule_cnt)))
3056 			return -EFAULT;
3057 	}
3058 
3059 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3060 	if (ret)
3061 		return ret;
3062 
3063 	if (convert_out) {
3064 		if (copy_in_user(compat_rxnfc, rxnfc,
3065 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3066 				 (const void __user *)rxnfc) ||
3067 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3068 				 &rxnfc->fs.ring_cookie,
3069 				 (const void __user *)(&rxnfc->fs.location + 1) -
3070 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3071 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3072 				 sizeof(rxnfc->rule_cnt)))
3073 			return -EFAULT;
3074 
3075 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3076 			/* As an optimisation, we only copy the actual
3077 			 * number of rules that the underlying
3078 			 * function returned.  Since Mallory might
3079 			 * change the rule count in user memory, we
3080 			 * check that it is less than the rule count
3081 			 * originally given (as the user buffer size),
3082 			 * which has been range-checked.
3083 			 */
3084 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3085 				return -EFAULT;
3086 			if (actual_rule_cnt < rule_cnt)
3087 				rule_cnt = actual_rule_cnt;
3088 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3089 					 &rxnfc->rule_locs[0],
3090 					 rule_cnt * sizeof(u32)))
3091 				return -EFAULT;
3092 		}
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3099 {
3100 	compat_uptr_t uptr32;
3101 	struct ifreq ifr;
3102 	void __user *saved;
3103 	int err;
3104 
3105 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3106 		return -EFAULT;
3107 
3108 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3109 		return -EFAULT;
3110 
3111 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3112 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3113 
3114 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3115 	if (!err) {
3116 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3117 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3118 			err = -EFAULT;
3119 	}
3120 	return err;
3121 }
3122 
3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3124 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3125 				 struct compat_ifreq __user *u_ifreq32)
3126 {
3127 	struct ifreq ifreq;
3128 	u32 data32;
3129 
3130 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3131 		return -EFAULT;
3132 	if (get_user(data32, &u_ifreq32->ifr_data))
3133 		return -EFAULT;
3134 	ifreq.ifr_data = compat_ptr(data32);
3135 
3136 	return dev_ioctl(net, cmd, &ifreq, NULL);
3137 }
3138 
3139 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3140 			      unsigned int cmd,
3141 			      struct compat_ifreq __user *uifr32)
3142 {
3143 	struct ifreq __user *uifr;
3144 	int err;
3145 
3146 	/* Handle the fact that while struct ifreq has the same *layout* on
3147 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 	 * which are handled elsewhere, it still has different *size* due to
3149 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 	 * As a result, if the struct happens to be at the end of a page and
3152 	 * the next page isn't readable/writable, we get a fault. To prevent
3153 	 * that, copy back and forth to the full size.
3154 	 */
3155 
3156 	uifr = compat_alloc_user_space(sizeof(*uifr));
3157 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3158 		return -EFAULT;
3159 
3160 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3161 
3162 	if (!err) {
3163 		switch (cmd) {
3164 		case SIOCGIFFLAGS:
3165 		case SIOCGIFMETRIC:
3166 		case SIOCGIFMTU:
3167 		case SIOCGIFMEM:
3168 		case SIOCGIFHWADDR:
3169 		case SIOCGIFINDEX:
3170 		case SIOCGIFADDR:
3171 		case SIOCGIFBRDADDR:
3172 		case SIOCGIFDSTADDR:
3173 		case SIOCGIFNETMASK:
3174 		case SIOCGIFPFLAGS:
3175 		case SIOCGIFTXQLEN:
3176 		case SIOCGMIIPHY:
3177 		case SIOCGMIIREG:
3178 		case SIOCGIFNAME:
3179 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3180 				err = -EFAULT;
3181 			break;
3182 		}
3183 	}
3184 	return err;
3185 }
3186 
3187 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3188 			struct compat_ifreq __user *uifr32)
3189 {
3190 	struct ifreq ifr;
3191 	struct compat_ifmap __user *uifmap32;
