xref: /openbmc/linux/net/socket.c (revision d2999e1b)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 			 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 			  unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 			     int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 
137 /*
138  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139  *	in the operation structures but are done directly via the socketcall() multiplexor.
140  */
141 
142 static const struct file_operations socket_file_ops = {
143 	.owner =	THIS_MODULE,
144 	.llseek =	no_llseek,
145 	.aio_read =	sock_aio_read,
146 	.aio_write =	sock_aio_write,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
154 	.release =	sock_close,
155 	.fasync =	sock_fasync,
156 	.sendpage =	sock_sendpage,
157 	.splice_write = generic_splice_sendpage,
158 	.splice_read =	sock_splice_read,
159 };
160 
161 /*
162  *	The protocol list. Each protocol is registered in here.
163  */
164 
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 
168 /*
169  *	Statistics counters of the socket lists
170  */
171 
172 static DEFINE_PER_CPU(int, sockets_in_use);
173 
174 /*
175  * Support routines.
176  * Move socket addresses back and forth across the kernel/user
177  * divide and look after the messy bits.
178  */
179 
180 /**
181  *	move_addr_to_kernel	-	copy a socket address into kernel space
182  *	@uaddr: Address in user space
183  *	@kaddr: Address in kernel space
184  *	@ulen: Length in user space
185  *
186  *	The address is copied into kernel space. If the provided address is
187  *	too long an error code of -EINVAL is returned. If the copy gives
188  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
189  */
190 
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 {
193 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 		return -EINVAL;
195 	if (ulen == 0)
196 		return 0;
197 	if (copy_from_user(kaddr, uaddr, ulen))
198 		return -EFAULT;
199 	return audit_sockaddr(ulen, kaddr);
200 }
201 
202 /**
203  *	move_addr_to_user	-	copy an address to user space
204  *	@kaddr: kernel space address
205  *	@klen: length of address in kernel
206  *	@uaddr: user space address
207  *	@ulen: pointer to user length field
208  *
209  *	The value pointed to by ulen on entry is the buffer length available.
210  *	This is overwritten with the buffer space used. -EINVAL is returned
211  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
212  *	is returned if either the buffer or the length field are not
213  *	accessible.
214  *	After copying the data up to the limit the user specifies, the true
215  *	length of the data is written over the length limit the user
216  *	specified. Zero is returned for a success.
217  */
218 
219 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220 			     void __user *uaddr, int __user *ulen)
221 {
222 	int err;
223 	int len;
224 
225 	BUG_ON(klen > sizeof(struct sockaddr_storage));
226 	err = get_user(len, ulen);
227 	if (err)
228 		return err;
229 	if (len > klen)
230 		len = klen;
231 	if (len < 0)
232 		return -EINVAL;
233 	if (len) {
234 		if (audit_sockaddr(klen, kaddr))
235 			return -ENOMEM;
236 		if (copy_to_user(uaddr, kaddr, len))
237 			return -EFAULT;
238 	}
239 	/*
240 	 *      "fromlen shall refer to the value before truncation.."
241 	 *                      1003.1g
242 	 */
243 	return __put_user(klen, ulen);
244 }
245 
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 	struct socket_alloc *ei;
251 	struct socket_wq *wq;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
257 	if (!wq) {
258 		kmem_cache_free(sock_inode_cachep, ei);
259 		return NULL;
260 	}
261 	init_waitqueue_head(&wq->wait);
262 	wq->fasync_list = NULL;
263 	RCU_INIT_POINTER(ei->socket.wq, wq);
264 
265 	ei->socket.state = SS_UNCONNECTED;
266 	ei->socket.flags = 0;
267 	ei->socket.ops = NULL;
268 	ei->socket.sk = NULL;
269 	ei->socket.file = NULL;
270 
271 	return &ei->vfs_inode;
272 }
273 
274 static void sock_destroy_inode(struct inode *inode)
275 {
276 	struct socket_alloc *ei;
277 	struct socket_wq *wq;
278 
279 	ei = container_of(inode, struct socket_alloc, vfs_inode);
280 	wq = rcu_dereference_protected(ei->socket.wq, 1);
281 	kfree_rcu(wq, rcu);
282 	kmem_cache_free(sock_inode_cachep, ei);
283 }
284 
285 static void init_once(void *foo)
286 {
287 	struct socket_alloc *ei = (struct socket_alloc *)foo;
288 
289 	inode_init_once(&ei->vfs_inode);
290 }
291 
292 static int init_inodecache(void)
293 {
294 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
295 					      sizeof(struct socket_alloc),
296 					      0,
297 					      (SLAB_HWCACHE_ALIGN |
298 					       SLAB_RECLAIM_ACCOUNT |
299 					       SLAB_MEM_SPREAD),
300 					      init_once);
301 	if (sock_inode_cachep == NULL)
302 		return -ENOMEM;
303 	return 0;
304 }
305 
306 static const struct super_operations sockfs_ops = {
307 	.alloc_inode	= sock_alloc_inode,
308 	.destroy_inode	= sock_destroy_inode,
309 	.statfs		= simple_statfs,
310 };
311 
312 /*
313  * sockfs_dname() is called from d_path().
314  */
315 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 {
317 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
318 				dentry->d_inode->i_ino);
319 }
320 
321 static const struct dentry_operations sockfs_dentry_operations = {
322 	.d_dname  = sockfs_dname,
323 };
324 
325 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
326 			 int flags, const char *dev_name, void *data)
327 {
328 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
329 		&sockfs_dentry_operations, SOCKFS_MAGIC);
330 }
331 
332 static struct vfsmount *sock_mnt __read_mostly;
333 
334 static struct file_system_type sock_fs_type = {
335 	.name =		"sockfs",
336 	.mount =	sockfs_mount,
337 	.kill_sb =	kill_anon_super,
338 };
339 
340 /*
341  *	Obtains the first available file descriptor and sets it up for use.
342  *
343  *	These functions create file structures and maps them to fd space
344  *	of the current process. On success it returns file descriptor
345  *	and file struct implicitly stored in sock->file.
346  *	Note that another thread may close file descriptor before we return
347  *	from this function. We use the fact that now we do not refer
348  *	to socket after mapping. If one day we will need it, this
349  *	function will increment ref. count on file by 1.
350  *
351  *	In any case returned fd MAY BE not valid!
352  *	This race condition is unavoidable
353  *	with shared fd spaces, we cannot solve it inside kernel,
354  *	but we take care of internal coherence yet.
355  */
356 
357 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 {
359 	struct qstr name = { .name = "" };
360 	struct path path;
361 	struct file *file;
362 
363 	if (dname) {
364 		name.name = dname;
365 		name.len = strlen(name.name);
366 	} else if (sock->sk) {
367 		name.name = sock->sk->sk_prot_creator->name;
368 		name.len = strlen(name.name);
369 	}
370 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
371 	if (unlikely(!path.dentry))
372 		return ERR_PTR(-ENOMEM);
373 	path.mnt = mntget(sock_mnt);
374 
375 	d_instantiate(path.dentry, SOCK_INODE(sock));
376 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
377 
378 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
379 		  &socket_file_ops);
380 	if (unlikely(IS_ERR(file))) {
381 		/* drop dentry, keep inode */
382 		ihold(path.dentry->d_inode);
383 		path_put(&path);
384 		return file;
385 	}
386 
387 	sock->file = file;
388 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
389 	file->private_data = sock;
390 	return file;
391 }
392 EXPORT_SYMBOL(sock_alloc_file);
393 
394 static int sock_map_fd(struct socket *sock, int flags)
395 {
396 	struct file *newfile;
397 	int fd = get_unused_fd_flags(flags);
398 	if (unlikely(fd < 0))
399 		return fd;
400 
401 	newfile = sock_alloc_file(sock, flags, NULL);
402 	if (likely(!IS_ERR(newfile))) {
403 		fd_install(fd, newfile);
404 		return fd;
405 	}
406 
407 	put_unused_fd(fd);
408 	return PTR_ERR(newfile);
409 }
410 
411 struct socket *sock_from_file(struct file *file, int *err)
412 {
413 	if (file->f_op == &socket_file_ops)
414 		return file->private_data;	/* set in sock_map_fd */
415 
416 	*err = -ENOTSOCK;
417 	return NULL;
418 }
419 EXPORT_SYMBOL(sock_from_file);
420 
421 /**
422  *	sockfd_lookup - Go from a file number to its socket slot
423  *	@fd: file handle
424  *	@err: pointer to an error code return
425  *
426  *	The file handle passed in is locked and the socket it is bound
427  *	too is returned. If an error occurs the err pointer is overwritten
428  *	with a negative errno code and NULL is returned. The function checks
429  *	for both invalid handles and passing a handle which is not a socket.
430  *
431  *	On a success the socket object pointer is returned.
432  */
433 
434 struct socket *sockfd_lookup(int fd, int *err)
435 {
436 	struct file *file;
437 	struct socket *sock;
438 
439 	file = fget(fd);
440 	if (!file) {
441 		*err = -EBADF;
442 		return NULL;
443 	}
444 
445 	sock = sock_from_file(file, err);
446 	if (!sock)
447 		fput(file);
448 	return sock;
449 }
450 EXPORT_SYMBOL(sockfd_lookup);
451 
452 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 {
454 	struct fd f = fdget(fd);
455 	struct socket *sock;
456 
457 	*err = -EBADF;
458 	if (f.file) {
459 		sock = sock_from_file(f.file, err);
460 		if (likely(sock)) {
461 			*fput_needed = f.flags;
462 			return sock;
463 		}
464 		fdput(f);
465 	}
466 	return NULL;
467 }
468 
469 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472 static ssize_t sockfs_getxattr(struct dentry *dentry,
473 			       const char *name, void *value, size_t size)
474 {
475 	const char *proto_name;
476 	size_t proto_size;
477 	int error;
478 
479 	error = -ENODATA;
480 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
481 		proto_name = dentry->d_name.name;
482 		proto_size = strlen(proto_name);
483 
484 		if (value) {
485 			error = -ERANGE;
486 			if (proto_size + 1 > size)
487 				goto out;
488 
489 			strncpy(value, proto_name, proto_size + 1);
490 		}
491 		error = proto_size + 1;
492 	}
493 
494 out:
495 	return error;
496 }
497 
498 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499 				size_t size)
500 {
501 	ssize_t len;
502 	ssize_t used = 0;
503 
504 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
505 	if (len < 0)
506 		return len;
507 	used += len;
508 	if (buffer) {
509 		if (size < used)
510 			return -ERANGE;
511 		buffer += len;
512 	}
513 
514 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520 		buffer += len;
521 	}
522 
523 	return used;
524 }
525 
526 static const struct inode_operations sockfs_inode_ops = {
527 	.getxattr = sockfs_getxattr,
528 	.listxattr = sockfs_listxattr,
529 };
530 
531 /**
532  *	sock_alloc	-	allocate a socket
533  *
534  *	Allocate a new inode and socket object. The two are bound together
535  *	and initialised. The socket is then returned. If we are out of inodes
536  *	NULL is returned.
