1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read = new_sync_read, 144 .write = new_sync_write, 145 .read_iter = sock_read_iter, 146 .write_iter = sock_write_iter, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct fd f = fdget(fd); 453 struct socket *sock; 454 455 *err = -EBADF; 456 if (f.file) { 457 sock = sock_from_file(f.file, err); 458 if (likely(sock)) { 459 *fput_needed = f.flags; 460 return sock; 461 } 462 fdput(f); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 582 return; 583 584 this_cpu_sub(sockets_in_use, 1); 585 if (!sock->file) { 586 iput(SOCK_INODE(sock)); 587 return; 588 } 589 sock->file = NULL; 590 } 591 EXPORT_SYMBOL(sock_release); 592 593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 594 { 595 u8 flags = *tx_flags; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 598 flags |= SKBTX_HW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 601 flags |= SKBTX_SW_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 604 flags |= SKBTX_SCHED_TSTAMP; 605 606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 607 flags |= SKBTX_ACK_TSTAMP; 608 609 *tx_flags = flags; 610 } 611 EXPORT_SYMBOL(__sock_tx_timestamp); 612 613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, 614 size_t size) 615 { 616 return sock->ops->sendmsg(sock, msg, size); 617 } 618 619 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 620 { 621 int err = security_socket_sendmsg(sock, msg, size); 622 623 return err ?: sock_sendmsg_nosec(sock, msg, size); 624 } 625 EXPORT_SYMBOL(sock_sendmsg); 626 627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 628 struct kvec *vec, size_t num, size_t size) 629 { 630 mm_segment_t oldfs = get_fs(); 631 int result; 632 633 set_fs(KERNEL_DS); 634 /* 635 * the following is safe, since for compiler definitions of kvec and 636 * iovec are identical, yielding the same in-core layout and alignment 637 */ 638 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size); 639 result = sock_sendmsg(sock, msg, size); 640 set_fs(oldfs); 641 return result; 642 } 643 EXPORT_SYMBOL(kernel_sendmsg); 644 645 /* 646 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 647 */ 648 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 649 struct sk_buff *skb) 650 { 651 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 652 struct scm_timestamping tss; 653 int empty = 1; 654 struct skb_shared_hwtstamps *shhwtstamps = 655 skb_hwtstamps(skb); 656 657 /* Race occurred between timestamp enabling and packet 658 receiving. Fill in the current time for now. */ 659 if (need_software_tstamp && skb->tstamp.tv64 == 0) 660 __net_timestamp(skb); 661 662 if (need_software_tstamp) { 663 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 664 struct timeval tv; 665 skb_get_timestamp(skb, &tv); 666 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 667 sizeof(tv), &tv); 668 } else { 669 struct timespec ts; 670 skb_get_timestampns(skb, &ts); 671 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 672 sizeof(ts), &ts); 673 } 674 } 675 676 memset(&tss, 0, sizeof(tss)); 677 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 678 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 679 empty = 0; 680 if (shhwtstamps && 681 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 682 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 683 empty = 0; 684 if (!empty) 685 put_cmsg(msg, SOL_SOCKET, 686 SCM_TIMESTAMPING, sizeof(tss), &tss); 687 } 688 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 689 690 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 691 struct sk_buff *skb) 692 { 693 int ack; 694 695 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 696 return; 697 if (!skb->wifi_acked_valid) 698 return; 699 700 ack = skb->wifi_acked; 701 702 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 703 } 704 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 705 706 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 707 struct sk_buff *skb) 708 { 709 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 710 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 711 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 712 } 713 714 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 715 struct sk_buff *skb) 716 { 717 sock_recv_timestamp(msg, sk, skb); 718 sock_recv_drops(msg, sk, skb); 719 } 720 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 721 722 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 723 size_t size, int flags) 724 { 725 return sock->ops->recvmsg(sock, msg, size, flags); 726 } 727 728 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 729 int flags) 730 { 731 int err = security_socket_recvmsg(sock, msg, size, flags); 732 733 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 734 } 735 EXPORT_SYMBOL(sock_recvmsg); 736 737 /** 738 * kernel_recvmsg - Receive a message from a socket (kernel space) 739 * @sock: The socket to receive the message from 740 * @msg: Received message 741 * @vec: Input s/g array for message data 742 * @num: Size of input s/g array 743 * @size: Number of bytes to read 744 * @flags: Message flags (MSG_DONTWAIT, etc...) 745 * 746 * On return the msg structure contains the scatter/gather array passed in the 747 * vec argument. The array is modified so that it consists of the unfilled 748 * portion of the original array. 749 * 750 * The returned value is the total number of bytes received, or an error. 751 */ 752 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 753 struct kvec *vec, size_t num, size_t size, int flags) 754 { 755 mm_segment_t oldfs = get_fs(); 756 int result; 757 758 set_fs(KERNEL_DS); 759 /* 760 * the following is safe, since for compiler definitions of kvec and 761 * iovec are identical, yielding the same in-core layout and alignment 762 */ 763 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size); 764 result = sock_recvmsg(sock, msg, size, flags); 765 set_fs(oldfs); 766 return result; 767 } 768 EXPORT_SYMBOL(kernel_recvmsg); 769 770 static ssize_t sock_sendpage(struct file *file, struct page *page, 771 int offset, size_t size, loff_t *ppos, int more) 772 { 773 struct socket *sock; 774 int flags; 775 776 sock = file->private_data; 777 778 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 779 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 780 flags |= more; 781 782 return kernel_sendpage(sock, page, offset, size, flags); 783 } 784 785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 786 struct pipe_inode_info *pipe, size_t len, 787 unsigned int flags) 788 { 789 struct socket *sock = file->private_data; 790 791 if (unlikely(!sock->ops->splice_read)) 792 return -EINVAL; 793 794 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 795 } 796 797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 798 { 799 struct file *file = iocb->ki_filp; 800 struct socket *sock = file->private_data; 801 struct msghdr msg = {.msg_iter = *to, 802 .msg_iocb = iocb}; 803 ssize_t res; 804 805 if (file->f_flags & O_NONBLOCK) 806 msg.msg_flags = MSG_DONTWAIT; 807 808 if (iocb->ki_pos != 0) 809 return -ESPIPE; 810 811 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 812 return 0; 813 814 res = sock_recvmsg(sock, &msg, iocb->ki_nbytes, msg.msg_flags); 815 *to = msg.msg_iter; 816 return res; 817 } 818 819 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 820 { 821 struct file *file = iocb->ki_filp; 822 struct socket *sock = file->private_data; 823 struct msghdr msg = {.msg_iter = *from, 824 .msg_iocb = iocb}; 825 ssize_t res; 826 827 if (iocb->ki_pos != 0) 828 return -ESPIPE; 829 830 if (file->f_flags & O_NONBLOCK) 831 msg.msg_flags = MSG_DONTWAIT; 832 833 if (sock->type == SOCK_SEQPACKET) 834 msg.msg_flags |= MSG_EOR; 835 836 res = sock_sendmsg(sock, &msg, iocb->ki_nbytes); 837 *from = msg.msg_iter; 838 return res; 839 } 840 841 /* 842 * Atomic setting of ioctl hooks to avoid race 843 * with module unload. 844 */ 845 846 static DEFINE_MUTEX(br_ioctl_mutex); 847 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 848 849 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 850 { 851 mutex_lock(&br_ioctl_mutex); 852 br_ioctl_hook = hook; 853 mutex_unlock(&br_ioctl_mutex); 854 } 855 EXPORT_SYMBOL(brioctl_set); 856 857 static DEFINE_MUTEX(vlan_ioctl_mutex); 858 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 859 860 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 861 { 862 mutex_lock(&vlan_ioctl_mutex); 863 vlan_ioctl_hook = hook; 864 mutex_unlock(&vlan_ioctl_mutex); 865 } 866 EXPORT_SYMBOL(vlan_ioctl_set); 867 868 static DEFINE_MUTEX(dlci_ioctl_mutex); 869 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 870 871 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 872 { 873 mutex_lock(&dlci_ioctl_mutex); 874 dlci_ioctl_hook = hook; 875 mutex_unlock(&dlci_ioctl_mutex); 876 } 877 EXPORT_SYMBOL(dlci_ioctl_set); 878 879 static long sock_do_ioctl(struct net *net, struct socket *sock, 880 unsigned int cmd, unsigned long arg) 881 { 882 int err; 883 void __user *argp = (void __user *)arg; 884 885 err = sock->ops->ioctl(sock, cmd, arg); 886 887 /* 888 * If this ioctl is unknown try to hand it down 889 * to the NIC driver. 890 */ 891 if (err == -ENOIOCTLCMD) 892 err = dev_ioctl(net, cmd, argp); 893 894 return err; 895 } 896 897 /* 898 * With an ioctl, arg may well be a user mode pointer, but we don't know 899 * what to do with it - that's up to the protocol still. 