xref: /openbmc/linux/net/socket.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
589 /**
590  *	sock_release - close a socket
591  *	@sock: socket to close
592  *
593  *	The socket is released from the protocol stack if it has a release
594  *	callback, and the inode is then released if the socket is bound to
595  *	an inode not a file.
596  */
597 
598 static void __sock_release(struct socket *sock, struct inode *inode)
599 {
600 	if (sock->ops) {
601 		struct module *owner = sock->ops->owner;
602 
603 		if (inode)
604 			inode_lock(inode);
605 		sock->ops->release(sock);
606 		sock->sk = NULL;
607 		if (inode)
608 			inode_unlock(inode);
609 		sock->ops = NULL;
610 		module_put(owner);
611 	}
612 
613 	if (sock->wq.fasync_list)
614 		pr_err("%s: fasync list not empty!\n", __func__);
615 
616 	if (!sock->file) {
617 		iput(SOCK_INODE(sock));
618 		return;
619 	}
620 	sock->file = NULL;
621 }
622 
623 void sock_release(struct socket *sock)
624 {
625 	__sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628 
629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 	u8 flags = *tx_flags;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 		flags |= SKBTX_HW_TSTAMP;
635 
636 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 		flags |= SKBTX_SW_TSTAMP;
638 
639 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 		flags |= SKBTX_SCHED_TSTAMP;
641 
642 	*tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645 
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 					   size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 					    size_t));
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 				     inet_sendmsg, sock, msg,
654 				     msg_data_left(msg));
655 	BUG_ON(ret == -EIOCBQUEUED);
656 	return ret;
657 }
658 
659 /**
660  *	sock_sendmsg - send a message through @sock
661  *	@sock: socket
662  *	@msg: message to send
663  *
664  *	Sends @msg through @sock, passing through LSM.
665  *	Returns the number of bytes sent, or an error code.
666  */
667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 	int err = security_socket_sendmsg(sock, msg,
670 					  msg_data_left(msg));
671 
672 	return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675 
676 /**
677  *	kernel_sendmsg - send a message through @sock (kernel-space)
678  *	@sock: socket
679  *	@msg: message header
680  *	@vec: kernel vec
681  *	@num: vec array length
682  *	@size: total message data size
683  *
684  *	Builds the message data with @vec and sends it through @sock.
685  *	Returns the number of bytes sent, or an error code.
686  */
687 
688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 		   struct kvec *vec, size_t num, size_t size)
690 {
691 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 	return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695 
696 /**
697  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
698  *	@sk: sock
699  *	@msg: message header
700  *	@vec: output s/g array
701  *	@num: output s/g array length
702  *	@size: total message data size
703  *
704  *	Builds the message data with @vec and sends it through @sock.
705  *	Returns the number of bytes sent, or an error code.
706  *	Caller must hold @sk.
707  */
708 
709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 			  struct kvec *vec, size_t num, size_t size)
711 {
712 	struct socket *sock = sk->sk_socket;
713 
714 	if (!sock->ops->sendmsg_locked)
715 		return sock_no_sendmsg_locked(sk, msg, size);
716 
717 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718 
719 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722 
723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 	/* pkt_type of skbs enqueued on the error queue are set to
726 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 	 * in recvmsg, since skbs received on a local socket will never
728 	 * have a pkt_type of PACKET_OUTGOING.
729 	 */
730 	return skb->pkt_type == PACKET_OUTGOING;
731 }
732 
733 /* On transmit, software and hardware timestamps are returned independently.
734  * As the two skb clones share the hardware timestamp, which may be updated
735  * before the software timestamp is received, a hardware TX timestamp may be
736  * returned only if there is no software TX timestamp. Ignore false software
737  * timestamps, which may be made in the __sock_recv_timestamp() call when the
738  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739  * hardware timestamp.
740  */
741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745 
746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 	struct scm_ts_pktinfo ts_pktinfo;
749 	struct net_device *orig_dev;
750 
751 	if (!skb_mac_header_was_set(skb))
752 		return;
753 
754 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755 
756 	rcu_read_lock();
757 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 	if (orig_dev)
759 		ts_pktinfo.if_index = orig_dev->ifindex;
760 	rcu_read_unlock();
761 
762 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 		 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766 
767 /*
768  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769  */
770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 	struct scm_timestamping_internal tss;
776 
777 	int empty = 1, false_tstamp = 0;
778 	struct skb_shared_hwtstamps *shhwtstamps =
779 		skb_hwtstamps(skb);
780 
781 	/* Race occurred between timestamp enabling and packet
782 	   receiving.  Fill in the current time for now. */
783 	if (need_software_tstamp && skb->tstamp == 0) {
784 		__net_timestamp(skb);
785 		false_tstamp = 1;
786 	}
787 
788 	if (need_software_tstamp) {
789 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 			if (new_tstamp) {
791 				struct __kernel_sock_timeval tv;
792 
793 				skb_get_new_timestamp(skb, &tv);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 					 sizeof(tv), &tv);
796 			} else {
797 				struct __kernel_old_timeval tv;
798 
799 				skb_get_timestamp(skb, &tv);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 					 sizeof(tv), &tv);
802 			}
803 		} else {
804 			if (new_tstamp) {
805 				struct __kernel_timespec ts;
806 
807 				skb_get_new_timestampns(skb, &ts);
808 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 					 sizeof(ts), &ts);
810 			} else {
811 				struct __kernel_old_timespec ts;
812 
813 				skb_get_timestampns(skb, &ts);
814 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 					 sizeof(ts), &ts);
816 			}
817 		}
818 	}
819 
820 	memset(&tss, 0, sizeof(tss));
821 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 		empty = 0;
824 	if (shhwtstamps &&
825 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 		empty = 0;
829 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 		    !skb_is_err_queue(skb))
831 			put_ts_pktinfo(msg, skb);
832 	}
833 	if (!empty) {
834 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 			put_cmsg_scm_timestamping64(msg, &tss);
836 		else
837 			put_cmsg_scm_timestamping(msg, &tss);
838 
839 		if (skb_is_err_queue(skb) && skb->len &&
840 		    SKB_EXT_ERR(skb)->opt_stats)
841 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 				 skb->len, skb->data);
843 	}
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846 
847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 	struct sk_buff *skb)
849 {
850 	int ack;
851 
852 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 		return;
854 	if (!skb->wifi_acked_valid)
855 		return;
856 
857 	ack = skb->wifi_acked;
858 
859 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862 
863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 				   struct sk_buff *skb)
865 {
866 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870 
871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 	struct sk_buff *skb)
873 {
874 	sock_recv_timestamp(msg, sk, skb);
875 	sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878 
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 					   size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 					    size_t, int));
883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 				     int flags)
885 {
886 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 				  inet_recvmsg, sock, msg, msg_data_left(msg),
888 				  flags);
889 }
890 
891 /**
892  *	sock_recvmsg - receive a message from @sock
893  *	@sock: socket
894  *	@msg: message to receive
895  *	@flags: message flags
896  *
897  *	Receives @msg from @sock, passing through LSM. Returns the total number
898  *	of bytes received, or an error.
899  */
900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903 
904 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907 
908 /**
909  *	kernel_recvmsg - Receive a message from a socket (kernel space)
910  *	@sock: The socket to receive the message from
911  *	@msg: Received message
912  *	@vec: Input s/g array for message data
913  *	@num: Size of input s/g array
914  *	@size: Number of bytes to read
915  *	@flags: Message flags (MSG_DONTWAIT, etc...)
916  *
917  *	On return the msg structure contains the scatter/gather array passed in the
918  *	vec argument. The array is modified so that it consists of the unfilled
919  *	portion of the original array.
920  *
921  *	The returned value is the total number of bytes received, or an error.
922  */
923 
924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 		   struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 	mm_segment_t oldfs = get_fs();
928 	int result;
929 
930 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 	set_fs(KERNEL_DS);
932 	result = sock_recvmsg(sock, msg, flags);
933 	set_fs(oldfs);
934 	return result;
935 }
936 EXPORT_SYMBOL(kernel_recvmsg);
937 
938 static ssize_t sock_sendpage(struct file *file, struct page *page,
939 			     int offset, size_t size, loff_t *ppos, int more)
940 {
941 	struct socket *sock;
942 	int flags;
943 
944 	sock = file->private_data;
945 
946 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
947 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
948 	flags |= more;
949 
950 	return kernel_sendpage(sock, page, offset, size, flags);
951 }
952 
953 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
954 				struct pipe_inode_info *pipe, size_t len,
955 				unsigned int flags)
956 {
957 	struct socket *sock = file->private_data;
958 
959 	if (unlikely(!sock->ops->splice_read))
960 		return generic_file_splice_read(file, ppos, pipe, len, flags);
961 
962 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
963 }
964 
965 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
966 {
967 	struct file *file = iocb->ki_filp;
968 	struct socket *sock = file->private_data;
969 	struct msghdr msg = {.msg_iter = *to,
970 			     .msg_iocb = iocb};
971 	ssize_t res;
972 
973 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
974 		msg.msg_flags = MSG_DONTWAIT;
975 
976 	if (iocb->ki_pos != 0)
977 		return -ESPIPE;
978 
979 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
980 		return 0;
981 
982 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
983 	*to = msg.msg_iter;
984 	return res;
985 }
986 
987 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
988 {
989 	struct file *file = iocb->ki_filp;
990 	struct socket *sock = file->private_data;
991 	struct msghdr msg = {.msg_iter = *from,
992 			     .msg_iocb = iocb};
993 	ssize_t res;
994 
995 	if (iocb->ki_pos != 0)
996 		return -ESPIPE;
997 
998 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
999 		msg.msg_flags = MSG_DONTWAIT;
1000 
1001 	if (sock->type == SOCK_SEQPACKET)
1002 		msg.msg_flags |= MSG_EOR;
1003 
1004 	res = sock_sendmsg(sock, &msg);
1005 	*from = msg.msg_iter;
1006 	return res;
1007 }
1008 
1009 /*
1010  * Atomic setting of ioctl hooks to avoid race
1011  * with module unload.
1012  */
1013 
1014 static DEFINE_MUTEX(br_ioctl_mutex);
1015 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1016 
1017 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1018 {
1019 	mutex_lock(&br_ioctl_mutex);
1020 	br_ioctl_hook = hook;
1021 	mutex_unlock(&br_ioctl_mutex);
1022 }
1023 EXPORT_SYMBOL(brioctl_set);
1024 
1025 static DEFINE_MUTEX(vlan_ioctl_mutex);
1026 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1027 
1028 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1029 {
1030 	mutex_lock(&vlan_ioctl_mutex);
1031 	vlan_ioctl_hook = hook;
1032 	mutex_unlock(&vlan_ioctl_mutex);
1033 }
1034 EXPORT_SYMBOL(vlan_ioctl_set);
1035 
1036 static DEFINE_MUTEX(dlci_ioctl_mutex);
1037 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1038 
1039 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1040 {
1041 	mutex_lock(&dlci_ioctl_mutex);
1042 	dlci_ioctl_hook = hook;
1043 	mutex_unlock(&dlci_ioctl_mutex);
1044 }
1045 EXPORT_SYMBOL(dlci_ioctl_set);
1046 
1047 static long sock_do_ioctl(struct net *net, struct socket *sock,
1048 			  unsigned int cmd, unsigned long arg)
1049 {
1050 	int err;
1051 	void __user *argp = (void __user *)arg;
1052 
1053 	err = sock->ops->ioctl(sock, cmd, arg);
1054 
1055 	/*
1056 	 * If this ioctl is unknown try to hand it down
1057 	 * to the NIC driver.
1058 	 */
1059 	if (err != -ENOIOCTLCMD)
1060 		return err;
1061 
1062 	if (cmd == SIOCGIFCONF) {
1063 		struct ifconf ifc;
1064 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1065 			return -EFAULT;
1066 		rtnl_lock();
1067 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1068 		rtnl_unlock();
1069 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1070 			err = -EFAULT;
1071 	} else {
1072 		struct ifreq ifr;
1073 		bool need_copyout;
1074 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1075 			return -EFAULT;
1076 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1077 		if (!err && need_copyout)
1078 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1079 				return -EFAULT;
1080 	}
1081 	return err;
1082 }
1083 
1084 /*
1085  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1086  *	what to do with it - that's up to the protocol still.