537  */
538 
539 static struct socket *sock_alloc(void)
540 {
541 	struct inode *inode;
542 	struct socket *sock;
543 
544 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
545 	if (!inode)
546 		return NULL;
547 
548 	sock = SOCKET_I(inode);
549 
550 	kmemcheck_annotate_bitfield(sock, type);
551 	inode->i_ino = get_next_ino();
552 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
553 	inode->i_uid = current_fsuid();
554 	inode->i_gid = current_fsgid();
555 	inode->i_op = &sockfs_inode_ops;
556 
557 	this_cpu_add(sockets_in_use, 1);
558 	return sock;
559 }
560 
561 /*
562  *	In theory you can't get an open on this inode, but /proc provides
563  *	a back door. Remember to keep it shut otherwise you'll let the
564  *	creepy crawlies in.
565  */
566 
567 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
568 {
569 	return -ENXIO;
570 }
571 
572 const struct file_operations bad_sock_fops = {
573 	.owner = THIS_MODULE,
574 	.open = sock_no_open,
575 	.llseek = noop_llseek,
576 };
577 
578 /**
579  *	sock_release	-	close a socket
580  *	@sock: socket to close
581  *
582  *	The socket is released from the protocol stack if it has a release
583  *	callback, and the inode is then released if the socket is bound to
584  *	an inode not a file.
585  */
586 
587 void sock_release(struct socket *sock)
588 {
589 	if (sock->ops) {
590 		struct module *owner = sock->ops->owner;
591 
592 		sock->ops->release(sock);
593 		sock->ops = NULL;
594 		module_put(owner);
595 	}
596 
597 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
598 		pr_err("%s: fasync list not empty!\n", __func__);
599 
600 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601 		return;
602 
603 	this_cpu_sub(sockets_in_use, 1);
604 	if (!sock->file) {
605 		iput(SOCK_INODE(sock));
606 		return;
607 	}
608 	sock->file = NULL;
609 }
610 EXPORT_SYMBOL(sock_release);
611 
612 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613 {
614 	*tx_flags = 0;
615 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
616 		*tx_flags |= SKBTX_HW_TSTAMP;
617 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
618 		*tx_flags |= SKBTX_SW_TSTAMP;
619 	if (sock_flag(sk, SOCK_WIFI_STATUS))
620 		*tx_flags |= SKBTX_WIFI_STATUS;
621 }
622 EXPORT_SYMBOL(sock_tx_timestamp);
623 
624 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
625 				       struct msghdr *msg, size_t size)
626 {
627 	struct sock_iocb *si = kiocb_to_siocb(iocb);
628 
629 	si->sock = sock;
630 	si->scm = NULL;
631 	si->msg = msg;
632 	si->size = size;
633 
634 	return sock->ops->sendmsg(iocb, sock, msg, size);
635 }
636 
637 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
638 				 struct msghdr *msg, size_t size)
639 {
640 	int err = security_socket_sendmsg(sock, msg, size);
641 
642 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643 }
644 
645 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
646 {
647 	struct kiocb iocb;
648 	struct sock_iocb siocb;
649 	int ret;
650 
651 	init_sync_kiocb(&iocb, NULL);
652 	iocb.private = &siocb;
653 	ret = __sock_sendmsg(&iocb, sock, msg, size);
654 	if (-EIOCBQUEUED == ret)
655 		ret = wait_on_sync_kiocb(&iocb);
656 	return ret;
657 }
658 EXPORT_SYMBOL(sock_sendmsg);
659 
660 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
661 {
662 	struct kiocb iocb;
663 	struct sock_iocb siocb;
664 	int ret;
665 
666 	init_sync_kiocb(&iocb, NULL);
667 	iocb.private = &siocb;
668 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
669 	if (-EIOCBQUEUED == ret)
670 		ret = wait_on_sync_kiocb(&iocb);
671 	return ret;
672 }
673 
674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 		   struct kvec *vec, size_t num, size_t size)
676 {
677 	mm_segment_t oldfs = get_fs();
678 	int result;
679 
680 	set_fs(KERNEL_DS);
681 	/*
682 	 * the following is safe, since for compiler definitions of kvec and
683 	 * iovec are identical, yielding the same in-core layout and alignment
684 	 */
685 	msg->msg_iov = (struct iovec *)vec;
686 	msg->msg_iovlen = num;
687 	result = sock_sendmsg(sock, msg, size);
688 	set_fs(oldfs);
689 	return result;
690 }
691 EXPORT_SYMBOL(kernel_sendmsg);
692 
693 /*
694  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695  */
696 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
697 	struct sk_buff *skb)
698 {
699 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
700 	struct timespec ts[3];
701 	int empty = 1;
702 	struct skb_shared_hwtstamps *shhwtstamps =
703 		skb_hwtstamps(skb);
704 
705 	/* Race occurred between timestamp enabling and packet
706 	   receiving.  Fill in the current time for now. */
707 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
708 		__net_timestamp(skb);
709 
710 	if (need_software_tstamp) {
711 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
712 			struct timeval tv;
713 			skb_get_timestamp(skb, &tv);
714 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
715 				 sizeof(tv), &tv);
716 		} else {
717 			skb_get_timestampns(skb, &ts[0]);
718 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
719 				 sizeof(ts[0]), &ts[0]);
720 		}
721 	}
722 
723 
724 	memset(ts, 0, sizeof(ts));
725 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
726 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
727 		empty = 0;
728 	if (shhwtstamps) {
729 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
730 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
731 			empty = 0;
732 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
733 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
734 			empty = 0;
735 	}
736 	if (!empty)
737 		put_cmsg(msg, SOL_SOCKET,
738 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
739 }
740 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
741 
742 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
743 	struct sk_buff *skb)
744 {
745 	int ack;
746 
747 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
748 		return;
749 	if (!skb->wifi_acked_valid)
750 		return;
751 
752 	ack = skb->wifi_acked;
753 
754 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
755 }
756 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
757 
758 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
759 				   struct sk_buff *skb)
760 {
761 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
762 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
763 			sizeof(__u32), &skb->dropcount);
764 }
765 
766 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
767 	struct sk_buff *skb)
768 {
769 	sock_recv_timestamp(msg, sk, skb);
770 	sock_recv_drops(msg, sk, skb);
771 }
772 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
773 
774 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
775 				       struct msghdr *msg, size_t size, int flags)
776 {
777 	struct sock_iocb *si = kiocb_to_siocb(iocb);
778 
779 	si->sock = sock;
780 	si->scm = NULL;
781 	si->msg = msg;
782 	si->size = size;
783 	si->flags = flags;
784 
785 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786 }
787 
788 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
789 				 struct msghdr *msg, size_t size, int flags)
790 {
791 	int err = security_socket_recvmsg(sock, msg, size, flags);
792 
793 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794 }
795 
796 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
797 		 size_t size, int flags)
798 {
799 	struct kiocb iocb;
800 	struct sock_iocb siocb;
801 	int ret;
802 
803 	init_sync_kiocb(&iocb, NULL);
804 	iocb.private = &siocb;
805 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
806 	if (-EIOCBQUEUED == ret)
807 		ret = wait_on_sync_kiocb(&iocb);
808 	return ret;
809 }
810 EXPORT_SYMBOL(sock_recvmsg);
811 
812 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 			      size_t size, int flags)
814 {
815 	struct kiocb iocb;
816 	struct sock_iocb siocb;
817 	int ret;
818 
819 	init_sync_kiocb(&iocb, NULL);
820 	iocb.private = &siocb;
821 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
822 	if (-EIOCBQUEUED == ret)
823 		ret = wait_on_sync_kiocb(&iocb);
824 	return ret;
825 }
826 
827 /**
828  * kernel_recvmsg - Receive a message from a socket (kernel space)
829  * @sock:       The socket to receive the message from
830  * @msg:        Received message
831  * @vec:        Input s/g array for message data
832  * @num:        Size of input s/g array
833  * @size:       Number of bytes to read
834  * @flags:      Message flags (MSG_DONTWAIT, etc...)
835  *
836  * On return the msg structure contains the scatter/gather array passed in the
837  * vec argument. The array is modified so that it consists of the unfilled
838  * portion of the original array.
839  *
840  * The returned value is the total number of bytes received, or an error.
