xref: /openbmc/linux/net/socket.c (revision e0f6d1a5)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 /*
135  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
136  *	in the operation structures but are done directly via the socketcall() multiplexor.
137  */
138 
139 static const struct file_operations socket_file_ops = {
140 	.owner =	THIS_MODULE,
141 	.llseek =	no_llseek,
142 	.read_iter =	sock_read_iter,
143 	.write_iter =	sock_write_iter,
144 	.poll =		sock_poll,
145 	.unlocked_ioctl = sock_ioctl,
146 #ifdef CONFIG_COMPAT
147 	.compat_ioctl = compat_sock_ioctl,
148 #endif
149 	.mmap =		sock_mmap,
150 	.release =	sock_close,
151 	.fasync =	sock_fasync,
152 	.sendpage =	sock_sendpage,
153 	.splice_write = generic_splice_sendpage,
154 	.splice_read =	sock_splice_read,
155 };
156 
157 /*
158  *	The protocol list. Each protocol is registered in here.
159  */
160 
161 static DEFINE_SPINLOCK(net_family_lock);
162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163 
164 /*
165  * Support routines.
166  * Move socket addresses back and forth across the kernel/user
167  * divide and look after the messy bits.
168  */
169 
170 /**
171  *	move_addr_to_kernel	-	copy a socket address into kernel space
172  *	@uaddr: Address in user space
173  *	@kaddr: Address in kernel space
174  *	@ulen: Length in user space
175  *
176  *	The address is copied into kernel space. If the provided address is
177  *	too long an error code of -EINVAL is returned. If the copy gives
178  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
179  */
180 
181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
182 {
183 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
184 		return -EINVAL;
185 	if (ulen == 0)
186 		return 0;
187 	if (copy_from_user(kaddr, uaddr, ulen))
188 		return -EFAULT;
189 	return audit_sockaddr(ulen, kaddr);
190 }
191 
192 /**
193  *	move_addr_to_user	-	copy an address to user space
194  *	@kaddr: kernel space address
195  *	@klen: length of address in kernel
196  *	@uaddr: user space address
197  *	@ulen: pointer to user length field
198  *
199  *	The value pointed to by ulen on entry is the buffer length available.
200  *	This is overwritten with the buffer space used. -EINVAL is returned
201  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
202  *	is returned if either the buffer or the length field are not
203  *	accessible.
204  *	After copying the data up to the limit the user specifies, the true
205  *	length of the data is written over the length limit the user
206  *	specified. Zero is returned for a success.
207  */
208 
209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
210 			     void __user *uaddr, int __user *ulen)
211 {
212 	int err;
213 	int len;
214 
215 	BUG_ON(klen > sizeof(struct sockaddr_storage));
216 	err = get_user(len, ulen);
217 	if (err)
218 		return err;
219 	if (len > klen)
220 		len = klen;
221 	if (len < 0)
222 		return -EINVAL;
223 	if (len) {
224 		if (audit_sockaddr(klen, kaddr))
225 			return -ENOMEM;
226 		if (copy_to_user(uaddr, kaddr, len))
227 			return -EFAULT;
228 	}
229 	/*
230 	 *      "fromlen shall refer to the value before truncation.."
231 	 *                      1003.1g
232 	 */
233 	return __put_user(klen, ulen);
234 }
235 
236 static struct kmem_cache *sock_inode_cachep __ro_after_init;
237 
238 static struct inode *sock_alloc_inode(struct super_block *sb)
239 {
240 	struct socket_alloc *ei;
241 	struct socket_wq *wq;
242 
243 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
244 	if (!ei)
245 		return NULL;
246 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
247 	if (!wq) {
248 		kmem_cache_free(sock_inode_cachep, ei);
249 		return NULL;
250 	}
251 	init_waitqueue_head(&wq->wait);
252 	wq->fasync_list = NULL;
253 	wq->flags = 0;
254 	RCU_INIT_POINTER(ei->socket.wq, wq);
255 
256 	ei->socket.state = SS_UNCONNECTED;
257 	ei->socket.flags = 0;
258 	ei->socket.ops = NULL;
259 	ei->socket.sk = NULL;
260 	ei->socket.file = NULL;
261 
262 	return &ei->vfs_inode;
263 }
264 
265 static void sock_destroy_inode(struct inode *inode)
266 {
267 	struct socket_alloc *ei;
268 	struct socket_wq *wq;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	wq = rcu_dereference_protected(ei->socket.wq, 1);
272 	kfree_rcu(wq, rcu);
273 	kmem_cache_free(sock_inode_cachep, ei);
274 }
275 
276 static void init_once(void *foo)
277 {
278 	struct socket_alloc *ei = (struct socket_alloc *)foo;
279 
280 	inode_init_once(&ei->vfs_inode);
281 }
282 
283 static void init_inodecache(void)
284 {
285 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 					      sizeof(struct socket_alloc),
287 					      0,
288 					      (SLAB_HWCACHE_ALIGN |
289 					       SLAB_RECLAIM_ACCOUNT |
290 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 					      init_once);
292 	BUG_ON(sock_inode_cachep == NULL);
293 }
294 
295 static const struct super_operations sockfs_ops = {
296 	.alloc_inode	= sock_alloc_inode,
297 	.destroy_inode	= sock_destroy_inode,
298 	.statfs		= simple_statfs,
299 };
300 
301 /*
302  * sockfs_dname() is called from d_path().
303  */
304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 {
306 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 				d_inode(dentry)->i_ino);
308 }
309 
310 static const struct dentry_operations sockfs_dentry_operations = {
311 	.d_dname  = sockfs_dname,
312 };
313 
314 static int sockfs_xattr_get(const struct xattr_handler *handler,
315 			    struct dentry *dentry, struct inode *inode,
316 			    const char *suffix, void *value, size_t size)
317 {
318 	if (value) {
319 		if (dentry->d_name.len + 1 > size)
320 			return -ERANGE;
321 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 	}
323 	return dentry->d_name.len + 1;
324 }
325 
326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 
330 static const struct xattr_handler sockfs_xattr_handler = {
331 	.name = XATTR_NAME_SOCKPROTONAME,
332 	.get = sockfs_xattr_get,
333 };
334 
335 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 				     struct dentry *dentry, struct inode *inode,
337 				     const char *suffix, const void *value,
338 				     size_t size, int flags)
339 {
340 	/* Handled by LSM. */
341 	return -EAGAIN;
342 }
343 
344 static const struct xattr_handler sockfs_security_xattr_handler = {
345 	.prefix = XATTR_SECURITY_PREFIX,
346 	.set = sockfs_security_xattr_set,
347 };
348 
349 static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 	&sockfs_xattr_handler,
351 	&sockfs_security_xattr_handler,
352 	NULL
353 };
354 
355 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
356 			 int flags, const char *dev_name, void *data)
357 {
358 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
359 				  sockfs_xattr_handlers,
360 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
361 }
362 
363 static struct vfsmount *sock_mnt __read_mostly;
364 
365 static struct file_system_type sock_fs_type = {
366 	.name =		"sockfs",
367 	.mount =	sockfs_mount,
368 	.kill_sb =	kill_anon_super,
369 };
370 
371 /*
372  *	Obtains the first available file descriptor and sets it up for use.
373  *
374  *	These functions create file structures and maps them to fd space
375  *	of the current process. On success it returns file descriptor
376  *	and file struct implicitly stored in sock->file.
377  *	Note that another thread may close file descriptor before we return
378  *	from this function. We use the fact that now we do not refer
379  *	to socket after mapping. If one day we will need it, this
380  *	function will increment ref. count on file by 1.
381  *
382  *	In any case returned fd MAY BE not valid!
383  *	This race condition is unavoidable
384  *	with shared fd spaces, we cannot solve it inside kernel,
385  *	but we take care of internal coherence yet.
386  */
387 
388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 {
390 	struct qstr name = { .name = "" };
391 	struct path path;
392 	struct file *file;
393 
394 	if (dname) {
395 		name.name = dname;
396 		name.len = strlen(name.name);
397 	} else if (sock->sk) {
398 		name.name = sock->sk->sk_prot_creator->name;
399 		name.len = strlen(name.name);
400 	}
401 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
402 	if (unlikely(!path.dentry)) {
403 		sock_release(sock);
404 		return ERR_PTR(-ENOMEM);
405 	}
406 	path.mnt = mntget(sock_mnt);
407 
408 	d_instantiate(path.dentry, SOCK_INODE(sock));
409 
410 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
411 		  &socket_file_ops);
412 	if (IS_ERR(file)) {
413 		/* drop dentry, keep inode for a bit */
414 		ihold(d_inode(path.dentry));
415 		path_put(&path);
416 		/* ... and now kill it properly */
417 		sock_release(sock);
418 		return file;
419 	}
420 
421 	sock->file = file;
422 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
423 	file->private_data = sock;
424 	return file;
425 }
426 EXPORT_SYMBOL(sock_alloc_file);
427 
428 static int sock_map_fd(struct socket *sock, int flags)
429 {
430 	struct file *newfile;
431 	int fd = get_unused_fd_flags(flags);
432 	if (unlikely(fd < 0)) {
433 		sock_release(sock);
434 		return fd;
435 	}
436 
437 	newfile = sock_alloc_file(sock, flags, NULL);
438 	if (likely(!IS_ERR(newfile))) {
439 		fd_install(fd, newfile);
440 		return fd;
441 	}
442 
443 	put_unused_fd(fd);
444 	return PTR_ERR(newfile);
445 }
446 
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 	if (file->f_op == &socket_file_ops)
450 		return file->private_data;	/* set in sock_map_fd */
451 
452 	*err = -ENOTSOCK;
453 	return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456 
457 /**
458  *	sockfd_lookup - Go from a file number to its socket slot
459  *	@fd: file handle
460  *	@err: pointer to an error code return
461  *
462  *	The file handle passed in is locked and the socket it is bound
463  *	to is returned. If an error occurs the err pointer is overwritten
464  *	with a negative errno code and NULL is returned. The function checks
465  *	for both invalid handles and passing a handle which is not a socket.
466  *
467  *	On a success the socket object pointer is returned.
468  */
469 
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 	struct file *file;
473 	struct socket *sock;
474 
475 	file = fget(fd);
476 	if (!file) {
477 		*err = -EBADF;
478 		return NULL;
479 	}
480 
481 	sock = sock_from_file(file, err);
482 	if (!sock)
483 		fput(file);
484 	return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487 
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 	struct fd f = fdget(fd);
491 	struct socket *sock;
492 
493 	*err = -EBADF;
494 	if (f.file) {
495 		sock = sock_from_file(f.file, err);
496 		if (likely(sock)) {
497 			*fput_needed = f.flags;
498 			return sock;
499 		}
500 		fdput(f);
501 	}
502 	return NULL;
503 }
504 
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 				size_t size)
507 {
508 	ssize_t len;
509 	ssize_t used = 0;
510 
511 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 	if (len < 0)
513 		return len;
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		buffer += len;
519 	}
520 
521 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 		buffer += len;
528 	}
529 
530 	return used;
531 }
532 
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 	int err = simple_setattr(dentry, iattr);
536 
537 	if (!err && (iattr->ia_valid & ATTR_UID)) {
538 		struct socket *sock = SOCKET_I(d_inode(dentry));
539 
540 		sock->sk->sk_uid = iattr->ia_uid;
541 	}
542 
543 	return err;
544 }
545 
546 static const struct inode_operations sockfs_inode_ops = {
547 	.listxattr = sockfs_listxattr,
548 	.setattr = sockfs_setattr,
549 };
550 
551 /**
552  *	sock_alloc	-	allocate a socket
553  *
554  *	Allocate a new inode and socket object. The two are bound together
555  *	and initialised. The socket is then returned. If we are out of inodes
556  *	NULL is returned.
