xref: /openbmc/linux/net/socket.c (revision d31346494bd2b1185949dc64ab6467186b80fb05)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read =		new_sync_read,
144 	.write =	new_sync_write,
145 	.read_iter =	sock_read_iter,
146 	.write_iter =	sock_write_iter,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg,
614 				     size_t size)
615 {
616 	return sock->ops->sendmsg(sock, msg, size);
617 }
618 
619 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
620 {
621 	int err = security_socket_sendmsg(sock, msg, size);
622 
623 	return err ?: sock_sendmsg_nosec(sock, msg, size);
624 }
625 EXPORT_SYMBOL(sock_sendmsg);
626 
627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 		   struct kvec *vec, size_t num, size_t size)
629 {
630 	mm_segment_t oldfs = get_fs();
631 	int result;
632 
633 	set_fs(KERNEL_DS);
634 	/*
635 	 * the following is safe, since for compiler definitions of kvec and
636 	 * iovec are identical, yielding the same in-core layout and alignment
637 	 */
638 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
639 	result = sock_sendmsg(sock, msg, size);
640 	set_fs(oldfs);
641 	return result;
642 }
643 EXPORT_SYMBOL(kernel_sendmsg);
644 
645 /*
646  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
647  */
648 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
649 	struct sk_buff *skb)
650 {
651 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
652 	struct scm_timestamping tss;
653 	int empty = 1;
654 	struct skb_shared_hwtstamps *shhwtstamps =
655 		skb_hwtstamps(skb);
656 
657 	/* Race occurred between timestamp enabling and packet
658 	   receiving.  Fill in the current time for now. */
659 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
660 		__net_timestamp(skb);
661 
662 	if (need_software_tstamp) {
663 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
664 			struct timeval tv;
665 			skb_get_timestamp(skb, &tv);
666 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
667 				 sizeof(tv), &tv);
668 		} else {
669 			struct timespec ts;
670 			skb_get_timestampns(skb, &ts);
671 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
672 				 sizeof(ts), &ts);
673 		}
674 	}
675 
676 	memset(&tss, 0, sizeof(tss));
677 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
678 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
679 		empty = 0;
680 	if (shhwtstamps &&
681 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
682 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
683 		empty = 0;
684 	if (!empty)
685 		put_cmsg(msg, SOL_SOCKET,
686 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
687 }
688 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
689 
690 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
691 	struct sk_buff *skb)
692 {
693 	int ack;
694 
695 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
696 		return;
697 	if (!skb->wifi_acked_valid)
698 		return;
699 
700 	ack = skb->wifi_acked;
701 
702 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
703 }
704 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
705 
706 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
707 				   struct sk_buff *skb)
708 {
709 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
710 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
711 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
712 }
713 
714 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
715 	struct sk_buff *skb)
716 {
717 	sock_recv_timestamp(msg, sk, skb);
718 	sock_recv_drops(msg, sk, skb);
719 }
720 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
721 
722 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
723 				     size_t size, int flags)
724 {
725 	return sock->ops->recvmsg(sock, msg, size, flags);
726 }
727 
728 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
729 		 int flags)
730 {
731 	int err = security_socket_recvmsg(sock, msg, size, flags);
732 
733 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
734 }
735 EXPORT_SYMBOL(sock_recvmsg);
736 
737 /**
738  * kernel_recvmsg - Receive a message from a socket (kernel space)
739  * @sock:       The socket to receive the message from
740  * @msg:        Received message
741  * @vec:        Input s/g array for message data
742  * @num:        Size of input s/g array
743  * @size:       Number of bytes to read
744  * @flags:      Message flags (MSG_DONTWAIT, etc...)
745  *
746  * On return the msg structure contains the scatter/gather array passed in the
747  * vec argument. The array is modified so that it consists of the unfilled
748  * portion of the original array.
749  *
750  * The returned value is the total number of bytes received, or an error.
751  */
752 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
753 		   struct kvec *vec, size_t num, size_t size, int flags)
754 {
755 	mm_segment_t oldfs = get_fs();
756 	int result;
757 
758 	set_fs(KERNEL_DS);
759 	/*
760 	 * the following is safe, since for compiler definitions of kvec and
761 	 * iovec are identical, yielding the same in-core layout and alignment
762 	 */
763 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
764 	result = sock_recvmsg(sock, msg, size, flags);
765 	set_fs(oldfs);
766 	return result;
767 }
768 EXPORT_SYMBOL(kernel_recvmsg);
769 
770 static ssize_t sock_sendpage(struct file *file, struct page *page,
771 			     int offset, size_t size, loff_t *ppos, int more)
772 {
773 	struct socket *sock;
774 	int flags;
775 
776 	sock = file->private_data;
777 
778 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
779 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
780 	flags |= more;
781 
782 	return kernel_sendpage(sock, page, offset, size, flags);
783 }
784 
785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
786 				struct pipe_inode_info *pipe, size_t len,
787 				unsigned int flags)
788 {
789 	struct socket *sock = file->private_data;
790 
791 	if (unlikely(!sock->ops->splice_read))
792 		return -EINVAL;
793 
794 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
795 }
796 
797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
798 {
799 	struct file *file = iocb->ki_filp;
800 	struct socket *sock = file->private_data;
801 	struct msghdr msg = {.msg_iter = *to,
802 			     .msg_iocb = iocb};
803 	ssize_t res;
804 
805 	if (file->f_flags & O_NONBLOCK)
806 		msg.msg_flags = MSG_DONTWAIT;
807 
808 	if (iocb->ki_pos != 0)
809 		return -ESPIPE;
810 
811 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
812 		return 0;
813 
814 	res = sock_recvmsg(sock, &msg, iocb->ki_nbytes, msg.msg_flags);
815 	*to = msg.msg_iter;
816 	return res;
817 }
818 
819 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
820 {
821 	struct file *file = iocb->ki_filp;
822 	struct socket *sock = file->private_data;
823 	struct msghdr msg = {.msg_iter = *from,
824 			     .msg_iocb = iocb};
825 	ssize_t res;
826 
827 	if (iocb->ki_pos != 0)
828 		return -ESPIPE;
829 
830 	if (file->f_flags & O_NONBLOCK)
831 		msg.msg_flags = MSG_DONTWAIT;
832 
833 	if (sock->type == SOCK_SEQPACKET)
834 		msg.msg_flags |= MSG_EOR;
835 
836 	res = sock_sendmsg(sock, &msg, iocb->ki_nbytes);
837 	*from = msg.msg_iter;
838 	return res;
839 }
840 
841 /*
842  * Atomic setting of ioctl hooks to avoid race
843  * with module unload.
844  */
845 
846 static DEFINE_MUTEX(br_ioctl_mutex);
847 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
848 
849 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
850 {
851 	mutex_lock(&br_ioctl_mutex);
852 	br_ioctl_hook = hook;
853 	mutex_unlock(&br_ioctl_mutex);
854 }
855 EXPORT_SYMBOL(brioctl_set);
856 
857 static DEFINE_MUTEX(vlan_ioctl_mutex);
858 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
859 
860 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
861 {
862 	mutex_lock(&vlan_ioctl_mutex);
863 	vlan_ioctl_hook = hook;
864 	mutex_unlock(&vlan_ioctl_mutex);
865 }
866 EXPORT_SYMBOL(vlan_ioctl_set);
867 
868 static DEFINE_MUTEX(dlci_ioctl_mutex);
869 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
870 
871 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
872 {
873 	mutex_lock(&dlci_ioctl_mutex);
874 	dlci_ioctl_hook = hook;
875 	mutex_unlock(&dlci_ioctl_mutex);
876 }
877 EXPORT_SYMBOL(dlci_ioctl_set);
878 
879 static long sock_do_ioctl(struct net *net, struct socket *sock,
880 				 unsigned int cmd, unsigned long arg)
881 {
882 	int err;
883 	void __user *argp = (void __user *)arg;
884 
885 	err = sock->ops->ioctl(sock, cmd, arg);
886 
887 	/*
888 	 * If this ioctl is unknown try to hand it down
889 	 * to the NIC driver.
890 	 */
891 	if (err == -ENOIOCTLCMD)
892 		err = dev_ioctl(net, cmd, argp);
893 
894 	return err;
895 }
896 
897 /*
898  *	With an ioctl, arg may well be a user mode pointer, but we don't know
899  *	what to do with it - that's up to the protocol still.
