xref: /openbmc/linux/net/socket.c (revision d93aa9d8)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 		__poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.get_poll_head = sock_get_poll_head,
147 	.poll_mask =	sock_poll_mask,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.release =	sock_close,
155 	.fasync =	sock_fasync,
156 	.sendpage =	sock_sendpage,
157 	.splice_write = generic_splice_sendpage,
158 	.splice_read =	sock_splice_read,
159 };
160 
161 /*
162  *	The protocol list. Each protocol is registered in here.
163  */
164 
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	BUG_ON(klen > sizeof(struct sockaddr_storage));
220 	err = get_user(len, ulen);
221 	if (err)
222 		return err;
223 	if (len > klen)
224 		len = klen;
225 	if (len < 0)
226 		return -EINVAL;
227 	if (len) {
228 		if (audit_sockaddr(klen, kaddr))
229 			return -ENOMEM;
230 		if (copy_to_user(uaddr, kaddr, len))
231 			return -EFAULT;
232 	}
233 	/*
234 	 *      "fromlen shall refer to the value before truncation.."
235 	 *                      1003.1g
236 	 */
237 	return __put_user(klen, ulen);
238 }
239 
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 	struct socket_wq *wq;
246 
247 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 	if (!ei)
249 		return NULL;
250 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 	if (!wq) {
252 		kmem_cache_free(sock_inode_cachep, ei);
253 		return NULL;
254 	}
255 	init_waitqueue_head(&wq->wait);
256 	wq->fasync_list = NULL;
257 	wq->flags = 0;
258 	RCU_INIT_POINTER(ei->socket.wq, wq);
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 	struct socket_wq *wq;
273 
274 	ei = container_of(inode, struct socket_alloc, vfs_inode);
275 	wq = rcu_dereference_protected(ei->socket.wq, 1);
276 	kfree_rcu(wq, rcu);
277 	kmem_cache_free(sock_inode_cachep, ei);
278 }
279 
280 static void init_once(void *foo)
281 {
282 	struct socket_alloc *ei = (struct socket_alloc *)foo;
283 
284 	inode_init_once(&ei->vfs_inode);
285 }
286 
287 static void init_inodecache(void)
288 {
289 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 					      sizeof(struct socket_alloc),
291 					      0,
292 					      (SLAB_HWCACHE_ALIGN |
293 					       SLAB_RECLAIM_ACCOUNT |
294 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 					      init_once);
296 	BUG_ON(sock_inode_cachep == NULL);
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				d_inode(dentry)->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 			    struct dentry *dentry, struct inode *inode,
320 			    const char *suffix, void *value, size_t size)
321 {
322 	if (value) {
323 		if (dentry->d_name.len + 1 > size)
324 			return -ERANGE;
325 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 	}
327 	return dentry->d_name.len + 1;
328 }
329 
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333 
334 static const struct xattr_handler sockfs_xattr_handler = {
335 	.name = XATTR_NAME_SOCKPROTONAME,
336 	.get = sockfs_xattr_get,
337 };
338 
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 				     struct dentry *dentry, struct inode *inode,
341 				     const char *suffix, const void *value,
342 				     size_t size, int flags)
343 {
344 	/* Handled by LSM. */
345 	return -EAGAIN;
346 }
347 
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 	.prefix = XATTR_SECURITY_PREFIX,
350 	.set = sockfs_security_xattr_set,
351 };
352 
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 	&sockfs_xattr_handler,
355 	&sockfs_security_xattr_handler,
356 	NULL
357 };
358 
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 			 int flags, const char *dev_name, void *data)
361 {
362 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 				  sockfs_xattr_handlers,
364 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.mount =	sockfs_mount,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 	struct file *file;
395 
396 	if (!dname)
397 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
398 
399 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
400 				O_RDWR | (flags & O_NONBLOCK),
401 				&socket_file_ops);
402 	if (IS_ERR(file)) {
403 		sock_release(sock);
404 		return file;
405 	}
406 
407 	sock->file = file;
408 	file->private_data = sock;
409 	return file;
410 }
411 EXPORT_SYMBOL(sock_alloc_file);
412 
413 static int sock_map_fd(struct socket *sock, int flags)
414 {
415 	struct file *newfile;
416 	int fd = get_unused_fd_flags(flags);
417 	if (unlikely(fd < 0)) {
418 		sock_release(sock);
419 		return fd;
420 	}
421 
422 	newfile = sock_alloc_file(sock, flags, NULL);
423 	if (likely(!IS_ERR(newfile))) {
424 		fd_install(fd, newfile);
425 		return fd;
426 	}
427 
428 	put_unused_fd(fd);
429 	return PTR_ERR(newfile);
430 }
431 
432 struct socket *sock_from_file(struct file *file, int *err)
433 {
434 	if (file->f_op == &socket_file_ops)
435 		return file->private_data;	/* set in sock_map_fd */
436 
437 	*err = -ENOTSOCK;
438 	return NULL;
439 }
440 EXPORT_SYMBOL(sock_from_file);
441 
442 /**
443  *	sockfd_lookup - Go from a file number to its socket slot
444  *	@fd: file handle
445  *	@err: pointer to an error code return
446  *
447  *	The file handle passed in is locked and the socket it is bound
448  *	to is returned. If an error occurs the err pointer is overwritten
449  *	with a negative errno code and NULL is returned. The function checks
450  *	for both invalid handles and passing a handle which is not a socket.
451  *
452  *	On a success the socket object pointer is returned.
453  */
454 
455 struct socket *sockfd_lookup(int fd, int *err)
456 {
457 	struct file *file;
458 	struct socket *sock;
459 
460 	file = fget(fd);
461 	if (!file) {
462 		*err = -EBADF;
463 		return NULL;
464 	}
465 
466 	sock = sock_from_file(file, err);
467 	if (!sock)
468 		fput(file);
469 	return sock;
470 }
471 EXPORT_SYMBOL(sockfd_lookup);
472 
473 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
474 {
475 	struct fd f = fdget(fd);
476 	struct socket *sock;
477 
478 	*err = -EBADF;
479 	if (f.file) {
480 		sock = sock_from_file(f.file, err);
481 		if (likely(sock)) {
482 			*fput_needed = f.flags;
483 			return sock;
484 		}
485 		fdput(f);
486 	}
487 	return NULL;
488 }
489 
490 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
491 				size_t size)
492 {
493 	ssize_t len;
494 	ssize_t used = 0;
495 
496 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
497 	if (len < 0)
498 		return len;
499 	used += len;
500 	if (buffer) {
501 		if (size < used)
502 			return -ERANGE;
503 		buffer += len;
504 	}
505 
506 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
507 	used += len;
508 	if (buffer) {
509 		if (size < used)
510 			return -ERANGE;
511 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
512 		buffer += len;
513 	}
514 
515 	return used;
516 }
517 
518 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
519 {
520 	int err = simple_setattr(dentry, iattr);
521 
522 	if (!err && (iattr->ia_valid & ATTR_UID)) {
523 		struct socket *sock = SOCKET_I(d_inode(dentry));
524 
525 		if (sock->sk)
526 			sock->sk->sk_uid = iattr->ia_uid;
527 		else
528 			err = -ENOENT;
529 	}
530 
531 	return err;
532 }
533 
534 static const struct inode_operations sockfs_inode_ops = {
535 	.listxattr = sockfs_listxattr,
536 	.setattr = sockfs_setattr,
537 };
538 
539 /**
540  *	sock_alloc	-	allocate a socket
541  *
542  *	Allocate a new inode and socket object. The two are bound together
543  *	and initialised. The socket is then returned. If we are out of inodes
544  *	NULL is returned.
545  */
546 
547 struct socket *sock_alloc(void)
548 {
549 	struct inode *inode;
550 	struct socket *sock;
551 
552 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
553 	if (!inode)
554 		return NULL;
555 
556 	sock = SOCKET_I(inode);
557 
558 	inode->i_ino = get_next_ino();
559 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
560 	inode->i_uid = current_fsuid();
561 	inode->i_gid = current_fsgid();
562 	inode->i_op = &sockfs_inode_ops;
563 
564 	return sock;
565 }
566 EXPORT_SYMBOL(sock_alloc);
567 
568 /**
569  *	sock_release	-	close a socket
570  *	@sock: socket to close
571  *
572  *	The socket is released from the protocol stack if it has a release
573  *	callback, and the inode is then released if the socket is bound to
574  *	an inode not a file.
575  */
576 
577 static void __sock_release(struct socket *sock, struct inode *inode)
578 {
579 	if (sock->ops) {
580 		struct module *owner = sock->ops->owner;
581 
582 		if (inode)
583 			inode_lock(inode);
584 		sock->ops->release(sock);
585 		if (inode)
586 			inode_unlock(inode);
587 		sock->ops = NULL;
588 		module_put(owner);
589 	}
590 
591 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
592 		pr_err("%s: fasync list not empty!\n", __func__);
593 
594 	if (!sock->file) {
595 		iput(SOCK_INODE(sock));
596 		return;
597 	}
598 	sock->file = NULL;
599 }
600 
601 void sock_release(struct socket *sock)
602 {
603 	__sock_release(sock, NULL);
604 }
605 EXPORT_SYMBOL(sock_release);
606 
607 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
608 {
609 	u8 flags = *tx_flags;
610 
611 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
612 		flags |= SKBTX_HW_TSTAMP;
613 
614 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
615 		flags |= SKBTX_SW_TSTAMP;
616 
617 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
618 		flags |= SKBTX_SCHED_TSTAMP;
619 
620 	*tx_flags = flags;
621 }
622 EXPORT_SYMBOL(__sock_tx_timestamp);
623 
624 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
625 {
626 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
627 	BUG_ON(ret == -EIOCBQUEUED);
628 	return ret;
629 }
630 
631 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
632 {
633 	int err = security_socket_sendmsg(sock, msg,
634 					  msg_data_left(msg));
635 
636 	return err ?: sock_sendmsg_nosec(sock, msg);
637 }
638 EXPORT_SYMBOL(sock_sendmsg);
639 
640 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
641 		   struct kvec *vec, size_t num, size_t size)
642 {
643 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
644 	return sock_sendmsg(sock, msg);
645 }
646 EXPORT_SYMBOL(kernel_sendmsg);
647 
648 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
649 			  struct kvec *vec, size_t num, size_t size)
650 {
651 	struct socket *sock = sk->sk_socket;
652 
653 	if (!sock->ops->sendmsg_locked)
654 		return sock_no_sendmsg_locked(sk, msg, size);
655 
656 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
657 
658 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
659 }
660 EXPORT_SYMBOL(kernel_sendmsg_locked);
661 
662 static bool skb_is_err_queue(const struct sk_buff *skb)
663 {
664 	/* pkt_type of skbs enqueued on the error queue are set to
665 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
666 	 * in recvmsg, since skbs received on a local socket will never
667 	 * have a pkt_type of PACKET_OUTGOING.
668 	 */
669 	return skb->pkt_type == PACKET_OUTGOING;
670 }
671 
672 /* On transmit, software and hardware timestamps are returned independently.
673  * As the two skb clones share the hardware timestamp, which may be updated
674  * before the software timestamp is received, a hardware TX timestamp may be
675  * returned only if there is no software TX timestamp. Ignore false software
676  * timestamps, which may be made in the __sock_recv_timestamp() call when the
677  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
678  * hardware timestamp.