3192 	int err;
3193 
3194 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3195 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3196 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3197 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3198 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3199 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3200 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3201 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3202 	if (err)
3203 		return -EFAULT;
3204 
3205 	err = dev_ioctl(net, cmd, &ifr, NULL);
3206 
3207 	if (cmd == SIOCGIFMAP && !err) {
3208 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3209 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3210 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3211 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3212 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3213 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3214 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3215 		if (err)
3216 			err = -EFAULT;
3217 	}
3218 	return err;
3219 }
3220 
3221 struct rtentry32 {
3222 	u32		rt_pad1;
3223 	struct sockaddr rt_dst;         /* target address               */
3224 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3225 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3226 	unsigned short	rt_flags;
3227 	short		rt_pad2;
3228 	u32		rt_pad3;
3229 	unsigned char	rt_tos;
3230 	unsigned char	rt_class;
3231 	short		rt_pad4;
3232 	short		rt_metric;      /* +1 for binary compatibility! */
3233 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3234 	u32		rt_mtu;         /* per route MTU/Window         */
3235 	u32		rt_window;      /* Window clamping              */
3236 	unsigned short  rt_irtt;        /* Initial RTT                  */
3237 };
3238 
3239 struct in6_rtmsg32 {
3240 	struct in6_addr		rtmsg_dst;
3241 	struct in6_addr		rtmsg_src;
3242 	struct in6_addr		rtmsg_gateway;
3243 	u32			rtmsg_type;
3244 	u16			rtmsg_dst_len;
3245 	u16			rtmsg_src_len;
3246 	u32			rtmsg_metric;
3247 	u32			rtmsg_info;
3248 	u32			rtmsg_flags;
3249 	s32			rtmsg_ifindex;
3250 };
3251 
3252 static int routing_ioctl(struct net *net, struct socket *sock,
3253 			 unsigned int cmd, void __user *argp)
3254 {
3255 	int ret;
3256 	void *r = NULL;
3257 	struct in6_rtmsg r6;
3258 	struct rtentry r4;
3259 	char devname[16];
3260 	u32 rtdev;
3261 	mm_segment_t old_fs = get_fs();
3262 
3263 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3264 		struct in6_rtmsg32 __user *ur6 = argp;
3265 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3266 			3 * sizeof(struct in6_addr));
3267 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3268 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3269 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3270 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3271 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3272 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3273 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3274 
3275 		r = (void *) &r6;
3276 	} else { /* ipv4 */
3277 		struct rtentry32 __user *ur4 = argp;
3278 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3279 					3 * sizeof(struct sockaddr));
3280 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3281 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3282 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3283 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3284 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3285 		ret |= get_user(rtdev, &(ur4->rt_dev));
3286 		if (rtdev) {
3287 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3288 			r4.rt_dev = (char __user __force *)devname;
3289 			devname[15] = 0;
3290 		} else
3291 			r4.rt_dev = NULL;
3292 
3293 		r = (void *) &r4;
3294 	}
3295 
3296 	if (ret) {
3297 		ret = -EFAULT;
3298 		goto out;
3299 	}
3300 
3301 	set_fs(KERNEL_DS);
3302 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3303 	set_fs(old_fs);
3304 
3305 out:
3306 	return ret;
3307 }
3308 
3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3310  * for some operations; this forces use of the newer bridge-utils that
3311  * use compatible ioctls