1087  */
1088 
1089 /**
1090  *	get_net_ns - increment the refcount of the network namespace
1091  *	@ns: common namespace (net)
1092  *
1093  *	Returns the net's common namespace.
1094  */
1095 
1096 struct ns_common *get_net_ns(struct ns_common *ns)
1097 {
1098 	return &get_net(container_of(ns, struct net, ns))->ns;
1099 }
1100 EXPORT_SYMBOL_GPL(get_net_ns);
1101 
1102 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1103 {
1104 	struct socket *sock;
1105 	struct sock *sk;
1106 	void __user *argp = (void __user *)arg;
1107 	int pid, err;
1108 	struct net *net;
1109 
1110 	sock = file->private_data;
1111 	sk = sock->sk;
1112 	net = sock_net(sk);
1113 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1114 		struct ifreq ifr;
1115 		bool need_copyout;
1116 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1117 			return -EFAULT;
1118 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1119 		if (!err && need_copyout)
1120 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1121 				return -EFAULT;
1122 	} else
1123 #ifdef CONFIG_WEXT_CORE
1124 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1125 		err = wext_handle_ioctl(net, cmd, argp);
1126 	} else
1127 #endif
1128 		switch (cmd) {
1129 		case FIOSETOWN:
1130 		case SIOCSPGRP:
1131 			err = -EFAULT;
1132 			if (get_user(pid, (int __user *)argp))
1133 				break;
1134 			err = f_setown(sock->file, pid, 1);
1135 			break;
1136 		case FIOGETOWN:
1137 		case SIOCGPGRP:
1138 			err = put_user(f_getown(sock->file),
1139 				       (int __user *)argp);
1140 			break;
1141 		case SIOCGIFBR:
1142 		case SIOCSIFBR:
1143 		case SIOCBRADDBR:
1144 		case SIOCBRDELBR:
1145 			err = -ENOPKG;
1146 			if (!br_ioctl_hook)
1147 				request_module("bridge");
1148 
1149 			mutex_lock(&br_ioctl_mutex);
1150 			if (br_ioctl_hook)
1151 				err = br_ioctl_hook(net, cmd, argp);
1152 			mutex_unlock(&br_ioctl_mutex);
1153 			break;
1154 		case SIOCGIFVLAN:
1155 		case SIOCSIFVLAN:
1156 			err = -ENOPKG;
1157 			if (!vlan_ioctl_hook)
1158 				request_module("8021q");
1159 
1160 			mutex_lock(&vlan_ioctl_mutex);
1161 			if (vlan_ioctl_hook)
1162 				err = vlan_ioctl_hook(net, argp);
1163 			mutex_unlock(&vlan_ioctl_mutex);
1164 			break;
1165 		case SIOCADDDLCI:
1166 		case SIOCDELDLCI:
1167 			err = -ENOPKG;
1168 			if (!dlci_ioctl_hook)
1169 				request_module("dlci");
1170 
1171 			mutex_lock(&dlci_ioctl_mutex);
1172 			if (dlci_ioctl_hook)
1173 				err = dlci_ioctl_hook(cmd, argp);
1174 			mutex_unlock(&dlci_ioctl_mutex);
1175 			break;
1176 		case SIOCGSKNS:
1177 			err = -EPERM;
1178 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179 				break;
1180 
1181 			err = open_related_ns(&net->ns, get_net_ns);
1182 			break;
1183 		case SIOCGSTAMP_OLD:
1184 		case SIOCGSTAMPNS_OLD:
1185 			if (!sock->ops->gettstamp) {
1186 				err = -ENOIOCTLCMD;
1187 				break;
1188 			}
1189 			err = sock->ops->gettstamp(sock, argp,
1190 						   cmd == SIOCGSTAMP_OLD,
1191 						   !IS_ENABLED(CONFIG_64BIT));
1192 			break;
1193 		case SIOCGSTAMP_NEW:
1194 		case SIOCGSTAMPNS_NEW:
1195 			if (!sock->ops->gettstamp) {
1196 				err = -ENOIOCTLCMD;
1197 				break;
1198 			}
1199 			err = sock->ops->gettstamp(sock, argp,
1200 						   cmd == SIOCGSTAMP_NEW,
1201 						   false);
1202 			break;
1203 		default:
1204 			err = sock_do_ioctl(net, sock, cmd, arg);
1205 			break;
1206 		}
1207 	return err;
1208 }
1209 
1210 /**
1211  *	sock_create_lite - creates a socket
1212  *	@family: protocol family (AF_INET, ...)
1213  *	@type: communication type (SOCK_STREAM, ...)
1214  *	@protocol: protocol (0, ...)
1215  *	@res: new socket
1216  *
1217  *	Creates a new socket and assigns it to @res, passing through LSM.
1218  *	The new socket initialization is not complete, see kernel_accept().
1219  *	Returns 0 or an error. On failure @res is set to %NULL.
1220  *	This function internally uses GFP_KERNEL.
1221  */
1222 
1223 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1224 {
1225 	int err;
1226 	struct socket *sock = NULL;
1227 
1228 	err = security_socket_create(family, type, protocol, 1);
1229 	if (err)
1230 		goto out;
1231 
1232 	sock = sock_alloc();
1233 	if (!sock) {
1234 		err = -ENOMEM;
1235 		goto out;
1236 	}
1237 
1238 	sock->type = type;
1239 	err = security_socket_post_create(sock, family, type, protocol, 1);
1240 	if (err)
1241 		goto out_release;
1242 
1243 out:
1244 	*res = sock;
1245 	return err;
1246 out_release:
1247 	sock_release(sock);
1248 	sock = NULL;
1249 	goto out;
1250 }
1251 EXPORT_SYMBOL(sock_create_lite);
1252 
1253 /* No kernel lock held - perfect */
1254 static __poll_t sock_poll(struct file *file, poll_table *wait)
1255 {
1256 	struct socket *sock = file->private_data;
1257 	__poll_t events = poll_requested_events(wait), flag = 0;
1258 
1259 	if (!sock->ops->poll)
1260 		return 0;
1261 
1262 	if (sk_can_busy_loop(sock->sk)) {
1263 		/* poll once if requested by the syscall */
1264 		if (events & POLL_BUSY_LOOP)
1265 			sk_busy_loop(sock->sk, 1);
1266 
1267 		/* if this socket can poll_ll, tell the system call */
1268 		flag = POLL_BUSY_LOOP;
1269 	}
1270 
1271 	return sock->ops->poll(file, sock, wait) | flag;
1272 }
1273 
1274 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1275 {
1276 	struct socket *sock = file->private_data;
1277 
1278 	return sock->ops->mmap(file, sock, vma);
1279 }
1280 
1281 static int sock_close(struct inode *inode, struct file *filp)
1282 {
1283 	__sock_release(SOCKET_I(inode), inode);
1284 	return 0;
1285 }
1286 
1287 /*
1288  *	Update the socket async list
1289  *
1290  *	Fasync_list locking strategy.
1291  *
1292  *	1. fasync_list is modified only under process context socket lock
1293  *	   i.e. under semaphore.
1294  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1295  *	   or under socket lock
1296  */
1297 
1298 static int sock_fasync(int fd, struct file *filp, int on)
1299 {
1300 	struct socket *sock = filp->private_data;
1301 	struct sock *sk = sock->sk;
1302 	struct socket_wq *wq = &sock->wq;
1303 
1304 	if (sk == NULL)
1305 		return -EINVAL;
1306 
1307 	lock_sock(sk);
1308 	fasync_helper(fd, filp, on, &wq->fasync_list);
1309 
1310 	if (!wq->fasync_list)
1311 		sock_reset_flag(sk, SOCK_FASYNC);
1312 	else
1313 		sock_set_flag(sk, SOCK_FASYNC);
1314 
1315 	release_sock(sk);
1316 	return 0;
1317 }
1318 
1319 /* This function may be called only under rcu_lock */
1320 
1321 int sock_wake_async(struct socket_wq *wq, int how, int band)
1322 {
1323 	if (!wq || !wq->fasync_list)
1324 		return -1;
1325 
1326 	switch (how) {
1327 	case SOCK_WAKE_WAITD:
1328 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1329 			break;
1330 		goto call_kill;
1331 	case SOCK_WAKE_SPACE:
1332 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1333 			break;
1334 		/* fall through */
1335 	case SOCK_WAKE_IO:
1336 call_kill:
1337 		kill_fasync(&wq->fasync_list, SIGIO, band);
1338 		break;
1339 	case SOCK_WAKE_URG:
1340 		kill_fasync(&wq->fasync_list, SIGURG, band);
1341 	}
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(sock_wake_async);
1346 
1347 /**
1348  *	__sock_create - creates a socket
1349  *	@net: net namespace
1350  *	@family: protocol family (AF_INET, ...)
1351  *	@type: communication type (SOCK_STREAM, ...)
1352  *	@protocol: protocol (0, ...)
1353  *	@res: new socket
1354  *	@kern: boolean for kernel space sockets
1355  *
1356  *	Creates a new socket and assigns it to @res, passing through LSM.
1357  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1358  *	be set to true if the socket resides in kernel space.
1359  *	This function internally uses GFP_KERNEL.
1360  */
1361 
1362 int __sock_create(struct net *net, int family, int type, int protocol,
1363 			 struct socket **res, int kern)
1364 {
1365 	int err;
1366 	struct socket *sock;
1367 	const struct net_proto_family *pf;
1368 
1369 	/*
1370 	 *      Check protocol is in range
1371 	 */
1372 	if (family < 0 || family >= NPROTO)
1373 		return -EAFNOSUPPORT;
1374 	if (type < 0 || type >= SOCK_MAX)
1375 		return -EINVAL;
1376 
1377 	/* Compatibility.
1378 
1379 	   This uglymoron is moved from INET layer to here to avoid
1380 	   deadlock in module load.
1381 	 */
1382 	if (family == PF_INET && type == SOCK_PACKET) {
1383 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1384 			     current->comm);
1385 		family = PF_PACKET;
1386 	}
1387 
1388 	err = security_socket_create(family, type, protocol, kern);
1389 	if (err)
1390 		return err;
1391 
1392 	/*
1393 	 *	Allocate the socket and allow the family to set things up. if
1394 	 *	the protocol is 0, the family is instructed to select an appropriate
1395 	 *	default.
1396 	 */
1397 	sock = sock_alloc();
1398 	if (!sock) {
1399 		net_warn_ratelimited("socket: no more sockets\n");
1400 		return -ENFILE;	/* Not exactly a match, but its the
1401 				   closest posix thing */
1402 	}
1403 
1404 	sock->type = type;
1405 
1406 #ifdef CONFIG_MODULES
1407 	/* Attempt to load a protocol module if the find failed.
1408 	 *
1409 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1410 	 * requested real, full-featured networking support upon configuration.
1411 	 * Otherwise module support will break!
1412 	 */
1413 	if (rcu_access_pointer(net_families[family]) == NULL)
1414 		request_module("net-pf-%d", family);
1415 #endif
1416 
1417 	rcu_read_lock();
1418 	pf = rcu_dereference(net_families[family]);
1419 	err = -EAFNOSUPPORT;
1420 	if (!pf)
1421 		goto out_release;
1422 
1423 	/*
1424 	 * We will call the ->create function, that possibly is in a loadable
1425 	 * module, so we have to bump that loadable module refcnt first.
1426 	 */
1427 	if (!try_module_get(pf->owner))
1428 		goto out_release;
1429 
1430 	/* Now protected by module ref count */
1431 	rcu_read_unlock();
1432 
1433 	err = pf->create(net, sock, protocol, kern);
1434 	if (err < 0)
1435 		goto out_module_put;
1436 
1437 	/*
1438 	 * Now to bump the refcnt of the [loadable] module that owns this
1439 	 * socket at sock_release time we decrement its refcnt.
