1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 static bool skb_is_err_queue(const struct sk_buff *skb) 656 { 657 /* pkt_type of skbs enqueued on the error queue are set to 658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 659 * in recvmsg, since skbs received on a local socket will never 660 * have a pkt_type of PACKET_OUTGOING. 661 */ 662 return skb->pkt_type == PACKET_OUTGOING; 663 } 664 665 /* On transmit, software and hardware timestamps are returned independently. 666 * As the two skb clones share the hardware timestamp, which may be updated 667 * before the software timestamp is received, a hardware TX timestamp may be 668 * returned only if there is no software TX timestamp. Ignore false software 669 * timestamps, which may be made in the __sock_recv_timestamp() call when the 670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 671 * hardware timestamp. 672 */ 673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 674 { 675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 676 } 677 678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 679 { 680 struct scm_ts_pktinfo ts_pktinfo; 681 struct net_device *orig_dev; 682 683 if (!skb_mac_header_was_set(skb)) 684 return; 685 686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 687 688 rcu_read_lock(); 689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 690 if (orig_dev) 691 ts_pktinfo.if_index = orig_dev->ifindex; 692 rcu_read_unlock(); 693 694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 696 sizeof(ts_pktinfo), &ts_pktinfo); 697 } 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1, false_tstamp = 0; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp == 0) { 714 __net_timestamp(skb); 715 false_tstamp = 1; 716 } 717 718 if (need_software_tstamp) { 719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 720 struct timeval tv; 721 skb_get_timestamp(skb, &tv); 722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 723 sizeof(tv), &tv); 724 } else { 725 struct timespec ts; 726 skb_get_timestampns(skb, &ts); 727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 728 sizeof(ts), &ts); 729 } 730 } 731 732 memset(&tss, 0, sizeof(tss)); 733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 735 empty = 0; 736 if (shhwtstamps && 737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 738 !skb_is_swtx_tstamp(skb, false_tstamp) && 739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 740 empty = 0; 741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 742 !skb_is_err_queue(skb)) 743 put_ts_pktinfo(msg, skb); 744 } 745 if (!empty) { 746 put_cmsg(msg, SOL_SOCKET, 747 SCM_TIMESTAMPING, sizeof(tss), &tss); 748 749 if (skb_is_err_queue(skb) && skb->len && 750 SKB_EXT_ERR(skb)->opt_stats) 751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 752 skb->len, skb->data); 753 } 754 } 755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 756 757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 int ack; 761 762 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 763 return; 764 if (!skb->wifi_acked_valid) 765 return; 766 767 ack = skb->wifi_acked; 768 769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 770 } 771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 772 773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 774 struct sk_buff *skb) 775 { 776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 779 } 780 781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783 { 784 sock_recv_timestamp(msg, sk, skb); 785 sock_recv_drops(msg, sk, skb); 786 } 787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 788 789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 790 int flags) 791 { 792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 793 } 794 795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 796 { 797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 798 799 return err ?: sock_recvmsg_nosec(sock, msg, flags); 800 } 801 EXPORT_SYMBOL(sock_recvmsg); 802 803 /** 804 * kernel_recvmsg - Receive a message from a socket (kernel space) 805 * @sock: The socket to receive the message from 806 * @msg: Received message 807 * @vec: Input s/g array for message data 808 * @num: Size of input s/g array 809 * @size: Number of bytes to read 810 * @flags: Message flags (MSG_DONTWAIT, etc...) 811 * 812 * On return the msg structure contains the scatter/gather array passed in the 813 * vec argument. The array is modified so that it consists of the unfilled 814 * portion of the original array. 815 * 816 * The returned value is the total number of bytes received, or an error. 817 */ 818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 819 struct kvec *vec, size_t num, size_t size, int flags) 820 { 821 mm_segment_t oldfs = get_fs(); 822 int result; 823 824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 825 set_fs(KERNEL_DS); 826 result = sock_recvmsg(sock, msg, flags); 827 set_fs(oldfs); 828 return result; 829 } 830 EXPORT_SYMBOL(kernel_recvmsg); 831 832 static ssize_t sock_sendpage(struct file *file, struct page *page, 833 int offset, size_t size, loff_t *ppos, int more) 834 { 835 struct socket *sock; 836 int flags; 837 838 sock = file->private_data; 839 840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 842 flags |= more; 843 844 return kernel_sendpage(sock, page, offset, size, flags); 845 } 846 847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 848 struct pipe_inode_info *pipe, size_t len, 849 unsigned int flags) 850 { 851 struct socket *sock = file->private_data; 852 853 if (unlikely(!sock->ops->splice_read)) 854 return -EINVAL; 855 856 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 857 } 858 859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 860 { 861 struct file *file = iocb->ki_filp; 862 struct socket *sock = file->private_data; 863 struct msghdr msg = {.msg_iter = *to, 864 .msg_iocb = iocb}; 865 ssize_t res; 866 867 if (file->f_flags & O_NONBLOCK) 868 msg.msg_flags = MSG_DONTWAIT; 869 870 if (iocb->ki_pos != 0) 871 return -ESPIPE; 872 873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 874 return 0; 875 876 res = sock_recvmsg(sock, &msg, msg.msg_flags); 877 *to = msg.msg_iter; 878 return res; 879 } 880 881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 882 { 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *from, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (iocb->ki_pos != 0) 890 return -ESPIPE; 891 892 if (file->f_flags & O_NONBLOCK) 893 msg.msg_flags = MSG_DONTWAIT; 894 895 if (sock->type == SOCK_SEQPACKET) 896 msg.msg_flags |= MSG_EOR; 897 898 res = sock_sendmsg(sock, &msg); 899 *from = msg.msg_iter; 900 return res; 901 } 902 903 /* 904 * Atomic setting of ioctl hooks to avoid race 905 * with module unload. 906 */ 907 908 static DEFINE_MUTEX(br_ioctl_mutex); 909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 910 911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 912 { 913 mutex_lock(&br_ioctl_mutex); 914 br_ioctl_hook = hook; 915 mutex_unlock(&br_ioctl_mutex); 916 } 917 EXPORT_SYMBOL(brioctl_set); 918 919 static DEFINE_MUTEX(vlan_ioctl_mutex); 920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 921 922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 923 { 924 mutex_lock(&vlan_ioctl_mutex); 925 vlan_ioctl_hook = hook; 926 mutex_unlock(&vlan_ioctl_mutex); 927 } 928 EXPORT_SYMBOL(vlan_ioctl_set); 929 930 static DEFINE_MUTEX(dlci_ioctl_mutex); 931 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 932 933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 934 { 935 mutex_lock(&dlci_ioctl_mutex); 936 dlci_ioctl_hook = hook; 937 mutex_unlock(&dlci_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(dlci_ioctl_set); 940 941 static long sock_do_ioctl(struct net *net, struct socket *sock, 942 unsigned int cmd, unsigned long arg) 943 { 944 int err; 945 void __user *argp = (void __user *)arg; 946 947 err = sock->ops->ioctl(sock, cmd, arg); 948 949 /* 950 * If this ioctl is unknown try to hand it down 951 * to the NIC driver. 952 */ 953 if (err == -ENOIOCTLCMD) 954 err = dev_ioctl(net, cmd, argp); 955 956 return err; 957 } 958 959 /* 960 * With an ioctl, arg may well be a user mode pointer, but we don't know 961 * what to do with it - that's up to the protocol still. 