3312  */
3313 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3314 {
3315 	compat_ulong_t tmp;
3316 
3317 	if (get_user(tmp, argp))
3318 		return -EFAULT;
3319 	if (tmp == BRCTL_GET_VERSION)
3320 		return BRCTL_VERSION + 1;
3321 	return -EINVAL;
3322 }
3323 
3324 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3325 			 unsigned int cmd, unsigned long arg)
3326 {
3327 	void __user *argp = compat_ptr(arg);
3328 	struct sock *sk = sock->sk;
3329 	struct net *net = sock_net(sk);
3330 
3331 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3332 		return compat_ifr_data_ioctl(net, cmd, argp);
3333 
3334 	switch (cmd) {
3335 	case SIOCSIFBR:
3336 	case SIOCGIFBR:
3337 		return old_bridge_ioctl(argp);
3338 	case SIOCGIFCONF:
3339 		return compat_dev_ifconf(net, argp);
3340 	case SIOCETHTOOL:
3341 		return ethtool_ioctl(net, argp);
3342 	case SIOCWANDEV:
3343 		return compat_siocwandev(net, argp);
3344 	case SIOCGIFMAP:
3345 	case SIOCSIFMAP:
3346 		return compat_sioc_ifmap(net, cmd, argp);
3347 	case SIOCADDRT:
3348 	case SIOCDELRT:
3349 		return routing_ioctl(net, sock, cmd, argp);
3350 	case SIOCGSTAMP:
3351 		return do_siocgstamp(net, sock, cmd, argp);
3352 	case SIOCGSTAMPNS:
3353 		return do_siocgstampns(net, sock, cmd, argp);
3354 	case SIOCBONDSLAVEINFOQUERY:
3355 	case SIOCBONDINFOQUERY:
3356 	case SIOCSHWTSTAMP:
3357 	case SIOCGHWTSTAMP:
3358 		return compat_ifr_data_ioctl(net, cmd, argp);
3359 
3360 	case FIOSETOWN:
3361 	case SIOCSPGRP:
3362 	case FIOGETOWN:
3363 	case SIOCGPGRP:
3364 	case SIOCBRADDBR:
3365 	case SIOCBRDELBR:
3366 	case SIOCGIFVLAN:
3367 	case SIOCSIFVLAN:
3368 	case SIOCADDDLCI:
3369 	case SIOCDELDLCI:
3370 	case SIOCGSKNS:
3371 		return sock_ioctl(file, cmd, arg);
3372 
3373 	case SIOCGIFFLAGS:
3374 	case SIOCSIFFLAGS:
3375 	case SIOCGIFMETRIC:
3376 	case SIOCSIFMETRIC:
3377 	case SIOCGIFMTU:
3378 	case SIOCSIFMTU:
3379 	case SIOCGIFMEM:
3380 	case SIOCSIFMEM:
3381 	case SIOCGIFHWADDR:
3382 	case SIOCSIFHWADDR:
3383 	case SIOCADDMULTI:
3384 	case SIOCDELMULTI:
3385 	case SIOCGIFINDEX:
3386 	case SIOCGIFADDR:
3387 	case SIOCSIFADDR:
3388 	case SIOCSIFHWBROADCAST:
3389 	case SIOCDIFADDR:
3390 	case SIOCGIFBRDADDR:
3391 	case SIOCSIFBRDADDR:
3392 	case SIOCGIFDSTADDR:
3393 	case SIOCSIFDSTADDR:
3394 	case SIOCGIFNETMASK:
3395 	case SIOCSIFNETMASK:
3396 	case SIOCSIFPFLAGS:
3397 	case SIOCGIFPFLAGS:
3398 	case SIOCGIFTXQLEN:
3399 	case SIOCSIFTXQLEN:
3400 	case SIOCBRADDIF:
3401 	case SIOCBRDELIF:
3402 	case SIOCGIFNAME:
3403 	case SIOCSIFNAME:
3404 	case SIOCGMIIPHY:
3405 	case SIOCGMIIREG:
3406 	case SIOCSMIIREG:
3407 	case SIOCBONDENSLAVE:
3408 	case SIOCBONDRELEASE:
3409 	case SIOCBONDSETHWADDR:
3410 	case SIOCBONDCHANGEACTIVE:
3411 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3412 
3413 	case SIOCSARP:
3414 	case SIOCGARP:
3415 	case SIOCDARP:
3416 	case SIOCATMARK:
3417 		return sock_do_ioctl(net, sock, cmd, arg);
3418 	}
3419 
3420 	return -ENOIOCTLCMD;
3421 }
3422 
3423 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3424 			      unsigned long arg)
3425 {
3426 	struct socket *sock = file->private_data;
3427 	int ret = -ENOIOCTLCMD;
3428 	struct sock *sk;
3429 	struct net *net;
3430 
3431 	sk = sock->sk;
3432 	net = sock_net(sk);
3433 
3434 	if (sock->ops->compat_ioctl)
3435 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3436 
3437 	if (ret == -ENOIOCTLCMD &&
3438 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3439 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3440 
3441 	if (ret == -ENOIOCTLCMD)
3442 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3443 
3444 	return ret;
3445 }
3446 #endif
3447 
3448 /**
3449  *	kernel_bind - bind an address to a socket (kernel space)
3450  *	@sock: socket
3451  *	@addr: address
3452  *	@addrlen: length of address
3453  *
3454  *	Returns 0 or an error.
3455  */
3456 
3457 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3458 {
3459 	return sock->ops->bind(sock, addr, addrlen);
3460 }
3461 EXPORT_SYMBOL(kernel_bind);
3462 
3463 /**
3464  *	kernel_listen - move socket to listening state (kernel space)
3465  *	@sock: socket
3466  *	@backlog: pending connections queue size
3467  *
3468  *	Returns 0 or an error.
