xref: /openbmc/linux/net/socket.c (revision e1f7c9ee)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 			 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 			  unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 			     int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 				struct pipe_inode_info *pipe, size_t len,
136 				unsigned int flags);
137 
138 /*
139  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *	in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144 	.owner =	THIS_MODULE,
145 	.llseek =	no_llseek,
146 	.aio_read =	sock_aio_read,
147 	.aio_write =	sock_aio_write,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155 	.release =	sock_close,
156 	.fasync =	sock_fasync,
157 	.sendpage =	sock_sendpage,
158 	.splice_write = generic_splice_sendpage,
159 	.splice_read =	sock_splice_read,
160 };
161 
162 /*
163  *	The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *	Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 	struct socket_wq *wq;
253 
254 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 	if (!ei)
256 		return NULL;
257 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 	if (!wq) {
259 		kmem_cache_free(sock_inode_cachep, ei);
260 		return NULL;
261 	}
262 	init_waitqueue_head(&wq->wait);
263 	wq->fasync_list = NULL;
264 	RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266 	ei->socket.state = SS_UNCONNECTED;
267 	ei->socket.flags = 0;
268 	ei->socket.ops = NULL;
269 	ei->socket.sk = NULL;
270 	ei->socket.file = NULL;
271 
272 	return &ei->vfs_inode;
273 }
274 
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	kfree_rcu(wq, rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 
364 	if (dname) {
365 		name.name = dname;
366 		name.len = strlen(name.name);
367 	} else if (sock->sk) {
368 		name.name = sock->sk->sk_prot_creator->name;
369 		name.len = strlen(name.name);
370 	}
371 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 	if (unlikely(!path.dentry))
373 		return ERR_PTR(-ENOMEM);
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(IS_ERR(file))) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		return file;
386 	}
387 
388 	sock->file = file;
389 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 	file->private_data = sock;
391 	return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = get_unused_fd_flags(flags);
399 	if (unlikely(fd < 0))
400 		return fd;
401 
402 	newfile = sock_alloc_file(sock, flags, NULL);
403 	if (likely(!IS_ERR(newfile))) {
404 		fd_install(fd, newfile);
405 		return fd;
406 	}
407 
408 	put_unused_fd(fd);
409 	return PTR_ERR(newfile);
410 }
411 
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *	sockfd_lookup - Go from a file number to its socket slot
424  *	@fd: file handle
425  *	@err: pointer to an error code return
426  *
427  *	The file handle passed in is locked and the socket it is bound
428  *	too is returned. If an error occurs the err pointer is overwritten
429  *	with a negative errno code and NULL is returned. The function checks
430  *	for both invalid handles and passing a handle which is not a socket.
431  *
432  *	On a success the socket object pointer is returned.
433  */
434 
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 	struct file *file;
438 	struct socket *sock;
439 
440 	file = fget(fd);
441 	if (!file) {
442 		*err = -EBADF;
443 		return NULL;
444 	}
445 
446 	sock = sock_from_file(file, err);
447 	if (!sock)
448 		fput(file);
449 	return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct fd f = fdget(fd);
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	if (f.file) {
460 		sock = sock_from_file(f.file, err);
461 		if (likely(sock)) {
462 			*fput_needed = f.flags;
463 			return sock;
464 		}
465 		fdput(f);
466 	}
467 	return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 			       const char *name, void *value, size_t size)
475 {
476 	const char *proto_name;
477 	size_t proto_size;
478 	int error;
479 
480 	error = -ENODATA;
481 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 		proto_name = dentry->d_name.name;
483 		proto_size = strlen(proto_name);
484 
485 		if (value) {
486 			error = -ERANGE;
487 			if (proto_size + 1 > size)
488 				goto out;
489 
490 			strncpy(value, proto_name, proto_size + 1);
491 		}
492 		error = proto_size + 1;
493 	}
494 
495 out:
496 	return error;
497 }
498 
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 				size_t size)
501 {
502 	ssize_t len;
503 	ssize_t used = 0;
504 
505 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 	if (len < 0)
507 		return len;
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		buffer += len;
513 	}
514 
515 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 		buffer += len;
522 	}
523 
524 	return used;
525 }
526 
527 static const struct inode_operations sockfs_inode_ops = {
528 	.getxattr = sockfs_getxattr,
529 	.listxattr = sockfs_listxattr,
530 };
531 
532 /**
533  *	sock_alloc	-	allocate a socket
534  *
535  *	Allocate a new inode and socket object. The two are bound together
536  *	and initialised. The socket is then returned. If we are out of inodes
537  *	NULL is returned.
538  */
539 
540 static struct socket *sock_alloc(void)
541 {
542 	struct inode *inode;
543 	struct socket *sock;
544 
545 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 	if (!inode)
547 		return NULL;
548 
549 	sock = SOCKET_I(inode);
550 
551 	kmemcheck_annotate_bitfield(sock, type);
552 	inode->i_ino = get_next_ino();
553 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 	inode->i_uid = current_fsuid();
555 	inode->i_gid = current_fsgid();
556 	inode->i_op = &sockfs_inode_ops;
557 
558 	this_cpu_add(sockets_in_use, 1);
559 	return sock;
560 }
561 
562 /*
563  *	In theory you can't get an open on this inode, but /proc provides
564  *	a back door. Remember to keep it shut otherwise you'll let the
565  *	creepy crawlies in.
566  */
567 
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 	return -ENXIO;
571 }
572 
573 const struct file_operations bad_sock_fops = {
574 	.owner = THIS_MODULE,
575 	.open = sock_no_open,
576 	.llseek = noop_llseek,
577 };
578 
579 /**
580  *	sock_release	-	close a socket
581  *	@sock: socket to close
582  *
583  *	The socket is released from the protocol stack if it has a release
584  *	callback, and the inode is then released if the socket is bound to
585  *	an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		sock->ops->release(sock);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 		return;
603 
604 	this_cpu_sub(sockets_in_use, 1);
605 	if (!sock->file) {
606 		iput(SOCK_INODE(sock));
607 		return;
608 	}
609 	sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 	u8 flags = *tx_flags;
616 
617 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 		flags |= SKBTX_HW_TSTAMP;
619 
620 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 		flags |= SKBTX_SW_TSTAMP;
622 
623 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 		flags |= SKBTX_SCHED_TSTAMP;
625 
626 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 		flags |= SKBTX_ACK_TSTAMP;
628 
629 	*tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632 
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 				       struct msghdr *msg, size_t size)
635 {
636 	struct sock_iocb *si = kiocb_to_siocb(iocb);
637 
638 	si->sock = sock;
639 	si->scm = NULL;
640 	si->msg = msg;
641 	si->size = size;
642 
643 	return sock->ops->sendmsg(iocb, sock, msg, size);
644 }
645 
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 				 struct msghdr *msg, size_t size)
648 {
649 	int err = security_socket_sendmsg(sock, msg, size);
650 
651 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652 }
653 
654 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
655 {
656 	struct kiocb iocb;
657 	struct sock_iocb siocb;
658 	int ret;
659 
660 	init_sync_kiocb(&iocb, NULL);
661 	iocb.private = &siocb;
662 	ret = __sock_sendmsg(&iocb, sock, msg, size);
663 	if (-EIOCBQUEUED == ret)
664 		ret = wait_on_sync_kiocb(&iocb);
665 	return ret;
666 }
667 EXPORT_SYMBOL(sock_sendmsg);
668 
669 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
670 {
671 	struct kiocb iocb;
672 	struct sock_iocb siocb;
673 	int ret;
674 
675 	init_sync_kiocb(&iocb, NULL);
676 	iocb.private = &siocb;
677 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
678 	if (-EIOCBQUEUED == ret)
679 		ret = wait_on_sync_kiocb(&iocb);
680 	return ret;
681 }
682 
683 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
684 		   struct kvec *vec, size_t num, size_t size)
685 {
686 	mm_segment_t oldfs = get_fs();
687 	int result;
688 
689 	set_fs(KERNEL_DS);
690 	/*
691 	 * the following is safe, since for compiler definitions of kvec and
692 	 * iovec are identical, yielding the same in-core layout and alignment
693 	 */
694 	msg->msg_iov = (struct iovec *)vec;
695 	msg->msg_iovlen = num;
696 	result = sock_sendmsg(sock, msg, size);
697 	set_fs(oldfs);
698 	return result;
699 }
700 EXPORT_SYMBOL(kernel_sendmsg);
701 
702 /*
703  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704  */
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 	struct sk_buff *skb)
707 {
708 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 	struct scm_timestamping tss;
710 	int empty = 1;
711 	struct skb_shared_hwtstamps *shhwtstamps =
712 		skb_hwtstamps(skb);
713 
714 	/* Race occurred between timestamp enabling and packet
715 	   receiving.  Fill in the current time for now. */
716 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
717 		__net_timestamp(skb);
718 
719 	if (need_software_tstamp) {
720 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
721 			struct timeval tv;
722 			skb_get_timestamp(skb, &tv);
723 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
724 				 sizeof(tv), &tv);
725 		} else {
726 			struct timespec ts;
727 			skb_get_timestampns(skb, &ts);
728 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
729 				 sizeof(ts), &ts);
730 		}
731 	}
732 
733 	memset(&tss, 0, sizeof(tss));
734 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
735 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
736 		empty = 0;
737 	if (shhwtstamps &&
738 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
739 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
740 		empty = 0;
741 	if (!empty)
742 		put_cmsg(msg, SOL_SOCKET,
743 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746 
747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748 	struct sk_buff *skb)
749 {
750 	int ack;
751 
752 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
753 		return;
754 	if (!skb->wifi_acked_valid)
755 		return;
756 
757 	ack = skb->wifi_acked;
758 
759 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760 }
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762 
763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764 				   struct sk_buff *skb)
765 {
766 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768 			sizeof(__u32), &skb->dropcount);
769 }
770 
771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772 	struct sk_buff *skb)
773 {
774 	sock_recv_timestamp(msg, sk, skb);
775 	sock_recv_drops(msg, sk, skb);
776 }
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778 
779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780 				       struct msghdr *msg, size_t size, int flags)
781 {
782 	struct sock_iocb *si = kiocb_to_siocb(iocb);
783 
784 	si->sock = sock;
785 	si->scm = NULL;
786 	si->msg = msg;
787 	si->size = size;
788 	si->flags = flags;
789 
790 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
791 }
792 
793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794 				 struct msghdr *msg, size_t size, int flags)
795 {
796 	int err = security_socket_recvmsg(sock, msg, size, flags);
797 
798 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
799 }
800 
801 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802 		 size_t size, int flags)
803 {
804 	struct kiocb iocb;
805 	struct sock_iocb siocb;
806 	int ret;
807 
808 	init_sync_kiocb(&iocb, NULL);
809 	iocb.private = &siocb;
810 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811 	if (-EIOCBQUEUED == ret)
812 		ret = wait_on_sync_kiocb(&iocb);
813 	return ret;
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816 
817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818 			      size_t size, int flags)
819 {
820 	struct kiocb iocb;
821 	struct sock_iocb siocb;
822 	int ret;
823 
824 	init_sync_kiocb(&iocb, NULL);
825 	iocb.private = &siocb;
826 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827 	if (-EIOCBQUEUED == ret)
828 		ret = wait_on_sync_kiocb(&iocb);
829 	return ret;
830 }
831 
832 /**
833  * kernel_recvmsg - Receive a message from a socket (kernel space)
834  * @sock:       The socket to receive the message from
835  * @msg:        Received message
836  * @vec:        Input s/g array for message data
837  * @num:        Size of input s/g array
838  * @size:       Number of bytes to read
839  * @flags:      Message flags (MSG_DONTWAIT, etc...)