900  */
901 
902 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
903 {
904 	struct socket *sock;
905 	struct sock *sk;
906 	void __user *argp = (void __user *)arg;
907 	int pid, err;
908 	struct net *net;
909 
910 	sock = file->private_data;
911 	sk = sock->sk;
912 	net = sock_net(sk);
913 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
914 		err = dev_ioctl(net, cmd, argp);
915 	} else
916 #ifdef CONFIG_WEXT_CORE
917 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
918 		err = dev_ioctl(net, cmd, argp);
919 	} else
920 #endif
921 		switch (cmd) {
922 		case FIOSETOWN:
923 		case SIOCSPGRP:
924 			err = -EFAULT;
925 			if (get_user(pid, (int __user *)argp))
926 				break;
927 			f_setown(sock->file, pid, 1);
928 			err = 0;
929 			break;
930 		case FIOGETOWN:
931 		case SIOCGPGRP:
932 			err = put_user(f_getown(sock->file),
933 				       (int __user *)argp);
934 			break;
935 		case SIOCGIFBR:
936 		case SIOCSIFBR:
937 		case SIOCBRADDBR:
938 		case SIOCBRDELBR:
939 			err = -ENOPKG;
940 			if (!br_ioctl_hook)
941 				request_module("bridge");
942 
943 			mutex_lock(&br_ioctl_mutex);
944 			if (br_ioctl_hook)
945 				err = br_ioctl_hook(net, cmd, argp);
946 			mutex_unlock(&br_ioctl_mutex);
947 			break;
948 		case SIOCGIFVLAN:
949 		case SIOCSIFVLAN:
950 			err = -ENOPKG;
951 			if (!vlan_ioctl_hook)
952 				request_module("8021q");
953 
954 			mutex_lock(&vlan_ioctl_mutex);
955 			if (vlan_ioctl_hook)
956 				err = vlan_ioctl_hook(net, argp);
957 			mutex_unlock(&vlan_ioctl_mutex);
958 			break;
959 		case SIOCADDDLCI:
960 		case SIOCDELDLCI:
961 			err = -ENOPKG;
962 			if (!dlci_ioctl_hook)
963 				request_module("dlci");
964 
965 			mutex_lock(&dlci_ioctl_mutex);
966 			if (dlci_ioctl_hook)
967 				err = dlci_ioctl_hook(cmd, argp);
968 			mutex_unlock(&dlci_ioctl_mutex);
969 			break;
970 		default:
971 			err = sock_do_ioctl(net, sock, cmd, arg);
972 			break;
973 		}
974 	return err;
975 }
976 
977 int sock_create_lite(int family, int type, int protocol, struct socket **res)
978 {
979 	int err;
980 	struct socket *sock = NULL;
981 
982 	err = security_socket_create(family, type, protocol, 1);
983 	if (err)
984 		goto out;
985 
986 	sock = sock_alloc();
987 	if (!sock) {
988 		err = -ENOMEM;
989 		goto out;
990 	}
991 
992 	sock->type = type;
993 	err = security_socket_post_create(sock, family, type, protocol, 1);
994 	if (err)
995 		goto out_release;
996 
997 out:
998 	*res = sock;
999 	return err;
1000 out_release:
1001 	sock_release(sock);
1002 	sock = NULL;
1003 	goto out;
1004 }
1005 EXPORT_SYMBOL(sock_create_lite);
1006 
1007 /* No kernel lock held - perfect */
1008 static unsigned int sock_poll(struct file *file, poll_table *wait)
1009 {
1010 	unsigned int busy_flag = 0;
1011 	struct socket *sock;
1012 
1013 	/*
1014 	 *      We can't return errors to poll, so it's either yes or no.
1015 	 */
1016 	sock = file->private_data;
1017 
1018 	if (sk_can_busy_loop(sock->sk)) {
1019 		/* this socket can poll_ll so tell the system call */
1020 		busy_flag = POLL_BUSY_LOOP;
1021 
1022 		/* once, only if requested by syscall */
1023 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1024 			sk_busy_loop(sock->sk, 1);
1025 	}
1026 
1027 	return busy_flag | sock->ops->poll(file, sock, wait);
1028 }
1029 
1030 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1031 {
1032 	struct socket *sock = file->private_data;
1033 
1034 	return sock->ops->mmap(file, sock, vma);
1035 }
1036 
1037 static int sock_close(struct inode *inode, struct file *filp)
1038 {
1039 	sock_release(SOCKET_I(inode));
1040 	return 0;
1041 }
1042 
1043 /*
1044  *	Update the socket async list
1045  *
1046  *	Fasync_list locking strategy.
1047  *
1048  *	1. fasync_list is modified only under process context socket lock
1049  *	   i.e. under semaphore.
1050  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1051  *	   or under socket lock
1052  */
1053 
1054 static int sock_fasync(int fd, struct file *filp, int on)
1055 {
1056 	struct socket *sock = filp->private_data;
1057 	struct sock *sk = sock->sk;
1058 	struct socket_wq *wq;
1059 
1060 	if (sk == NULL)
1061 		return -EINVAL;
1062 
1063 	lock_sock(sk);
1064 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1065 	fasync_helper(fd, filp, on, &wq->fasync_list);
1066 
1067 	if (!wq->fasync_list)
1068 		sock_reset_flag(sk, SOCK_FASYNC);
1069 	else
1070 		sock_set_flag(sk, SOCK_FASYNC);
1071 
1072 	release_sock(sk);
1073 	return 0;
1074 }
1075 
1076 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1077 
1078 int sock_wake_async(struct socket *sock, int how, int band)
1079 {
1080 	struct socket_wq *wq;
1081 
1082 	if (!sock)
1083 		return -1;
1084 	rcu_read_lock();
1085 	wq = rcu_dereference(sock->wq);
1086 	if (!wq || !wq->fasync_list) {
1087 		rcu_read_unlock();
1088 		return -1;
1089 	}
1090 	switch (how) {
1091 	case SOCK_WAKE_WAITD:
1092 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1093 			break;
1094 		goto call_kill;
1095 	case SOCK_WAKE_SPACE:
1096 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1097 			break;
1098 		/* fall through */
1099 	case SOCK_WAKE_IO:
1100 call_kill:
1101 		kill_fasync(&wq->fasync_list, SIGIO, band);
1102 		break;
1103 	case SOCK_WAKE_URG:
1104 		kill_fasync(&wq->fasync_list, SIGURG, band);
1105 	}
1106 	rcu_read_unlock();
1107 	return 0;
1108 }
1109 EXPORT_SYMBOL(sock_wake_async);
1110 
1111 int __sock_create(struct net *net, int family, int type, int protocol,
1112 			 struct socket **res, int kern)
1113 {
1114 	int err;
1115 	struct socket *sock;
1116 	const struct net_proto_family *pf;
1117 
1118 	/*
1119 	 *      Check protocol is in range
1120 	 */
1121 	if (family < 0 || family >= NPROTO)
1122 		return -EAFNOSUPPORT;
1123 	if (type < 0 || type >= SOCK_MAX)
1124 		return -EINVAL;
1125 
1126 	/* Compatibility.
1127 
1128 	   This uglymoron is moved from INET layer to here to avoid
1129 	   deadlock in module load.
1130 	 */
1131 	if (family == PF_INET && type == SOCK_PACKET) {
1132 		static int warned;
1133 		if (!warned) {
1134 			warned = 1;
1135 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1136 				current->comm);
1137 		}
1138 		family = PF_PACKET;
1139 	}
1140 
1141 	err = security_socket_create(family, type, protocol, kern);
1142 	if (err)
1143 		return err;
1144 
1145 	/*
1146 	 *	Allocate the socket and allow the family to set things up. if
1147 	 *	the protocol is 0, the family is instructed to select an appropriate
1148 	 *	default.
1149 	 */
1150 	sock = sock_alloc();
1151 	if (!sock) {
1152 		net_warn_ratelimited("socket: no more sockets\n");
1153 		return -ENFILE;	/* Not exactly a match, but its the
1154 				   closest posix thing */
1155 	}
1156 
1157 	sock->type = type;
1158 
1159 #ifdef CONFIG_MODULES
1160 	/* Attempt to load a protocol module if the find failed.
1161 	 *
1162 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1163 	 * requested real, full-featured networking support upon configuration.
1164 	 * Otherwise module support will break!
1165 	 */
1166 	if (rcu_access_pointer(net_families[family]) == NULL)
1167 		request_module("net-pf-%d", family);
1168 #endif
1169 
1170 	rcu_read_lock();
1171 	pf = rcu_dereference(net_families[family]);
1172 	err = -EAFNOSUPPORT;
1173 	if (!pf)
1174 		goto out_release;
1175 
1176 	/*
1177 	 * We will call the ->create function, that possibly is in a loadable
1178 	 * module, so we have to bump that loadable module refcnt first.
1179 	 */
1180 	if (!try_module_get(pf->owner))
1181 		goto out_release;
1182 
1183 	/* Now protected by module ref count */
1184 	rcu_read_unlock();
1185 
1186 	err = pf->create(net, sock, protocol, kern);
1187 	if (err < 0)
1188 		goto out_module_put;
1189 
1190 	/*
1191 	 * Now to bump the refcnt of the [loadable] module that owns this
1192 	 * socket at sock_release time we decrement its refcnt.
1193 	 */
1194 	if (!try_module_get(sock->ops->owner))
1195 		goto out_module_busy;
1196 
1197 	/*
1198 	 * Now that we're done with the ->create function, the [loadable]
1199 	 * module can have its refcnt decremented
1200 	 */
1201 	module_put(pf->owner);
1202 	err = security_socket_post_create(sock, family, type, protocol, kern);
1203 	if (err)
1204 		goto out_sock_release;
1205 	*res = sock;
1206 
1207 	return 0;
1208 
1209 out_module_busy:
1210 	err = -EAFNOSUPPORT;
1211 out_module_put:
1212 	sock->ops = NULL;
1213 	module_put(pf->owner);
1214 out_sock_release:
1215 	sock_release(sock);
1216 	return err;
1217 
1218 out_release:
1219 	rcu_read_unlock();
1220 	goto out_sock_release;
1221 }
1222 EXPORT_SYMBOL(__sock_create);
1223 
1224 int sock_create(int family, int type, int protocol, struct socket **res)
1225 {
1226 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1227 }
1228 EXPORT_SYMBOL(sock_create);
1229 
1230 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1231 {
1232 	return __sock_create(&init_net, family, type, protocol, res, 1);
1233 }
1234 EXPORT_SYMBOL(sock_create_kern);
1235 
1236 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1237 {
1238 	int retval;
1239 	struct socket *sock;
1240 	int flags;
1241 
1242 	/* Check the SOCK_* constants for consistency.  */
1243 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1244 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1245 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1246 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1247 
1248 	flags = type & ~SOCK_TYPE_MASK;
1249 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1250 		return -EINVAL;
1251 	type &= SOCK_TYPE_MASK;
1252 
1253 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1254 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1255 
1256 	retval = sock_create(family, type, protocol, &sock);
1257 	if (retval < 0)
1258 		goto out;
1259 
1260 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1261 	if (retval < 0)
1262 		goto out_release;
1263 
1264 out:
1265 	/* It may be already another descriptor 8) Not kernel problem. */
1266 	return retval;
1267 
1268 out_release:
1269 	sock_release(sock);
1270 	return retval;
1271 }
1272 
1273 /*
1274  *	Create a pair of connected sockets.
1275  */
1276 
1277 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1278 		int __user *, usockvec)
1279 {
1280 	struct socket *sock1, *sock2;
1281 	int fd1, fd2, err;
1282 	struct file *newfile1, *newfile2;
1283 	int flags;
1284 
1285 	flags = type & ~SOCK_TYPE_MASK;
1286 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1287 		return -EINVAL;
1288 	type &= SOCK_TYPE_MASK;
1289 
1290 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1291 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1292 
1293 	/*
1294 	 * Obtain the first socket and check if the underlying protocol
1295 	 * supports the socketpair call.