679  */
680 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
681 {
682 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
683 }
684 
685 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
686 {
687 	struct scm_ts_pktinfo ts_pktinfo;
688 	struct net_device *orig_dev;
689 
690 	if (!skb_mac_header_was_set(skb))
691 		return;
692 
693 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
694 
695 	rcu_read_lock();
696 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
697 	if (orig_dev)
698 		ts_pktinfo.if_index = orig_dev->ifindex;
699 	rcu_read_unlock();
700 
701 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
702 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
703 		 sizeof(ts_pktinfo), &ts_pktinfo);
704 }
705 
706 /*
707  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
708  */
709 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
710 	struct sk_buff *skb)
711 {
712 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
713 	struct scm_timestamping tss;
714 	int empty = 1, false_tstamp = 0;
715 	struct skb_shared_hwtstamps *shhwtstamps =
716 		skb_hwtstamps(skb);
717 
718 	/* Race occurred between timestamp enabling and packet
719 	   receiving.  Fill in the current time for now. */
720 	if (need_software_tstamp && skb->tstamp == 0) {
721 		__net_timestamp(skb);
722 		false_tstamp = 1;
723 	}
724 
725 	if (need_software_tstamp) {
726 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
727 			struct timeval tv;
728 			skb_get_timestamp(skb, &tv);
729 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
730 				 sizeof(tv), &tv);
731 		} else {
732 			struct timespec ts;
733 			skb_get_timestampns(skb, &ts);
734 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
735 				 sizeof(ts), &ts);
736 		}
737 	}
738 
739 	memset(&tss, 0, sizeof(tss));
740 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
741 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
742 		empty = 0;
743 	if (shhwtstamps &&
744 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
745 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
746 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
747 		empty = 0;
748 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
749 		    !skb_is_err_queue(skb))
750 			put_ts_pktinfo(msg, skb);
751 	}
752 	if (!empty) {
753 		put_cmsg(msg, SOL_SOCKET,
754 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
755 
756 		if (skb_is_err_queue(skb) && skb->len &&
757 		    SKB_EXT_ERR(skb)->opt_stats)
758 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
759 				 skb->len, skb->data);
760 	}
761 }
762 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
763 
764 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
765 	struct sk_buff *skb)
766 {
767 	int ack;
768 
769 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
770 		return;
771 	if (!skb->wifi_acked_valid)
772 		return;
773 
774 	ack = skb->wifi_acked;
775 
776 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
777 }
778 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
779 
780 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
781 				   struct sk_buff *skb)
782 {
783 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
784 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
785 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
786 }
787 
788 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
789 	struct sk_buff *skb)
790 {
791 	sock_recv_timestamp(msg, sk, skb);
792 	sock_recv_drops(msg, sk, skb);
793 }
794 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
795 
796 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
797 				     int flags)
798 {
799 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
800 }
801 
802 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
803 {
804 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
805 
806 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
807 }
808 EXPORT_SYMBOL(sock_recvmsg);
809 
810 /**
811  * kernel_recvmsg - Receive a message from a socket (kernel space)
812  * @sock:       The socket to receive the message from
813  * @msg:        Received message
814  * @vec:        Input s/g array for message data
815  * @num:        Size of input s/g array
816  * @size:       Number of bytes to read
817  * @flags:      Message flags (MSG_DONTWAIT, etc...)
818  *
819  * On return the msg structure contains the scatter/gather array passed in the
820  * vec argument. The array is modified so that it consists of the unfilled
821  * portion of the original array.
822  *
823  * The returned value is the total number of bytes received, or an error.
824  */
825 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
826 		   struct kvec *vec, size_t num, size_t size, int flags)
827 {
828 	mm_segment_t oldfs = get_fs();
829 	int result;
830 
831 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
832 	set_fs(KERNEL_DS);
833 	result = sock_recvmsg(sock, msg, flags);
834 	set_fs(oldfs);
835 	return result;
836 }
837 EXPORT_SYMBOL(kernel_recvmsg);
838 
839 static ssize_t sock_sendpage(struct file *file, struct page *page,
840 			     int offset, size_t size, loff_t *ppos, int more)
841 {
842 	struct socket *sock;
843 	int flags;
844 
845 	sock = file->private_data;
846 
847 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
848 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
849 	flags |= more;
850 
851 	return kernel_sendpage(sock, page, offset, size, flags);
852 }
853 
854 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
855 				struct pipe_inode_info *pipe, size_t len,
856 				unsigned int flags)
857 {
858 	struct socket *sock = file->private_data;
859 
860 	if (unlikely(!sock->ops->splice_read))
861 		return -EINVAL;
862 
863 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
864 }
865 
866 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
867 {
868 	struct file *file = iocb->ki_filp;
869 	struct socket *sock = file->private_data;
870 	struct msghdr msg = {.msg_iter = *to,
871 			     .msg_iocb = iocb};
872 	ssize_t res;
873 
874 	if (file->f_flags & O_NONBLOCK)
875 		msg.msg_flags = MSG_DONTWAIT;
876 
877 	if (iocb->ki_pos != 0)
878 		return -ESPIPE;
879 
880 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
881 		return 0;
882 
883 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
884 	*to = msg.msg_iter;
885 	return res;
886 }
887 
888 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
889 {
890 	struct file *file = iocb->ki_filp;
891 	struct socket *sock = file->private_data;
892 	struct msghdr msg = {.msg_iter = *from,
893 			     .msg_iocb = iocb};
894 	ssize_t res;
895 
896 	if (iocb->ki_pos != 0)
897 		return -ESPIPE;
898 
899 	if (file->f_flags & O_NONBLOCK)
900 		msg.msg_flags = MSG_DONTWAIT;
901 
902 	if (sock->type == SOCK_SEQPACKET)
903 		msg.msg_flags |= MSG_EOR;
904 
905 	res = sock_sendmsg(sock, &msg);
906 	*from = msg.msg_iter;
907 	return res;
908 }
909 
910 /*
911  * Atomic setting of ioctl hooks to avoid race
912  * with module unload.
913  */
914 
915 static DEFINE_MUTEX(br_ioctl_mutex);
916 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
917 
918 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
919 {
920 	mutex_lock(&br_ioctl_mutex);
921 	br_ioctl_hook = hook;
922 	mutex_unlock(&br_ioctl_mutex);
923 }
924 EXPORT_SYMBOL(brioctl_set);
925 
926 static DEFINE_MUTEX(vlan_ioctl_mutex);
927 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
928 
929 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
930 {
931 	mutex_lock(&vlan_ioctl_mutex);
932 	vlan_ioctl_hook = hook;
933 	mutex_unlock(&vlan_ioctl_mutex);
934 }
935 EXPORT_SYMBOL(vlan_ioctl_set);
936 
937 static DEFINE_MUTEX(dlci_ioctl_mutex);
938 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
939 
940 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
941 {
942 	mutex_lock(&dlci_ioctl_mutex);
943 	dlci_ioctl_hook = hook;
944 	mutex_unlock(&dlci_ioctl_mutex);
945 }
946 EXPORT_SYMBOL(dlci_ioctl_set);
947 
948 static long sock_do_ioctl(struct net *net, struct socket *sock,
949 				 unsigned int cmd, unsigned long arg)
950 {
951 	int err;
952 	void __user *argp = (void __user *)arg;
953 
954 	err = sock->ops->ioctl(sock, cmd, arg);
955 
956 	/*
957 	 * If this ioctl is unknown try to hand it down
958 	 * to the NIC driver.
959 	 */
960 	if (err != -ENOIOCTLCMD)
961 		return err;
962 
963 	if (cmd == SIOCGIFCONF) {
964 		struct ifconf ifc;
965 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
966 			return -EFAULT;
967 		rtnl_lock();
968 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
969 		rtnl_unlock();
970 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
971 			err = -EFAULT;
972 	} else {
973 		struct ifreq ifr;
974 		bool need_copyout;
975 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
976 			return -EFAULT;
977 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
978 		if (!err && need_copyout)
979 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
980 				return -EFAULT;
981 	}
982 	return err;
983 }
984 
985 /*
986  *	With an ioctl, arg may well be a user mode pointer, but we don't know
987  *	what to do with it - that's up to the protocol still.
988  */
989 
990 struct ns_common *get_net_ns(struct ns_common *ns)
991 {
992 	return &get_net(container_of(ns, struct net, ns))->ns;
993 }
994 EXPORT_SYMBOL_GPL(get_net_ns);
995 
996 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
997 {
998 	struct socket *sock;
999 	struct sock *sk;
1000 	void __user *argp = (void __user *)arg;
1001 	int pid, err;
1002 	struct net *net;
1003 
1004 	sock = file->private_data;
1005 	sk = sock->sk;
1006 	net = sock_net(sk);
1007 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1008 		struct ifreq ifr;
1009 		bool need_copyout;
1010 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1011 			return -EFAULT;
1012 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1013 		if (!err && need_copyout)
1014 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1015 				return -EFAULT;
1016 	} else
1017 #ifdef CONFIG_WEXT_CORE
1018 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1019 		err = wext_handle_ioctl(net, cmd, argp);
1020 	} else
1021 #endif
1022 		switch (cmd) {
1023 		case FIOSETOWN:
1024 		case SIOCSPGRP:
1025 			err = -EFAULT;
1026 			if (get_user(pid, (int __user *)argp))
1027 				break;
1028 			err = f_setown(sock->file, pid, 1);
1029 			break;
1030 		case FIOGETOWN:
1031 		case SIOCGPGRP:
1032 			err = put_user(f_getown(sock->file),
1033 				       (int __user *)argp);
1034 			break;
1035 		case SIOCGIFBR:
1036 		case SIOCSIFBR:
1037 		case SIOCBRADDBR:
1038 		case SIOCBRDELBR:
1039 			err = -ENOPKG;
1040 			if (!br_ioctl_hook)
1041 				request_module("bridge");
1042 
1043 			mutex_lock(&br_ioctl_mutex);
1044 			if (br_ioctl_hook)
1045 				err = br_ioctl_hook(net, cmd, argp);
1046 			mutex_unlock(&br_ioctl_mutex);
1047 			break;
1048 		case SIOCGIFVLAN:
1049 		case SIOCSIFVLAN:
1050 			err = -ENOPKG;
1051 			if (!vlan_ioctl_hook)
1052 				request_module("8021q");
1053 
1054 			mutex_lock(&vlan_ioctl_mutex);
1055 			if (vlan_ioctl_hook)
1056 				err = vlan_ioctl_hook(net, argp);
1057 			mutex_unlock(&vlan_ioctl_mutex);
1058 			break;
1059 		case SIOCADDDLCI:
1060 		case SIOCDELDLCI:
1061 			err = -ENOPKG;
1062 			if (!dlci_ioctl_hook)
1063 				request_module("dlci");
1064 
1065 			mutex_lock(&dlci_ioctl_mutex);
1066 			if (dlci_ioctl_hook)
1067 				err = dlci_ioctl_hook(cmd, argp);
1068 			mutex_unlock(&dlci_ioctl_mutex);
1069 			break;
1070 		case SIOCGSKNS:
1071 			err = -EPERM;
1072 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1073 				break;
1074 
1075 			err = open_related_ns(&net->ns, get_net_ns);
1076 			break;
1077 		default:
1078 			err = sock_do_ioctl(net, sock, cmd, arg);
1079 			break;
1080 		}
1081 	return err;
1082 }
1083 
1084 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1085 {
1086 	int err;
1087 	struct socket *sock = NULL;
1088 
1089 	err = security_socket_create(family, type, protocol, 1);
1090 	if (err)
1091 		goto out;
1092 
1093 	sock = sock_alloc();
1094 	if (!sock) {
1095 		err = -ENOMEM;
1096 		goto out;
1097 	}
1098 
1099 	sock->type = type;
1100 	err = security_socket_post_create(sock, family, type, protocol, 1);
1101 	if (err)
1102 		goto out_release;
1103 
1104 out:
1105 	*res = sock;
1106 	return err;
1107 out_release:
1108 	sock_release(sock);
1109 	sock = NULL;
1110 	goto out;
1111 }
1112 EXPORT_SYMBOL(sock_create_lite);
1113 
1114 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1115 		__poll_t events)
1116 {
1117 	struct socket *sock = file->private_data;
1118 
1119 	if (!sock->ops->poll_mask)
1120 		return NULL;
1121 	sock_poll_busy_loop(sock, events);
1122 	return sk_sleep(sock->sk);
1123 }
1124 
1125 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1126 {
1127 	struct socket *sock = file->private_data;
1128 
1129 	/*
1130 	 * We need to be sure we are in sync with the socket flags modification.