3469  */
3470 
3471 int kernel_listen(struct socket *sock, int backlog)
3472 {
3473 	return sock->ops->listen(sock, backlog);
3474 }
3475 EXPORT_SYMBOL(kernel_listen);
3476 
3477 /**
3478  *	kernel_accept - accept a connection (kernel space)
3479  *	@sock: listening socket
3480  *	@newsock: new connected socket
3481  *	@flags: flags
3482  *
3483  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3484  *	If it fails, @newsock is guaranteed to be %NULL.
3485  *	Returns 0 or an error.
3486  */
3487 
3488 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3489 {
3490 	struct sock *sk = sock->sk;
3491 	int err;
3492 
3493 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3494 			       newsock);
3495 	if (err < 0)
3496 		goto done;
3497 
3498 	err = sock->ops->accept(sock, *newsock, flags, true);
3499 	if (err < 0) {
3500 		sock_release(*newsock);
3501 		*newsock = NULL;
3502 		goto done;
3503 	}
3504 
3505 	(*newsock)->ops = sock->ops;
3506 	__module_get((*newsock)->ops->owner);
3507 
3508 done:
3509 	return err;
3510 }
3511 EXPORT_SYMBOL(kernel_accept);
3512 
3513 /**
3514  *	kernel_connect - connect a socket (kernel space)
3515  *	@sock: socket
3516  *	@addr: address
3517  *	@addrlen: address length
3518  *	@flags: flags (O_NONBLOCK, ...)
3519  *
3520  *	For datagram sockets, @addr is the addres to which datagrams are sent
3521  *	by default, and the only address from which datagrams are received.
3522  *	For stream sockets, attempts to connect to @addr.
3523  *	Returns 0 or an error code.
3524  */
3525 
3526 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3527 		   int flags)
3528 {
3529 	return sock->ops->connect(sock, addr, addrlen, flags);
3530 }
3531 EXPORT_SYMBOL(kernel_connect);
3532 
3533 /**
3534  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3535  *	@sock: socket
3536  *	@addr: address holder
3537  *
3538  * 	Fills the @addr pointer with the address which the socket is bound.
3539  *	Returns 0 or an error code.
3540  */
3541 
3542 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3543 {
3544 	return sock->ops->getname(sock, addr, 0);
3545 }
3546 EXPORT_SYMBOL(kernel_getsockname);
3547 
3548 /**
3549  *	kernel_peername - get the address which the socket is connected (kernel space)
3550  *	@sock: socket
3551  *	@addr: address holder
3552  *
3553  * 	Fills the @addr pointer with the address which the socket is connected.
3554  *	Returns 0 or an error code.
3555  */
3556 
3557 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3558 {
3559 	return sock->ops->getname(sock, addr, 1);
3560 }
3561 EXPORT_SYMBOL(kernel_getpeername);
3562 
3563 /**
3564  *	kernel_getsockopt - get a socket option (kernel space)
3565  *	@sock: socket
3566  *	@level: API level (SOL_SOCKET, ...)
3567  *	@optname: option tag
3568  *	@optval: option value
3569  *	@optlen: option length
3570  *
3571  *	Assigns the option length to @optlen.
3572  *	Returns 0 or an error.
3573  */
3574 
3575 int kernel_getsockopt(struct socket *sock, int level, int optname,
3576 			char *optval, int *optlen)
3577 {
3578 	mm_segment_t oldfs = get_fs();
3579 	char __user *uoptval;
3580 	int __user *uoptlen;
3581 	int err;
3582 
3583 	uoptval = (char __user __force *) optval;
3584 	uoptlen = (int __user __force *) optlen;
3585 
3586 	set_fs(KERNEL_DS);
3587 	if (level == SOL_SOCKET)
3588 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3589 	else
3590 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3591 					    uoptlen);
3592 	set_fs(oldfs);
3593 	return err;
3594 }
3595 EXPORT_SYMBOL(kernel_getsockopt);
3596 
3597 /**
3598  *	kernel_setsockopt - set a socket option (kernel space)
3599  *	@sock: socket
3600  *	@level: API level (SOL_SOCKET, ...)