557  */
558 
559 struct socket *sock_alloc(void)
560 {
561 	struct inode *inode;
562 	struct socket *sock;
563 
564 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
565 	if (!inode)
566 		return NULL;
567 
568 	sock = SOCKET_I(inode);
569 
570 	inode->i_ino = get_next_ino();
571 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
572 	inode->i_uid = current_fsuid();
573 	inode->i_gid = current_fsgid();
574 	inode->i_op = &sockfs_inode_ops;
575 
576 	return sock;
577 }
578 EXPORT_SYMBOL(sock_alloc);
579 
580 /**
581  *	sock_release	-	close a socket
582  *	@sock: socket to close
583  *
584  *	The socket is released from the protocol stack if it has a release
585  *	callback, and the inode is then released if the socket is bound to
586  *	an inode not a file.
587  */
588 
589 void sock_release(struct socket *sock)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		sock->ops->release(sock);
595 		sock->ops = NULL;
596 		module_put(owner);
597 	}
598 
599 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
600 		pr_err("%s: fasync list not empty!\n", __func__);
601 
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 EXPORT_SYMBOL(sock_release);
609 
610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
611 {
612 	u8 flags = *tx_flags;
613 
614 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
615 		flags |= SKBTX_HW_TSTAMP;
616 
617 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
618 		flags |= SKBTX_SW_TSTAMP;
619 
620 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 		flags |= SKBTX_SCHED_TSTAMP;
622 
623 	*tx_flags = flags;
624 }
625 EXPORT_SYMBOL(__sock_tx_timestamp);
626 
627 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
628 {
629 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
630 	BUG_ON(ret == -EIOCBQUEUED);
631 	return ret;
632 }
633 
634 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
635 {
636 	int err = security_socket_sendmsg(sock, msg,
637 					  msg_data_left(msg));
638 
639 	return err ?: sock_sendmsg_nosec(sock, msg);
640 }
641 EXPORT_SYMBOL(sock_sendmsg);
642 
643 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
644 		   struct kvec *vec, size_t num, size_t size)
645 {
646 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
647 	return sock_sendmsg(sock, msg);
648 }
649 EXPORT_SYMBOL(kernel_sendmsg);
650 
651 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
652 			  struct kvec *vec, size_t num, size_t size)
653 {
654 	struct socket *sock = sk->sk_socket;
655 
656 	if (!sock->ops->sendmsg_locked)
657 		return sock_no_sendmsg_locked(sk, msg, size);
658 
659 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
660 
661 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
662 }
663 EXPORT_SYMBOL(kernel_sendmsg_locked);
664 
665 static bool skb_is_err_queue(const struct sk_buff *skb)
666 {
667 	/* pkt_type of skbs enqueued on the error queue are set to
668 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
669 	 * in recvmsg, since skbs received on a local socket will never
670 	 * have a pkt_type of PACKET_OUTGOING.
671 	 */
672 	return skb->pkt_type == PACKET_OUTGOING;
673 }
674 
675 /* On transmit, software and hardware timestamps are returned independently.
676  * As the two skb clones share the hardware timestamp, which may be updated
677  * before the software timestamp is received, a hardware TX timestamp may be
678  * returned only if there is no software TX timestamp. Ignore false software
679  * timestamps, which may be made in the __sock_recv_timestamp() call when the
680  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
681  * hardware timestamp.
682  */
683 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
684 {
685 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
686 }
687 
688 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
689 {
690 	struct scm_ts_pktinfo ts_pktinfo;
691 	struct net_device *orig_dev;
692 
693 	if (!skb_mac_header_was_set(skb))
694 		return;
695 
696 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
697 
698 	rcu_read_lock();
699 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
700 	if (orig_dev)
701 		ts_pktinfo.if_index = orig_dev->ifindex;
702 	rcu_read_unlock();
703 
704 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
705 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
706 		 sizeof(ts_pktinfo), &ts_pktinfo);
707 }
708 
709 /*
710  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
711  */
712 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
713 	struct sk_buff *skb)
714 {
715 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
716 	struct scm_timestamping tss;
717 	int empty = 1, false_tstamp = 0;
718 	struct skb_shared_hwtstamps *shhwtstamps =
719 		skb_hwtstamps(skb);
720 
721 	/* Race occurred between timestamp enabling and packet
722 	   receiving.  Fill in the current time for now. */
723 	if (need_software_tstamp && skb->tstamp == 0) {
724 		__net_timestamp(skb);
725 		false_tstamp = 1;
726 	}
727 
728 	if (need_software_tstamp) {
729 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
730 			struct timeval tv;
731 			skb_get_timestamp(skb, &tv);
732 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
733 				 sizeof(tv), &tv);
734 		} else {
735 			struct timespec ts;
736 			skb_get_timestampns(skb, &ts);
737 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
738 				 sizeof(ts), &ts);
739 		}
740 	}
741 
742 	memset(&tss, 0, sizeof(tss));
743 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
744 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
745 		empty = 0;
746 	if (shhwtstamps &&
747 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
748 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
749 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
750 		empty = 0;
751 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
752 		    !skb_is_err_queue(skb))
753 			put_ts_pktinfo(msg, skb);
754 	}
755 	if (!empty) {
756 		put_cmsg(msg, SOL_SOCKET,
757 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
758 
759 		if (skb_is_err_queue(skb) && skb->len &&
760 		    SKB_EXT_ERR(skb)->opt_stats)
761 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
762 				 skb->len, skb->data);
763 	}
764 }
765 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
766 
767 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
768 	struct sk_buff *skb)
769 {
770 	int ack;
771 
772 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
773 		return;
774 	if (!skb->wifi_acked_valid)
775 		return;
776 
777 	ack = skb->wifi_acked;
778 
779 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
780 }
781 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
782 
783 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
784 				   struct sk_buff *skb)
785 {
786 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
787 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
788 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
789 }
790 
791 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
792 	struct sk_buff *skb)
793 {
794 	sock_recv_timestamp(msg, sk, skb);
795 	sock_recv_drops(msg, sk, skb);
796 }
797 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
798 
799 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
800 				     int flags)
801 {
802 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
803 }
804 
805 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
806 {
807 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
808 
809 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
810 }
811 EXPORT_SYMBOL(sock_recvmsg);
812 
813 /**
814  * kernel_recvmsg - Receive a message from a socket (kernel space)
815  * @sock:       The socket to receive the message from
816  * @msg:        Received message
817  * @vec:        Input s/g array for message data
818  * @num:        Size of input s/g array
819  * @size:       Number of bytes to read
820  * @flags:      Message flags (MSG_DONTWAIT, etc...)
821  *
822  * On return the msg structure contains the scatter/gather array passed in the
823  * vec argument. The array is modified so that it consists of the unfilled
824  * portion of the original array.
825  *
826  * The returned value is the total number of bytes received, or an error.
827  */
828 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
829 		   struct kvec *vec, size_t num, size_t size, int flags)
830 {
831 	mm_segment_t oldfs = get_fs();
832 	int result;
833 
834 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
835 	set_fs(KERNEL_DS);
836 	result = sock_recvmsg(sock, msg, flags);
837 	set_fs(oldfs);
838 	return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841 
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 			     int offset, size_t size, loff_t *ppos, int more)
844 {
845 	struct socket *sock;
846 	int flags;
847 
848 	sock = file->private_data;
849 
850 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 	flags |= more;
853 
854 	return kernel_sendpage(sock, page, offset, size, flags);
855 }
856 
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 				struct pipe_inode_info *pipe, size_t len,
859 				unsigned int flags)
860 {
861 	struct socket *sock = file->private_data;
862 
863 	if (unlikely(!sock->ops->splice_read))
864 		return -EINVAL;
865 
866 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868 
869 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
870 {
871 	struct file *file = iocb->ki_filp;
872 	struct socket *sock = file->private_data;
873 	struct msghdr msg = {.msg_iter = *to,
874 			     .msg_iocb = iocb};
875 	ssize_t res;
876 
877 	if (file->f_flags & O_NONBLOCK)
878 		msg.msg_flags = MSG_DONTWAIT;
879 
880 	if (iocb->ki_pos != 0)
881 		return -ESPIPE;
882 
883 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
884 		return 0;
885 
886 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
887 	*to = msg.msg_iter;
888 	return res;
889 }
890 
891 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
892 {
893 	struct file *file = iocb->ki_filp;
894 	struct socket *sock = file->private_data;
895 	struct msghdr msg = {.msg_iter = *from,
896 			     .msg_iocb = iocb};
897 	ssize_t res;
898 
899 	if (iocb->ki_pos != 0)
900 		return -ESPIPE;
901 
902 	if (file->f_flags & O_NONBLOCK)
903 		msg.msg_flags = MSG_DONTWAIT;
904 
905 	if (sock->type == SOCK_SEQPACKET)
906 		msg.msg_flags |= MSG_EOR;
907 
908 	res = sock_sendmsg(sock, &msg);
909 	*from = msg.msg_iter;
910 	return res;
911 }
912 
913 /*
914  * Atomic setting of ioctl hooks to avoid race
915  * with module unload.
916  */
917 
918 static DEFINE_MUTEX(br_ioctl_mutex);
919 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
920 
921 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
922 {
923 	mutex_lock(&br_ioctl_mutex);
924 	br_ioctl_hook = hook;
925 	mutex_unlock(&br_ioctl_mutex);
926 }
927 EXPORT_SYMBOL(brioctl_set);
928 
929 static DEFINE_MUTEX(vlan_ioctl_mutex);
930 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
931 
932 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
933 {
934 	mutex_lock(&vlan_ioctl_mutex);
935 	vlan_ioctl_hook = hook;
936 	mutex_unlock(&vlan_ioctl_mutex);
937 }
938 EXPORT_SYMBOL(vlan_ioctl_set);
939 
940 static DEFINE_MUTEX(dlci_ioctl_mutex);
941 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
942 
943 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
944 {
945 	mutex_lock(&dlci_ioctl_mutex);
946 	dlci_ioctl_hook = hook;
947 	mutex_unlock(&dlci_ioctl_mutex);
948 }
949 EXPORT_SYMBOL(dlci_ioctl_set);
950 
951 static long sock_do_ioctl(struct net *net, struct socket *sock,
952 				 unsigned int cmd, unsigned long arg)
953 {
954 	int err;
955 	void __user *argp = (void __user *)arg;
956 
957 	err = sock->ops->ioctl(sock, cmd, arg);
958 
959 	/*
960 	 * If this ioctl is unknown try to hand it down
961 	 * to the NIC driver.
962 	 */
963 	if (err != -ENOIOCTLCMD)
964 		return err;
965 
966 	if (cmd == SIOCGIFCONF) {
967 		struct ifconf ifc;
968 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
969 			return -EFAULT;
970 		rtnl_lock();
971 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
972 		rtnl_unlock();
973 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
974 			err = -EFAULT;
975 	} else {
976 		struct ifreq ifr;
977 		bool need_copyout;
978 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
979 			return -EFAULT;
980 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
981 		if (!err && need_copyout)
982 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
983 				return -EFAULT;
984 	}
985 	return err;
986 }
987 
988 /*
989  *	With an ioctl, arg may well be a user mode pointer, but we don't know
990  *	what to do with it - that's up to the protocol still.