841  */
842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843 		   struct kvec *vec, size_t num, size_t size, int flags)
844 {
845 	mm_segment_t oldfs = get_fs();
846 	int result;
847 
848 	set_fs(KERNEL_DS);
849 	/*
850 	 * the following is safe, since for compiler definitions of kvec and
851 	 * iovec are identical, yielding the same in-core layout and alignment
852 	 */
853 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
854 	result = sock_recvmsg(sock, msg, size, flags);
855 	set_fs(oldfs);
856 	return result;
857 }
858 EXPORT_SYMBOL(kernel_recvmsg);
859 
860 static ssize_t sock_sendpage(struct file *file, struct page *page,
861 			     int offset, size_t size, loff_t *ppos, int more)
862 {
863 	struct socket *sock;
864 	int flags;
865 
866 	sock = file->private_data;
867 
868 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
870 	flags |= more;
871 
872 	return kernel_sendpage(sock, page, offset, size, flags);
873 }
874 
875 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
876 				struct pipe_inode_info *pipe, size_t len,
877 				unsigned int flags)
878 {
879 	struct socket *sock = file->private_data;
880 
881 	if (unlikely(!sock->ops->splice_read))
882 		return -EINVAL;
883 
884 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885 }
886 
887 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
888 					 struct sock_iocb *siocb)
889 {
890 	if (!is_sync_kiocb(iocb))
891 		BUG();
892 
893 	siocb->kiocb = iocb;
894 	iocb->private = siocb;
895 	return siocb;
896 }
897 
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 		struct file *file, const struct iovec *iov,
900 		unsigned long nr_segs)
901 {
902 	struct socket *sock = file->private_data;
903 	size_t size = 0;
904 	int i;
905 
906 	for (i = 0; i < nr_segs; i++)
907 		size += iov[i].iov_len;
908 
909 	msg->msg_name = NULL;
910 	msg->msg_namelen = 0;
911 	msg->msg_control = NULL;
912 	msg->msg_controllen = 0;
913 	msg->msg_iov = (struct iovec *)iov;
914 	msg->msg_iovlen = nr_segs;
915 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916 
917 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 }
919 
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 				unsigned long nr_segs, loff_t pos)
922 {
923 	struct sock_iocb siocb, *x;
924 
925 	if (pos != 0)
926 		return -ESPIPE;
927 
928 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
929 		return 0;
930 
931 
932 	x = alloc_sock_iocb(iocb, &siocb);
933 	if (!x)
934 		return -ENOMEM;
935 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 }
937 
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 			struct file *file, const struct iovec *iov,
940 			unsigned long nr_segs)
941 {
942 	struct socket *sock = file->private_data;
943 	size_t size = 0;
944 	int i;
945 
946 	for (i = 0; i < nr_segs; i++)
947 		size += iov[i].iov_len;
948 
949 	msg->msg_name = NULL;
950 	msg->msg_namelen = 0;
951 	msg->msg_control = NULL;
952 	msg->msg_controllen = 0;
953 	msg->msg_iov = (struct iovec *)iov;
954 	msg->msg_iovlen = nr_segs;
955 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 	if (sock->type == SOCK_SEQPACKET)
957 		msg->msg_flags |= MSG_EOR;
958 
959 	return __sock_sendmsg(iocb, sock, msg, size);
960 }
961 
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 			  unsigned long nr_segs, loff_t pos)
964 {
965 	struct sock_iocb siocb, *x;
966 
967 	if (pos != 0)
968 		return -ESPIPE;
969 
970 	x = alloc_sock_iocb(iocb, &siocb);
971 	if (!x)
972 		return -ENOMEM;
973 
974 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976 
977 /*
978  * Atomic setting of ioctl hooks to avoid race
979  * with module unload.
980  */
981 
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984 
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 	mutex_lock(&br_ioctl_mutex);
988 	br_ioctl_hook = hook;
989 	mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992 
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995 
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 	mutex_lock(&vlan_ioctl_mutex);
999 	vlan_ioctl_hook = hook;
1000 	mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003 
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006 
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 	mutex_lock(&dlci_ioctl_mutex);
1010 	dlci_ioctl_hook = hook;
1011 	mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014 
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 				 unsigned int cmd, unsigned long arg)
1017 {
1018 	int err;
1019 	void __user *argp = (void __user *)arg;
1020 
1021 	err = sock->ops->ioctl(sock, cmd, arg);
1022 
1023 	/*
1024 	 * If this ioctl is unknown try to hand it down
1025 	 * to the NIC driver.
1026 	 */
1027 	if (err == -ENOIOCTLCMD)
1028 		err = dev_ioctl(net, cmd, argp);
1029 
1030 	return err;
1031 }
1032 
1033 /*
1034  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035  *	what to do with it - that's up to the protocol still.
1036  */
1037 
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 	struct socket *sock;
1041 	struct sock *sk;
1042 	void __user *argp = (void __user *)arg;
1043 	int pid, err;
1044 	struct net *net;
1045 
1046 	sock = file->private_data;
1047 	sk = sock->sk;
1048 	net = sock_net(sk);
1049 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 		err = dev_ioctl(net, cmd, argp);
1051 	} else
1052 #ifdef CONFIG_WEXT_CORE
1053 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 		err = dev_ioctl(net, cmd, argp);
1055 	} else
1056 #endif
1057 		switch (cmd) {
1058 		case FIOSETOWN:
1059 		case SIOCSPGRP:
1060 			err = -EFAULT;
1061 			if (get_user(pid, (int __user *)argp))
1062 				break;
1063 			err = f_setown(sock->file, pid, 1);
1064 			break;
1065 		case FIOGETOWN:
1066 		case SIOCGPGRP:
1067 			err = put_user(f_getown(sock->file),
1068 				       (int __user *)argp);
1069 			break;
1070 		case SIOCGIFBR:
1071 		case SIOCSIFBR:
1072 		case SIOCBRADDBR:
1073 		case SIOCBRDELBR:
1074 			err = -ENOPKG;
1075 			if (!br_ioctl_hook)
1076 				request_module("bridge");
1077 
1078 			mutex_lock(&br_ioctl_mutex);
1079 			if (br_ioctl_hook)
1080 				err = br_ioctl_hook(net, cmd, argp);
1081 			mutex_unlock(&br_ioctl_mutex);
1082 			break;
1083 		case SIOCGIFVLAN:
1084 		case SIOCSIFVLAN:
1085 			err = -ENOPKG;
1086 			if (!vlan_ioctl_hook)
1087 				request_module("8021q");
1088 
1089 			mutex_lock(&vlan_ioctl_mutex);
1090 			if (vlan_ioctl_hook)
1091 				err = vlan_ioctl_hook(net, argp);
1092 			mutex_unlock(&vlan_ioctl_mutex);
1093 			break;
1094 		case SIOCADDDLCI:
1095 		case SIOCDELDLCI:
1096 			err = -ENOPKG;
1097 			if (!dlci_ioctl_hook)
1098 				request_module("dlci");
1099 
1100 			mutex_lock(&dlci_ioctl_mutex);
1101 			if (dlci_ioctl_hook)
1102 				err = dlci_ioctl_hook(cmd, argp);
1103 			mutex_unlock(&dlci_ioctl_mutex);
1104 			break;
1105 		default:
1106 			err = sock_do_ioctl(net, sock, cmd, arg);
1107 			break;
1108 		}
1109 	return err;
1110 }
1111 
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113 {
1114 	int err;
1115 	struct socket *sock = NULL;
1116 
1117 	err = security_socket_create(family, type, protocol, 1);
1118 	if (err)
1119 		goto out;
1120 
1121 	sock = sock_alloc();
1122 	if (!sock) {
1123 		err = -ENOMEM;
1124 		goto out;
1125 	}
1126 
1127 	sock->type = type;
1128 	err = security_socket_post_create(sock, family, type, protocol, 1);
1129 	if (err)
1130 		goto out_release;
1131 
1132 out:
1133 	*res = sock;
1134 	return err;
1135 out_release:
1136 	sock_release(sock);
1137 	sock = NULL;
1138 	goto out;
1139 }
1140 EXPORT_SYMBOL(sock_create_lite);
1141 
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1144 {
1145 	unsigned int busy_flag = 0;
1146 	struct socket *sock;
1147 
1148 	/*
1149 	 *      We can't return errors to poll, so it's either yes or no.
1150 	 */
1151 	sock = file->private_data;
1152 
1153 	if (sk_can_busy_loop(sock->sk)) {
1154 		/* this socket can poll_ll so tell the system call */
1155 		busy_flag = POLL_BUSY_LOOP;
1156 
1157 		/* once, only if requested by syscall */
1158 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1159 			sk_busy_loop(sock->sk, 1);
1160 	}
1161 
1162 	return busy_flag | sock->ops->poll(file, sock, wait);
1163 }
1164 
1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166 {
1167 	struct socket *sock = file->private_data;
1168 
1169 	return sock->ops->mmap(file, sock, vma);
1170 }
1171 
1172 static int sock_close(struct inode *inode, struct file *filp)
1173 {
1174 	sock_release(SOCKET_I(inode));
1175 	return 0;
1176 }
1177 
1178 /*
1179  *	Update the socket async list
1180  *
1181  *	Fasync_list locking strategy.
1182  *
1183  *	1. fasync_list is modified only under process context socket lock
1184  *	   i.e. under semaphore.
1185  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186  *	   or under socket lock
1187  */
1188 
1189 static int sock_fasync(int fd, struct file *filp, int on)
1190 {
1191 	struct socket *sock = filp->private_data;
1192 	struct sock *sk = sock->sk;
1193 	struct socket_wq *wq;
1194 
1195 	if (sk == NULL)
1196 		return -EINVAL;
1197 
1198 	lock_sock(sk);
1199 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200 	fasync_helper(fd, filp, on, &wq->fasync_list);
1201 
1202 	if (!wq->fasync_list)
1203 		sock_reset_flag(sk, SOCK_FASYNC);
1204 	else
1205 		sock_set_flag(sk, SOCK_FASYNC);
1206 
1207 	release_sock(sk);
1208 	return 0;
1209 }
1210 
1211 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1212 
1213 int sock_wake_async(struct socket *sock, int how, int band)
1214 {
1215 	struct socket_wq *wq;
1216 
1217 	if (!sock)
1218 		return -1;
1219 	rcu_read_lock();
1220 	wq = rcu_dereference(sock->wq);
1221 	if (!wq || !wq->fasync_list) {
1222 		rcu_read_unlock();
1223 		return -1;
1224 	}
1225 	switch (how) {
1226 	case SOCK_WAKE_WAITD:
1227 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228 			break;
1229 		goto call_kill;
1230 	case SOCK_WAKE_SPACE:
1231 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232 			break;
1233 		/* fall through */
1234 	case SOCK_WAKE_IO:
1235 call_kill:
1236 		kill_fasync(&wq->fasync_list, SIGIO, band);
1237 		break;
1238 	case SOCK_WAKE_URG:
1239 		kill_fasync(&wq->fasync_list, SIGURG, band);
1240 	}
1241 	rcu_read_unlock();
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(sock_wake_async);
1245 
1246 int __sock_create(struct net *net, int family, int type, int protocol,
1247 			 struct socket **res, int kern)
1248 {
1249 	int err;
1250 	struct socket *sock;
1251 	const struct net_proto_family *pf;
1252 
1253 	/*
1254 	 *      Check protocol is in range
1255 	 */
1256 	if (family < 0 || family >= NPROTO)
1257 		return -EAFNOSUPPORT;
1258 	if (type < 0 || type >= SOCK_MAX)
1259 		return -EINVAL;
1260 
1261 	/* Compatibility.