840  *
841  * On return the msg structure contains the scatter/gather array passed in the
842  * vec argument. The array is modified so that it consists of the unfilled
843  * portion of the original array.
844  *
845  * The returned value is the total number of bytes received, or an error.
846  */
847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848 		   struct kvec *vec, size_t num, size_t size, int flags)
849 {
850 	mm_segment_t oldfs = get_fs();
851 	int result;
852 
853 	set_fs(KERNEL_DS);
854 	/*
855 	 * the following is safe, since for compiler definitions of kvec and
856 	 * iovec are identical, yielding the same in-core layout and alignment
857 	 */
858 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859 	result = sock_recvmsg(sock, msg, size, flags);
860 	set_fs(oldfs);
861 	return result;
862 }
863 EXPORT_SYMBOL(kernel_recvmsg);
864 
865 static ssize_t sock_sendpage(struct file *file, struct page *page,
866 			     int offset, size_t size, loff_t *ppos, int more)
867 {
868 	struct socket *sock;
869 	int flags;
870 
871 	sock = file->private_data;
872 
873 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
874 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
875 	flags |= more;
876 
877 	return kernel_sendpage(sock, page, offset, size, flags);
878 }
879 
880 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
881 				struct pipe_inode_info *pipe, size_t len,
882 				unsigned int flags)
883 {
884 	struct socket *sock = file->private_data;
885 
886 	if (unlikely(!sock->ops->splice_read))
887 		return -EINVAL;
888 
889 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
890 }
891 
892 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
893 					 struct sock_iocb *siocb)
894 {
895 	if (!is_sync_kiocb(iocb))
896 		BUG();
897 
898 	siocb->kiocb = iocb;
899 	iocb->private = siocb;
900 	return siocb;
901 }
902 
903 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
904 		struct file *file, const struct iovec *iov,
905 		unsigned long nr_segs)
906 {
907 	struct socket *sock = file->private_data;
908 	size_t size = 0;
909 	int i;
910 
911 	for (i = 0; i < nr_segs; i++)
912 		size += iov[i].iov_len;
913 
914 	msg->msg_name = NULL;
915 	msg->msg_namelen = 0;
916 	msg->msg_control = NULL;
917 	msg->msg_controllen = 0;
918 	msg->msg_iov = (struct iovec *)iov;
919 	msg->msg_iovlen = nr_segs;
920 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
921 
922 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
923 }
924 
925 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
926 				unsigned long nr_segs, loff_t pos)
927 {
928 	struct sock_iocb siocb, *x;
929 
930 	if (pos != 0)
931 		return -ESPIPE;
932 
933 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
934 		return 0;
935 
936 
937 	x = alloc_sock_iocb(iocb, &siocb);
938 	if (!x)
939 		return -ENOMEM;
940 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
941 }
942 
943 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
944 			struct file *file, const struct iovec *iov,
945 			unsigned long nr_segs)
946 {
947 	struct socket *sock = file->private_data;
948 	size_t size = 0;
949 	int i;
950 
951 	for (i = 0; i < nr_segs; i++)
952 		size += iov[i].iov_len;
953 
954 	msg->msg_name = NULL;
955 	msg->msg_namelen = 0;
956 	msg->msg_control = NULL;
957 	msg->msg_controllen = 0;
958 	msg->msg_iov = (struct iovec *)iov;
959 	msg->msg_iovlen = nr_segs;
960 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961 	if (sock->type == SOCK_SEQPACKET)
962 		msg->msg_flags |= MSG_EOR;
963 
964 	return __sock_sendmsg(iocb, sock, msg, size);
965 }
966 
967 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
968 			  unsigned long nr_segs, loff_t pos)
969 {
970 	struct sock_iocb siocb, *x;
971 
972 	if (pos != 0)
973 		return -ESPIPE;
974 
975 	x = alloc_sock_iocb(iocb, &siocb);
976 	if (!x)
977 		return -ENOMEM;
978 
979 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
980 }
981 
982 /*
983  * Atomic setting of ioctl hooks to avoid race
984  * with module unload.
985  */
986 
987 static DEFINE_MUTEX(br_ioctl_mutex);
988 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
989 
990 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
991 {
992 	mutex_lock(&br_ioctl_mutex);
993 	br_ioctl_hook = hook;
994 	mutex_unlock(&br_ioctl_mutex);
995 }
996 EXPORT_SYMBOL(brioctl_set);
997 
998 static DEFINE_MUTEX(vlan_ioctl_mutex);
999 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1000 
1001 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1002 {
1003 	mutex_lock(&vlan_ioctl_mutex);
1004 	vlan_ioctl_hook = hook;
1005 	mutex_unlock(&vlan_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(vlan_ioctl_set);
1008 
1009 static DEFINE_MUTEX(dlci_ioctl_mutex);
1010 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1011 
1012 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1013 {
1014 	mutex_lock(&dlci_ioctl_mutex);
1015 	dlci_ioctl_hook = hook;
1016 	mutex_unlock(&dlci_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(dlci_ioctl_set);
1019 
1020 static long sock_do_ioctl(struct net *net, struct socket *sock,
1021 				 unsigned int cmd, unsigned long arg)
1022 {
1023 	int err;
1024 	void __user *argp = (void __user *)arg;
1025 
1026 	err = sock->ops->ioctl(sock, cmd, arg);
1027 
1028 	/*
1029 	 * If this ioctl is unknown try to hand it down
1030 	 * to the NIC driver.
1031 	 */
1032 	if (err == -ENOIOCTLCMD)
1033 		err = dev_ioctl(net, cmd, argp);
1034 
1035 	return err;
1036 }
1037 
1038 /*
1039  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1040  *	what to do with it - that's up to the protocol still.
1041  */
1042 
1043 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1044 {
1045 	struct socket *sock;
1046 	struct sock *sk;
1047 	void __user *argp = (void __user *)arg;
1048 	int pid, err;
1049 	struct net *net;
1050 
1051 	sock = file->private_data;
1052 	sk = sock->sk;
1053 	net = sock_net(sk);
1054 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1055 		err = dev_ioctl(net, cmd, argp);
1056 	} else
1057 #ifdef CONFIG_WEXT_CORE
1058 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1059 		err = dev_ioctl(net, cmd, argp);
1060 	} else
1061 #endif
1062 		switch (cmd) {
1063 		case FIOSETOWN:
1064 		case SIOCSPGRP:
1065 			err = -EFAULT;
1066 			if (get_user(pid, (int __user *)argp))
1067 				break;
1068 			f_setown(sock->file, pid, 1);
1069 			err = 0;
1070 			break;
1071 		case FIOGETOWN:
1072 		case SIOCGPGRP:
1073 			err = put_user(f_getown(sock->file),
1074 				       (int __user *)argp);
1075 			break;
1076 		case SIOCGIFBR:
1077 		case SIOCSIFBR:
1078 		case SIOCBRADDBR:
1079 		case SIOCBRDELBR:
1080 			err = -ENOPKG;
1081 			if (!br_ioctl_hook)
1082 				request_module("bridge");
1083 
1084 			mutex_lock(&br_ioctl_mutex);
1085 			if (br_ioctl_hook)
1086 				err = br_ioctl_hook(net, cmd, argp);
1087 			mutex_unlock(&br_ioctl_mutex);
1088 			break;
1089 		case SIOCGIFVLAN:
1090 		case SIOCSIFVLAN:
1091 			err = -ENOPKG;
1092 			if (!vlan_ioctl_hook)
1093 				request_module("8021q");
1094 
1095 			mutex_lock(&vlan_ioctl_mutex);
1096 			if (vlan_ioctl_hook)
1097 				err = vlan_ioctl_hook(net, argp);
1098 			mutex_unlock(&vlan_ioctl_mutex);
1099 			break;
1100 		case SIOCADDDLCI:
1101 		case SIOCDELDLCI:
1102 			err = -ENOPKG;
1103 			if (!dlci_ioctl_hook)
1104 				request_module("dlci");
1105 
1106 			mutex_lock(&dlci_ioctl_mutex);
1107 			if (dlci_ioctl_hook)
1108 				err = dlci_ioctl_hook(cmd, argp);
1109 			mutex_unlock(&dlci_ioctl_mutex);
1110 			break;
1111 		default:
1112 			err = sock_do_ioctl(net, sock, cmd, arg);
1113 			break;
1114 		}
1115 	return err;
1116 }
1117 
1118 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119 {
1120 	int err;
1121 	struct socket *sock = NULL;
1122 
1123 	err = security_socket_create(family, type, protocol, 1);
1124 	if (err)
1125 		goto out;
1126 
1127 	sock = sock_alloc();
1128 	if (!sock) {
1129 		err = -ENOMEM;
1130 		goto out;
1131 	}
1132 
1133 	sock->type = type;
1134 	err = security_socket_post_create(sock, family, type, protocol, 1);
1135 	if (err)
1136 		goto out_release;
1137 
1138 out:
1139 	*res = sock;
1140 	return err;
1141 out_release:
1142 	sock_release(sock);
1143 	sock = NULL;
1144 	goto out;
1145 }
1146 EXPORT_SYMBOL(sock_create_lite);
1147 
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file *file, poll_table *wait)
1150 {
1151 	unsigned int busy_flag = 0;
1152 	struct socket *sock;
1153 
1154 	/*
1155 	 *      We can't return errors to poll, so it's either yes or no.
1156 	 */
1157 	sock = file->private_data;
1158 
1159 	if (sk_can_busy_loop(sock->sk)) {
1160 		/* this socket can poll_ll so tell the system call */
1161 		busy_flag = POLL_BUSY_LOOP;
1162 
1163 		/* once, only if requested by syscall */
1164 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1165 			sk_busy_loop(sock->sk, 1);
1166 	}
1167 
1168 	return busy_flag | sock->ops->poll(file, sock, wait);
1169 }
1170 
1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172 {
1173 	struct socket *sock = file->private_data;
1174 
1175 	return sock->ops->mmap(file, sock, vma);
1176 }
1177 
1178 static int sock_close(struct inode *inode, struct file *filp)
1179 {
1180 	sock_release(SOCKET_I(inode));
1181 	return 0;
1182 }
1183 
1184 /*
1185  *	Update the socket async list
1186  *
1187  *	Fasync_list locking strategy.
1188  *
1189  *	1. fasync_list is modified only under process context socket lock
1190  *	   i.e. under semaphore.