900 */ 901 902 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 903 { 904 struct socket *sock; 905 struct sock *sk; 906 void __user *argp = (void __user *)arg; 907 int pid, err; 908 struct net *net; 909 910 sock = file->private_data; 911 sk = sock->sk; 912 net = sock_net(sk); 913 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 914 err = dev_ioctl(net, cmd, argp); 915 } else 916 #ifdef CONFIG_WEXT_CORE 917 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 918 err = dev_ioctl(net, cmd, argp); 919 } else 920 #endif 921 switch (cmd) { 922 case FIOSETOWN: 923 case SIOCSPGRP: 924 err = -EFAULT; 925 if (get_user(pid, (int __user *)argp)) 926 break; 927 f_setown(sock->file, pid, 1); 928 err = 0; 929 break; 930 case FIOGETOWN: 931 case SIOCGPGRP: 932 err = put_user(f_getown(sock->file), 933 (int __user *)argp); 934 break; 935 case SIOCGIFBR: 936 case SIOCSIFBR: 937 case SIOCBRADDBR: 938 case SIOCBRDELBR: 939 err = -ENOPKG; 940 if (!br_ioctl_hook) 941 request_module("bridge"); 942 943 mutex_lock(&br_ioctl_mutex); 944 if (br_ioctl_hook) 945 err = br_ioctl_hook(net, cmd, argp); 946 mutex_unlock(&br_ioctl_mutex); 947 break; 948 case SIOCGIFVLAN: 949 case SIOCSIFVLAN: 950 err = -ENOPKG; 951 if (!vlan_ioctl_hook) 952 request_module("8021q"); 953 954 mutex_lock(&vlan_ioctl_mutex); 955 if (vlan_ioctl_hook) 956 err = vlan_ioctl_hook(net, argp); 957 mutex_unlock(&vlan_ioctl_mutex); 958 break; 959 case SIOCADDDLCI: 960 case SIOCDELDLCI: 961 err = -ENOPKG; 962 if (!dlci_ioctl_hook) 963 request_module("dlci"); 964 965 mutex_lock(&dlci_ioctl_mutex); 966 if (dlci_ioctl_hook) 967 err = dlci_ioctl_hook(cmd, argp); 968 mutex_unlock(&dlci_ioctl_mutex); 969 break; 970 default: 971 err = sock_do_ioctl(net, sock, cmd, arg); 972 break; 973 } 974 return err; 975 } 976 977 int sock_create_lite(int family, int type, int protocol, struct socket **res) 978 { 979 int err; 980 struct socket *sock = NULL; 981 982 err = security_socket_create(family, type, protocol, 1); 983 if (err) 984 goto out; 985 986 sock = sock_alloc(); 987 if (!sock) { 988 err = -ENOMEM; 989 goto out; 990 } 991 992 sock->type = type; 993 err = security_socket_post_create(sock, family, type, protocol, 1); 994 if (err) 995 goto out_release; 996 997 out: 998 *res = sock; 999 return err; 1000 out_release: 1001 sock_release(sock); 1002 sock = NULL; 1003 goto out; 1004 } 1005 EXPORT_SYMBOL(sock_create_lite); 1006 1007 /* No kernel lock held - perfect */ 1008 static unsigned int sock_poll(struct file *file, poll_table *wait) 1009 { 1010 unsigned int busy_flag = 0; 1011 struct socket *sock; 1012 1013 /* 1014 * We can't return errors to poll, so it's either yes or no. 1015 */ 1016 sock = file->private_data; 1017 1018 if (sk_can_busy_loop(sock->sk)) { 1019 /* this socket can poll_ll so tell the system call */ 1020 busy_flag = POLL_BUSY_LOOP; 1021 1022 /* once, only if requested by syscall */ 1023 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1024 sk_busy_loop(sock->sk, 1); 1025 } 1026 1027 return busy_flag | sock->ops->poll(file, sock, wait); 1028 } 1029 1030 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1031 { 1032 struct socket *sock = file->private_data; 1033 1034 return sock->ops->mmap(file, sock, vma); 1035 } 1036 1037 static int sock_close(struct inode *inode, struct file *filp) 1038 { 1039 sock_release(SOCKET_I(inode)); 1040 return 0; 1041 } 1042 1043 /* 1044 * Update the socket async list 1045 * 1046 * Fasync_list locking strategy. 1047 * 1048 * 1. fasync_list is modified only under process context socket lock 1049 * i.e. under semaphore. 1050 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1051 * or under socket lock 1052 */ 1053 1054 static int sock_fasync(int fd, struct file *filp, int on) 1055 { 1056 struct socket *sock = filp->private_data; 1057 struct sock *sk = sock->sk; 1058 struct socket_wq *wq; 1059 1060 if (sk == NULL) 1061 return -EINVAL; 1062 1063 lock_sock(sk); 1064 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1065 fasync_helper(fd, filp, on, &wq->fasync_list); 1066 1067 if (!wq->fasync_list) 1068 sock_reset_flag(sk, SOCK_FASYNC); 1069 else 1070 sock_set_flag(sk, SOCK_FASYNC); 1071 1072 release_sock(sk); 1073 return 0; 1074 } 1075 1076 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1077 1078 int sock_wake_async(struct socket *sock, int how, int band) 1079 { 1080 struct socket_wq *wq; 1081 1082 if (!sock) 1083 return -1; 1084 rcu_read_lock(); 1085 wq = rcu_dereference(sock->wq); 1086 if (!wq || !wq->fasync_list) { 1087 rcu_read_unlock(); 1088 return -1; 1089 } 1090 switch (how) { 1091 case SOCK_WAKE_WAITD: 1092 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1093 break; 1094 goto call_kill; 1095 case SOCK_WAKE_SPACE: 1096 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1097 break; 1098 /* fall through */ 1099 case SOCK_WAKE_IO: 1100 call_kill: 1101 kill_fasync(&wq->fasync_list, SIGIO, band); 1102 break; 1103 case SOCK_WAKE_URG: 1104 kill_fasync(&wq->fasync_list, SIGURG, band); 1105 } 1106 rcu_read_unlock(); 1107 return 0; 1108 } 1109 EXPORT_SYMBOL(sock_wake_async); 1110 1111 int __sock_create(struct net *net, int family, int type, int protocol, 1112 struct socket **res, int kern) 1113 { 1114 int err; 1115 struct socket *sock; 1116 const struct net_proto_family *pf; 1117 1118 /* 1119 * Check protocol is in range 1120 */ 1121 if (family < 0 || family >= NPROTO) 1122 return -EAFNOSUPPORT; 1123 if (type < 0 || type >= SOCK_MAX) 1124 return -EINVAL; 1125 1126 /* Compatibility. 1127 1128 This uglymoron is moved from INET layer to here to avoid 1129 deadlock in module load. 1130 */ 1131 if (family == PF_INET && type == SOCK_PACKET) { 1132 static int warned; 1133 if (!warned) { 1134 warned = 1; 1135 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1136 current->comm); 1137 } 1138 family = PF_PACKET; 1139 } 1140 1141 err = security_socket_create(family, type, protocol, kern); 1142 if (err) 1143 return err; 1144 1145 /* 1146 * Allocate the socket and allow the family to set things up. if 1147 * the protocol is 0, the family is instructed to select an appropriate 1148 * default. 1149 */ 1150 sock = sock_alloc(); 1151 if (!sock) { 1152 net_warn_ratelimited("socket: no more sockets\n"); 1153 return -ENFILE; /* Not exactly a match, but its the 1154 closest posix thing */ 1155 } 1156 1157 sock->type = type; 1158 1159 #ifdef CONFIG_MODULES 1160 /* Attempt to load a protocol module if the find failed. 1161 * 1162 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1163 * requested real, full-featured networking support upon configuration. 1164 * Otherwise module support will break! 1165 */ 1166 if (rcu_access_pointer(net_families[family]) == NULL) 1167 request_module("net-pf-%d", family); 1168 #endif 1169 1170 rcu_read_lock(); 1171 pf = rcu_dereference(net_families[family]); 1172 err = -EAFNOSUPPORT; 1173 if (!pf) 1174 goto out_release; 1175 1176 /* 1177 * We will call the ->create function, that possibly is in a loadable 1178 * module, so we have to bump that loadable module refcnt first. 1179 */ 1180 if (!try_module_get(pf->owner)) 1181 goto out_release; 1182 1183 /* Now protected by module ref count */ 1184 rcu_read_unlock(); 1185 1186 err = pf->create(net, sock, protocol, kern); 1187 if (err < 0) 1188 goto out_module_put; 1189 1190 /* 1191 * Now to bump the refcnt of the [loadable] module that owns this 1192 * socket at sock_release time we decrement its refcnt. 1193 */ 1194 if (!try_module_get(sock->ops->owner)) 1195 goto out_module_busy; 1196 1197 /* 1198 * Now that we're done with the ->create function, the [loadable] 1199 * module can have its refcnt decremented 1200 */ 1201 module_put(pf->owner); 1202 err = security_socket_post_create(sock, family, type, protocol, kern); 1203 if (err) 1204 goto out_sock_release; 1205 *res = sock; 1206 1207 return 0; 1208 1209 out_module_busy: 1210 err = -EAFNOSUPPORT; 1211 out_module_put: 1212 sock->ops = NULL; 1213 module_put(pf->owner); 1214 out_sock_release: 1215 sock_release(sock); 1216 return err; 1217 1218 out_release: 1219 rcu_read_unlock(); 1220 goto out_sock_release; 1221 } 1222 EXPORT_SYMBOL(__sock_create); 1223 1224 int sock_create(int family, int type, int protocol, struct socket **res) 1225 { 1226 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1227 } 1228 EXPORT_SYMBOL(sock_create); 1229 1230 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1231 { 1232 return __sock_create(&init_net, family, type, protocol, res, 1); 1233 } 1234 EXPORT_SYMBOL(sock_create_kern); 1235 1236 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1237 { 1238 int retval; 1239 struct socket *sock; 1240 int flags; 1241 1242 /* Check the SOCK_* constants for consistency. */ 1243 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1244 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1245 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1246 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1247 1248 flags = type & ~SOCK_TYPE_MASK; 1249 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1250 return -EINVAL; 1251 type &= SOCK_TYPE_MASK; 1252 1253 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1254 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1255 1256 retval = sock_create(family, type, protocol, &sock); 1257 if (retval < 0) 1258 goto out; 1259 1260 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1261 if (retval < 0) 1262 goto out_release; 1263 1264 out: 1265 /* It may be already another descriptor 8) Not kernel problem. */ 1266 return retval; 1267 1268 out_release: 1269 sock_release(sock); 1270 return retval; 1271 } 1272 1273 /* 1274 * Create a pair of connected sockets. 