1131 	 *
1132 	 * This memory barrier is paired in the wq_has_sleeper.
1133 	 */
1134 	smp_mb();
1135 
1136 	/* this socket can poll_ll so tell the system call */
1137 	return sock->ops->poll_mask(sock, events) |
1138 		(sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1139 }
1140 
1141 /* No kernel lock held - perfect */
1142 static __poll_t sock_poll(struct file *file, poll_table *wait)
1143 {
1144 	struct socket *sock = file->private_data;
1145 	__poll_t events = poll_requested_events(wait), mask = 0;
1146 
1147 	if (sock->ops->poll) {
1148 		sock_poll_busy_loop(sock, events);
1149 		mask = sock->ops->poll(file, sock, wait);
1150 	} else if (sock->ops->poll_mask) {
1151 		sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1152 		mask = sock->ops->poll_mask(sock, events);
1153 	}
1154 
1155 	return mask | sock_poll_busy_flag(sock);
1156 }
1157 
1158 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1159 {
1160 	struct socket *sock = file->private_data;
1161 
1162 	return sock->ops->mmap(file, sock, vma);
1163 }
1164 
1165 static int sock_close(struct inode *inode, struct file *filp)
1166 {
1167 	__sock_release(SOCKET_I(inode), inode);
1168 	return 0;
1169 }
1170 
1171 /*
1172  *	Update the socket async list
1173  *
1174  *	Fasync_list locking strategy.
1175  *
1176  *	1. fasync_list is modified only under process context socket lock
1177  *	   i.e. under semaphore.
1178  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1179  *	   or under socket lock
1180  */
1181 
1182 static int sock_fasync(int fd, struct file *filp, int on)
1183 {
1184 	struct socket *sock = filp->private_data;
1185 	struct sock *sk = sock->sk;
1186 	struct socket_wq *wq;
1187 
1188 	if (sk == NULL)
1189 		return -EINVAL;
1190 
1191 	lock_sock(sk);
1192 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1193 	fasync_helper(fd, filp, on, &wq->fasync_list);
1194 
1195 	if (!wq->fasync_list)
1196 		sock_reset_flag(sk, SOCK_FASYNC);
1197 	else
1198 		sock_set_flag(sk, SOCK_FASYNC);
1199 
1200 	release_sock(sk);
1201 	return 0;
1202 }
1203 
1204 /* This function may be called only under rcu_lock */
1205 
1206 int sock_wake_async(struct socket_wq *wq, int how, int band)
1207 {
1208 	if (!wq || !wq->fasync_list)
1209 		return -1;
1210 
1211 	switch (how) {
1212 	case SOCK_WAKE_WAITD:
1213 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1214 			break;
1215 		goto call_kill;
1216 	case SOCK_WAKE_SPACE:
1217 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1218 			break;
1219 		/* fall through */
1220 	case SOCK_WAKE_IO:
1221 call_kill:
1222 		kill_fasync(&wq->fasync_list, SIGIO, band);
1223 		break;
1224 	case SOCK_WAKE_URG:
1225 		kill_fasync(&wq->fasync_list, SIGURG, band);
1226 	}
1227 
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL(sock_wake_async);
1231 
1232 int __sock_create(struct net *net, int family, int type, int protocol,
1233 			 struct socket **res, int kern)
1234 {
1235 	int err;
1236 	struct socket *sock;
1237 	const struct net_proto_family *pf;
1238 
1239 	/*
1240 	 *      Check protocol is in range
1241 	 */
1242 	if (family < 0 || family >= NPROTO)
1243 		return -EAFNOSUPPORT;
1244 	if (type < 0 || type >= SOCK_MAX)
1245 		return -EINVAL;
1246 
1247 	/* Compatibility.
1248 
1249 	   This uglymoron is moved from INET layer to here to avoid
1250 	   deadlock in module load.
1251 	 */
1252 	if (family == PF_INET && type == SOCK_PACKET) {
1253 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1254 			     current->comm);
1255 		family = PF_PACKET;
1256 	}
1257 
1258 	err = security_socket_create(family, type, protocol, kern);
1259 	if (err)
1260 		return err;
1261 
1262 	/*
1263 	 *	Allocate the socket and allow the family to set things up. if
1264 	 *	the protocol is 0, the family is instructed to select an appropriate
1265 	 *	default.
1266 	 */
1267 	sock = sock_alloc();
1268 	if (!sock) {
1269 		net_warn_ratelimited("socket: no more sockets\n");
1270 		return -ENFILE;	/* Not exactly a match, but its the
1271 				   closest posix thing */
1272 	}
1273 
1274 	sock->type = type;
1275 
1276 #ifdef CONFIG_MODULES
1277 	/* Attempt to load a protocol module if the find failed.
1278 	 *
1279 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1280 	 * requested real, full-featured networking support upon configuration.
1281 	 * Otherwise module support will break!
1282 	 */
1283 	if (rcu_access_pointer(net_families[family]) == NULL)
1284 		request_module("net-pf-%d", family);
1285 #endif
1286 
1287 	rcu_read_lock();
1288 	pf = rcu_dereference(net_families[family]);
1289 	err = -EAFNOSUPPORT;
1290 	if (!pf)
1291 		goto out_release;
1292 
1293 	/*
1294 	 * We will call the ->create function, that possibly is in a loadable
1295 	 * module, so we have to bump that loadable module refcnt first.
1296 	 */
1297 	if (!try_module_get(pf->owner))
1298 		goto out_release;
1299 
1300 	/* Now protected by module ref count */
1301 	rcu_read_unlock();
1302 
1303 	err = pf->create(net, sock, protocol, kern);
1304 	if (err < 0)
1305 		goto out_module_put;
1306 
1307 	/*
1308 	 * Now to bump the refcnt of the [loadable] module that owns this
1309 	 * socket at sock_release time we decrement its refcnt.
1310 	 */
1311 	if (!try_module_get(sock->ops->owner))
1312 		goto out_module_busy;
1313 
1314 	/*
1315 	 * Now that we're done with the ->create function, the [loadable]
1316 	 * module can have its refcnt decremented
1317 	 */
1318 	module_put(pf->owner);
1319 	err = security_socket_post_create(sock, family, type, protocol, kern);
1320 	if (err)
1321 		goto out_sock_release;
1322 	*res = sock;
1323 
1324 	return 0;
1325 
1326 out_module_busy:
1327 	err = -EAFNOSUPPORT;
1328 out_module_put:
1329 	sock->ops = NULL;
1330 	module_put(pf->owner);
1331 out_sock_release:
1332 	sock_release(sock);
1333 	return err;
1334 
1335 out_release:
1336 	rcu_read_unlock();
1337 	goto out_sock_release;
1338 }
1339 EXPORT_SYMBOL(__sock_create);
1340 
1341 int sock_create(int family, int type, int protocol, struct socket **res)
1342 {
1343 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1344 }
1345 EXPORT_SYMBOL(sock_create);
1346 
1347 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1348 {
1349 	return __sock_create(net, family, type, protocol, res, 1);
1350 }
1351 EXPORT_SYMBOL(sock_create_kern);
1352 
1353 int __sys_socket(int family, int type, int protocol)
1354 {
1355 	int retval;
1356 	struct socket *sock;
1357 	int flags;
1358 
1359 	/* Check the SOCK_* constants for consistency.  */
1360 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1361 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1362 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1363 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1364 
1365 	flags = type & ~SOCK_TYPE_MASK;
1366 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1367 		return -EINVAL;
1368 	type &= SOCK_TYPE_MASK;
1369 
1370 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1371 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1372 
1373 	retval = sock_create(family, type, protocol, &sock);
1374 	if (retval < 0)
1375 		return retval;
1376 
1377 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1378 }
1379 
1380 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1381 {
1382 	return __sys_socket(family, type, protocol);
1383 }
1384 
1385 /*
1386  *	Create a pair of connected sockets.
1387  */
1388 
1389 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1390 {
1391 	struct socket *sock1, *sock2;
1392 	int fd1, fd2, err;
1393 	struct file *newfile1, *newfile2;
1394 	int flags;
1395 
1396 	flags = type & ~SOCK_TYPE_MASK;
1397 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1398 		return -EINVAL;
1399 	type &= SOCK_TYPE_MASK;
1400 
1401 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1402 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1403 
1404 	/*
1405 	 * reserve descriptors and make sure we won't fail
1406 	 * to return them to userland.
1407 	 */
1408 	fd1 = get_unused_fd_flags(flags);
1409 	if (unlikely(fd1 < 0))
1410 		return fd1;
1411 
1412 	fd2 = get_unused_fd_flags(flags);
1413 	if (unlikely(fd2 < 0)) {
1414 		put_unused_fd(fd1);
1415 		return fd2;
1416 	}
1417 
1418 	err = put_user(fd1, &usockvec[0]);
1419 	if (err)
1420 		goto out;
1421 
1422 	err = put_user(fd2, &usockvec[1]);
1423 	if (err)
1424 		goto out;
1425 
1426 	/*
1427 	 * Obtain the first socket and check if the underlying protocol
1428 	 * supports the socketpair call.
1429 	 */
1430 
1431 	err = sock_create(family, type, protocol, &sock1);
1432 	if (unlikely(err < 0))
1433 		goto out;
1434 
1435 	err = sock_create(family, type, protocol, &sock2);
1436 	if (unlikely(err < 0)) {
1437 		sock_release(sock1);
1438 		goto out;
1439 	}
1440 
1441 	err = security_socket_socketpair(sock1, sock2);
1442 	if (unlikely(err)) {
1443 		sock_release(sock2);
1444 		sock_release(sock1);
1445 		goto out;
1446 	}
1447 
1448 	err = sock1->ops->socketpair(sock1, sock2);
1449 	if (unlikely(err < 0)) {
1450 		sock_release(sock2);
1451 		sock_release(sock1);
1452 		goto out;
1453 	}
1454 
1455 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 	if (IS_ERR(newfile1)) {
1457 		err = PTR_ERR(newfile1);
1458 		sock_release(sock2);
1459 		goto out;
1460 	}
1461 
1462 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 	if (IS_ERR(newfile2)) {
1464 		err = PTR_ERR(newfile2);
1465 		fput(newfile1);
1466 		goto out;
1467 	}
1468 
1469 	audit_fd_pair(fd1, fd2);
1470 
1471 	fd_install(fd1, newfile1);
1472 	fd_install(fd2, newfile2);
1473 	return 0;
1474 
1475 out:
1476 	put_unused_fd(fd2);
1477 	put_unused_fd(fd1);
1478 	return err;
1479 }
1480 
1481 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1482 		int __user *, usockvec)
1483 {
1484 	return __sys_socketpair(family, type, protocol, usockvec);
1485 }
1486 
1487 /*
1488  *	Bind a name to a socket. Nothing much to do here since it's
1489  *	the protocol's responsibility to handle the local address.