1191  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192  *	   or under socket lock
1193  */
1194 
1195 static int sock_fasync(int fd, struct file *filp, int on)
1196 {
1197 	struct socket *sock = filp->private_data;
1198 	struct sock *sk = sock->sk;
1199 	struct socket_wq *wq;
1200 
1201 	if (sk == NULL)
1202 		return -EINVAL;
1203 
1204 	lock_sock(sk);
1205 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206 	fasync_helper(fd, filp, on, &wq->fasync_list);
1207 
1208 	if (!wq->fasync_list)
1209 		sock_reset_flag(sk, SOCK_FASYNC);
1210 	else
1211 		sock_set_flag(sk, SOCK_FASYNC);
1212 
1213 	release_sock(sk);
1214 	return 0;
1215 }
1216 
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1218 
1219 int sock_wake_async(struct socket *sock, int how, int band)
1220 {
1221 	struct socket_wq *wq;
1222 
1223 	if (!sock)
1224 		return -1;
1225 	rcu_read_lock();
1226 	wq = rcu_dereference(sock->wq);
1227 	if (!wq || !wq->fasync_list) {
1228 		rcu_read_unlock();
1229 		return -1;
1230 	}
1231 	switch (how) {
1232 	case SOCK_WAKE_WAITD:
1233 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234 			break;
1235 		goto call_kill;
1236 	case SOCK_WAKE_SPACE:
1237 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238 			break;
1239 		/* fall through */
1240 	case SOCK_WAKE_IO:
1241 call_kill:
1242 		kill_fasync(&wq->fasync_list, SIGIO, band);
1243 		break;
1244 	case SOCK_WAKE_URG:
1245 		kill_fasync(&wq->fasync_list, SIGURG, band);
1246 	}
1247 	rcu_read_unlock();
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL(sock_wake_async);
1251 
1252 int __sock_create(struct net *net, int family, int type, int protocol,
1253 			 struct socket **res, int kern)
1254 {
1255 	int err;
1256 	struct socket *sock;
1257 	const struct net_proto_family *pf;
1258 
1259 	/*
1260 	 *      Check protocol is in range
1261 	 */
1262 	if (family < 0 || family >= NPROTO)
1263 		return -EAFNOSUPPORT;
1264 	if (type < 0 || type >= SOCK_MAX)
1265 		return -EINVAL;
1266 
1267 	/* Compatibility.
1268 
1269 	   This uglymoron is moved from INET layer to here to avoid
1270 	   deadlock in module load.
1271 	 */
1272 	if (family == PF_INET && type == SOCK_PACKET) {
1273 		static int warned;
1274 		if (!warned) {
1275 			warned = 1;
1276 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277 				current->comm);
1278 		}
1279 		family = PF_PACKET;
1280 	}
1281 
1282 	err = security_socket_create(family, type, protocol, kern);
1283 	if (err)
1284 		return err;
1285 
1286 	/*
1287 	 *	Allocate the socket and allow the family to set things up. if
1288 	 *	the protocol is 0, the family is instructed to select an appropriate
1289 	 *	default.
1290 	 */
1291 	sock = sock_alloc();
1292 	if (!sock) {
1293 		net_warn_ratelimited("socket: no more sockets\n");
1294 		return -ENFILE;	/* Not exactly a match, but its the
1295 				   closest posix thing */
1296 	}
1297 
1298 	sock->type = type;
1299 
1300 #ifdef CONFIG_MODULES
1301 	/* Attempt to load a protocol module if the find failed.
1302 	 *
1303 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 	 * requested real, full-featured networking support upon configuration.
1305 	 * Otherwise module support will break!
1306 	 */
1307 	if (rcu_access_pointer(net_families[family]) == NULL)
1308 		request_module("net-pf-%d", family);
1309 #endif
1310 
1311 	rcu_read_lock();
1312 	pf = rcu_dereference(net_families[family]);
1313 	err = -EAFNOSUPPORT;
1314 	if (!pf)
1315 		goto out_release;
1316 
1317 	/*
1318 	 * We will call the ->create function, that possibly is in a loadable
1319 	 * module, so we have to bump that loadable module refcnt first.
1320 	 */
1321 	if (!try_module_get(pf->owner))
1322 		goto out_release;
1323 
1324 	/* Now protected by module ref count */
1325 	rcu_read_unlock();
1326 
1327 	err = pf->create(net, sock, protocol, kern);
1328 	if (err < 0)
1329 		goto out_module_put;
1330 
1331 	/*
1332 	 * Now to bump the refcnt of the [loadable] module that owns this
1333 	 * socket at sock_release time we decrement its refcnt.
1334 	 */
1335 	if (!try_module_get(sock->ops->owner))
1336 		goto out_module_busy;
1337 
1338 	/*
1339 	 * Now that we're done with the ->create function, the [loadable]
1340 	 * module can have its refcnt decremented
1341 	 */
1342 	module_put(pf->owner);
1343 	err = security_socket_post_create(sock, family, type, protocol, kern);
1344 	if (err)
1345 		goto out_sock_release;
1346 	*res = sock;
1347 
1348 	return 0;
1349 
1350 out_module_busy:
1351 	err = -EAFNOSUPPORT;
1352 out_module_put:
1353 	sock->ops = NULL;
1354 	module_put(pf->owner);
1355 out_sock_release:
1356 	sock_release(sock);
1357 	return err;
1358 
1359 out_release:
1360 	rcu_read_unlock();
1361 	goto out_sock_release;
1362 }
1363 EXPORT_SYMBOL(__sock_create);
1364 
1365 int sock_create(int family, int type, int protocol, struct socket **res)
1366 {
1367 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368 }
1369 EXPORT_SYMBOL(sock_create);
1370 
1371 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372 {
1373 	return __sock_create(&init_net, family, type, protocol, res, 1);
1374 }
1375 EXPORT_SYMBOL(sock_create_kern);
1376 
1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378 {
1379 	int retval;
1380 	struct socket *sock;
1381 	int flags;
1382 
1383 	/* Check the SOCK_* constants for consistency.  */
1384 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388 
1389 	flags = type & ~SOCK_TYPE_MASK;
1390 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 		return -EINVAL;
1392 	type &= SOCK_TYPE_MASK;
1393 
1394 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396 
1397 	retval = sock_create(family, type, protocol, &sock);
1398 	if (retval < 0)
1399 		goto out;
1400 
1401 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402 	if (retval < 0)
1403 		goto out_release;
1404 
1405 out:
1406 	/* It may be already another descriptor 8) Not kernel problem. */
1407 	return retval;
1408 
1409 out_release:
1410 	sock_release(sock);
1411 	return retval;
1412 }
1413 
1414 /*
1415  *	Create a pair of connected sockets.
1416  */
1417 
1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419 		int __user *, usockvec)
1420 {
1421 	struct socket *sock1, *sock2;
1422 	int fd1, fd2, err;
1423 	struct file *newfile1, *newfile2;
1424 	int flags;
1425 
1426 	flags = type & ~SOCK_TYPE_MASK;
1427 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428 		return -EINVAL;
1429 	type &= SOCK_TYPE_MASK;
1430 
1431 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1433 
1434 	/*
1435 	 * Obtain the first socket and check if the underlying protocol
1436 	 * supports the socketpair call.
1437 	 */
1438 
1439 	err = sock_create(family, type, protocol, &sock1);
1440 	if (err < 0)
1441 		goto out;
1442 
1443 	err = sock_create(family, type, protocol, &sock2);
1444 	if (err < 0)
1445 		goto out_release_1;
1446 
1447 	err = sock1->ops->socketpair(sock1, sock2);
1448 	if (err < 0)
1449 		goto out_release_both;
1450 
1451 	fd1 = get_unused_fd_flags(flags);
1452 	if (unlikely(fd1 < 0)) {
1453 		err = fd1;
1454 		goto out_release_both;
1455 	}
1456 
1457 	fd2 = get_unused_fd_flags(flags);
1458 	if (unlikely(fd2 < 0)) {
1459 		err = fd2;
1460 		goto out_put_unused_1;
1461 	}
1462 
1463 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1464 	if (unlikely(IS_ERR(newfile1))) {
1465 		err = PTR_ERR(newfile1);
1466 		goto out_put_unused_both;
1467 	}
1468 
1469 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1470 	if (IS_ERR(newfile2)) {
1471 		err = PTR_ERR(newfile2);
1472 		goto out_fput_1;
1473 	}
1474 
1475 	err = put_user(fd1, &usockvec[0]);
1476 	if (err)
1477 		goto out_fput_both;
1478 
1479 	err = put_user(fd2, &usockvec[1]);
1480 	if (err)
1481 		goto out_fput_both;
1482 
1483 	audit_fd_pair(fd1, fd2);
1484 
1485 	fd_install(fd1, newfile1);
1486 	fd_install(fd2, newfile2);
1487 	/* fd1 and fd2 may be already another descriptors.
1488 	 * Not kernel problem.
1489 	 */
1490 
1491 	return 0;
1492 
1493 out_fput_both:
1494 	fput(newfile2);
1495 	fput(newfile1);
1496 	put_unused_fd(fd2);
1497 	put_unused_fd(fd1);
1498 	goto out;
1499 
1500 out_fput_1:
1501 	fput(newfile1);
1502 	put_unused_fd(fd2);
1503 	put_unused_fd(fd1);
1504 	sock_release(sock2);
1505 	goto out;
1506 
1507 out_put_unused_both:
1508 	put_unused_fd(fd2);
1509 out_put_unused_1:
1510 	put_unused_fd(fd1);
1511 out_release_both:
1512 	sock_release(sock2);
1513 out_release_1:
1514 	sock_release(sock1);
1515 out:
1516 	return err;
1517 }
1518 
1519 /*
1520  *	Bind a name to a socket. Nothing much to do here since it's
1521  *	the protocol's responsibility to handle the local address.
1522  *
1523  *	We move the socket address to kernel space before we call
1524  *	the protocol layer (having also checked the address is ok).
1525  */
1526 
1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528 {
1529 	struct socket *sock;
1530 	struct sockaddr_storage address;
1531 	int err, fput_needed;
1532 
1533 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 	if (sock) {
1535 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536 		if (err >= 0) {
1537 			err = security_socket_bind(sock,
1538 						   (struct sockaddr *)&address,
1539 						   addrlen);
1540 			if (!err)
1541 				err = sock->ops->bind(sock,
1542 						      (struct sockaddr *)
1543 						      &address, addrlen);
1544 		}
1545 		fput_light(sock->file, fput_needed);
1546 	}
1547 	return err;
1548 }
1549 
1550 /*
1551  *	Perform a listen. Basically, we allow the protocol to do anything
1552  *	necessary for a listen, and if that works, we mark the socket as
1553  *	ready for listening.
1554  */
1555 
1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557 {
1558 	struct socket *sock;
1559 	int err, fput_needed;
1560 	int somaxconn;
1561 
1562 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 	if (sock) {
1564 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565 		if ((unsigned int)backlog > somaxconn)
1566 			backlog = somaxconn;
1567 
1568 		err = security_socket_listen(sock, backlog);
1569 		if (!err)
1570 			err = sock->ops->listen(sock, backlog);
1571 
1572 		fput_light(sock->file, fput_needed);
1573 	}
1574 	return err;
1575 }
1576 
1577 /*
1578  *	For accept, we attempt to create a new socket, set up the link
1579  *	with the client, wake up the client, then return the new
1580  *	connected fd. We collect the address of the connector in kernel
1581  *	space and move it to user at the very end. This is unclean because
1582  *	we open the socket then return an error.