1275 */ 1276 1277 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1278 int __user *, usockvec) 1279 { 1280 struct socket *sock1, *sock2; 1281 int fd1, fd2, err; 1282 struct file *newfile1, *newfile2; 1283 int flags; 1284 1285 flags = type & ~SOCK_TYPE_MASK; 1286 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1287 return -EINVAL; 1288 type &= SOCK_TYPE_MASK; 1289 1290 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1291 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1292 1293 /* 1294 * Obtain the first socket and check if the underlying protocol 1295 * supports the socketpair call. 1296 */ 1297 1298 err = sock_create(family, type, protocol, &sock1); 1299 if (err < 0) 1300 goto out; 1301 1302 err = sock_create(family, type, protocol, &sock2); 1303 if (err < 0) 1304 goto out_release_1; 1305 1306 err = sock1->ops->socketpair(sock1, sock2); 1307 if (err < 0) 1308 goto out_release_both; 1309 1310 fd1 = get_unused_fd_flags(flags); 1311 if (unlikely(fd1 < 0)) { 1312 err = fd1; 1313 goto out_release_both; 1314 } 1315 1316 fd2 = get_unused_fd_flags(flags); 1317 if (unlikely(fd2 < 0)) { 1318 err = fd2; 1319 goto out_put_unused_1; 1320 } 1321 1322 newfile1 = sock_alloc_file(sock1, flags, NULL); 1323 if (unlikely(IS_ERR(newfile1))) { 1324 err = PTR_ERR(newfile1); 1325 goto out_put_unused_both; 1326 } 1327 1328 newfile2 = sock_alloc_file(sock2, flags, NULL); 1329 if (IS_ERR(newfile2)) { 1330 err = PTR_ERR(newfile2); 1331 goto out_fput_1; 1332 } 1333 1334 err = put_user(fd1, &usockvec[0]); 1335 if (err) 1336 goto out_fput_both; 1337 1338 err = put_user(fd2, &usockvec[1]); 1339 if (err) 1340 goto out_fput_both; 1341 1342 audit_fd_pair(fd1, fd2); 1343 1344 fd_install(fd1, newfile1); 1345 fd_install(fd2, newfile2); 1346 /* fd1 and fd2 may be already another descriptors. 1347 * Not kernel problem. 1348 */ 1349 1350 return 0; 1351 1352 out_fput_both: 1353 fput(newfile2); 1354 fput(newfile1); 1355 put_unused_fd(fd2); 1356 put_unused_fd(fd1); 1357 goto out; 1358 1359 out_fput_1: 1360 fput(newfile1); 1361 put_unused_fd(fd2); 1362 put_unused_fd(fd1); 1363 sock_release(sock2); 1364 goto out; 1365 1366 out_put_unused_both: 1367 put_unused_fd(fd2); 1368 out_put_unused_1: 1369 put_unused_fd(fd1); 1370 out_release_both: 1371 sock_release(sock2); 1372 out_release_1: 1373 sock_release(sock1); 1374 out: 1375 return err; 1376 } 1377 1378 /* 1379 * Bind a name to a socket. Nothing much to do here since it's 1380 * the protocol's responsibility to handle the local address. 1381 * 1382 * We move the socket address to kernel space before we call 1383 * the protocol layer (having also checked the address is ok). 1384 */ 1385 1386 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1387 { 1388 struct socket *sock; 1389 struct sockaddr_storage address; 1390 int err, fput_needed; 1391 1392 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1393 if (sock) { 1394 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1395 if (err >= 0) { 1396 err = security_socket_bind(sock, 1397 (struct sockaddr *)&address, 1398 addrlen); 1399 if (!err) 1400 err = sock->ops->bind(sock, 1401 (struct sockaddr *) 1402 &address, addrlen); 1403 } 1404 fput_light(sock->file, fput_needed); 1405 } 1406 return err; 1407 } 1408 1409 /* 1410 * Perform a listen. Basically, we allow the protocol to do anything 1411 * necessary for a listen, and if that works, we mark the socket as 1412 * ready for listening. 1413 */ 1414 1415 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1416 { 1417 struct socket *sock; 1418 int err, fput_needed; 1419 int somaxconn; 1420 1421 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1422 if (sock) { 1423 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1424 if ((unsigned int)backlog > somaxconn) 1425 backlog = somaxconn; 1426 1427 err = security_socket_listen(sock, backlog); 1428 if (!err) 1429 err = sock->ops->listen(sock, backlog); 1430 1431 fput_light(sock->file, fput_needed); 1432 } 1433 return err; 1434 } 1435 1436 /* 1437 * For accept, we attempt to create a new socket, set up the link 1438 * with the client, wake up the client, then return the new 1439 * connected fd. We collect the address of the connector in kernel 1440 * space and move it to user at the very end. This is unclean because 1441 * we open the socket then return an error. 1442 * 1443 * 1003.1g adds the ability to recvmsg() to query connection pending 1444 * status to recvmsg. We need to add that support in a way thats 1445 * clean when we restucture accept also. 1446 */ 1447 1448 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1449 int __user *, upeer_addrlen, int, flags) 1450 { 1451 struct socket *sock, *newsock; 1452 struct file *newfile; 1453 int err, len, newfd, fput_needed; 1454 struct sockaddr_storage address; 1455 1456 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1457 return -EINVAL; 1458 1459 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1460 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1461 1462 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1463 if (!sock) 1464 goto out; 1465 1466 err = -ENFILE; 1467 newsock = sock_alloc(); 1468 if (!newsock) 1469 goto out_put; 1470 1471 newsock->type = sock->type; 1472 newsock->ops = sock->ops; 1473 1474 /* 1475 * We don't need try_module_get here, as the listening socket (sock) 1476 * has the protocol module (sock->ops->owner) held. 1477 */ 1478 __module_get(newsock->ops->owner); 1479 1480 newfd = get_unused_fd_flags(flags); 1481 if (unlikely(newfd < 0)) { 1482 err = newfd; 1483 sock_release(newsock); 1484 goto out_put; 1485 } 1486 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1487 if (unlikely(IS_ERR(newfile))) { 1488 err = PTR_ERR(newfile); 1489 put_unused_fd(newfd); 1490 sock_release(newsock); 1491 goto out_put; 1492 } 1493 1494 err = security_socket_accept(sock, newsock); 1495 if (err) 1496 goto out_fd; 1497 1498 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1499 if (err < 0) 1500 goto out_fd; 1501 1502 if (upeer_sockaddr) { 1503 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1504 &len, 2) < 0) { 1505 err = -ECONNABORTED; 1506 goto out_fd; 1507 } 1508 err = move_addr_to_user(&address, 1509 len, upeer_sockaddr, upeer_addrlen); 1510 if (err < 0) 1511 goto out_fd; 1512 } 1513 1514 /* File flags are not inherited via accept() unlike another OSes. */ 1515 1516 fd_install(newfd, newfile); 1517 err = newfd; 1518 1519 out_put: 1520 fput_light(sock->file, fput_needed); 1521 out: 1522 return err; 1523 out_fd: 1524 fput(newfile); 1525 put_unused_fd(newfd); 1526 goto out_put; 1527 } 1528 1529 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1530 int __user *, upeer_addrlen) 1531 { 1532 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1533 } 1534 1535 /* 1536 * Attempt to connect to a socket with the server address. The address 1537 * is in user space so we verify it is OK and move it to kernel space. 1538 * 1539 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1540 * break bindings 1541 * 1542 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1543 * other SEQPACKET protocols that take time to connect() as it doesn't 1544 * include the -EINPROGRESS status for such sockets. 1545 */ 1546 1547 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1548 int, addrlen) 1549 { 1550 struct socket *sock; 1551 struct sockaddr_storage address; 1552 int err, fput_needed; 1553 1554 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1555 if (!sock) 1556 goto out; 1557 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1558 if (err < 0) 1559 goto out_put; 1560 1561 err = 1562 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1563 if (err) 1564 goto out_put; 1565 1566 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1567 sock->file->f_flags); 1568 out_put: 1569 fput_light(sock->file, fput_needed); 1570 out: 1571 return err; 1572 } 1573 1574 /* 1575 * Get the local address ('name') of a socket object. Move the obtained 1576 * name to user space. 1577 */ 1578 1579 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1580 int __user *, usockaddr_len) 1581 { 1582 struct socket *sock; 1583 struct sockaddr_storage address; 1584 int len, err, fput_needed; 1585 1586 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1587 if (!sock) 1588 goto out; 1589 1590 err = security_socket_getsockname(sock); 1591 if (err) 1592 goto out_put; 1593 1594 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1595 if (err) 1596 goto out_put; 1597 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1598 1599 out_put: 1600 fput_light(sock->file, fput_needed); 1601 out: 1602 return err; 1603 } 1604 1605 /* 1606 * Get the remote address ('name') of a socket object. Move the obtained 1607 * name to user space. 