962 */ 963 964 static struct ns_common *get_net_ns(struct ns_common *ns) 965 { 966 return &get_net(container_of(ns, struct net, ns))->ns; 967 } 968 969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 970 { 971 struct socket *sock; 972 struct sock *sk; 973 void __user *argp = (void __user *)arg; 974 int pid, err; 975 struct net *net; 976 977 sock = file->private_data; 978 sk = sock->sk; 979 net = sock_net(sk); 980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 981 err = dev_ioctl(net, cmd, argp); 982 } else 983 #ifdef CONFIG_WEXT_CORE 984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 985 err = dev_ioctl(net, cmd, argp); 986 } else 987 #endif 988 switch (cmd) { 989 case FIOSETOWN: 990 case SIOCSPGRP: 991 err = -EFAULT; 992 if (get_user(pid, (int __user *)argp)) 993 break; 994 err = f_setown(sock->file, pid, 1); 995 break; 996 case FIOGETOWN: 997 case SIOCGPGRP: 998 err = put_user(f_getown(sock->file), 999 (int __user *)argp); 1000 break; 1001 case SIOCGIFBR: 1002 case SIOCSIFBR: 1003 case SIOCBRADDBR: 1004 case SIOCBRDELBR: 1005 err = -ENOPKG; 1006 if (!br_ioctl_hook) 1007 request_module("bridge"); 1008 1009 mutex_lock(&br_ioctl_mutex); 1010 if (br_ioctl_hook) 1011 err = br_ioctl_hook(net, cmd, argp); 1012 mutex_unlock(&br_ioctl_mutex); 1013 break; 1014 case SIOCGIFVLAN: 1015 case SIOCSIFVLAN: 1016 err = -ENOPKG; 1017 if (!vlan_ioctl_hook) 1018 request_module("8021q"); 1019 1020 mutex_lock(&vlan_ioctl_mutex); 1021 if (vlan_ioctl_hook) 1022 err = vlan_ioctl_hook(net, argp); 1023 mutex_unlock(&vlan_ioctl_mutex); 1024 break; 1025 case SIOCADDDLCI: 1026 case SIOCDELDLCI: 1027 err = -ENOPKG; 1028 if (!dlci_ioctl_hook) 1029 request_module("dlci"); 1030 1031 mutex_lock(&dlci_ioctl_mutex); 1032 if (dlci_ioctl_hook) 1033 err = dlci_ioctl_hook(cmd, argp); 1034 mutex_unlock(&dlci_ioctl_mutex); 1035 break; 1036 case SIOCGSKNS: 1037 err = -EPERM; 1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1039 break; 1040 1041 err = open_related_ns(&net->ns, get_net_ns); 1042 break; 1043 default: 1044 err = sock_do_ioctl(net, sock, cmd, arg); 1045 break; 1046 } 1047 return err; 1048 } 1049 1050 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1051 { 1052 int err; 1053 struct socket *sock = NULL; 1054 1055 err = security_socket_create(family, type, protocol, 1); 1056 if (err) 1057 goto out; 1058 1059 sock = sock_alloc(); 1060 if (!sock) { 1061 err = -ENOMEM; 1062 goto out; 1063 } 1064 1065 sock->type = type; 1066 err = security_socket_post_create(sock, family, type, protocol, 1); 1067 if (err) 1068 goto out_release; 1069 1070 out: 1071 *res = sock; 1072 return err; 1073 out_release: 1074 sock_release(sock); 1075 sock = NULL; 1076 goto out; 1077 } 1078 EXPORT_SYMBOL(sock_create_lite); 1079 1080 /* No kernel lock held - perfect */ 1081 static unsigned int sock_poll(struct file *file, poll_table *wait) 1082 { 1083 unsigned int busy_flag = 0; 1084 struct socket *sock; 1085 1086 /* 1087 * We can't return errors to poll, so it's either yes or no. 1088 */ 1089 sock = file->private_data; 1090 1091 if (sk_can_busy_loop(sock->sk)) { 1092 /* this socket can poll_ll so tell the system call */ 1093 busy_flag = POLL_BUSY_LOOP; 1094 1095 /* once, only if requested by syscall */ 1096 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1097 sk_busy_loop(sock->sk, 1); 1098 } 1099 1100 return busy_flag | sock->ops->poll(file, sock, wait); 1101 } 1102 1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1104 { 1105 struct socket *sock = file->private_data; 1106 1107 return sock->ops->mmap(file, sock, vma); 1108 } 1109 1110 static int sock_close(struct inode *inode, struct file *filp) 1111 { 1112 sock_release(SOCKET_I(inode)); 1113 return 0; 1114 } 1115 1116 /* 1117 * Update the socket async list 1118 * 1119 * Fasync_list locking strategy. 1120 * 1121 * 1. fasync_list is modified only under process context socket lock 1122 * i.e. under semaphore. 1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1124 * or under socket lock 1125 */ 1126 1127 static int sock_fasync(int fd, struct file *filp, int on) 1128 { 1129 struct socket *sock = filp->private_data; 1130 struct sock *sk = sock->sk; 1131 struct socket_wq *wq; 1132 1133 if (sk == NULL) 1134 return -EINVAL; 1135 1136 lock_sock(sk); 1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1138 fasync_helper(fd, filp, on, &wq->fasync_list); 1139 1140 if (!wq->fasync_list) 1141 sock_reset_flag(sk, SOCK_FASYNC); 1142 else 1143 sock_set_flag(sk, SOCK_FASYNC); 1144 1145 release_sock(sk); 1146 return 0; 1147 } 1148 1149 /* This function may be called only under rcu_lock */ 1150 1151 int sock_wake_async(struct socket_wq *wq, int how, int band) 1152 { 1153 if (!wq || !wq->fasync_list) 1154 return -1; 1155 1156 switch (how) { 1157 case SOCK_WAKE_WAITD: 1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1159 break; 1160 goto call_kill; 1161 case SOCK_WAKE_SPACE: 1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1163 break; 1164 /* fall through */ 1165 case SOCK_WAKE_IO: 1166 call_kill: 1167 kill_fasync(&wq->fasync_list, SIGIO, band); 1168 break; 1169 case SOCK_WAKE_URG: 1170 kill_fasync(&wq->fasync_list, SIGURG, band); 1171 } 1172 1173 return 0; 1174 } 1175 EXPORT_SYMBOL(sock_wake_async); 1176 1177 int __sock_create(struct net *net, int family, int type, int protocol, 1178 struct socket **res, int kern) 1179 { 1180 int err; 1181 struct socket *sock; 1182 const struct net_proto_family *pf; 1183 1184 /* 1185 * Check protocol is in range 1186 */ 1187 if (family < 0 || family >= NPROTO) 1188 return -EAFNOSUPPORT; 1189 if (type < 0 || type >= SOCK_MAX) 1190 return -EINVAL; 1191 1192 /* Compatibility. 1193 1194 This uglymoron is moved from INET layer to here to avoid 1195 deadlock in module load. 1196 */ 1197 if (family == PF_INET && type == SOCK_PACKET) { 1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1199 current->comm); 1200 family = PF_PACKET; 1201 } 1202 1203 err = security_socket_create(family, type, protocol, kern); 1204 if (err) 1205 return err; 1206 1207 /* 1208 * Allocate the socket and allow the family to set things up. if 1209 * the protocol is 0, the family is instructed to select an appropriate 1210 * default. 1211 */ 1212 sock = sock_alloc(); 1213 if (!sock) { 1214 net_warn_ratelimited("socket: no more sockets\n"); 1215 return -ENFILE; /* Not exactly a match, but its the 1216 closest posix thing */ 1217 } 1218 1219 sock->type = type; 1220 1221 #ifdef CONFIG_MODULES 1222 /* Attempt to load a protocol module if the find failed. 1223 * 1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1225 * requested real, full-featured networking support upon configuration. 1226 * Otherwise module support will break! 1227 */ 1228 if (rcu_access_pointer(net_families[family]) == NULL) 1229 request_module("net-pf-%d", family); 1230 #endif 1231 1232 rcu_read_lock(); 1233 pf = rcu_dereference(net_families[family]); 1234 err = -EAFNOSUPPORT; 1235 if (!pf) 1236 goto out_release; 1237 1238 /* 1239 * We will call the ->create function, that possibly is in a loadable 1240 * module, so we have to bump that loadable module refcnt first. 1241 */ 1242 if (!try_module_get(pf->owner)) 1243 goto out_release; 1244 1245 /* Now protected by module ref count */ 1246 rcu_read_unlock(); 1247 1248 err = pf->create(net, sock, protocol, kern); 1249 if (err < 0) 1250 goto out_module_put; 1251 1252 /* 1253 * Now to bump the refcnt of the [loadable] module that owns this 1254 * socket at sock_release time we decrement its refcnt. 1255 */ 1256 if (!try_module_get(sock->ops->owner)) 1257 goto out_module_busy; 1258 1259 /* 1260 * Now that we're done with the ->create function, the [loadable] 1261 * module can have its refcnt decremented 1262 */ 1263 module_put(pf->owner); 1264 err = security_socket_post_create(sock, family, type, protocol, kern); 1265 if (err) 1266 goto out_sock_release; 1267 *res = sock; 1268 1269 return 0; 1270 1271 out_module_busy: 1272 err = -EAFNOSUPPORT; 1273 out_module_put: 1274 sock->ops = NULL; 1275 module_put(pf->owner); 1276 out_sock_release: 1277 sock_release(sock); 1278 return err; 1279 1280 out_release: 1281 rcu_read_unlock(); 1282 goto out_sock_release; 1283 } 1284 EXPORT_SYMBOL(__sock_create); 1285 1286 int sock_create(int family, int type, int protocol, struct socket **res) 1287 { 1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1289 } 1290 EXPORT_SYMBOL(sock_create); 1291 1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1293 { 1294 return __sock_create(net, family, type, protocol, res, 1); 1295 } 1296 EXPORT_SYMBOL(sock_create_kern); 1297 1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1299 { 1300 int retval; 1301 struct socket *sock; 1302 int flags; 1303 1304 /* Check the SOCK_* constants for consistency. */ 1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1309 1310 flags = type & ~SOCK_TYPE_MASK; 1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1312 return -EINVAL; 1313 type &= SOCK_TYPE_MASK; 1314 1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1317 1318 retval = sock_create(family, type, protocol, &sock); 1319 if (retval < 0) 1320 goto out; 1321 1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1323 if (retval < 0) 1324 goto out_release; 1325 1326 out: 1327 /* It may be already another descriptor 8) Not kernel problem. */ 1328 return retval; 1329 1330 out_release: 1331 sock_release(sock); 1332 return retval; 1333 } 1334 1335 /* 1336 * Create a pair of connected sockets. 1337 */ 1338 1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1340 int __user *, usockvec) 1341 { 1342 struct socket *sock1, *sock2; 1343 int fd1, fd2, err; 1344 struct file *newfile1, *newfile2; 1345 int flags; 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 /* 1356 * Obtain the first socket and check if the underlying protocol 1357 * supports the socketpair call. 1358 */ 1359 1360 err = sock_create(family, type, protocol, &sock1); 1361 if (err < 0) 1362 goto out; 1363 1364 err = sock_create(family, type, protocol, &sock2); 1365 if (err < 0) 1366 goto out_release_1; 1367 1368 err = sock1->ops->socketpair(sock1, sock2); 1369 if (err < 0) 1370 goto out_release_both; 1371 1372 fd1 = get_unused_fd_flags(flags); 1373 if (unlikely(fd1 < 0)) { 1374 err = fd1; 1375 goto out_release_both; 1376 } 1377 1378 fd2 = get_unused_fd_flags(flags); 1379 if (unlikely(fd2 < 0)) { 1380 err = fd2; 1381 goto out_put_unused_1; 1382 } 1383 1384 newfile1 = sock_alloc_file(sock1, flags, NULL); 1385 if (IS_ERR(newfile1)) { 1386 err = PTR_ERR(newfile1); 1387 goto out_put_unused_both; 1388 } 1389 1390 newfile2 = sock_alloc_file(sock2, flags, NULL); 1391 if (IS_ERR(newfile2)) { 1392 err = PTR_ERR(newfile2); 1393 goto out_fput_1; 1394 } 1395 1396 err = put_user(fd1, &usockvec[0]); 1397 if (err) 1398 goto out_fput_both; 1399 1400 err = put_user(fd2, &usockvec[1]); 1401 if (err) 1402 goto out_fput_both; 1403 1404 audit_fd_pair(fd1, fd2); 1405 1406 fd_install(fd1, newfile1); 1407 fd_install(fd2, newfile2); 1408 /* fd1 and fd2 may be already another descriptors. 