1583  *
1584  *	1003.1g adds the ability to recvmsg() to query connection pending
1585  *	status to recvmsg. We need to add that support in a way thats
1586  *	clean when we restucture accept also.
1587  */
1588 
1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590 		int __user *, upeer_addrlen, int, flags)
1591 {
1592 	struct socket *sock, *newsock;
1593 	struct file *newfile;
1594 	int err, len, newfd, fput_needed;
1595 	struct sockaddr_storage address;
1596 
1597 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598 		return -EINVAL;
1599 
1600 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602 
1603 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 	if (!sock)
1605 		goto out;
1606 
1607 	err = -ENFILE;
1608 	newsock = sock_alloc();
1609 	if (!newsock)
1610 		goto out_put;
1611 
1612 	newsock->type = sock->type;
1613 	newsock->ops = sock->ops;
1614 
1615 	/*
1616 	 * We don't need try_module_get here, as the listening socket (sock)
1617 	 * has the protocol module (sock->ops->owner) held.
1618 	 */
1619 	__module_get(newsock->ops->owner);
1620 
1621 	newfd = get_unused_fd_flags(flags);
1622 	if (unlikely(newfd < 0)) {
1623 		err = newfd;
1624 		sock_release(newsock);
1625 		goto out_put;
1626 	}
1627 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628 	if (unlikely(IS_ERR(newfile))) {
1629 		err = PTR_ERR(newfile);
1630 		put_unused_fd(newfd);
1631 		sock_release(newsock);
1632 		goto out_put;
1633 	}
1634 
1635 	err = security_socket_accept(sock, newsock);
1636 	if (err)
1637 		goto out_fd;
1638 
1639 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640 	if (err < 0)
1641 		goto out_fd;
1642 
1643 	if (upeer_sockaddr) {
1644 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645 					  &len, 2) < 0) {
1646 			err = -ECONNABORTED;
1647 			goto out_fd;
1648 		}
1649 		err = move_addr_to_user(&address,
1650 					len, upeer_sockaddr, upeer_addrlen);
1651 		if (err < 0)
1652 			goto out_fd;
1653 	}
1654 
1655 	/* File flags are not inherited via accept() unlike another OSes. */
1656 
1657 	fd_install(newfd, newfile);
1658 	err = newfd;
1659 
1660 out_put:
1661 	fput_light(sock->file, fput_needed);
1662 out:
1663 	return err;
1664 out_fd:
1665 	fput(newfile);
1666 	put_unused_fd(newfd);
1667 	goto out_put;
1668 }
1669 
1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671 		int __user *, upeer_addrlen)
1672 {
1673 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674 }
1675 
1676 /*
1677  *	Attempt to connect to a socket with the server address.  The address
1678  *	is in user space so we verify it is OK and move it to kernel space.
1679  *
1680  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681  *	break bindings
1682  *
1683  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684  *	other SEQPACKET protocols that take time to connect() as it doesn't
1685  *	include the -EINPROGRESS status for such sockets.
1686  */
1687 
1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689 		int, addrlen)
1690 {
1691 	struct socket *sock;
1692 	struct sockaddr_storage address;
1693 	int err, fput_needed;
1694 
1695 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 	if (!sock)
1697 		goto out;
1698 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699 	if (err < 0)
1700 		goto out_put;
1701 
1702 	err =
1703 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704 	if (err)
1705 		goto out_put;
1706 
1707 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708 				 sock->file->f_flags);
1709 out_put:
1710 	fput_light(sock->file, fput_needed);
1711 out:
1712 	return err;
1713 }
1714 
1715 /*
1716  *	Get the local address ('name') of a socket object. Move the obtained
1717  *	name to user space.
1718  */
1719 
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 		int __user *, usockaddr_len)
1722 {
1723 	struct socket *sock;
1724 	struct sockaddr_storage address;
1725 	int len, err, fput_needed;
1726 
1727 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 	if (!sock)
1729 		goto out;
1730 
1731 	err = security_socket_getsockname(sock);
1732 	if (err)
1733 		goto out_put;
1734 
1735 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736 	if (err)
1737 		goto out_put;
1738 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739 
1740 out_put:
1741 	fput_light(sock->file, fput_needed);
1742 out:
1743 	return err;
1744 }
1745 
1746 /*
1747  *	Get the remote address ('name') of a socket object. Move the obtained
1748  *	name to user space.
1749  */
1750 
1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752 		int __user *, usockaddr_len)
1753 {
1754 	struct socket *sock;
1755 	struct sockaddr_storage address;
1756 	int len, err, fput_needed;
1757 
1758 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759 	if (sock != NULL) {
1760 		err = security_socket_getpeername(sock);
1761 		if (err) {
1762 			fput_light(sock->file, fput_needed);
1763 			return err;
1764 		}
1765 
1766 		err =
1767 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768 				       1);
1769 		if (!err)
1770 			err = move_addr_to_user(&address, len, usockaddr,
1771 						usockaddr_len);
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /*
1778  *	Send a datagram to a given address. We move the address into kernel
1779  *	space and check the user space data area is readable before invoking
1780  *	the protocol.
1781  */
1782 
1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784 		unsigned int, flags, struct sockaddr __user *, addr,
1785 		int, addr_len)
1786 {
1787 	struct socket *sock;
1788 	struct sockaddr_storage address;
1789 	int err;
1790 	struct msghdr msg;
1791 	struct iovec iov;
1792 	int fput_needed;
1793 
1794 	if (len > INT_MAX)
1795 		len = INT_MAX;
1796 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 	if (!sock)
1798 		goto out;
1799 
1800 	iov.iov_base = buff;
1801 	iov.iov_len = len;
1802 	msg.msg_name = NULL;
1803 	msg.msg_iov = &iov;
1804 	msg.msg_iovlen = 1;
1805 	msg.msg_control = NULL;
1806 	msg.msg_controllen = 0;
1807 	msg.msg_namelen = 0;
1808 	if (addr) {
1809 		err = move_addr_to_kernel(addr, addr_len, &address);
1810 		if (err < 0)
1811 			goto out_put;
1812 		msg.msg_name = (struct sockaddr *)&address;
1813 		msg.msg_namelen = addr_len;
1814 	}
1815 	if (sock->file->f_flags & O_NONBLOCK)
1816 		flags |= MSG_DONTWAIT;
1817 	msg.msg_flags = flags;
1818 	err = sock_sendmsg(sock, &msg, len);
1819 
1820 out_put:
1821 	fput_light(sock->file, fput_needed);
1822 out:
1823 	return err;
1824 }
1825 
1826 /*
1827  *	Send a datagram down a socket.
1828  */
1829 
1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831 		unsigned int, flags)
1832 {
1833 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1834 }
1835 
1836 /*
1837  *	Receive a frame from the socket and optionally record the address of the
1838  *	sender. We verify the buffers are writable and if needed move the
1839  *	sender address from kernel to user space.
1840  */
1841 
1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843 		unsigned int, flags, struct sockaddr __user *, addr,
1844 		int __user *, addr_len)
1845 {
1846 	struct socket *sock;
1847 	struct iovec iov;
1848 	struct msghdr msg;
1849 	struct sockaddr_storage address;
1850 	int err, err2;
1851 	int fput_needed;
1852 
1853 	if (size > INT_MAX)
1854 		size = INT_MAX;
1855 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 	if (!sock)
1857 		goto out;
1858 
1859 	msg.msg_control = NULL;
1860 	msg.msg_controllen = 0;
1861 	msg.msg_iovlen = 1;
1862 	msg.msg_iov = &iov;
1863 	iov.iov_len = size;
1864 	iov.iov_base = ubuf;
1865 	/* Save some cycles and don't copy the address if not needed */
1866 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1867 	/* We assume all kernel code knows the size of sockaddr_storage */
1868 	msg.msg_namelen = 0;
1869 	if (sock->file->f_flags & O_NONBLOCK)
1870 		flags |= MSG_DONTWAIT;
1871 	err = sock_recvmsg(sock, &msg, size, flags);
1872 
1873 	if (err >= 0 && addr != NULL) {
1874 		err2 = move_addr_to_user(&address,
1875 					 msg.msg_namelen, addr, addr_len);
1876 		if (err2 < 0)
1877 			err = err2;
1878 	}
1879 
1880 	fput_light(sock->file, fput_needed);
1881 out:
1882 	return err;
1883 }
1884 
1885 /*
1886  *	Receive a datagram from a socket.
1887  */
1888 
1889 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1890 		unsigned int, flags)
1891 {
1892 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1893 }
1894 
1895 /*
1896  *	Set a socket option. Because we don't know the option lengths we have
1897  *	to pass the user mode parameter for the protocols to sort out.
1898  */
1899 
1900 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1901 		char __user *, optval, int, optlen)
1902 {
1903 	int err, fput_needed;
1904 	struct socket *sock;
1905 
1906 	if (optlen < 0)
1907 		return -EINVAL;
1908 
1909 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 	if (sock != NULL) {
1911 		err = security_socket_setsockopt(sock, level, optname);
1912 		if (err)
1913 			goto out_put;
1914 
1915 		if (level == SOL_SOCKET)
1916 			err =
1917 			    sock_setsockopt(sock, level, optname, optval,
1918 					    optlen);
1919 		else
1920 			err =
1921 			    sock->ops->setsockopt(sock, level, optname, optval,
1922 						  optlen);
1923 out_put:
1924 		fput_light(sock->file, fput_needed);
1925 	}
1926 	return err;
1927 }
1928 
1929 /*
1930  *	Get a socket option. Because we don't know the option lengths we have
1931  *	to pass a user mode parameter for the protocols to sort out.
1932  */
1933 
1934 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1935 		char __user *, optval, int __user *, optlen)
1936 {
1937 	int err, fput_needed;
1938 	struct socket *sock;
1939 
1940 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941 	if (sock != NULL) {
1942 		err = security_socket_getsockopt(sock, level, optname);
1943 		if (err)
1944 			goto out_put;
1945 
1946 		if (level == SOL_SOCKET)
1947 			err =
1948 			    sock_getsockopt(sock, level, optname, optval,
1949 					    optlen);
1950 		else
1951 			err =
1952 			    sock->ops->getsockopt(sock, level, optname, optval,
1953 						  optlen);
1954 out_put:
1955 		fput_light(sock->file, fput_needed);
1956 	}
1957 	return err;
1958 }
1959 
1960 /*
1961  *	Shutdown a socket.
1962  */
1963 
1964 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1965 {
1966 	int err, fput_needed;
1967 	struct socket *sock;
1968 
1969 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 	if (sock != NULL) {
1971 		err = security_socket_shutdown(sock, how);
1972 		if (!err)
1973 			err = sock->ops->shutdown(sock, how);
1974 		fput_light(sock->file, fput_needed);
1975 	}
1976 	return err;
1977 }
1978 
1979 /* A couple of helpful macros for getting the address of the 32/64 bit
1980  * fields which are the same type (int / unsigned) on our platforms.