991  */
992 
993 struct ns_common *get_net_ns(struct ns_common *ns)
994 {
995 	return &get_net(container_of(ns, struct net, ns))->ns;
996 }
997 EXPORT_SYMBOL_GPL(get_net_ns);
998 
999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 {
1001 	struct socket *sock;
1002 	struct sock *sk;
1003 	void __user *argp = (void __user *)arg;
1004 	int pid, err;
1005 	struct net *net;
1006 
1007 	sock = file->private_data;
1008 	sk = sock->sk;
1009 	net = sock_net(sk);
1010 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 		struct ifreq ifr;
1012 		bool need_copyout;
1013 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 			return -EFAULT;
1015 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 		if (!err && need_copyout)
1017 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 				return -EFAULT;
1019 	} else
1020 #ifdef CONFIG_WEXT_CORE
1021 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 		err = wext_handle_ioctl(net, cmd, argp);
1023 	} else
1024 #endif
1025 		switch (cmd) {
1026 		case FIOSETOWN:
1027 		case SIOCSPGRP:
1028 			err = -EFAULT;
1029 			if (get_user(pid, (int __user *)argp))
1030 				break;
1031 			err = f_setown(sock->file, pid, 1);
1032 			break;
1033 		case FIOGETOWN:
1034 		case SIOCGPGRP:
1035 			err = put_user(f_getown(sock->file),
1036 				       (int __user *)argp);
1037 			break;
1038 		case SIOCGIFBR:
1039 		case SIOCSIFBR:
1040 		case SIOCBRADDBR:
1041 		case SIOCBRDELBR:
1042 			err = -ENOPKG;
1043 			if (!br_ioctl_hook)
1044 				request_module("bridge");
1045 
1046 			mutex_lock(&br_ioctl_mutex);
1047 			if (br_ioctl_hook)
1048 				err = br_ioctl_hook(net, cmd, argp);
1049 			mutex_unlock(&br_ioctl_mutex);
1050 			break;
1051 		case SIOCGIFVLAN:
1052 		case SIOCSIFVLAN:
1053 			err = -ENOPKG;
1054 			if (!vlan_ioctl_hook)
1055 				request_module("8021q");
1056 
1057 			mutex_lock(&vlan_ioctl_mutex);
1058 			if (vlan_ioctl_hook)
1059 				err = vlan_ioctl_hook(net, argp);
1060 			mutex_unlock(&vlan_ioctl_mutex);
1061 			break;
1062 		case SIOCADDDLCI:
1063 		case SIOCDELDLCI:
1064 			err = -ENOPKG;
1065 			if (!dlci_ioctl_hook)
1066 				request_module("dlci");
1067 
1068 			mutex_lock(&dlci_ioctl_mutex);
1069 			if (dlci_ioctl_hook)
1070 				err = dlci_ioctl_hook(cmd, argp);
1071 			mutex_unlock(&dlci_ioctl_mutex);
1072 			break;
1073 		case SIOCGSKNS:
1074 			err = -EPERM;
1075 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 				break;
1077 
1078 			err = open_related_ns(&net->ns, get_net_ns);
1079 			break;
1080 		default:
1081 			err = sock_do_ioctl(net, sock, cmd, arg);
1082 			break;
1083 		}
1084 	return err;
1085 }
1086 
1087 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088 {
1089 	int err;
1090 	struct socket *sock = NULL;
1091 
1092 	err = security_socket_create(family, type, protocol, 1);
1093 	if (err)
1094 		goto out;
1095 
1096 	sock = sock_alloc();
1097 	if (!sock) {
1098 		err = -ENOMEM;
1099 		goto out;
1100 	}
1101 
1102 	sock->type = type;
1103 	err = security_socket_post_create(sock, family, type, protocol, 1);
1104 	if (err)
1105 		goto out_release;
1106 
1107 out:
1108 	*res = sock;
1109 	return err;
1110 out_release:
1111 	sock_release(sock);
1112 	sock = NULL;
1113 	goto out;
1114 }
1115 EXPORT_SYMBOL(sock_create_lite);
1116 
1117 /* No kernel lock held - perfect */
1118 static __poll_t sock_poll(struct file *file, poll_table *wait)
1119 {
1120 	__poll_t busy_flag = 0;
1121 	struct socket *sock;
1122 
1123 	/*
1124 	 *      We can't return errors to poll, so it's either yes or no.
1125 	 */
1126 	sock = file->private_data;
1127 
1128 	if (sk_can_busy_loop(sock->sk)) {
1129 		/* this socket can poll_ll so tell the system call */
1130 		busy_flag = POLL_BUSY_LOOP;
1131 
1132 		/* once, only if requested by syscall */
1133 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 			sk_busy_loop(sock->sk, 1);
1135 	}
1136 
1137 	return busy_flag | sock->ops->poll(file, sock, wait);
1138 }
1139 
1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141 {
1142 	struct socket *sock = file->private_data;
1143 
1144 	return sock->ops->mmap(file, sock, vma);
1145 }
1146 
1147 static int sock_close(struct inode *inode, struct file *filp)
1148 {
1149 	sock_release(SOCKET_I(inode));
1150 	return 0;
1151 }
1152 
1153 /*
1154  *	Update the socket async list
1155  *
1156  *	Fasync_list locking strategy.
1157  *
1158  *	1. fasync_list is modified only under process context socket lock
1159  *	   i.e. under semaphore.
1160  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161  *	   or under socket lock
1162  */
1163 
1164 static int sock_fasync(int fd, struct file *filp, int on)
1165 {
1166 	struct socket *sock = filp->private_data;
1167 	struct sock *sk = sock->sk;
1168 	struct socket_wq *wq;
1169 
1170 	if (sk == NULL)
1171 		return -EINVAL;
1172 
1173 	lock_sock(sk);
1174 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 	fasync_helper(fd, filp, on, &wq->fasync_list);
1176 
1177 	if (!wq->fasync_list)
1178 		sock_reset_flag(sk, SOCK_FASYNC);
1179 	else
1180 		sock_set_flag(sk, SOCK_FASYNC);
1181 
1182 	release_sock(sk);
1183 	return 0;
1184 }
1185 
1186 /* This function may be called only under rcu_lock */
1187 
1188 int sock_wake_async(struct socket_wq *wq, int how, int band)
1189 {
1190 	if (!wq || !wq->fasync_list)
1191 		return -1;
1192 
1193 	switch (how) {
1194 	case SOCK_WAKE_WAITD:
1195 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 			break;
1197 		goto call_kill;
1198 	case SOCK_WAKE_SPACE:
1199 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 			break;
1201 		/* fall through */
1202 	case SOCK_WAKE_IO:
1203 call_kill:
1204 		kill_fasync(&wq->fasync_list, SIGIO, band);
1205 		break;
1206 	case SOCK_WAKE_URG:
1207 		kill_fasync(&wq->fasync_list, SIGURG, band);
1208 	}
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(sock_wake_async);
1213 
1214 int __sock_create(struct net *net, int family, int type, int protocol,
1215 			 struct socket **res, int kern)
1216 {
1217 	int err;
1218 	struct socket *sock;
1219 	const struct net_proto_family *pf;
1220 
1221 	/*
1222 	 *      Check protocol is in range
1223 	 */
1224 	if (family < 0 || family >= NPROTO)
1225 		return -EAFNOSUPPORT;
1226 	if (type < 0 || type >= SOCK_MAX)
1227 		return -EINVAL;
1228 
1229 	/* Compatibility.
1230 
1231 	   This uglymoron is moved from INET layer to here to avoid
1232 	   deadlock in module load.
1233 	 */
1234 	if (family == PF_INET && type == SOCK_PACKET) {
1235 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 			     current->comm);
1237 		family = PF_PACKET;
1238 	}
1239 
1240 	err = security_socket_create(family, type, protocol, kern);
1241 	if (err)
1242 		return err;
1243 
1244 	/*
1245 	 *	Allocate the socket and allow the family to set things up. if
1246 	 *	the protocol is 0, the family is instructed to select an appropriate
1247 	 *	default.
1248 	 */
1249 	sock = sock_alloc();
1250 	if (!sock) {
1251 		net_warn_ratelimited("socket: no more sockets\n");
1252 		return -ENFILE;	/* Not exactly a match, but its the
1253 				   closest posix thing */
1254 	}
1255 
1256 	sock->type = type;
1257 
1258 #ifdef CONFIG_MODULES
1259 	/* Attempt to load a protocol module if the find failed.
1260 	 *
1261 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 	 * requested real, full-featured networking support upon configuration.
1263 	 * Otherwise module support will break!
1264 	 */
1265 	if (rcu_access_pointer(net_families[family]) == NULL)
1266 		request_module("net-pf-%d", family);
1267 #endif
1268 
1269 	rcu_read_lock();
1270 	pf = rcu_dereference(net_families[family]);
1271 	err = -EAFNOSUPPORT;
1272 	if (!pf)
1273 		goto out_release;
1274 
1275 	/*
1276 	 * We will call the ->create function, that possibly is in a loadable
1277 	 * module, so we have to bump that loadable module refcnt first.
1278 	 */
1279 	if (!try_module_get(pf->owner))
1280 		goto out_release;
1281 
1282 	/* Now protected by module ref count */
1283 	rcu_read_unlock();
1284 
1285 	err = pf->create(net, sock, protocol, kern);
1286 	if (err < 0)
1287 		goto out_module_put;
1288 
1289 	/*
1290 	 * Now to bump the refcnt of the [loadable] module that owns this
1291 	 * socket at sock_release time we decrement its refcnt.
1292 	 */
1293 	if (!try_module_get(sock->ops->owner))
1294 		goto out_module_busy;
1295 
1296 	/*
1297 	 * Now that we're done with the ->create function, the [loadable]
1298 	 * module can have its refcnt decremented
1299 	 */
1300 	module_put(pf->owner);
1301 	err = security_socket_post_create(sock, family, type, protocol, kern);
1302 	if (err)
1303 		goto out_sock_release;
1304 	*res = sock;
1305 
1306 	return 0;
1307 
1308 out_module_busy:
1309 	err = -EAFNOSUPPORT;
1310 out_module_put:
1311 	sock->ops = NULL;
1312 	module_put(pf->owner);
1313 out_sock_release:
1314 	sock_release(sock);
1315 	return err;
1316 
1317 out_release:
1318 	rcu_read_unlock();
1319 	goto out_sock_release;
1320 }
1321 EXPORT_SYMBOL(__sock_create);
1322 
1323 int sock_create(int family, int type, int protocol, struct socket **res)
1324 {
1325 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326 }
1327 EXPORT_SYMBOL(sock_create);
1328 
1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330 {
1331 	return __sock_create(net, family, type, protocol, res, 1);
1332 }
1333 EXPORT_SYMBOL(sock_create_kern);
1334 
1335 int __sys_socket(int family, int type, int protocol)
1336 {
1337 	int retval;
1338 	struct socket *sock;
1339 	int flags;
1340 
1341 	/* Check the SOCK_* constants for consistency.  */
1342 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346 
1347 	flags = type & ~SOCK_TYPE_MASK;
1348 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 		return -EINVAL;
1350 	type &= SOCK_TYPE_MASK;
1351 
1352 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354 
1355 	retval = sock_create(family, type, protocol, &sock);
1356 	if (retval < 0)
1357 		return retval;
1358 
1359 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360 }
1361 
1362 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363 {
1364 	return __sys_socket(family, type, protocol);
1365 }
1366 
1367 /*
1368  *	Create a pair of connected sockets.
1369  */
1370 
1371 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372 {
1373 	struct socket *sock1, *sock2;
1374 	int fd1, fd2, err;
1375 	struct file *newfile1, *newfile2;
1376 	int flags;
1377 
1378 	flags = type & ~SOCK_TYPE_MASK;
1379 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380 		return -EINVAL;
1381 	type &= SOCK_TYPE_MASK;
1382 
1383 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385 
1386 	/*
1387 	 * reserve descriptors and make sure we won't fail
1388 	 * to return them to userland.