1608 */ 1609 1610 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1611 int __user *, usockaddr_len) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int len, err, fput_needed; 1616 1617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1618 if (sock != NULL) { 1619 err = security_socket_getpeername(sock); 1620 if (err) { 1621 fput_light(sock->file, fput_needed); 1622 return err; 1623 } 1624 1625 err = 1626 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1627 1); 1628 if (!err) 1629 err = move_addr_to_user(&address, len, usockaddr, 1630 usockaddr_len); 1631 fput_light(sock->file, fput_needed); 1632 } 1633 return err; 1634 } 1635 1636 /* 1637 * Send a datagram to a given address. We move the address into kernel 1638 * space and check the user space data area is readable before invoking 1639 * the protocol. 1640 */ 1641 1642 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1643 unsigned int, flags, struct sockaddr __user *, addr, 1644 int, addr_len) 1645 { 1646 struct socket *sock; 1647 struct sockaddr_storage address; 1648 int err; 1649 struct msghdr msg; 1650 struct iovec iov; 1651 int fput_needed; 1652 1653 if (len > INT_MAX) 1654 len = INT_MAX; 1655 if (unlikely(!access_ok(VERIFY_READ, buff, len))) 1656 return -EFAULT; 1657 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1658 if (!sock) 1659 goto out; 1660 1661 iov.iov_base = buff; 1662 iov.iov_len = len; 1663 msg.msg_name = NULL; 1664 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len); 1665 msg.msg_control = NULL; 1666 msg.msg_controllen = 0; 1667 msg.msg_namelen = 0; 1668 if (addr) { 1669 err = move_addr_to_kernel(addr, addr_len, &address); 1670 if (err < 0) 1671 goto out_put; 1672 msg.msg_name = (struct sockaddr *)&address; 1673 msg.msg_namelen = addr_len; 1674 } 1675 if (sock->file->f_flags & O_NONBLOCK) 1676 flags |= MSG_DONTWAIT; 1677 msg.msg_flags = flags; 1678 err = sock_sendmsg(sock, &msg, len); 1679 1680 out_put: 1681 fput_light(sock->file, fput_needed); 1682 out: 1683 return err; 1684 } 1685 1686 /* 1687 * Send a datagram down a socket. 1688 */ 1689 1690 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1691 unsigned int, flags) 1692 { 1693 return sys_sendto(fd, buff, len, flags, NULL, 0); 1694 } 1695 1696 /* 1697 * Receive a frame from the socket and optionally record the address of the 1698 * sender. We verify the buffers are writable and if needed move the 1699 * sender address from kernel to user space. 1700 */ 1701 1702 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1703 unsigned int, flags, struct sockaddr __user *, addr, 1704 int __user *, addr_len) 1705 { 1706 struct socket *sock; 1707 struct iovec iov; 1708 struct msghdr msg; 1709 struct sockaddr_storage address; 1710 int err, err2; 1711 int fput_needed; 1712 1713 if (size > INT_MAX) 1714 size = INT_MAX; 1715 if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size))) 1716 return -EFAULT; 1717 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1718 if (!sock) 1719 goto out; 1720 1721 msg.msg_control = NULL; 1722 msg.msg_controllen = 0; 1723 iov.iov_len = size; 1724 iov.iov_base = ubuf; 1725 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size); 1726 /* Save some cycles and don't copy the address if not needed */ 1727 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1728 /* We assume all kernel code knows the size of sockaddr_storage */ 1729 msg.msg_namelen = 0; 1730 if (sock->file->f_flags & O_NONBLOCK) 1731 flags |= MSG_DONTWAIT; 1732 err = sock_recvmsg(sock, &msg, size, flags); 1733 1734 if (err >= 0 && addr != NULL) { 1735 err2 = move_addr_to_user(&address, 1736 msg.msg_namelen, addr, addr_len); 1737 if (err2 < 0) 1738 err = err2; 1739 } 1740 1741 fput_light(sock->file, fput_needed); 1742 out: 1743 return err; 1744 } 1745 1746 /* 1747 * Receive a datagram from a socket. 1748 */ 1749 1750 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1751 unsigned int, flags) 1752 { 1753 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1754 } 1755 1756 /* 1757 * Set a socket option. Because we don't know the option lengths we have 1758 * to pass the user mode parameter for the protocols to sort out. 1759 */ 1760 1761 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1762 char __user *, optval, int, optlen) 1763 { 1764 int err, fput_needed; 1765 struct socket *sock; 1766 1767 if (optlen < 0) 1768 return -EINVAL; 1769 1770 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1771 if (sock != NULL) { 1772 err = security_socket_setsockopt(sock, level, optname); 1773 if (err) 1774 goto out_put; 1775 1776 if (level == SOL_SOCKET) 1777 err = 1778 sock_setsockopt(sock, level, optname, optval, 1779 optlen); 1780 else 1781 err = 1782 sock->ops->setsockopt(sock, level, optname, optval, 1783 optlen); 1784 out_put: 1785 fput_light(sock->file, fput_needed); 1786 } 1787 return err; 1788 } 1789 1790 /* 1791 * Get a socket option. Because we don't know the option lengths we have 1792 * to pass a user mode parameter for the protocols to sort out. 1793 */ 1794 1795 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1796 char __user *, optval, int __user *, optlen) 1797 { 1798 int err, fput_needed; 1799 struct socket *sock; 1800 1801 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1802 if (sock != NULL) { 1803 err = security_socket_getsockopt(sock, level, optname); 1804 if (err) 1805 goto out_put; 1806 1807 if (level == SOL_SOCKET) 1808 err = 1809 sock_getsockopt(sock, level, optname, optval, 1810 optlen); 1811 else 1812 err = 1813 sock->ops->getsockopt(sock, level, optname, optval, 1814 optlen); 1815 out_put: 1816 fput_light(sock->file, fput_needed); 1817 } 1818 return err; 1819 } 1820 1821 /* 1822 * Shutdown a socket. 1823 */ 1824 1825 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1826 { 1827 int err, fput_needed; 1828 struct socket *sock; 1829 1830 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1831 if (sock != NULL) { 1832 err = security_socket_shutdown(sock, how); 1833 if (!err) 1834 err = sock->ops->shutdown(sock, how); 1835 fput_light(sock->file, fput_needed); 1836 } 1837 return err; 1838 } 1839 1840 /* A couple of helpful macros for getting the address of the 32/64 bit 1841 * fields which are the same type (int / unsigned) on our platforms. 1842 */ 1843 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1844 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1845 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1846 1847 struct used_address { 1848 struct sockaddr_storage name; 1849 unsigned int name_len; 1850 }; 1851 1852 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg, 1853 struct user_msghdr __user *umsg, 1854 struct sockaddr __user **save_addr, 1855 struct iovec **iov) 1856 { 1857 struct sockaddr __user *uaddr; 1858 struct iovec __user *uiov; 1859 size_t nr_segs; 1860 ssize_t err; 1861 1862 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1863 __get_user(uaddr, &umsg->msg_name) || 1864 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1865 __get_user(uiov, &umsg->msg_iov) || 1866 __get_user(nr_segs, &umsg->msg_iovlen) || 1867 __get_user(kmsg->msg_control, &umsg->msg_control) || 1868 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1869 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1870 return -EFAULT; 1871 1872 if (!uaddr) 1873 kmsg->msg_namelen = 0; 1874 1875 if (kmsg->msg_namelen < 0) 1876 return -EINVAL; 1877 1878 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1879 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1880 1881 if (save_addr) 1882 *save_addr = uaddr; 1883 1884 if (uaddr && kmsg->msg_namelen) { 1885 if (!save_addr) { 1886 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1887 kmsg->msg_name); 1888 if (err < 0) 1889 return err; 1890 } 1891 } else { 1892 kmsg->msg_name = NULL; 1893 kmsg->msg_namelen = 0; 1894 } 1895 1896 if (nr_segs > UIO_MAXIOV) 1897 return -EMSGSIZE; 1898 1899 kmsg->msg_iocb = NULL; 1900 1901 err = rw_copy_check_uvector(save_addr ? READ : WRITE, 1902 uiov, nr_segs, 1903 UIO_FASTIOV, *iov, iov); 1904 if (err >= 0) 1905 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE, 1906 *iov, nr_segs, err); 1907 return err; 1908 } 1909 1910 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1911 struct msghdr *msg_sys, unsigned int flags, 1912 struct used_address *used_address) 1913 { 1914 struct compat_msghdr __user *msg_compat = 1915 (struct compat_msghdr __user *)msg; 1916 struct sockaddr_storage address; 1917 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1918 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1919 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1920 /* 20 is size of ipv6_pktinfo */ 1921 unsigned char *ctl_buf = ctl; 1922 int ctl_len, total_len; 1923 ssize_t err; 1924 1925 msg_sys->msg_name = &address; 1926 1927 if (MSG_CMSG_COMPAT & flags) 1928 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1929 else 1930 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1931 if (err < 0) 1932 goto out_freeiov; 1933 total_len = err; 1934 1935 err = -ENOBUFS; 1936 1937 if (msg_sys->msg_controllen > INT_MAX) 1938 goto out_freeiov; 1939 ctl_len = msg_sys->msg_controllen; 1940 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1941 err = 1942 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1943 sizeof(ctl)); 1944 if (err) 1945 goto out_freeiov; 1946 ctl_buf = msg_sys->msg_control; 1947 ctl_len = msg_sys->msg_controllen; 1948 } else if (ctl_len) { 1949 if (ctl_len > sizeof(ctl)) { 1950 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1951 if (ctl_buf == NULL) 1952 goto out_freeiov; 1953 } 1954 err = -EFAULT; 1955 /* 1956 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1957 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1958 * checking falls down on this. 1959 */ 1960 if (copy_from_user(ctl_buf, 1961 (void __user __force *)msg_sys->msg_control, 1962 ctl_len)) 1963 goto out_freectl; 1964 msg_sys->msg_control = ctl_buf; 1965 } 1966 msg_sys->msg_flags = flags; 1967 1968 if (sock->file->f_flags & O_NONBLOCK) 1969 msg_sys->msg_flags |= MSG_DONTWAIT; 1970 /* 1971 * If this is sendmmsg() and current destination address is same as 1972 * previously succeeded address, omit asking LSM's decision. 