1981  */
1982 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1983 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1984 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1985 
1986 struct used_address {
1987 	struct sockaddr_storage name;
1988 	unsigned int name_len;
1989 };
1990 
1991 static int copy_msghdr_from_user(struct msghdr *kmsg,
1992 				 struct msghdr __user *umsg)
1993 {
1994 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1995 		return -EFAULT;
1996 
1997 	if (kmsg->msg_name == NULL)
1998 		kmsg->msg_namelen = 0;
1999 
2000 	if (kmsg->msg_namelen < 0)
2001 		return -EINVAL;
2002 
2003 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2004 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2005 	return 0;
2006 }
2007 
2008 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2009 			 struct msghdr *msg_sys, unsigned int flags,
2010 			 struct used_address *used_address)
2011 {
2012 	struct compat_msghdr __user *msg_compat =
2013 	    (struct compat_msghdr __user *)msg;
2014 	struct sockaddr_storage address;
2015 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2016 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2017 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2018 	/* 20 is size of ipv6_pktinfo */
2019 	unsigned char *ctl_buf = ctl;
2020 	int err, ctl_len, total_len;
2021 
2022 	err = -EFAULT;
2023 	if (MSG_CMSG_COMPAT & flags) {
2024 		if (get_compat_msghdr(msg_sys, msg_compat))
2025 			return -EFAULT;
2026 	} else {
2027 		err = copy_msghdr_from_user(msg_sys, msg);
2028 		if (err)
2029 			return err;
2030 	}
2031 
2032 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2033 		err = -EMSGSIZE;
2034 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2035 			goto out;
2036 		err = -ENOMEM;
2037 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2038 			      GFP_KERNEL);
2039 		if (!iov)
2040 			goto out;
2041 	}
2042 
2043 	/* This will also move the address data into kernel space */
2044 	if (MSG_CMSG_COMPAT & flags) {
2045 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2046 	} else
2047 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2048 	if (err < 0)
2049 		goto out_freeiov;
2050 	total_len = err;
2051 
2052 	err = -ENOBUFS;
2053 
2054 	if (msg_sys->msg_controllen > INT_MAX)
2055 		goto out_freeiov;
2056 	ctl_len = msg_sys->msg_controllen;
2057 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2058 		err =
2059 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2060 						     sizeof(ctl));
2061 		if (err)
2062 			goto out_freeiov;
2063 		ctl_buf = msg_sys->msg_control;
2064 		ctl_len = msg_sys->msg_controllen;
2065 	} else if (ctl_len) {
2066 		if (ctl_len > sizeof(ctl)) {
2067 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2068 			if (ctl_buf == NULL)
2069 				goto out_freeiov;
2070 		}
2071 		err = -EFAULT;
2072 		/*
2073 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2074 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2075 		 * checking falls down on this.
2076 		 */
2077 		if (copy_from_user(ctl_buf,
2078 				   (void __user __force *)msg_sys->msg_control,
2079 				   ctl_len))
2080 			goto out_freectl;
2081 		msg_sys->msg_control = ctl_buf;
2082 	}
2083 	msg_sys->msg_flags = flags;
2084 
2085 	if (sock->file->f_flags & O_NONBLOCK)
2086 		msg_sys->msg_flags |= MSG_DONTWAIT;
2087 	/*
2088 	 * If this is sendmmsg() and current destination address is same as
2089 	 * previously succeeded address, omit asking LSM's decision.
2090 	 * used_address->name_len is initialized to UINT_MAX so that the first
2091 	 * destination address never matches.
2092 	 */
2093 	if (used_address && msg_sys->msg_name &&
2094 	    used_address->name_len == msg_sys->msg_namelen &&
2095 	    !memcmp(&used_address->name, msg_sys->msg_name,
2096 		    used_address->name_len)) {
2097 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2098 		goto out_freectl;
2099 	}
2100 	err = sock_sendmsg(sock, msg_sys, total_len);
2101 	/*
2102 	 * If this is sendmmsg() and sending to current destination address was
2103 	 * successful, remember it.
2104 	 */
2105 	if (used_address && err >= 0) {
2106 		used_address->name_len = msg_sys->msg_namelen;
2107 		if (msg_sys->msg_name)
2108 			memcpy(&used_address->name, msg_sys->msg_name,
2109 			       used_address->name_len);
2110 	}
2111 
2112 out_freectl:
2113 	if (ctl_buf != ctl)
2114 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2115 out_freeiov:
2116 	if (iov != iovstack)
2117 		kfree(iov);
2118 out:
2119 	return err;
2120 }
2121 
2122 /*
2123  *	BSD sendmsg interface
2124  */
2125 
2126 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2127 {
2128 	int fput_needed, err;
2129 	struct msghdr msg_sys;
2130 	struct socket *sock;
2131 
2132 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 	if (!sock)
2134 		goto out;
2135 
2136 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2137 
2138 	fput_light(sock->file, fput_needed);
2139 out:
2140 	return err;
2141 }
2142 
2143 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2144 {
2145 	if (flags & MSG_CMSG_COMPAT)
2146 		return -EINVAL;
2147 	return __sys_sendmsg(fd, msg, flags);
2148 }
2149 
2150 /*
2151  *	Linux sendmmsg interface
2152  */
2153 
2154 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2155 		   unsigned int flags)
2156 {
2157 	int fput_needed, err, datagrams;
2158 	struct socket *sock;
2159 	struct mmsghdr __user *entry;
2160 	struct compat_mmsghdr __user *compat_entry;
2161 	struct msghdr msg_sys;
2162 	struct used_address used_address;
2163 
2164 	if (vlen > UIO_MAXIOV)
2165 		vlen = UIO_MAXIOV;
2166 
2167 	datagrams = 0;
2168 
2169 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2170 	if (!sock)
2171 		return err;
2172 
2173 	used_address.name_len = UINT_MAX;
2174 	entry = mmsg;
2175 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2176 	err = 0;
2177 
2178 	while (datagrams < vlen) {
2179 		if (MSG_CMSG_COMPAT & flags) {
2180 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2181 					     &msg_sys, flags, &used_address);
2182 			if (err < 0)
2183 				break;
2184 			err = __put_user(err, &compat_entry->msg_len);
2185 			++compat_entry;
2186 		} else {
2187 			err = ___sys_sendmsg(sock,
2188 					     (struct msghdr __user *)entry,
2189 					     &msg_sys, flags, &used_address);
2190 			if (err < 0)
2191 				break;
2192 			err = put_user(err, &entry->msg_len);
2193 			++entry;
2194 		}
2195 
2196 		if (err)
2197 			break;
2198 		++datagrams;
2199 	}
2200 
2201 	fput_light(sock->file, fput_needed);
2202 
2203 	/* We only return an error if no datagrams were able to be sent */
2204 	if (datagrams != 0)
2205 		return datagrams;
2206 
2207 	return err;
2208 }
2209 
2210 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2211 		unsigned int, vlen, unsigned int, flags)
2212 {
2213 	if (flags & MSG_CMSG_COMPAT)
2214 		return -EINVAL;
2215 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2216 }
2217 
2218 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2219 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2220 {
2221 	struct compat_msghdr __user *msg_compat =
2222 	    (struct compat_msghdr __user *)msg;
2223 	struct iovec iovstack[UIO_FASTIOV];
2224 	struct iovec *iov = iovstack;
2225 	unsigned long cmsg_ptr;
2226 	int err, total_len, len;
2227 
2228 	/* kernel mode address */
2229 	struct sockaddr_storage addr;
2230 
2231 	/* user mode address pointers */
2232 	struct sockaddr __user *uaddr;
2233 	int __user *uaddr_len;
2234 
2235 	if (MSG_CMSG_COMPAT & flags) {
2236 		if (get_compat_msghdr(msg_sys, msg_compat))
2237 			return -EFAULT;
2238 	} else {
2239 		err = copy_msghdr_from_user(msg_sys, msg);
2240 		if (err)
2241 			return err;
2242 	}
2243 
2244 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2245 		err = -EMSGSIZE;
2246 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2247 			goto out;
2248 		err = -ENOMEM;
2249 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2250 			      GFP_KERNEL);
2251 		if (!iov)
2252 			goto out;
2253 	}
2254 
2255 	/* Save the user-mode address (verify_iovec will change the
2256 	 * kernel msghdr to use the kernel address space)
2257 	 */
2258 	uaddr = (__force void __user *)msg_sys->msg_name;
2259 	uaddr_len = COMPAT_NAMELEN(msg);
2260 	if (MSG_CMSG_COMPAT & flags)
2261 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2262 	else
2263 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264 	if (err < 0)
2265 		goto out_freeiov;
2266 	total_len = err;
2267 
2268 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270 
2271 	/* We assume all kernel code knows the size of sockaddr_storage */
2272 	msg_sys->msg_namelen = 0;
2273 
2274 	if (sock->file->f_flags & O_NONBLOCK)
2275 		flags |= MSG_DONTWAIT;
2276 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2277 							  total_len, flags);
2278 	if (err < 0)
2279 		goto out_freeiov;
2280 	len = err;
2281 
2282 	if (uaddr != NULL) {
2283 		err = move_addr_to_user(&addr,
2284 					msg_sys->msg_namelen, uaddr,
2285 					uaddr_len);
2286 		if (err < 0)
2287 			goto out_freeiov;
2288 	}
2289 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290 			 COMPAT_FLAGS(msg));
2291 	if (err)
2292 		goto out_freeiov;
2293 	if (MSG_CMSG_COMPAT & flags)
2294 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295 				 &msg_compat->msg_controllen);
2296 	else
2297 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298 				 &msg->msg_controllen);
2299 	if (err)
2300 		goto out_freeiov;
2301 	err = len;
2302 
2303 out_freeiov:
2304 	if (iov != iovstack)
2305 		kfree(iov);
2306 out:
2307 	return err;
2308 }
2309 
2310 /*
2311  *	BSD recvmsg interface
2312  */
2313 
2314 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2315 {
2316 	int fput_needed, err;
2317 	struct msghdr msg_sys;
2318 	struct socket *sock;
2319 
2320 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2321 	if (!sock)
2322 		goto out;
2323 
2324 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2325 
2326 	fput_light(sock->file, fput_needed);
2327 out:
2328 	return err;
2329 }
2330 
2331 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2332 		unsigned int, flags)
2333 {
2334 	if (flags & MSG_CMSG_COMPAT)
2335 		return -EINVAL;
2336 	return __sys_recvmsg(fd, msg, flags);
2337 }
2338 
2339 /*
2340  *     Linux recvmmsg interface
2341  */
2342 
2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344 		   unsigned int flags, struct timespec *timeout)
2345 {
2346 	int fput_needed, err, datagrams;
2347 	struct socket *sock;
2348 	struct mmsghdr __user *entry;
2349 	struct compat_mmsghdr __user *compat_entry;
2350 	struct msghdr msg_sys;
2351 	struct timespec end_time;
2352 
2353 	if (timeout &&
2354 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2355 				    timeout->tv_nsec))
2356 		return -EINVAL;
2357 
2358 	datagrams = 0;
2359 
2360 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361 	if (!sock)
2362 		return err;
2363 
2364 	err = sock_error(sock->sk);
2365 	if (err)
2366 		goto out_put;
2367 
2368 	entry = mmsg;
2369 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2370 
2371 	while (datagrams < vlen) {
2372 		/*
2373 		 * No need to ask LSM for more than the first datagram.