1262 
1263 	   This uglymoron is moved from INET layer to here to avoid
1264 	   deadlock in module load.
1265 	 */
1266 	if (family == PF_INET && type == SOCK_PACKET) {
1267 		static int warned;
1268 		if (!warned) {
1269 			warned = 1;
1270 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271 				current->comm);
1272 		}
1273 		family = PF_PACKET;
1274 	}
1275 
1276 	err = security_socket_create(family, type, protocol, kern);
1277 	if (err)
1278 		return err;
1279 
1280 	/*
1281 	 *	Allocate the socket and allow the family to set things up. if
1282 	 *	the protocol is 0, the family is instructed to select an appropriate
1283 	 *	default.
1284 	 */
1285 	sock = sock_alloc();
1286 	if (!sock) {
1287 		net_warn_ratelimited("socket: no more sockets\n");
1288 		return -ENFILE;	/* Not exactly a match, but its the
1289 				   closest posix thing */
1290 	}
1291 
1292 	sock->type = type;
1293 
1294 #ifdef CONFIG_MODULES
1295 	/* Attempt to load a protocol module if the find failed.
1296 	 *
1297 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298 	 * requested real, full-featured networking support upon configuration.
1299 	 * Otherwise module support will break!
1300 	 */
1301 	if (rcu_access_pointer(net_families[family]) == NULL)
1302 		request_module("net-pf-%d", family);
1303 #endif
1304 
1305 	rcu_read_lock();
1306 	pf = rcu_dereference(net_families[family]);
1307 	err = -EAFNOSUPPORT;
1308 	if (!pf)
1309 		goto out_release;
1310 
1311 	/*
1312 	 * We will call the ->create function, that possibly is in a loadable
1313 	 * module, so we have to bump that loadable module refcnt first.
1314 	 */
1315 	if (!try_module_get(pf->owner))
1316 		goto out_release;
1317 
1318 	/* Now protected by module ref count */
1319 	rcu_read_unlock();
1320 
1321 	err = pf->create(net, sock, protocol, kern);
1322 	if (err < 0)
1323 		goto out_module_put;
1324 
1325 	/*
1326 	 * Now to bump the refcnt of the [loadable] module that owns this
1327 	 * socket at sock_release time we decrement its refcnt.
1328 	 */
1329 	if (!try_module_get(sock->ops->owner))
1330 		goto out_module_busy;
1331 
1332 	/*
1333 	 * Now that we're done with the ->create function, the [loadable]
1334 	 * module can have its refcnt decremented
1335 	 */
1336 	module_put(pf->owner);
1337 	err = security_socket_post_create(sock, family, type, protocol, kern);
1338 	if (err)
1339 		goto out_sock_release;
1340 	*res = sock;
1341 
1342 	return 0;
1343 
1344 out_module_busy:
1345 	err = -EAFNOSUPPORT;
1346 out_module_put:
1347 	sock->ops = NULL;
1348 	module_put(pf->owner);
1349 out_sock_release:
1350 	sock_release(sock);
1351 	return err;
1352 
1353 out_release:
1354 	rcu_read_unlock();
1355 	goto out_sock_release;
1356 }
1357 EXPORT_SYMBOL(__sock_create);
1358 
1359 int sock_create(int family, int type, int protocol, struct socket **res)
1360 {
1361 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362 }
1363 EXPORT_SYMBOL(sock_create);
1364 
1365 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366 {
1367 	return __sock_create(&init_net, family, type, protocol, res, 1);
1368 }
1369 EXPORT_SYMBOL(sock_create_kern);
1370 
1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372 {
1373 	int retval;
1374 	struct socket *sock;
1375 	int flags;
1376 
1377 	/* Check the SOCK_* constants for consistency.  */
1378 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382 
1383 	flags = type & ~SOCK_TYPE_MASK;
1384 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385 		return -EINVAL;
1386 	type &= SOCK_TYPE_MASK;
1387 
1388 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390 
1391 	retval = sock_create(family, type, protocol, &sock);
1392 	if (retval < 0)
1393 		goto out;
1394 
1395 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396 	if (retval < 0)
1397 		goto out_release;
1398 
1399 out:
1400 	/* It may be already another descriptor 8) Not kernel problem. */
1401 	return retval;
1402 
1403 out_release:
1404 	sock_release(sock);
1405 	return retval;
1406 }
1407 
1408 /*
1409  *	Create a pair of connected sockets.
1410  */
1411 
1412 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413 		int __user *, usockvec)
1414 {
1415 	struct socket *sock1, *sock2;
1416 	int fd1, fd2, err;
1417 	struct file *newfile1, *newfile2;
1418 	int flags;
1419 
1420 	flags = type & ~SOCK_TYPE_MASK;
1421 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422 		return -EINVAL;
1423 	type &= SOCK_TYPE_MASK;
1424 
1425 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427 
1428 	/*
1429 	 * Obtain the first socket and check if the underlying protocol
1430 	 * supports the socketpair call.
1431 	 */
1432 
1433 	err = sock_create(family, type, protocol, &sock1);
1434 	if (err < 0)
1435 		goto out;
1436 
1437 	err = sock_create(family, type, protocol, &sock2);
1438 	if (err < 0)
1439 		goto out_release_1;
1440 
1441 	err = sock1->ops->socketpair(sock1, sock2);
1442 	if (err < 0)
1443 		goto out_release_both;
1444 
1445 	fd1 = get_unused_fd_flags(flags);
1446 	if (unlikely(fd1 < 0)) {
1447 		err = fd1;
1448 		goto out_release_both;
1449 	}
1450 
1451 	fd2 = get_unused_fd_flags(flags);
1452 	if (unlikely(fd2 < 0)) {
1453 		err = fd2;
1454 		goto out_put_unused_1;
1455 	}
1456 
1457 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1458 	if (unlikely(IS_ERR(newfile1))) {
1459 		err = PTR_ERR(newfile1);
1460 		goto out_put_unused_both;
1461 	}
1462 
1463 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1464 	if (IS_ERR(newfile2)) {
1465 		err = PTR_ERR(newfile2);
1466 		goto out_fput_1;
1467 	}
1468 
1469 	err = put_user(fd1, &usockvec[0]);
1470 	if (err)
1471 		goto out_fput_both;
1472 
1473 	err = put_user(fd2, &usockvec[1]);
1474 	if (err)
1475 		goto out_fput_both;
1476 
1477 	audit_fd_pair(fd1, fd2);
1478 
1479 	fd_install(fd1, newfile1);
1480 	fd_install(fd2, newfile2);
1481 	/* fd1 and fd2 may be already another descriptors.
1482 	 * Not kernel problem.
1483 	 */
1484 
1485 	return 0;
1486 
1487 out_fput_both:
1488 	fput(newfile2);
1489 	fput(newfile1);
1490 	put_unused_fd(fd2);
1491 	put_unused_fd(fd1);
1492 	goto out;
1493 
1494 out_fput_1:
1495 	fput(newfile1);
1496 	put_unused_fd(fd2);
1497 	put_unused_fd(fd1);
1498 	sock_release(sock2);
1499 	goto out;
1500 
1501 out_put_unused_both:
1502 	put_unused_fd(fd2);
1503 out_put_unused_1:
1504 	put_unused_fd(fd1);
1505 out_release_both:
1506 	sock_release(sock2);
1507 out_release_1:
1508 	sock_release(sock1);
1509 out:
1510 	return err;
1511 }
1512 
1513 /*
1514  *	Bind a name to a socket. Nothing much to do here since it's
1515  *	the protocol's responsibility to handle the local address.
1516  *
1517  *	We move the socket address to kernel space before we call
1518  *	the protocol layer (having also checked the address is ok).
1519  */
1520 
1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522 {
1523 	struct socket *sock;
1524 	struct sockaddr_storage address;
1525 	int err, fput_needed;
1526 
1527 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 	if (sock) {
1529 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 		if (err >= 0) {
1531 			err = security_socket_bind(sock,
1532 						   (struct sockaddr *)&address,
1533 						   addrlen);
1534 			if (!err)
1535 				err = sock->ops->bind(sock,
1536 						      (struct sockaddr *)
1537 						      &address, addrlen);
1538 		}
1539 		fput_light(sock->file, fput_needed);
1540 	}
1541 	return err;
1542 }
1543 
1544 /*
1545  *	Perform a listen. Basically, we allow the protocol to do anything
1546  *	necessary for a listen, and if that works, we mark the socket as
1547  *	ready for listening.
1548  */
1549 
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552 	struct socket *sock;
1553 	int err, fput_needed;
1554 	int somaxconn;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (sock) {
1558 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 		if ((unsigned int)backlog > somaxconn)
1560 			backlog = somaxconn;
1561 
1562 		err = security_socket_listen(sock, backlog);
1563 		if (!err)
1564 			err = sock->ops->listen(sock, backlog);
1565 
1566 		fput_light(sock->file, fput_needed);
1567 	}
1568 	return err;
1569 }
1570 
1571 /*
1572  *	For accept, we attempt to create a new socket, set up the link
1573  *	with the client, wake up the client, then return the new
1574  *	connected fd. We collect the address of the connector in kernel
1575  *	space and move it to user at the very end. This is unclean because
1576  *	we open the socket then return an error.
1577  *
1578  *	1003.1g adds the ability to recvmsg() to query connection pending
1579  *	status to recvmsg. We need to add that support in a way thats
1580  *	clean when we restucture accept also.