1409 * Not kernel problem. 1410 */ 1411 1412 return 0; 1413 1414 out_fput_both: 1415 fput(newfile2); 1416 fput(newfile1); 1417 put_unused_fd(fd2); 1418 put_unused_fd(fd1); 1419 goto out; 1420 1421 out_fput_1: 1422 fput(newfile1); 1423 put_unused_fd(fd2); 1424 put_unused_fd(fd1); 1425 sock_release(sock2); 1426 goto out; 1427 1428 out_put_unused_both: 1429 put_unused_fd(fd2); 1430 out_put_unused_1: 1431 put_unused_fd(fd1); 1432 out_release_both: 1433 sock_release(sock2); 1434 out_release_1: 1435 sock_release(sock1); 1436 out: 1437 return err; 1438 } 1439 1440 /* 1441 * Bind a name to a socket. Nothing much to do here since it's 1442 * the protocol's responsibility to handle the local address. 1443 * 1444 * We move the socket address to kernel space before we call 1445 * the protocol layer (having also checked the address is ok). 1446 */ 1447 1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1449 { 1450 struct socket *sock; 1451 struct sockaddr_storage address; 1452 int err, fput_needed; 1453 1454 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1455 if (sock) { 1456 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1457 if (err >= 0) { 1458 err = security_socket_bind(sock, 1459 (struct sockaddr *)&address, 1460 addrlen); 1461 if (!err) 1462 err = sock->ops->bind(sock, 1463 (struct sockaddr *) 1464 &address, addrlen); 1465 } 1466 fput_light(sock->file, fput_needed); 1467 } 1468 return err; 1469 } 1470 1471 /* 1472 * Perform a listen. Basically, we allow the protocol to do anything 1473 * necessary for a listen, and if that works, we mark the socket as 1474 * ready for listening. 1475 */ 1476 1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1478 { 1479 struct socket *sock; 1480 int err, fput_needed; 1481 int somaxconn; 1482 1483 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1484 if (sock) { 1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1486 if ((unsigned int)backlog > somaxconn) 1487 backlog = somaxconn; 1488 1489 err = security_socket_listen(sock, backlog); 1490 if (!err) 1491 err = sock->ops->listen(sock, backlog); 1492 1493 fput_light(sock->file, fput_needed); 1494 } 1495 return err; 1496 } 1497 1498 /* 1499 * For accept, we attempt to create a new socket, set up the link 1500 * with the client, wake up the client, then return the new 1501 * connected fd. We collect the address of the connector in kernel 1502 * space and move it to user at the very end. This is unclean because 1503 * we open the socket then return an error. 1504 * 1505 * 1003.1g adds the ability to recvmsg() to query connection pending 1506 * status to recvmsg. We need to add that support in a way thats 1507 * clean when we restucture accept also. 1508 */ 1509 1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1511 int __user *, upeer_addrlen, int, flags) 1512 { 1513 struct socket *sock, *newsock; 1514 struct file *newfile; 1515 int err, len, newfd, fput_needed; 1516 struct sockaddr_storage address; 1517 1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1519 return -EINVAL; 1520 1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1523 1524 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1525 if (!sock) 1526 goto out; 1527 1528 err = -ENFILE; 1529 newsock = sock_alloc(); 1530 if (!newsock) 1531 goto out_put; 1532 1533 newsock->type = sock->type; 1534 newsock->ops = sock->ops; 1535 1536 /* 1537 * We don't need try_module_get here, as the listening socket (sock) 1538 * has the protocol module (sock->ops->owner) held. 1539 */ 1540 __module_get(newsock->ops->owner); 1541 1542 newfd = get_unused_fd_flags(flags); 1543 if (unlikely(newfd < 0)) { 1544 err = newfd; 1545 sock_release(newsock); 1546 goto out_put; 1547 } 1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1549 if (IS_ERR(newfile)) { 1550 err = PTR_ERR(newfile); 1551 put_unused_fd(newfd); 1552 sock_release(newsock); 1553 goto out_put; 1554 } 1555 1556 err = security_socket_accept(sock, newsock); 1557 if (err) 1558 goto out_fd; 1559 1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1561 if (err < 0) 1562 goto out_fd; 1563 1564 if (upeer_sockaddr) { 1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1566 &len, 2) < 0) { 1567 err = -ECONNABORTED; 1568 goto out_fd; 1569 } 1570 err = move_addr_to_user(&address, 1571 len, upeer_sockaddr, upeer_addrlen); 1572 if (err < 0) 1573 goto out_fd; 1574 } 1575 1576 /* File flags are not inherited via accept() unlike another OSes. */ 1577 1578 fd_install(newfd, newfile); 1579 err = newfd; 1580 1581 out_put: 1582 fput_light(sock->file, fput_needed); 1583 out: 1584 return err; 1585 out_fd: 1586 fput(newfile); 1587 put_unused_fd(newfd); 1588 goto out_put; 1589 } 1590 1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1592 int __user *, upeer_addrlen) 1593 { 1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1595 } 1596 1597 /* 1598 * Attempt to connect to a socket with the server address. The address 1599 * is in user space so we verify it is OK and move it to kernel space. 1600 * 1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1602 * break bindings 1603 * 1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1605 * other SEQPACKET protocols that take time to connect() as it doesn't 1606 * include the -EINPROGRESS status for such sockets. 1607 */ 1608 1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1610 int, addrlen) 1611 { 1612 struct socket *sock; 1613 struct sockaddr_storage address; 1614 int err, fput_needed; 1615 1616 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1617 if (!sock) 1618 goto out; 1619 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1620 if (err < 0) 1621 goto out_put; 1622 1623 err = 1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1625 if (err) 1626 goto out_put; 1627 1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1629 sock->file->f_flags); 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 } 1635 1636 /* 1637 * Get the local address ('name') of a socket object. Move the obtained 1638 * name to user space. 1639 */ 1640 1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1642 int __user *, usockaddr_len) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int len, err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (!sock) 1650 goto out; 1651 1652 err = security_socket_getsockname(sock); 1653 if (err) 1654 goto out_put; 1655 1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1657 if (err) 1658 goto out_put; 1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1660 1661 out_put: 1662 fput_light(sock->file, fput_needed); 1663 out: 1664 return err; 1665 } 1666 1667 /* 1668 * Get the remote address ('name') of a socket object. Move the obtained 1669 * name to user space. 1670 */ 1671 1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1673 int __user *, usockaddr_len) 1674 { 1675 struct socket *sock; 1676 struct sockaddr_storage address; 1677 int len, err, fput_needed; 1678 1679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1680 if (sock != NULL) { 1681 err = security_socket_getpeername(sock); 1682 if (err) { 1683 fput_light(sock->file, fput_needed); 1684 return err; 1685 } 1686 1687 err = 1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1689 1); 1690 if (!err) 1691 err = move_addr_to_user(&address, len, usockaddr, 1692 usockaddr_len); 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696 } 1697 1698 /* 1699 * Send a datagram to a given address. We move the address into kernel 1700 * space and check the user space data area is readable before invoking 1701 * the protocol. 1702 */ 1703 1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1705 unsigned int, flags, struct sockaddr __user *, addr, 1706 int, addr_len) 1707 { 1708 struct socket *sock; 1709 struct sockaddr_storage address; 1710 int err; 1711 struct msghdr msg; 1712 struct iovec iov; 1713 int fput_needed; 1714 1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1716 if (unlikely(err)) 1717 return err; 1718 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1719 if (!sock) 1720 goto out; 1721 1722 msg.msg_name = NULL; 1723 msg.msg_control = NULL; 1724 msg.msg_controllen = 0; 1725 msg.msg_namelen = 0; 1726 if (addr) { 1727 err = move_addr_to_kernel(addr, addr_len, &address); 1728 if (err < 0) 1729 goto out_put; 1730 msg.msg_name = (struct sockaddr *)&address; 1731 msg.msg_namelen = addr_len; 1732 } 1733 if (sock->file->f_flags & O_NONBLOCK) 1734 flags |= MSG_DONTWAIT; 1735 msg.msg_flags = flags; 1736 err = sock_sendmsg(sock, &msg); 1737 1738 out_put: 1739 fput_light(sock->file, fput_needed); 1740 out: 1741 return err; 1742 } 1743 1744 /* 1745 * Send a datagram down a socket. 