2374 		 */
2375 		if (MSG_CMSG_COMPAT & flags) {
2376 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2377 					     &msg_sys, flags & ~MSG_WAITFORONE,
2378 					     datagrams);
2379 			if (err < 0)
2380 				break;
2381 			err = __put_user(err, &compat_entry->msg_len);
2382 			++compat_entry;
2383 		} else {
2384 			err = ___sys_recvmsg(sock,
2385 					     (struct msghdr __user *)entry,
2386 					     &msg_sys, flags & ~MSG_WAITFORONE,
2387 					     datagrams);
2388 			if (err < 0)
2389 				break;
2390 			err = put_user(err, &entry->msg_len);
2391 			++entry;
2392 		}
2393 
2394 		if (err)
2395 			break;
2396 		++datagrams;
2397 
2398 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2399 		if (flags & MSG_WAITFORONE)
2400 			flags |= MSG_DONTWAIT;
2401 
2402 		if (timeout) {
2403 			ktime_get_ts(timeout);
2404 			*timeout = timespec_sub(end_time, *timeout);
2405 			if (timeout->tv_sec < 0) {
2406 				timeout->tv_sec = timeout->tv_nsec = 0;
2407 				break;
2408 			}
2409 
2410 			/* Timeout, return less than vlen datagrams */
2411 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2412 				break;
2413 		}
2414 
2415 		/* Out of band data, return right away */
2416 		if (msg_sys.msg_flags & MSG_OOB)
2417 			break;
2418 	}
2419 
2420 out_put:
2421 	fput_light(sock->file, fput_needed);
2422 
2423 	if (err == 0)
2424 		return datagrams;
2425 
2426 	if (datagrams != 0) {
2427 		/*
2428 		 * We may return less entries than requested (vlen) if the
2429 		 * sock is non block and there aren't enough datagrams...
2430 		 */
2431 		if (err != -EAGAIN) {
2432 			/*
2433 			 * ... or  if recvmsg returns an error after we
2434 			 * received some datagrams, where we record the
2435 			 * error to return on the next call or if the
2436 			 * app asks about it using getsockopt(SO_ERROR).
2437 			 */
2438 			sock->sk->sk_err = -err;
2439 		}
2440 
2441 		return datagrams;
2442 	}
2443 
2444 	return err;
2445 }
2446 
2447 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2448 		unsigned int, vlen, unsigned int, flags,
2449 		struct timespec __user *, timeout)
2450 {
2451 	int datagrams;
2452 	struct timespec timeout_sys;
2453 
2454 	if (flags & MSG_CMSG_COMPAT)
2455 		return -EINVAL;
2456 
2457 	if (!timeout)
2458 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2459 
2460 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2461 		return -EFAULT;
2462 
2463 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2464 
2465 	if (datagrams > 0 &&
2466 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2467 		datagrams = -EFAULT;
2468 
2469 	return datagrams;
2470 }
2471 
2472 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2473 /* Argument list sizes for sys_socketcall */
2474 #define AL(x) ((x) * sizeof(unsigned long))
2475 static const unsigned char nargs[21] = {
2476 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2477 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2478 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2479 	AL(4), AL(5), AL(4)
2480 };
2481 
2482 #undef AL
2483 
2484 /*
2485  *	System call vectors.
2486  *
2487  *	Argument checking cleaned up. Saved 20% in size.
2488  *  This function doesn't need to set the kernel lock because
2489  *  it is set by the callees.
2490  */
2491 
2492 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2493 {
2494 	unsigned long a[AUDITSC_ARGS];
2495 	unsigned long a0, a1;
2496 	int err;
2497 	unsigned int len;
2498 
2499 	if (call < 1 || call > SYS_SENDMMSG)
2500 		return -EINVAL;
2501 
2502 	len = nargs[call];
2503 	if (len > sizeof(a))
2504 		return -EINVAL;
2505 
2506 	/* copy_from_user should be SMP safe. */
2507 	if (copy_from_user(a, args, len))
2508 		return -EFAULT;
2509 
2510 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2511 	if (err)
2512 		return err;
2513 
2514 	a0 = a[0];
2515 	a1 = a[1];
2516 
2517 	switch (call) {
2518 	case SYS_SOCKET:
2519 		err = sys_socket(a0, a1, a[2]);
2520 		break;
2521 	case SYS_BIND:
2522 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2523 		break;
2524 	case SYS_CONNECT:
2525 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2526 		break;
2527 	case SYS_LISTEN:
2528 		err = sys_listen(a0, a1);
2529 		break;
2530 	case SYS_ACCEPT:
2531 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532 				  (int __user *)a[2], 0);
2533 		break;
2534 	case SYS_GETSOCKNAME:
2535 		err =
2536 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2537 				    (int __user *)a[2]);
2538 		break;
2539 	case SYS_GETPEERNAME:
2540 		err =
2541 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2542 				    (int __user *)a[2]);
2543 		break;
2544 	case SYS_SOCKETPAIR:
2545 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2546 		break;
2547 	case SYS_SEND:
2548 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2549 		break;
2550 	case SYS_SENDTO:
2551 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2552 				 (struct sockaddr __user *)a[4], a[5]);
2553 		break;
2554 	case SYS_RECV:
2555 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2556 		break;
2557 	case SYS_RECVFROM:
2558 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2559 				   (struct sockaddr __user *)a[4],
2560 				   (int __user *)a[5]);
2561 		break;
2562 	case SYS_SHUTDOWN:
2563 		err = sys_shutdown(a0, a1);
2564 		break;
2565 	case SYS_SETSOCKOPT:
2566 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2567 		break;
2568 	case SYS_GETSOCKOPT:
2569 		err =
2570 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2571 				   (int __user *)a[4]);
2572 		break;
2573 	case SYS_SENDMSG:
2574 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2575 		break;
2576 	case SYS_SENDMMSG:
2577 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2578 		break;
2579 	case SYS_RECVMSG:
2580 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2581 		break;
2582 	case SYS_RECVMMSG:
2583 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2584 				   (struct timespec __user *)a[4]);
2585 		break;
2586 	case SYS_ACCEPT4:
2587 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2588 				  (int __user *)a[2], a[3]);
2589 		break;
2590 	default:
2591 		err = -EINVAL;
2592 		break;
2593 	}
2594 	return err;
2595 }
2596 
2597 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2598 
2599 /**
2600  *	sock_register - add a socket protocol handler
2601  *	@ops: description of protocol
2602  *
2603  *	This function is called by a protocol handler that wants to
2604  *	advertise its address family, and have it linked into the
2605  *	socket interface. The value ops->family corresponds to the
2606  *	socket system call protocol family.
2607  */
2608 int sock_register(const struct net_proto_family *ops)
2609 {
2610 	int err;
2611 
2612 	if (ops->family >= NPROTO) {
2613 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2614 		return -ENOBUFS;
2615 	}
2616 
2617 	spin_lock(&net_family_lock);
2618 	if (rcu_dereference_protected(net_families[ops->family],
2619 				      lockdep_is_held(&net_family_lock)))
2620 		err = -EEXIST;
2621 	else {
2622 		rcu_assign_pointer(net_families[ops->family], ops);
2623 		err = 0;
2624 	}
2625 	spin_unlock(&net_family_lock);
2626 
2627 	pr_info("NET: Registered protocol family %d\n", ops->family);
2628 	return err;
2629 }
2630 EXPORT_SYMBOL(sock_register);
2631 
2632 /**
2633  *	sock_unregister - remove a protocol handler
2634  *	@family: protocol family to remove
2635  *
2636  *	This function is called by a protocol handler that wants to
2637  *	remove its address family, and have it unlinked from the
2638  *	new socket creation.
2639  *
2640  *	If protocol handler is a module, then it can use module reference
2641  *	counts to protect against new references. If protocol handler is not
2642  *	a module then it needs to provide its own protection in
2643  *	the ops->create routine.
2644  */
2645 void sock_unregister(int family)
2646 {
2647 	BUG_ON(family < 0 || family >= NPROTO);
2648 
2649 	spin_lock(&net_family_lock);
2650 	RCU_INIT_POINTER(net_families[family], NULL);
2651 	spin_unlock(&net_family_lock);
2652 
2653 	synchronize_rcu();
2654 
2655 	pr_info("NET: Unregistered protocol family %d\n", family);
2656 }
2657 EXPORT_SYMBOL(sock_unregister);
2658 
2659 static int __init sock_init(void)
2660 {
2661 	int err;
2662 	/*
2663 	 *      Initialize the network sysctl infrastructure.
2664 	 */
2665 	err = net_sysctl_init();
2666 	if (err)
2667 		goto out;
2668 
2669 	/*
2670 	 *      Initialize skbuff SLAB cache
2671 	 */
2672 	skb_init();
2673 
2674 	/*
2675 	 *      Initialize the protocols module.
2676 	 */
2677 
2678 	init_inodecache();
2679 
2680 	err = register_filesystem(&sock_fs_type);
2681 	if (err)
2682 		goto out_fs;
2683 	sock_mnt = kern_mount(&sock_fs_type);
2684 	if (IS_ERR(sock_mnt)) {
2685 		err = PTR_ERR(sock_mnt);
2686 		goto out_mount;
2687 	}
2688 
2689 	/* The real protocol initialization is performed in later initcalls.