1296 	 */
1297 
1298 	err = sock_create(family, type, protocol, &sock1);
1299 	if (err < 0)
1300 		goto out;
1301 
1302 	err = sock_create(family, type, protocol, &sock2);
1303 	if (err < 0)
1304 		goto out_release_1;
1305 
1306 	err = sock1->ops->socketpair(sock1, sock2);
1307 	if (err < 0)
1308 		goto out_release_both;
1309 
1310 	fd1 = get_unused_fd_flags(flags);
1311 	if (unlikely(fd1 < 0)) {
1312 		err = fd1;
1313 		goto out_release_both;
1314 	}
1315 
1316 	fd2 = get_unused_fd_flags(flags);
1317 	if (unlikely(fd2 < 0)) {
1318 		err = fd2;
1319 		goto out_put_unused_1;
1320 	}
1321 
1322 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1323 	if (unlikely(IS_ERR(newfile1))) {
1324 		err = PTR_ERR(newfile1);
1325 		goto out_put_unused_both;
1326 	}
1327 
1328 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1329 	if (IS_ERR(newfile2)) {
1330 		err = PTR_ERR(newfile2);
1331 		goto out_fput_1;
1332 	}
1333 
1334 	err = put_user(fd1, &usockvec[0]);
1335 	if (err)
1336 		goto out_fput_both;
1337 
1338 	err = put_user(fd2, &usockvec[1]);
1339 	if (err)
1340 		goto out_fput_both;
1341 
1342 	audit_fd_pair(fd1, fd2);
1343 
1344 	fd_install(fd1, newfile1);
1345 	fd_install(fd2, newfile2);
1346 	/* fd1 and fd2 may be already another descriptors.
1347 	 * Not kernel problem.
1348 	 */
1349 
1350 	return 0;
1351 
1352 out_fput_both:
1353 	fput(newfile2);
1354 	fput(newfile1);
1355 	put_unused_fd(fd2);
1356 	put_unused_fd(fd1);
1357 	goto out;
1358 
1359 out_fput_1:
1360 	fput(newfile1);
1361 	put_unused_fd(fd2);
1362 	put_unused_fd(fd1);
1363 	sock_release(sock2);
1364 	goto out;
1365 
1366 out_put_unused_both:
1367 	put_unused_fd(fd2);
1368 out_put_unused_1:
1369 	put_unused_fd(fd1);
1370 out_release_both:
1371 	sock_release(sock2);
1372 out_release_1:
1373 	sock_release(sock1);
1374 out:
1375 	return err;
1376 }
1377 
1378 /*
1379  *	Bind a name to a socket. Nothing much to do here since it's
1380  *	the protocol's responsibility to handle the local address.
1381  *
1382  *	We move the socket address to kernel space before we call
1383  *	the protocol layer (having also checked the address is ok).
1384  */
1385 
1386 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1387 {
1388 	struct socket *sock;
1389 	struct sockaddr_storage address;
1390 	int err, fput_needed;
1391 
1392 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1393 	if (sock) {
1394 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1395 		if (err >= 0) {
1396 			err = security_socket_bind(sock,
1397 						   (struct sockaddr *)&address,
1398 						   addrlen);
1399 			if (!err)
1400 				err = sock->ops->bind(sock,
1401 						      (struct sockaddr *)
1402 						      &address, addrlen);
1403 		}
1404 		fput_light(sock->file, fput_needed);
1405 	}
1406 	return err;
1407 }
1408 
1409 /*
1410  *	Perform a listen. Basically, we allow the protocol to do anything
1411  *	necessary for a listen, and if that works, we mark the socket as
1412  *	ready for listening.
1413  */
1414 
1415 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1416 {
1417 	struct socket *sock;
1418 	int err, fput_needed;
1419 	int somaxconn;
1420 
1421 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1422 	if (sock) {
1423 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1424 		if ((unsigned int)backlog > somaxconn)
1425 			backlog = somaxconn;
1426 
1427 		err = security_socket_listen(sock, backlog);
1428 		if (!err)
1429 			err = sock->ops->listen(sock, backlog);
1430 
1431 		fput_light(sock->file, fput_needed);
1432 	}
1433 	return err;
1434 }
1435 
1436 /*
1437  *	For accept, we attempt to create a new socket, set up the link
1438  *	with the client, wake up the client, then return the new
1439  *	connected fd. We collect the address of the connector in kernel
1440  *	space and move it to user at the very end. This is unclean because
1441  *	we open the socket then return an error.
1442  *
1443  *	1003.1g adds the ability to recvmsg() to query connection pending
1444  *	status to recvmsg. We need to add that support in a way thats
1445  *	clean when we restucture accept also.
1446  */
1447 
1448 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1449 		int __user *, upeer_addrlen, int, flags)
1450 {
1451 	struct socket *sock, *newsock;
1452 	struct file *newfile;
1453 	int err, len, newfd, fput_needed;
1454 	struct sockaddr_storage address;
1455 
1456 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1457 		return -EINVAL;
1458 
1459 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1460 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1461 
1462 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1463 	if (!sock)
1464 		goto out;
1465 
1466 	err = -ENFILE;
1467 	newsock = sock_alloc();
1468 	if (!newsock)
1469 		goto out_put;
1470 
1471 	newsock->type = sock->type;
1472 	newsock->ops = sock->ops;
1473 
1474 	/*
1475 	 * We don't need try_module_get here, as the listening socket (sock)
1476 	 * has the protocol module (sock->ops->owner) held.
1477 	 */
1478 	__module_get(newsock->ops->owner);
1479 
1480 	newfd = get_unused_fd_flags(flags);
1481 	if (unlikely(newfd < 0)) {
1482 		err = newfd;
1483 		sock_release(newsock);
1484 		goto out_put;
1485 	}
1486 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1487 	if (unlikely(IS_ERR(newfile))) {
1488 		err = PTR_ERR(newfile);
1489 		put_unused_fd(newfd);
1490 		sock_release(newsock);
1491 		goto out_put;
1492 	}
1493 
1494 	err = security_socket_accept(sock, newsock);
1495 	if (err)
1496 		goto out_fd;
1497 
1498 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1499 	if (err < 0)
1500 		goto out_fd;
1501 
1502 	if (upeer_sockaddr) {
1503 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1504 					  &len, 2) < 0) {
1505 			err = -ECONNABORTED;
1506 			goto out_fd;
1507 		}
1508 		err = move_addr_to_user(&address,
1509 					len, upeer_sockaddr, upeer_addrlen);
1510 		if (err < 0)
1511 			goto out_fd;
1512 	}
1513 
1514 	/* File flags are not inherited via accept() unlike another OSes. */
1515 
1516 	fd_install(newfd, newfile);
1517 	err = newfd;
1518 
1519 out_put:
1520 	fput_light(sock->file, fput_needed);
1521 out:
1522 	return err;
1523 out_fd:
1524 	fput(newfile);
1525 	put_unused_fd(newfd);
1526 	goto out_put;
1527 }
1528 
1529 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1530 		int __user *, upeer_addrlen)
1531 {
1532 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1533 }
1534 
1535 /*
1536  *	Attempt to connect to a socket with the server address.  The address
1537  *	is in user space so we verify it is OK and move it to kernel space.
1538  *
1539  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1540  *	break bindings
1541  *
1542  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1543  *	other SEQPACKET protocols that take time to connect() as it doesn't
1544  *	include the -EINPROGRESS status for such sockets.
1545  */
1546 
1547 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1548 		int, addrlen)
1549 {
1550 	struct socket *sock;
1551 	struct sockaddr_storage address;
1552 	int err, fput_needed;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (!sock)
1556 		goto out;
1557 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1558 	if (err < 0)
1559 		goto out_put;
1560 
1561 	err =
1562 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1563 	if (err)
1564 		goto out_put;
1565 
1566 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1567 				 sock->file->f_flags);
1568 out_put:
1569 	fput_light(sock->file, fput_needed);
1570 out:
1571 	return err;
1572 }
1573 
1574 /*
1575  *	Get the local address ('name') of a socket object. Move the obtained
1576  *	name to user space.
1577  */
1578 
1579 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1580 		int __user *, usockaddr_len)
1581 {
1582 	struct socket *sock;
1583 	struct sockaddr_storage address;
1584 	int len, err, fput_needed;
1585 
1586 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 	if (!sock)
1588 		goto out;
1589 
1590 	err = security_socket_getsockname(sock);
1591 	if (err)
1592 		goto out_put;
1593 
1594 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1595 	if (err)
1596 		goto out_put;
1597 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1598 
1599 out_put:
1600 	fput_light(sock->file, fput_needed);
1601 out:
1602 	return err;
1603 }
1604 
1605 /*
1606  *	Get the remote address ('name') of a socket object. Move the obtained
1607  *	name to user space.
1608  */
1609 
1610 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1611 		int __user *, usockaddr_len)
1612 {
1613 	struct socket *sock;
1614 	struct sockaddr_storage address;
1615 	int len, err, fput_needed;
1616 
1617 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618 	if (sock != NULL) {
1619 		err = security_socket_getpeername(sock);
1620 		if (err) {
1621 			fput_light(sock->file, fput_needed);
1622 			return err;
1623 		}
1624 
1625 		err =
1626 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1627 				       1);
1628 		if (!err)
1629 			err = move_addr_to_user(&address, len, usockaddr,
1630 						usockaddr_len);
1631 		fput_light(sock->file, fput_needed);
1632 	}
1633 	return err;
1634 }
1635 
1636 /*
1637  *	Send a datagram to a given address. We move the address into kernel
1638  *	space and check the user space data area is readable before invoking
1639  *	the protocol.