1973 * used_address->name_len is initialized to UINT_MAX so that the first 1974 * destination address never matches. 1975 */ 1976 if (used_address && msg_sys->msg_name && 1977 used_address->name_len == msg_sys->msg_namelen && 1978 !memcmp(&used_address->name, msg_sys->msg_name, 1979 used_address->name_len)) { 1980 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 1981 goto out_freectl; 1982 } 1983 err = sock_sendmsg(sock, msg_sys, total_len); 1984 /* 1985 * If this is sendmmsg() and sending to current destination address was 1986 * successful, remember it. 1987 */ 1988 if (used_address && err >= 0) { 1989 used_address->name_len = msg_sys->msg_namelen; 1990 if (msg_sys->msg_name) 1991 memcpy(&used_address->name, msg_sys->msg_name, 1992 used_address->name_len); 1993 } 1994 1995 out_freectl: 1996 if (ctl_buf != ctl) 1997 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1998 out_freeiov: 1999 if (iov != iovstack) 2000 kfree(iov); 2001 return err; 2002 } 2003 2004 /* 2005 * BSD sendmsg interface 2006 */ 2007 2008 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2009 { 2010 int fput_needed, err; 2011 struct msghdr msg_sys; 2012 struct socket *sock; 2013 2014 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2015 if (!sock) 2016 goto out; 2017 2018 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2019 2020 fput_light(sock->file, fput_needed); 2021 out: 2022 return err; 2023 } 2024 2025 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2026 { 2027 if (flags & MSG_CMSG_COMPAT) 2028 return -EINVAL; 2029 return __sys_sendmsg(fd, msg, flags); 2030 } 2031 2032 /* 2033 * Linux sendmmsg interface 2034 */ 2035 2036 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2037 unsigned int flags) 2038 { 2039 int fput_needed, err, datagrams; 2040 struct socket *sock; 2041 struct mmsghdr __user *entry; 2042 struct compat_mmsghdr __user *compat_entry; 2043 struct msghdr msg_sys; 2044 struct used_address used_address; 2045 2046 if (vlen > UIO_MAXIOV) 2047 vlen = UIO_MAXIOV; 2048 2049 datagrams = 0; 2050 2051 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2052 if (!sock) 2053 return err; 2054 2055 used_address.name_len = UINT_MAX; 2056 entry = mmsg; 2057 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2058 err = 0; 2059 2060 while (datagrams < vlen) { 2061 if (MSG_CMSG_COMPAT & flags) { 2062 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2063 &msg_sys, flags, &used_address); 2064 if (err < 0) 2065 break; 2066 err = __put_user(err, &compat_entry->msg_len); 2067 ++compat_entry; 2068 } else { 2069 err = ___sys_sendmsg(sock, 2070 (struct user_msghdr __user *)entry, 2071 &msg_sys, flags, &used_address); 2072 if (err < 0) 2073 break; 2074 err = put_user(err, &entry->msg_len); 2075 ++entry; 2076 } 2077 2078 if (err) 2079 break; 2080 ++datagrams; 2081 } 2082 2083 fput_light(sock->file, fput_needed); 2084 2085 /* We only return an error if no datagrams were able to be sent */ 2086 if (datagrams != 0) 2087 return datagrams; 2088 2089 return err; 2090 } 2091 2092 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2093 unsigned int, vlen, unsigned int, flags) 2094 { 2095 if (flags & MSG_CMSG_COMPAT) 2096 return -EINVAL; 2097 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2098 } 2099 2100 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2101 struct msghdr *msg_sys, unsigned int flags, int nosec) 2102 { 2103 struct compat_msghdr __user *msg_compat = 2104 (struct compat_msghdr __user *)msg; 2105 struct iovec iovstack[UIO_FASTIOV]; 2106 struct iovec *iov = iovstack; 2107 unsigned long cmsg_ptr; 2108 int total_len, len; 2109 ssize_t err; 2110 2111 /* kernel mode address */ 2112 struct sockaddr_storage addr; 2113 2114 /* user mode address pointers */ 2115 struct sockaddr __user *uaddr; 2116 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2117 2118 msg_sys->msg_name = &addr; 2119 2120 if (MSG_CMSG_COMPAT & flags) 2121 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2122 else 2123 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2124 if (err < 0) 2125 goto out_freeiov; 2126 total_len = err; 2127 2128 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2129 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2130 2131 /* We assume all kernel code knows the size of sockaddr_storage */ 2132 msg_sys->msg_namelen = 0; 2133 2134 if (sock->file->f_flags & O_NONBLOCK) 2135 flags |= MSG_DONTWAIT; 2136 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2137 total_len, flags); 2138 if (err < 0) 2139 goto out_freeiov; 2140 len = err; 2141 2142 if (uaddr != NULL) { 2143 err = move_addr_to_user(&addr, 2144 msg_sys->msg_namelen, uaddr, 2145 uaddr_len); 2146 if (err < 0) 2147 goto out_freeiov; 2148 } 2149 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2150 COMPAT_FLAGS(msg)); 2151 if (err) 2152 goto out_freeiov; 2153 if (MSG_CMSG_COMPAT & flags) 2154 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2155 &msg_compat->msg_controllen); 2156 else 2157 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2158 &msg->msg_controllen); 2159 if (err) 2160 goto out_freeiov; 2161 err = len; 2162 2163 out_freeiov: 2164 if (iov != iovstack) 2165 kfree(iov); 2166 return err; 2167 } 2168 2169 /* 2170 * BSD recvmsg interface 2171 */ 2172 2173 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2174 { 2175 int fput_needed, err; 2176 struct msghdr msg_sys; 2177 struct socket *sock; 2178 2179 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2180 if (!sock) 2181 goto out; 2182 2183 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2184 2185 fput_light(sock->file, fput_needed); 2186 out: 2187 return err; 2188 } 2189 2190 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2191 unsigned int, flags) 2192 { 2193 if (flags & MSG_CMSG_COMPAT) 2194 return -EINVAL; 2195 return __sys_recvmsg(fd, msg, flags); 2196 } 2197 2198 /* 2199 * Linux recvmmsg interface 2200 */ 2201 2202 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2203 unsigned int flags, struct timespec *timeout) 2204 { 2205 int fput_needed, err, datagrams; 2206 struct socket *sock; 2207 struct mmsghdr __user *entry; 2208 struct compat_mmsghdr __user *compat_entry; 2209 struct msghdr msg_sys; 2210 struct timespec end_time; 2211 2212 if (timeout && 2213 poll_select_set_timeout(&end_time, timeout->tv_sec, 2214 timeout->tv_nsec)) 2215 return -EINVAL; 2216 2217 datagrams = 0; 2218 2219 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2220 if (!sock) 2221 return err; 2222 2223 err = sock_error(sock->sk); 2224 if (err) 2225 goto out_put; 2226 2227 entry = mmsg; 2228 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2229 2230 while (datagrams < vlen) { 2231 /* 2232 * No need to ask LSM for more than the first datagram. 2233 */ 2234 if (MSG_CMSG_COMPAT & flags) { 2235 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2236 &msg_sys, flags & ~MSG_WAITFORONE, 2237 datagrams); 2238 if (err < 0) 2239 break; 2240 err = __put_user(err, &compat_entry->msg_len); 2241 ++compat_entry; 2242 } else { 2243 err = ___sys_recvmsg(sock, 2244 (struct user_msghdr __user *)entry, 2245 &msg_sys, flags & ~MSG_WAITFORONE, 2246 datagrams); 2247 if (err < 0) 2248 break; 2249 err = put_user(err, &entry->msg_len); 2250 ++entry; 2251 } 2252 2253 if (err) 2254 break; 2255 ++datagrams; 2256 2257 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2258 if (flags & MSG_WAITFORONE) 2259 flags |= MSG_DONTWAIT; 2260 2261 if (timeout) { 2262 ktime_get_ts(timeout); 2263 *timeout = timespec_sub(end_time, *timeout); 2264 if (timeout->tv_sec < 0) { 2265 timeout->tv_sec = timeout->tv_nsec = 0; 2266 break; 2267 } 2268 2269 /* Timeout, return less than vlen datagrams */ 2270 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2271 break; 2272 } 2273 2274 /* Out of band data, return right away */ 2275 if (msg_sys.msg_flags & MSG_OOB) 2276 break; 2277 } 2278 2279 out_put: 2280 fput_light(sock->file, fput_needed); 2281 2282 if (err == 0) 2283 return datagrams; 2284 2285 if (datagrams != 0) { 2286 /* 2287 * We may return less entries than requested (vlen) if the 2288 * sock is non block and there aren't enough datagrams... 2289 */ 2290 if (err != -EAGAIN) { 2291 /* 2292 * ... or if recvmsg returns an error after we 2293 * received some datagrams, where we record the 2294 * error to return on the next call or if the 2295 * app asks about it using getsockopt(SO_ERROR). 