1490  *
1491  *	We move the socket address to kernel space before we call
1492  *	the protocol layer (having also checked the address is ok).
1493  */
1494 
1495 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1496 {
1497 	struct socket *sock;
1498 	struct sockaddr_storage address;
1499 	int err, fput_needed;
1500 
1501 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1502 	if (sock) {
1503 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1504 		if (err >= 0) {
1505 			err = security_socket_bind(sock,
1506 						   (struct sockaddr *)&address,
1507 						   addrlen);
1508 			if (!err)
1509 				err = sock->ops->bind(sock,
1510 						      (struct sockaddr *)
1511 						      &address, addrlen);
1512 		}
1513 		fput_light(sock->file, fput_needed);
1514 	}
1515 	return err;
1516 }
1517 
1518 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1519 {
1520 	return __sys_bind(fd, umyaddr, addrlen);
1521 }
1522 
1523 /*
1524  *	Perform a listen. Basically, we allow the protocol to do anything
1525  *	necessary for a listen, and if that works, we mark the socket as
1526  *	ready for listening.
1527  */
1528 
1529 int __sys_listen(int fd, int backlog)
1530 {
1531 	struct socket *sock;
1532 	int err, fput_needed;
1533 	int somaxconn;
1534 
1535 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536 	if (sock) {
1537 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1538 		if ((unsigned int)backlog > somaxconn)
1539 			backlog = somaxconn;
1540 
1541 		err = security_socket_listen(sock, backlog);
1542 		if (!err)
1543 			err = sock->ops->listen(sock, backlog);
1544 
1545 		fput_light(sock->file, fput_needed);
1546 	}
1547 	return err;
1548 }
1549 
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552 	return __sys_listen(fd, backlog);
1553 }
1554 
1555 /*
1556  *	For accept, we attempt to create a new socket, set up the link
1557  *	with the client, wake up the client, then return the new
1558  *	connected fd. We collect the address of the connector in kernel
1559  *	space and move it to user at the very end. This is unclean because
1560  *	we open the socket then return an error.
1561  *
1562  *	1003.1g adds the ability to recvmsg() to query connection pending
1563  *	status to recvmsg. We need to add that support in a way thats
1564  *	clean when we restructure accept also.
1565  */
1566 
1567 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1568 		  int __user *upeer_addrlen, int flags)
1569 {
1570 	struct socket *sock, *newsock;
1571 	struct file *newfile;
1572 	int err, len, newfd, fput_needed;
1573 	struct sockaddr_storage address;
1574 
1575 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1576 		return -EINVAL;
1577 
1578 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1580 
1581 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 	if (!sock)
1583 		goto out;
1584 
1585 	err = -ENFILE;
1586 	newsock = sock_alloc();
1587 	if (!newsock)
1588 		goto out_put;
1589 
1590 	newsock->type = sock->type;
1591 	newsock->ops = sock->ops;
1592 
1593 	/*
1594 	 * We don't need try_module_get here, as the listening socket (sock)
1595 	 * has the protocol module (sock->ops->owner) held.
1596 	 */
1597 	__module_get(newsock->ops->owner);
1598 
1599 	newfd = get_unused_fd_flags(flags);
1600 	if (unlikely(newfd < 0)) {
1601 		err = newfd;
1602 		sock_release(newsock);
1603 		goto out_put;
1604 	}
1605 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 	if (IS_ERR(newfile)) {
1607 		err = PTR_ERR(newfile);
1608 		put_unused_fd(newfd);
1609 		goto out_put;
1610 	}
1611 
1612 	err = security_socket_accept(sock, newsock);
1613 	if (err)
1614 		goto out_fd;
1615 
1616 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1617 	if (err < 0)
1618 		goto out_fd;
1619 
1620 	if (upeer_sockaddr) {
1621 		len = newsock->ops->getname(newsock,
1622 					(struct sockaddr *)&address, 2);
1623 		if (len < 0) {
1624 			err = -ECONNABORTED;
1625 			goto out_fd;
1626 		}
1627 		err = move_addr_to_user(&address,
1628 					len, upeer_sockaddr, upeer_addrlen);
1629 		if (err < 0)
1630 			goto out_fd;
1631 	}
1632 
1633 	/* File flags are not inherited via accept() unlike another OSes. */
1634 
1635 	fd_install(newfd, newfile);
1636 	err = newfd;
1637 
1638 out_put:
1639 	fput_light(sock->file, fput_needed);
1640 out:
1641 	return err;
1642 out_fd:
1643 	fput(newfile);
1644 	put_unused_fd(newfd);
1645 	goto out_put;
1646 }
1647 
1648 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 		int __user *, upeer_addrlen, int, flags)
1650 {
1651 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1652 }
1653 
1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 		int __user *, upeer_addrlen)
1656 {
1657 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1658 }
1659 
1660 /*
1661  *	Attempt to connect to a socket with the server address.  The address
1662  *	is in user space so we verify it is OK and move it to kernel space.
1663  *
1664  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1665  *	break bindings
1666  *
1667  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668  *	other SEQPACKET protocols that take time to connect() as it doesn't
1669  *	include the -EINPROGRESS status for such sockets.
1670  */
1671 
1672 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1673 {
1674 	struct socket *sock;
1675 	struct sockaddr_storage address;
1676 	int err, fput_needed;
1677 
1678 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 	if (!sock)
1680 		goto out;
1681 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1682 	if (err < 0)
1683 		goto out_put;
1684 
1685 	err =
1686 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1687 	if (err)
1688 		goto out_put;
1689 
1690 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1691 				 sock->file->f_flags);
1692 out_put:
1693 	fput_light(sock->file, fput_needed);
1694 out:
1695 	return err;
1696 }
1697 
1698 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1699 		int, addrlen)
1700 {
1701 	return __sys_connect(fd, uservaddr, addrlen);
1702 }
1703 
1704 /*
1705  *	Get the local address ('name') of a socket object. Move the obtained
1706  *	name to user space.
1707  */
1708 
1709 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1710 		      int __user *usockaddr_len)
1711 {
1712 	struct socket *sock;
1713 	struct sockaddr_storage address;
1714 	int err, fput_needed;
1715 
1716 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1717 	if (!sock)
1718 		goto out;
1719 
1720 	err = security_socket_getsockname(sock);
1721 	if (err)
1722 		goto out_put;
1723 
1724 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1725 	if (err < 0)
1726 		goto out_put;
1727         /* "err" is actually length in this case */
1728 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1729 
1730 out_put:
1731 	fput_light(sock->file, fput_needed);
1732 out:
1733 	return err;
1734 }
1735 
1736 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1737 		int __user *, usockaddr_len)
1738 {
1739 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1740 }
1741 
1742 /*
1743  *	Get the remote address ('name') of a socket object. Move the obtained
1744  *	name to user space.
1745  */
1746 
1747 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1748 		      int __user *usockaddr_len)
1749 {
1750 	struct socket *sock;
1751 	struct sockaddr_storage address;
1752 	int err, fput_needed;
1753 
1754 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1755 	if (sock != NULL) {
1756 		err = security_socket_getpeername(sock);
1757 		if (err) {
1758 			fput_light(sock->file, fput_needed);
1759 			return err;
1760 		}
1761 
1762 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1763 		if (err >= 0)
1764 			/* "err" is actually length in this case */
1765 			err = move_addr_to_user(&address, err, usockaddr,
1766 						usockaddr_len);
1767 		fput_light(sock->file, fput_needed);
1768 	}
1769 	return err;
1770 }
1771 
1772 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1773 		int __user *, usockaddr_len)
1774 {
1775 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1776 }
1777 
1778 /*
1779  *	Send a datagram to a given address. We move the address into kernel
1780  *	space and check the user space data area is readable before invoking
1781  *	the protocol.
1782  */
1783 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1784 		 struct sockaddr __user *addr,  int addr_len)
1785 {
1786 	struct socket *sock;
1787 	struct sockaddr_storage address;
1788 	int err;
1789 	struct msghdr msg;
1790 	struct iovec iov;
1791 	int fput_needed;
1792 
1793 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1794 	if (unlikely(err))
1795 		return err;
1796 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 	if (!sock)
1798 		goto out;
1799 
1800 	msg.msg_name = NULL;
1801 	msg.msg_control = NULL;
1802 	msg.msg_controllen = 0;
1803 	msg.msg_namelen = 0;
1804 	if (addr) {
1805 		err = move_addr_to_kernel(addr, addr_len, &address);
1806 		if (err < 0)
1807 			goto out_put;
1808 		msg.msg_name = (struct sockaddr *)&address;
1809 		msg.msg_namelen = addr_len;
1810 	}
1811 	if (sock->file->f_flags & O_NONBLOCK)
1812 		flags |= MSG_DONTWAIT;
1813 	msg.msg_flags = flags;
1814 	err = sock_sendmsg(sock, &msg);
1815 
1816 out_put:
1817 	fput_light(sock->file, fput_needed);
1818 out:
1819 	return err;
1820 }
1821 
1822 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1823 		unsigned int, flags, struct sockaddr __user *, addr,
1824 		int, addr_len)
1825 {
1826 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1827 }
1828 
1829 /*
1830  *	Send a datagram down a socket.
1831  */
1832 
1833 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1834 		unsigned int, flags)
1835 {
1836 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1837 }
1838 
1839 /*
1840  *	Receive a frame from the socket and optionally record the address of the
1841  *	sender. We verify the buffers are writable and if needed move the
1842  *	sender address from kernel to user space.
1843  */
1844 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1845 		   struct sockaddr __user *addr, int __user *addr_len)
1846 {
1847 	struct socket *sock;
1848 	struct iovec iov;
1849 	struct msghdr msg;
1850 	struct sockaddr_storage address;
1851 	int err, err2;
1852 	int fput_needed;
1853 
1854 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1855 	if (unlikely(err))
1856 		return err;
1857 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 	if (!sock)
1859 		goto out;
1860 
1861 	msg.msg_control = NULL;
1862 	msg.msg_controllen = 0;
1863 	/* Save some cycles and don't copy the address if not needed */
1864 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1865 	/* We assume all kernel code knows the size of sockaddr_storage */
1866 	msg.msg_namelen = 0;
1867 	msg.msg_iocb = NULL;
1868 	msg.msg_flags = 0;
1869 	if (sock->file->f_flags & O_NONBLOCK)
1870 		flags |= MSG_DONTWAIT;
1871 	err = sock_recvmsg(sock, &msg, flags);
1872 
1873 	if (err >= 0 && addr != NULL) {
1874 		err2 = move_addr_to_user(&address,
1875 					 msg.msg_namelen, addr, addr_len);
1876 		if (err2 < 0)
1877 			err = err2;
1878 	}
1879 
1880 	fput_light(sock->file, fput_needed);
1881 out:
1882 	return err;
1883 }
1884 
1885 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1886 		unsigned int, flags, struct sockaddr __user *, addr,
1887 		int __user *, addr_len)
1888 {
1889 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1890 }
1891 
1892 /*
1893  *	Receive a datagram from a socket.