1389 	 */
1390 	fd1 = get_unused_fd_flags(flags);
1391 	if (unlikely(fd1 < 0))
1392 		return fd1;
1393 
1394 	fd2 = get_unused_fd_flags(flags);
1395 	if (unlikely(fd2 < 0)) {
1396 		put_unused_fd(fd1);
1397 		return fd2;
1398 	}
1399 
1400 	err = put_user(fd1, &usockvec[0]);
1401 	if (err)
1402 		goto out;
1403 
1404 	err = put_user(fd2, &usockvec[1]);
1405 	if (err)
1406 		goto out;
1407 
1408 	/*
1409 	 * Obtain the first socket and check if the underlying protocol
1410 	 * supports the socketpair call.
1411 	 */
1412 
1413 	err = sock_create(family, type, protocol, &sock1);
1414 	if (unlikely(err < 0))
1415 		goto out;
1416 
1417 	err = sock_create(family, type, protocol, &sock2);
1418 	if (unlikely(err < 0)) {
1419 		sock_release(sock1);
1420 		goto out;
1421 	}
1422 
1423 	err = sock1->ops->socketpair(sock1, sock2);
1424 	if (unlikely(err < 0)) {
1425 		sock_release(sock2);
1426 		sock_release(sock1);
1427 		goto out;
1428 	}
1429 
1430 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1431 	if (IS_ERR(newfile1)) {
1432 		err = PTR_ERR(newfile1);
1433 		sock_release(sock2);
1434 		goto out;
1435 	}
1436 
1437 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1438 	if (IS_ERR(newfile2)) {
1439 		err = PTR_ERR(newfile2);
1440 		fput(newfile1);
1441 		goto out;
1442 	}
1443 
1444 	audit_fd_pair(fd1, fd2);
1445 
1446 	fd_install(fd1, newfile1);
1447 	fd_install(fd2, newfile2);
1448 	return 0;
1449 
1450 out:
1451 	put_unused_fd(fd2);
1452 	put_unused_fd(fd1);
1453 	return err;
1454 }
1455 
1456 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457 		int __user *, usockvec)
1458 {
1459 	return __sys_socketpair(family, type, protocol, usockvec);
1460 }
1461 
1462 /*
1463  *	Bind a name to a socket. Nothing much to do here since it's
1464  *	the protocol's responsibility to handle the local address.
1465  *
1466  *	We move the socket address to kernel space before we call
1467  *	the protocol layer (having also checked the address is ok).
1468  */
1469 
1470 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471 {
1472 	struct socket *sock;
1473 	struct sockaddr_storage address;
1474 	int err, fput_needed;
1475 
1476 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477 	if (sock) {
1478 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479 		if (err >= 0) {
1480 			err = security_socket_bind(sock,
1481 						   (struct sockaddr *)&address,
1482 						   addrlen);
1483 			if (!err)
1484 				err = sock->ops->bind(sock,
1485 						      (struct sockaddr *)
1486 						      &address, addrlen);
1487 		}
1488 		fput_light(sock->file, fput_needed);
1489 	}
1490 	return err;
1491 }
1492 
1493 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494 {
1495 	return __sys_bind(fd, umyaddr, addrlen);
1496 }
1497 
1498 /*
1499  *	Perform a listen. Basically, we allow the protocol to do anything
1500  *	necessary for a listen, and if that works, we mark the socket as
1501  *	ready for listening.
1502  */
1503 
1504 int __sys_listen(int fd, int backlog)
1505 {
1506 	struct socket *sock;
1507 	int err, fput_needed;
1508 	int somaxconn;
1509 
1510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 	if (sock) {
1512 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513 		if ((unsigned int)backlog > somaxconn)
1514 			backlog = somaxconn;
1515 
1516 		err = security_socket_listen(sock, backlog);
1517 		if (!err)
1518 			err = sock->ops->listen(sock, backlog);
1519 
1520 		fput_light(sock->file, fput_needed);
1521 	}
1522 	return err;
1523 }
1524 
1525 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526 {
1527 	return __sys_listen(fd, backlog);
1528 }
1529 
1530 /*
1531  *	For accept, we attempt to create a new socket, set up the link
1532  *	with the client, wake up the client, then return the new
1533  *	connected fd. We collect the address of the connector in kernel
1534  *	space and move it to user at the very end. This is unclean because
1535  *	we open the socket then return an error.
1536  *
1537  *	1003.1g adds the ability to recvmsg() to query connection pending
1538  *	status to recvmsg. We need to add that support in a way thats
1539  *	clean when we restructure accept also.
1540  */
1541 
1542 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543 		  int __user *upeer_addrlen, int flags)
1544 {
1545 	struct socket *sock, *newsock;
1546 	struct file *newfile;
1547 	int err, len, newfd, fput_needed;
1548 	struct sockaddr_storage address;
1549 
1550 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 		return -EINVAL;
1552 
1553 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 
1560 	err = -ENFILE;
1561 	newsock = sock_alloc();
1562 	if (!newsock)
1563 		goto out_put;
1564 
1565 	newsock->type = sock->type;
1566 	newsock->ops = sock->ops;
1567 
1568 	/*
1569 	 * We don't need try_module_get here, as the listening socket (sock)
1570 	 * has the protocol module (sock->ops->owner) held.
1571 	 */
1572 	__module_get(newsock->ops->owner);
1573 
1574 	newfd = get_unused_fd_flags(flags);
1575 	if (unlikely(newfd < 0)) {
1576 		err = newfd;
1577 		sock_release(newsock);
1578 		goto out_put;
1579 	}
1580 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581 	if (IS_ERR(newfile)) {
1582 		err = PTR_ERR(newfile);
1583 		put_unused_fd(newfd);
1584 		goto out_put;
1585 	}
1586 
1587 	err = security_socket_accept(sock, newsock);
1588 	if (err)
1589 		goto out_fd;
1590 
1591 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592 	if (err < 0)
1593 		goto out_fd;
1594 
1595 	if (upeer_sockaddr) {
1596 		len = newsock->ops->getname(newsock,
1597 					(struct sockaddr *)&address, 2);
1598 		if (len < 0) {
1599 			err = -ECONNABORTED;
1600 			goto out_fd;
1601 		}
1602 		err = move_addr_to_user(&address,
1603 					len, upeer_sockaddr, upeer_addrlen);
1604 		if (err < 0)
1605 			goto out_fd;
1606 	}
1607 
1608 	/* File flags are not inherited via accept() unlike another OSes. */
1609 
1610 	fd_install(newfd, newfile);
1611 	err = newfd;
1612 
1613 out_put:
1614 	fput_light(sock->file, fput_needed);
1615 out:
1616 	return err;
1617 out_fd:
1618 	fput(newfile);
1619 	put_unused_fd(newfd);
1620 	goto out_put;
1621 }
1622 
1623 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1624 		int __user *, upeer_addrlen, int, flags)
1625 {
1626 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627 }
1628 
1629 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1630 		int __user *, upeer_addrlen)
1631 {
1632 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633 }
1634 
1635 /*
1636  *	Attempt to connect to a socket with the server address.  The address
1637  *	is in user space so we verify it is OK and move it to kernel space.
1638  *
1639  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640  *	break bindings
1641  *
1642  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1643  *	other SEQPACKET protocols that take time to connect() as it doesn't
1644  *	include the -EINPROGRESS status for such sockets.
1645  */
1646 
1647 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1648 {
1649 	struct socket *sock;
1650 	struct sockaddr_storage address;
1651 	int err, fput_needed;
1652 
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (!sock)
1655 		goto out;
1656 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1657 	if (err < 0)
1658 		goto out_put;
1659 
1660 	err =
1661 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1662 	if (err)
1663 		goto out_put;
1664 
1665 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1666 				 sock->file->f_flags);
1667 out_put:
1668 	fput_light(sock->file, fput_needed);
1669 out:
1670 	return err;
1671 }
1672 
1673 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674 		int, addrlen)
1675 {
1676 	return __sys_connect(fd, uservaddr, addrlen);
1677 }
1678 
1679 /*
1680  *	Get the local address ('name') of a socket object. Move the obtained
1681  *	name to user space.
1682  */
1683 
1684 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1685 		      int __user *usockaddr_len)
1686 {
1687 	struct socket *sock;
1688 	struct sockaddr_storage address;
1689 	int err, fput_needed;
1690 
1691 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692 	if (!sock)
1693 		goto out;
1694 
1695 	err = security_socket_getsockname(sock);
1696 	if (err)
1697 		goto out_put;
1698 
1699 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1700 	if (err < 0)
1701 		goto out_put;
1702         /* "err" is actually length in this case */
1703 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704 
1705 out_put:
1706 	fput_light(sock->file, fput_needed);
1707 out:
1708 	return err;
1709 }
1710 
1711 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1712 		int __user *, usockaddr_len)
1713 {
1714 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715 }
1716 
1717 /*
1718  *	Get the remote address ('name') of a socket object. Move the obtained
1719  *	name to user space.
1720  */
1721 
1722 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1723 		      int __user *usockaddr_len)
1724 {
1725 	struct socket *sock;
1726 	struct sockaddr_storage address;
1727 	int err, fput_needed;
1728 
1729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 	if (sock != NULL) {
1731 		err = security_socket_getpeername(sock);
1732 		if (err) {
1733 			fput_light(sock->file, fput_needed);
1734 			return err;
1735 		}
1736 
1737 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1738 		if (err >= 0)
1739 			/* "err" is actually length in this case */
1740 			err = move_addr_to_user(&address, err, usockaddr,
1741 						usockaddr_len);
1742 		fput_light(sock->file, fput_needed);
1743 	}
1744 	return err;
1745 }
1746 
1747 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1748 		int __user *, usockaddr_len)
1749 {
1750 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751 }
1752 
1753 /*
1754  *	Send a datagram to a given address. We move the address into kernel
1755  *	space and check the user space data area is readable before invoking
1756  *	the protocol.
1757  */
1758 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1759 		 struct sockaddr __user *addr,  int addr_len)
1760 {
1761 	struct socket *sock;
1762 	struct sockaddr_storage address;
1763 	int err;
1764 	struct msghdr msg;
1765 	struct iovec iov;
1766 	int fput_needed;
1767 
1768 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1769 	if (unlikely(err))
1770 		return err;
1771 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 	if (!sock)
1773 		goto out;
1774 
1775 	msg.msg_name = NULL;
1776 	msg.msg_control = NULL;
1777 	msg.msg_controllen = 0;
1778 	msg.msg_namelen = 0;
1779 	if (addr) {
1780 		err = move_addr_to_kernel(addr, addr_len, &address);
1781 		if (err < 0)
1782 			goto out_put;
1783 		msg.msg_name = (struct sockaddr *)&address;
1784 		msg.msg_namelen = addr_len;
1785 	}
1786 	if (sock->file->f_flags & O_NONBLOCK)
1787 		flags |= MSG_DONTWAIT;
1788 	msg.msg_flags = flags;
1789 	err = sock_sendmsg(sock, &msg);
1790 
1791 out_put:
1792 	fput_light(sock->file, fput_needed);
1793 out:
1794 	return err;
1795 }
1796 
1797 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1798 		unsigned int, flags, struct sockaddr __user *, addr,
1799 		int, addr_len)
1800 {
1801 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802 }
1803 
1804 /*
1805  *	Send a datagram down a socket.
1806  */
1807 
1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809 		unsigned int, flags)
1810 {
1811 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812 }
1813 
1814 /*
1815  *	Receive a frame from the socket and optionally record the address of the
1816  *	sender. We verify the buffers are writable and if needed move the
1817  *	sender address from kernel to user space.