2690 	 */
2691 
2692 #ifdef CONFIG_NETFILTER
2693 	err = netfilter_init();
2694 	if (err)
2695 		goto out;
2696 #endif
2697 
2698 	ptp_classifier_init();
2699 
2700 out:
2701 	return err;
2702 
2703 out_mount:
2704 	unregister_filesystem(&sock_fs_type);
2705 out_fs:
2706 	goto out;
2707 }
2708 
2709 core_initcall(sock_init);	/* early initcall */
2710 
2711 #ifdef CONFIG_PROC_FS
2712 void socket_seq_show(struct seq_file *seq)
2713 {
2714 	int cpu;
2715 	int counter = 0;
2716 
2717 	for_each_possible_cpu(cpu)
2718 	    counter += per_cpu(sockets_in_use, cpu);
2719 
2720 	/* It can be negative, by the way. 8) */
2721 	if (counter < 0)
2722 		counter = 0;
2723 
2724 	seq_printf(seq, "sockets: used %d\n", counter);
2725 }
2726 #endif				/* CONFIG_PROC_FS */
2727 
2728 #ifdef CONFIG_COMPAT
2729 static int do_siocgstamp(struct net *net, struct socket *sock,
2730 			 unsigned int cmd, void __user *up)
2731 {
2732 	mm_segment_t old_fs = get_fs();
2733 	struct timeval ktv;
2734 	int err;
2735 
2736 	set_fs(KERNEL_DS);
2737 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2738 	set_fs(old_fs);
2739 	if (!err)
2740 		err = compat_put_timeval(&ktv, up);
2741 
2742 	return err;
2743 }
2744 
2745 static int do_siocgstampns(struct net *net, struct socket *sock,
2746 			   unsigned int cmd, void __user *up)
2747 {
2748 	mm_segment_t old_fs = get_fs();
2749 	struct timespec kts;
2750 	int err;
2751 
2752 	set_fs(KERNEL_DS);
2753 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2754 	set_fs(old_fs);
2755 	if (!err)
2756 		err = compat_put_timespec(&kts, up);
2757 
2758 	return err;
2759 }
2760 
2761 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2762 {
2763 	struct ifreq __user *uifr;
2764 	int err;
2765 
2766 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2767 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2768 		return -EFAULT;
2769 
2770 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2771 	if (err)
2772 		return err;
2773 
2774 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2775 		return -EFAULT;
2776 
2777 	return 0;
2778 }
2779 
2780 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781 {
2782 	struct compat_ifconf ifc32;
2783 	struct ifconf ifc;
2784 	struct ifconf __user *uifc;
2785 	struct compat_ifreq __user *ifr32;
2786 	struct ifreq __user *ifr;
2787 	unsigned int i, j;
2788 	int err;
2789 
2790 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2791 		return -EFAULT;
2792 
2793 	memset(&ifc, 0, sizeof(ifc));
2794 	if (ifc32.ifcbuf == 0) {
2795 		ifc32.ifc_len = 0;
2796 		ifc.ifc_len = 0;
2797 		ifc.ifc_req = NULL;
2798 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2799 	} else {
2800 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2801 			sizeof(struct ifreq);
2802 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2803 		ifc.ifc_len = len;
2804 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2805 		ifr32 = compat_ptr(ifc32.ifcbuf);
2806 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2807 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2808 				return -EFAULT;
2809 			ifr++;
2810 			ifr32++;
2811 		}
2812 	}
2813 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2814 		return -EFAULT;
2815 
2816 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2817 	if (err)
2818 		return err;
2819 
2820 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2821 		return -EFAULT;
2822 
2823 	ifr = ifc.ifc_req;
2824 	ifr32 = compat_ptr(ifc32.ifcbuf);
2825 	for (i = 0, j = 0;
2826 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2827 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2828 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2829 			return -EFAULT;
2830 		ifr32++;
2831 		ifr++;
2832 	}
2833 
2834 	if (ifc32.ifcbuf == 0) {
2835 		/* Translate from 64-bit structure multiple to
2836 		 * a 32-bit one.
2837 		 */
2838 		i = ifc.ifc_len;
2839 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2840 		ifc32.ifc_len = i;
2841 	} else {
2842 		ifc32.ifc_len = i;
2843 	}
2844 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2845 		return -EFAULT;
2846 
2847 	return 0;
2848 }
2849 
2850 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2851 {
2852 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2853 	bool convert_in = false, convert_out = false;
2854 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2855 	struct ethtool_rxnfc __user *rxnfc;
2856 	struct ifreq __user *ifr;
2857 	u32 rule_cnt = 0, actual_rule_cnt;
2858 	u32 ethcmd;
2859 	u32 data;
2860 	int ret;
2861 
2862 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2863 		return -EFAULT;
2864 
2865 	compat_rxnfc = compat_ptr(data);
2866 
2867 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2868 		return -EFAULT;
2869 
2870 	/* Most ethtool structures are defined without padding.
2871 	 * Unfortunately struct ethtool_rxnfc is an exception.
2872 	 */
2873 	switch (ethcmd) {
2874 	default:
2875 		break;
2876 	case ETHTOOL_GRXCLSRLALL:
2877 		/* Buffer size is variable */
2878 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2879 			return -EFAULT;
2880 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2881 			return -ENOMEM;
2882 		buf_size += rule_cnt * sizeof(u32);
2883 		/* fall through */
2884 	case ETHTOOL_GRXRINGS:
2885 	case ETHTOOL_GRXCLSRLCNT:
2886 	case ETHTOOL_GRXCLSRULE:
2887 	case ETHTOOL_SRXCLSRLINS:
2888 		convert_out = true;
2889 		/* fall through */
2890 	case ETHTOOL_SRXCLSRLDEL:
2891 		buf_size += sizeof(struct ethtool_rxnfc);
2892 		convert_in = true;
2893 		break;
2894 	}
2895 
2896 	ifr = compat_alloc_user_space(buf_size);
2897 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2898 
2899 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2900 		return -EFAULT;
2901 
2902 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2903 		     &ifr->ifr_ifru.ifru_data))
2904 		return -EFAULT;
2905 
2906 	if (convert_in) {
2907 		/* We expect there to be holes between fs.m_ext and
2908 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2909 		 */
2910 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2911 			     sizeof(compat_rxnfc->fs.m_ext) !=
2912 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2913 			     sizeof(rxnfc->fs.m_ext));
2914 		BUILD_BUG_ON(
2915 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2916 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2917 			offsetof(struct ethtool_rxnfc, fs.location) -
2918 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2919 
2920 		if (copy_in_user(rxnfc, compat_rxnfc,
2921 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2922 				 (void __user *)rxnfc) ||
2923 		    copy_in_user(&rxnfc->fs.ring_cookie,
2924 				 &compat_rxnfc->fs.ring_cookie,
2925 				 (void __user *)(&rxnfc->fs.location + 1) -
2926 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2927 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2928 				 sizeof(rxnfc->rule_cnt)))
2929 			return -EFAULT;
2930 	}
2931 
2932 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2933 	if (ret)
2934 		return ret;
2935 
2936 	if (convert_out) {
2937 		if (copy_in_user(compat_rxnfc, rxnfc,
2938 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2939 				 (const void __user *)rxnfc) ||
2940 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2941 				 &rxnfc->fs.ring_cookie,
2942 				 (const void __user *)(&rxnfc->fs.location + 1) -
2943 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2944 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2945 				 sizeof(rxnfc->rule_cnt)))
2946 			return -EFAULT;
2947 
2948 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2949 			/* As an optimisation, we only copy the actual
2950 			 * number of rules that the underlying
2951 			 * function returned.  Since Mallory might
2952 			 * change the rule count in user memory, we
2953 			 * check that it is less than the rule count
2954 			 * originally given (as the user buffer size),
2955 			 * which has been range-checked.
2956 			 */
2957 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2958 				return -EFAULT;
2959 			if (actual_rule_cnt < rule_cnt)
2960 				rule_cnt = actual_rule_cnt;
2961 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2962 					 &rxnfc->rule_locs[0],
2963 					 rule_cnt * sizeof(u32)))
2964 				return -EFAULT;
2965 		}
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2972 {
2973 	void __user *uptr;
2974 	compat_uptr_t uptr32;
2975 	struct ifreq __user *uifr;
2976 
2977 	uifr = compat_alloc_user_space(sizeof(*uifr));
2978 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2979 		return -EFAULT;
2980 
2981 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2982 		return -EFAULT;
2983 
2984 	uptr = compat_ptr(uptr32);
2985 
2986 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2987 		return -EFAULT;
2988 
2989 	return dev_ioctl(net, SIOCWANDEV, uifr);
2990 }
2991 
2992 static int bond_ioctl(struct net *net, unsigned int cmd,
2993 			 struct compat_ifreq __user *ifr32)
2994 {
2995 	struct ifreq kifr;
2996 	mm_segment_t old_fs;
2997 	int err;
2998 
2999 	switch (cmd) {
3000 	case SIOCBONDENSLAVE:
3001 	case SIOCBONDRELEASE:
3002 	case SIOCBONDSETHWADDR:
3003 	case SIOCBONDCHANGEACTIVE:
3004 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3005 			return -EFAULT;
3006 
3007 		old_fs = get_fs();
3008 		set_fs(KERNEL_DS);
3009 		err = dev_ioctl(net, cmd,
3010 				(struct ifreq __user __force *) &kifr);
3011 		set_fs(old_fs);
3012 
3013 		return err;
3014 	default:
3015 		return -ENOIOCTLCMD;
3016 	}
3017 }
3018 
3019 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3020 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3021 				 struct compat_ifreq __user *u_ifreq32)
3022 {
3023 	struct ifreq __user *u_ifreq64;
3024 	char tmp_buf[IFNAMSIZ];
3025 	void __user *data64;
3026 	u32 data32;
3027 
3028 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3029 			   IFNAMSIZ))
3030 		return -EFAULT;
3031 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3032 		return -EFAULT;
3033 	data64 = compat_ptr(data32);
3034 
3035 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3036 
3037 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3038 			 IFNAMSIZ))
3039 		return -EFAULT;
3040 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3041 		return -EFAULT;
3042 
3043 	return dev_ioctl(net, cmd, u_ifreq64);
3044 }
3045 
3046 static int dev_ifsioc(struct net *net, struct socket *sock,
3047 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3048 {
3049 	struct ifreq __user *uifr;
3050 	int err;
3051 
3052 	uifr = compat_alloc_user_space(sizeof(*uifr));
3053 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3054 		return -EFAULT;
3055 
3056 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3057 
3058 	if (!err) {
3059 		switch (cmd) {
3060 		case SIOCGIFFLAGS:
3061 		case SIOCGIFMETRIC:
3062 		case SIOCGIFMTU:
3063 		case SIOCGIFMEM:
3064 		case SIOCGIFHWADDR:
3065 		case SIOCGIFINDEX:
3066 		case SIOCGIFADDR:
3067 		case SIOCGIFBRDADDR:
3068 		case SIOCGIFDSTADDR:
3069 		case SIOCGIFNETMASK:
3070 		case SIOCGIFPFLAGS:
3071 		case SIOCGIFTXQLEN:
3072 		case SIOCGMIIPHY:
3073 		case SIOCGMIIREG:
3074 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3075 				err = -EFAULT;
3076 			break;
3077 		}
3078 	}
3079 	return err;
3080 }
3081 
3082 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3083 			struct compat_ifreq __user *uifr32)
3084 {
3085 	struct ifreq ifr;
3086 	struct compat_ifmap __user *uifmap32;