1894  */
1895 
1896 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1897 		unsigned int, flags)
1898 {
1899 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1900 }
1901 
1902 /*
1903  *	Set a socket option. Because we don't know the option lengths we have
1904  *	to pass the user mode parameter for the protocols to sort out.
1905  */
1906 
1907 static int __sys_setsockopt(int fd, int level, int optname,
1908 			    char __user *optval, int optlen)
1909 {
1910 	int err, fput_needed;
1911 	struct socket *sock;
1912 
1913 	if (optlen < 0)
1914 		return -EINVAL;
1915 
1916 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 	if (sock != NULL) {
1918 		err = security_socket_setsockopt(sock, level, optname);
1919 		if (err)
1920 			goto out_put;
1921 
1922 		if (level == SOL_SOCKET)
1923 			err =
1924 			    sock_setsockopt(sock, level, optname, optval,
1925 					    optlen);
1926 		else
1927 			err =
1928 			    sock->ops->setsockopt(sock, level, optname, optval,
1929 						  optlen);
1930 out_put:
1931 		fput_light(sock->file, fput_needed);
1932 	}
1933 	return err;
1934 }
1935 
1936 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1937 		char __user *, optval, int, optlen)
1938 {
1939 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1940 }
1941 
1942 /*
1943  *	Get a socket option. Because we don't know the option lengths we have
1944  *	to pass a user mode parameter for the protocols to sort out.
1945  */
1946 
1947 static int __sys_getsockopt(int fd, int level, int optname,
1948 			    char __user *optval, int __user *optlen)
1949 {
1950 	int err, fput_needed;
1951 	struct socket *sock;
1952 
1953 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1954 	if (sock != NULL) {
1955 		err = security_socket_getsockopt(sock, level, optname);
1956 		if (err)
1957 			goto out_put;
1958 
1959 		if (level == SOL_SOCKET)
1960 			err =
1961 			    sock_getsockopt(sock, level, optname, optval,
1962 					    optlen);
1963 		else
1964 			err =
1965 			    sock->ops->getsockopt(sock, level, optname, optval,
1966 						  optlen);
1967 out_put:
1968 		fput_light(sock->file, fput_needed);
1969 	}
1970 	return err;
1971 }
1972 
1973 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1974 		char __user *, optval, int __user *, optlen)
1975 {
1976 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1977 }
1978 
1979 /*
1980  *	Shutdown a socket.
1981  */
1982 
1983 int __sys_shutdown(int fd, int how)
1984 {
1985 	int err, fput_needed;
1986 	struct socket *sock;
1987 
1988 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1989 	if (sock != NULL) {
1990 		err = security_socket_shutdown(sock, how);
1991 		if (!err)
1992 			err = sock->ops->shutdown(sock, how);
1993 		fput_light(sock->file, fput_needed);
1994 	}
1995 	return err;
1996 }
1997 
1998 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1999 {
2000 	return __sys_shutdown(fd, how);
2001 }
2002 
2003 /* A couple of helpful macros for getting the address of the 32/64 bit
2004  * fields which are the same type (int / unsigned) on our platforms.
2005  */
2006 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2007 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2008 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2009 
2010 struct used_address {
2011 	struct sockaddr_storage name;
2012 	unsigned int name_len;
2013 };
2014 
2015 static int copy_msghdr_from_user(struct msghdr *kmsg,
2016 				 struct user_msghdr __user *umsg,
2017 				 struct sockaddr __user **save_addr,
2018 				 struct iovec **iov)
2019 {
2020 	struct user_msghdr msg;
2021 	ssize_t err;
2022 
2023 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2024 		return -EFAULT;
2025 
2026 	kmsg->msg_control = (void __force *)msg.msg_control;
2027 	kmsg->msg_controllen = msg.msg_controllen;
2028 	kmsg->msg_flags = msg.msg_flags;
2029 
2030 	kmsg->msg_namelen = msg.msg_namelen;
2031 	if (!msg.msg_name)
2032 		kmsg->msg_namelen = 0;
2033 
2034 	if (kmsg->msg_namelen < 0)
2035 		return -EINVAL;
2036 
2037 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2038 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2039 
2040 	if (save_addr)
2041 		*save_addr = msg.msg_name;
2042 
2043 	if (msg.msg_name && kmsg->msg_namelen) {
2044 		if (!save_addr) {
2045 			err = move_addr_to_kernel(msg.msg_name,
2046 						  kmsg->msg_namelen,
2047 						  kmsg->msg_name);
2048 			if (err < 0)
2049 				return err;
2050 		}
2051 	} else {
2052 		kmsg->msg_name = NULL;
2053 		kmsg->msg_namelen = 0;
2054 	}
2055 
2056 	if (msg.msg_iovlen > UIO_MAXIOV)
2057 		return -EMSGSIZE;
2058 
2059 	kmsg->msg_iocb = NULL;
2060 
2061 	return import_iovec(save_addr ? READ : WRITE,
2062 			    msg.msg_iov, msg.msg_iovlen,
2063 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2064 }
2065 
2066 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2067 			 struct msghdr *msg_sys, unsigned int flags,
2068 			 struct used_address *used_address,
2069 			 unsigned int allowed_msghdr_flags)
2070 {
2071 	struct compat_msghdr __user *msg_compat =
2072 	    (struct compat_msghdr __user *)msg;
2073 	struct sockaddr_storage address;
2074 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2075 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2076 				__aligned(sizeof(__kernel_size_t));
2077 	/* 20 is size of ipv6_pktinfo */
2078 	unsigned char *ctl_buf = ctl;
2079 	int ctl_len;
2080 	ssize_t err;
2081 
2082 	msg_sys->msg_name = &address;
2083 
2084 	if (MSG_CMSG_COMPAT & flags)
2085 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2086 	else
2087 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2088 	if (err < 0)
2089 		return err;
2090 
2091 	err = -ENOBUFS;
2092 
2093 	if (msg_sys->msg_controllen > INT_MAX)
2094 		goto out_freeiov;
2095 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2096 	ctl_len = msg_sys->msg_controllen;
2097 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2098 		err =
2099 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2100 						     sizeof(ctl));
2101 		if (err)
2102 			goto out_freeiov;
2103 		ctl_buf = msg_sys->msg_control;
2104 		ctl_len = msg_sys->msg_controllen;
2105 	} else if (ctl_len) {
2106 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2107 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2108 		if (ctl_len > sizeof(ctl)) {
2109 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2110 			if (ctl_buf == NULL)
2111 				goto out_freeiov;
2112 		}
2113 		err = -EFAULT;
2114 		/*
2115 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2116 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2117 		 * checking falls down on this.
2118 		 */
2119 		if (copy_from_user(ctl_buf,
2120 				   (void __user __force *)msg_sys->msg_control,
2121 				   ctl_len))
2122 			goto out_freectl;
2123 		msg_sys->msg_control = ctl_buf;
2124 	}
2125 	msg_sys->msg_flags = flags;
2126 
2127 	if (sock->file->f_flags & O_NONBLOCK)
2128 		msg_sys->msg_flags |= MSG_DONTWAIT;
2129 	/*
2130 	 * If this is sendmmsg() and current destination address is same as
2131 	 * previously succeeded address, omit asking LSM's decision.
2132 	 * used_address->name_len is initialized to UINT_MAX so that the first
2133 	 * destination address never matches.
2134 	 */
2135 	if (used_address && msg_sys->msg_name &&
2136 	    used_address->name_len == msg_sys->msg_namelen &&
2137 	    !memcmp(&used_address->name, msg_sys->msg_name,
2138 		    used_address->name_len)) {
2139 		err = sock_sendmsg_nosec(sock, msg_sys);
2140 		goto out_freectl;
2141 	}
2142 	err = sock_sendmsg(sock, msg_sys);
2143 	/*
2144 	 * If this is sendmmsg() and sending to current destination address was
2145 	 * successful, remember it.
2146 	 */
2147 	if (used_address && err >= 0) {
2148 		used_address->name_len = msg_sys->msg_namelen;
2149 		if (msg_sys->msg_name)
2150 			memcpy(&used_address->name, msg_sys->msg_name,
2151 			       used_address->name_len);
2152 	}
2153 
2154 out_freectl:
2155 	if (ctl_buf != ctl)
2156 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2157 out_freeiov:
2158 	kfree(iov);
2159 	return err;
2160 }
2161 
2162 /*
2163  *	BSD sendmsg interface
2164  */
2165 
2166 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2167 		   bool forbid_cmsg_compat)
2168 {
2169 	int fput_needed, err;
2170 	struct msghdr msg_sys;
2171 	struct socket *sock;
2172 
2173 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2174 		return -EINVAL;
2175 
2176 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2177 	if (!sock)
2178 		goto out;
2179 
2180 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2181 
2182 	fput_light(sock->file, fput_needed);
2183 out:
2184 	return err;
2185 }
2186 
2187 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2188 {
2189 	return __sys_sendmsg(fd, msg, flags, true);
2190 }
2191 
2192 /*
2193  *	Linux sendmmsg interface
2194  */
2195 
2196 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2197 		   unsigned int flags, bool forbid_cmsg_compat)
2198 {
2199 	int fput_needed, err, datagrams;
2200 	struct socket *sock;
2201 	struct mmsghdr __user *entry;
2202 	struct compat_mmsghdr __user *compat_entry;
2203 	struct msghdr msg_sys;
2204 	struct used_address used_address;
2205 	unsigned int oflags = flags;
2206 
2207 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2208 		return -EINVAL;
2209 
2210 	if (vlen > UIO_MAXIOV)
2211 		vlen = UIO_MAXIOV;
2212 
2213 	datagrams = 0;
2214 
2215 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2216 	if (!sock)
2217 		return err;
2218 
2219 	used_address.name_len = UINT_MAX;
2220 	entry = mmsg;
2221 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2222 	err = 0;
2223 	flags |= MSG_BATCH;
2224 
2225 	while (datagrams < vlen) {
2226 		if (datagrams == vlen - 1)
2227 			flags = oflags;
2228 
2229 		if (MSG_CMSG_COMPAT & flags) {
2230 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2231 					     &msg_sys, flags, &used_address, MSG_EOR);
2232 			if (err < 0)
2233 				break;
2234 			err = __put_user(err, &compat_entry->msg_len);
2235 			++compat_entry;
2236 		} else {
2237 			err = ___sys_sendmsg(sock,
2238 					     (struct user_msghdr __user *)entry,
2239 					     &msg_sys, flags, &used_address, MSG_EOR);
2240 			if (err < 0)
2241 				break;
2242 			err = put_user(err, &entry->msg_len);
2243 			++entry;
2244 		}
2245 
2246 		if (err)
2247 			break;
2248 		++datagrams;
2249 		if (msg_data_left(&msg_sys))
2250 			break;
2251 		cond_resched();
2252 	}
2253 
2254 	fput_light(sock->file, fput_needed);
2255 
2256 	/* We only return an error if no datagrams were able to be sent */
2257 	if (datagrams != 0)
2258 		return datagrams;
2259 
2260 	return err;
2261 }
2262 
2263 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2264 		unsigned int, vlen, unsigned int, flags)
2265 {
2266 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2267 }
2268 
2269 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2270 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2271 {
2272 	struct compat_msghdr __user *msg_compat =
2273 	    (struct compat_msghdr __user *)msg;
2274 	struct iovec iovstack[UIO_FASTIOV];
2275 	struct iovec *iov = iovstack;
2276 	unsigned long cmsg_ptr;
2277 	int len;
2278 	ssize_t err;
2279 
2280 	/* kernel mode address */
2281 	struct sockaddr_storage addr;
2282 
2283 	/* user mode address pointers */