1581  */
1582 
1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 		int __user *, upeer_addrlen, int, flags)
1585 {
1586 	struct socket *sock, *newsock;
1587 	struct file *newfile;
1588 	int err, len, newfd, fput_needed;
1589 	struct sockaddr_storage address;
1590 
1591 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 		return -EINVAL;
1593 
1594 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596 
1597 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 	if (!sock)
1599 		goto out;
1600 
1601 	err = -ENFILE;
1602 	newsock = sock_alloc();
1603 	if (!newsock)
1604 		goto out_put;
1605 
1606 	newsock->type = sock->type;
1607 	newsock->ops = sock->ops;
1608 
1609 	/*
1610 	 * We don't need try_module_get here, as the listening socket (sock)
1611 	 * has the protocol module (sock->ops->owner) held.
1612 	 */
1613 	__module_get(newsock->ops->owner);
1614 
1615 	newfd = get_unused_fd_flags(flags);
1616 	if (unlikely(newfd < 0)) {
1617 		err = newfd;
1618 		sock_release(newsock);
1619 		goto out_put;
1620 	}
1621 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 	if (unlikely(IS_ERR(newfile))) {
1623 		err = PTR_ERR(newfile);
1624 		put_unused_fd(newfd);
1625 		sock_release(newsock);
1626 		goto out_put;
1627 	}
1628 
1629 	err = security_socket_accept(sock, newsock);
1630 	if (err)
1631 		goto out_fd;
1632 
1633 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 	if (err < 0)
1635 		goto out_fd;
1636 
1637 	if (upeer_sockaddr) {
1638 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 					  &len, 2) < 0) {
1640 			err = -ECONNABORTED;
1641 			goto out_fd;
1642 		}
1643 		err = move_addr_to_user(&address,
1644 					len, upeer_sockaddr, upeer_addrlen);
1645 		if (err < 0)
1646 			goto out_fd;
1647 	}
1648 
1649 	/* File flags are not inherited via accept() unlike another OSes. */
1650 
1651 	fd_install(newfd, newfile);
1652 	err = newfd;
1653 
1654 out_put:
1655 	fput_light(sock->file, fput_needed);
1656 out:
1657 	return err;
1658 out_fd:
1659 	fput(newfile);
1660 	put_unused_fd(newfd);
1661 	goto out_put;
1662 }
1663 
1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 		int __user *, upeer_addrlen)
1666 {
1667 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668 }
1669 
1670 /*
1671  *	Attempt to connect to a socket with the server address.  The address
1672  *	is in user space so we verify it is OK and move it to kernel space.
1673  *
1674  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675  *	break bindings
1676  *
1677  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678  *	other SEQPACKET protocols that take time to connect() as it doesn't
1679  *	include the -EINPROGRESS status for such sockets.
1680  */
1681 
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 		int, addrlen)
1684 {
1685 	struct socket *sock;
1686 	struct sockaddr_storage address;
1687 	int err, fput_needed;
1688 
1689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 	if (!sock)
1691 		goto out;
1692 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 	if (err < 0)
1694 		goto out_put;
1695 
1696 	err =
1697 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 	if (err)
1699 		goto out_put;
1700 
1701 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 				 sock->file->f_flags);
1703 out_put:
1704 	fput_light(sock->file, fput_needed);
1705 out:
1706 	return err;
1707 }
1708 
1709 /*
1710  *	Get the local address ('name') of a socket object. Move the obtained
1711  *	name to user space.
1712  */
1713 
1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 		int __user *, usockaddr_len)
1716 {
1717 	struct socket *sock;
1718 	struct sockaddr_storage address;
1719 	int len, err, fput_needed;
1720 
1721 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 	if (!sock)
1723 		goto out;
1724 
1725 	err = security_socket_getsockname(sock);
1726 	if (err)
1727 		goto out_put;
1728 
1729 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 	if (err)
1731 		goto out_put;
1732 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733 
1734 out_put:
1735 	fput_light(sock->file, fput_needed);
1736 out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Get the remote address ('name') of a socket object. Move the obtained
1742  *	name to user space.
1743  */
1744 
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 		int __user *, usockaddr_len)
1747 {
1748 	struct socket *sock;
1749 	struct sockaddr_storage address;
1750 	int len, err, fput_needed;
1751 
1752 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 	if (sock != NULL) {
1754 		err = security_socket_getpeername(sock);
1755 		if (err) {
1756 			fput_light(sock->file, fput_needed);
1757 			return err;
1758 		}
1759 
1760 		err =
1761 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762 				       1);
1763 		if (!err)
1764 			err = move_addr_to_user(&address, len, usockaddr,
1765 						usockaddr_len);
1766 		fput_light(sock->file, fput_needed);
1767 	}
1768 	return err;
1769 }
1770 
1771 /*
1772  *	Send a datagram to a given address. We move the address into kernel
1773  *	space and check the user space data area is readable before invoking
1774  *	the protocol.
1775  */
1776 
1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 		unsigned int, flags, struct sockaddr __user *, addr,
1779 		int, addr_len)
1780 {
1781 	struct socket *sock;
1782 	struct sockaddr_storage address;
1783 	int err;
1784 	struct msghdr msg;
1785 	struct iovec iov;
1786 	int fput_needed;
1787 
1788 	if (len > INT_MAX)
1789 		len = INT_MAX;
1790 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 	if (!sock)
1792 		goto out;
1793 
1794 	iov.iov_base = buff;
1795 	iov.iov_len = len;
1796 	msg.msg_name = NULL;
1797 	msg.msg_iov = &iov;
1798 	msg.msg_iovlen = 1;
1799 	msg.msg_control = NULL;
1800 	msg.msg_controllen = 0;
1801 	msg.msg_namelen = 0;
1802 	if (addr) {
1803 		err = move_addr_to_kernel(addr, addr_len, &address);
1804 		if (err < 0)
1805 			goto out_put;
1806 		msg.msg_name = (struct sockaddr *)&address;
1807 		msg.msg_namelen = addr_len;
1808 	}
1809 	if (sock->file->f_flags & O_NONBLOCK)
1810 		flags |= MSG_DONTWAIT;
1811 	msg.msg_flags = flags;
1812 	err = sock_sendmsg(sock, &msg, len);
1813 
1814 out_put:
1815 	fput_light(sock->file, fput_needed);
1816 out:
1817 	return err;
1818 }
1819 
1820 /*
1821  *	Send a datagram down a socket.
1822  */
1823 
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 		unsigned int, flags)
1826 {
1827 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829 
1830 /*
1831  *	Receive a frame from the socket and optionally record the address of the
1832  *	sender. We verify the buffers are writable and if needed move the
1833  *	sender address from kernel to user space.
1834  */
1835 
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 		unsigned int, flags, struct sockaddr __user *, addr,
1838 		int __user *, addr_len)
1839 {
1840 	struct socket *sock;
1841 	struct iovec iov;
1842 	struct msghdr msg;
1843 	struct sockaddr_storage address;
1844 	int err, err2;
1845 	int fput_needed;
1846 
1847 	if (size > INT_MAX)
1848 		size = INT_MAX;
1849 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 	if (!sock)
1851 		goto out;
1852 
1853 	msg.msg_control = NULL;
1854 	msg.msg_controllen = 0;
1855 	msg.msg_iovlen = 1;
1856 	msg.msg_iov = &iov;
1857 	iov.iov_len = size;
1858 	iov.iov_base = ubuf;
1859 	/* Save some cycles and don't copy the address if not needed */
1860 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861 	/* We assume all kernel code knows the size of sockaddr_storage */
1862 	msg.msg_namelen = 0;
1863 	if (sock->file->f_flags & O_NONBLOCK)
1864 		flags |= MSG_DONTWAIT;
1865 	err = sock_recvmsg(sock, &msg, size, flags);
1866 
1867 	if (err >= 0 && addr != NULL) {
1868 		err2 = move_addr_to_user(&address,
1869 					 msg.msg_namelen, addr, addr_len);
1870 		if (err2 < 0)
1871 			err = err2;
1872 	}
1873 
1874 	fput_light(sock->file, fput_needed);
1875 out:
1876 	return err;
1877 }
1878 
1879 /*
1880  *	Receive a datagram from a socket.
1881  */
1882 
1883 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884 		unsigned int, flags)
1885 {
1886 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887 }
1888 
1889 /*
1890  *	Set a socket option. Because we don't know the option lengths we have
1891  *	to pass the user mode parameter for the protocols to sort out.
1892  */
1893 
1894 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895 		char __user *, optval, int, optlen)
1896 {
1897 	int err, fput_needed;
1898 	struct socket *sock;
1899 
1900 	if (optlen < 0)
1901 		return -EINVAL;
1902 
1903 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 	if (sock != NULL) {
1905 		err = security_socket_setsockopt(sock, level, optname);
1906 		if (err)
1907 			goto out_put;
1908 
1909 		if (level == SOL_SOCKET)
1910 			err =
1911 			    sock_setsockopt(sock, level, optname, optval,
1912 					    optlen);
1913 		else
1914 			err =
1915 			    sock->ops->setsockopt(sock, level, optname, optval,
1916 						  optlen);
1917 out_put:
1918 		fput_light(sock->file, fput_needed);
1919 	}
1920 	return err;
1921 }
1922 
1923 /*
1924  *	Get a socket option. Because we don't know the option lengths we have
1925  *	to pass a user mode parameter for the protocols to sort out.
1926  */
1927 
1928 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929 		char __user *, optval, int __user *, optlen)
1930 {
1931 	int err, fput_needed;
1932 	struct socket *sock;
1933 
1934 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 	if (sock != NULL) {
1936 		err = security_socket_getsockopt(sock, level, optname);
1937 		if (err)
1938 			goto out_put;
1939 
1940 		if (level == SOL_SOCKET)
1941 			err =
1942 			    sock_getsockopt(sock, level, optname, optval,
1943 					    optlen);
1944 		else
1945 			err =
1946 			    sock->ops->getsockopt(sock, level, optname, optval,
1947 						  optlen);
1948 out_put:
1949 		fput_light(sock->file, fput_needed);
1950 	}
1951 	return err;
1952 }
1953 
1954 /*
1955  *	Shutdown a socket.
1956  */
1957 
1958 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959 {
1960 	int err, fput_needed;
1961 	struct socket *sock;
1962 
1963 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 	if (sock != NULL) {
1965 		err = security_socket_shutdown(sock, how);
1966 		if (!err)
1967 			err = sock->ops->shutdown(sock, how);
1968 		fput_light(sock->file, fput_needed);
1969 	}
1970 	return err;
1971 }
1972 
1973 /* A couple of helpful macros for getting the address of the 32/64 bit
1974  * fields which are the same type (int / unsigned) on our platforms.