1640  */
1641 
1642 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1643 		unsigned int, flags, struct sockaddr __user *, addr,
1644 		int, addr_len)
1645 {
1646 	struct socket *sock;
1647 	struct sockaddr_storage address;
1648 	int err;
1649 	struct msghdr msg;
1650 	struct iovec iov;
1651 	int fput_needed;
1652 
1653 	if (len > INT_MAX)
1654 		len = INT_MAX;
1655 	if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1656 		return -EFAULT;
1657 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 	if (!sock)
1659 		goto out;
1660 
1661 	iov.iov_base = buff;
1662 	iov.iov_len = len;
1663 	msg.msg_name = NULL;
1664 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1665 	msg.msg_control = NULL;
1666 	msg.msg_controllen = 0;
1667 	msg.msg_namelen = 0;
1668 	if (addr) {
1669 		err = move_addr_to_kernel(addr, addr_len, &address);
1670 		if (err < 0)
1671 			goto out_put;
1672 		msg.msg_name = (struct sockaddr *)&address;
1673 		msg.msg_namelen = addr_len;
1674 	}
1675 	if (sock->file->f_flags & O_NONBLOCK)
1676 		flags |= MSG_DONTWAIT;
1677 	msg.msg_flags = flags;
1678 	err = sock_sendmsg(sock, &msg, len);
1679 
1680 out_put:
1681 	fput_light(sock->file, fput_needed);
1682 out:
1683 	return err;
1684 }
1685 
1686 /*
1687  *	Send a datagram down a socket.
1688  */
1689 
1690 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1691 		unsigned int, flags)
1692 {
1693 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1694 }
1695 
1696 /*
1697  *	Receive a frame from the socket and optionally record the address of the
1698  *	sender. We verify the buffers are writable and if needed move the
1699  *	sender address from kernel to user space.
1700  */
1701 
1702 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1703 		unsigned int, flags, struct sockaddr __user *, addr,
1704 		int __user *, addr_len)
1705 {
1706 	struct socket *sock;
1707 	struct iovec iov;
1708 	struct msghdr msg;
1709 	struct sockaddr_storage address;
1710 	int err, err2;
1711 	int fput_needed;
1712 
1713 	if (size > INT_MAX)
1714 		size = INT_MAX;
1715 	if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1716 		return -EFAULT;
1717 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1718 	if (!sock)
1719 		goto out;
1720 
1721 	msg.msg_control = NULL;
1722 	msg.msg_controllen = 0;
1723 	iov.iov_len = size;
1724 	iov.iov_base = ubuf;
1725 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1726 	/* Save some cycles and don't copy the address if not needed */
1727 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1728 	/* We assume all kernel code knows the size of sockaddr_storage */
1729 	msg.msg_namelen = 0;
1730 	if (sock->file->f_flags & O_NONBLOCK)
1731 		flags |= MSG_DONTWAIT;
1732 	err = sock_recvmsg(sock, &msg, size, flags);
1733 
1734 	if (err >= 0 && addr != NULL) {
1735 		err2 = move_addr_to_user(&address,
1736 					 msg.msg_namelen, addr, addr_len);
1737 		if (err2 < 0)
1738 			err = err2;
1739 	}
1740 
1741 	fput_light(sock->file, fput_needed);
1742 out:
1743 	return err;
1744 }
1745 
1746 /*
1747  *	Receive a datagram from a socket.
1748  */
1749 
1750 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1751 		unsigned int, flags)
1752 {
1753 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1754 }
1755 
1756 /*
1757  *	Set a socket option. Because we don't know the option lengths we have
1758  *	to pass the user mode parameter for the protocols to sort out.
1759  */
1760 
1761 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1762 		char __user *, optval, int, optlen)
1763 {
1764 	int err, fput_needed;
1765 	struct socket *sock;
1766 
1767 	if (optlen < 0)
1768 		return -EINVAL;
1769 
1770 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1771 	if (sock != NULL) {
1772 		err = security_socket_setsockopt(sock, level, optname);
1773 		if (err)
1774 			goto out_put;
1775 
1776 		if (level == SOL_SOCKET)
1777 			err =
1778 			    sock_setsockopt(sock, level, optname, optval,
1779 					    optlen);
1780 		else
1781 			err =
1782 			    sock->ops->setsockopt(sock, level, optname, optval,
1783 						  optlen);
1784 out_put:
1785 		fput_light(sock->file, fput_needed);
1786 	}
1787 	return err;
1788 }
1789 
1790 /*
1791  *	Get a socket option. Because we don't know the option lengths we have
1792  *	to pass a user mode parameter for the protocols to sort out.
1793  */
1794 
1795 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1796 		char __user *, optval, int __user *, optlen)
1797 {
1798 	int err, fput_needed;
1799 	struct socket *sock;
1800 
1801 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1802 	if (sock != NULL) {
1803 		err = security_socket_getsockopt(sock, level, optname);
1804 		if (err)
1805 			goto out_put;
1806 
1807 		if (level == SOL_SOCKET)
1808 			err =
1809 			    sock_getsockopt(sock, level, optname, optval,
1810 					    optlen);
1811 		else
1812 			err =
1813 			    sock->ops->getsockopt(sock, level, optname, optval,
1814 						  optlen);
1815 out_put:
1816 		fput_light(sock->file, fput_needed);
1817 	}
1818 	return err;
1819 }
1820 
1821 /*
1822  *	Shutdown a socket.
1823  */
1824 
1825 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1826 {
1827 	int err, fput_needed;
1828 	struct socket *sock;
1829 
1830 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1831 	if (sock != NULL) {
1832 		err = security_socket_shutdown(sock, how);
1833 		if (!err)
1834 			err = sock->ops->shutdown(sock, how);
1835 		fput_light(sock->file, fput_needed);
1836 	}
1837 	return err;
1838 }
1839 
1840 /* A couple of helpful macros for getting the address of the 32/64 bit
1841  * fields which are the same type (int / unsigned) on our platforms.
1842  */
1843 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1844 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1845 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1846 
1847 struct used_address {
1848 	struct sockaddr_storage name;
1849 	unsigned int name_len;
1850 };
1851 
1852 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1853 				     struct user_msghdr __user *umsg,
1854 				     struct sockaddr __user **save_addr,
1855 				     struct iovec **iov)
1856 {
1857 	struct sockaddr __user *uaddr;
1858 	struct iovec __user *uiov;
1859 	size_t nr_segs;
1860 	ssize_t err;
1861 
1862 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1863 	    __get_user(uaddr, &umsg->msg_name) ||
1864 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1865 	    __get_user(uiov, &umsg->msg_iov) ||
1866 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1867 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1868 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1869 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1870 		return -EFAULT;
1871 
1872 	if (!uaddr)
1873 		kmsg->msg_namelen = 0;
1874 
1875 	if (kmsg->msg_namelen < 0)
1876 		return -EINVAL;
1877 
1878 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1879 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1880 
1881 	if (save_addr)
1882 		*save_addr = uaddr;
1883 
1884 	if (uaddr && kmsg->msg_namelen) {
1885 		if (!save_addr) {
1886 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1887 						  kmsg->msg_name);
1888 			if (err < 0)
1889 				return err;
1890 		}
1891 	} else {
1892 		kmsg->msg_name = NULL;
1893 		kmsg->msg_namelen = 0;
1894 	}
1895 
1896 	if (nr_segs > UIO_MAXIOV)
1897 		return -EMSGSIZE;
1898 
1899 	kmsg->msg_iocb = NULL;
1900 
1901 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
1902 				    uiov, nr_segs,
1903 				    UIO_FASTIOV, *iov, iov);
1904 	if (err >= 0)
1905 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
1906 			      *iov, nr_segs, err);
1907 	return err;
1908 }
1909 
1910 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1911 			 struct msghdr *msg_sys, unsigned int flags,
1912 			 struct used_address *used_address)
1913 {
1914 	struct compat_msghdr __user *msg_compat =
1915 	    (struct compat_msghdr __user *)msg;
1916 	struct sockaddr_storage address;
1917 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1918 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1919 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1920 	/* 20 is size of ipv6_pktinfo */
1921 	unsigned char *ctl_buf = ctl;
1922 	int ctl_len, total_len;
1923 	ssize_t err;
1924 
1925 	msg_sys->msg_name = &address;
1926 
1927 	if (MSG_CMSG_COMPAT & flags)
1928 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1929 	else
1930 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1931 	if (err < 0)
1932 		goto out_freeiov;
1933 	total_len = err;
1934 
1935 	err = -ENOBUFS;
1936 
1937 	if (msg_sys->msg_controllen > INT_MAX)
1938 		goto out_freeiov;
1939 	ctl_len = msg_sys->msg_controllen;
1940 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1941 		err =
1942 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1943 						     sizeof(ctl));
1944 		if (err)
1945 			goto out_freeiov;
1946 		ctl_buf = msg_sys->msg_control;
1947 		ctl_len = msg_sys->msg_controllen;
1948 	} else if (ctl_len) {
1949 		if (ctl_len > sizeof(ctl)) {
1950 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1951 			if (ctl_buf == NULL)
1952 				goto out_freeiov;
1953 		}
1954 		err = -EFAULT;
1955 		/*
1956 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1957 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1958 		 * checking falls down on this.
1959 		 */
1960 		if (copy_from_user(ctl_buf,
1961 				   (void __user __force *)msg_sys->msg_control,
1962 				   ctl_len))
1963 			goto out_freectl;
1964 		msg_sys->msg_control = ctl_buf;
1965 	}
1966 	msg_sys->msg_flags = flags;
1967 
1968 	if (sock->file->f_flags & O_NONBLOCK)
1969 		msg_sys->msg_flags |= MSG_DONTWAIT;
1970 	/*
1971 	 * If this is sendmmsg() and current destination address is same as
1972 	 * previously succeeded address, omit asking LSM's decision.
1973 	 * used_address->name_len is initialized to UINT_MAX so that the first
1974 	 * destination address never matches.