2284 	struct sockaddr __user *uaddr;
2285 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2286 
2287 	msg_sys->msg_name = &addr;
2288 
2289 	if (MSG_CMSG_COMPAT & flags)
2290 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2291 	else
2292 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2293 	if (err < 0)
2294 		return err;
2295 
2296 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2297 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2298 
2299 	/* We assume all kernel code knows the size of sockaddr_storage */
2300 	msg_sys->msg_namelen = 0;
2301 
2302 	if (sock->file->f_flags & O_NONBLOCK)
2303 		flags |= MSG_DONTWAIT;
2304 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2305 	if (err < 0)
2306 		goto out_freeiov;
2307 	len = err;
2308 
2309 	if (uaddr != NULL) {
2310 		err = move_addr_to_user(&addr,
2311 					msg_sys->msg_namelen, uaddr,
2312 					uaddr_len);
2313 		if (err < 0)
2314 			goto out_freeiov;
2315 	}
2316 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2317 			 COMPAT_FLAGS(msg));
2318 	if (err)
2319 		goto out_freeiov;
2320 	if (MSG_CMSG_COMPAT & flags)
2321 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2322 				 &msg_compat->msg_controllen);
2323 	else
2324 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2325 				 &msg->msg_controllen);
2326 	if (err)
2327 		goto out_freeiov;
2328 	err = len;
2329 
2330 out_freeiov:
2331 	kfree(iov);
2332 	return err;
2333 }
2334 
2335 /*
2336  *	BSD recvmsg interface
2337  */
2338 
2339 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2340 		   bool forbid_cmsg_compat)
2341 {
2342 	int fput_needed, err;
2343 	struct msghdr msg_sys;
2344 	struct socket *sock;
2345 
2346 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2347 		return -EINVAL;
2348 
2349 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 	if (!sock)
2351 		goto out;
2352 
2353 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2354 
2355 	fput_light(sock->file, fput_needed);
2356 out:
2357 	return err;
2358 }
2359 
2360 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2361 		unsigned int, flags)
2362 {
2363 	return __sys_recvmsg(fd, msg, flags, true);
2364 }
2365 
2366 /*
2367  *     Linux recvmmsg interface
2368  */
2369 
2370 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2371 		   unsigned int flags, struct timespec *timeout)
2372 {
2373 	int fput_needed, err, datagrams;
2374 	struct socket *sock;
2375 	struct mmsghdr __user *entry;
2376 	struct compat_mmsghdr __user *compat_entry;
2377 	struct msghdr msg_sys;
2378 	struct timespec64 end_time;
2379 	struct timespec64 timeout64;
2380 
2381 	if (timeout &&
2382 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2383 				    timeout->tv_nsec))
2384 		return -EINVAL;
2385 
2386 	datagrams = 0;
2387 
2388 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2389 	if (!sock)
2390 		return err;
2391 
2392 	if (likely(!(flags & MSG_ERRQUEUE))) {
2393 		err = sock_error(sock->sk);
2394 		if (err) {
2395 			datagrams = err;
2396 			goto out_put;
2397 		}
2398 	}
2399 
2400 	entry = mmsg;
2401 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2402 
2403 	while (datagrams < vlen) {
2404 		/*
2405 		 * No need to ask LSM for more than the first datagram.
2406 		 */
2407 		if (MSG_CMSG_COMPAT & flags) {
2408 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2409 					     &msg_sys, flags & ~MSG_WAITFORONE,
2410 					     datagrams);
2411 			if (err < 0)
2412 				break;
2413 			err = __put_user(err, &compat_entry->msg_len);
2414 			++compat_entry;
2415 		} else {
2416 			err = ___sys_recvmsg(sock,
2417 					     (struct user_msghdr __user *)entry,
2418 					     &msg_sys, flags & ~MSG_WAITFORONE,
2419 					     datagrams);
2420 			if (err < 0)
2421 				break;
2422 			err = put_user(err, &entry->msg_len);
2423 			++entry;
2424 		}
2425 
2426 		if (err)
2427 			break;
2428 		++datagrams;
2429 
2430 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2431 		if (flags & MSG_WAITFORONE)
2432 			flags |= MSG_DONTWAIT;
2433 
2434 		if (timeout) {
2435 			ktime_get_ts64(&timeout64);
2436 			*timeout = timespec64_to_timespec(
2437 					timespec64_sub(end_time, timeout64));
2438 			if (timeout->tv_sec < 0) {
2439 				timeout->tv_sec = timeout->tv_nsec = 0;
2440 				break;
2441 			}
2442 
2443 			/* Timeout, return less than vlen datagrams */
2444 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2445 				break;
2446 		}
2447 
2448 		/* Out of band data, return right away */
2449 		if (msg_sys.msg_flags & MSG_OOB)
2450 			break;
2451 		cond_resched();
2452 	}
2453 
2454 	if (err == 0)
2455 		goto out_put;
2456 
2457 	if (datagrams == 0) {
2458 		datagrams = err;
2459 		goto out_put;
2460 	}
2461 
2462 	/*
2463 	 * We may return less entries than requested (vlen) if the
2464 	 * sock is non block and there aren't enough datagrams...
2465 	 */
2466 	if (err != -EAGAIN) {
2467 		/*
2468 		 * ... or  if recvmsg returns an error after we
2469 		 * received some datagrams, where we record the
2470 		 * error to return on the next call or if the
2471 		 * app asks about it using getsockopt(SO_ERROR).
2472 		 */
2473 		sock->sk->sk_err = -err;
2474 	}
2475 out_put:
2476 	fput_light(sock->file, fput_needed);
2477 
2478 	return datagrams;
2479 }
2480 
2481 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2482 			   unsigned int vlen, unsigned int flags,
2483 			   struct timespec __user *timeout)
2484 {
2485 	int datagrams;
2486 	struct timespec timeout_sys;
2487 
2488 	if (flags & MSG_CMSG_COMPAT)
2489 		return -EINVAL;
2490 
2491 	if (!timeout)
2492 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2493 
2494 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2495 		return -EFAULT;
2496 
2497 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2498 
2499 	if (datagrams > 0 &&
2500 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2501 		datagrams = -EFAULT;
2502 
2503 	return datagrams;
2504 }
2505 
2506 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2507 		unsigned int, vlen, unsigned int, flags,
2508 		struct timespec __user *, timeout)
2509 {
2510 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2511 }
2512 
2513 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2514 /* Argument list sizes for sys_socketcall */
2515 #define AL(x) ((x) * sizeof(unsigned long))
2516 static const unsigned char nargs[21] = {
2517 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2518 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2519 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2520 	AL(4), AL(5), AL(4)
2521 };
2522 
2523 #undef AL
2524 
2525 /*
2526  *	System call vectors.
2527  *
2528  *	Argument checking cleaned up. Saved 20% in size.
2529  *  This function doesn't need to set the kernel lock because
2530  *  it is set by the callees.
2531  */
2532 
2533 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2534 {
2535 	unsigned long a[AUDITSC_ARGS];
2536 	unsigned long a0, a1;
2537 	int err;
2538 	unsigned int len;
2539 
2540 	if (call < 1 || call > SYS_SENDMMSG)
2541 		return -EINVAL;
2542 
2543 	len = nargs[call];
2544 	if (len > sizeof(a))
2545 		return -EINVAL;
2546 
2547 	/* copy_from_user should be SMP safe. */
2548 	if (copy_from_user(a, args, len))
2549 		return -EFAULT;
2550 
2551 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2552 	if (err)
2553 		return err;
2554 
2555 	a0 = a[0];
2556 	a1 = a[1];
2557 
2558 	switch (call) {
2559 	case SYS_SOCKET:
2560 		err = __sys_socket(a0, a1, a[2]);
2561 		break;
2562 	case SYS_BIND:
2563 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2564 		break;
2565 	case SYS_CONNECT:
2566 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2567 		break;
2568 	case SYS_LISTEN:
2569 		err = __sys_listen(a0, a1);
2570 		break;
2571 	case SYS_ACCEPT:
2572 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2573 				    (int __user *)a[2], 0);
2574 		break;
2575 	case SYS_GETSOCKNAME:
2576 		err =
2577 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2578 				      (int __user *)a[2]);
2579 		break;
2580 	case SYS_GETPEERNAME:
2581 		err =
2582 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2583 				      (int __user *)a[2]);
2584 		break;
2585 	case SYS_SOCKETPAIR:
2586 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2587 		break;
2588 	case SYS_SEND:
2589 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2590 				   NULL, 0);
2591 		break;
2592 	case SYS_SENDTO:
2593 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2594 				   (struct sockaddr __user *)a[4], a[5]);
2595 		break;
2596 	case SYS_RECV:
2597 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2598 				     NULL, NULL);
2599 		break;
2600 	case SYS_RECVFROM:
2601 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2602 				     (struct sockaddr __user *)a[4],
2603 				     (int __user *)a[5]);
2604 		break;
2605 	case SYS_SHUTDOWN:
2606 		err = __sys_shutdown(a0, a1);
2607 		break;
2608 	case SYS_SETSOCKOPT:
2609 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2610 				       a[4]);
2611 		break;
2612 	case SYS_GETSOCKOPT:
2613 		err =
2614 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2615 				     (int __user *)a[4]);
2616 		break;
2617 	case SYS_SENDMSG:
2618 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2619 				    a[2], true);
2620 		break;
2621 	case SYS_SENDMMSG:
2622 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2623 				     a[3], true);
2624 		break;
2625 	case SYS_RECVMSG:
2626 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2627 				    a[2], true);
2628 		break;
2629 	case SYS_RECVMMSG:
2630 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2631 				      a[3], (struct timespec __user *)a[4]);
2632 		break;
2633 	case SYS_ACCEPT4:
2634 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2635 				    (int __user *)a[2], a[3]);
2636 		break;
2637 	default:
2638 		err = -EINVAL;
2639 		break;
2640 	}
2641 	return err;
2642 }
2643 
2644 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2645 
2646 /**
2647  *	sock_register - add a socket protocol handler
2648  *	@ops: description of protocol
2649  *
2650  *	This function is called by a protocol handler that wants to
2651  *	advertise its address family, and have it linked into the
2652  *	socket interface. The value ops->family corresponds to the
2653  *	socket system call protocol family.
2654  */
2655 int sock_register(const struct net_proto_family *ops)
2656 {
2657 	int err;
2658 
2659 	if (ops->family >= NPROTO) {
2660 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2661 		return -ENOBUFS;
2662 	}
2663 
2664 	spin_lock(&net_family_lock);
2665 	if (rcu_dereference_protected(net_families[ops->family],
2666 				      lockdep_is_held(&net_family_lock)))
2667 		err = -EEXIST;
2668 	else {
2669 		rcu_assign_pointer(net_families[ops->family], ops);
2670 		err = 0;
2671 	}
2672 	spin_unlock(&net_family_lock);
2673 
2674 	pr_info("NET: Registered protocol family %d\n", ops->family);
2675 	return err;
2676 }
2677 EXPORT_SYMBOL(sock_register);
2678 
2679 /**
2680  *	sock_unregister - remove a protocol handler
2681  *	@family: protocol family to remove
2682  *
2683  *	This function is called by a protocol handler that wants to
2684  *	remove its address family, and have it unlinked from the
2685  *	new socket creation.