3601  *	@optname: option tag
3602  *	@optval: option value
3603  *	@optlen: option length
3604  *
3605  *	Returns 0 or an error.
3606  */
3607 
3608 int kernel_setsockopt(struct socket *sock, int level, int optname,
3609 			char *optval, unsigned int optlen)
3610 {
3611 	mm_segment_t oldfs = get_fs();
3612 	char __user *uoptval;
3613 	int err;
3614 
3615 	uoptval = (char __user __force *) optval;
3616 
3617 	set_fs(KERNEL_DS);
3618 	if (level == SOL_SOCKET)
3619 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3620 	else
3621 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3622 					    optlen);
3623 	set_fs(oldfs);
3624 	return err;
3625 }
3626 EXPORT_SYMBOL(kernel_setsockopt);
3627 
3628 /**
3629  *	kernel_sendpage - send a &page through a socket (kernel space)
3630  *	@sock: socket
3631  *	@page: page
3632  *	@offset: page offset
3633  *	@size: total size in bytes
3634  *	@flags: flags (MSG_DONTWAIT, ...)
3635  *
3636  *	Returns the total amount sent in bytes or an error.
3637  */
3638 
3639 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3640 		    size_t size, int flags)
3641 {
3642 	if (sock->ops->sendpage)
3643 		return sock->ops->sendpage(sock, page, offset, size, flags);
3644 
3645 	return sock_no_sendpage(sock, page, offset, size, flags);
3646 }
3647 EXPORT_SYMBOL(kernel_sendpage);
3648 
3649 /**
3650  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3651  *	@sk: sock
3652  *	@page: page
3653  *	@offset: page offset
3654  *	@size: total size in bytes
3655  *	@flags: flags (MSG_DONTWAIT, ...)
3656  *
3657  *	Returns the total amount sent in bytes or an error.
3658  *	Caller must hold @sk.
3659  */
3660 
3661 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3662 			   size_t size, int flags)
3663 {
3664 	struct socket *sock = sk->sk_socket;
3665 
3666 	if (sock->ops->sendpage_locked)
3667 		return sock->ops->sendpage_locked(sk, page, offset, size,
3668 						  flags);
3669 
3670 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3671 }
3672 EXPORT_SYMBOL(kernel_sendpage_locked);
3673 
3674 /**
3675  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3676  *	@sock: socket
3677  *	@how: connection part
3678  *
3679  *	Returns 0 or an error.
3680  */
3681 
3682 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3683 {
3684 	return sock->ops->shutdown(sock, how);
3685 }
3686 EXPORT_SYMBOL(kernel_sock_shutdown);
3687 
3688 /**
3689  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3690  *	@sk: socket
3691  *
3692  *	This routine returns the IP overhead imposed by a socket i.e.
3693  *	the length of the underlying IP header, depending on whether
3694  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3695  *	on at the socket. Assumes that the caller has a lock on the socket.
3696  */
3697 
3698 u32 kernel_sock_ip_overhead(struct sock *sk)
3699 {
3700 	struct inet_sock *inet;
3701 	struct ip_options_rcu *opt;
3702 	u32 overhead = 0;
3703 #if IS_ENABLED(CONFIG_IPV6)
3704 	struct ipv6_pinfo *np;
3705 	struct ipv6_txoptions *optv6 = NULL;
3706 #endif /* IS_ENABLED(CONFIG_IPV6) */
3707 
3708 	if (!sk)
3709 		return overhead;
3710 
3711 	switch (sk->sk_family) {
3712 	case AF_INET:
3713 		inet = inet_sk(sk);
3714 		overhead += sizeof(struct iphdr);
3715 		opt = rcu_dereference_protected(inet->inet_opt,
3716 						sock_owned_by_user(sk));
3717 		if (opt)
3718 			overhead += opt->opt.optlen;
3719 		return overhead;
3720 #if IS_ENABLED(CONFIG_IPV6)
3721 	case AF_INET6:
3722 		np = inet6_sk(sk);
3723 		overhead += sizeof(struct ipv6hdr);
3724 		if (np)
3725 			optv6 = rcu_dereference_protected(np->opt,
3726 							  sock_owned_by_user(sk));
3727 		if (optv6)
3728 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3729 		return overhead;
3730 #endif /* IS_ENABLED(CONFIG_IPV6) */
3731 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3732 		return overhead;
3733 	}
3734 }
3735 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3736