1975 	 */
1976 	if (used_address && msg_sys->msg_name &&
1977 	    used_address->name_len == msg_sys->msg_namelen &&
1978 	    !memcmp(&used_address->name, msg_sys->msg_name,
1979 		    used_address->name_len)) {
1980 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1981 		goto out_freectl;
1982 	}
1983 	err = sock_sendmsg(sock, msg_sys, total_len);
1984 	/*
1985 	 * If this is sendmmsg() and sending to current destination address was
1986 	 * successful, remember it.
1987 	 */
1988 	if (used_address && err >= 0) {
1989 		used_address->name_len = msg_sys->msg_namelen;
1990 		if (msg_sys->msg_name)
1991 			memcpy(&used_address->name, msg_sys->msg_name,
1992 			       used_address->name_len);
1993 	}
1994 
1995 out_freectl:
1996 	if (ctl_buf != ctl)
1997 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1998 out_freeiov:
1999 	if (iov != iovstack)
2000 		kfree(iov);
2001 	return err;
2002 }
2003 
2004 /*
2005  *	BSD sendmsg interface
2006  */
2007 
2008 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2009 {
2010 	int fput_needed, err;
2011 	struct msghdr msg_sys;
2012 	struct socket *sock;
2013 
2014 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 	if (!sock)
2016 		goto out;
2017 
2018 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2019 
2020 	fput_light(sock->file, fput_needed);
2021 out:
2022 	return err;
2023 }
2024 
2025 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2026 {
2027 	if (flags & MSG_CMSG_COMPAT)
2028 		return -EINVAL;
2029 	return __sys_sendmsg(fd, msg, flags);
2030 }
2031 
2032 /*
2033  *	Linux sendmmsg interface
2034  */
2035 
2036 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037 		   unsigned int flags)
2038 {
2039 	int fput_needed, err, datagrams;
2040 	struct socket *sock;
2041 	struct mmsghdr __user *entry;
2042 	struct compat_mmsghdr __user *compat_entry;
2043 	struct msghdr msg_sys;
2044 	struct used_address used_address;
2045 
2046 	if (vlen > UIO_MAXIOV)
2047 		vlen = UIO_MAXIOV;
2048 
2049 	datagrams = 0;
2050 
2051 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052 	if (!sock)
2053 		return err;
2054 
2055 	used_address.name_len = UINT_MAX;
2056 	entry = mmsg;
2057 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058 	err = 0;
2059 
2060 	while (datagrams < vlen) {
2061 		if (MSG_CMSG_COMPAT & flags) {
2062 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2063 					     &msg_sys, flags, &used_address);
2064 			if (err < 0)
2065 				break;
2066 			err = __put_user(err, &compat_entry->msg_len);
2067 			++compat_entry;
2068 		} else {
2069 			err = ___sys_sendmsg(sock,
2070 					     (struct user_msghdr __user *)entry,
2071 					     &msg_sys, flags, &used_address);
2072 			if (err < 0)
2073 				break;
2074 			err = put_user(err, &entry->msg_len);
2075 			++entry;
2076 		}
2077 
2078 		if (err)
2079 			break;
2080 		++datagrams;
2081 	}
2082 
2083 	fput_light(sock->file, fput_needed);
2084 
2085 	/* We only return an error if no datagrams were able to be sent */
2086 	if (datagrams != 0)
2087 		return datagrams;
2088 
2089 	return err;
2090 }
2091 
2092 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2093 		unsigned int, vlen, unsigned int, flags)
2094 {
2095 	if (flags & MSG_CMSG_COMPAT)
2096 		return -EINVAL;
2097 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2098 }
2099 
2100 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2101 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2102 {
2103 	struct compat_msghdr __user *msg_compat =
2104 	    (struct compat_msghdr __user *)msg;
2105 	struct iovec iovstack[UIO_FASTIOV];
2106 	struct iovec *iov = iovstack;
2107 	unsigned long cmsg_ptr;
2108 	int total_len, len;
2109 	ssize_t err;
2110 
2111 	/* kernel mode address */
2112 	struct sockaddr_storage addr;
2113 
2114 	/* user mode address pointers */
2115 	struct sockaddr __user *uaddr;
2116 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2117 
2118 	msg_sys->msg_name = &addr;
2119 
2120 	if (MSG_CMSG_COMPAT & flags)
2121 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2122 	else
2123 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2124 	if (err < 0)
2125 		goto out_freeiov;
2126 	total_len = err;
2127 
2128 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2129 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2130 
2131 	/* We assume all kernel code knows the size of sockaddr_storage */
2132 	msg_sys->msg_namelen = 0;
2133 
2134 	if (sock->file->f_flags & O_NONBLOCK)
2135 		flags |= MSG_DONTWAIT;
2136 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2137 							  total_len, flags);
2138 	if (err < 0)
2139 		goto out_freeiov;
2140 	len = err;
2141 
2142 	if (uaddr != NULL) {
2143 		err = move_addr_to_user(&addr,
2144 					msg_sys->msg_namelen, uaddr,
2145 					uaddr_len);
2146 		if (err < 0)
2147 			goto out_freeiov;
2148 	}
2149 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2150 			 COMPAT_FLAGS(msg));
2151 	if (err)
2152 		goto out_freeiov;
2153 	if (MSG_CMSG_COMPAT & flags)
2154 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2155 				 &msg_compat->msg_controllen);
2156 	else
2157 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2158 				 &msg->msg_controllen);
2159 	if (err)
2160 		goto out_freeiov;
2161 	err = len;
2162 
2163 out_freeiov:
2164 	if (iov != iovstack)
2165 		kfree(iov);
2166 	return err;
2167 }
2168 
2169 /*
2170  *	BSD recvmsg interface
2171  */
2172 
2173 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2174 {
2175 	int fput_needed, err;
2176 	struct msghdr msg_sys;
2177 	struct socket *sock;
2178 
2179 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 	if (!sock)
2181 		goto out;
2182 
2183 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2184 
2185 	fput_light(sock->file, fput_needed);
2186 out:
2187 	return err;
2188 }
2189 
2190 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2191 		unsigned int, flags)
2192 {
2193 	if (flags & MSG_CMSG_COMPAT)
2194 		return -EINVAL;
2195 	return __sys_recvmsg(fd, msg, flags);
2196 }
2197 
2198 /*
2199  *     Linux recvmmsg interface
2200  */
2201 
2202 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2203 		   unsigned int flags, struct timespec *timeout)
2204 {
2205 	int fput_needed, err, datagrams;
2206 	struct socket *sock;
2207 	struct mmsghdr __user *entry;
2208 	struct compat_mmsghdr __user *compat_entry;
2209 	struct msghdr msg_sys;
2210 	struct timespec end_time;
2211 
2212 	if (timeout &&
2213 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2214 				    timeout->tv_nsec))
2215 		return -EINVAL;
2216 
2217 	datagrams = 0;
2218 
2219 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2220 	if (!sock)
2221 		return err;
2222 
2223 	err = sock_error(sock->sk);
2224 	if (err)
2225 		goto out_put;
2226 
2227 	entry = mmsg;
2228 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2229 
2230 	while (datagrams < vlen) {
2231 		/*
2232 		 * No need to ask LSM for more than the first datagram.
2233 		 */
2234 		if (MSG_CMSG_COMPAT & flags) {
2235 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2236 					     &msg_sys, flags & ~MSG_WAITFORONE,
2237 					     datagrams);
2238 			if (err < 0)
2239 				break;
2240 			err = __put_user(err, &compat_entry->msg_len);
2241 			++compat_entry;
2242 		} else {
2243 			err = ___sys_recvmsg(sock,
2244 					     (struct user_msghdr __user *)entry,
2245 					     &msg_sys, flags & ~MSG_WAITFORONE,
2246 					     datagrams);
2247 			if (err < 0)
2248 				break;
2249 			err = put_user(err, &entry->msg_len);
2250 			++entry;
2251 		}
2252 
2253 		if (err)
2254 			break;
2255 		++datagrams;
2256 
2257 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2258 		if (flags & MSG_WAITFORONE)
2259 			flags |= MSG_DONTWAIT;
2260 
2261 		if (timeout) {
2262 			ktime_get_ts(timeout);
2263 			*timeout = timespec_sub(end_time, *timeout);
2264 			if (timeout->tv_sec < 0) {
2265 				timeout->tv_sec = timeout->tv_nsec = 0;
2266 				break;
2267 			}
2268 
2269 			/* Timeout, return less than vlen datagrams */
2270 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2271 				break;
2272 		}
2273 
2274 		/* Out of band data, return right away */
2275 		if (msg_sys.msg_flags & MSG_OOB)
2276 			break;
2277 	}
2278 
2279 out_put:
2280 	fput_light(sock->file, fput_needed);
2281 
2282 	if (err == 0)
2283 		return datagrams;
2284 
2285 	if (datagrams != 0) {
2286 		/*
2287 		 * We may return less entries than requested (vlen) if the
2288 		 * sock is non block and there aren't enough datagrams...
2289 		 */
2290 		if (err != -EAGAIN) {
2291 			/*
2292 			 * ... or  if recvmsg returns an error after we
2293 			 * received some datagrams, where we record the
2294 			 * error to return on the next call or if the
2295 			 * app asks about it using getsockopt(SO_ERROR).
2296 			 */
2297 			sock->sk->sk_err = -err;
2298 		}
2299 
2300 		return datagrams;
2301 	}
2302 
2303 	return err;
2304 }
2305 
2306 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2307 		unsigned int, vlen, unsigned int, flags,
2308 		struct timespec __user *, timeout)
2309 {
2310 	int datagrams;
2311 	struct timespec timeout_sys;
2312 
2313 	if (flags & MSG_CMSG_COMPAT)
2314 		return -EINVAL;
2315 
2316 	if (!timeout)
2317 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2318 
2319 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2320 		return -EFAULT;
2321 
2322 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2323 
2324 	if (datagrams > 0 &&
2325 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2326 		datagrams = -EFAULT;
2327 
2328 	return datagrams;
2329 }
2330 
2331 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2332 /* Argument list sizes for sys_socketcall */
2333 #define AL(x) ((x) * sizeof(unsigned long))
2334 static const unsigned char nargs[21] = {
2335 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2336 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2337 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2338 	AL(4), AL(5), AL(4)
2339 };
2340 
2341 #undef AL
2342 
2343 /*
2344  *	System call vectors.