1818  */
1819 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1820 		   struct sockaddr __user *addr, int __user *addr_len)
1821 {
1822 	struct socket *sock;
1823 	struct iovec iov;
1824 	struct msghdr msg;
1825 	struct sockaddr_storage address;
1826 	int err, err2;
1827 	int fput_needed;
1828 
1829 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1830 	if (unlikely(err))
1831 		return err;
1832 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833 	if (!sock)
1834 		goto out;
1835 
1836 	msg.msg_control = NULL;
1837 	msg.msg_controllen = 0;
1838 	/* Save some cycles and don't copy the address if not needed */
1839 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840 	/* We assume all kernel code knows the size of sockaddr_storage */
1841 	msg.msg_namelen = 0;
1842 	msg.msg_iocb = NULL;
1843 	msg.msg_flags = 0;
1844 	if (sock->file->f_flags & O_NONBLOCK)
1845 		flags |= MSG_DONTWAIT;
1846 	err = sock_recvmsg(sock, &msg, flags);
1847 
1848 	if (err >= 0 && addr != NULL) {
1849 		err2 = move_addr_to_user(&address,
1850 					 msg.msg_namelen, addr, addr_len);
1851 		if (err2 < 0)
1852 			err = err2;
1853 	}
1854 
1855 	fput_light(sock->file, fput_needed);
1856 out:
1857 	return err;
1858 }
1859 
1860 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1861 		unsigned int, flags, struct sockaddr __user *, addr,
1862 		int __user *, addr_len)
1863 {
1864 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865 }
1866 
1867 /*
1868  *	Receive a datagram from a socket.
1869  */
1870 
1871 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1872 		unsigned int, flags)
1873 {
1874 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875 }
1876 
1877 /*
1878  *	Set a socket option. Because we don't know the option lengths we have
1879  *	to pass the user mode parameter for the protocols to sort out.
1880  */
1881 
1882 static int __sys_setsockopt(int fd, int level, int optname,
1883 			    char __user *optval, int optlen)
1884 {
1885 	int err, fput_needed;
1886 	struct socket *sock;
1887 
1888 	if (optlen < 0)
1889 		return -EINVAL;
1890 
1891 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892 	if (sock != NULL) {
1893 		err = security_socket_setsockopt(sock, level, optname);
1894 		if (err)
1895 			goto out_put;
1896 
1897 		if (level == SOL_SOCKET)
1898 			err =
1899 			    sock_setsockopt(sock, level, optname, optval,
1900 					    optlen);
1901 		else
1902 			err =
1903 			    sock->ops->setsockopt(sock, level, optname, optval,
1904 						  optlen);
1905 out_put:
1906 		fput_light(sock->file, fput_needed);
1907 	}
1908 	return err;
1909 }
1910 
1911 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1912 		char __user *, optval, int, optlen)
1913 {
1914 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1915 }
1916 
1917 /*
1918  *	Get a socket option. Because we don't know the option lengths we have
1919  *	to pass a user mode parameter for the protocols to sort out.
1920  */
1921 
1922 static int __sys_getsockopt(int fd, int level, int optname,
1923 			    char __user *optval, int __user *optlen)
1924 {
1925 	int err, fput_needed;
1926 	struct socket *sock;
1927 
1928 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1929 	if (sock != NULL) {
1930 		err = security_socket_getsockopt(sock, level, optname);
1931 		if (err)
1932 			goto out_put;
1933 
1934 		if (level == SOL_SOCKET)
1935 			err =
1936 			    sock_getsockopt(sock, level, optname, optval,
1937 					    optlen);
1938 		else
1939 			err =
1940 			    sock->ops->getsockopt(sock, level, optname, optval,
1941 						  optlen);
1942 out_put:
1943 		fput_light(sock->file, fput_needed);
1944 	}
1945 	return err;
1946 }
1947 
1948 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1949 		char __user *, optval, int __user *, optlen)
1950 {
1951 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1952 }
1953 
1954 /*
1955  *	Shutdown a socket.
1956  */
1957 
1958 int __sys_shutdown(int fd, int how)
1959 {
1960 	int err, fput_needed;
1961 	struct socket *sock;
1962 
1963 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 	if (sock != NULL) {
1965 		err = security_socket_shutdown(sock, how);
1966 		if (!err)
1967 			err = sock->ops->shutdown(sock, how);
1968 		fput_light(sock->file, fput_needed);
1969 	}
1970 	return err;
1971 }
1972 
1973 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974 {
1975 	return __sys_shutdown(fd, how);
1976 }
1977 
1978 /* A couple of helpful macros for getting the address of the 32/64 bit
1979  * fields which are the same type (int / unsigned) on our platforms.
1980  */
1981 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1983 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1984 
1985 struct used_address {
1986 	struct sockaddr_storage name;
1987 	unsigned int name_len;
1988 };
1989 
1990 static int copy_msghdr_from_user(struct msghdr *kmsg,
1991 				 struct user_msghdr __user *umsg,
1992 				 struct sockaddr __user **save_addr,
1993 				 struct iovec **iov)
1994 {
1995 	struct user_msghdr msg;
1996 	ssize_t err;
1997 
1998 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1999 		return -EFAULT;
2000 
2001 	kmsg->msg_control = (void __force *)msg.msg_control;
2002 	kmsg->msg_controllen = msg.msg_controllen;
2003 	kmsg->msg_flags = msg.msg_flags;
2004 
2005 	kmsg->msg_namelen = msg.msg_namelen;
2006 	if (!msg.msg_name)
2007 		kmsg->msg_namelen = 0;
2008 
2009 	if (kmsg->msg_namelen < 0)
2010 		return -EINVAL;
2011 
2012 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2013 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014 
2015 	if (save_addr)
2016 		*save_addr = msg.msg_name;
2017 
2018 	if (msg.msg_name && kmsg->msg_namelen) {
2019 		if (!save_addr) {
2020 			err = move_addr_to_kernel(msg.msg_name,
2021 						  kmsg->msg_namelen,
2022 						  kmsg->msg_name);
2023 			if (err < 0)
2024 				return err;
2025 		}
2026 	} else {
2027 		kmsg->msg_name = NULL;
2028 		kmsg->msg_namelen = 0;
2029 	}
2030 
2031 	if (msg.msg_iovlen > UIO_MAXIOV)
2032 		return -EMSGSIZE;
2033 
2034 	kmsg->msg_iocb = NULL;
2035 
2036 	return import_iovec(save_addr ? READ : WRITE,
2037 			    msg.msg_iov, msg.msg_iovlen,
2038 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2039 }
2040 
2041 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2042 			 struct msghdr *msg_sys, unsigned int flags,
2043 			 struct used_address *used_address,
2044 			 unsigned int allowed_msghdr_flags)
2045 {
2046 	struct compat_msghdr __user *msg_compat =
2047 	    (struct compat_msghdr __user *)msg;
2048 	struct sockaddr_storage address;
2049 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2050 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2051 				__aligned(sizeof(__kernel_size_t));
2052 	/* 20 is size of ipv6_pktinfo */
2053 	unsigned char *ctl_buf = ctl;
2054 	int ctl_len;
2055 	ssize_t err;
2056 
2057 	msg_sys->msg_name = &address;
2058 
2059 	if (MSG_CMSG_COMPAT & flags)
2060 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2061 	else
2062 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2063 	if (err < 0)
2064 		return err;
2065 
2066 	err = -ENOBUFS;
2067 
2068 	if (msg_sys->msg_controllen > INT_MAX)
2069 		goto out_freeiov;
2070 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2071 	ctl_len = msg_sys->msg_controllen;
2072 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2073 		err =
2074 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2075 						     sizeof(ctl));
2076 		if (err)
2077 			goto out_freeiov;
2078 		ctl_buf = msg_sys->msg_control;
2079 		ctl_len = msg_sys->msg_controllen;
2080 	} else if (ctl_len) {
2081 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2082 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2083 		if (ctl_len > sizeof(ctl)) {
2084 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2085 			if (ctl_buf == NULL)
2086 				goto out_freeiov;
2087 		}
2088 		err = -EFAULT;
2089 		/*
2090 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2091 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2092 		 * checking falls down on this.
2093 		 */
2094 		if (copy_from_user(ctl_buf,
2095 				   (void __user __force *)msg_sys->msg_control,
2096 				   ctl_len))
2097 			goto out_freectl;
2098 		msg_sys->msg_control = ctl_buf;
2099 	}
2100 	msg_sys->msg_flags = flags;
2101 
2102 	if (sock->file->f_flags & O_NONBLOCK)
2103 		msg_sys->msg_flags |= MSG_DONTWAIT;
2104 	/*
2105 	 * If this is sendmmsg() and current destination address is same as
2106 	 * previously succeeded address, omit asking LSM's decision.
2107 	 * used_address->name_len is initialized to UINT_MAX so that the first
2108 	 * destination address never matches.
2109 	 */
2110 	if (used_address && msg_sys->msg_name &&
2111 	    used_address->name_len == msg_sys->msg_namelen &&
2112 	    !memcmp(&used_address->name, msg_sys->msg_name,
2113 		    used_address->name_len)) {
2114 		err = sock_sendmsg_nosec(sock, msg_sys);
2115 		goto out_freectl;
2116 	}
2117 	err = sock_sendmsg(sock, msg_sys);
2118 	/*
2119 	 * If this is sendmmsg() and sending to current destination address was
2120 	 * successful, remember it.