1975  */
1976 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1978 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1979 
1980 struct used_address {
1981 	struct sockaddr_storage name;
1982 	unsigned int name_len;
1983 };
1984 
1985 static int copy_msghdr_from_user(struct msghdr *kmsg,
1986 				 struct msghdr __user *umsg)
1987 {
1988 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989 		return -EFAULT;
1990 
1991 	if (kmsg->msg_namelen < 0)
1992 		return -EINVAL;
1993 
1994 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996 	return 0;
1997 }
1998 
1999 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000 			 struct msghdr *msg_sys, unsigned int flags,
2001 			 struct used_address *used_address)
2002 {
2003 	struct compat_msghdr __user *msg_compat =
2004 	    (struct compat_msghdr __user *)msg;
2005 	struct sockaddr_storage address;
2006 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009 	/* 20 is size of ipv6_pktinfo */
2010 	unsigned char *ctl_buf = ctl;
2011 	int err, ctl_len, total_len;
2012 
2013 	err = -EFAULT;
2014 	if (MSG_CMSG_COMPAT & flags) {
2015 		if (get_compat_msghdr(msg_sys, msg_compat))
2016 			return -EFAULT;
2017 	} else {
2018 		err = copy_msghdr_from_user(msg_sys, msg);
2019 		if (err)
2020 			return err;
2021 	}
2022 
2023 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024 		err = -EMSGSIZE;
2025 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026 			goto out;
2027 		err = -ENOMEM;
2028 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029 			      GFP_KERNEL);
2030 		if (!iov)
2031 			goto out;
2032 	}
2033 
2034 	/* This will also move the address data into kernel space */
2035 	if (MSG_CMSG_COMPAT & flags) {
2036 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037 	} else
2038 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039 	if (err < 0)
2040 		goto out_freeiov;
2041 	total_len = err;
2042 
2043 	err = -ENOBUFS;
2044 
2045 	if (msg_sys->msg_controllen > INT_MAX)
2046 		goto out_freeiov;
2047 	ctl_len = msg_sys->msg_controllen;
2048 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049 		err =
2050 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051 						     sizeof(ctl));
2052 		if (err)
2053 			goto out_freeiov;
2054 		ctl_buf = msg_sys->msg_control;
2055 		ctl_len = msg_sys->msg_controllen;
2056 	} else if (ctl_len) {
2057 		if (ctl_len > sizeof(ctl)) {
2058 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059 			if (ctl_buf == NULL)
2060 				goto out_freeiov;
2061 		}
2062 		err = -EFAULT;
2063 		/*
2064 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066 		 * checking falls down on this.
2067 		 */
2068 		if (copy_from_user(ctl_buf,
2069 				   (void __user __force *)msg_sys->msg_control,
2070 				   ctl_len))
2071 			goto out_freectl;
2072 		msg_sys->msg_control = ctl_buf;
2073 	}
2074 	msg_sys->msg_flags = flags;
2075 
2076 	if (sock->file->f_flags & O_NONBLOCK)
2077 		msg_sys->msg_flags |= MSG_DONTWAIT;
2078 	/*
2079 	 * If this is sendmmsg() and current destination address is same as
2080 	 * previously succeeded address, omit asking LSM's decision.
2081 	 * used_address->name_len is initialized to UINT_MAX so that the first
2082 	 * destination address never matches.
2083 	 */
2084 	if (used_address && msg_sys->msg_name &&
2085 	    used_address->name_len == msg_sys->msg_namelen &&
2086 	    !memcmp(&used_address->name, msg_sys->msg_name,
2087 		    used_address->name_len)) {
2088 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089 		goto out_freectl;
2090 	}
2091 	err = sock_sendmsg(sock, msg_sys, total_len);
2092 	/*
2093 	 * If this is sendmmsg() and sending to current destination address was
2094 	 * successful, remember it.
2095 	 */
2096 	if (used_address && err >= 0) {
2097 		used_address->name_len = msg_sys->msg_namelen;
2098 		if (msg_sys->msg_name)
2099 			memcpy(&used_address->name, msg_sys->msg_name,
2100 			       used_address->name_len);
2101 	}
2102 
2103 out_freectl:
2104 	if (ctl_buf != ctl)
2105 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106 out_freeiov:
2107 	if (iov != iovstack)
2108 		kfree(iov);
2109 out:
2110 	return err;
2111 }
2112 
2113 /*
2114  *	BSD sendmsg interface
2115  */
2116 
2117 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118 {
2119 	int fput_needed, err;
2120 	struct msghdr msg_sys;
2121 	struct socket *sock;
2122 
2123 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 	if (!sock)
2125 		goto out;
2126 
2127 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128 
2129 	fput_light(sock->file, fput_needed);
2130 out:
2131 	return err;
2132 }
2133 
2134 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135 {
2136 	if (flags & MSG_CMSG_COMPAT)
2137 		return -EINVAL;
2138 	return __sys_sendmsg(fd, msg, flags);
2139 }
2140 
2141 /*
2142  *	Linux sendmmsg interface
2143  */
2144 
2145 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146 		   unsigned int flags)
2147 {
2148 	int fput_needed, err, datagrams;
2149 	struct socket *sock;
2150 	struct mmsghdr __user *entry;
2151 	struct compat_mmsghdr __user *compat_entry;
2152 	struct msghdr msg_sys;
2153 	struct used_address used_address;
2154 
2155 	if (vlen > UIO_MAXIOV)
2156 		vlen = UIO_MAXIOV;
2157 
2158 	datagrams = 0;
2159 
2160 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 	if (!sock)
2162 		return err;
2163 
2164 	used_address.name_len = UINT_MAX;
2165 	entry = mmsg;
2166 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167 	err = 0;
2168 
2169 	while (datagrams < vlen) {
2170 		if (MSG_CMSG_COMPAT & flags) {
2171 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172 					     &msg_sys, flags, &used_address);
2173 			if (err < 0)
2174 				break;
2175 			err = __put_user(err, &compat_entry->msg_len);
2176 			++compat_entry;
2177 		} else {
2178 			err = ___sys_sendmsg(sock,
2179 					     (struct msghdr __user *)entry,
2180 					     &msg_sys, flags, &used_address);
2181 			if (err < 0)
2182 				break;
2183 			err = put_user(err, &entry->msg_len);
2184 			++entry;
2185 		}
2186 
2187 		if (err)
2188 			break;
2189 		++datagrams;
2190 	}
2191 
2192 	fput_light(sock->file, fput_needed);
2193 
2194 	/* We only return an error if no datagrams were able to be sent */
2195 	if (datagrams != 0)
2196 		return datagrams;
2197 
2198 	return err;
2199 }
2200 
2201 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202 		unsigned int, vlen, unsigned int, flags)
2203 {
2204 	if (flags & MSG_CMSG_COMPAT)
2205 		return -EINVAL;
2206 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207 }
2208 
2209 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2211 {
2212 	struct compat_msghdr __user *msg_compat =
2213 	    (struct compat_msghdr __user *)msg;
2214 	struct iovec iovstack[UIO_FASTIOV];
2215 	struct iovec *iov = iovstack;
2216 	unsigned long cmsg_ptr;
2217 	int err, total_len, len;
2218 
2219 	/* kernel mode address */
2220 	struct sockaddr_storage addr;
2221 
2222 	/* user mode address pointers */
2223 	struct sockaddr __user *uaddr;
2224 	int __user *uaddr_len;
2225 
2226 	if (MSG_CMSG_COMPAT & flags) {
2227 		if (get_compat_msghdr(msg_sys, msg_compat))
2228 			return -EFAULT;
2229 	} else {
2230 		err = copy_msghdr_from_user(msg_sys, msg);
2231 		if (err)
2232 			return err;
2233 	}
2234 
2235 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236 		err = -EMSGSIZE;
2237 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238 			goto out;
2239 		err = -ENOMEM;
2240 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241 			      GFP_KERNEL);
2242 		if (!iov)
2243 			goto out;
2244 	}
2245 
2246 	/* Save the user-mode address (verify_iovec will change the
2247 	 * kernel msghdr to use the kernel address space)
2248 	 */
2249 	uaddr = (__force void __user *)msg_sys->msg_name;
2250 	uaddr_len = COMPAT_NAMELEN(msg);
2251 	if (MSG_CMSG_COMPAT & flags)
2252 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253 	else
2254 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255 	if (err < 0)
2256 		goto out_freeiov;
2257 	total_len = err;
2258 
2259 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261 
2262 	/* We assume all kernel code knows the size of sockaddr_storage */
2263 	msg_sys->msg_namelen = 0;
2264 
2265 	if (sock->file->f_flags & O_NONBLOCK)
2266 		flags |= MSG_DONTWAIT;
2267 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268 							  total_len, flags);
2269 	if (err < 0)
2270 		goto out_freeiov;
2271 	len = err;
2272 
2273 	if (uaddr != NULL) {
2274 		err = move_addr_to_user(&addr,
2275 					msg_sys->msg_namelen, uaddr,
2276 					uaddr_len);
2277 		if (err < 0)
2278 			goto out_freeiov;
2279 	}
2280 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281 			 COMPAT_FLAGS(msg));
2282 	if (err)
2283 		goto out_freeiov;
2284 	if (MSG_CMSG_COMPAT & flags)
2285 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286 				 &msg_compat->msg_controllen);
2287 	else
2288 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 				 &msg->msg_controllen);
2290 	if (err)
2291 		goto out_freeiov;
2292 	err = len;
2293 
2294 out_freeiov:
2295 	if (iov != iovstack)
2296 		kfree(iov);
2297 out:
2298 	return err;
2299 }
2300 
2301 /*
2302  *	BSD recvmsg interface
2303  */
2304 
2305 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306 {
2307 	int fput_needed, err;
2308 	struct msghdr msg_sys;
2309 	struct socket *sock;
2310 
2311 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312 	if (!sock)
2313 		goto out;
2314 
2315 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316 
2317 	fput_light(sock->file, fput_needed);
2318 out:
2319 	return err;
2320 }
2321 
2322 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323 		unsigned int, flags)
2324 {
2325 	if (flags & MSG_CMSG_COMPAT)
2326 		return -EINVAL;
2327 	return __sys_recvmsg(fd, msg, flags);
2328 }
2329 
2330 /*
2331  *     Linux recvmmsg interface
2332  */
2333 
2334 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335 		   unsigned int flags, struct timespec *timeout)
2336 {
2337 	int fput_needed, err, datagrams;
2338 	struct socket *sock;
2339 	struct mmsghdr __user *entry;
2340 	struct compat_mmsghdr __user *compat_entry;
2341 	struct msghdr msg_sys;
2342 	struct timespec end_time;
2343 
2344 	if (timeout &&
2345 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2346 				    timeout->tv_nsec))
2347 		return -EINVAL;
2348 
2349 	datagrams = 0;
2350 
2351 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352 	if (!sock)
2353 		return err;
2354 
2355 	err = sock_error(sock->sk);
2356 	if (err)
2357 		goto out_put;
2358 
2359 	entry = mmsg;
2360 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361 
2362 	while (datagrams < vlen) {
2363 		/*
2364 		 * No need to ask LSM for more than the first datagram.