2686  *
2687  *	If protocol handler is a module, then it can use module reference
2688  *	counts to protect against new references. If protocol handler is not
2689  *	a module then it needs to provide its own protection in
2690  *	the ops->create routine.
2691  */
2692 void sock_unregister(int family)
2693 {
2694 	BUG_ON(family < 0 || family >= NPROTO);
2695 
2696 	spin_lock(&net_family_lock);
2697 	RCU_INIT_POINTER(net_families[family], NULL);
2698 	spin_unlock(&net_family_lock);
2699 
2700 	synchronize_rcu();
2701 
2702 	pr_info("NET: Unregistered protocol family %d\n", family);
2703 }
2704 EXPORT_SYMBOL(sock_unregister);
2705 
2706 bool sock_is_registered(int family)
2707 {
2708 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2709 }
2710 
2711 static int __init sock_init(void)
2712 {
2713 	int err;
2714 	/*
2715 	 *      Initialize the network sysctl infrastructure.
2716 	 */
2717 	err = net_sysctl_init();
2718 	if (err)
2719 		goto out;
2720 
2721 	/*
2722 	 *      Initialize skbuff SLAB cache
2723 	 */
2724 	skb_init();
2725 
2726 	/*
2727 	 *      Initialize the protocols module.
2728 	 */
2729 
2730 	init_inodecache();
2731 
2732 	err = register_filesystem(&sock_fs_type);
2733 	if (err)
2734 		goto out_fs;
2735 	sock_mnt = kern_mount(&sock_fs_type);
2736 	if (IS_ERR(sock_mnt)) {
2737 		err = PTR_ERR(sock_mnt);
2738 		goto out_mount;
2739 	}
2740 
2741 	/* The real protocol initialization is performed in later initcalls.
2742 	 */
2743 
2744 #ifdef CONFIG_NETFILTER
2745 	err = netfilter_init();
2746 	if (err)
2747 		goto out;
2748 #endif
2749 
2750 	ptp_classifier_init();
2751 
2752 out:
2753 	return err;
2754 
2755 out_mount:
2756 	unregister_filesystem(&sock_fs_type);
2757 out_fs:
2758 	goto out;
2759 }
2760 
2761 core_initcall(sock_init);	/* early initcall */
2762 
2763 #ifdef CONFIG_PROC_FS
2764 void socket_seq_show(struct seq_file *seq)
2765 {
2766 	seq_printf(seq, "sockets: used %d\n",
2767 		   sock_inuse_get(seq->private));
2768 }
2769 #endif				/* CONFIG_PROC_FS */
2770 
2771 #ifdef CONFIG_COMPAT
2772 static int do_siocgstamp(struct net *net, struct socket *sock,
2773 			 unsigned int cmd, void __user *up)
2774 {
2775 	mm_segment_t old_fs = get_fs();
2776 	struct timeval ktv;
2777 	int err;
2778 
2779 	set_fs(KERNEL_DS);
2780 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2781 	set_fs(old_fs);
2782 	if (!err)
2783 		err = compat_put_timeval(&ktv, up);
2784 
2785 	return err;
2786 }
2787 
2788 static int do_siocgstampns(struct net *net, struct socket *sock,
2789 			   unsigned int cmd, void __user *up)
2790 {
2791 	mm_segment_t old_fs = get_fs();
2792 	struct timespec kts;
2793 	int err;
2794 
2795 	set_fs(KERNEL_DS);
2796 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2797 	set_fs(old_fs);
2798 	if (!err)
2799 		err = compat_put_timespec(&kts, up);
2800 
2801 	return err;
2802 }
2803 
2804 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2805 {
2806 	struct compat_ifconf ifc32;
2807 	struct ifconf ifc;
2808 	int err;
2809 
2810 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2811 		return -EFAULT;
2812 
2813 	ifc.ifc_len = ifc32.ifc_len;
2814 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2815 
2816 	rtnl_lock();
2817 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2818 	rtnl_unlock();
2819 	if (err)
2820 		return err;
2821 
2822 	ifc32.ifc_len = ifc.ifc_len;
2823 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2824 		return -EFAULT;
2825 
2826 	return 0;
2827 }
2828 
2829 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2830 {
2831 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2832 	bool convert_in = false, convert_out = false;
2833 	size_t buf_size = 0;
2834 	struct ethtool_rxnfc __user *rxnfc = NULL;
2835 	struct ifreq ifr;
2836 	u32 rule_cnt = 0, actual_rule_cnt;
2837 	u32 ethcmd;
2838 	u32 data;
2839 	int ret;
2840 
2841 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2842 		return -EFAULT;
2843 
2844 	compat_rxnfc = compat_ptr(data);
2845 
2846 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2847 		return -EFAULT;
2848 
2849 	/* Most ethtool structures are defined without padding.
2850 	 * Unfortunately struct ethtool_rxnfc is an exception.
2851 	 */
2852 	switch (ethcmd) {
2853 	default:
2854 		break;
2855 	case ETHTOOL_GRXCLSRLALL:
2856 		/* Buffer size is variable */
2857 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2858 			return -EFAULT;
2859 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2860 			return -ENOMEM;
2861 		buf_size += rule_cnt * sizeof(u32);
2862 		/* fall through */
2863 	case ETHTOOL_GRXRINGS:
2864 	case ETHTOOL_GRXCLSRLCNT:
2865 	case ETHTOOL_GRXCLSRULE:
2866 	case ETHTOOL_SRXCLSRLINS:
2867 		convert_out = true;
2868 		/* fall through */
2869 	case ETHTOOL_SRXCLSRLDEL:
2870 		buf_size += sizeof(struct ethtool_rxnfc);
2871 		convert_in = true;
2872 		rxnfc = compat_alloc_user_space(buf_size);
2873 		break;
2874 	}
2875 
2876 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2877 		return -EFAULT;
2878 
2879 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2880 
2881 	if (convert_in) {
2882 		/* We expect there to be holes between fs.m_ext and
2883 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2884 		 */
2885 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2886 			     sizeof(compat_rxnfc->fs.m_ext) !=
2887 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2888 			     sizeof(rxnfc->fs.m_ext));
2889 		BUILD_BUG_ON(
2890 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2891 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2892 			offsetof(struct ethtool_rxnfc, fs.location) -
2893 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2894 
2895 		if (copy_in_user(rxnfc, compat_rxnfc,
2896 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2897 				 (void __user *)rxnfc) ||
2898 		    copy_in_user(&rxnfc->fs.ring_cookie,
2899 				 &compat_rxnfc->fs.ring_cookie,
2900 				 (void __user *)(&rxnfc->fs.location + 1) -
2901 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2902 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2903 				 sizeof(rxnfc->rule_cnt)))
2904 			return -EFAULT;
2905 	}
2906 
2907 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2908 	if (ret)
2909 		return ret;
2910 
2911 	if (convert_out) {
2912 		if (copy_in_user(compat_rxnfc, rxnfc,
2913 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2914 				 (const void __user *)rxnfc) ||
2915 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2916 				 &rxnfc->fs.ring_cookie,
2917 				 (const void __user *)(&rxnfc->fs.location + 1) -
2918 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2919 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2920 				 sizeof(rxnfc->rule_cnt)))
2921 			return -EFAULT;
2922 
2923 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2924 			/* As an optimisation, we only copy the actual
2925 			 * number of rules that the underlying
2926 			 * function returned.  Since Mallory might
2927 			 * change the rule count in user memory, we
2928 			 * check that it is less than the rule count
2929 			 * originally given (as the user buffer size),
2930 			 * which has been range-checked.
2931 			 */
2932 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2933 				return -EFAULT;
2934 			if (actual_rule_cnt < rule_cnt)
2935 				rule_cnt = actual_rule_cnt;
2936 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2937 					 &rxnfc->rule_locs[0],
2938 					 rule_cnt * sizeof(u32)))
2939 				return -EFAULT;
2940 		}
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2947 {
2948 	compat_uptr_t uptr32;
2949 	struct ifreq ifr;
2950 	void __user *saved;
2951 	int err;
2952 
2953 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2954 		return -EFAULT;
2955 
2956 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2957 		return -EFAULT;
2958 
2959 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2960 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2961 
2962 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2963 	if (!err) {
2964 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2965 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2966 			err = -EFAULT;
2967 	}
2968 	return err;
2969 }
2970 
2971 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2972 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2973 				 struct compat_ifreq __user *u_ifreq32)
2974 {
2975 	struct ifreq ifreq;
2976 	u32 data32;
2977 
2978 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2979 		return -EFAULT;
2980 	if (get_user(data32, &u_ifreq32->ifr_data))
2981 		return -EFAULT;
2982 	ifreq.ifr_data = compat_ptr(data32);
2983 
2984 	return dev_ioctl(net, cmd, &ifreq, NULL);
2985 }
2986 
2987 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2988 			struct compat_ifreq __user *uifr32)
2989 {
2990 	struct ifreq ifr;
2991 	struct compat_ifmap __user *uifmap32;
2992 	int err;
2993 
2994 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2995 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2996 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2997 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2998 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2999 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3000 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3001 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3002 	if (err)
3003 		return -EFAULT;
3004 
3005 	err = dev_ioctl(net, cmd, &ifr, NULL);
3006 
3007 	if (cmd == SIOCGIFMAP && !err) {
3008 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3009 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3010 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3011 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3012 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3013 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3014 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3015 		if (err)
3016 			err = -EFAULT;
3017 	}
3018 	return err;
3019 }
3020 
3021 struct rtentry32 {
3022 	u32		rt_pad1;
3023 	struct sockaddr rt_dst;         /* target address               */
3024 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3025 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3026 	unsigned short	rt_flags;
3027 	short		rt_pad2;
3028 	u32		rt_pad3;
3029 	unsigned char	rt_tos;
3030 	unsigned char	rt_class;
3031 	short		rt_pad4;
3032 	short		rt_metric;      /* +1 for binary compatibility! */
3033 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3034 	u32		rt_mtu;         /* per route MTU/Window         */
3035 	u32		rt_window;      /* Window clamping              */
3036 	unsigned short  rt_irtt;        /* Initial RTT                  */
3037 };
3038 
3039 struct in6_rtmsg32 {
3040 	struct in6_addr		rtmsg_dst;
3041 	struct in6_addr		rtmsg_src;