2296 */ 2297 sock->sk->sk_err = -err; 2298 } 2299 2300 return datagrams; 2301 } 2302 2303 return err; 2304 } 2305 2306 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2307 unsigned int, vlen, unsigned int, flags, 2308 struct timespec __user *, timeout) 2309 { 2310 int datagrams; 2311 struct timespec timeout_sys; 2312 2313 if (flags & MSG_CMSG_COMPAT) 2314 return -EINVAL; 2315 2316 if (!timeout) 2317 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2318 2319 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2320 return -EFAULT; 2321 2322 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2323 2324 if (datagrams > 0 && 2325 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2326 datagrams = -EFAULT; 2327 2328 return datagrams; 2329 } 2330 2331 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2332 /* Argument list sizes for sys_socketcall */ 2333 #define AL(x) ((x) * sizeof(unsigned long)) 2334 static const unsigned char nargs[21] = { 2335 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2336 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2337 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2338 AL(4), AL(5), AL(4) 2339 }; 2340 2341 #undef AL 2342 2343 /* 2344 * System call vectors. 2345 * 2346 * Argument checking cleaned up. Saved 20% in size. 2347 * This function doesn't need to set the kernel lock because 2348 * it is set by the callees. 2349 */ 2350 2351 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2352 { 2353 unsigned long a[AUDITSC_ARGS]; 2354 unsigned long a0, a1; 2355 int err; 2356 unsigned int len; 2357 2358 if (call < 1 || call > SYS_SENDMMSG) 2359 return -EINVAL; 2360 2361 len = nargs[call]; 2362 if (len > sizeof(a)) 2363 return -EINVAL; 2364 2365 /* copy_from_user should be SMP safe. */ 2366 if (copy_from_user(a, args, len)) 2367 return -EFAULT; 2368 2369 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2370 if (err) 2371 return err; 2372 2373 a0 = a[0]; 2374 a1 = a[1]; 2375 2376 switch (call) { 2377 case SYS_SOCKET: 2378 err = sys_socket(a0, a1, a[2]); 2379 break; 2380 case SYS_BIND: 2381 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2382 break; 2383 case SYS_CONNECT: 2384 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2385 break; 2386 case SYS_LISTEN: 2387 err = sys_listen(a0, a1); 2388 break; 2389 case SYS_ACCEPT: 2390 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2391 (int __user *)a[2], 0); 2392 break; 2393 case SYS_GETSOCKNAME: 2394 err = 2395 sys_getsockname(a0, (struct sockaddr __user *)a1, 2396 (int __user *)a[2]); 2397 break; 2398 case SYS_GETPEERNAME: 2399 err = 2400 sys_getpeername(a0, (struct sockaddr __user *)a1, 2401 (int __user *)a[2]); 2402 break; 2403 case SYS_SOCKETPAIR: 2404 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2405 break; 2406 case SYS_SEND: 2407 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2408 break; 2409 case SYS_SENDTO: 2410 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2411 (struct sockaddr __user *)a[4], a[5]); 2412 break; 2413 case SYS_RECV: 2414 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2415 break; 2416 case SYS_RECVFROM: 2417 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2418 (struct sockaddr __user *)a[4], 2419 (int __user *)a[5]); 2420 break; 2421 case SYS_SHUTDOWN: 2422 err = sys_shutdown(a0, a1); 2423 break; 2424 case SYS_SETSOCKOPT: 2425 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2426 break; 2427 case SYS_GETSOCKOPT: 2428 err = 2429 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2430 (int __user *)a[4]); 2431 break; 2432 case SYS_SENDMSG: 2433 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2434 break; 2435 case SYS_SENDMMSG: 2436 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2437 break; 2438 case SYS_RECVMSG: 2439 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2440 break; 2441 case SYS_RECVMMSG: 2442 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2443 (struct timespec __user *)a[4]); 2444 break; 2445 case SYS_ACCEPT4: 2446 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2447 (int __user *)a[2], a[3]); 2448 break; 2449 default: 2450 err = -EINVAL; 2451 break; 2452 } 2453 return err; 2454 } 2455 2456 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2457 2458 /** 2459 * sock_register - add a socket protocol handler 2460 * @ops: description of protocol 2461 * 2462 * This function is called by a protocol handler that wants to 2463 * advertise its address family, and have it linked into the 2464 * socket interface. The value ops->family corresponds to the 2465 * socket system call protocol family. 2466 */ 2467 int sock_register(const struct net_proto_family *ops) 2468 { 2469 int err; 2470 2471 if (ops->family >= NPROTO) { 2472 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2473 return -ENOBUFS; 2474 } 2475 2476 spin_lock(&net_family_lock); 2477 if (rcu_dereference_protected(net_families[ops->family], 2478 lockdep_is_held(&net_family_lock))) 2479 err = -EEXIST; 2480 else { 2481 rcu_assign_pointer(net_families[ops->family], ops); 2482 err = 0; 2483 } 2484 spin_unlock(&net_family_lock); 2485 2486 pr_info("NET: Registered protocol family %d\n", ops->family); 2487 return err; 2488 } 2489 EXPORT_SYMBOL(sock_register); 2490 2491 /** 2492 * sock_unregister - remove a protocol handler 2493 * @family: protocol family to remove 2494 * 2495 * This function is called by a protocol handler that wants to 2496 * remove its address family, and have it unlinked from the 2497 * new socket creation. 2498 * 2499 * If protocol handler is a module, then it can use module reference 2500 * counts to protect against new references. If protocol handler is not 2501 * a module then it needs to provide its own protection in 2502 * the ops->create routine. 2503 */ 2504 void sock_unregister(int family) 2505 { 2506 BUG_ON(family < 0 || family >= NPROTO); 2507 2508 spin_lock(&net_family_lock); 2509 RCU_INIT_POINTER(net_families[family], NULL); 2510 spin_unlock(&net_family_lock); 2511 2512 synchronize_rcu(); 2513 2514 pr_info("NET: Unregistered protocol family %d\n", family); 2515 } 2516 EXPORT_SYMBOL(sock_unregister); 2517 2518 static int __init sock_init(void) 2519 { 2520 int err; 2521 /* 2522 * Initialize the network sysctl infrastructure. 2523 */ 2524 err = net_sysctl_init(); 2525 if (err) 2526 goto out; 2527 2528 /* 2529 * Initialize skbuff SLAB cache 2530 */ 2531 skb_init(); 2532 2533 /* 2534 * Initialize the protocols module. 2535 */ 2536 2537 init_inodecache(); 2538 2539 err = register_filesystem(&sock_fs_type); 2540 if (err) 2541 goto out_fs; 2542 sock_mnt = kern_mount(&sock_fs_type); 2543 if (IS_ERR(sock_mnt)) { 2544 err = PTR_ERR(sock_mnt); 2545 goto out_mount; 2546 } 2547 2548 /* The real protocol initialization is performed in later initcalls. 2549 */ 2550 2551 #ifdef CONFIG_NETFILTER 2552 err = netfilter_init(); 2553 if (err) 2554 goto out; 2555 #endif 2556 2557 ptp_classifier_init(); 2558 2559 out: 2560 return err; 2561 2562 out_mount: 2563 unregister_filesystem(&sock_fs_type); 2564 out_fs: 2565 goto out; 2566 } 2567 2568 core_initcall(sock_init); /* early initcall */ 2569 2570 #ifdef CONFIG_PROC_FS 2571 void socket_seq_show(struct seq_file *seq) 2572 { 2573 int cpu; 2574 int counter = 0; 2575 2576 for_each_possible_cpu(cpu) 2577 counter += per_cpu(sockets_in_use, cpu); 2578 2579 /* It can be negative, by the way. 8) */ 2580 if (counter < 0) 2581 counter = 0; 2582 2583 seq_printf(seq, "sockets: used %d\n", counter); 2584 } 2585 #endif /* CONFIG_PROC_FS */ 2586 2587 #ifdef CONFIG_COMPAT 2588 static int do_siocgstamp(struct net *net, struct socket *sock, 2589 unsigned int cmd, void __user *up) 2590 { 2591 mm_segment_t old_fs = get_fs(); 2592 struct timeval ktv; 2593 int err; 2594 2595 set_fs(KERNEL_DS); 2596 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2597 set_fs(old_fs); 2598 if (!err) 2599 err = compat_put_timeval(&ktv, up); 2600 2601 return err; 2602 } 2603 2604 static int do_siocgstampns(struct net *net, struct socket *sock, 2605 unsigned int cmd, void __user *up) 2606 { 2607 mm_segment_t old_fs = get_fs(); 2608 struct timespec kts; 2609 int err; 2610 2611 set_fs(KERNEL_DS); 2612 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2613 set_fs(old_fs); 2614 if (!err) 2615 err = compat_put_timespec(&kts, up); 2616 2617 return err; 2618 } 2619 2620 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2621 { 2622 struct ifreq __user *uifr; 2623 int err; 2624 2625 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2626 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2627 return -EFAULT; 2628 2629 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2630 if (err) 2631 return err; 2632 2633 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2634 return -EFAULT; 2635 2636 return 0; 2637 } 2638 2639 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2640 { 2641 struct compat_ifconf ifc32; 2642 struct ifconf ifc; 2643 struct ifconf __user *uifc; 2644 struct compat_ifreq __user *ifr32; 2645 struct ifreq __user *ifr; 2646 unsigned int i, j; 2647 int err; 2648 2649 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2650 return -EFAULT; 2651 2652 memset(&ifc, 0, sizeof(ifc)); 2653 if (ifc32.ifcbuf == 0) { 2654 ifc32.ifc_len = 0; 2655 ifc.ifc_len = 0; 2656 ifc.ifc_req = NULL; 2657 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2658 } else { 2659 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2660 sizeof(struct ifreq); 2661 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2662 ifc.ifc_len = len; 2663 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2664 ifr32 = compat_ptr(ifc32.ifcbuf); 2665 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2666 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2667 return -EFAULT; 2668 ifr++; 2669 ifr32++; 2670 } 2671 } 2672 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2673 return -EFAULT; 2674 2675 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2676 if (err) 2677 return err; 2678 2679 