1746 */ 1747 1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1749 unsigned int, flags) 1750 { 1751 return sys_sendto(fd, buff, len, flags, NULL, 0); 1752 } 1753 1754 /* 1755 * Receive a frame from the socket and optionally record the address of the 1756 * sender. We verify the buffers are writable and if needed move the 1757 * sender address from kernel to user space. 1758 */ 1759 1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1761 unsigned int, flags, struct sockaddr __user *, addr, 1762 int __user *, addr_len) 1763 { 1764 struct socket *sock; 1765 struct iovec iov; 1766 struct msghdr msg; 1767 struct sockaddr_storage address; 1768 int err, err2; 1769 int fput_needed; 1770 1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1772 if (unlikely(err)) 1773 return err; 1774 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1775 if (!sock) 1776 goto out; 1777 1778 msg.msg_control = NULL; 1779 msg.msg_controllen = 0; 1780 /* Save some cycles and don't copy the address if not needed */ 1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1782 /* We assume all kernel code knows the size of sockaddr_storage */ 1783 msg.msg_namelen = 0; 1784 msg.msg_iocb = NULL; 1785 msg.msg_flags = 0; 1786 if (sock->file->f_flags & O_NONBLOCK) 1787 flags |= MSG_DONTWAIT; 1788 err = sock_recvmsg(sock, &msg, flags); 1789 1790 if (err >= 0 && addr != NULL) { 1791 err2 = move_addr_to_user(&address, 1792 msg.msg_namelen, addr, addr_len); 1793 if (err2 < 0) 1794 err = err2; 1795 } 1796 1797 fput_light(sock->file, fput_needed); 1798 out: 1799 return err; 1800 } 1801 1802 /* 1803 * Receive a datagram from a socket. 1804 */ 1805 1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1807 unsigned int, flags) 1808 { 1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1810 } 1811 1812 /* 1813 * Set a socket option. Because we don't know the option lengths we have 1814 * to pass the user mode parameter for the protocols to sort out. 1815 */ 1816 1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1818 char __user *, optval, int, optlen) 1819 { 1820 int err, fput_needed; 1821 struct socket *sock; 1822 1823 if (optlen < 0) 1824 return -EINVAL; 1825 1826 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1827 if (sock != NULL) { 1828 err = security_socket_setsockopt(sock, level, optname); 1829 if (err) 1830 goto out_put; 1831 1832 if (level == SOL_SOCKET) 1833 err = 1834 sock_setsockopt(sock, level, optname, optval, 1835 optlen); 1836 else 1837 err = 1838 sock->ops->setsockopt(sock, level, optname, optval, 1839 optlen); 1840 out_put: 1841 fput_light(sock->file, fput_needed); 1842 } 1843 return err; 1844 } 1845 1846 /* 1847 * Get a socket option. Because we don't know the option lengths we have 1848 * to pass a user mode parameter for the protocols to sort out. 1849 */ 1850 1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1852 char __user *, optval, int __user *, optlen) 1853 { 1854 int err, fput_needed; 1855 struct socket *sock; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock != NULL) { 1859 err = security_socket_getsockopt(sock, level, optname); 1860 if (err) 1861 goto out_put; 1862 1863 if (level == SOL_SOCKET) 1864 err = 1865 sock_getsockopt(sock, level, optname, optval, 1866 optlen); 1867 else 1868 err = 1869 sock->ops->getsockopt(sock, level, optname, optval, 1870 optlen); 1871 out_put: 1872 fput_light(sock->file, fput_needed); 1873 } 1874 return err; 1875 } 1876 1877 /* 1878 * Shutdown a socket. 1879 */ 1880 1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1882 { 1883 int err, fput_needed; 1884 struct socket *sock; 1885 1886 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1887 if (sock != NULL) { 1888 err = security_socket_shutdown(sock, how); 1889 if (!err) 1890 err = sock->ops->shutdown(sock, how); 1891 fput_light(sock->file, fput_needed); 1892 } 1893 return err; 1894 } 1895 1896 /* A couple of helpful macros for getting the address of the 32/64 bit 1897 * fields which are the same type (int / unsigned) on our platforms. 1898 */ 1899 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1900 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1901 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1902 1903 struct used_address { 1904 struct sockaddr_storage name; 1905 unsigned int name_len; 1906 }; 1907 1908 static int copy_msghdr_from_user(struct msghdr *kmsg, 1909 struct user_msghdr __user *umsg, 1910 struct sockaddr __user **save_addr, 1911 struct iovec **iov) 1912 { 1913 struct user_msghdr msg; 1914 ssize_t err; 1915 1916 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1917 return -EFAULT; 1918 1919 kmsg->msg_control = (void __force *)msg.msg_control; 1920 kmsg->msg_controllen = msg.msg_controllen; 1921 kmsg->msg_flags = msg.msg_flags; 1922 1923 kmsg->msg_namelen = msg.msg_namelen; 1924 if (!msg.msg_name) 1925 kmsg->msg_namelen = 0; 1926 1927 if (kmsg->msg_namelen < 0) 1928 return -EINVAL; 1929 1930 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1931 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1932 1933 if (save_addr) 1934 *save_addr = msg.msg_name; 1935 1936 if (msg.msg_name && kmsg->msg_namelen) { 1937 if (!save_addr) { 1938 err = move_addr_to_kernel(msg.msg_name, 1939 kmsg->msg_namelen, 1940 kmsg->msg_name); 1941 if (err < 0) 1942 return err; 1943 } 1944 } else { 1945 kmsg->msg_name = NULL; 1946 kmsg->msg_namelen = 0; 1947 } 1948 1949 if (msg.msg_iovlen > UIO_MAXIOV) 1950 return -EMSGSIZE; 1951 1952 kmsg->msg_iocb = NULL; 1953 1954 return import_iovec(save_addr ? READ : WRITE, 1955 msg.msg_iov, msg.msg_iovlen, 1956 UIO_FASTIOV, iov, &kmsg->msg_iter); 1957 } 1958 1959 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1960 struct msghdr *msg_sys, unsigned int flags, 1961 struct used_address *used_address, 1962 unsigned int allowed_msghdr_flags) 1963 { 1964 struct compat_msghdr __user *msg_compat = 1965 (struct compat_msghdr __user *)msg; 1966 struct sockaddr_storage address; 1967 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1968 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1969 __aligned(sizeof(__kernel_size_t)); 1970 /* 20 is size of ipv6_pktinfo */ 1971 unsigned char *ctl_buf = ctl; 1972 int ctl_len; 1973 ssize_t err; 1974 1975 msg_sys->msg_name = &address; 1976 1977 if (MSG_CMSG_COMPAT & flags) 1978 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1979 else 1980 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1981 if (err < 0) 1982 return err; 1983 1984 err = -ENOBUFS; 1985 1986 if (msg_sys->msg_controllen > INT_MAX) 1987 goto out_freeiov; 1988 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1989 ctl_len = msg_sys->msg_controllen; 1990 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1991 err = 1992 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1993 sizeof(ctl)); 1994 if (err) 1995 goto out_freeiov; 1996 ctl_buf = msg_sys->msg_control; 1997 ctl_len = msg_sys->msg_controllen; 1998 } else if (ctl_len) { 1999 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2000 CMSG_ALIGN(sizeof(struct cmsghdr))); 2001 if (ctl_len > sizeof(ctl)) { 2002 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2003 if (ctl_buf == NULL) 2004 goto out_freeiov; 2005 } 2006 err = -EFAULT; 2007 /* 2008 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2009 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2010 * checking falls down on this. 2011 */ 2012 if (copy_from_user(ctl_buf, 2013 (void __user __force *)msg_sys->msg_control, 2014 ctl_len)) 2015 goto out_freectl; 2016 msg_sys->msg_control = ctl_buf; 2017 } 2018 msg_sys->msg_flags = flags; 2019 2020 if (sock->file->f_flags & O_NONBLOCK) 2021 msg_sys->msg_flags |= MSG_DONTWAIT; 2022 /* 2023 * If this is sendmmsg() and current destination address is same as 2024 * previously succeeded address, omit asking LSM's decision. 2025 * used_address->name_len is initialized to UINT_MAX so that the first 2026 * destination address never matches. 2027 */ 2028 if (used_address && msg_sys->msg_name && 2029 used_address->name_len == msg_sys->msg_namelen && 2030 !memcmp(&used_address->name, msg_sys->msg_name, 2031 used_address->name_len)) { 2032 err = sock_sendmsg_nosec(sock, msg_sys); 2033 goto out_freectl; 2034 } 2035 err = sock_sendmsg(sock, msg_sys); 2036 /* 2037 * If this is sendmmsg() and sending to current destination address was 2038 * successful, remember it. 2039 */ 2040 if (used_address && err >= 0) { 2041 used_address->name_len = msg_sys->msg_namelen; 2042 if (msg_sys->msg_name) 2043 memcpy(&used_address->name, msg_sys->msg_name, 2044 used_address->name_len); 2045 } 2046 2047 out_freectl: 2048 if (ctl_buf != ctl) 2049 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2050 out_freeiov: 2051 kfree(iov); 2052 return err; 2053 } 2054 2055 /* 2056 * BSD sendmsg interface 2057 */ 2058 2059 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2060 { 2061 int fput_needed, err; 2062 struct msghdr msg_sys; 2063 struct socket *sock; 2064 2065 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2066 if (!sock) 2067 goto out; 2068 2069 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2070 2071 fput_light(sock->file, fput_needed); 2072 out: 2073 return err; 2074 } 2075 2076 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2077 { 2078 if (flags & MSG_CMSG_COMPAT) 2079 return -EINVAL; 2080 return __sys_sendmsg(fd, msg, flags); 2081 } 2082 2083 /* 2084 * Linux sendmmsg