1440 	 */
1441 	if (!try_module_get(sock->ops->owner))
1442 		goto out_module_busy;
1443 
1444 	/*
1445 	 * Now that we're done with the ->create function, the [loadable]
1446 	 * module can have its refcnt decremented
1447 	 */
1448 	module_put(pf->owner);
1449 	err = security_socket_post_create(sock, family, type, protocol, kern);
1450 	if (err)
1451 		goto out_sock_release;
1452 	*res = sock;
1453 
1454 	return 0;
1455 
1456 out_module_busy:
1457 	err = -EAFNOSUPPORT;
1458 out_module_put:
1459 	sock->ops = NULL;
1460 	module_put(pf->owner);
1461 out_sock_release:
1462 	sock_release(sock);
1463 	return err;
1464 
1465 out_release:
1466 	rcu_read_unlock();
1467 	goto out_sock_release;
1468 }
1469 EXPORT_SYMBOL(__sock_create);
1470 
1471 /**
1472  *	sock_create - creates a socket
1473  *	@family: protocol family (AF_INET, ...)
1474  *	@type: communication type (SOCK_STREAM, ...)
1475  *	@protocol: protocol (0, ...)
1476  *	@res: new socket
1477  *
1478  *	A wrapper around __sock_create().
1479  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1480  */
1481 
1482 int sock_create(int family, int type, int protocol, struct socket **res)
1483 {
1484 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1485 }
1486 EXPORT_SYMBOL(sock_create);
1487 
1488 /**
1489  *	sock_create_kern - creates a socket (kernel space)
1490  *	@net: net namespace
1491  *	@family: protocol family (AF_INET, ...)
1492  *	@type: communication type (SOCK_STREAM, ...)
1493  *	@protocol: protocol (0, ...)
1494  *	@res: new socket
1495  *
1496  *	A wrapper around __sock_create().
1497  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1498  */
1499 
1500 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1501 {
1502 	return __sock_create(net, family, type, protocol, res, 1);
1503 }
1504 EXPORT_SYMBOL(sock_create_kern);
1505 
1506 int __sys_socket(int family, int type, int protocol)
1507 {
1508 	int retval;
1509 	struct socket *sock;
1510 	int flags;
1511 
1512 	/* Check the SOCK_* constants for consistency.  */
1513 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1514 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1515 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1516 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1517 
1518 	flags = type & ~SOCK_TYPE_MASK;
1519 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1520 		return -EINVAL;
1521 	type &= SOCK_TYPE_MASK;
1522 
1523 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1524 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1525 
1526 	retval = sock_create(family, type, protocol, &sock);
1527 	if (retval < 0)
1528 		return retval;
1529 
1530 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1531 }
1532 
1533 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1534 {
1535 	return __sys_socket(family, type, protocol);
1536 }
1537 
1538 /*
1539  *	Create a pair of connected sockets.
1540  */
1541 
1542 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1543 {
1544 	struct socket *sock1, *sock2;
1545 	int fd1, fd2, err;
1546 	struct file *newfile1, *newfile2;
1547 	int flags;
1548 
1549 	flags = type & ~SOCK_TYPE_MASK;
1550 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 		return -EINVAL;
1552 	type &= SOCK_TYPE_MASK;
1553 
1554 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1555 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1556 
1557 	/*
1558 	 * reserve descriptors and make sure we won't fail
1559 	 * to return them to userland.
1560 	 */
1561 	fd1 = get_unused_fd_flags(flags);
1562 	if (unlikely(fd1 < 0))
1563 		return fd1;
1564 
1565 	fd2 = get_unused_fd_flags(flags);
1566 	if (unlikely(fd2 < 0)) {
1567 		put_unused_fd(fd1);
1568 		return fd2;
1569 	}
1570 
1571 	err = put_user(fd1, &usockvec[0]);
1572 	if (err)
1573 		goto out;
1574 
1575 	err = put_user(fd2, &usockvec[1]);
1576 	if (err)
1577 		goto out;
1578 
1579 	/*
1580 	 * Obtain the first socket and check if the underlying protocol
1581 	 * supports the socketpair call.
1582 	 */
1583 
1584 	err = sock_create(family, type, protocol, &sock1);
1585 	if (unlikely(err < 0))
1586 		goto out;
1587 
1588 	err = sock_create(family, type, protocol, &sock2);
1589 	if (unlikely(err < 0)) {
1590 		sock_release(sock1);
1591 		goto out;
1592 	}
1593 
1594 	err = security_socket_socketpair(sock1, sock2);
1595 	if (unlikely(err)) {
1596 		sock_release(sock2);
1597 		sock_release(sock1);
1598 		goto out;
1599 	}
1600 
1601 	err = sock1->ops->socketpair(sock1, sock2);
1602 	if (unlikely(err < 0)) {
1603 		sock_release(sock2);
1604 		sock_release(sock1);
1605 		goto out;
1606 	}
1607 
1608 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1609 	if (IS_ERR(newfile1)) {
1610 		err = PTR_ERR(newfile1);
1611 		sock_release(sock2);
1612 		goto out;
1613 	}
1614 
1615 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1616 	if (IS_ERR(newfile2)) {
1617 		err = PTR_ERR(newfile2);
1618 		fput(newfile1);
1619 		goto out;
1620 	}
1621 
1622 	audit_fd_pair(fd1, fd2);
1623 
1624 	fd_install(fd1, newfile1);
1625 	fd_install(fd2, newfile2);
1626 	return 0;
1627 
1628 out:
1629 	put_unused_fd(fd2);
1630 	put_unused_fd(fd1);
1631 	return err;
1632 }
1633 
1634 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1635 		int __user *, usockvec)
1636 {
1637 	return __sys_socketpair(family, type, protocol, usockvec);
1638 }
1639 
1640 /*
1641  *	Bind a name to a socket. Nothing much to do here since it's
1642  *	the protocol's responsibility to handle the local address.
1643  *
1644  *	We move the socket address to kernel space before we call
1645  *	the protocol layer (having also checked the address is ok).
1646  */
1647 
1648 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1649 {
1650 	struct socket *sock;
1651 	struct sockaddr_storage address;
1652 	int err, fput_needed;
1653 
1654 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 	if (sock) {
1656 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1657 		if (!err) {
1658 			err = security_socket_bind(sock,
1659 						   (struct sockaddr *)&address,
1660 						   addrlen);
1661 			if (!err)
1662 				err = sock->ops->bind(sock,
1663 						      (struct sockaddr *)
1664 						      &address, addrlen);
1665 		}
1666 		fput_light(sock->file, fput_needed);
1667 	}
1668 	return err;
1669 }
1670 
1671 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1672 {
1673 	return __sys_bind(fd, umyaddr, addrlen);
1674 }
1675 
1676 /*
1677  *	Perform a listen. Basically, we allow the protocol to do anything
1678  *	necessary for a listen, and if that works, we mark the socket as
1679  *	ready for listening.
1680  */
1681 
1682 int __sys_listen(int fd, int backlog)
1683 {
1684 	struct socket *sock;
1685 	int err, fput_needed;
1686 	int somaxconn;
1687 
1688 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 	if (sock) {
1690 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1691 		if ((unsigned int)backlog > somaxconn)
1692 			backlog = somaxconn;
1693 
1694 		err = security_socket_listen(sock, backlog);
1695 		if (!err)
1696 			err = sock->ops->listen(sock, backlog);
1697 
1698 		fput_light(sock->file, fput_needed);
1699 	}
1700 	return err;
1701 }
1702 
1703 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1704 {
1705 	return __sys_listen(fd, backlog);
1706 }
1707 
1708 int __sys_accept4_file(struct file *file, unsigned file_flags,
1709 		       struct sockaddr __user *upeer_sockaddr,
1710 		       int __user *upeer_addrlen, int flags)
1711 {
1712 	struct socket *sock, *newsock;
1713 	struct file *newfile;
1714 	int err, len, newfd;
1715 	struct sockaddr_storage address;
1716 
1717 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1718 		return -EINVAL;
1719 
1720 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1721 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1722 
1723 	sock = sock_from_file(file, &err);
1724 	if (!sock)
1725 		goto out;
1726 
1727 	err = -ENFILE;
1728 	newsock = sock_alloc();
1729 	if (!newsock)
1730 		goto out;
1731 
1732 	newsock->type = sock->type;
1733 	newsock->ops = sock->ops;
1734 
1735 	/*
1736 	 * We don't need try_module_get here, as the listening socket (sock)
1737 	 * has the protocol module (sock->ops->owner) held.
1738 	 */
1739 	__module_get(newsock->ops->owner);
1740 
1741 	newfd = get_unused_fd_flags(flags);
1742 	if (unlikely(newfd < 0)) {
1743 		err = newfd;
1744 		sock_release(newsock);
1745 		goto out;
1746 	}
1747 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1748 	if (IS_ERR(newfile)) {
1749 		err = PTR_ERR(newfile);
1750 		put_unused_fd(newfd);
1751 		goto out;
1752 	}
1753 
1754 	err = security_socket_accept(sock, newsock);
1755 	if (err)
1756 		goto out_fd;
1757 
1758 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1759 					false);
1760 	if (err < 0)
1761 		goto out_fd;
1762 
1763 	if (upeer_sockaddr) {
1764 		len = newsock->ops->getname(newsock,
1765 					(struct sockaddr *)&address, 2);
1766 		if (len < 0) {
1767 			err = -ECONNABORTED;
1768 			goto out_fd;
1769 		}
1770 		err = move_addr_to_user(&address,
1771 					len, upeer_sockaddr, upeer_addrlen);
1772 		if (err < 0)
1773 			goto out_fd;
1774 	}
1775 
1776 	/* File flags are not inherited via accept() unlike another OSes. */
1777 
1778 	fd_install(newfd, newfile);
1779 	err = newfd;
1780 out:
1781 	return err;
1782 out_fd:
1783 	fput(newfile);
1784 	put_unused_fd(newfd);
1785 	goto out;
1786 
1787 }
1788 
1789 /*
1790  *	For accept, we attempt to create a new socket, set up the link
1791  *	with the client, wake up the client, then return the new
1792  *	connected fd. We collect the address of the connector in kernel
1793  *	space and move it to user at the very end. This is unclean because
1794  *	we open the socket then return an error.
1795  *
1796  *	1003.1g adds the ability to recvmsg() to query connection pending
1797  *	status to recvmsg. We need to add that support in a way thats
1798  *	clean when we restructure accept also.
1799  */
1800 
1801 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1802 		  int __user *upeer_addrlen, int flags)
1803 {
1804 	int ret = -EBADF;
1805 	struct fd f;
1806 
1807 	f = fdget(fd);
1808 	if (f.file) {
1809 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1810 						upeer_addrlen, flags);
1811 		if (f.flags)
1812 			fput(f.file);
1813 	}
1814 
1815 	return ret;
1816 }
1817 
1818 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1819 		int __user *, upeer_addrlen, int, flags)
1820 {
1821 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1822 }
1823 
1824 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1825 		int __user *, upeer_addrlen)
1826 {
1827 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1828 }
1829 
1830 /*
1831  *	Attempt to connect to a socket with the server address.  The address
1832  *	is in user space so we verify it is OK and move it to kernel space.
1833  *
1834  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1835  *	break bindings
1836  *
1837  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1838  *	other SEQPACKET protocols that take time to connect() as it doesn't
1839  *	include the -EINPROGRESS status for such sockets.