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2680 return -EFAULT; 2681 2682 ifr = ifc.ifc_req; 2683 ifr32 = compat_ptr(ifc32.ifcbuf); 2684 for (i = 0, j = 0; 2685 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2686 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2687 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2688 return -EFAULT; 2689 ifr32++; 2690 ifr++; 2691 } 2692 2693 if (ifc32.ifcbuf == 0) { 2694 /* Translate from 64-bit structure multiple to 2695 * a 32-bit one. 2696 */ 2697 i = ifc.ifc_len; 2698 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2699 ifc32.ifc_len = i; 2700 } else { 2701 ifc32.ifc_len = i; 2702 } 2703 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2704 return -EFAULT; 2705 2706 return 0; 2707 } 2708 2709 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2710 { 2711 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2712 bool convert_in = false, convert_out = false; 2713 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2714 struct ethtool_rxnfc __user *rxnfc; 2715 struct ifreq __user *ifr; 2716 u32 rule_cnt = 0, actual_rule_cnt; 2717 u32 ethcmd; 2718 u32 data; 2719 int ret; 2720 2721 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2722 return -EFAULT; 2723 2724 compat_rxnfc = compat_ptr(data); 2725 2726 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2727 return -EFAULT; 2728 2729 /* Most ethtool structures are defined without padding. 2730 * Unfortunately struct ethtool_rxnfc is an exception. 2731 */ 2732 switch (ethcmd) { 2733 default: 2734 break; 2735 case ETHTOOL_GRXCLSRLALL: 2736 /* Buffer size is variable */ 2737 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2738 return -EFAULT; 2739 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2740 return -ENOMEM; 2741 buf_size += rule_cnt * sizeof(u32); 2742 /* fall through */ 2743 case ETHTOOL_GRXRINGS: 2744 case ETHTOOL_GRXCLSRLCNT: 2745 case ETHTOOL_GRXCLSRULE: 2746 case ETHTOOL_SRXCLSRLINS: 2747 convert_out = true; 2748 /* fall through */ 2749 case ETHTOOL_SRXCLSRLDEL: 2750 buf_size += sizeof(struct ethtool_rxnfc); 2751 convert_in = true; 2752 break; 2753 } 2754 2755 ifr = compat_alloc_user_space(buf_size); 2756 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2757 2758 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2759 return -EFAULT; 2760 2761 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2762 &ifr->ifr_ifru.ifru_data)) 2763 return -EFAULT; 2764 2765 if (convert_in) { 2766 /* We expect there to be holes between fs.m_ext and 2767 * fs.ring_cookie and at the end of fs, but nowhere else. 2768 */ 2769 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2770 sizeof(compat_rxnfc->fs.m_ext) != 2771 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2772 sizeof(rxnfc->fs.m_ext)); 2773 BUILD_BUG_ON( 2774 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2775 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2776 offsetof(struct ethtool_rxnfc, fs.location) - 2777 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2778 2779 if (copy_in_user(rxnfc, compat_rxnfc, 2780 (void __user *)(&rxnfc->fs.m_ext + 1) - 2781 (void __user *)rxnfc) || 2782 copy_in_user(&rxnfc->fs.ring_cookie, 2783 &compat_rxnfc->fs.ring_cookie, 2784 (void __user *)(&rxnfc->fs.location + 1) - 2785 (void __user *)&rxnfc->fs.ring_cookie) || 2786 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2787 sizeof(rxnfc->rule_cnt))) 2788 return -EFAULT; 2789 } 2790 2791 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2792 if (ret) 2793 return ret; 2794 2795 if (convert_out) { 2796 if (copy_in_user(compat_rxnfc, rxnfc, 2797 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2798 (const void __user *)rxnfc) || 2799 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2800 &rxnfc->fs.ring_cookie, 2801 (const void __user *)(&rxnfc->fs.location + 1) - 2802 (const void __user *)&rxnfc->fs.ring_cookie) || 2803 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2804 sizeof(rxnfc->rule_cnt))) 2805 return -EFAULT; 2806 2807 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2808 /* As an optimisation, we only copy the actual 2809 * number of rules that the underlying 2810 * function returned. Since Mallory might 2811 * change the rule count in user memory, we 2812 * check that it is less than the rule count 2813 * originally given (as the user buffer size), 2814 * which has been range-checked. 2815 */ 2816 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2817 return -EFAULT; 2818 if (actual_rule_cnt < rule_cnt) 2819 rule_cnt = actual_rule_cnt; 2820 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2821 &rxnfc->rule_locs[0], 2822 rule_cnt * sizeof(u32))) 2823 return -EFAULT; 2824 } 2825 } 2826 2827 return 0; 2828 } 2829 2830 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2831 { 2832 void __user *uptr; 2833 compat_uptr_t uptr32; 2834 struct ifreq __user *uifr; 2835 2836 uifr = compat_alloc_user_space(sizeof(*uifr)); 2837 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2838 return -EFAULT; 2839 2840 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2841 return -EFAULT; 2842 2843 uptr = compat_ptr(uptr32); 2844 2845 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2846 return -EFAULT; 2847 2848 return dev_ioctl(net, SIOCWANDEV, uifr); 2849 } 2850 2851 static int bond_ioctl(struct net *net, unsigned int cmd, 2852 struct compat_ifreq __user *ifr32) 2853 { 2854 struct ifreq kifr; 2855 mm_segment_t old_fs; 2856 int err; 2857 2858 switch (cmd) { 2859 case SIOCBONDENSLAVE: 2860 case SIOCBONDRELEASE: 2861 case SIOCBONDSETHWADDR: 2862 case SIOCBONDCHANGEACTIVE: 2863 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2864 return -EFAULT; 2865 2866 old_fs = get_fs(); 2867 set_fs(KERNEL_DS); 2868 err = dev_ioctl(net, cmd, 2869 (struct ifreq __user __force *) &kifr); 2870 set_fs(old_fs); 2871 2872 return err; 2873 default: 2874 return -ENOIOCTLCMD; 2875 } 2876 } 2877 2878 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2879 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2880 struct compat_ifreq __user *u_ifreq32) 2881 { 2882 struct ifreq __user *u_ifreq64; 2883 char tmp_buf[IFNAMSIZ]; 2884 void __user *data64; 2885 u32 data32; 2886 2887 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2888 IFNAMSIZ)) 2889 return -EFAULT; 2890 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2891 return -EFAULT; 2892 data64 = compat_ptr(data32); 2893 2894 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2895 2896 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2897 IFNAMSIZ)) 2898 return -EFAULT; 2899 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2900 return -EFAULT; 2901 2902 return dev_ioctl(net, cmd, u_ifreq64); 2903 } 2904 2905 static int dev_ifsioc(struct net *net, struct socket *sock, 2906 unsigned int cmd, struct compat_ifreq __user *uifr32) 2907 { 2908 struct ifreq __user *uifr; 2909 int err; 2910 2911 uifr = compat_alloc_user_space(sizeof(*uifr)); 2912 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2913 return -EFAULT; 2914 2915 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2916 2917 if (!err) { 2918 switch (cmd) { 2919 case SIOCGIFFLAGS: 2920 case SIOCGIFMETRIC: 2921 case SIOCGIFMTU: 2922 case SIOCGIFMEM: 2923 case SIOCGIFHWADDR: 2924 case SIOCGIFINDEX: 2925 case SIOCGIFADDR: 2926 case SIOCGIFBRDADDR: 2927 case SIOCGIFDSTADDR: 2928 case SIOCGIFNETMASK: 2929 case SIOCGIFPFLAGS: 2930 case SIOCGIFTXQLEN: 2931 case SIOCGMIIPHY: 2932 case SIOCGMIIREG: 2933 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2934 err = -EFAULT; 2935 break; 2936 } 2937 } 2938 return err; 2939 } 2940 2941 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2942 struct compat_ifreq __user *uifr32) 2943 { 2944 struct ifreq ifr; 2945 struct compat_ifmap __user *uifmap32; 2946 mm_segment_t old_fs; 2947 int err; 2948 2949 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2950 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2951 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2952 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2953 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2954 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2955 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2956 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2957 if (err) 2958 return -EFAULT; 2959 2960 old_fs = get_fs(); 2961 set_fs(KERNEL_DS); 2962 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2963 set_fs(old_fs); 2964 2965 if (cmd == SIOCGIFMAP && !err) { 2966 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2967 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2968 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2969 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2970 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2971 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2972 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2973 if (err) 2974 err = -EFAULT; 2975 } 2976 return err; 2977 } 2978 2979 struct rtentry32 { 2980 u32 rt_pad1; 2981 struct sockaddr rt_dst; /* target address */ 2982 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2983 struct sockaddr rt_genmask; /* target network mask (IP) */ 2984 unsigned short rt_flags; 2985 short rt_pad2; 2986 u32 rt_pad3; 2987 unsigned char rt_tos; 2988 unsigned char rt_class; 2989 short rt_pad4; 2990 short rt_metric; /* +1 for binary compatibility! */ 