interface 2085 */ 2086 2087 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2088 unsigned int flags) 2089 { 2090 int fput_needed, err, datagrams; 2091 struct socket *sock; 2092 struct mmsghdr __user *entry; 2093 struct compat_mmsghdr __user *compat_entry; 2094 struct msghdr msg_sys; 2095 struct used_address used_address; 2096 unsigned int oflags = flags; 2097 2098 if (vlen > UIO_MAXIOV) 2099 vlen = UIO_MAXIOV; 2100 2101 datagrams = 0; 2102 2103 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2104 if (!sock) 2105 return err; 2106 2107 used_address.name_len = UINT_MAX; 2108 entry = mmsg; 2109 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2110 err = 0; 2111 flags |= MSG_BATCH; 2112 2113 while (datagrams < vlen) { 2114 if (datagrams == vlen - 1) 2115 flags = oflags; 2116 2117 if (MSG_CMSG_COMPAT & flags) { 2118 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2119 &msg_sys, flags, &used_address, MSG_EOR); 2120 if (err < 0) 2121 break; 2122 err = __put_user(err, &compat_entry->msg_len); 2123 ++compat_entry; 2124 } else { 2125 err = ___sys_sendmsg(sock, 2126 (struct user_msghdr __user *)entry, 2127 &msg_sys, flags, &used_address, MSG_EOR); 2128 if (err < 0) 2129 break; 2130 err = put_user(err, &entry->msg_len); 2131 ++entry; 2132 } 2133 2134 if (err) 2135 break; 2136 ++datagrams; 2137 if (msg_data_left(&msg_sys)) 2138 break; 2139 cond_resched(); 2140 } 2141 2142 fput_light(sock->file, fput_needed); 2143 2144 /* We only return an error if no datagrams were able to be sent */ 2145 if (datagrams != 0) 2146 return datagrams; 2147 2148 return err; 2149 } 2150 2151 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2152 unsigned int, vlen, unsigned int, flags) 2153 { 2154 if (flags & MSG_CMSG_COMPAT) 2155 return -EINVAL; 2156 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2157 } 2158 2159 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2160 struct msghdr *msg_sys, unsigned int flags, int nosec) 2161 { 2162 struct compat_msghdr __user *msg_compat = 2163 (struct compat_msghdr __user *)msg; 2164 struct iovec iovstack[UIO_FASTIOV]; 2165 struct iovec *iov = iovstack; 2166 unsigned long cmsg_ptr; 2167 int len; 2168 ssize_t err; 2169 2170 /* kernel mode address */ 2171 struct sockaddr_storage addr; 2172 2173 /* user mode address pointers */ 2174 struct sockaddr __user *uaddr; 2175 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2176 2177 msg_sys->msg_name = &addr; 2178 2179 if (MSG_CMSG_COMPAT & flags) 2180 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2181 else 2182 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2183 if (err < 0) 2184 return err; 2185 2186 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2187 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2188 2189 /* We assume all kernel code knows the size of sockaddr_storage */ 2190 msg_sys->msg_namelen = 0; 2191 2192 if (sock->file->f_flags & O_NONBLOCK) 2193 flags |= MSG_DONTWAIT; 2194 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2195 if (err < 0) 2196 goto out_freeiov; 2197 len = err; 2198 2199 if (uaddr != NULL) { 2200 err = move_addr_to_user(&addr, 2201 msg_sys->msg_namelen, uaddr, 2202 uaddr_len); 2203 if (err < 0) 2204 goto out_freeiov; 2205 } 2206 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2207 COMPAT_FLAGS(msg)); 2208 if (err) 2209 goto out_freeiov; 2210 if (MSG_CMSG_COMPAT & flags) 2211 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2212 &msg_compat->msg_controllen); 2213 else 2214 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2215 &msg->msg_controllen); 2216 if (err) 2217 goto out_freeiov; 2218 err = len; 2219 2220 out_freeiov: 2221 kfree(iov); 2222 return err; 2223 } 2224 2225 /* 2226 * BSD recvmsg interface 2227 */ 2228 2229 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2230 { 2231 int fput_needed, err; 2232 struct msghdr msg_sys; 2233 struct socket *sock; 2234 2235 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2236 if (!sock) 2237 goto out; 2238 2239 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2240 2241 fput_light(sock->file, fput_needed); 2242 out: 2243 return err; 2244 } 2245 2246 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2247 unsigned int, flags) 2248 { 2249 if (flags & MSG_CMSG_COMPAT) 2250 return -EINVAL; 2251 return __sys_recvmsg(fd, msg, flags); 2252 } 2253 2254 /* 2255 * Linux recvmmsg interface 2256 */ 2257 2258 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2259 unsigned int flags, struct timespec *timeout) 2260 { 2261 int fput_needed, err, datagrams; 2262 struct socket *sock; 2263 struct mmsghdr __user *entry; 2264 struct compat_mmsghdr __user *compat_entry; 2265 struct msghdr msg_sys; 2266 struct timespec64 end_time; 2267 struct timespec64 timeout64; 2268 2269 if (timeout && 2270 poll_select_set_timeout(&end_time, timeout->tv_sec, 2271 timeout->tv_nsec)) 2272 return -EINVAL; 2273 2274 datagrams = 0; 2275 2276 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2277 if (!sock) 2278 return err; 2279 2280 err = sock_error(sock->sk); 2281 if (err) { 2282 datagrams = err; 2283 goto out_put; 2284 } 2285 2286 entry = mmsg; 2287 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2288 2289 while (datagrams < vlen) { 2290 /* 2291 * No need to ask LSM for more than the first datagram. 2292 */ 2293 if (MSG_CMSG_COMPAT & flags) { 2294 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2295 &msg_sys, flags & ~MSG_WAITFORONE, 2296 datagrams); 2297 if (err < 0) 2298 break; 2299 err = __put_user(err, &compat_entry->msg_len); 2300 ++compat_entry; 2301 } else { 2302 err = ___sys_recvmsg(sock, 2303 (struct user_msghdr __user *)entry, 2304 &msg_sys, flags & ~MSG_WAITFORONE, 2305 datagrams); 2306 if (err < 0) 2307 break; 2308 err = put_user(err, &entry->msg_len); 2309 ++entry; 2310 } 2311 2312 if (err) 2313 break; 2314 ++datagrams; 2315 2316 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2317 if (flags & MSG_WAITFORONE) 2318 flags |= MSG_DONTWAIT; 2319 2320 if (timeout) { 2321 ktime_get_ts64(&timeout64); 2322 *timeout = timespec64_to_timespec( 2323 timespec64_sub(end_time, timeout64)); 2324 if (timeout->tv_sec < 0) { 2325 timeout->tv_sec = timeout->tv_nsec = 0; 2326 break; 2327 } 2328 2329 /* Timeout, return less than vlen datagrams */ 2330 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2331 break; 2332 } 2333 2334 /* Out of band data, return right away */ 2335 if (msg_sys.msg_flags & MSG_OOB) 2336 break; 2337 cond_resched(); 2338 } 2339 2340 if (err == 0) 2341 goto out_put; 2342 2343 if (datagrams == 0) { 2344 datagrams = err; 2345 goto out_put; 2346 } 2347 2348 /* 2349 * We may return less entries than requested (vlen) if the 2350 * sock is non block and there aren't enough datagrams... 2351 */ 2352 if (err != -EAGAIN) { 2353 /* 2354 * ... or if recvmsg returns an error after we 2355 * received some datagrams, where we record the 2356 * error to return on the next call or if the 2357 * app asks about it using getsockopt(SO_ERROR). 2358 */ 2359 sock->sk->sk_err = -err; 2360 } 2361 out_put: 2362 fput_light(sock->file, fput_needed); 2363 2364 return datagrams; 2365 } 2366 2367 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2368 unsigned int, vlen, unsigned int, flags, 2369 struct timespec __user *, timeout) 2370 { 2371 int datagrams; 2372 struct timespec timeout_sys; 2373 2374 if (flags & MSG_CMSG_COMPAT) 2375 return -EINVAL; 2376 2377 if (!timeout) 2378 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2379 2380 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2381 return -EFAULT; 2382 2383 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2384 2385 if (datagrams > 0 && 2386 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2387 datagrams = -EFAULT; 2388 2389 return datagrams; 2390 } 2391 2392 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2393 /* Argument list sizes for sys_socketcall */ 2394 #define AL(x) ((x) * sizeof(unsigned long)) 2395 static const unsigned char nargs[21] = { 2396 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2397 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2398 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2399 AL(4), AL(5), AL(4) 2400 }; 2401 2402 #undef AL 2403 2404 /* 2405 * System call vectors. 2406 * 2407 * Argument checking cleaned up. Saved 20% in size. 2408 * This function doesn't need to set the kernel lock because 2409 * it is set by the callees. 