1840  */
1841 
1842 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1843 		       int addrlen, int file_flags)
1844 {
1845 	struct socket *sock;
1846 	int err;
1847 
1848 	sock = sock_from_file(file, &err);
1849 	if (!sock)
1850 		goto out;
1851 
1852 	err =
1853 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1854 	if (err)
1855 		goto out;
1856 
1857 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1858 				 sock->file->f_flags | file_flags);
1859 out:
1860 	return err;
1861 }
1862 
1863 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1864 {
1865 	int ret = -EBADF;
1866 	struct fd f;
1867 
1868 	f = fdget(fd);
1869 	if (f.file) {
1870 		struct sockaddr_storage address;
1871 
1872 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1873 		if (!ret)
1874 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1875 		if (f.flags)
1876 			fput(f.file);
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1883 		int, addrlen)
1884 {
1885 	return __sys_connect(fd, uservaddr, addrlen);
1886 }
1887 
1888 /*
1889  *	Get the local address ('name') of a socket object. Move the obtained
1890  *	name to user space.
1891  */
1892 
1893 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1894 		      int __user *usockaddr_len)
1895 {
1896 	struct socket *sock;
1897 	struct sockaddr_storage address;
1898 	int err, fput_needed;
1899 
1900 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 	if (!sock)
1902 		goto out;
1903 
1904 	err = security_socket_getsockname(sock);
1905 	if (err)
1906 		goto out_put;
1907 
1908 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1909 	if (err < 0)
1910 		goto out_put;
1911         /* "err" is actually length in this case */
1912 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1913 
1914 out_put:
1915 	fput_light(sock->file, fput_needed);
1916 out:
1917 	return err;
1918 }
1919 
1920 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1921 		int __user *, usockaddr_len)
1922 {
1923 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1924 }
1925 
1926 /*
1927  *	Get the remote address ('name') of a socket object. Move the obtained
1928  *	name to user space.
1929  */
1930 
1931 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1932 		      int __user *usockaddr_len)
1933 {
1934 	struct socket *sock;
1935 	struct sockaddr_storage address;
1936 	int err, fput_needed;
1937 
1938 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 	if (sock != NULL) {
1940 		err = security_socket_getpeername(sock);
1941 		if (err) {
1942 			fput_light(sock->file, fput_needed);
1943 			return err;
1944 		}
1945 
1946 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1947 		if (err >= 0)
1948 			/* "err" is actually length in this case */
1949 			err = move_addr_to_user(&address, err, usockaddr,
1950 						usockaddr_len);
1951 		fput_light(sock->file, fput_needed);
1952 	}
1953 	return err;
1954 }
1955 
1956 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1957 		int __user *, usockaddr_len)
1958 {
1959 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1960 }
1961 
1962 /*
1963  *	Send a datagram to a given address. We move the address into kernel
1964  *	space and check the user space data area is readable before invoking
1965  *	the protocol.
1966  */
1967 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1968 		 struct sockaddr __user *addr,  int addr_len)
1969 {
1970 	struct socket *sock;
1971 	struct sockaddr_storage address;
1972 	int err;
1973 	struct msghdr msg;
1974 	struct iovec iov;
1975 	int fput_needed;
1976 
1977 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1978 	if (unlikely(err))
1979 		return err;
1980 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1981 	if (!sock)
1982 		goto out;
1983 
1984 	msg.msg_name = NULL;
1985 	msg.msg_control = NULL;
1986 	msg.msg_controllen = 0;
1987 	msg.msg_namelen = 0;
1988 	if (addr) {
1989 		err = move_addr_to_kernel(addr, addr_len, &address);
1990 		if (err < 0)
1991 			goto out_put;
1992 		msg.msg_name = (struct sockaddr *)&address;
1993 		msg.msg_namelen = addr_len;
1994 	}
1995 	if (sock->file->f_flags & O_NONBLOCK)
1996 		flags |= MSG_DONTWAIT;
1997 	msg.msg_flags = flags;
1998 	err = sock_sendmsg(sock, &msg);
1999 
2000 out_put:
2001 	fput_light(sock->file, fput_needed);
2002 out:
2003 	return err;
2004 }
2005 
2006 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2007 		unsigned int, flags, struct sockaddr __user *, addr,
2008 		int, addr_len)
2009 {
2010 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2011 }
2012 
2013 /*
2014  *	Send a datagram down a socket.
2015  */
2016 
2017 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2018 		unsigned int, flags)
2019 {
2020 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2021 }
2022 
2023 /*
2024  *	Receive a frame from the socket and optionally record the address of the
2025  *	sender. We verify the buffers are writable and if needed move the
2026  *	sender address from kernel to user space.
2027  */
2028 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2029 		   struct sockaddr __user *addr, int __user *addr_len)
2030 {
2031 	struct socket *sock;
2032 	struct iovec iov;
2033 	struct msghdr msg;
2034 	struct sockaddr_storage address;
2035 	int err, err2;
2036 	int fput_needed;
2037 
2038 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2039 	if (unlikely(err))
2040 		return err;
2041 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2042 	if (!sock)
2043 		goto out;
2044 
2045 	msg.msg_control = NULL;
2046 	msg.msg_controllen = 0;
2047 	/* Save some cycles and don't copy the address if not needed */
2048 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2049 	/* We assume all kernel code knows the size of sockaddr_storage */
2050 	msg.msg_namelen = 0;
2051 	msg.msg_iocb = NULL;
2052 	msg.msg_flags = 0;
2053 	if (sock->file->f_flags & O_NONBLOCK)
2054 		flags |= MSG_DONTWAIT;
2055 	err = sock_recvmsg(sock, &msg, flags);
2056 
2057 	if (err >= 0 && addr != NULL) {
2058 		err2 = move_addr_to_user(&address,
2059 					 msg.msg_namelen, addr, addr_len);
2060 		if (err2 < 0)
2061 			err = err2;
2062 	}
2063 
2064 	fput_light(sock->file, fput_needed);
2065 out:
2066 	return err;
2067 }
2068 
2069 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2070 		unsigned int, flags, struct sockaddr __user *, addr,
2071 		int __user *, addr_len)
2072 {
2073 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2074 }
2075 
2076 /*
2077  *	Receive a datagram from a socket.
2078  */
2079 
2080 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2081 		unsigned int, flags)
2082 {
2083 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2084 }
2085 
2086 /*
2087  *	Set a socket option. Because we don't know the option lengths we have
2088  *	to pass the user mode parameter for the protocols to sort out.
2089  */
2090 
2091 static int __sys_setsockopt(int fd, int level, int optname,
2092 			    char __user *optval, int optlen)
2093 {
2094 	mm_segment_t oldfs = get_fs();
2095 	char *kernel_optval = NULL;
2096 	int err, fput_needed;
2097 	struct socket *sock;
2098 
2099 	if (optlen < 0)
2100 		return -EINVAL;
2101 
2102 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 	if (sock != NULL) {
2104 		err = security_socket_setsockopt(sock, level, optname);
2105 		if (err)
2106 			goto out_put;
2107 
2108 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2109 						     &optname, optval, &optlen,
2110 						     &kernel_optval);
2111 
2112 		if (err < 0) {
2113 			goto out_put;
2114 		} else if (err > 0) {
2115 			err = 0;
2116 			goto out_put;
2117 		}
2118 
2119 		if (kernel_optval) {
2120 			set_fs(KERNEL_DS);
2121 			optval = (char __user __force *)kernel_optval;
2122 		}
2123 
2124 		if (level == SOL_SOCKET)
2125 			err =
2126 			    sock_setsockopt(sock, level, optname, optval,
2127 					    optlen);
2128 		else
2129 			err =
2130 			    sock->ops->setsockopt(sock, level, optname, optval,
2131 						  optlen);
2132 
2133 		if (kernel_optval) {
2134 			set_fs(oldfs);
2135 			kfree(kernel_optval);
2136 		}
2137 out_put:
2138 		fput_light(sock->file, fput_needed);
2139 	}
2140 	return err;
2141 }
2142 
2143 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2144 		char __user *, optval, int, optlen)
2145 {
2146 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2147 }
2148 
2149 /*
2150  *	Get a socket option. Because we don't know the option lengths we have
2151  *	to pass a user mode parameter for the protocols to sort out.
2152  */
2153 
2154 static int __sys_getsockopt(int fd, int level, int optname,
2155 			    char __user *optval, int __user *optlen)
2156 {
2157 	int err, fput_needed;
2158 	struct socket *sock;
2159 	int max_optlen;
2160 
2161 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2162 	if (sock != NULL) {
2163 		err = security_socket_getsockopt(sock, level, optname);
2164 		if (err)
2165 			goto out_put;
2166 
2167 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2168 
2169 		if (level == SOL_SOCKET)
2170 			err =
2171 			    sock_getsockopt(sock, level, optname, optval,
2172 					    optlen);
2173 		else
2174 			err =
2175 			    sock->ops->getsockopt(sock, level, optname, optval,
2176 						  optlen);
2177 
2178 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2179 						     optval, optlen,
2180 						     max_optlen, err);
2181 out_put:
2182 		fput_light(sock->file, fput_needed);
2183 	}
2184 	return err;
2185 }
2186 
2187 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2188 		char __user *, optval, int __user *, optlen)
2189 {
2190 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2191 }
2192 
2193 /*
2194  *	Shutdown a socket.
2195  */
2196 
2197 int __sys_shutdown(int fd, int how)
2198 {
2199 	int err, fput_needed;
2200 	struct socket *sock;
2201 
2202 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2203 	if (sock != NULL) {
2204 		err = security_socket_shutdown(sock, how);
2205 		if (!err)
2206 			err = sock->ops->shutdown(sock, how);
2207 		fput_light(sock->file, fput_needed);
2208 	}
2209 	return err;
2210 }
2211 
2212 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2213 {
2214 	return __sys_shutdown(fd, how);
2215 }
2216 
2217 /* A couple of helpful macros for getting the address of the 32/64 bit
2218  * fields which are the same type (int / unsigned) on our platforms.
2219  */
2220 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2221 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2222 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2223 
2224 struct used_address {
2225 	struct sockaddr_storage name;
2226 	unsigned int name_len;
2227 };
2228 
2229 static int copy_msghdr_from_user(struct msghdr *kmsg,
2230 				 struct user_msghdr __user *umsg,
2231 				 struct sockaddr __user **save_addr,
2232 				 struct iovec **iov)
2233 {
2234 	struct user_msghdr msg;
2235 	ssize_t err;
2236 
2237 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2238 		return -EFAULT;
2239 
2240 	kmsg->msg_control = (void __force *)msg.msg_control;
2241 	kmsg->msg_controllen = msg.msg_controllen;
2242 	kmsg->msg_flags = msg.msg_flags;
2243 
2244 	kmsg->msg_namelen = msg.msg_namelen;
2245 	if (!msg.msg_name)
2246 		kmsg->msg_namelen = 0;
2247 
2248 	if (kmsg->msg_namelen < 0)
2249 		return -EINVAL;
2250 
2251 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2252 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2253 
2254 	if (save_addr)
2255 		*save_addr = msg.msg_name;
2256 
2257 	if (msg.msg_name && kmsg->msg_namelen) {
2258 		if (!save_addr) {
2259 			err = move_addr_to_kernel(msg.msg_name,
2260 						  kmsg->msg_namelen,
2261 						  kmsg->msg_name);
2262 			if (err < 0)
2263 				return err;
2264 		}
2265 	} else {
2266 		kmsg->msg_name = NULL;
2267 		kmsg->msg_namelen = 0;
2268 	}
2269 
2270 	if (msg.msg_iovlen > UIO_MAXIOV)
2271 		return -EMSGSIZE;
2272 
2273 	kmsg->msg_iocb = NULL;
2274 
2275 	err = import_iovec(save_addr ? READ : WRITE,
2276 			    msg.msg_iov, msg.msg_iovlen,
2277 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2278 	return err < 0 ? err : 0;
2279 }
2280 
2281 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2282 			   unsigned int flags, struct used_address *used_address,
2283 			   unsigned int allowed_msghdr_flags)
2284 {
2285 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2286 				__aligned(sizeof(__kernel_size_t));
2287 	/* 20 is size of ipv6_pktinfo */
2288 	unsigned char *ctl_buf = ctl;
2289 	int ctl_len;
2290 	ssize_t err;
2291 
2292 	err = -ENOBUFS;
2293 
2294 	if (msg_sys->msg_controllen > INT_MAX)
2295 		goto out;
2296 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2297 	ctl_len = msg_sys->msg_controllen;
2298 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2299 		err =
2300 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2301 						     sizeof(ctl));
2302 		if (err)
2303 			goto out;
2304 		ctl_buf = msg_sys->msg_control;
2305 		ctl_len = msg_sys->msg_controllen;
2306 	} else if (ctl_len) {
2307 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2308 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2309 		if (ctl_len > sizeof(ctl)) {
2310 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2311 			if (ctl_buf == NULL)
2312 				goto out;
2313 		}
2314 		err = -EFAULT;
2315 		/*
2316 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2317 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2318 		 * checking falls down on this.