2121 	 */
2122 	if (used_address && err >= 0) {
2123 		used_address->name_len = msg_sys->msg_namelen;
2124 		if (msg_sys->msg_name)
2125 			memcpy(&used_address->name, msg_sys->msg_name,
2126 			       used_address->name_len);
2127 	}
2128 
2129 out_freectl:
2130 	if (ctl_buf != ctl)
2131 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2132 out_freeiov:
2133 	kfree(iov);
2134 	return err;
2135 }
2136 
2137 /*
2138  *	BSD sendmsg interface
2139  */
2140 
2141 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2142 		   bool forbid_cmsg_compat)
2143 {
2144 	int fput_needed, err;
2145 	struct msghdr msg_sys;
2146 	struct socket *sock;
2147 
2148 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2149 		return -EINVAL;
2150 
2151 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 	if (!sock)
2153 		goto out;
2154 
2155 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156 
2157 	fput_light(sock->file, fput_needed);
2158 out:
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163 {
2164 	return __sys_sendmsg(fd, msg, flags, true);
2165 }
2166 
2167 /*
2168  *	Linux sendmmsg interface
2169  */
2170 
2171 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2172 		   unsigned int flags, bool forbid_cmsg_compat)
2173 {
2174 	int fput_needed, err, datagrams;
2175 	struct socket *sock;
2176 	struct mmsghdr __user *entry;
2177 	struct compat_mmsghdr __user *compat_entry;
2178 	struct msghdr msg_sys;
2179 	struct used_address used_address;
2180 	unsigned int oflags = flags;
2181 
2182 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2183 		return -EINVAL;
2184 
2185 	if (vlen > UIO_MAXIOV)
2186 		vlen = UIO_MAXIOV;
2187 
2188 	datagrams = 0;
2189 
2190 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 	if (!sock)
2192 		return err;
2193 
2194 	used_address.name_len = UINT_MAX;
2195 	entry = mmsg;
2196 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197 	err = 0;
2198 	flags |= MSG_BATCH;
2199 
2200 	while (datagrams < vlen) {
2201 		if (datagrams == vlen - 1)
2202 			flags = oflags;
2203 
2204 		if (MSG_CMSG_COMPAT & flags) {
2205 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2206 					     &msg_sys, flags, &used_address, MSG_EOR);
2207 			if (err < 0)
2208 				break;
2209 			err = __put_user(err, &compat_entry->msg_len);
2210 			++compat_entry;
2211 		} else {
2212 			err = ___sys_sendmsg(sock,
2213 					     (struct user_msghdr __user *)entry,
2214 					     &msg_sys, flags, &used_address, MSG_EOR);
2215 			if (err < 0)
2216 				break;
2217 			err = put_user(err, &entry->msg_len);
2218 			++entry;
2219 		}
2220 
2221 		if (err)
2222 			break;
2223 		++datagrams;
2224 		if (msg_data_left(&msg_sys))
2225 			break;
2226 		cond_resched();
2227 	}
2228 
2229 	fput_light(sock->file, fput_needed);
2230 
2231 	/* We only return an error if no datagrams were able to be sent */
2232 	if (datagrams != 0)
2233 		return datagrams;
2234 
2235 	return err;
2236 }
2237 
2238 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239 		unsigned int, vlen, unsigned int, flags)
2240 {
2241 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2242 }
2243 
2244 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2245 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2246 {
2247 	struct compat_msghdr __user *msg_compat =
2248 	    (struct compat_msghdr __user *)msg;
2249 	struct iovec iovstack[UIO_FASTIOV];
2250 	struct iovec *iov = iovstack;
2251 	unsigned long cmsg_ptr;
2252 	int len;
2253 	ssize_t err;
2254 
2255 	/* kernel mode address */
2256 	struct sockaddr_storage addr;
2257 
2258 	/* user mode address pointers */
2259 	struct sockaddr __user *uaddr;
2260 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261 
2262 	msg_sys->msg_name = &addr;
2263 
2264 	if (MSG_CMSG_COMPAT & flags)
2265 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2266 	else
2267 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2268 	if (err < 0)
2269 		return err;
2270 
2271 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2272 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273 
2274 	/* We assume all kernel code knows the size of sockaddr_storage */
2275 	msg_sys->msg_namelen = 0;
2276 
2277 	if (sock->file->f_flags & O_NONBLOCK)
2278 		flags |= MSG_DONTWAIT;
2279 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2280 	if (err < 0)
2281 		goto out_freeiov;
2282 	len = err;
2283 
2284 	if (uaddr != NULL) {
2285 		err = move_addr_to_user(&addr,
2286 					msg_sys->msg_namelen, uaddr,
2287 					uaddr_len);
2288 		if (err < 0)
2289 			goto out_freeiov;
2290 	}
2291 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292 			 COMPAT_FLAGS(msg));
2293 	if (err)
2294 		goto out_freeiov;
2295 	if (MSG_CMSG_COMPAT & flags)
2296 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 				 &msg_compat->msg_controllen);
2298 	else
2299 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300 				 &msg->msg_controllen);
2301 	if (err)
2302 		goto out_freeiov;
2303 	err = len;
2304 
2305 out_freeiov:
2306 	kfree(iov);
2307 	return err;
2308 }
2309 
2310 /*
2311  *	BSD recvmsg interface
2312  */
2313 
2314 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2315 		   bool forbid_cmsg_compat)
2316 {
2317 	int fput_needed, err;
2318 	struct msghdr msg_sys;
2319 	struct socket *sock;
2320 
2321 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2322 		return -EINVAL;
2323 
2324 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2325 	if (!sock)
2326 		goto out;
2327 
2328 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329 
2330 	fput_light(sock->file, fput_needed);
2331 out:
2332 	return err;
2333 }
2334 
2335 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2336 		unsigned int, flags)
2337 {
2338 	return __sys_recvmsg(fd, msg, flags, true);
2339 }
2340 
2341 /*
2342  *     Linux recvmmsg interface
2343  */
2344 
2345 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346 		   unsigned int flags, struct timespec *timeout)
2347 {
2348 	int fput_needed, err, datagrams;
2349 	struct socket *sock;
2350 	struct mmsghdr __user *entry;
2351 	struct compat_mmsghdr __user *compat_entry;
2352 	struct msghdr msg_sys;
2353 	struct timespec64 end_time;
2354 	struct timespec64 timeout64;
2355 
2356 	if (timeout &&
2357 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2358 				    timeout->tv_nsec))
2359 		return -EINVAL;
2360 
2361 	datagrams = 0;
2362 
2363 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364 	if (!sock)
2365 		return err;
2366 
2367 	if (likely(!(flags & MSG_ERRQUEUE))) {
2368 		err = sock_error(sock->sk);
2369 		if (err) {
2370 			datagrams = err;
2371 			goto out_put;
2372 		}
2373 	}
2374 
2375 	entry = mmsg;
2376 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377 
2378 	while (datagrams < vlen) {
2379 		/*
2380 		 * No need to ask LSM for more than the first datagram.
2381 		 */
2382 		if (MSG_CMSG_COMPAT & flags) {
2383 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384 					     &msg_sys, flags & ~MSG_WAITFORONE,
2385 					     datagrams);
2386 			if (err < 0)
2387 				break;
2388 			err = __put_user(err, &compat_entry->msg_len);
2389 			++compat_entry;
2390 		} else {
2391 			err = ___sys_recvmsg(sock,
2392 					     (struct user_msghdr __user *)entry,
2393 					     &msg_sys, flags & ~MSG_WAITFORONE,
2394 					     datagrams);
2395 			if (err < 0)
2396 				break;
2397 			err = put_user(err, &entry->msg_len);
2398 			++entry;
2399 		}
2400 
2401 		if (err)
2402 			break;
2403 		++datagrams;
2404 
2405 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406 		if (flags & MSG_WAITFORONE)
2407 			flags |= MSG_DONTWAIT;
2408 
2409 		if (timeout) {
2410 			ktime_get_ts64(&timeout64);
2411 			*timeout = timespec64_to_timespec(
2412 					timespec64_sub(end_time, timeout64));
2413 			if (timeout->tv_sec < 0) {
2414 				timeout->tv_sec = timeout->tv_nsec = 0;
2415 				break;
2416 			}
2417 
2418 			/* Timeout, return less than vlen datagrams */
2419 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2420 				break;
2421 		}
2422 
2423 		/* Out of band data, return right away */
2424 		if (msg_sys.msg_flags & MSG_OOB)
2425 			break;
2426 		cond_resched();
2427 	}
2428 
2429 	if (err == 0)
2430 		goto out_put;
2431 
2432 	if (datagrams == 0) {
2433 		datagrams = err;
2434 		goto out_put;
2435 	}
2436 
2437 	/*
2438 	 * We may return less entries than requested (vlen) if the
2439 	 * sock is non block and there aren't enough datagrams...
2440 	 */
2441 	if (err != -EAGAIN) {
2442 		/*
2443 		 * ... or  if recvmsg returns an error after we
2444 		 * received some datagrams, where we record the
2445 		 * error to return on the next call or if the
2446 		 * app asks about it using getsockopt(SO_ERROR).
2447 		 */
2448 		sock->sk->sk_err = -err;
2449 	}
2450 out_put:
2451 	fput_light(sock->file, fput_needed);
2452 
2453 	return datagrams;
2454 }
2455 
2456 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2457 			   unsigned int vlen, unsigned int flags,
2458 			   struct timespec __user *timeout)
2459 {
2460 	int datagrams;
2461 	struct timespec timeout_sys;
2462 
2463 	if (flags & MSG_CMSG_COMPAT)
2464 		return -EINVAL;
2465 
2466 	if (!timeout)
2467 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468 
2469 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2470 		return -EFAULT;
2471 
2472 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473 
2474 	if (datagrams > 0 &&
2475 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2476 		datagrams = -EFAULT;
2477 
2478 	return datagrams;
2479 }
2480 
2481 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482 		unsigned int, vlen, unsigned int, flags,
2483 		struct timespec __user *, timeout)
2484 {
2485 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486 }
2487 
2488 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2489 /* Argument list sizes for sys_socketcall */
2490 #define AL(x) ((x) * sizeof(unsigned long))
2491 static const unsigned char nargs[21] = {
2492 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495 	AL(4), AL(5), AL(4)
2496 };
2497 
2498 #undef AL
2499 
2500 /*
2501  *	System call vectors.
2502  *
2503  *	Argument checking cleaned up. Saved 20% in size.
2504  *  This function doesn't need to set the kernel lock because
2505  *  it is set by the callees.
2506  */
2507 
2508 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509 {
2510 	unsigned long a[AUDITSC_ARGS];
2511 	unsigned long a0, a1;
2512 	int err;
2513 	unsigned int len;
2514 
2515 	if (call < 1 || call > SYS_SENDMMSG)
2516 		return -EINVAL;
2517 
2518 	len = nargs[call];
2519 	if (len > sizeof(a))
2520 		return -EINVAL;
2521 
2522 	/* copy_from_user should be SMP safe. */
2523 	if (copy_from_user(a, args, len))
2524 		return -EFAULT;
2525 
2526 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527 	if (err)
2528 		return err;
2529 
2530 	a0 = a[0];
2531 	a1 = a[1];
2532 
2533 	switch (call) {
2534 	case SYS_SOCKET:
2535 		err = __sys_socket(a0, a1, a[2]);
2536 		break;
2537 	case SYS_BIND:
2538 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539 		break;
2540 	case SYS_CONNECT:
2541 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542 		break;
2543 	case SYS_LISTEN:
2544 		err = __sys_listen(a0, a1);
2545 		break;
2546 	case SYS_ACCEPT:
2547 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548 				    (int __user *)a[2], 0);
2549 		break;
2550 	case SYS_GETSOCKNAME:
2551 		err =
2552 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553 				      (int __user *)a[2]);
2554 		break;
2555 	case SYS_GETPEERNAME:
2556 		err =
2557 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558 				      (int __user *)a[2]);
2559 		break;
2560 	case SYS_SOCKETPAIR:
2561 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562 		break;
2563 	case SYS_SEND:
2564 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565 				   NULL, 0);
2566 		break;
2567 	case SYS_SENDTO:
2568 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569 				   (struct sockaddr __user *)a[4], a[5]);
2570 		break;
2571 	case SYS_RECV:
2572 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573 				     NULL, NULL);
2574 		break;
2575 	case SYS_RECVFROM:
2576 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577 				     (struct sockaddr __user *)a[4],
2578 				     (int __user *)a[5]);
2579 		break;
2580 	case SYS_SHUTDOWN:
2581 		err = __sys_shutdown(a0, a1);
2582 		break;
2583 	case SYS_SETSOCKOPT:
2584 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585 				       a[4]);
2586 		break;
2587 	case SYS_GETSOCKOPT:
2588 		err =
2589 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590 				     (int __user *)a[4]);
2591 		break;
2592 	case SYS_SENDMSG:
2593 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594 				    a[2], true);
2595 		break;
2596 	case SYS_SENDMMSG:
2597 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598 				     a[3], true);
2599 		break;
2600 	case SYS_RECVMSG:
2601 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602 				    a[2], true);
2603 		break;
2604 	case SYS_RECVMMSG:
2605 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606 				      a[3], (struct timespec __user *)a[4]);
2607 		break;
2608 	case SYS_ACCEPT4:
2609 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610 				    (int __user *)a[2], a[3]);
2611 		break;
2612 	default:
2613 		err = -EINVAL;
2614 		break;
2615 	}
2616 	return err;
2617 }
2618 
2619 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2620 
2621 /**
2622  *	sock_register - add a socket protocol handler
2623  *	@ops: description of protocol
2624  *
2625  *	This function is called by a protocol handler that wants to
2626  *	advertise its address family, and have it linked into the
2627  *	socket interface. The value ops->family corresponds to the
2628  *	socket system call protocol family.