2410 */ 2411 2412 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2413 { 2414 unsigned long a[AUDITSC_ARGS]; 2415 unsigned long a0, a1; 2416 int err; 2417 unsigned int len; 2418 2419 if (call < 1 || call > SYS_SENDMMSG) 2420 return -EINVAL; 2421 2422 len = nargs[call]; 2423 if (len > sizeof(a)) 2424 return -EINVAL; 2425 2426 /* copy_from_user should be SMP safe. */ 2427 if (copy_from_user(a, args, len)) 2428 return -EFAULT; 2429 2430 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2431 if (err) 2432 return err; 2433 2434 a0 = a[0]; 2435 a1 = a[1]; 2436 2437 switch (call) { 2438 case SYS_SOCKET: 2439 err = sys_socket(a0, a1, a[2]); 2440 break; 2441 case SYS_BIND: 2442 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2443 break; 2444 case SYS_CONNECT: 2445 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2446 break; 2447 case SYS_LISTEN: 2448 err = sys_listen(a0, a1); 2449 break; 2450 case SYS_ACCEPT: 2451 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2452 (int __user *)a[2], 0); 2453 break; 2454 case SYS_GETSOCKNAME: 2455 err = 2456 sys_getsockname(a0, (struct sockaddr __user *)a1, 2457 (int __user *)a[2]); 2458 break; 2459 case SYS_GETPEERNAME: 2460 err = 2461 sys_getpeername(a0, (struct sockaddr __user *)a1, 2462 (int __user *)a[2]); 2463 break; 2464 case SYS_SOCKETPAIR: 2465 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2466 break; 2467 case SYS_SEND: 2468 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2469 break; 2470 case SYS_SENDTO: 2471 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2472 (struct sockaddr __user *)a[4], a[5]); 2473 break; 2474 case SYS_RECV: 2475 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2476 break; 2477 case SYS_RECVFROM: 2478 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2479 (struct sockaddr __user *)a[4], 2480 (int __user *)a[5]); 2481 break; 2482 case SYS_SHUTDOWN: 2483 err = sys_shutdown(a0, a1); 2484 break; 2485 case SYS_SETSOCKOPT: 2486 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2487 break; 2488 case SYS_GETSOCKOPT: 2489 err = 2490 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2491 (int __user *)a[4]); 2492 break; 2493 case SYS_SENDMSG: 2494 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2495 break; 2496 case SYS_SENDMMSG: 2497 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2498 break; 2499 case SYS_RECVMSG: 2500 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2501 break; 2502 case SYS_RECVMMSG: 2503 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2504 (struct timespec __user *)a[4]); 2505 break; 2506 case SYS_ACCEPT4: 2507 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2508 (int __user *)a[2], a[3]); 2509 break; 2510 default: 2511 err = -EINVAL; 2512 break; 2513 } 2514 return err; 2515 } 2516 2517 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2518 2519 /** 2520 * sock_register - add a socket protocol handler 2521 * @ops: description of protocol 2522 * 2523 * This function is called by a protocol handler that wants to 2524 * advertise its address family, and have it linked into the 2525 * socket interface. The value ops->family corresponds to the 2526 * socket system call protocol family. 2527 */ 2528 int sock_register(const struct net_proto_family *ops) 2529 { 2530 int err; 2531 2532 if (ops->family >= NPROTO) { 2533 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2534 return -ENOBUFS; 2535 } 2536 2537 spin_lock(&net_family_lock); 2538 if (rcu_dereference_protected(net_families[ops->family], 2539 lockdep_is_held(&net_family_lock))) 2540 err = -EEXIST; 2541 else { 2542 rcu_assign_pointer(net_families[ops->family], ops); 2543 err = 0; 2544 } 2545 spin_unlock(&net_family_lock); 2546 2547 pr_info("NET: Registered protocol family %d\n", ops->family); 2548 return err; 2549 } 2550 EXPORT_SYMBOL(sock_register); 2551 2552 /** 2553 * sock_unregister - remove a protocol handler 2554 * @family: protocol family to remove 2555 * 2556 * This function is called by a protocol handler that wants to 2557 * remove its address family, and have it unlinked from the 2558 * new socket creation. 2559 * 2560 * If protocol handler is a module, then it can use module reference 2561 * counts to protect against new references. If protocol handler is not 2562 * a module then it needs to provide its own protection in 2563 * the ops->create routine. 2564 */ 2565 void sock_unregister(int family) 2566 { 2567 BUG_ON(family < 0 || family >= NPROTO); 2568 2569 spin_lock(&net_family_lock); 2570 RCU_INIT_POINTER(net_families[family], NULL); 2571 spin_unlock(&net_family_lock); 2572 2573 synchronize_rcu(); 2574 2575 pr_info("NET: Unregistered protocol family %d\n", family); 2576 } 2577 EXPORT_SYMBOL(sock_unregister); 2578 2579 static int __init sock_init(void) 2580 { 2581 int err; 2582 /* 2583 * Initialize the network sysctl infrastructure. 2584 */ 2585 err = net_sysctl_init(); 2586 if (err) 2587 goto out; 2588 2589 /* 2590 * Initialize skbuff SLAB cache 2591 */ 2592 skb_init(); 2593 2594 /* 2595 * Initialize the protocols module. 2596 */ 2597 2598 init_inodecache(); 2599 2600 err = register_filesystem(&sock_fs_type); 2601 if (err) 2602 goto out_fs; 2603 sock_mnt = kern_mount(&sock_fs_type); 2604 if (IS_ERR(sock_mnt)) { 2605 err = PTR_ERR(sock_mnt); 2606 goto out_mount; 2607 } 2608 2609 /* The real protocol initialization is performed in later initcalls. 2610 */ 2611 2612 #ifdef CONFIG_NETFILTER 2613 err = netfilter_init(); 2614 if (err) 2615 goto out; 2616 #endif 2617 2618 ptp_classifier_init(); 2619 2620 out: 2621 return err; 2622 2623 out_mount: 2624 unregister_filesystem(&sock_fs_type); 2625 out_fs: 2626 goto out; 2627 } 2628 2629 core_initcall(sock_init); /* early initcall */ 2630 2631 #ifdef CONFIG_PROC_FS 2632 void socket_seq_show(struct seq_file *seq) 2633 { 2634 int cpu; 2635 int counter = 0; 2636 2637 for_each_possible_cpu(cpu) 2638 counter += per_cpu(sockets_in_use, cpu); 2639 2640 /* It can be negative, by the way. 8) */ 2641 if (counter < 0) 2642 counter = 0; 2643 2644 seq_printf(seq, "sockets: used %d\n", counter); 2645 } 2646 #endif /* CONFIG_PROC_FS */ 2647 2648 #ifdef CONFIG_COMPAT 2649 static int do_siocgstamp(struct net *net, struct socket *sock, 2650 unsigned int cmd, void __user *up) 2651 { 2652 mm_segment_t old_fs = get_fs(); 2653 struct timeval ktv; 2654 int err; 2655 2656 set_fs(KERNEL_DS); 2657 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2658 set_fs(old_fs); 2659 if (!err) 2660 err = compat_put_timeval(&ktv, up); 2661 2662 return err; 2663 } 2664 2665 static int do_siocgstampns(struct net *net, struct socket *sock, 2666 unsigned int cmd, void __user *up) 2667 { 2668 mm_segment_t old_fs = get_fs(); 2669 struct timespec kts; 2670 int err; 2671 2672 set_fs(KERNEL_DS); 2673 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2674 set_fs(old_fs); 2675 if (!err) 2676 err = compat_put_timespec(&kts, up); 2677 2678 return err; 2679 } 2680 2681 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2682 { 2683 struct ifreq __user *uifr; 2684 int err; 2685 2686 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2687 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2688 return -EFAULT; 2689 2690 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2691 if (err) 2692 return err; 2693 2694 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2695 return -EFAULT; 2696 2697 return 0; 2698 } 2699 2700 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2701 { 2702 struct compat_ifconf ifc32; 2703 struct ifconf ifc; 2704 struct ifconf __user *uifc; 2705 struct compat_ifreq __user *ifr32; 2706 struct ifreq __user *ifr; 2707 unsigned int i, j; 2708 int err; 2709 2710 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2711 return -EFAULT; 2712 2713 memset(&ifc, 0, sizeof(ifc)); 2714 if (ifc32.ifcbuf == 0) { 2715 ifc32.ifc_len = 0; 2716 ifc.ifc_len = 0; 2717 ifc.ifc_req = NULL; 2718 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2719 } else { 2720 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2721 sizeof(struct ifreq); 2722 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2723 ifc.ifc_len = len; 2724 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2725 ifr32 = compat_ptr(ifc32.ifcbuf); 2726 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2727 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2728 return -EFAULT; 2729 ifr++; 2730 ifr32++; 2731 } 2732 } 2733 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2734 return -EFAULT; 2735 2736 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2737 if (err) 2738 return err; 2739 2740 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2741 return -EFAULT; 2742 2743 ifr = ifc.ifc_req; 2744 ifr32 = compat_ptr(ifc32.ifcbuf); 2745 for (i = 0, j = 0; 2746 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2747 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2748 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2749 return -EFAULT; 2750 ifr32++; 2751 ifr++; 2752 } 2753 2754 if (ifc32.ifcbuf == 0) { 2755 /* Translate from 64-bit structure multiple to 2756 * a 32-bit one. 2757 */ 2758 i = ifc.ifc_len; 2759 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2760 ifc32.ifc_len = i; 2761 } else { 2762 ifc32.ifc_len = i; 2763 } 2764 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2765 return -EFAULT; 2766 2767 return 0; 2768 } 2769 2770 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2771 { 2772 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2773 bool convert_in = false, convert_out = false; 2774 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2775 struct ethtool_rxnfc __user *rxnfc; 2776 struct ifreq __user *ifr; 2777 u32 rule_cnt = 0, actual_rule_cnt; 2778 u32 ethcmd; 2779 u32 data; 2780 int ret; 2781 2782 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2783 return -EFAULT; 2784 2785 compat_rxnfc = compat_ptr(data); 2786 2787 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2788 return -EFAULT; 2789 2790 /* Most ethtool structures are defined without padding. 2791 * Unfortunately struct ethtool_rxnfc is an exception. 