2319 		 */
2320 		if (copy_from_user(ctl_buf,
2321 				   (void __user __force *)msg_sys->msg_control,
2322 				   ctl_len))
2323 			goto out_freectl;
2324 		msg_sys->msg_control = ctl_buf;
2325 	}
2326 	msg_sys->msg_flags = flags;
2327 
2328 	if (sock->file->f_flags & O_NONBLOCK)
2329 		msg_sys->msg_flags |= MSG_DONTWAIT;
2330 	/*
2331 	 * If this is sendmmsg() and current destination address is same as
2332 	 * previously succeeded address, omit asking LSM's decision.
2333 	 * used_address->name_len is initialized to UINT_MAX so that the first
2334 	 * destination address never matches.
2335 	 */
2336 	if (used_address && msg_sys->msg_name &&
2337 	    used_address->name_len == msg_sys->msg_namelen &&
2338 	    !memcmp(&used_address->name, msg_sys->msg_name,
2339 		    used_address->name_len)) {
2340 		err = sock_sendmsg_nosec(sock, msg_sys);
2341 		goto out_freectl;
2342 	}
2343 	err = sock_sendmsg(sock, msg_sys);
2344 	/*
2345 	 * If this is sendmmsg() and sending to current destination address was
2346 	 * successful, remember it.
2347 	 */
2348 	if (used_address && err >= 0) {
2349 		used_address->name_len = msg_sys->msg_namelen;
2350 		if (msg_sys->msg_name)
2351 			memcpy(&used_address->name, msg_sys->msg_name,
2352 			       used_address->name_len);
2353 	}
2354 
2355 out_freectl:
2356 	if (ctl_buf != ctl)
2357 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2358 out:
2359 	return err;
2360 }
2361 
2362 int sendmsg_copy_msghdr(struct msghdr *msg,
2363 			struct user_msghdr __user *umsg, unsigned flags,
2364 			struct iovec **iov)
2365 {
2366 	int err;
2367 
2368 	if (flags & MSG_CMSG_COMPAT) {
2369 		struct compat_msghdr __user *msg_compat;
2370 
2371 		msg_compat = (struct compat_msghdr __user *) umsg;
2372 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2373 	} else {
2374 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2375 	}
2376 	if (err < 0)
2377 		return err;
2378 
2379 	return 0;
2380 }
2381 
2382 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2383 			 struct msghdr *msg_sys, unsigned int flags,
2384 			 struct used_address *used_address,
2385 			 unsigned int allowed_msghdr_flags)
2386 {
2387 	struct sockaddr_storage address;
2388 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2389 	ssize_t err;
2390 
2391 	msg_sys->msg_name = &address;
2392 
2393 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2394 	if (err < 0)
2395 		return err;
2396 
2397 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2398 				allowed_msghdr_flags);
2399 	kfree(iov);
2400 	return err;
2401 }
2402 
2403 /*
2404  *	BSD sendmsg interface
2405  */
2406 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2407 			unsigned int flags)
2408 {
2409 	/* disallow ancillary data requests from this path */
2410 	if (msg->msg_control || msg->msg_controllen)
2411 		return -EINVAL;
2412 
2413 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2414 }
2415 
2416 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2417 		   bool forbid_cmsg_compat)
2418 {
2419 	int fput_needed, err;
2420 	struct msghdr msg_sys;
2421 	struct socket *sock;
2422 
2423 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2424 		return -EINVAL;
2425 
2426 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2427 	if (!sock)
2428 		goto out;
2429 
2430 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2431 
2432 	fput_light(sock->file, fput_needed);
2433 out:
2434 	return err;
2435 }
2436 
2437 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2438 {
2439 	return __sys_sendmsg(fd, msg, flags, true);
2440 }
2441 
2442 /*
2443  *	Linux sendmmsg interface
2444  */
2445 
2446 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2447 		   unsigned int flags, bool forbid_cmsg_compat)
2448 {
2449 	int fput_needed, err, datagrams;
2450 	struct socket *sock;
2451 	struct mmsghdr __user *entry;
2452 	struct compat_mmsghdr __user *compat_entry;
2453 	struct msghdr msg_sys;
2454 	struct used_address used_address;
2455 	unsigned int oflags = flags;
2456 
2457 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2458 		return -EINVAL;
2459 
2460 	if (vlen > UIO_MAXIOV)
2461 		vlen = UIO_MAXIOV;
2462 
2463 	datagrams = 0;
2464 
2465 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2466 	if (!sock)
2467 		return err;
2468 
2469 	used_address.name_len = UINT_MAX;
2470 	entry = mmsg;
2471 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2472 	err = 0;
2473 	flags |= MSG_BATCH;
2474 
2475 	while (datagrams < vlen) {
2476 		if (datagrams == vlen - 1)
2477 			flags = oflags;
2478 
2479 		if (MSG_CMSG_COMPAT & flags) {
2480 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2481 					     &msg_sys, flags, &used_address, MSG_EOR);
2482 			if (err < 0)
2483 				break;
2484 			err = __put_user(err, &compat_entry->msg_len);
2485 			++compat_entry;
2486 		} else {
2487 			err = ___sys_sendmsg(sock,
2488 					     (struct user_msghdr __user *)entry,
2489 					     &msg_sys, flags, &used_address, MSG_EOR);
2490 			if (err < 0)
2491 				break;
2492 			err = put_user(err, &entry->msg_len);
2493 			++entry;
2494 		}
2495 
2496 		if (err)
2497 			break;
2498 		++datagrams;
2499 		if (msg_data_left(&msg_sys))
2500 			break;
2501 		cond_resched();
2502 	}
2503 
2504 	fput_light(sock->file, fput_needed);
2505 
2506 	/* We only return an error if no datagrams were able to be sent */
2507 	if (datagrams != 0)
2508 		return datagrams;
2509 
2510 	return err;
2511 }
2512 
2513 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2514 		unsigned int, vlen, unsigned int, flags)
2515 {
2516 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2517 }
2518 
2519 int recvmsg_copy_msghdr(struct msghdr *msg,
2520 			struct user_msghdr __user *umsg, unsigned flags,
2521 			struct sockaddr __user **uaddr,
2522 			struct iovec **iov)
2523 {
2524 	ssize_t err;
2525 
2526 	if (MSG_CMSG_COMPAT & flags) {
2527 		struct compat_msghdr __user *msg_compat;
2528 
2529 		msg_compat = (struct compat_msghdr __user *) umsg;
2530 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2531 	} else {
2532 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2533 	}
2534 	if (err < 0)
2535 		return err;
2536 
2537 	return 0;
2538 }
2539 
2540 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2541 			   struct user_msghdr __user *msg,
2542 			   struct sockaddr __user *uaddr,
2543 			   unsigned int flags, int nosec)
2544 {
2545 	struct compat_msghdr __user *msg_compat =
2546 					(struct compat_msghdr __user *) msg;
2547 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2548 	struct sockaddr_storage addr;
2549 	unsigned long cmsg_ptr;
2550 	int len;
2551 	ssize_t err;
2552 
2553 	msg_sys->msg_name = &addr;
2554 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2555 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2556 
2557 	/* We assume all kernel code knows the size of sockaddr_storage */
2558 	msg_sys->msg_namelen = 0;
2559 
2560 	if (sock->file->f_flags & O_NONBLOCK)
2561 		flags |= MSG_DONTWAIT;
2562 
2563 	if (unlikely(nosec))
2564 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2565 	else
2566 		err = sock_recvmsg(sock, msg_sys, flags);
2567 
2568 	if (err < 0)
2569 		goto out;
2570 	len = err;
2571 
2572 	if (uaddr != NULL) {
2573 		err = move_addr_to_user(&addr,
2574 					msg_sys->msg_namelen, uaddr,
2575 					uaddr_len);
2576 		if (err < 0)
2577 			goto out;
2578 	}
2579 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2580 			 COMPAT_FLAGS(msg));
2581 	if (err)
2582 		goto out;
2583 	if (MSG_CMSG_COMPAT & flags)
2584 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2585 				 &msg_compat->msg_controllen);
2586 	else
2587 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2588 				 &msg->msg_controllen);
2589 	if (err)
2590 		goto out;
2591 	err = len;
2592 out:
2593 	return err;
2594 }
2595 
2596 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2597 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2598 {
2599 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2600 	/* user mode address pointers */
2601 	struct sockaddr __user *uaddr;
2602 	ssize_t err;
2603 
2604 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2605 	if (err < 0)
2606 		return err;
2607 
2608 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2609 	kfree(iov);
2610 	return err;
2611 }
2612 
2613 /*
2614  *	BSD recvmsg interface
2615  */
2616 
2617 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2618 			struct user_msghdr __user *umsg,
2619 			struct sockaddr __user *uaddr, unsigned int flags)
2620 {
2621 	/* disallow ancillary data requests from this path */
2622 	if (msg->msg_control || msg->msg_controllen)
2623 		return -EINVAL;
2624 
2625 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2626 }
2627 
2628 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2629 		   bool forbid_cmsg_compat)
2630 {
2631 	int fput_needed, err;
2632 	struct msghdr msg_sys;
2633 	struct socket *sock;
2634 
2635 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2636 		return -EINVAL;
2637 
2638 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2639 	if (!sock)
2640 		goto out;
2641 
2642 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2643 
2644 	fput_light(sock->file, fput_needed);
2645 out:
2646 	return err;
2647 }
2648 
2649 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2650 		unsigned int, flags)
2651 {
2652 	return __sys_recvmsg(fd, msg, flags, true);
2653 }
2654 
2655 /*
2656  *     Linux recvmmsg interface
2657  */
2658 
2659 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2660 			  unsigned int vlen, unsigned int flags,
2661 			  struct timespec64 *timeout)
2662 {
2663 	int fput_needed, err, datagrams;
2664 	struct socket *sock;
2665 	struct mmsghdr __user *entry;
2666 	struct compat_mmsghdr __user *compat_entry;
2667 	struct msghdr msg_sys;
2668 	struct timespec64 end_time;
2669 	struct timespec64 timeout64;
2670 
2671 	if (timeout &&
2672 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2673 				    timeout->tv_nsec))
2674 		return -EINVAL;
2675 
2676 	datagrams = 0;
2677 
2678 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2679 	if (!sock)
2680 		return err;
2681 
2682 	if (likely(!(flags & MSG_ERRQUEUE))) {
2683 		err = sock_error(sock->sk);
2684 		if (err) {
2685 			datagrams = err;
2686 			goto out_put;
2687 		}
2688 	}
2689 
2690 	entry = mmsg;
2691 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2692 
2693 	while (datagrams < vlen) {
2694 		/*
2695 		 * No need to ask LSM for more than the first datagram.