2991 /* char * */ u32 rt_dev; /* forcing the device at add */ 2992 u32 rt_mtu; /* per route MTU/Window */ 2993 u32 rt_window; /* Window clamping */ 2994 unsigned short rt_irtt; /* Initial RTT */ 2995 }; 2996 2997 struct in6_rtmsg32 { 2998 struct in6_addr rtmsg_dst; 2999 struct in6_addr rtmsg_src; 3000 struct in6_addr rtmsg_gateway; 3001 u32 rtmsg_type; 3002 u16 rtmsg_dst_len; 3003 u16 rtmsg_src_len; 3004 u32 rtmsg_metric; 3005 u32 rtmsg_info; 3006 u32 rtmsg_flags; 3007 s32 rtmsg_ifindex; 3008 }; 3009 3010 static int routing_ioctl(struct net *net, struct socket *sock, 3011 unsigned int cmd, void __user *argp) 3012 { 3013 int ret; 3014 void *r = NULL; 3015 struct in6_rtmsg r6; 3016 struct rtentry r4; 3017 char devname[16]; 3018 u32 rtdev; 3019 mm_segment_t old_fs = get_fs(); 3020 3021 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3022 struct in6_rtmsg32 __user *ur6 = argp; 3023 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3024 3 * sizeof(struct in6_addr)); 3025 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3026 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3027 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3028 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3029 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3030 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3031 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3032 3033 r = (void *) &r6; 3034 } else { /* ipv4 */ 3035 struct rtentry32 __user *ur4 = argp; 3036 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3037 3 * sizeof(struct sockaddr)); 3038 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3039 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3040 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3041 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3042 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3043 ret |= get_user(rtdev, &(ur4->rt_dev)); 3044 if (rtdev) { 3045 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3046 r4.rt_dev = (char __user __force *)devname; 3047 devname[15] = 0; 3048 } else 3049 r4.rt_dev = NULL; 3050 3051 r = (void *) &r4; 3052 } 3053 3054 if (ret) { 3055 ret = -EFAULT; 3056 goto out; 3057 } 3058 3059 set_fs(KERNEL_DS); 3060 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3061 set_fs(old_fs); 3062 3063 out: 3064 return ret; 3065 } 3066 3067 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3068 * for some operations; this forces use of the newer bridge-utils that 3069 * use compatible ioctls 3070 */ 3071 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3072 { 3073 compat_ulong_t tmp; 3074 3075 if (get_user(tmp, argp)) 3076 return -EFAULT; 3077 if (tmp == BRCTL_GET_VERSION) 3078 return BRCTL_VERSION + 1; 3079 return -EINVAL; 3080 } 3081 3082 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3083 unsigned int cmd, unsigned long arg) 3084 { 3085 void __user *argp = compat_ptr(arg); 3086 struct sock *sk = sock->sk; 3087 struct net *net = sock_net(sk); 3088 3089 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3090 return compat_ifr_data_ioctl(net, cmd, argp); 3091 3092 switch (cmd) { 3093 case SIOCSIFBR: 3094 case SIOCGIFBR: 3095 return old_bridge_ioctl(argp); 3096 case SIOCGIFNAME: 3097 return dev_ifname32(net, argp); 3098 case SIOCGIFCONF: 3099 return dev_ifconf(net, argp); 3100 case SIOCETHTOOL: 3101 return ethtool_ioctl(net, argp); 3102 case SIOCWANDEV: 3103 return compat_siocwandev(net, argp); 3104 case SIOCGIFMAP: 3105 case SIOCSIFMAP: 3106 return compat_sioc_ifmap(net, cmd, argp); 3107 case SIOCBONDENSLAVE: 3108 case SIOCBONDRELEASE: 3109 case SIOCBONDSETHWADDR: 3110 case SIOCBONDCHANGEACTIVE: 3111 return bond_ioctl(net, cmd, argp); 3112 case SIOCADDRT: 3113 case SIOCDELRT: 3114 return routing_ioctl(net, sock, cmd, argp); 3115 case SIOCGSTAMP: 3116 return do_siocgstamp(net, sock, cmd, argp); 3117 case SIOCGSTAMPNS: 3118 return do_siocgstampns(net, sock, cmd, argp); 3119 case SIOCBONDSLAVEINFOQUERY: 3120 case SIOCBONDINFOQUERY: 3121 case SIOCSHWTSTAMP: 3122 case SIOCGHWTSTAMP: 3123 return compat_ifr_data_ioctl(net, cmd, argp); 3124 3125 case FIOSETOWN: 3126 case SIOCSPGRP: 3127 case FIOGETOWN: 3128 case SIOCGPGRP: 3129 case SIOCBRADDBR: 3130 case SIOCBRDELBR: 3131 case SIOCGIFVLAN: 3132 case SIOCSIFVLAN: 3133 case SIOCADDDLCI: 3134 case SIOCDELDLCI: 3135 return sock_ioctl(file, cmd, arg); 3136 3137 case SIOCGIFFLAGS: 3138 case SIOCSIFFLAGS: 3139 case SIOCGIFMETRIC: 3140 case SIOCSIFMETRIC: 3141 case SIOCGIFMTU: 3142 case SIOCSIFMTU: 3143 case SIOCGIFMEM: 3144 case SIOCSIFMEM: 3145 case SIOCGIFHWADDR: 3146 case SIOCSIFHWADDR: 3147 case SIOCADDMULTI: 3148 case SIOCDELMULTI: 3149 case SIOCGIFINDEX: 3150 case SIOCGIFADDR: 3151 case SIOCSIFADDR: 3152 case SIOCSIFHWBROADCAST: 3153 case SIOCDIFADDR: 3154 case SIOCGIFBRDADDR: 3155 case SIOCSIFBRDADDR: 3156 case SIOCGIFDSTADDR: 3157 case SIOCSIFDSTADDR: 3158 case SIOCGIFNETMASK: 3159 case SIOCSIFNETMASK: 3160 case SIOCSIFPFLAGS: 3161 case SIOCGIFPFLAGS: 3162 case SIOCGIFTXQLEN: 3163 case SIOCSIFTXQLEN: 3164 case SIOCBRADDIF: 3165 case SIOCBRDELIF: 3166 case SIOCSIFNAME: 3167 case SIOCGMIIPHY: 3168 case SIOCGMIIREG: 3169 case SIOCSMIIREG: 3170 return dev_ifsioc(net, sock, cmd, argp); 3171 3172 case SIOCSARP: 3173 case SIOCGARP: 3174 case SIOCDARP: 3175 case SIOCATMARK: 3176 return sock_do_ioctl(net, sock, cmd, arg); 3177 } 3178 3179 return -ENOIOCTLCMD; 3180 } 3181 3182 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3183 unsigned long arg) 3184 { 3185 struct socket *sock = file->private_data; 3186 int ret = -ENOIOCTLCMD; 3187 struct sock *sk; 3188 struct net *net; 3189 3190 sk = sock->sk; 3191 net = sock_net(sk); 3192 3193 if (sock->ops->compat_ioctl) 3194 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3195 3196 if (ret == -ENOIOCTLCMD && 3197 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3198 ret = compat_wext_handle_ioctl(net, cmd, arg); 3199 3200 if (ret == -ENOIOCTLCMD) 3201 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3202 3203 return ret; 3204 } 3205 #endif 3206 3207 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3208 { 3209 return sock->ops->bind(sock, addr, addrlen); 3210 } 3211 EXPORT_SYMBOL(kernel_bind); 3212 3213 int kernel_listen(struct socket *sock, int backlog) 3214 { 3215 return sock->ops->listen(sock, backlog); 3216 } 3217 EXPORT_SYMBOL(kernel_listen); 3218 3219 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3220 { 3221 struct sock *sk = sock->sk; 3222 int err; 3223 3224 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3225 newsock); 3226 if (err < 0) 3227 goto done; 3228 3229 err = sock->ops->accept(sock, *newsock, flags); 3230 if (err < 0) { 3231 sock_release(*newsock); 3232 *newsock = NULL; 3233 goto done; 3234 } 3235 3236 (*newsock)->ops = sock->ops; 3237 __module_get((*newsock)->ops->owner); 3238 3239 done: 3240 return err; 3241 } 3242 EXPORT_SYMBOL(kernel_accept); 3243 3244 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3245 int flags) 3246 { 3247 return sock->ops->connect(sock, addr, addrlen, flags); 3248 } 3249 EXPORT_SYMBOL(kernel_connect); 3250 3251 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3252 int *addrlen) 3253 { 3254 return sock->ops->getname(sock, addr, addrlen, 0); 3255 } 3256 EXPORT_SYMBOL(kernel_getsockname); 3257 3258 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3259 int *addrlen) 3260 { 3261 return sock->ops->getname(sock, addr, addrlen, 1); 3262 } 3263 EXPORT_SYMBOL(kernel_getpeername); 3264 3265 int kernel_getsockopt(struct socket *sock, int level, int optname, 3266 char *optval, int *optlen) 3267 { 3268 mm_segment_t oldfs = get_fs(); 3269 char __user *uoptval; 3270 int __user *uoptlen; 3271 int err; 3272 3273 uoptval = (char __user __force *) optval; 3274 uoptlen = (int __user __force *) optlen; 3275 3276 set_fs(KERNEL_DS); 3277 if (level == SOL_SOCKET) 3278 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3279 else 3280 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3281 uoptlen); 3282 set_fs(oldfs); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(kernel_getsockopt); 3286 3287 int kernel_setsockopt(struct socket *sock, int level, int optname, 3288 char *optval, unsigned int optlen) 3289 { 3290 mm_segment_t oldfs = get_fs(); 3291 char __user *uoptval; 3292 int err; 3293 3294 uoptval = (char __user __force *) optval; 3295 3296 set_fs(KERNEL_DS); 3297 if (level == SOL_SOCKET) 3298 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3299 else 3300 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3301 optlen); 3302 set_fs(oldfs); 3303 return err; 3304 } 3305 EXPORT_SYMBOL(kernel_setsockopt); 3306 3307 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3308 size_t size, int flags) 3309 { 3310 if (sock->ops->sendpage) 3311 return sock->ops->sendpage(sock, page, offset, size, flags); 3312 3313 return sock_no_sendpage(sock, page, offset, size, flags); 3314 } 3315 EXPORT_SYMBOL(kernel_sendpage); 3316 3317 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3318 { 3319 mm_segment_t oldfs = get_fs(); 3320 int err; 3321 3322 set_fs(KERNEL_DS); 3323 err = sock->ops->ioctl(sock, cmd, arg); 3324 set_fs(oldfs); 3325 3326 return err; 3327 } 3328 EXPORT_SYMBOL(kernel_sock_ioctl); 3329 3330 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3331 { 3332 return sock->ops->shutdown(sock, how); 3333 } 3334 EXPORT_SYMBOL(kernel_sock_shutdown); 3335