2345  *
2346  *	Argument checking cleaned up. Saved 20% in size.
2347  *  This function doesn't need to set the kernel lock because
2348  *  it is set by the callees.
2349  */
2350 
2351 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2352 {
2353 	unsigned long a[AUDITSC_ARGS];
2354 	unsigned long a0, a1;
2355 	int err;
2356 	unsigned int len;
2357 
2358 	if (call < 1 || call > SYS_SENDMMSG)
2359 		return -EINVAL;
2360 
2361 	len = nargs[call];
2362 	if (len > sizeof(a))
2363 		return -EINVAL;
2364 
2365 	/* copy_from_user should be SMP safe. */
2366 	if (copy_from_user(a, args, len))
2367 		return -EFAULT;
2368 
2369 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2370 	if (err)
2371 		return err;
2372 
2373 	a0 = a[0];
2374 	a1 = a[1];
2375 
2376 	switch (call) {
2377 	case SYS_SOCKET:
2378 		err = sys_socket(a0, a1, a[2]);
2379 		break;
2380 	case SYS_BIND:
2381 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2382 		break;
2383 	case SYS_CONNECT:
2384 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2385 		break;
2386 	case SYS_LISTEN:
2387 		err = sys_listen(a0, a1);
2388 		break;
2389 	case SYS_ACCEPT:
2390 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2391 				  (int __user *)a[2], 0);
2392 		break;
2393 	case SYS_GETSOCKNAME:
2394 		err =
2395 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2396 				    (int __user *)a[2]);
2397 		break;
2398 	case SYS_GETPEERNAME:
2399 		err =
2400 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2401 				    (int __user *)a[2]);
2402 		break;
2403 	case SYS_SOCKETPAIR:
2404 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2405 		break;
2406 	case SYS_SEND:
2407 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2408 		break;
2409 	case SYS_SENDTO:
2410 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2411 				 (struct sockaddr __user *)a[4], a[5]);
2412 		break;
2413 	case SYS_RECV:
2414 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2415 		break;
2416 	case SYS_RECVFROM:
2417 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2418 				   (struct sockaddr __user *)a[4],
2419 				   (int __user *)a[5]);
2420 		break;
2421 	case SYS_SHUTDOWN:
2422 		err = sys_shutdown(a0, a1);
2423 		break;
2424 	case SYS_SETSOCKOPT:
2425 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2426 		break;
2427 	case SYS_GETSOCKOPT:
2428 		err =
2429 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2430 				   (int __user *)a[4]);
2431 		break;
2432 	case SYS_SENDMSG:
2433 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2434 		break;
2435 	case SYS_SENDMMSG:
2436 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2437 		break;
2438 	case SYS_RECVMSG:
2439 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2440 		break;
2441 	case SYS_RECVMMSG:
2442 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2443 				   (struct timespec __user *)a[4]);
2444 		break;
2445 	case SYS_ACCEPT4:
2446 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2447 				  (int __user *)a[2], a[3]);
2448 		break;
2449 	default:
2450 		err = -EINVAL;
2451 		break;
2452 	}
2453 	return err;
2454 }
2455 
2456 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2457 
2458 /**
2459  *	sock_register - add a socket protocol handler
2460  *	@ops: description of protocol
2461  *
2462  *	This function is called by a protocol handler that wants to
2463  *	advertise its address family, and have it linked into the
2464  *	socket interface. The value ops->family corresponds to the
2465  *	socket system call protocol family.
2466  */
2467 int sock_register(const struct net_proto_family *ops)
2468 {
2469 	int err;
2470 
2471 	if (ops->family >= NPROTO) {
2472 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2473 		return -ENOBUFS;
2474 	}
2475 
2476 	spin_lock(&net_family_lock);
2477 	if (rcu_dereference_protected(net_families[ops->family],
2478 				      lockdep_is_held(&net_family_lock)))
2479 		err = -EEXIST;
2480 	else {
2481 		rcu_assign_pointer(net_families[ops->family], ops);
2482 		err = 0;
2483 	}
2484 	spin_unlock(&net_family_lock);
2485 
2486 	pr_info("NET: Registered protocol family %d\n", ops->family);
2487 	return err;
2488 }
2489 EXPORT_SYMBOL(sock_register);
2490 
2491 /**
2492  *	sock_unregister - remove a protocol handler
2493  *	@family: protocol family to remove
2494  *
2495  *	This function is called by a protocol handler that wants to
2496  *	remove its address family, and have it unlinked from the
2497  *	new socket creation.
2498  *
2499  *	If protocol handler is a module, then it can use module reference
2500  *	counts to protect against new references. If protocol handler is not
2501  *	a module then it needs to provide its own protection in
2502  *	the ops->create routine.
2503  */
2504 void sock_unregister(int family)
2505 {
2506 	BUG_ON(family < 0 || family >= NPROTO);
2507 
2508 	spin_lock(&net_family_lock);
2509 	RCU_INIT_POINTER(net_families[family], NULL);
2510 	spin_unlock(&net_family_lock);
2511 
2512 	synchronize_rcu();
2513 
2514 	pr_info("NET: Unregistered protocol family %d\n", family);
2515 }
2516 EXPORT_SYMBOL(sock_unregister);
2517 
2518 static int __init sock_init(void)
2519 {
2520 	int err;
2521 	/*
2522 	 *      Initialize the network sysctl infrastructure.
2523 	 */
2524 	err = net_sysctl_init();
2525 	if (err)
2526 		goto out;
2527 
2528 	/*
2529 	 *      Initialize skbuff SLAB cache
2530 	 */
2531 	skb_init();
2532 
2533 	/*
2534 	 *      Initialize the protocols module.
2535 	 */
2536 
2537 	init_inodecache();
2538 
2539 	err = register_filesystem(&sock_fs_type);
2540 	if (err)
2541 		goto out_fs;
2542 	sock_mnt = kern_mount(&sock_fs_type);
2543 	if (IS_ERR(sock_mnt)) {
2544 		err = PTR_ERR(sock_mnt);
2545 		goto out_mount;
2546 	}
2547 
2548 	/* The real protocol initialization is performed in later initcalls.
2549 	 */
2550 
2551 #ifdef CONFIG_NETFILTER
2552 	err = netfilter_init();
2553 	if (err)
2554 		goto out;
2555 #endif
2556 
2557 	ptp_classifier_init();
2558 
2559 out:
2560 	return err;
2561 
2562 out_mount:
2563 	unregister_filesystem(&sock_fs_type);
2564 out_fs:
2565 	goto out;
2566 }
2567 
2568 core_initcall(sock_init);	/* early initcall */
2569 
2570 #ifdef CONFIG_PROC_FS
2571 void socket_seq_show(struct seq_file *seq)
2572 {
2573 	int cpu;
2574 	int counter = 0;
2575 
2576 	for_each_possible_cpu(cpu)
2577 	    counter += per_cpu(sockets_in_use, cpu);
2578 
2579 	/* It can be negative, by the way. 8) */
2580 	if (counter < 0)
2581 		counter = 0;
2582 
2583 	seq_printf(seq, "sockets: used %d\n", counter);
2584 }
2585 #endif				/* CONFIG_PROC_FS */
2586 
2587 #ifdef CONFIG_COMPAT
2588 static int do_siocgstamp(struct net *net, struct socket *sock,
2589 			 unsigned int cmd, void __user *up)
2590 {
2591 	mm_segment_t old_fs = get_fs();
2592 	struct timeval ktv;
2593 	int err;
2594 
2595 	set_fs(KERNEL_DS);
2596 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2597 	set_fs(old_fs);
2598 	if (!err)
2599 		err = compat_put_timeval(&ktv, up);
2600 
2601 	return err;
2602 }
2603 
2604 static int do_siocgstampns(struct net *net, struct socket *sock,
2605 			   unsigned int cmd, void __user *up)
2606 {
2607 	mm_segment_t old_fs = get_fs();
2608 	struct timespec kts;
2609 	int err;
2610 
2611 	set_fs(KERNEL_DS);
2612 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2613 	set_fs(old_fs);
2614 	if (!err)
2615 		err = compat_put_timespec(&kts, up);
2616 
2617 	return err;
2618 }
2619 
2620 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2621 {
2622 	struct ifreq __user *uifr;
2623 	int err;
2624 
2625 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2626 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2627 		return -EFAULT;
2628 
2629 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2630 	if (err)
2631 		return err;
2632 
2633 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2634 		return -EFAULT;
2635 
2636 	return 0;
2637 }
2638 
2639 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2640 {
2641 	struct compat_ifconf ifc32;
2642 	struct ifconf ifc;
2643 	struct ifconf __user *uifc;
2644 	struct compat_ifreq __user *ifr32;
2645 	struct ifreq __user *ifr;
2646 	unsigned int i, j;
2647 	int err;
2648 
2649 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2650 		return -EFAULT;
2651 
2652 	memset(&ifc, 0, sizeof(ifc));
2653 	if (ifc32.ifcbuf == 0) {
2654 		ifc32.ifc_len = 0;
2655 		ifc.ifc_len = 0;
2656 		ifc.ifc_req = NULL;
2657 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2658 	} else {
2659 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2660 			sizeof(struct ifreq);
2661 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2662 		ifc.ifc_len = len;
2663 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2664 		ifr32 = compat_ptr(ifc32.ifcbuf);
2665 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2666 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2667 				return -EFAULT;
2668 			ifr++;
2669 			ifr32++;
2670 		}
2671 	}
2672 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2673 		return -EFAULT;
2674 
2675 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2676 	if (err)
2677 		return err;
2678 
2679 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2680 		return -EFAULT;
2681 
2682 	ifr = ifc.ifc_req;
2683 	ifr32 = compat_ptr(ifc32.ifcbuf);
2684 	for (i = 0, j = 0;
2685 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2686 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2687 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2688 			return -EFAULT;
2689 		ifr32++;
2690 		ifr++;
2691 	}
2692 
2693 	if (ifc32.ifcbuf == 0) {
2694 		/* Translate from 64-bit structure multiple to
2695 		 * a 32-bit one.