2696 		 */
2697 		if (MSG_CMSG_COMPAT & flags) {
2698 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2699 					     &msg_sys, flags & ~MSG_WAITFORONE,
2700 					     datagrams);
2701 			if (err < 0)
2702 				break;
2703 			err = __put_user(err, &compat_entry->msg_len);
2704 			++compat_entry;
2705 		} else {
2706 			err = ___sys_recvmsg(sock,
2707 					     (struct user_msghdr __user *)entry,
2708 					     &msg_sys, flags & ~MSG_WAITFORONE,
2709 					     datagrams);
2710 			if (err < 0)
2711 				break;
2712 			err = put_user(err, &entry->msg_len);
2713 			++entry;
2714 		}
2715 
2716 		if (err)
2717 			break;
2718 		++datagrams;
2719 
2720 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2721 		if (flags & MSG_WAITFORONE)
2722 			flags |= MSG_DONTWAIT;
2723 
2724 		if (timeout) {
2725 			ktime_get_ts64(&timeout64);
2726 			*timeout = timespec64_sub(end_time, timeout64);
2727 			if (timeout->tv_sec < 0) {
2728 				timeout->tv_sec = timeout->tv_nsec = 0;
2729 				break;
2730 			}
2731 
2732 			/* Timeout, return less than vlen datagrams */
2733 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2734 				break;
2735 		}
2736 
2737 		/* Out of band data, return right away */
2738 		if (msg_sys.msg_flags & MSG_OOB)
2739 			break;
2740 		cond_resched();
2741 	}
2742 
2743 	if (err == 0)
2744 		goto out_put;
2745 
2746 	if (datagrams == 0) {
2747 		datagrams = err;
2748 		goto out_put;
2749 	}
2750 
2751 	/*
2752 	 * We may return less entries than requested (vlen) if the
2753 	 * sock is non block and there aren't enough datagrams...
2754 	 */
2755 	if (err != -EAGAIN) {
2756 		/*
2757 		 * ... or  if recvmsg returns an error after we
2758 		 * received some datagrams, where we record the
2759 		 * error to return on the next call or if the
2760 		 * app asks about it using getsockopt(SO_ERROR).
2761 		 */
2762 		sock->sk->sk_err = -err;
2763 	}
2764 out_put:
2765 	fput_light(sock->file, fput_needed);
2766 
2767 	return datagrams;
2768 }
2769 
2770 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2771 		   unsigned int vlen, unsigned int flags,
2772 		   struct __kernel_timespec __user *timeout,
2773 		   struct old_timespec32 __user *timeout32)
2774 {
2775 	int datagrams;
2776 	struct timespec64 timeout_sys;
2777 
2778 	if (timeout && get_timespec64(&timeout_sys, timeout))
2779 		return -EFAULT;
2780 
2781 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2782 		return -EFAULT;
2783 
2784 	if (!timeout && !timeout32)
2785 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2786 
2787 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2788 
2789 	if (datagrams <= 0)
2790 		return datagrams;
2791 
2792 	if (timeout && put_timespec64(&timeout_sys, timeout))
2793 		datagrams = -EFAULT;
2794 
2795 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2796 		datagrams = -EFAULT;
2797 
2798 	return datagrams;
2799 }
2800 
2801 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2802 		unsigned int, vlen, unsigned int, flags,
2803 		struct __kernel_timespec __user *, timeout)
2804 {
2805 	if (flags & MSG_CMSG_COMPAT)
2806 		return -EINVAL;
2807 
2808 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2809 }
2810 
2811 #ifdef CONFIG_COMPAT_32BIT_TIME
2812 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2813 		unsigned int, vlen, unsigned int, flags,
2814 		struct old_timespec32 __user *, timeout)
2815 {
2816 	if (flags & MSG_CMSG_COMPAT)
2817 		return -EINVAL;
2818 
2819 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2820 }
2821 #endif
2822 
2823 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2824 /* Argument list sizes for sys_socketcall */
2825 #define AL(x) ((x) * sizeof(unsigned long))
2826 static const unsigned char nargs[21] = {
2827 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2828 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2829 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2830 	AL(4), AL(5), AL(4)
2831 };
2832 
2833 #undef AL
2834 
2835 /*
2836  *	System call vectors.
2837  *
2838  *	Argument checking cleaned up. Saved 20% in size.
2839  *  This function doesn't need to set the kernel lock because
2840  *  it is set by the callees.
2841  */
2842 
2843 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2844 {
2845 	unsigned long a[AUDITSC_ARGS];
2846 	unsigned long a0, a1;
2847 	int err;
2848 	unsigned int len;
2849 
2850 	if (call < 1 || call > SYS_SENDMMSG)
2851 		return -EINVAL;
2852 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2853 
2854 	len = nargs[call];
2855 	if (len > sizeof(a))
2856 		return -EINVAL;
2857 
2858 	/* copy_from_user should be SMP safe. */
2859 	if (copy_from_user(a, args, len))
2860 		return -EFAULT;
2861 
2862 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2863 	if (err)
2864 		return err;
2865 
2866 	a0 = a[0];
2867 	a1 = a[1];
2868 
2869 	switch (call) {
2870 	case SYS_SOCKET:
2871 		err = __sys_socket(a0, a1, a[2]);
2872 		break;
2873 	case SYS_BIND:
2874 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2875 		break;
2876 	case SYS_CONNECT:
2877 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2878 		break;
2879 	case SYS_LISTEN:
2880 		err = __sys_listen(a0, a1);
2881 		break;
2882 	case SYS_ACCEPT:
2883 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2884 				    (int __user *)a[2], 0);
2885 		break;
2886 	case SYS_GETSOCKNAME:
2887 		err =
2888 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2889 				      (int __user *)a[2]);
2890 		break;
2891 	case SYS_GETPEERNAME:
2892 		err =
2893 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2894 				      (int __user *)a[2]);
2895 		break;
2896 	case SYS_SOCKETPAIR:
2897 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2898 		break;
2899 	case SYS_SEND:
2900 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2901 				   NULL, 0);
2902 		break;
2903 	case SYS_SENDTO:
2904 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2905 				   (struct sockaddr __user *)a[4], a[5]);
2906 		break;
2907 	case SYS_RECV:
2908 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2909 				     NULL, NULL);
2910 		break;
2911 	case SYS_RECVFROM:
2912 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2913 				     (struct sockaddr __user *)a[4],
2914 				     (int __user *)a[5]);
2915 		break;
2916 	case SYS_SHUTDOWN:
2917 		err = __sys_shutdown(a0, a1);
2918 		break;
2919 	case SYS_SETSOCKOPT:
2920 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2921 				       a[4]);
2922 		break;
2923 	case SYS_GETSOCKOPT:
2924 		err =
2925 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2926 				     (int __user *)a[4]);
2927 		break;
2928 	case SYS_SENDMSG:
2929 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2930 				    a[2], true);
2931 		break;
2932 	case SYS_SENDMMSG:
2933 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2934 				     a[3], true);
2935 		break;
2936 	case SYS_RECVMSG:
2937 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2938 				    a[2], true);
2939 		break;
2940 	case SYS_RECVMMSG:
2941 		if (IS_ENABLED(CONFIG_64BIT))
2942 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2943 					     a[2], a[3],
2944 					     (struct __kernel_timespec __user *)a[4],
2945 					     NULL);
2946 		else
2947 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2948 					     a[2], a[3], NULL,
2949 					     (struct old_timespec32 __user *)a[4]);
2950 		break;
2951 	case SYS_ACCEPT4:
2952 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2953 				    (int __user *)a[2], a[3]);
2954 		break;
2955 	default:
2956 		err = -EINVAL;
2957 		break;
2958 	}
2959 	return err;
2960 }
2961 
2962 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2963 
2964 /**
2965  *	sock_register - add a socket protocol handler
2966  *	@ops: description of protocol
2967  *
2968  *	This function is called by a protocol handler that wants to
2969  *	advertise its address family, and have it linked into the
2970  *	socket interface. The value ops->family corresponds to the
2971  *	socket system call protocol family.
2972  */
2973 int sock_register(const struct net_proto_family *ops)
2974 {
2975 	int err;
2976 
2977 	if (ops->family >= NPROTO) {
2978 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2979 		return -ENOBUFS;
2980 	}
2981 
2982 	spin_lock(&net_family_lock);
2983 	if (rcu_dereference_protected(net_families[ops->family],
2984 				      lockdep_is_held(&net_family_lock)))
2985 		err = -EEXIST;
2986 	else {
2987 		rcu_assign_pointer(net_families[ops->family], ops);
2988 		err = 0;
2989 	}
2990 	spin_unlock(&net_family_lock);
2991 
2992 	pr_info("NET: Registered protocol family %d\n", ops->family);
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(sock_register);
2996 
2997 /**
2998  *	sock_unregister - remove a protocol handler
2999  *	@family: protocol family to remove
3000  *
3001  *	This function is called by a protocol handler that wants to
3002  *	remove its address family, and have it unlinked from the
3003  *	new socket creation.
3004  *
3005  *	If protocol handler is a module, then it can use module reference
3006  *	counts to protect against new references. If protocol handler is not
3007  *	a module then it needs to provide its own protection in
3008  *	the ops->create routine.
3009  */
3010 void sock_unregister(int family)
3011 {
3012 	BUG_ON(family < 0 || family >= NPROTO);
3013 
3014 	spin_lock(&net_family_lock);
3015 	RCU_INIT_POINTER(net_families[family], NULL);
3016 	spin_unlock(&net_family_lock);
3017 
3018 	synchronize_rcu();
3019 
3020 	pr_info("NET: Unregistered protocol family %d\n", family);
3021 }
3022 EXPORT_SYMBOL(sock_unregister);
3023 
3024 bool sock_is_registered(int family)
3025 {
3026 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3027 }
3028 
3029 static int __init sock_init(void)
3030 {
3031 	int err;
3032 	/*
3033 	 *      Initialize the network sysctl infrastructure.
3034 	 */
3035 	err = net_sysctl_init();
3036 	if (err)
3037 		goto out;
3038 
3039 	/*
3040 	 *      Initialize skbuff SLAB cache
3041 	 */
3042 	skb_init();
3043 
3044 	/*
3045 	 *      Initialize the protocols module.
3046 	 */
3047 
3048 	init_inodecache();
3049 
3050 	err = register_filesystem(&sock_fs_type);
3051 	if (err)
3052 		goto out_fs;
3053 	sock_mnt = kern_mount(&sock_fs_type);
3054 	if (IS_ERR(sock_mnt)) {
3055 		err = PTR_ERR(sock_mnt);
3056 		goto out_mount;
3057 	}
3058 
3059 	/* The real protocol initialization is performed in later initcalls.
3060 	 */
3061 
3062 #ifdef CONFIG_NETFILTER
3063 	err = netfilter_init();
3064 	if (err)
3065 		goto out;
3066 #endif
3067 
3068 	ptp_classifier_init();
3069 
3070 out:
3071 	return err;
3072 
3073 out_mount:
3074 	unregister_filesystem(&sock_fs_type);
3075 out_fs:
3076 	goto out;
3077 }
3078 
3079 core_initcall(sock_init);	/* early initcall */
3080 
3081 #ifdef CONFIG_PROC_FS
3082 void socket_seq_show(struct seq_file *seq)
3083 {
3084 	seq_printf(seq, "sockets: used %d\n",
3085 		   sock_inuse_get(seq->private));
3086 }
3087 #endif				/* CONFIG_PROC_FS */
3088 
3089 #ifdef CONFIG_COMPAT
3090 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3091 {
3092 	struct compat_ifconf ifc32;
3093 	struct ifconf ifc;
3094 	int err;
3095 
3096 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3097 		return -EFAULT;
3098 
3099 	ifc.ifc_len = ifc32.ifc_len;
3100 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3101 
3102 	rtnl_lock();
3103 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3104 	rtnl_unlock();
3105 	if (err)
3106 		return err;
3107 
3108 	ifc32.ifc_len = ifc.ifc_len;
3109 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3110 		return -EFAULT;
3111 
3112 	return 0;
3113 }
3114 
3115 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3116 {
3117 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3118 	bool convert_in = false, convert_out = false;
3119 	size_t buf_size = 0;
3120 	struct ethtool_rxnfc __user *rxnfc = NULL;
3121 	struct ifreq ifr;
3122 	u32 rule_cnt = 0, actual_rule_cnt;
3123 	u32 ethcmd;
3124 	u32 data;
3125 	int ret;
3126 
3127 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3128 		return -EFAULT;
3129 
3130 	compat_rxnfc = compat_ptr(data);
3131 
3132 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3133 		return -EFAULT;
3134 
3135 	/* Most ethtool structures are defined without padding.