2792 */ 2793 switch (ethcmd) { 2794 default: 2795 break; 2796 case ETHTOOL_GRXCLSRLALL: 2797 /* Buffer size is variable */ 2798 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2799 return -EFAULT; 2800 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2801 return -ENOMEM; 2802 buf_size += rule_cnt * sizeof(u32); 2803 /* fall through */ 2804 case ETHTOOL_GRXRINGS: 2805 case ETHTOOL_GRXCLSRLCNT: 2806 case ETHTOOL_GRXCLSRULE: 2807 case ETHTOOL_SRXCLSRLINS: 2808 convert_out = true; 2809 /* fall through */ 2810 case ETHTOOL_SRXCLSRLDEL: 2811 buf_size += sizeof(struct ethtool_rxnfc); 2812 convert_in = true; 2813 break; 2814 } 2815 2816 ifr = compat_alloc_user_space(buf_size); 2817 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2818 2819 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2820 return -EFAULT; 2821 2822 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2823 &ifr->ifr_ifru.ifru_data)) 2824 return -EFAULT; 2825 2826 if (convert_in) { 2827 /* We expect there to be holes between fs.m_ext and 2828 * fs.ring_cookie and at the end of fs, but nowhere else. 2829 */ 2830 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2831 sizeof(compat_rxnfc->fs.m_ext) != 2832 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2833 sizeof(rxnfc->fs.m_ext)); 2834 BUILD_BUG_ON( 2835 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2836 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2837 offsetof(struct ethtool_rxnfc, fs.location) - 2838 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2839 2840 if (copy_in_user(rxnfc, compat_rxnfc, 2841 (void __user *)(&rxnfc->fs.m_ext + 1) - 2842 (void __user *)rxnfc) || 2843 copy_in_user(&rxnfc->fs.ring_cookie, 2844 &compat_rxnfc->fs.ring_cookie, 2845 (void __user *)(&rxnfc->fs.location + 1) - 2846 (void __user *)&rxnfc->fs.ring_cookie) || 2847 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2848 sizeof(rxnfc->rule_cnt))) 2849 return -EFAULT; 2850 } 2851 2852 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2853 if (ret) 2854 return ret; 2855 2856 if (convert_out) { 2857 if (copy_in_user(compat_rxnfc, rxnfc, 2858 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2859 (const void __user *)rxnfc) || 2860 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2861 &rxnfc->fs.ring_cookie, 2862 (const void __user *)(&rxnfc->fs.location + 1) - 2863 (const void __user *)&rxnfc->fs.ring_cookie) || 2864 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2865 sizeof(rxnfc->rule_cnt))) 2866 return -EFAULT; 2867 2868 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2869 /* As an optimisation, we only copy the actual 2870 * number of rules that the underlying 2871 * function returned. Since Mallory might 2872 * change the rule count in user memory, we 2873 * check that it is less than the rule count 2874 * originally given (as the user buffer size), 2875 * which has been range-checked. 2876 */ 2877 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2878 return -EFAULT; 2879 if (actual_rule_cnt < rule_cnt) 2880 rule_cnt = actual_rule_cnt; 2881 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2882 &rxnfc->rule_locs[0], 2883 rule_cnt * sizeof(u32))) 2884 return -EFAULT; 2885 } 2886 } 2887 2888 return 0; 2889 } 2890 2891 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2892 { 2893 void __user *uptr; 2894 compat_uptr_t uptr32; 2895 struct ifreq __user *uifr; 2896 2897 uifr = compat_alloc_user_space(sizeof(*uifr)); 2898 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2899 return -EFAULT; 2900 2901 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2902 return -EFAULT; 2903 2904 uptr = compat_ptr(uptr32); 2905 2906 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2907 return -EFAULT; 2908 2909 return dev_ioctl(net, SIOCWANDEV, uifr); 2910 } 2911 2912 static int bond_ioctl(struct net *net, unsigned int cmd, 2913 struct compat_ifreq __user *ifr32) 2914 { 2915 struct ifreq kifr; 2916 mm_segment_t old_fs; 2917 int err; 2918 2919 switch (cmd) { 2920 case SIOCBONDENSLAVE: 2921 case SIOCBONDRELEASE: 2922 case SIOCBONDSETHWADDR: 2923 case SIOCBONDCHANGEACTIVE: 2924 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2925 return -EFAULT; 2926 2927 old_fs = get_fs(); 2928 set_fs(KERNEL_DS); 2929 err = dev_ioctl(net, cmd, 2930 (struct ifreq __user __force *) &kifr); 2931 set_fs(old_fs); 2932 2933 return err; 2934 default: 2935 return -ENOIOCTLCMD; 2936 } 2937 } 2938 2939 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2940 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2941 struct compat_ifreq __user *u_ifreq32) 2942 { 2943 struct ifreq __user *u_ifreq64; 2944 char tmp_buf[IFNAMSIZ]; 2945 void __user *data64; 2946 u32 data32; 2947 2948 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2949 IFNAMSIZ)) 2950 return -EFAULT; 2951 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2952 return -EFAULT; 2953 data64 = compat_ptr(data32); 2954 2955 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2956 2957 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2958 IFNAMSIZ)) 2959 return -EFAULT; 2960 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2961 return -EFAULT; 2962 2963 return dev_ioctl(net, cmd, u_ifreq64); 2964 } 2965 2966 static int dev_ifsioc(struct net *net, struct socket *sock, 2967 unsigned int cmd, struct compat_ifreq __user *uifr32) 2968 { 2969 struct ifreq __user *uifr; 2970 int err; 2971 2972 uifr = compat_alloc_user_space(sizeof(*uifr)); 2973 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2974 return -EFAULT; 2975 2976 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2977 2978 if (!err) { 2979 switch (cmd) { 2980 case SIOCGIFFLAGS: 2981 case SIOCGIFMETRIC: 2982 case SIOCGIFMTU: 2983 case SIOCGIFMEM: 2984 case SIOCGIFHWADDR: 2985 case SIOCGIFINDEX: 2986 case SIOCGIFADDR: 2987 case SIOCGIFBRDADDR: 2988 case SIOCGIFDSTADDR: 2989 case SIOCGIFNETMASK: 2990 case SIOCGIFPFLAGS: 2991 case SIOCGIFTXQLEN: 2992 case SIOCGMIIPHY: 2993 case SIOCGMIIREG: 2994 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2995 err = -EFAULT; 2996 break; 2997 } 2998 } 2999 return err; 3000 } 3001 3002 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3003 struct compat_ifreq __user *uifr32) 3004 { 3005 struct ifreq ifr; 3006 struct compat_ifmap __user *uifmap32; 3007 mm_segment_t old_fs; 3008 int err; 3009 3010 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3011 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3012 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3013 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3014 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3015 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3016 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3017 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3018 if (err) 3019 return -EFAULT; 3020 3021 old_fs = get_fs(); 3022 set_fs(KERNEL_DS); 3023 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3024 set_fs(old_fs); 3025 3026 if (cmd == SIOCGIFMAP && !err) { 3027 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3028 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3029 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3030 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3031 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3032 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3033 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3034 if (err) 3035 err = -EFAULT; 3036 } 3037 return err; 3038 } 3039 3040 struct rtentry32 { 3041 u32 rt_pad1; 3042 struct sockaddr rt_dst; /* target address */ 3043 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3044 struct sockaddr rt_genmask; /* target network mask (IP) */ 3045 unsigned short rt_flags; 3046 short rt_pad2; 3047 u32 rt_pad3; 3048 unsigned char rt_tos; 3049 unsigned char rt_class; 3050 short rt_pad4; 3051 short rt_metric; /* +1 for binary compatibility! */ 3052 /* char * */ u32 rt_dev; /* forcing the device at add */ 3053 u32 rt_mtu; /* per route MTU/Window */ 3054 u32 rt_window; /* Window clamping */ 3055 unsigned short rt_irtt; /* Initial RTT */ 3056 }; 3057 3058 struct in6_rtmsg32 { 3059 struct in6_addr rtmsg_dst; 3060 struct in6_addr rtmsg_src; 3061 struct in6_addr rtmsg_gateway; 3062 u32 rtmsg_type; 3063 u16 rtmsg_dst_len; 3064 u16 rtmsg_src_len; 3065 u32 rtmsg_metric; 3066 u32 rtmsg_info; 3067 u32 rtmsg_flags; 3068 s32 rtmsg_ifindex; 3069 }; 3070 3071 static int routing_ioctl(struct net *net, struct socket *sock, 3072 unsigned int cmd, void __user *argp) 3073 { 3074 int ret; 3075 void *r = NULL; 3076 struct in6_rtmsg r6; 3077 struct rtentry r4; 3078 char devname[16]; 3079 u32 rtdev; 3080 mm_segment_t old_fs = get_fs(); 3081 3082 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3083 struct in6_rtmsg32 __user *ur6 = argp; 3084 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3085 3 * sizeof(struct in6_addr)); 3086 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3087 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3088 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3089 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3090 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3091 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3092 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3093 3094 r = (void *) &r6; 3095 } else { /* ipv4 */ 3096 struct rtentry32 __user *ur4 = argp; 3097 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3098 3 * sizeof(struct