2696 		 */
2697 		i = ifc.ifc_len;
2698 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2699 		ifc32.ifc_len = i;
2700 	} else {
2701 		ifc32.ifc_len = i;
2702 	}
2703 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2704 		return -EFAULT;
2705 
2706 	return 0;
2707 }
2708 
2709 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2710 {
2711 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2712 	bool convert_in = false, convert_out = false;
2713 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2714 	struct ethtool_rxnfc __user *rxnfc;
2715 	struct ifreq __user *ifr;
2716 	u32 rule_cnt = 0, actual_rule_cnt;
2717 	u32 ethcmd;
2718 	u32 data;
2719 	int ret;
2720 
2721 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2722 		return -EFAULT;
2723 
2724 	compat_rxnfc = compat_ptr(data);
2725 
2726 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2727 		return -EFAULT;
2728 
2729 	/* Most ethtool structures are defined without padding.
2730 	 * Unfortunately struct ethtool_rxnfc is an exception.
2731 	 */
2732 	switch (ethcmd) {
2733 	default:
2734 		break;
2735 	case ETHTOOL_GRXCLSRLALL:
2736 		/* Buffer size is variable */
2737 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2738 			return -EFAULT;
2739 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2740 			return -ENOMEM;
2741 		buf_size += rule_cnt * sizeof(u32);
2742 		/* fall through */
2743 	case ETHTOOL_GRXRINGS:
2744 	case ETHTOOL_GRXCLSRLCNT:
2745 	case ETHTOOL_GRXCLSRULE:
2746 	case ETHTOOL_SRXCLSRLINS:
2747 		convert_out = true;
2748 		/* fall through */
2749 	case ETHTOOL_SRXCLSRLDEL:
2750 		buf_size += sizeof(struct ethtool_rxnfc);
2751 		convert_in = true;
2752 		break;
2753 	}
2754 
2755 	ifr = compat_alloc_user_space(buf_size);
2756 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2757 
2758 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2759 		return -EFAULT;
2760 
2761 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2762 		     &ifr->ifr_ifru.ifru_data))
2763 		return -EFAULT;
2764 
2765 	if (convert_in) {
2766 		/* We expect there to be holes between fs.m_ext and
2767 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2768 		 */
2769 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2770 			     sizeof(compat_rxnfc->fs.m_ext) !=
2771 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2772 			     sizeof(rxnfc->fs.m_ext));
2773 		BUILD_BUG_ON(
2774 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2775 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2776 			offsetof(struct ethtool_rxnfc, fs.location) -
2777 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2778 
2779 		if (copy_in_user(rxnfc, compat_rxnfc,
2780 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2781 				 (void __user *)rxnfc) ||
2782 		    copy_in_user(&rxnfc->fs.ring_cookie,
2783 				 &compat_rxnfc->fs.ring_cookie,
2784 				 (void __user *)(&rxnfc->fs.location + 1) -
2785 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2786 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2787 				 sizeof(rxnfc->rule_cnt)))
2788 			return -EFAULT;
2789 	}
2790 
2791 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2792 	if (ret)
2793 		return ret;
2794 
2795 	if (convert_out) {
2796 		if (copy_in_user(compat_rxnfc, rxnfc,
2797 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2798 				 (const void __user *)rxnfc) ||
2799 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2800 				 &rxnfc->fs.ring_cookie,
2801 				 (const void __user *)(&rxnfc->fs.location + 1) -
2802 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2803 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2804 				 sizeof(rxnfc->rule_cnt)))
2805 			return -EFAULT;
2806 
2807 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2808 			/* As an optimisation, we only copy the actual
2809 			 * number of rules that the underlying
2810 			 * function returned.  Since Mallory might
2811 			 * change the rule count in user memory, we
2812 			 * check that it is less than the rule count
2813 			 * originally given (as the user buffer size),
2814 			 * which has been range-checked.
2815 			 */
2816 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2817 				return -EFAULT;
2818 			if (actual_rule_cnt < rule_cnt)
2819 				rule_cnt = actual_rule_cnt;
2820 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2821 					 &rxnfc->rule_locs[0],
2822 					 rule_cnt * sizeof(u32)))
2823 				return -EFAULT;
2824 		}
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2831 {
2832 	void __user *uptr;
2833 	compat_uptr_t uptr32;
2834 	struct ifreq __user *uifr;
2835 
2836 	uifr = compat_alloc_user_space(sizeof(*uifr));
2837 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2838 		return -EFAULT;
2839 
2840 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2841 		return -EFAULT;
2842 
2843 	uptr = compat_ptr(uptr32);
2844 
2845 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2846 		return -EFAULT;
2847 
2848 	return dev_ioctl(net, SIOCWANDEV, uifr);
2849 }
2850 
2851 static int bond_ioctl(struct net *net, unsigned int cmd,
2852 			 struct compat_ifreq __user *ifr32)
2853 {
2854 	struct ifreq kifr;
2855 	mm_segment_t old_fs;
2856 	int err;
2857 
2858 	switch (cmd) {
2859 	case SIOCBONDENSLAVE:
2860 	case SIOCBONDRELEASE:
2861 	case SIOCBONDSETHWADDR:
2862 	case SIOCBONDCHANGEACTIVE:
2863 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2864 			return -EFAULT;
2865 
2866 		old_fs = get_fs();
2867 		set_fs(KERNEL_DS);
2868 		err = dev_ioctl(net, cmd,
2869 				(struct ifreq __user __force *) &kifr);
2870 		set_fs(old_fs);
2871 
2872 		return err;
2873 	default:
2874 		return -ENOIOCTLCMD;
2875 	}
2876 }
2877 
2878 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2879 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2880 				 struct compat_ifreq __user *u_ifreq32)
2881 {
2882 	struct ifreq __user *u_ifreq64;
2883 	char tmp_buf[IFNAMSIZ];
2884 	void __user *data64;
2885 	u32 data32;
2886 
2887 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2888 			   IFNAMSIZ))
2889 		return -EFAULT;
2890 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2891 		return -EFAULT;
2892 	data64 = compat_ptr(data32);
2893 
2894 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2895 
2896 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2897 			 IFNAMSIZ))
2898 		return -EFAULT;
2899 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2900 		return -EFAULT;
2901 
2902 	return dev_ioctl(net, cmd, u_ifreq64);
2903 }
2904 
2905 static int dev_ifsioc(struct net *net, struct socket *sock,
2906 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2907 {
2908 	struct ifreq __user *uifr;
2909 	int err;
2910 
2911 	uifr = compat_alloc_user_space(sizeof(*uifr));
2912 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2913 		return -EFAULT;
2914 
2915 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2916 
2917 	if (!err) {
2918 		switch (cmd) {
2919 		case SIOCGIFFLAGS:
2920 		case SIOCGIFMETRIC:
2921 		case SIOCGIFMTU:
2922 		case SIOCGIFMEM:
2923 		case SIOCGIFHWADDR:
2924 		case SIOCGIFINDEX:
2925 		case SIOCGIFADDR:
2926 		case SIOCGIFBRDADDR:
2927 		case SIOCGIFDSTADDR:
2928 		case SIOCGIFNETMASK:
2929 		case SIOCGIFPFLAGS:
2930 		case SIOCGIFTXQLEN:
2931 		case SIOCGMIIPHY:
2932 		case SIOCGMIIREG:
2933 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2934 				err = -EFAULT;
2935 			break;
2936 		}
2937 	}
2938 	return err;
2939 }
2940 
2941 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2942 			struct compat_ifreq __user *uifr32)
2943 {
2944 	struct ifreq ifr;
2945 	struct compat_ifmap __user *uifmap32;
2946 	mm_segment_t old_fs;
2947 	int err;
2948 
2949 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2950 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2951 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2952 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2953 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2954 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2955 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2956 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2957 	if (err)
2958 		return -EFAULT;
2959 
2960 	old_fs = get_fs();
2961 	set_fs(KERNEL_DS);
2962 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2963 	set_fs(old_fs);
2964 
2965 	if (cmd == SIOCGIFMAP && !err) {
2966 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2967 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2968 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2969 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2970 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2971 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2972 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2973 		if (err)
2974 			err = -EFAULT;
2975 	}
2976 	return err;
2977 }
2978 
2979 struct rtentry32 {
2980 	u32		rt_pad1;
2981 	struct sockaddr rt_dst;         /* target address               */
2982 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2983 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2984 	unsigned short	rt_flags;
2985 	short		rt_pad2;
2986 	u32		rt_pad3;
2987 	unsigned char	rt_tos;
2988 	unsigned char	rt_class;
2989 	short		rt_pad4;
2990 	short		rt_metric;      /* +1 for binary compatibility! */
2991 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2992 	u32		rt_mtu;         /* per route MTU/Window         */
2993 	u32		rt_window;      /* Window clamping              */
2994 	unsigned short  rt_irtt;        /* Initial RTT                  */