3136 	 * Unfortunately struct ethtool_rxnfc is an exception.
3137 	 */
3138 	switch (ethcmd) {
3139 	default:
3140 		break;
3141 	case ETHTOOL_GRXCLSRLALL:
3142 		/* Buffer size is variable */
3143 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3144 			return -EFAULT;
3145 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3146 			return -ENOMEM;
3147 		buf_size += rule_cnt * sizeof(u32);
3148 		/* fall through */
3149 	case ETHTOOL_GRXRINGS:
3150 	case ETHTOOL_GRXCLSRLCNT:
3151 	case ETHTOOL_GRXCLSRULE:
3152 	case ETHTOOL_SRXCLSRLINS:
3153 		convert_out = true;
3154 		/* fall through */
3155 	case ETHTOOL_SRXCLSRLDEL:
3156 		buf_size += sizeof(struct ethtool_rxnfc);
3157 		convert_in = true;
3158 		rxnfc = compat_alloc_user_space(buf_size);
3159 		break;
3160 	}
3161 
3162 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3163 		return -EFAULT;
3164 
3165 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3166 
3167 	if (convert_in) {
3168 		/* We expect there to be holes between fs.m_ext and
3169 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3170 		 */
3171 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3172 			     sizeof(compat_rxnfc->fs.m_ext) !=
3173 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3174 			     sizeof(rxnfc->fs.m_ext));
3175 		BUILD_BUG_ON(
3176 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3177 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3178 			offsetof(struct ethtool_rxnfc, fs.location) -
3179 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3180 
3181 		if (copy_in_user(rxnfc, compat_rxnfc,
3182 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3183 				 (void __user *)rxnfc) ||
3184 		    copy_in_user(&rxnfc->fs.ring_cookie,
3185 				 &compat_rxnfc->fs.ring_cookie,
3186 				 (void __user *)(&rxnfc->fs.location + 1) -
3187 				 (void __user *)&rxnfc->fs.ring_cookie))
3188 			return -EFAULT;
3189 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3190 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3191 				return -EFAULT;
3192 		} else if (copy_in_user(&rxnfc->rule_cnt,
3193 					&compat_rxnfc->rule_cnt,
3194 					sizeof(rxnfc->rule_cnt)))
3195 			return -EFAULT;
3196 	}
3197 
3198 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3199 	if (ret)
3200 		return ret;
3201 
3202 	if (convert_out) {
3203 		if (copy_in_user(compat_rxnfc, rxnfc,
3204 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3205 				 (const void __user *)rxnfc) ||
3206 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3207 				 &rxnfc->fs.ring_cookie,
3208 				 (const void __user *)(&rxnfc->fs.location + 1) -
3209 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3210 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3211 				 sizeof(rxnfc->rule_cnt)))
3212 			return -EFAULT;
3213 
3214 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3215 			/* As an optimisation, we only copy the actual
3216 			 * number of rules that the underlying
3217 			 * function returned.  Since Mallory might
3218 			 * change the rule count in user memory, we
3219 			 * check that it is less than the rule count
3220 			 * originally given (as the user buffer size),
3221 			 * which has been range-checked.
3222 			 */
3223 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3224 				return -EFAULT;
3225 			if (actual_rule_cnt < rule_cnt)
3226 				rule_cnt = actual_rule_cnt;
3227 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3228 					 &rxnfc->rule_locs[0],
3229 					 rule_cnt * sizeof(u32)))
3230 				return -EFAULT;
3231 		}
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3238 {
3239 	compat_uptr_t uptr32;
3240 	struct ifreq ifr;
3241 	void __user *saved;
3242 	int err;
3243 
3244 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3245 		return -EFAULT;
3246 
3247 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3248 		return -EFAULT;
3249 
3250 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3251 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3252 
3253 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3254 	if (!err) {
3255 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3256 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3257 			err = -EFAULT;
3258 	}
3259 	return err;
3260 }
3261 
3262 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3263 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3264 				 struct compat_ifreq __user *u_ifreq32)
3265 {
3266 	struct ifreq ifreq;
3267 	u32 data32;
3268 
3269 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3270 		return -EFAULT;
3271 	if (get_user(data32, &u_ifreq32->ifr_data))
3272 		return -EFAULT;
3273 	ifreq.ifr_data = compat_ptr(data32);
3274 
3275 	return dev_ioctl(net, cmd, &ifreq, NULL);
3276 }
3277 
3278 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3279 			      unsigned int cmd,
3280 			      struct compat_ifreq __user *uifr32)
3281 {
3282 	struct ifreq __user *uifr;
3283 	int err;
3284 
3285 	/* Handle the fact that while struct ifreq has the same *layout* on
3286 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3287 	 * which are handled elsewhere, it still has different *size* due to
3288 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3289 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3290 	 * As a result, if the struct happens to be at the end of a page and
3291 	 * the next page isn't readable/writable, we get a fault. To prevent
3292 	 * that, copy back and forth to the full size.
3293 	 */
3294 
3295 	uifr = compat_alloc_user_space(sizeof(*uifr));
3296 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3297 		return -EFAULT;
3298 
3299 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3300 
3301 	if (!err) {
3302 		switch (cmd) {
3303 		case SIOCGIFFLAGS:
3304 		case SIOCGIFMETRIC:
3305 		case SIOCGIFMTU:
3306 		case SIOCGIFMEM:
3307 		case SIOCGIFHWADDR:
3308 		case SIOCGIFINDEX:
3309 		case SIOCGIFADDR:
3310 		case SIOCGIFBRDADDR:
3311 		case SIOCGIFDSTADDR:
3312 		case SIOCGIFNETMASK:
3313 		case SIOCGIFPFLAGS:
3314 		case SIOCGIFTXQLEN:
3315 		case SIOCGMIIPHY:
3316 		case SIOCGMIIREG:
3317 		case SIOCGIFNAME:
3318 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3319 				err = -EFAULT;
3320 			break;
3321 		}
3322 	}
3323 	return err;
3324 }
3325 
3326 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3327 			struct compat_ifreq __user *uifr32)
3328 {
3329 	struct ifreq ifr;
3330 	struct compat_ifmap __user *uifmap32;
3331 	int err;
3332 
3333 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3334 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3335 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3336 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3337 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3338 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3339 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3340 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3341 	if (err)
3342 		return -EFAULT;
3343 
3344 	err = dev_ioctl(net, cmd, &ifr, NULL);
3345 
3346 	if (cmd == SIOCGIFMAP && !err) {
3347 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3348 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3349 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3350 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3351 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3352 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3353 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3354 		if (err)
3355 			err = -EFAULT;
3356 	}
3357 	return err;
3358 }
3359 
3360 struct rtentry32 {
3361 	u32		rt_pad1;
3362 	struct sockaddr rt_dst;         /* target address               */
3363 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3364 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3365 	unsigned short	rt_flags;
3366 	short		rt_pad2;
3367 	u32		rt_pad3;
3368 	unsigned char	rt_tos;
3369 	unsigned char	rt_class;
3370 	short		rt_pad4;
3371 	short		rt_metric;      /* +1 for binary compatibility! */
3372 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3373 	u32		rt_mtu;         /* per route MTU/Window         */
3374 	u32		rt_window;      /* Window clamping              */
3375 	unsigned short  rt_irtt;        /* Initial RTT                  */
3376 };
3377 
3378 struct in6_rtmsg32 {
3379 	struct in6_addr		rtmsg_dst;
3380 	struct in6_addr		rtmsg_src;
3381 	struct in6_addr		rtmsg_gateway;
3382 	u32			rtmsg_type;
3383 	u16			rtmsg_dst_len;
3384 	u16			rtmsg_src_len;
3385 	u32			rtmsg_metric;
3386 	u32			rtmsg_info;
3387 	u32			rtmsg_flags;
3388 	s32			rtmsg_ifindex;
3389 };
3390 
3391 static int routing_ioctl(struct net *net, struct socket *sock,
3392 			 unsigned int cmd, void __user *argp)
3393 {
3394 	int ret;
3395 	void *r = NULL;
3396 	struct in6_rtmsg r6;
3397 	struct rtentry r4;
3398 	char devname[16];
3399 	u32 rtdev;
3400 	mm_segment_t old_fs = get_fs();
3401 
3402 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3403 		struct in6_rtmsg32 __user *ur6 = argp;
3404 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3405 			3 * sizeof(struct in6_addr));
3406 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3407 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3408 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3409 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3410 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3411 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3412 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3413 
3414 		r = (void *) &r6;
3415 	} else { /* ipv4 */
3416 		struct rtentry32 __user *ur4 = argp;
3417 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3418 					3 * sizeof(struct sockaddr));
3419 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3420 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3421 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3422 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3423 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3424 		ret |= get_user(rtdev, &(ur4->rt_dev));
3425 		if (rtdev) {
3426 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3427 			r4.rt_dev = (char __user __force *)devname;
3428 			devname[15] = 0;
3429 		} else
3430 			r4.rt_dev = NULL;
3431 
3432 		r = (void *) &r4;
3433 	}
3434 
3435 	if (ret) {
3436 		ret = -EFAULT;
3437 		goto out;
3438 	}
3439 
3440 	set_fs(KERNEL_DS);
3441 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3442 	set_fs(old_fs);
3443 
3444 out:
3445 	return ret;
3446 }
3447 
3448 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3449  * for some operations; this forces use of the newer bridge-utils that
3450  * use compatible ioctls
3451  */
3452 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3453 {
3454 	compat_ulong_t tmp;
3455 
3456 	if (get_user(tmp, argp))
3457 		return -EFAULT;
3458 	if (tmp == BRCTL_GET_VERSION)
3459 		return BRCTL_VERSION + 1;
3460 	return -EINVAL;
3461 }
3462 
3463 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3464 			 unsigned int cmd, unsigned long arg)
3465 {
3466 	void __user *argp = compat_ptr(arg);
3467 	struct sock *sk = sock->sk;
3468 	struct net *net = sock_net(sk);
3469 
3470 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3471 		return compat_ifr_data_ioctl(net, cmd, argp);
3472 
3473 	switch (cmd) {
3474 	case SIOCSIFBR:
3475 	case SIOCGIFBR:
3476 		return old_bridge_ioctl(argp);
3477 	case SIOCGIFCONF:
3478 		return compat_dev_ifconf(net, argp);
3479 	case SIOCETHTOOL:
3480 		return ethtool_ioctl(net, argp);
3481 	case SIOCWANDEV:
3482 		return compat_siocwandev(net, argp);
3483 	case SIOCGIFMAP:
3484 	case SIOCSIFMAP:
3485 		return compat_sioc_ifmap(net, cmd, argp);
3486 	case SIOCADDRT:
3487 	case SIOCDELRT:
3488 		return routing_ioctl(net, sock, cmd, argp);
3489 	case SIOCGSTAMP_OLD:
3490 	case SIOCGSTAMPNS_OLD:
3491 		if (!sock->ops->gettstamp)
3492 			return -ENOIOCTLCMD;
3493 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3494 					    !COMPAT_USE_64BIT_TIME);
3495 
3496 	case SIOCBONDSLAVEINFOQUERY:
3497 	case SIOCBONDINFOQUERY:
3498 	case SIOCSHWTSTAMP:
3499 	case SIOCGHWTSTAMP:
3500 		return compat_ifr_data_ioctl(net, cmd, argp);
3501 
3502 	case FIOSETOWN:
3503 	case SIOCSPGRP:
3504 	case FIOGETOWN:
3505 	case SIOCGPGRP:
3506 	case SIOCBRADDBR:
3507 	case SIOCBRDELBR:
3508 	case SIOCGIFVLAN:
3509 	case SIOCSIFVLAN:
3510 	case SIOCADDDLCI:
3511 	case SIOCDELDLCI:
3512 	case SIOCGSKNS:
3513 	case SIOCGSTAMP_NEW:
3514 	case SIOCGSTAMPNS_NEW:
3515 		return sock_ioctl(file, cmd, arg);
3516 
3517 	case SIOCGIFFLAGS:
3518 	case SIOCSIFFLAGS:
3519 	case SIOCGIFMETRIC:
3520 	case SIOCSIFMETRIC:
3521 	case SIOCGIFMTU:
3522 	case SIOCSIFMTU:
3523 	case SIOCGIFMEM:
3524 	case SIOCSIFMEM:
3525 	case SIOCGIFHWADDR:
3526 	case SIOCSIFHWADDR:
3527 	case SIOCADDMULTI:
3528 	case SIOCDELMULTI:
3529 	case SIOCGIFINDEX:
3530 	case SIOCGIFADDR:
3531 	case SIOCSIFADDR:
3532 	case SIOCSIFHWBROADCAST:
3533 	case SIOCDIFADDR:
3534 	case SIOCGIFBRDADDR:
3535 	case SIOCSIFBRDADDR:
3536 	case SIOCGIFDSTADDR:
3537 	case SIOCSIFDSTADDR:
3538 	case SIOCGIFNETMASK:
3539 	case SIOCSIFNETMASK:
3540 	case SIOCSIFPFLAGS:
3541 	case SIOCGIFPFLAGS:
3542 	case SIOCGIFTXQLEN:
3543 	case SIOCSIFTXQLEN:
3544 	case SIOCBRADDIF:
3545 	case SIOCBRDELIF:
3546 	case SIOCGIFNAME:
3547 	case SIOCSIFNAME:
3548 	case SIOCGMIIPHY:
3549 	case SIOCGMIIREG:
3550 	case SIOCSMIIREG:
3551 	case SIOCBONDENSLAVE:
3552 	case SIOCBONDRELEASE:
3553 	case SIOCBONDSETHWADDR:
3554 	case SIOCBONDCHANGEACTIVE:
3555 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3556 
3557 	case SIOCSARP:
3558 	case SIOCGARP:
3559 	case SIOCDARP:
3560 	case SIOCOUTQ:
3561 	case SIOCOUTQNSD:
3562 	case SIOCATMARK:
3563 		return sock_do_ioctl(net, sock, cmd, arg);
3564 	}
3565 
3566 	return -ENOIOCTLCMD;
3567 }
3568 
3569 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3570 			      unsigned long arg)
3571 {
3572 	struct socket *sock = file->private_data;
3573 	int ret = -ENOIOCTLCMD;
3574 	struct sock *sk;
3575 	struct net *net;
3576 
3577 	sk = sock->sk;
3578 	net = sock_net(sk);
3579 
3580 	if (sock->ops->compat_ioctl)
3581 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3582 
3583 	if (ret == -ENOIOCTLCMD &&
3584 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3585 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3586 
3587 	if (ret == -ENOIOCTLCMD)
3588 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3589 
3590 	return ret;
3591 }
3592 #endif
3593 
3594 /**
3595  *	kernel_bind - bind an address to a socket (kernel space)
3596  *	@sock: socket
3597  *	@addr: address
3598  *	@addrlen: length of address
3599  *
3600  *	Returns 0 or an error.