3042 	struct in6_addr		rtmsg_gateway;
3043 	u32			rtmsg_type;
3044 	u16			rtmsg_dst_len;
3045 	u16			rtmsg_src_len;
3046 	u32			rtmsg_metric;
3047 	u32			rtmsg_info;
3048 	u32			rtmsg_flags;
3049 	s32			rtmsg_ifindex;
3050 };
3051 
3052 static int routing_ioctl(struct net *net, struct socket *sock,
3053 			 unsigned int cmd, void __user *argp)
3054 {
3055 	int ret;
3056 	void *r = NULL;
3057 	struct in6_rtmsg r6;
3058 	struct rtentry r4;
3059 	char devname[16];
3060 	u32 rtdev;
3061 	mm_segment_t old_fs = get_fs();
3062 
3063 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3064 		struct in6_rtmsg32 __user *ur6 = argp;
3065 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3066 			3 * sizeof(struct in6_addr));
3067 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3068 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3069 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3070 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3071 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3072 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3073 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3074 
3075 		r = (void *) &r6;
3076 	} else { /* ipv4 */
3077 		struct rtentry32 __user *ur4 = argp;
3078 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3079 					3 * sizeof(struct sockaddr));
3080 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3081 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3082 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3083 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3084 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3085 		ret |= get_user(rtdev, &(ur4->rt_dev));
3086 		if (rtdev) {
3087 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3088 			r4.rt_dev = (char __user __force *)devname;
3089 			devname[15] = 0;
3090 		} else
3091 			r4.rt_dev = NULL;
3092 
3093 		r = (void *) &r4;
3094 	}
3095 
3096 	if (ret) {
3097 		ret = -EFAULT;
3098 		goto out;
3099 	}
3100 
3101 	set_fs(KERNEL_DS);
3102 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3103 	set_fs(old_fs);
3104 
3105 out:
3106 	return ret;
3107 }
3108 
3109 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3110  * for some operations; this forces use of the newer bridge-utils that
3111  * use compatible ioctls
3112  */
3113 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3114 {
3115 	compat_ulong_t tmp;
3116 
3117 	if (get_user(tmp, argp))
3118 		return -EFAULT;
3119 	if (tmp == BRCTL_GET_VERSION)
3120 		return BRCTL_VERSION + 1;
3121 	return -EINVAL;
3122 }
3123 
3124 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3125 			 unsigned int cmd, unsigned long arg)
3126 {
3127 	void __user *argp = compat_ptr(arg);
3128 	struct sock *sk = sock->sk;
3129 	struct net *net = sock_net(sk);
3130 
3131 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3132 		return compat_ifr_data_ioctl(net, cmd, argp);
3133 
3134 	switch (cmd) {
3135 	case SIOCSIFBR:
3136 	case SIOCGIFBR:
3137 		return old_bridge_ioctl(argp);
3138 	case SIOCGIFCONF:
3139 		return compat_dev_ifconf(net, argp);
3140 	case SIOCETHTOOL:
3141 		return ethtool_ioctl(net, argp);
3142 	case SIOCWANDEV:
3143 		return compat_siocwandev(net, argp);
3144 	case SIOCGIFMAP:
3145 	case SIOCSIFMAP:
3146 		return compat_sioc_ifmap(net, cmd, argp);
3147 	case SIOCADDRT:
3148 	case SIOCDELRT:
3149 		return routing_ioctl(net, sock, cmd, argp);
3150 	case SIOCGSTAMP:
3151 		return do_siocgstamp(net, sock, cmd, argp);
3152 	case SIOCGSTAMPNS:
3153 		return do_siocgstampns(net, sock, cmd, argp);
3154 	case SIOCBONDSLAVEINFOQUERY:
3155 	case SIOCBONDINFOQUERY:
3156 	case SIOCSHWTSTAMP:
3157 	case SIOCGHWTSTAMP:
3158 		return compat_ifr_data_ioctl(net, cmd, argp);
3159 
3160 	case FIOSETOWN:
3161 	case SIOCSPGRP:
3162 	case FIOGETOWN:
3163 	case SIOCGPGRP:
3164 	case SIOCBRADDBR:
3165 	case SIOCBRDELBR:
3166 	case SIOCGIFVLAN:
3167 	case SIOCSIFVLAN:
3168 	case SIOCADDDLCI:
3169 	case SIOCDELDLCI:
3170 	case SIOCGSKNS:
3171 		return sock_ioctl(file, cmd, arg);
3172 
3173 	case SIOCGIFFLAGS:
3174 	case SIOCSIFFLAGS:
3175 	case SIOCGIFMETRIC:
3176 	case SIOCSIFMETRIC:
3177 	case SIOCGIFMTU:
3178 	case SIOCSIFMTU:
3179 	case SIOCGIFMEM:
3180 	case SIOCSIFMEM:
3181 	case SIOCGIFHWADDR:
3182 	case SIOCSIFHWADDR:
3183 	case SIOCADDMULTI:
3184 	case SIOCDELMULTI:
3185 	case SIOCGIFINDEX:
3186 	case SIOCGIFADDR:
3187 	case SIOCSIFADDR:
3188 	case SIOCSIFHWBROADCAST:
3189 	case SIOCDIFADDR:
3190 	case SIOCGIFBRDADDR:
3191 	case SIOCSIFBRDADDR:
3192 	case SIOCGIFDSTADDR:
3193 	case SIOCSIFDSTADDR:
3194 	case SIOCGIFNETMASK:
3195 	case SIOCSIFNETMASK:
3196 	case SIOCSIFPFLAGS:
3197 	case SIOCGIFPFLAGS:
3198 	case SIOCGIFTXQLEN:
3199 	case SIOCSIFTXQLEN:
3200 	case SIOCBRADDIF:
3201 	case SIOCBRDELIF:
3202 	case SIOCSIFNAME:
3203 	case SIOCGMIIPHY:
3204 	case SIOCGMIIREG:
3205 	case SIOCSMIIREG:
3206 	case SIOCSARP:
3207 	case SIOCGARP:
3208 	case SIOCDARP:
3209 	case SIOCATMARK:
3210 	case SIOCBONDENSLAVE:
3211 	case SIOCBONDRELEASE:
3212 	case SIOCBONDSETHWADDR:
3213 	case SIOCBONDCHANGEACTIVE:
3214 	case SIOCGIFNAME:
3215 		return sock_do_ioctl(net, sock, cmd, arg);
3216 	}
3217 
3218 	return -ENOIOCTLCMD;
3219 }
3220 
3221 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3222 			      unsigned long arg)
3223 {
3224 	struct socket *sock = file->private_data;
3225 	int ret = -ENOIOCTLCMD;
3226 	struct sock *sk;
3227 	struct net *net;
3228 
3229 	sk = sock->sk;
3230 	net = sock_net(sk);
3231 
3232 	if (sock->ops->compat_ioctl)
3233 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3234 
3235 	if (ret == -ENOIOCTLCMD &&
3236 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3237 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3238 
3239 	if (ret == -ENOIOCTLCMD)
3240 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3241 
3242 	return ret;
3243 }
3244 #endif
3245 
3246 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3247 {
3248 	return sock->ops->bind(sock, addr, addrlen);
3249 }
3250 EXPORT_SYMBOL(kernel_bind);
3251 
3252 int kernel_listen(struct socket *sock, int backlog)
3253 {
3254 	return sock->ops->listen(sock, backlog);
3255 }
3256 EXPORT_SYMBOL(kernel_listen);
3257 
3258 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3259 {
3260 	struct sock *sk = sock->sk;
3261 	int err;
3262 
3263 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3264 			       newsock);
3265 	if (err < 0)
3266 		goto done;
3267 
3268 	err = sock->ops->accept(sock, *newsock, flags, true);
3269 	if (err < 0) {
3270 		sock_release(*newsock);
3271 		*newsock = NULL;
3272 		goto done;
3273 	}
3274 
3275 	(*newsock)->ops = sock->ops;
3276 	__module_get((*newsock)->ops->owner);
3277 
3278 done:
3279 	return err;
3280 }
3281 EXPORT_SYMBOL(kernel_accept);
3282 
3283 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3284 		   int flags)
3285 {
3286 	return sock->ops->connect(sock, addr, addrlen, flags);
3287 }
3288 EXPORT_SYMBOL(kernel_connect);
3289 
3290 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3291 {
3292 	return sock->ops->getname(sock, addr, 0);
3293 }
3294 EXPORT_SYMBOL(kernel_getsockname);
3295 
3296 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3297 {
3298 	return sock->ops->getname(sock, addr, 1);
3299 }
3300 EXPORT_SYMBOL(kernel_getpeername);
3301 
3302 int kernel_getsockopt(struct socket *sock, int level, int optname,
3303 			char *optval, int *optlen)
3304 {
3305 	mm_segment_t oldfs = get_fs();
3306 	char __user *uoptval;
3307 	int __user *uoptlen;
3308 	int err;
3309 
3310 	uoptval = (char __user __force *) optval;
3311 	uoptlen = (int __user __force *) optlen;
3312 
3313 	set_fs(KERNEL_DS);
3314 	if (level == SOL_SOCKET)
3315 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3316 	else
3317 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3318 					    uoptlen);
3319 	set_fs(oldfs);
3320 	return err;
3321 }
3322 EXPORT_SYMBOL(kernel_getsockopt);
3323 
3324 int kernel_setsockopt(struct socket *sock, int level, int optname,
3325 			char *optval, unsigned int optlen)
3326 {
3327 	mm_segment_t oldfs = get_fs();
3328 	char __user *uoptval;
3329 	int err;
3330 
3331 	uoptval = (char __user __force *) optval;
3332 
3333 	set_fs(KERNEL_DS);
3334 	if (level == SOL_SOCKET)
3335 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3336 	else
3337 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3338 					    optlen);
3339 	set_fs(oldfs);
3340 	return err;
3341 }
3342 EXPORT_SYMBOL(kernel_setsockopt);
3343 
3344 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3345 		    size_t size, int flags)
3346 {
3347 	if (sock->ops->sendpage)
3348 		return sock->ops->sendpage(sock, page, offset, size, flags);
3349 
3350 	return sock_no_sendpage(sock, page, offset, size, flags);
3351 }
3352 EXPORT_SYMBOL(kernel_sendpage);
3353 
3354 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3355 			   size_t size, int flags)
3356 {
3357 	struct socket *sock = sk->sk_socket;
3358 
3359 	if (sock->ops->sendpage_locked)
3360 		return sock->ops->sendpage_locked(sk, page, offset, size,
3361 						  flags);
3362 
3363 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3364 }
3365 EXPORT_SYMBOL(kernel_sendpage_locked);
3366 
3367 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3368 {
3369 	return sock->ops->shutdown(sock, how);
3370 }
3371 EXPORT_SYMBOL(kernel_sock_shutdown);
3372 
3373 /* This routine returns the IP overhead imposed by a socket i.e.
3374  * the length of the underlying IP header, depending on whether
3375  * this is an IPv4 or IPv6 socket and the length from IP options turned
3376  * on at the socket. Assumes that the caller has a lock on the socket.
3377  */
3378 u32 kernel_sock_ip_overhead(struct sock *sk)
3379 {
3380 	struct inet_sock *inet;
3381 	struct ip_options_rcu *opt;
3382 	u32 overhead = 0;
3383 #if IS_ENABLED(CONFIG_IPV6)
3384 	struct ipv6_pinfo *np;
3385 	struct ipv6_txoptions *optv6 = NULL;
3386 #endif /* IS_ENABLED(CONFIG_IPV6) */
3387 
3388 	if (!sk)
3389 		return overhead;
3390 
3391 	switch (sk->sk_family) {
3392 	case AF_INET:
3393 		inet = inet_sk(sk);
3394 		overhead += sizeof(struct iphdr);
3395 		opt = rcu_dereference_protected(inet->inet_opt,
3396 						sock_owned_by_user(sk));
3397 		if (opt)
3398 			overhead += opt->opt.optlen;
3399 		return overhead;
3400 #if IS_ENABLED(CONFIG_IPV6)
3401 	case AF_INET6:
3402 		np = inet6_sk(sk);
3403 		overhead += sizeof(struct ipv6hdr);
3404 		if (np)
3405 			optv6 = rcu_dereference_protected(np->opt,
3406 							  sock_owned_by_user(sk));
3407 		if (optv6)
3408 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3409 		return overhead;
3410 #endif /* IS_ENABLED(CONFIG_IPV6) */
3411 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3412 		return overhead;
3413 	}
3414 }
3415 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3416