2995 };
2996 
2997 struct in6_rtmsg32 {
2998 	struct in6_addr		rtmsg_dst;
2999 	struct in6_addr		rtmsg_src;
3000 	struct in6_addr		rtmsg_gateway;
3001 	u32			rtmsg_type;
3002 	u16			rtmsg_dst_len;
3003 	u16			rtmsg_src_len;
3004 	u32			rtmsg_metric;
3005 	u32			rtmsg_info;
3006 	u32			rtmsg_flags;
3007 	s32			rtmsg_ifindex;
3008 };
3009 
3010 static int routing_ioctl(struct net *net, struct socket *sock,
3011 			 unsigned int cmd, void __user *argp)
3012 {
3013 	int ret;
3014 	void *r = NULL;
3015 	struct in6_rtmsg r6;
3016 	struct rtentry r4;
3017 	char devname[16];
3018 	u32 rtdev;
3019 	mm_segment_t old_fs = get_fs();
3020 
3021 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3022 		struct in6_rtmsg32 __user *ur6 = argp;
3023 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3024 			3 * sizeof(struct in6_addr));
3025 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3026 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3027 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3028 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3029 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3030 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3031 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3032 
3033 		r = (void *) &r6;
3034 	} else { /* ipv4 */
3035 		struct rtentry32 __user *ur4 = argp;
3036 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3037 					3 * sizeof(struct sockaddr));
3038 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3039 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3040 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3041 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3042 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3043 		ret |= get_user(rtdev, &(ur4->rt_dev));
3044 		if (rtdev) {
3045 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3046 			r4.rt_dev = (char __user __force *)devname;
3047 			devname[15] = 0;
3048 		} else
3049 			r4.rt_dev = NULL;
3050 
3051 		r = (void *) &r4;
3052 	}
3053 
3054 	if (ret) {
3055 		ret = -EFAULT;
3056 		goto out;
3057 	}
3058 
3059 	set_fs(KERNEL_DS);
3060 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3061 	set_fs(old_fs);
3062 
3063 out:
3064 	return ret;
3065 }
3066 
3067 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3068  * for some operations; this forces use of the newer bridge-utils that
3069  * use compatible ioctls
3070  */
3071 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3072 {
3073 	compat_ulong_t tmp;
3074 
3075 	if (get_user(tmp, argp))
3076 		return -EFAULT;
3077 	if (tmp == BRCTL_GET_VERSION)
3078 		return BRCTL_VERSION + 1;
3079 	return -EINVAL;
3080 }
3081 
3082 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3083 			 unsigned int cmd, unsigned long arg)
3084 {
3085 	void __user *argp = compat_ptr(arg);
3086 	struct sock *sk = sock->sk;
3087 	struct net *net = sock_net(sk);
3088 
3089 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3090 		return compat_ifr_data_ioctl(net, cmd, argp);
3091 
3092 	switch (cmd) {
3093 	case SIOCSIFBR:
3094 	case SIOCGIFBR:
3095 		return old_bridge_ioctl(argp);
3096 	case SIOCGIFNAME:
3097 		return dev_ifname32(net, argp);
3098 	case SIOCGIFCONF:
3099 		return dev_ifconf(net, argp);
3100 	case SIOCETHTOOL:
3101 		return ethtool_ioctl(net, argp);
3102 	case SIOCWANDEV:
3103 		return compat_siocwandev(net, argp);
3104 	case SIOCGIFMAP:
3105 	case SIOCSIFMAP:
3106 		return compat_sioc_ifmap(net, cmd, argp);
3107 	case SIOCBONDENSLAVE:
3108 	case SIOCBONDRELEASE:
3109 	case SIOCBONDSETHWADDR:
3110 	case SIOCBONDCHANGEACTIVE:
3111 		return bond_ioctl(net, cmd, argp);
3112 	case SIOCADDRT:
3113 	case SIOCDELRT:
3114 		return routing_ioctl(net, sock, cmd, argp);
3115 	case SIOCGSTAMP:
3116 		return do_siocgstamp(net, sock, cmd, argp);
3117 	case SIOCGSTAMPNS:
3118 		return do_siocgstampns(net, sock, cmd, argp);
3119 	case SIOCBONDSLAVEINFOQUERY:
3120 	case SIOCBONDINFOQUERY:
3121 	case SIOCSHWTSTAMP:
3122 	case SIOCGHWTSTAMP:
3123 		return compat_ifr_data_ioctl(net, cmd, argp);
3124 
3125 	case FIOSETOWN:
3126 	case SIOCSPGRP:
3127 	case FIOGETOWN:
3128 	case SIOCGPGRP:
3129 	case SIOCBRADDBR:
3130 	case SIOCBRDELBR:
3131 	case SIOCGIFVLAN:
3132 	case SIOCSIFVLAN:
3133 	case SIOCADDDLCI:
3134 	case SIOCDELDLCI:
3135 		return sock_ioctl(file, cmd, arg);
3136 
3137 	case SIOCGIFFLAGS:
3138 	case SIOCSIFFLAGS:
3139 	case SIOCGIFMETRIC:
3140 	case SIOCSIFMETRIC:
3141 	case SIOCGIFMTU:
3142 	case SIOCSIFMTU:
3143 	case SIOCGIFMEM:
3144 	case SIOCSIFMEM:
3145 	case SIOCGIFHWADDR:
3146 	case SIOCSIFHWADDR:
3147 	case SIOCADDMULTI:
3148 	case SIOCDELMULTI:
3149 	case SIOCGIFINDEX:
3150 	case SIOCGIFADDR:
3151 	case SIOCSIFADDR:
3152 	case SIOCSIFHWBROADCAST:
3153 	case SIOCDIFADDR:
3154 	case SIOCGIFBRDADDR:
3155 	case SIOCSIFBRDADDR:
3156 	case SIOCGIFDSTADDR:
3157 	case SIOCSIFDSTADDR:
3158 	case SIOCGIFNETMASK:
3159 	case SIOCSIFNETMASK:
3160 	case SIOCSIFPFLAGS:
3161 	case SIOCGIFPFLAGS:
3162 	case SIOCGIFTXQLEN:
3163 	case SIOCSIFTXQLEN:
3164 	case SIOCBRADDIF:
3165 	case SIOCBRDELIF:
3166 	case SIOCSIFNAME:
3167 	case SIOCGMIIPHY:
3168 	case SIOCGMIIREG:
3169 	case SIOCSMIIREG:
3170 		return dev_ifsioc(net, sock, cmd, argp);
3171 
3172 	case SIOCSARP:
3173 	case SIOCGARP:
3174 	case SIOCDARP:
3175 	case SIOCATMARK:
3176 		return sock_do_ioctl(net, sock, cmd, arg);
3177 	}
3178 
3179 	return -ENOIOCTLCMD;
3180 }
3181 
3182 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3183 			      unsigned long arg)
3184 {
3185 	struct socket *sock = file->private_data;
3186 	int ret = -ENOIOCTLCMD;
3187 	struct sock *sk;
3188 	struct net *net;
3189 
3190 	sk = sock->sk;
3191 	net = sock_net(sk);
3192 
3193 	if (sock->ops->compat_ioctl)
3194 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3195 
3196 	if (ret == -ENOIOCTLCMD &&
3197 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3198 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3199 
3200 	if (ret == -ENOIOCTLCMD)
3201 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3202 
3203 	return ret;
3204 }
3205 #endif
3206 
3207 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3208 {
3209 	return sock->ops->bind(sock, addr, addrlen);
3210 }
3211 EXPORT_SYMBOL(kernel_bind);
3212 
3213 int kernel_listen(struct socket *sock, int backlog)
3214 {
3215 	return sock->ops->listen(sock, backlog);
3216 }
3217 EXPORT_SYMBOL(kernel_listen);
3218 
3219 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3220 {
3221 	struct sock *sk = sock->sk;
3222 	int err;
3223 
3224 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3225 			       newsock);
3226 	if (err < 0)
3227 		goto done;
3228 
3229 	err = sock->ops->accept(sock, *newsock, flags);
3230 	if (err < 0) {
3231 		sock_release(*newsock);
3232 		*newsock = NULL;
3233 		goto done;
3234 	}
3235 
3236 	(*newsock)->ops = sock->ops;
3237 	__module_get((*newsock)->ops->owner);
3238 
3239 done:
3240 	return err;
3241 }
3242 EXPORT_SYMBOL(kernel_accept);
3243 
3244 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3245 		   int flags)
3246 {
3247 	return sock->ops->connect(sock, addr, addrlen, flags);
3248 }
3249 EXPORT_SYMBOL(kernel_connect);
3250 
3251 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3252 			 int *addrlen)
3253 {
3254 	return sock->ops->getname(sock, addr, addrlen, 0);
3255 }
3256 EXPORT_SYMBOL(kernel_getsockname);
3257 
3258 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3259 			 int *addrlen)
3260 {
3261 	return sock->ops->getname(sock, addr, addrlen, 1);
3262 }
3263 EXPORT_SYMBOL(kernel_getpeername);
3264 
3265 int kernel_getsockopt(struct socket *sock, int level, int optname,
3266 			char *optval, int *optlen)
3267 {
3268 	mm_segment_t oldfs = get_fs();
3269 	char __user *uoptval;
3270 	int __user *uoptlen;
3271 	int err;
3272 
3273 	uoptval = (char __user __force *) optval;
3274 	uoptlen = (int __user __force *) optlen;
3275 
3276 	set_fs(KERNEL_DS);
3277 	if (level == SOL_SOCKET)
3278 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3279 	else
3280 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3281 					    uoptlen);
3282 	set_fs(oldfs);
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(kernel_getsockopt);
3286 
3287 int kernel_setsockopt(struct socket *sock, int level, int optname,
3288 			char *optval, unsigned int optlen)
3289 {
3290 	mm_segment_t oldfs = get_fs();
3291 	char __user *uoptval;
3292 	int err;
3293 
3294 	uoptval = (char __user __force *) optval;
3295 
3296 	set_fs(KERNEL_DS);
3297 	if (level == SOL_SOCKET)
3298 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3299 	else
3300 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3301 					    optlen);
3302 	set_fs(oldfs);
3303 	return err;
3304 }
3305 EXPORT_SYMBOL(kernel_setsockopt);
3306 
3307 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3308 		    size_t size, int flags)
3309 {
3310 	if (sock->ops->sendpage)
3311 		return sock->ops->sendpage(sock, page, offset, size, flags);
3312 
3313 	return sock_no_sendpage(sock, page, offset, size, flags);
3314 }
3315 EXPORT_SYMBOL(kernel_sendpage);
3316 
3317 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3318 {
3319 	mm_segment_t oldfs = get_fs();
3320 	int err;
3321 
3322 	set_fs(KERNEL_DS);
3323 	err = sock->ops->ioctl(sock, cmd, arg);
3324 	set_fs(oldfs);
3325 
3326 	return err;
3327 }
3328 EXPORT_SYMBOL(kernel_sock_ioctl);
3329 
3330 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3331 {
3332 	return sock->ops->shutdown(sock, how);
3333 }
3334 EXPORT_SYMBOL(kernel_sock_shutdown);
3335