3601  */
3602 
3603 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3604 {
3605 	return sock->ops->bind(sock, addr, addrlen);
3606 }
3607 EXPORT_SYMBOL(kernel_bind);
3608 
3609 /**
3610  *	kernel_listen - move socket to listening state (kernel space)
3611  *	@sock: socket
3612  *	@backlog: pending connections queue size
3613  *
3614  *	Returns 0 or an error.
3615  */
3616 
3617 int kernel_listen(struct socket *sock, int backlog)
3618 {
3619 	return sock->ops->listen(sock, backlog);
3620 }
3621 EXPORT_SYMBOL(kernel_listen);
3622 
3623 /**
3624  *	kernel_accept - accept a connection (kernel space)
3625  *	@sock: listening socket
3626  *	@newsock: new connected socket
3627  *	@flags: flags
3628  *
3629  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3630  *	If it fails, @newsock is guaranteed to be %NULL.
3631  *	Returns 0 or an error.
3632  */
3633 
3634 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3635 {
3636 	struct sock *sk = sock->sk;
3637 	int err;
3638 
3639 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3640 			       newsock);
3641 	if (err < 0)
3642 		goto done;
3643 
3644 	err = sock->ops->accept(sock, *newsock, flags, true);
3645 	if (err < 0) {
3646 		sock_release(*newsock);
3647 		*newsock = NULL;
3648 		goto done;
3649 	}
3650 
3651 	(*newsock)->ops = sock->ops;
3652 	__module_get((*newsock)->ops->owner);
3653 
3654 done:
3655 	return err;
3656 }
3657 EXPORT_SYMBOL(kernel_accept);
3658 
3659 /**
3660  *	kernel_connect - connect a socket (kernel space)
3661  *	@sock: socket
3662  *	@addr: address
3663  *	@addrlen: address length
3664  *	@flags: flags (O_NONBLOCK, ...)
3665  *
3666  *	For datagram sockets, @addr is the addres to which datagrams are sent
3667  *	by default, and the only address from which datagrams are received.
3668  *	For stream sockets, attempts to connect to @addr.
3669  *	Returns 0 or an error code.
3670  */
3671 
3672 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3673 		   int flags)
3674 {
3675 	return sock->ops->connect(sock, addr, addrlen, flags);
3676 }
3677 EXPORT_SYMBOL(kernel_connect);
3678 
3679 /**
3680  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3681  *	@sock: socket
3682  *	@addr: address holder
3683  *
3684  * 	Fills the @addr pointer with the address which the socket is bound.
3685  *	Returns 0 or an error code.
3686  */
3687 
3688 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3689 {
3690 	return sock->ops->getname(sock, addr, 0);
3691 }
3692 EXPORT_SYMBOL(kernel_getsockname);
3693 
3694 /**
3695  *	kernel_peername - get the address which the socket is connected (kernel space)
3696  *	@sock: socket
3697  *	@addr: address holder
3698  *
3699  * 	Fills the @addr pointer with the address which the socket is connected.
3700  *	Returns 0 or an error code.
3701  */
3702 
3703 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3704 {
3705 	return sock->ops->getname(sock, addr, 1);
3706 }
3707 EXPORT_SYMBOL(kernel_getpeername);
3708 
3709 /**
3710  *	kernel_getsockopt - get a socket option (kernel space)
3711  *	@sock: socket
3712  *	@level: API level (SOL_SOCKET, ...)
3713  *	@optname: option tag
3714  *	@optval: option value
3715  *	@optlen: option length
3716  *
3717  *	Assigns the option length to @optlen.
3718  *	Returns 0 or an error.
3719  */
3720 
3721 int kernel_getsockopt(struct socket *sock, int level, int optname,
3722 			char *optval, int *optlen)
3723 {
3724 	mm_segment_t oldfs = get_fs();
3725 	char __user *uoptval;
3726 	int __user *uoptlen;
3727 	int err;
3728 
3729 	uoptval = (char __user __force *) optval;
3730 	uoptlen = (int __user __force *) optlen;
3731 
3732 	set_fs(KERNEL_DS);
3733 	if (level == SOL_SOCKET)
3734 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3735 	else
3736 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3737 					    uoptlen);
3738 	set_fs(oldfs);
3739 	return err;
3740 }
3741 EXPORT_SYMBOL(kernel_getsockopt);
3742 
3743 /**
3744  *	kernel_setsockopt - set a socket option (kernel space)
3745  *	@sock: socket
3746  *	@level: API level (SOL_SOCKET, ...)
3747  *	@optname: option tag
3748  *	@optval: option value
3749  *	@optlen: option length
3750  *
3751  *	Returns 0 or an error.
3752  */
3753 
3754 int kernel_setsockopt(struct socket *sock, int level, int optname,
3755 			char *optval, unsigned int optlen)
3756 {
3757 	mm_segment_t oldfs = get_fs();
3758 	char __user *uoptval;
3759 	int err;
3760 
3761 	uoptval = (char __user __force *) optval;
3762 
3763 	set_fs(KERNEL_DS);
3764 	if (level == SOL_SOCKET)
3765 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3766 	else
3767 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3768 					    optlen);
3769 	set_fs(oldfs);
3770 	return err;
3771 }
3772 EXPORT_SYMBOL(kernel_setsockopt);
3773 
3774 /**
3775  *	kernel_sendpage - send a &page through a socket (kernel space)
3776  *	@sock: socket
3777  *	@page: page
3778  *	@offset: page offset
3779  *	@size: total size in bytes
3780  *	@flags: flags (MSG_DONTWAIT, ...)
3781  *
3782  *	Returns the total amount sent in bytes or an error.
3783  */
3784 
3785 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3786 		    size_t size, int flags)
3787 {
3788 	if (sock->ops->sendpage)
3789 		return sock->ops->sendpage(sock, page, offset, size, flags);
3790 
3791 	return sock_no_sendpage(sock, page, offset, size, flags);
3792 }
3793 EXPORT_SYMBOL(kernel_sendpage);
3794 
3795 /**
3796  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3797  *	@sk: sock
3798  *	@page: page
3799  *	@offset: page offset
3800  *	@size: total size in bytes
3801  *	@flags: flags (MSG_DONTWAIT, ...)
3802  *
3803  *	Returns the total amount sent in bytes or an error.
3804  *	Caller must hold @sk.
3805  */
3806 
3807 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3808 			   size_t size, int flags)
3809 {
3810 	struct socket *sock = sk->sk_socket;
3811 
3812 	if (sock->ops->sendpage_locked)
3813 		return sock->ops->sendpage_locked(sk, page, offset, size,
3814 						  flags);
3815 
3816 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3817 }
3818 EXPORT_SYMBOL(kernel_sendpage_locked);
3819 
3820 /**
3821  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3822  *	@sock: socket
3823  *	@how: connection part
3824  *
3825  *	Returns 0 or an error.
3826  */
3827 
3828 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3829 {
3830 	return sock->ops->shutdown(sock, how);
3831 }
3832 EXPORT_SYMBOL(kernel_sock_shutdown);
3833 
3834 /**
3835  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3836  *	@sk: socket
3837  *
3838  *	This routine returns the IP overhead imposed by a socket i.e.
3839  *	the length of the underlying IP header, depending on whether
3840  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3841  *	on at the socket. Assumes that the caller has a lock on the socket.
3842  */
3843 
3844 u32 kernel_sock_ip_overhead(struct sock *sk)
3845 {
3846 	struct inet_sock *inet;
3847 	struct ip_options_rcu *opt;
3848 	u32 overhead = 0;
3849 #if IS_ENABLED(CONFIG_IPV6)
3850 	struct ipv6_pinfo *np;
3851 	struct ipv6_txoptions *optv6 = NULL;
3852 #endif /* IS_ENABLED(CONFIG_IPV6) */
3853 
3854 	if (!sk)
3855 		return overhead;
3856 
3857 	switch (sk->sk_family) {
3858 	case AF_INET:
3859 		inet = inet_sk(sk);
3860 		overhead += sizeof(struct iphdr);
3861 		opt = rcu_dereference_protected(inet->inet_opt,
3862 						sock_owned_by_user(sk));
3863 		if (opt)
3864 			overhead += opt->opt.optlen;
3865 		return overhead;
3866 #if IS_ENABLED(CONFIG_IPV6)
3867 	case AF_INET6:
3868 		np = inet6_sk(sk);
3869 		overhead += sizeof(struct ipv6hdr);
3870 		if (np)
3871 			optv6 = rcu_dereference_protected(np->opt,
3872 							  sock_owned_by_user(sk));
3873 		if (optv6)
3874 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3875 		return overhead;
3876 #endif /* IS_ENABLED(CONFIG_IPV6) */
3877 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3878 		return overhead;
3879 	}
3880 }
3881 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3882