2365 		 */
2366 		if (MSG_CMSG_COMPAT & flags) {
2367 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368 					     &msg_sys, flags & ~MSG_WAITFORONE,
2369 					     datagrams);
2370 			if (err < 0)
2371 				break;
2372 			err = __put_user(err, &compat_entry->msg_len);
2373 			++compat_entry;
2374 		} else {
2375 			err = ___sys_recvmsg(sock,
2376 					     (struct msghdr __user *)entry,
2377 					     &msg_sys, flags & ~MSG_WAITFORONE,
2378 					     datagrams);
2379 			if (err < 0)
2380 				break;
2381 			err = put_user(err, &entry->msg_len);
2382 			++entry;
2383 		}
2384 
2385 		if (err)
2386 			break;
2387 		++datagrams;
2388 
2389 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390 		if (flags & MSG_WAITFORONE)
2391 			flags |= MSG_DONTWAIT;
2392 
2393 		if (timeout) {
2394 			ktime_get_ts(timeout);
2395 			*timeout = timespec_sub(end_time, *timeout);
2396 			if (timeout->tv_sec < 0) {
2397 				timeout->tv_sec = timeout->tv_nsec = 0;
2398 				break;
2399 			}
2400 
2401 			/* Timeout, return less than vlen datagrams */
2402 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403 				break;
2404 		}
2405 
2406 		/* Out of band data, return right away */
2407 		if (msg_sys.msg_flags & MSG_OOB)
2408 			break;
2409 	}
2410 
2411 out_put:
2412 	fput_light(sock->file, fput_needed);
2413 
2414 	if (err == 0)
2415 		return datagrams;
2416 
2417 	if (datagrams != 0) {
2418 		/*
2419 		 * We may return less entries than requested (vlen) if the
2420 		 * sock is non block and there aren't enough datagrams...
2421 		 */
2422 		if (err != -EAGAIN) {
2423 			/*
2424 			 * ... or  if recvmsg returns an error after we
2425 			 * received some datagrams, where we record the
2426 			 * error to return on the next call or if the
2427 			 * app asks about it using getsockopt(SO_ERROR).
2428 			 */
2429 			sock->sk->sk_err = -err;
2430 		}
2431 
2432 		return datagrams;
2433 	}
2434 
2435 	return err;
2436 }
2437 
2438 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439 		unsigned int, vlen, unsigned int, flags,
2440 		struct timespec __user *, timeout)
2441 {
2442 	int datagrams;
2443 	struct timespec timeout_sys;
2444 
2445 	if (flags & MSG_CMSG_COMPAT)
2446 		return -EINVAL;
2447 
2448 	if (!timeout)
2449 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450 
2451 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452 		return -EFAULT;
2453 
2454 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455 
2456 	if (datagrams > 0 &&
2457 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458 		datagrams = -EFAULT;
2459 
2460 	return datagrams;
2461 }
2462 
2463 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2464 /* Argument list sizes for sys_socketcall */
2465 #define AL(x) ((x) * sizeof(unsigned long))
2466 static const unsigned char nargs[21] = {
2467 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470 	AL(4), AL(5), AL(4)
2471 };
2472 
2473 #undef AL
2474 
2475 /*
2476  *	System call vectors.
2477  *
2478  *	Argument checking cleaned up. Saved 20% in size.
2479  *  This function doesn't need to set the kernel lock because
2480  *  it is set by the callees.
2481  */
2482 
2483 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484 {
2485 	unsigned long a[AUDITSC_ARGS];
2486 	unsigned long a0, a1;
2487 	int err;
2488 	unsigned int len;
2489 
2490 	if (call < 1 || call > SYS_SENDMMSG)
2491 		return -EINVAL;
2492 
2493 	len = nargs[call];
2494 	if (len > sizeof(a))
2495 		return -EINVAL;
2496 
2497 	/* copy_from_user should be SMP safe. */
2498 	if (copy_from_user(a, args, len))
2499 		return -EFAULT;
2500 
2501 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502 	if (err)
2503 		return err;
2504 
2505 	a0 = a[0];
2506 	a1 = a[1];
2507 
2508 	switch (call) {
2509 	case SYS_SOCKET:
2510 		err = sys_socket(a0, a1, a[2]);
2511 		break;
2512 	case SYS_BIND:
2513 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514 		break;
2515 	case SYS_CONNECT:
2516 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517 		break;
2518 	case SYS_LISTEN:
2519 		err = sys_listen(a0, a1);
2520 		break;
2521 	case SYS_ACCEPT:
2522 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523 				  (int __user *)a[2], 0);
2524 		break;
2525 	case SYS_GETSOCKNAME:
2526 		err =
2527 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2528 				    (int __user *)a[2]);
2529 		break;
2530 	case SYS_GETPEERNAME:
2531 		err =
2532 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2533 				    (int __user *)a[2]);
2534 		break;
2535 	case SYS_SOCKETPAIR:
2536 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537 		break;
2538 	case SYS_SEND:
2539 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540 		break;
2541 	case SYS_SENDTO:
2542 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543 				 (struct sockaddr __user *)a[4], a[5]);
2544 		break;
2545 	case SYS_RECV:
2546 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547 		break;
2548 	case SYS_RECVFROM:
2549 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550 				   (struct sockaddr __user *)a[4],
2551 				   (int __user *)a[5]);
2552 		break;
2553 	case SYS_SHUTDOWN:
2554 		err = sys_shutdown(a0, a1);
2555 		break;
2556 	case SYS_SETSOCKOPT:
2557 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558 		break;
2559 	case SYS_GETSOCKOPT:
2560 		err =
2561 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562 				   (int __user *)a[4]);
2563 		break;
2564 	case SYS_SENDMSG:
2565 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566 		break;
2567 	case SYS_SENDMMSG:
2568 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569 		break;
2570 	case SYS_RECVMSG:
2571 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572 		break;
2573 	case SYS_RECVMMSG:
2574 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575 				   (struct timespec __user *)a[4]);
2576 		break;
2577 	case SYS_ACCEPT4:
2578 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579 				  (int __user *)a[2], a[3]);
2580 		break;
2581 	default:
2582 		err = -EINVAL;
2583 		break;
2584 	}
2585 	return err;
2586 }
2587 
2588 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2589 
2590 /**
2591  *	sock_register - add a socket protocol handler
2592  *	@ops: description of protocol
2593  *
2594  *	This function is called by a protocol handler that wants to
2595  *	advertise its address family, and have it linked into the
2596  *	socket interface. The value ops->family coresponds to the
2597  *	socket system call protocol family.
2598  */
2599 int sock_register(const struct net_proto_family *ops)
2600 {
2601 	int err;
2602 
2603 	if (ops->family >= NPROTO) {
2604 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605 		return -ENOBUFS;
2606 	}
2607 
2608 	spin_lock(&net_family_lock);
2609 	if (rcu_dereference_protected(net_families[ops->family],
2610 				      lockdep_is_held(&net_family_lock)))
2611 		err = -EEXIST;
2612 	else {
2613 		rcu_assign_pointer(net_families[ops->family], ops);
2614 		err = 0;
2615 	}
2616 	spin_unlock(&net_family_lock);
2617 
2618 	pr_info("NET: Registered protocol family %d\n", ops->family);
2619 	return err;
2620 }
2621 EXPORT_SYMBOL(sock_register);
2622 
2623 /**
2624  *	sock_unregister - remove a protocol handler
2625  *	@family: protocol family to remove
2626  *
2627  *	This function is called by a protocol handler that wants to
2628  *	remove its address family, and have it unlinked from the
2629  *	new socket creation.
2630  *
2631  *	If protocol handler is a module, then it can use module reference
2632  *	counts to protect against new references. If protocol handler is not
2633  *	a module then it needs to provide its own protection in
2634  *	the ops->create routine.
2635  */
2636 void sock_unregister(int family)
2637 {
2638 	BUG_ON(family < 0 || family >= NPROTO);
2639 
2640 	spin_lock(&net_family_lock);
2641 	RCU_INIT_POINTER(net_families[family], NULL);
2642 	spin_unlock(&net_family_lock);
2643 
2644 	synchronize_rcu();
2645 
2646 	pr_info("NET: Unregistered protocol family %d\n", family);
2647 }
2648 EXPORT_SYMBOL(sock_unregister);
2649 
2650 static int __init sock_init(void)
2651 {
2652 	int err;
2653 	/*
2654 	 *      Initialize the network sysctl infrastructure.
2655 	 */
2656 	err = net_sysctl_init();
2657 	if (err)
2658 		goto out;
2659 
2660 	/*
2661 	 *      Initialize skbuff SLAB cache
2662 	 */
2663 	skb_init();
2664 
2665 	/*
2666 	 *      Initialize the protocols module.