3087 	mm_segment_t old_fs;
3088 	int err;
3089 
3090 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3091 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3092 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3093 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3094 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3095 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3096 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3097 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3098 	if (err)
3099 		return -EFAULT;
3100 
3101 	old_fs = get_fs();
3102 	set_fs(KERNEL_DS);
3103 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3104 	set_fs(old_fs);
3105 
3106 	if (cmd == SIOCGIFMAP && !err) {
3107 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3108 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3109 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3110 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3111 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3112 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3113 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3114 		if (err)
3115 			err = -EFAULT;
3116 	}
3117 	return err;
3118 }
3119 
3120 struct rtentry32 {
3121 	u32		rt_pad1;
3122 	struct sockaddr rt_dst;         /* target address               */
3123 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3124 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3125 	unsigned short	rt_flags;
3126 	short		rt_pad2;
3127 	u32		rt_pad3;
3128 	unsigned char	rt_tos;
3129 	unsigned char	rt_class;
3130 	short		rt_pad4;
3131 	short		rt_metric;      /* +1 for binary compatibility! */
3132 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3133 	u32		rt_mtu;         /* per route MTU/Window         */
3134 	u32		rt_window;      /* Window clamping              */
3135 	unsigned short  rt_irtt;        /* Initial RTT                  */
3136 };
3137 
3138 struct in6_rtmsg32 {
3139 	struct in6_addr		rtmsg_dst;
3140 	struct in6_addr		rtmsg_src;
3141 	struct in6_addr		rtmsg_gateway;
3142 	u32			rtmsg_type;
3143 	u16			rtmsg_dst_len;
3144 	u16			rtmsg_src_len;
3145 	u32			rtmsg_metric;
3146 	u32			rtmsg_info;
3147 	u32			rtmsg_flags;
3148 	s32			rtmsg_ifindex;
3149 };
3150 
3151 static int routing_ioctl(struct net *net, struct socket *sock,
3152 			 unsigned int cmd, void __user *argp)
3153 {
3154 	int ret;
3155 	void *r = NULL;
3156 	struct in6_rtmsg r6;
3157 	struct rtentry r4;
3158 	char devname[16];
3159 	u32 rtdev;
3160 	mm_segment_t old_fs = get_fs();
3161 
3162 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3163 		struct in6_rtmsg32 __user *ur6 = argp;
3164 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3165 			3 * sizeof(struct in6_addr));
3166 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3167 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3168 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3169 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3170 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3171 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3172 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3173 
3174 		r = (void *) &r6;
3175 	} else { /* ipv4 */
3176 		struct rtentry32 __user *ur4 = argp;
3177 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3178 					3 * sizeof(struct sockaddr));
3179 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3180 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3181 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3182 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3183 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3184 		ret |= get_user(rtdev, &(ur4->rt_dev));
3185 		if (rtdev) {
3186 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3187 			r4.rt_dev = (char __user __force *)devname;
3188 			devname[15] = 0;
3189 		} else
3190 			r4.rt_dev = NULL;
3191 
3192 		r = (void *) &r4;
3193 	}
3194 
3195 	if (ret) {
3196 		ret = -EFAULT;
3197 		goto out;
3198 	}
3199 
3200 	set_fs(KERNEL_DS);
3201 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3202 	set_fs(old_fs);
3203 
3204 out:
3205 	return ret;
3206 }
3207 
3208 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3209  * for some operations; this forces use of the newer bridge-utils that
3210  * use compatible ioctls
3211  */
3212 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3213 {
3214 	compat_ulong_t tmp;
3215 
3216 	if (get_user(tmp, argp))
3217 		return -EFAULT;
3218 	if (tmp == BRCTL_GET_VERSION)
3219 		return BRCTL_VERSION + 1;
3220 	return -EINVAL;
3221 }
3222 
3223 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3224 			 unsigned int cmd, unsigned long arg)
3225 {
3226 	void __user *argp = compat_ptr(arg);
3227 	struct sock *sk = sock->sk;
3228 	struct net *net = sock_net(sk);
3229 
3230 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3231 		return compat_ifr_data_ioctl(net, cmd, argp);
3232 
3233 	switch (cmd) {
3234 	case SIOCSIFBR:
3235 	case SIOCGIFBR:
3236 		return old_bridge_ioctl(argp);
3237 	case SIOCGIFNAME:
3238 		return dev_ifname32(net, argp);
3239 	case SIOCGIFCONF:
3240 		return dev_ifconf(net, argp);
3241 	case SIOCETHTOOL:
3242 		return ethtool_ioctl(net, argp);
3243 	case SIOCWANDEV:
3244 		return compat_siocwandev(net, argp);
3245 	case SIOCGIFMAP:
3246 	case SIOCSIFMAP:
3247 		return compat_sioc_ifmap(net, cmd, argp);
3248 	case SIOCBONDENSLAVE:
3249 	case SIOCBONDRELEASE:
3250 	case SIOCBONDSETHWADDR:
3251 	case SIOCBONDCHANGEACTIVE:
3252 		return bond_ioctl(net, cmd, argp);
3253 	case SIOCADDRT:
3254 	case SIOCDELRT:
3255 		return routing_ioctl(net, sock, cmd, argp);
3256 	case SIOCGSTAMP:
3257 		return do_siocgstamp(net, sock, cmd, argp);
3258 	case SIOCGSTAMPNS:
3259 		return do_siocgstampns(net, sock, cmd, argp);
3260 	case SIOCBONDSLAVEINFOQUERY:
3261 	case SIOCBONDINFOQUERY:
3262 	case SIOCSHWTSTAMP:
3263 	case SIOCGHWTSTAMP:
3264 		return compat_ifr_data_ioctl(net, cmd, argp);
3265 
3266 	case FIOSETOWN:
3267 	case SIOCSPGRP:
3268 	case FIOGETOWN:
3269 	case SIOCGPGRP:
3270 	case SIOCBRADDBR:
3271 	case SIOCBRDELBR:
3272 	case SIOCGIFVLAN:
3273 	case SIOCSIFVLAN:
3274 	case SIOCADDDLCI:
3275 	case SIOCDELDLCI:
3276 		return sock_ioctl(file, cmd, arg);
3277 
3278 	case SIOCGIFFLAGS:
3279 	case SIOCSIFFLAGS:
3280 	case SIOCGIFMETRIC:
3281 	case SIOCSIFMETRIC:
3282 	case SIOCGIFMTU:
3283 	case SIOCSIFMTU:
3284 	case SIOCGIFMEM:
3285 	case SIOCSIFMEM:
3286 	case SIOCGIFHWADDR:
3287 	case SIOCSIFHWADDR:
3288 	case SIOCADDMULTI:
3289 	case SIOCDELMULTI:
3290 	case SIOCGIFINDEX:
3291 	case SIOCGIFADDR:
3292 	case SIOCSIFADDR:
3293 	case SIOCSIFHWBROADCAST:
3294 	case SIOCDIFADDR:
3295 	case SIOCGIFBRDADDR:
3296 	case SIOCSIFBRDADDR:
3297 	case SIOCGIFDSTADDR:
3298 	case SIOCSIFDSTADDR:
3299 	case SIOCGIFNETMASK:
3300 	case SIOCSIFNETMASK:
3301 	case SIOCSIFPFLAGS:
3302 	case SIOCGIFPFLAGS:
3303 	case SIOCGIFTXQLEN:
3304 	case SIOCSIFTXQLEN:
3305 	case SIOCBRADDIF:
3306 	case SIOCBRDELIF:
3307 	case SIOCSIFNAME:
3308 	case SIOCGMIIPHY:
3309 	case SIOCGMIIREG:
3310 	case SIOCSMIIREG:
3311 		return dev_ifsioc(net, sock, cmd, argp);
3312 
3313 	case SIOCSARP:
3314 	case SIOCGARP:
3315 	case SIOCDARP:
3316 	case SIOCATMARK:
3317 		return sock_do_ioctl(net, sock, cmd, arg);
3318 	}
3319 
3320 	return -ENOIOCTLCMD;
3321 }
3322 
3323 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3324 			      unsigned long arg)
3325 {
3326 	struct socket *sock = file->private_data;
3327 	int ret = -ENOIOCTLCMD;
3328 	struct sock *sk;
3329 	struct net *net;
3330 
3331 	sk = sock->sk;
3332 	net = sock_net(sk);
3333 
3334 	if (sock->ops->compat_ioctl)
3335 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3336 
3337 	if (ret == -ENOIOCTLCMD &&
3338 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3339 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3340 
3341 	if (ret == -ENOIOCTLCMD)
3342 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3343 
3344 	return ret;
3345 }
3346 #endif
3347 
3348 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3349 {
3350 	return sock->ops->bind(sock, addr, addrlen);
3351 }
3352 EXPORT_SYMBOL(kernel_bind);
3353 
3354 int kernel_listen(struct socket *sock, int backlog)
3355 {
3356 	return sock->ops->listen(sock, backlog);
3357 }
3358 EXPORT_SYMBOL(kernel_listen);
3359 
3360 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3361 {
3362 	struct sock *sk = sock->sk;
3363 	int err;
3364 
3365 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3366 			       newsock);
3367 	if (err < 0)
3368 		goto done;
3369 
3370 	err = sock->ops->accept(sock, *newsock, flags);
3371 	if (err < 0) {
3372 		sock_release(*newsock);
3373 		*newsock = NULL;
3374 		goto done;
3375 	}
3376 
3377 	(*newsock)->ops = sock->ops;
3378 	__module_get((*newsock)->ops->owner);
3379 
3380 done:
3381 	return err;
3382 }
3383 EXPORT_SYMBOL(kernel_accept);
3384 
3385 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3386 		   int flags)
3387 {
3388 	return sock->ops->connect(sock, addr, addrlen, flags);
3389 }
3390 EXPORT_SYMBOL(kernel_connect);
3391 
3392 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3393 			 int *addrlen)
3394 {
3395 	return sock->ops->getname(sock, addr, addrlen, 0);
3396 }
3397 EXPORT_SYMBOL(kernel_getsockname);
3398 
3399 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3400 			 int *addrlen)
3401 {
3402 	return sock->ops->getname(sock, addr, addrlen, 1);
3403 }
3404 EXPORT_SYMBOL(kernel_getpeername);
3405 
3406 int kernel_getsockopt(struct socket *sock, int level, int optname,
3407 			char *optval, int *optlen)
3408 {
3409 	mm_segment_t oldfs = get_fs();
3410 	char __user *uoptval;
3411 	int __user *uoptlen;
3412 	int err;
3413 
3414 	uoptval = (char __user __force *) optval;
3415 	uoptlen = (int __user __force *) optlen;
3416 
3417 	set_fs(KERNEL_DS);
3418 	if (level == SOL_SOCKET)
3419 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3420 	else
3421 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3422 					    uoptlen);
3423 	set_fs(oldfs);
3424 	return err;
3425 }
3426 EXPORT_SYMBOL(kernel_getsockopt);
3427 
3428 int kernel_setsockopt(struct socket *sock, int level, int optname,
3429 			char *optval, unsigned int optlen)
3430 {
3431 	mm_segment_t oldfs = get_fs();
3432 	char __user *uoptval;
3433 	int err;
3434 
3435 	uoptval = (char __user __force *) optval;
3436 
3437 	set_fs(KERNEL_DS);
3438 	if (level == SOL_SOCKET)
3439 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3440 	else
3441 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3442 					    optlen);
3443 	set_fs(oldfs);
3444 	return err;
3445 }
3446 EXPORT_SYMBOL(kernel_setsockopt);
3447 
3448 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3449 		    size_t size, int flags)
3450 {
3451 	if (sock->ops->sendpage)
3452 		return sock->ops->sendpage(sock, page, offset, size, flags);
3453 
3454 	return sock_no_sendpage(sock, page, offset, size, flags);
3455 }
3456 EXPORT_SYMBOL(kernel_sendpage);
3457 
3458 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3459 {
3460 	mm_segment_t oldfs = get_fs();
3461 	int err;
3462 
3463 	set_fs(KERNEL_DS);
3464 	err = sock->ops->ioctl(sock, cmd, arg);
3465 	set_fs(oldfs);
3466 
3467 	return err;
3468 }
3469 EXPORT_SYMBOL(kernel_sock_ioctl);
3470 
3471 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3472 {
3473 	return sock->ops->shutdown(sock, how);
3474 }
3475 EXPORT_SYMBOL(kernel_sock_shutdown);
3476