2629  */
2630 int sock_register(const struct net_proto_family *ops)
2631 {
2632 	int err;
2633 
2634 	if (ops->family >= NPROTO) {
2635 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636 		return -ENOBUFS;
2637 	}
2638 
2639 	spin_lock(&net_family_lock);
2640 	if (rcu_dereference_protected(net_families[ops->family],
2641 				      lockdep_is_held(&net_family_lock)))
2642 		err = -EEXIST;
2643 	else {
2644 		rcu_assign_pointer(net_families[ops->family], ops);
2645 		err = 0;
2646 	}
2647 	spin_unlock(&net_family_lock);
2648 
2649 	pr_info("NET: Registered protocol family %d\n", ops->family);
2650 	return err;
2651 }
2652 EXPORT_SYMBOL(sock_register);
2653 
2654 /**
2655  *	sock_unregister - remove a protocol handler
2656  *	@family: protocol family to remove
2657  *
2658  *	This function is called by a protocol handler that wants to
2659  *	remove its address family, and have it unlinked from the
2660  *	new socket creation.
2661  *
2662  *	If protocol handler is a module, then it can use module reference
2663  *	counts to protect against new references. If protocol handler is not
2664  *	a module then it needs to provide its own protection in
2665  *	the ops->create routine.
2666  */
2667 void sock_unregister(int family)
2668 {
2669 	BUG_ON(family < 0 || family >= NPROTO);
2670 
2671 	spin_lock(&net_family_lock);
2672 	RCU_INIT_POINTER(net_families[family], NULL);
2673 	spin_unlock(&net_family_lock);
2674 
2675 	synchronize_rcu();
2676 
2677 	pr_info("NET: Unregistered protocol family %d\n", family);
2678 }
2679 EXPORT_SYMBOL(sock_unregister);
2680 
2681 bool sock_is_registered(int family)
2682 {
2683 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2684 }
2685 
2686 static int __init sock_init(void)
2687 {
2688 	int err;
2689 	/*
2690 	 *      Initialize the network sysctl infrastructure.
2691 	 */
2692 	err = net_sysctl_init();
2693 	if (err)
2694 		goto out;
2695 
2696 	/*
2697 	 *      Initialize skbuff SLAB cache
2698 	 */
2699 	skb_init();
2700 
2701 	/*
2702 	 *      Initialize the protocols module.
2703 	 */
2704 
2705 	init_inodecache();
2706 
2707 	err = register_filesystem(&sock_fs_type);
2708 	if (err)
2709 		goto out_fs;
2710 	sock_mnt = kern_mount(&sock_fs_type);
2711 	if (IS_ERR(sock_mnt)) {
2712 		err = PTR_ERR(sock_mnt);
2713 		goto out_mount;
2714 	}
2715 
2716 	/* The real protocol initialization is performed in later initcalls.
2717 	 */
2718 
2719 #ifdef CONFIG_NETFILTER
2720 	err = netfilter_init();
2721 	if (err)
2722 		goto out;
2723 #endif
2724 
2725 	ptp_classifier_init();
2726 
2727 out:
2728 	return err;
2729 
2730 out_mount:
2731 	unregister_filesystem(&sock_fs_type);
2732 out_fs:
2733 	goto out;
2734 }
2735 
2736 core_initcall(sock_init);	/* early initcall */
2737 
2738 #ifdef CONFIG_PROC_FS
2739 void socket_seq_show(struct seq_file *seq)
2740 {
2741 	seq_printf(seq, "sockets: used %d\n",
2742 		   sock_inuse_get(seq->private));
2743 }
2744 #endif				/* CONFIG_PROC_FS */
2745 
2746 #ifdef CONFIG_COMPAT
2747 static int do_siocgstamp(struct net *net, struct socket *sock,
2748 			 unsigned int cmd, void __user *up)
2749 {
2750 	mm_segment_t old_fs = get_fs();
2751 	struct timeval ktv;
2752 	int err;
2753 
2754 	set_fs(KERNEL_DS);
2755 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2756 	set_fs(old_fs);
2757 	if (!err)
2758 		err = compat_put_timeval(&ktv, up);
2759 
2760 	return err;
2761 }
2762 
2763 static int do_siocgstampns(struct net *net, struct socket *sock,
2764 			   unsigned int cmd, void __user *up)
2765 {
2766 	mm_segment_t old_fs = get_fs();
2767 	struct timespec kts;
2768 	int err;
2769 
2770 	set_fs(KERNEL_DS);
2771 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2772 	set_fs(old_fs);
2773 	if (!err)
2774 		err = compat_put_timespec(&kts, up);
2775 
2776 	return err;
2777 }
2778 
2779 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2780 {
2781 	struct compat_ifconf ifc32;
2782 	struct ifconf ifc;
2783 	int err;
2784 
2785 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2786 		return -EFAULT;
2787 
2788 	ifc.ifc_len = ifc32.ifc_len;
2789 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2790 
2791 	rtnl_lock();
2792 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2793 	rtnl_unlock();
2794 	if (err)
2795 		return err;
2796 
2797 	ifc32.ifc_len = ifc.ifc_len;
2798 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2799 		return -EFAULT;
2800 
2801 	return 0;
2802 }
2803 
2804 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805 {
2806 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807 	bool convert_in = false, convert_out = false;
2808 	size_t buf_size = 0;
2809 	struct ethtool_rxnfc __user *rxnfc = NULL;
2810 	struct ifreq ifr;
2811 	u32 rule_cnt = 0, actual_rule_cnt;
2812 	u32 ethcmd;
2813 	u32 data;
2814 	int ret;
2815 
2816 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2817 		return -EFAULT;
2818 
2819 	compat_rxnfc = compat_ptr(data);
2820 
2821 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2822 		return -EFAULT;
2823 
2824 	/* Most ethtool structures are defined without padding.
2825 	 * Unfortunately struct ethtool_rxnfc is an exception.
2826 	 */
2827 	switch (ethcmd) {
2828 	default:
2829 		break;
2830 	case ETHTOOL_GRXCLSRLALL:
2831 		/* Buffer size is variable */
2832 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2833 			return -EFAULT;
2834 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2835 			return -ENOMEM;
2836 		buf_size += rule_cnt * sizeof(u32);
2837 		/* fall through */
2838 	case ETHTOOL_GRXRINGS:
2839 	case ETHTOOL_GRXCLSRLCNT:
2840 	case ETHTOOL_GRXCLSRULE:
2841 	case ETHTOOL_SRXCLSRLINS:
2842 		convert_out = true;
2843 		/* fall through */
2844 	case ETHTOOL_SRXCLSRLDEL:
2845 		buf_size += sizeof(struct ethtool_rxnfc);
2846 		convert_in = true;
2847 		rxnfc = compat_alloc_user_space(buf_size);
2848 		break;
2849 	}
2850 
2851 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2852 		return -EFAULT;
2853 
2854 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2855 
2856 	if (convert_in) {
2857 		/* We expect there to be holes between fs.m_ext and
2858 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 		 */
2860 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861 			     sizeof(compat_rxnfc->fs.m_ext) !=
2862 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863 			     sizeof(rxnfc->fs.m_ext));
2864 		BUILD_BUG_ON(
2865 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867 			offsetof(struct ethtool_rxnfc, fs.location) -
2868 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869 
2870 		if (copy_in_user(rxnfc, compat_rxnfc,
2871 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2872 				 (void __user *)rxnfc) ||
2873 		    copy_in_user(&rxnfc->fs.ring_cookie,
2874 				 &compat_rxnfc->fs.ring_cookie,
2875 				 (void __user *)(&rxnfc->fs.location + 1) -
2876 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2877 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878 				 sizeof(rxnfc->rule_cnt)))
2879 			return -EFAULT;
2880 	}
2881 
2882 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2883 	if (ret)
2884 		return ret;
2885 
2886 	if (convert_out) {
2887 		if (copy_in_user(compat_rxnfc, rxnfc,
2888 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2889 				 (const void __user *)rxnfc) ||
2890 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891 				 &rxnfc->fs.ring_cookie,
2892 				 (const void __user *)(&rxnfc->fs.location + 1) -
2893 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2894 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895 				 sizeof(rxnfc->rule_cnt)))
2896 			return -EFAULT;
2897 
2898 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899 			/* As an optimisation, we only copy the actual
2900 			 * number of rules that the underlying
2901 			 * function returned.  Since Mallory might
2902 			 * change the rule count in user memory, we
2903 			 * check that it is less than the rule count
2904 			 * originally given (as the user buffer size),
2905 			 * which has been range-checked.
2906 			 */
2907 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908 				return -EFAULT;
2909 			if (actual_rule_cnt < rule_cnt)
2910 				rule_cnt = actual_rule_cnt;
2911 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912 					 &rxnfc->rule_locs[0],
2913 					 rule_cnt * sizeof(u32)))
2914 				return -EFAULT;
2915 		}
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922 {
2923 	compat_uptr_t uptr32;
2924 	struct ifreq ifr;
2925 	void __user *saved;
2926 	int err;
2927 
2928 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2929 		return -EFAULT;
2930 
2931 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932 		return -EFAULT;
2933 
2934 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2935 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2936 
2937 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2938 	if (!err) {
2939 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2940 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2941 			err = -EFAULT;
2942 	}
2943 	return err;
2944 }
2945 
2946 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2947 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2948 				 struct compat_ifreq __user *u_ifreq32)
2949 {
2950 	struct ifreq ifreq;
2951 	u32 data32;
2952 
2953 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2954 		return -EFAULT;
2955 	if (get_user(data32, &u_ifreq32->ifr_data))
2956 		return -EFAULT;
2957 	ifreq.ifr_data = compat_ptr(data32);
2958 
2959 	return dev_ioctl(net, cmd, &ifreq, NULL);
2960 }
2961 
2962 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2963 			struct compat_ifreq __user *uifr32)
2964 {
2965 	struct ifreq ifr;
2966 	struct compat_ifmap __user *uifmap32;
2967 	int err;
2968 
2969 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2970 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2971 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2975 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2976 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2977 	if (err)
2978 		return -EFAULT;
2979 
2980 	err = dev_ioctl(net, cmd, &ifr, NULL);
2981 
2982 	if (cmd == SIOCGIFMAP && !err) {
2983 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2984 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2985 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2986 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2987 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2988 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2989 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990 		if (err)
2991 			err = -EFAULT;
2992 	}
2993 	return err;
2994 }
2995 
2996 struct rtentry32 {
2997 	u32		rt_pad1;
2998 	struct sockaddr rt_dst;         /* target address               */
2999 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3000 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3001 	unsigned short	rt_flags;
3002 	short		rt_pad2;
3003 	u32		rt_pad3;
3004 	unsigned char	rt_tos;
3005 	unsigned char	rt_class;
3006 	short		rt_pad4;
3007 	short		rt_metric;      /* +1 for binary compatibility! */