sockaddr)); 3099 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3100 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3101 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3102 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3103 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3104 ret |= get_user(rtdev, &(ur4->rt_dev)); 3105 if (rtdev) { 3106 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3107 r4.rt_dev = (char __user __force *)devname; 3108 devname[15] = 0; 3109 } else 3110 r4.rt_dev = NULL; 3111 3112 r = (void *) &r4; 3113 } 3114 3115 if (ret) { 3116 ret = -EFAULT; 3117 goto out; 3118 } 3119 3120 set_fs(KERNEL_DS); 3121 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3122 set_fs(old_fs); 3123 3124 out: 3125 return ret; 3126 } 3127 3128 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3129 * for some operations; this forces use of the newer bridge-utils that 3130 * use compatible ioctls 3131 */ 3132 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3133 { 3134 compat_ulong_t tmp; 3135 3136 if (get_user(tmp, argp)) 3137 return -EFAULT; 3138 if (tmp == BRCTL_GET_VERSION) 3139 return BRCTL_VERSION + 1; 3140 return -EINVAL; 3141 } 3142 3143 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3144 unsigned int cmd, unsigned long arg) 3145 { 3146 void __user *argp = compat_ptr(arg); 3147 struct sock *sk = sock->sk; 3148 struct net *net = sock_net(sk); 3149 3150 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3151 return compat_ifr_data_ioctl(net, cmd, argp); 3152 3153 switch (cmd) { 3154 case SIOCSIFBR: 3155 case SIOCGIFBR: 3156 return old_bridge_ioctl(argp); 3157 case SIOCGIFNAME: 3158 return dev_ifname32(net, argp); 3159 case SIOCGIFCONF: 3160 return dev_ifconf(net, argp); 3161 case SIOCETHTOOL: 3162 return ethtool_ioctl(net, argp); 3163 case SIOCWANDEV: 3164 return compat_siocwandev(net, argp); 3165 case SIOCGIFMAP: 3166 case SIOCSIFMAP: 3167 return compat_sioc_ifmap(net, cmd, argp); 3168 case SIOCBONDENSLAVE: 3169 case SIOCBONDRELEASE: 3170 case SIOCBONDSETHWADDR: 3171 case SIOCBONDCHANGEACTIVE: 3172 return bond_ioctl(net, cmd, argp); 3173 case SIOCADDRT: 3174 case SIOCDELRT: 3175 return routing_ioctl(net, sock, cmd, argp); 3176 case SIOCGSTAMP: 3177 return do_siocgstamp(net, sock, cmd, argp); 3178 case SIOCGSTAMPNS: 3179 return do_siocgstampns(net, sock, cmd, argp); 3180 case SIOCBONDSLAVEINFOQUERY: 3181 case SIOCBONDINFOQUERY: 3182 case SIOCSHWTSTAMP: 3183 case SIOCGHWTSTAMP: 3184 return compat_ifr_data_ioctl(net, cmd, argp); 3185 3186 case FIOSETOWN: 3187 case SIOCSPGRP: 3188 case FIOGETOWN: 3189 case SIOCGPGRP: 3190 case SIOCBRADDBR: 3191 case SIOCBRDELBR: 3192 case SIOCGIFVLAN: 3193 case SIOCSIFVLAN: 3194 case SIOCADDDLCI: 3195 case SIOCDELDLCI: 3196 case SIOCGSKNS: 3197 return sock_ioctl(file, cmd, arg); 3198 3199 case SIOCGIFFLAGS: 3200 case SIOCSIFFLAGS: 3201 case SIOCGIFMETRIC: 3202 case SIOCSIFMETRIC: 3203 case SIOCGIFMTU: 3204 case SIOCSIFMTU: 3205 case SIOCGIFMEM: 3206 case SIOCSIFMEM: 3207 case SIOCGIFHWADDR: 3208 case SIOCSIFHWADDR: 3209 case SIOCADDMULTI: 3210 case SIOCDELMULTI: 3211 case SIOCGIFINDEX: 3212 case SIOCGIFADDR: 3213 case SIOCSIFADDR: 3214 case SIOCSIFHWBROADCAST: 3215 case SIOCDIFADDR: 3216 case SIOCGIFBRDADDR: 3217 case SIOCSIFBRDADDR: 3218 case SIOCGIFDSTADDR: 3219 case SIOCSIFDSTADDR: 3220 case SIOCGIFNETMASK: 3221 case SIOCSIFNETMASK: 3222 case SIOCSIFPFLAGS: 3223 case SIOCGIFPFLAGS: 3224 case SIOCGIFTXQLEN: 3225 case SIOCSIFTXQLEN: 3226 case SIOCBRADDIF: 3227 case SIOCBRDELIF: 3228 case SIOCSIFNAME: 3229 case SIOCGMIIPHY: 3230 case SIOCGMIIREG: 3231 case SIOCSMIIREG: 3232 return dev_ifsioc(net, sock, cmd, argp); 3233 3234 case SIOCSARP: 3235 case SIOCGARP: 3236 case SIOCDARP: 3237 case SIOCATMARK: 3238 return sock_do_ioctl(net, sock, cmd, arg); 3239 } 3240 3241 return -ENOIOCTLCMD; 3242 } 3243 3244 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3245 unsigned long arg) 3246 { 3247 struct socket *sock = file->private_data; 3248 int ret = -ENOIOCTLCMD; 3249 struct sock *sk; 3250 struct net *net; 3251 3252 sk = sock->sk; 3253 net = sock_net(sk); 3254 3255 if (sock->ops->compat_ioctl) 3256 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3257 3258 if (ret == -ENOIOCTLCMD && 3259 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3260 ret = compat_wext_handle_ioctl(net, cmd, arg); 3261 3262 if (ret == -ENOIOCTLCMD) 3263 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3264 3265 return ret; 3266 } 3267 #endif 3268 3269 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3270 { 3271 return sock->ops->bind(sock, addr, addrlen); 3272 } 3273 EXPORT_SYMBOL(kernel_bind); 3274 3275 int kernel_listen(struct socket *sock, int backlog) 3276 { 3277 return sock->ops->listen(sock, backlog); 3278 } 3279 EXPORT_SYMBOL(kernel_listen); 3280 3281 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3282 { 3283 struct sock *sk = sock->sk; 3284 int err; 3285 3286 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3287 newsock); 3288 if (err < 0) 3289 goto done; 3290 3291 err = sock->ops->accept(sock, *newsock, flags, true); 3292 if (err < 0) { 3293 sock_release(*newsock); 3294 *newsock = NULL; 3295 goto done; 3296 } 3297 3298 (*newsock)->ops = sock->ops; 3299 __module_get((*newsock)->ops->owner); 3300 3301 done: 3302 return err; 3303 } 3304 EXPORT_SYMBOL(kernel_accept); 3305 3306 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3307 int flags) 3308 { 3309 return sock->ops->connect(sock, addr, addrlen, flags); 3310 } 3311 EXPORT_SYMBOL(kernel_connect); 3312 3313 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3314 int *addrlen) 3315 { 3316 return sock->ops->getname(sock, addr, addrlen, 0); 3317 } 3318 EXPORT_SYMBOL(kernel_getsockname); 3319 3320 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3321 int *addrlen) 3322 { 3323 return sock->ops->getname(sock, addr, addrlen, 1); 3324 } 3325 EXPORT_SYMBOL(kernel_getpeername); 3326 3327 int kernel_getsockopt(struct socket *sock, int level, int optname, 3328 char *optval, int *optlen) 3329 { 3330 mm_segment_t oldfs = get_fs(); 3331 char __user *uoptval; 3332 int __user *uoptlen; 3333 int err; 3334 3335 uoptval = (char __user __force *) optval; 3336 uoptlen = (int __user __force *) optlen; 3337 3338 set_fs(KERNEL_DS); 3339 if (level == SOL_SOCKET) 3340 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3341 else 3342 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3343 uoptlen); 3344 set_fs(oldfs); 3345 return err; 3346 } 3347 EXPORT_SYMBOL(kernel_getsockopt); 3348 3349 int kernel_setsockopt(struct socket *sock, int level, int optname, 3350 char *optval, unsigned int optlen) 3351 { 3352 mm_segment_t oldfs = get_fs(); 3353 char __user *uoptval; 3354 int err; 3355 3356 uoptval = (char __user __force *) optval; 3357 3358 set_fs(KERNEL_DS); 3359 if (level == SOL_SOCKET) 3360 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3361 else 3362 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3363 optlen); 3364 set_fs(oldfs); 3365 return err; 3366 } 3367 EXPORT_SYMBOL(kernel_setsockopt); 3368 3369 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3370 size_t size, int flags) 3371 { 3372 if (sock->ops->sendpage) 3373 return sock->ops->sendpage(sock, page, offset, size, flags); 3374 3375 return sock_no_sendpage(sock, page, offset, size, flags); 3376 } 3377 EXPORT_SYMBOL(kernel_sendpage); 3378 3379 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3380 { 3381 mm_segment_t oldfs = get_fs(); 3382 int err; 3383 3384 set_fs(KERNEL_DS); 3385 err = sock->ops->ioctl(sock, cmd, arg); 3386 set_fs(oldfs); 3387 3388 return err; 3389 } 3390 EXPORT_SYMBOL(kernel_sock_ioctl); 3391 3392 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3393 { 3394 return sock->ops->shutdown(sock, how); 3395 } 3396 EXPORT_SYMBOL(kernel_sock_shutdown); 3397 3398 /* This routine returns the IP overhead imposed by a socket i.e. 3399 * the length of the underlying IP header, depending on whether 3400 * this is an IPv4 or IPv6 socket and the length from IP options turned 3401 * on at the socket. Assumes that the caller has a lock on the socket. 3402 */ 3403 u32 kernel_sock_ip_overhead(struct sock *sk) 3404 { 3405 struct inet_sock *inet; 3406 struct ip_options_rcu *opt; 3407 u32 overhead = 0; 3408 bool owned_by_user; 3409 #if IS_ENABLED(CONFIG_IPV6) 3410 struct ipv6_pinfo *np; 3411 struct ipv6_txoptions *optv6 = NULL; 3412 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3413 3414 if (!sk) 3415 return overhead; 3416 3417 owned_by_user = sock_owned_by_user(sk); 3418 switch (sk->sk_family) { 3419 case AF_INET: 3420 inet = inet_sk(sk); 3421 overhead += sizeof(struct iphdr); 3422 opt = rcu_dereference_protected(inet->inet_opt, 3423 owned_by_user); 3424 if (opt) 3425 overhead += opt->opt.optlen; 3426 return overhead; 3427 #if IS_ENABLED(CONFIG_IPV6) 3428 case AF_INET6: 3429 np = inet6_sk(sk); 3430 overhead += sizeof(struct ipv6hdr); 3431 if (np) 3432 optv6 = rcu_dereference_protected(np->opt, 3433 owned_by_user); 3434 if (optv6) 3435 overhead += (optv6->opt_flen + optv6->opt_nflen); 3436 return overhead; 3437 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3438 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3439 return overhead; 3440 } 3441 } 3442 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3443