3008 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3009 	u32		rt_mtu;         /* per route MTU/Window         */
3010 	u32		rt_window;      /* Window clamping              */
3011 	unsigned short  rt_irtt;        /* Initial RTT                  */
3012 };
3013 
3014 struct in6_rtmsg32 {
3015 	struct in6_addr		rtmsg_dst;
3016 	struct in6_addr		rtmsg_src;
3017 	struct in6_addr		rtmsg_gateway;
3018 	u32			rtmsg_type;
3019 	u16			rtmsg_dst_len;
3020 	u16			rtmsg_src_len;
3021 	u32			rtmsg_metric;
3022 	u32			rtmsg_info;
3023 	u32			rtmsg_flags;
3024 	s32			rtmsg_ifindex;
3025 };
3026 
3027 static int routing_ioctl(struct net *net, struct socket *sock,
3028 			 unsigned int cmd, void __user *argp)
3029 {
3030 	int ret;
3031 	void *r = NULL;
3032 	struct in6_rtmsg r6;
3033 	struct rtentry r4;
3034 	char devname[16];
3035 	u32 rtdev;
3036 	mm_segment_t old_fs = get_fs();
3037 
3038 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3039 		struct in6_rtmsg32 __user *ur6 = argp;
3040 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3041 			3 * sizeof(struct in6_addr));
3042 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3043 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3044 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3045 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3046 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3047 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3048 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3049 
3050 		r = (void *) &r6;
3051 	} else { /* ipv4 */
3052 		struct rtentry32 __user *ur4 = argp;
3053 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3054 					3 * sizeof(struct sockaddr));
3055 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3056 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3057 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3058 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3059 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3060 		ret |= get_user(rtdev, &(ur4->rt_dev));
3061 		if (rtdev) {
3062 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3063 			r4.rt_dev = (char __user __force *)devname;
3064 			devname[15] = 0;
3065 		} else
3066 			r4.rt_dev = NULL;
3067 
3068 		r = (void *) &r4;
3069 	}
3070 
3071 	if (ret) {
3072 		ret = -EFAULT;
3073 		goto out;
3074 	}
3075 
3076 	set_fs(KERNEL_DS);
3077 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3078 	set_fs(old_fs);
3079 
3080 out:
3081 	return ret;
3082 }
3083 
3084 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3085  * for some operations; this forces use of the newer bridge-utils that
3086  * use compatible ioctls
3087  */
3088 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3089 {
3090 	compat_ulong_t tmp;
3091 
3092 	if (get_user(tmp, argp))
3093 		return -EFAULT;
3094 	if (tmp == BRCTL_GET_VERSION)
3095 		return BRCTL_VERSION + 1;
3096 	return -EINVAL;
3097 }
3098 
3099 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3100 			 unsigned int cmd, unsigned long arg)
3101 {
3102 	void __user *argp = compat_ptr(arg);
3103 	struct sock *sk = sock->sk;
3104 	struct net *net = sock_net(sk);
3105 
3106 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3107 		return compat_ifr_data_ioctl(net, cmd, argp);
3108 
3109 	switch (cmd) {
3110 	case SIOCSIFBR:
3111 	case SIOCGIFBR:
3112 		return old_bridge_ioctl(argp);
3113 	case SIOCGIFCONF:
3114 		return compat_dev_ifconf(net, argp);
3115 	case SIOCETHTOOL:
3116 		return ethtool_ioctl(net, argp);
3117 	case SIOCWANDEV:
3118 		return compat_siocwandev(net, argp);
3119 	case SIOCGIFMAP:
3120 	case SIOCSIFMAP:
3121 		return compat_sioc_ifmap(net, cmd, argp);
3122 	case SIOCADDRT:
3123 	case SIOCDELRT:
3124 		return routing_ioctl(net, sock, cmd, argp);
3125 	case SIOCGSTAMP:
3126 		return do_siocgstamp(net, sock, cmd, argp);
3127 	case SIOCGSTAMPNS:
3128 		return do_siocgstampns(net, sock, cmd, argp);
3129 	case SIOCBONDSLAVEINFOQUERY:
3130 	case SIOCBONDINFOQUERY:
3131 	case SIOCSHWTSTAMP:
3132 	case SIOCGHWTSTAMP:
3133 		return compat_ifr_data_ioctl(net, cmd, argp);
3134 
3135 	case FIOSETOWN:
3136 	case SIOCSPGRP:
3137 	case FIOGETOWN:
3138 	case SIOCGPGRP:
3139 	case SIOCBRADDBR:
3140 	case SIOCBRDELBR:
3141 	case SIOCGIFVLAN:
3142 	case SIOCSIFVLAN:
3143 	case SIOCADDDLCI:
3144 	case SIOCDELDLCI:
3145 	case SIOCGSKNS:
3146 		return sock_ioctl(file, cmd, arg);
3147 
3148 	case SIOCGIFFLAGS:
3149 	case SIOCSIFFLAGS:
3150 	case SIOCGIFMETRIC:
3151 	case SIOCSIFMETRIC:
3152 	case SIOCGIFMTU:
3153 	case SIOCSIFMTU:
3154 	case SIOCGIFMEM:
3155 	case SIOCSIFMEM:
3156 	case SIOCGIFHWADDR:
3157 	case SIOCSIFHWADDR:
3158 	case SIOCADDMULTI:
3159 	case SIOCDELMULTI:
3160 	case SIOCGIFINDEX:
3161 	case SIOCGIFADDR:
3162 	case SIOCSIFADDR:
3163 	case SIOCSIFHWBROADCAST:
3164 	case SIOCDIFADDR:
3165 	case SIOCGIFBRDADDR:
3166 	case SIOCSIFBRDADDR:
3167 	case SIOCGIFDSTADDR:
3168 	case SIOCSIFDSTADDR:
3169 	case SIOCGIFNETMASK:
3170 	case SIOCSIFNETMASK:
3171 	case SIOCSIFPFLAGS:
3172 	case SIOCGIFPFLAGS:
3173 	case SIOCGIFTXQLEN:
3174 	case SIOCSIFTXQLEN:
3175 	case SIOCBRADDIF:
3176 	case SIOCBRDELIF:
3177 	case SIOCSIFNAME:
3178 	case SIOCGMIIPHY:
3179 	case SIOCGMIIREG:
3180 	case SIOCSMIIREG:
3181 	case SIOCSARP:
3182 	case SIOCGARP:
3183 	case SIOCDARP:
3184 	case SIOCATMARK:
3185 	case SIOCBONDENSLAVE:
3186 	case SIOCBONDRELEASE:
3187 	case SIOCBONDSETHWADDR:
3188 	case SIOCBONDCHANGEACTIVE:
3189 	case SIOCGIFNAME:
3190 		return sock_do_ioctl(net, sock, cmd, arg);
3191 	}
3192 
3193 	return -ENOIOCTLCMD;
3194 }
3195 
3196 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3197 			      unsigned long arg)
3198 {
3199 	struct socket *sock = file->private_data;
3200 	int ret = -ENOIOCTLCMD;
3201 	struct sock *sk;
3202 	struct net *net;
3203 
3204 	sk = sock->sk;
3205 	net = sock_net(sk);
3206 
3207 	if (sock->ops->compat_ioctl)
3208 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3209 
3210 	if (ret == -ENOIOCTLCMD &&
3211 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3212 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3213 
3214 	if (ret == -ENOIOCTLCMD)
3215 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3216 
3217 	return ret;
3218 }
3219 #endif
3220 
3221 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3222 {
3223 	return sock->ops->bind(sock, addr, addrlen);
3224 }
3225 EXPORT_SYMBOL(kernel_bind);
3226 
3227 int kernel_listen(struct socket *sock, int backlog)
3228 {
3229 	return sock->ops->listen(sock, backlog);
3230 }
3231 EXPORT_SYMBOL(kernel_listen);
3232 
3233 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3234 {
3235 	struct sock *sk = sock->sk;
3236 	int err;
3237 
3238 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239 			       newsock);
3240 	if (err < 0)
3241 		goto done;
3242 
3243 	err = sock->ops->accept(sock, *newsock, flags, true);
3244 	if (err < 0) {
3245 		sock_release(*newsock);
3246 		*newsock = NULL;
3247 		goto done;
3248 	}
3249 
3250 	(*newsock)->ops = sock->ops;
3251 	__module_get((*newsock)->ops->owner);
3252 
3253 done:
3254 	return err;
3255 }
3256 EXPORT_SYMBOL(kernel_accept);
3257 
3258 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3259 		   int flags)
3260 {
3261 	return sock->ops->connect(sock, addr, addrlen, flags);
3262 }
3263 EXPORT_SYMBOL(kernel_connect);
3264 
3265 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3266 {
3267 	return sock->ops->getname(sock, addr, 0);
3268 }
3269 EXPORT_SYMBOL(kernel_getsockname);
3270 
3271 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3272 {
3273 	return sock->ops->getname(sock, addr, 1);
3274 }
3275 EXPORT_SYMBOL(kernel_getpeername);
3276 
3277 int kernel_getsockopt(struct socket *sock, int level, int optname,
3278 			char *optval, int *optlen)
3279 {
3280 	mm_segment_t oldfs = get_fs();
3281 	char __user *uoptval;
3282 	int __user *uoptlen;
3283 	int err;
3284 
3285 	uoptval = (char __user __force *) optval;
3286 	uoptlen = (int __user __force *) optlen;
3287 
3288 	set_fs(KERNEL_DS);
3289 	if (level == SOL_SOCKET)
3290 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291 	else
3292 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293 					    uoptlen);
3294 	set_fs(oldfs);
3295 	return err;
3296 }
3297 EXPORT_SYMBOL(kernel_getsockopt);
3298 
3299 int kernel_setsockopt(struct socket *sock, int level, int optname,
3300 			char *optval, unsigned int optlen)
3301 {
3302 	mm_segment_t oldfs = get_fs();
3303 	char __user *uoptval;
3304 	int err;
3305 
3306 	uoptval = (char __user __force *) optval;
3307 
3308 	set_fs(KERNEL_DS);
3309 	if (level == SOL_SOCKET)
3310 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311 	else
3312 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313 					    optlen);
3314 	set_fs(oldfs);
3315 	return err;
3316 }
3317 EXPORT_SYMBOL(kernel_setsockopt);
3318 
3319 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320 		    size_t size, int flags)
3321 {
3322 	if (sock->ops->sendpage)
3323 		return sock->ops->sendpage(sock, page, offset, size, flags);
3324 
3325 	return sock_no_sendpage(sock, page, offset, size, flags);
3326 }
3327 EXPORT_SYMBOL(kernel_sendpage);
3328 
3329 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3330 			   size_t size, int flags)
3331 {
3332 	struct socket *sock = sk->sk_socket;
3333 
3334 	if (sock->ops->sendpage_locked)
3335 		return sock->ops->sendpage_locked(sk, page, offset, size,
3336 						  flags);
3337 
3338 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3339 }
3340 EXPORT_SYMBOL(kernel_sendpage_locked);
3341 
3342 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343 {
3344 	return sock->ops->shutdown(sock, how);
3345 }
3346 EXPORT_SYMBOL(kernel_sock_shutdown);
3347 
3348 /* This routine returns the IP overhead imposed by a socket i.e.
3349  * the length of the underlying IP header, depending on whether
3350  * this is an IPv4 or IPv6 socket and the length from IP options turned
3351  * on at the socket. Assumes that the caller has a lock on the socket.
3352  */
3353 u32 kernel_sock_ip_overhead(struct sock *sk)
3354 {
3355 	struct inet_sock *inet;
3356 	struct ip_options_rcu *opt;
3357 	u32 overhead = 0;
3358 #if IS_ENABLED(CONFIG_IPV6)
3359 	struct ipv6_pinfo *np;
3360 	struct ipv6_txoptions *optv6 = NULL;
3361 #endif /* IS_ENABLED(CONFIG_IPV6) */
3362 
3363 	if (!sk)
3364 		return overhead;
3365 
3366 	switch (sk->sk_family) {
3367 	case AF_INET:
3368 		inet = inet_sk(sk);
3369 		overhead += sizeof(struct iphdr);
3370 		opt = rcu_dereference_protected(inet->inet_opt,
3371 						sock_owned_by_user(sk));
3372 		if (opt)
3373 			overhead += opt->opt.optlen;
3374 		return overhead;
3375 #if IS_ENABLED(CONFIG_IPV6)
3376 	case AF_INET6:
3377 		np = inet6_sk(sk);
3378 		overhead += sizeof(struct ipv6hdr);
3379 		if (np)
3380 			optv6 = rcu_dereference_protected(np->opt,
3381 							  sock_owned_by_user(sk));
3382 		if (optv6)
3383 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3384 		return overhead;
3385 #endif /* IS_ENABLED(CONFIG_IPV6) */
3386 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3387 		return overhead;
3388 	}
3389 }
3390 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3391