2667 	 */
2668 
2669 	init_inodecache();
2670 
2671 	err = register_filesystem(&sock_fs_type);
2672 	if (err)
2673 		goto out_fs;
2674 	sock_mnt = kern_mount(&sock_fs_type);
2675 	if (IS_ERR(sock_mnt)) {
2676 		err = PTR_ERR(sock_mnt);
2677 		goto out_mount;
2678 	}
2679 
2680 	/* The real protocol initialization is performed in later initcalls.
2681 	 */
2682 
2683 #ifdef CONFIG_NETFILTER
2684 	err = netfilter_init();
2685 	if (err)
2686 		goto out;
2687 #endif
2688 
2689 	ptp_classifier_init();
2690 
2691 out:
2692 	return err;
2693 
2694 out_mount:
2695 	unregister_filesystem(&sock_fs_type);
2696 out_fs:
2697 	goto out;
2698 }
2699 
2700 core_initcall(sock_init);	/* early initcall */
2701 
2702 #ifdef CONFIG_PROC_FS
2703 void socket_seq_show(struct seq_file *seq)
2704 {
2705 	int cpu;
2706 	int counter = 0;
2707 
2708 	for_each_possible_cpu(cpu)
2709 	    counter += per_cpu(sockets_in_use, cpu);
2710 
2711 	/* It can be negative, by the way. 8) */
2712 	if (counter < 0)
2713 		counter = 0;
2714 
2715 	seq_printf(seq, "sockets: used %d\n", counter);
2716 }
2717 #endif				/* CONFIG_PROC_FS */
2718 
2719 #ifdef CONFIG_COMPAT
2720 static int do_siocgstamp(struct net *net, struct socket *sock,
2721 			 unsigned int cmd, void __user *up)
2722 {
2723 	mm_segment_t old_fs = get_fs();
2724 	struct timeval ktv;
2725 	int err;
2726 
2727 	set_fs(KERNEL_DS);
2728 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729 	set_fs(old_fs);
2730 	if (!err)
2731 		err = compat_put_timeval(&ktv, up);
2732 
2733 	return err;
2734 }
2735 
2736 static int do_siocgstampns(struct net *net, struct socket *sock,
2737 			   unsigned int cmd, void __user *up)
2738 {
2739 	mm_segment_t old_fs = get_fs();
2740 	struct timespec kts;
2741 	int err;
2742 
2743 	set_fs(KERNEL_DS);
2744 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745 	set_fs(old_fs);
2746 	if (!err)
2747 		err = compat_put_timespec(&kts, up);
2748 
2749 	return err;
2750 }
2751 
2752 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753 {
2754 	struct ifreq __user *uifr;
2755 	int err;
2756 
2757 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 		return -EFAULT;
2760 
2761 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762 	if (err)
2763 		return err;
2764 
2765 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766 		return -EFAULT;
2767 
2768 	return 0;
2769 }
2770 
2771 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772 {
2773 	struct compat_ifconf ifc32;
2774 	struct ifconf ifc;
2775 	struct ifconf __user *uifc;
2776 	struct compat_ifreq __user *ifr32;
2777 	struct ifreq __user *ifr;
2778 	unsigned int i, j;
2779 	int err;
2780 
2781 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 		return -EFAULT;
2783 
2784 	memset(&ifc, 0, sizeof(ifc));
2785 	if (ifc32.ifcbuf == 0) {
2786 		ifc32.ifc_len = 0;
2787 		ifc.ifc_len = 0;
2788 		ifc.ifc_req = NULL;
2789 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790 	} else {
2791 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792 			sizeof(struct ifreq);
2793 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794 		ifc.ifc_len = len;
2795 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796 		ifr32 = compat_ptr(ifc32.ifcbuf);
2797 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799 				return -EFAULT;
2800 			ifr++;
2801 			ifr32++;
2802 		}
2803 	}
2804 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805 		return -EFAULT;
2806 
2807 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808 	if (err)
2809 		return err;
2810 
2811 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812 		return -EFAULT;
2813 
2814 	ifr = ifc.ifc_req;
2815 	ifr32 = compat_ptr(ifc32.ifcbuf);
2816 	for (i = 0, j = 0;
2817 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820 			return -EFAULT;
2821 		ifr32++;
2822 		ifr++;
2823 	}
2824 
2825 	if (ifc32.ifcbuf == 0) {
2826 		/* Translate from 64-bit structure multiple to
2827 		 * a 32-bit one.
2828 		 */
2829 		i = ifc.ifc_len;
2830 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831 		ifc32.ifc_len = i;
2832 	} else {
2833 		ifc32.ifc_len = i;
2834 	}
2835 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836 		return -EFAULT;
2837 
2838 	return 0;
2839 }
2840 
2841 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842 {
2843 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844 	bool convert_in = false, convert_out = false;
2845 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846 	struct ethtool_rxnfc __user *rxnfc;
2847 	struct ifreq __user *ifr;
2848 	u32 rule_cnt = 0, actual_rule_cnt;
2849 	u32 ethcmd;
2850 	u32 data;
2851 	int ret;
2852 
2853 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854 		return -EFAULT;
2855 
2856 	compat_rxnfc = compat_ptr(data);
2857 
2858 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2859 		return -EFAULT;
2860 
2861 	/* Most ethtool structures are defined without padding.
2862 	 * Unfortunately struct ethtool_rxnfc is an exception.
2863 	 */
2864 	switch (ethcmd) {
2865 	default:
2866 		break;
2867 	case ETHTOOL_GRXCLSRLALL:
2868 		/* Buffer size is variable */
2869 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870 			return -EFAULT;
2871 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872 			return -ENOMEM;
2873 		buf_size += rule_cnt * sizeof(u32);
2874 		/* fall through */
2875 	case ETHTOOL_GRXRINGS:
2876 	case ETHTOOL_GRXCLSRLCNT:
2877 	case ETHTOOL_GRXCLSRULE:
2878 	case ETHTOOL_SRXCLSRLINS:
2879 		convert_out = true;
2880 		/* fall through */
2881 	case ETHTOOL_SRXCLSRLDEL:
2882 		buf_size += sizeof(struct ethtool_rxnfc);
2883 		convert_in = true;
2884 		break;
2885 	}
2886 
2887 	ifr = compat_alloc_user_space(buf_size);
2888 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889 
2890 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891 		return -EFAULT;
2892 
2893 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894 		     &ifr->ifr_ifru.ifru_data))
2895 		return -EFAULT;
2896 
2897 	if (convert_in) {
2898 		/* We expect there to be holes between fs.m_ext and
2899 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2900 		 */
2901 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902 			     sizeof(compat_rxnfc->fs.m_ext) !=
2903 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904 			     sizeof(rxnfc->fs.m_ext));
2905 		BUILD_BUG_ON(
2906 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908 			offsetof(struct ethtool_rxnfc, fs.location) -
2909 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910 
2911 		if (copy_in_user(rxnfc, compat_rxnfc,
2912 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913 				 (void __user *)rxnfc) ||
2914 		    copy_in_user(&rxnfc->fs.ring_cookie,
2915 				 &compat_rxnfc->fs.ring_cookie,
2916 				 (void __user *)(&rxnfc->fs.location + 1) -
2917 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2918 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919 				 sizeof(rxnfc->rule_cnt)))
2920 			return -EFAULT;
2921 	}
2922 
2923 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924 	if (ret)
2925 		return ret;
2926 
2927 	if (convert_out) {
2928 		if (copy_in_user(compat_rxnfc, rxnfc,
2929 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930 				 (const void __user *)rxnfc) ||
2931 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932 				 &rxnfc->fs.ring_cookie,
2933 				 (const void __user *)(&rxnfc->fs.location + 1) -
2934 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936 				 sizeof(rxnfc->rule_cnt)))
2937 			return -EFAULT;
2938 
2939 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940 			/* As an optimisation, we only copy the actual
2941 			 * number of rules that the underlying
2942 			 * function returned.  Since Mallory might
2943 			 * change the rule count in user memory, we
2944 			 * check that it is less than the rule count
2945 			 * originally given (as the user buffer size),
2946 			 * which has been range-checked.
2947 			 */
2948 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949 				return -EFAULT;
2950 			if (actual_rule_cnt < rule_cnt)
2951 				rule_cnt = actual_rule_cnt;
2952 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953 					 &rxnfc->rule_locs[0],
2954 					 rule_cnt * sizeof(u32)))
2955 				return -EFAULT;
2956 		}
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963 {
2964 	void __user *uptr;
2965 	compat_uptr_t uptr32;
2966 	struct ifreq __user *uifr;
2967 
2968 	uifr = compat_alloc_user_space(sizeof(*uifr));
2969 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970 		return -EFAULT;
2971 
2972 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973 		return -EFAULT;
2974 
2975 	uptr = compat_ptr(uptr32);
2976 
2977 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978 		return -EFAULT;
2979 
2980 	return dev_ioctl(net, SIOCWANDEV, uifr);
2981 }
2982 
2983 static int bond_ioctl(struct net *net, unsigned int cmd,
2984 			 struct compat_ifreq __user *ifr32)
2985 {
2986 	struct ifreq kifr;
2987 	mm_segment_t old_fs;
2988 	int err;
2989 
2990 	switch (cmd) {
2991 	case SIOCBONDENSLAVE:
2992 	case SIOCBONDRELEASE:
2993 	case SIOCBONDSETHWADDR:
2994 	case SIOCBONDCHANGEACTIVE:
2995 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996 			return -EFAULT;
2997 
2998 		old_fs = get_fs();
2999 		set_fs(KERNEL_DS);
3000 		err = dev_ioctl(net, cmd,
3001 				(struct ifreq __user __force *) &kifr);
3002 		set_fs(old_fs);
3003 
3004 		return err;
3005 	default:
3006 		return -ENOIOCTLCMD;
3007 	}
3008 }
3009 
3010 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012 				 struct compat_ifreq __user *u_ifreq32)
3013 {
3014 	struct ifreq __user *u_ifreq64;
3015 	char tmp_buf[IFNAMSIZ];
3016 	void __user *data64;
3017 	u32 data32;
3018 
3019 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 			   IFNAMSIZ))
3021 		return -EFAULT;
3022 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023 		return -EFAULT;
3024 	data64 = compat_ptr(data32);
3025 
3026 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027 
3028 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 			 IFNAMSIZ))
3030 		return -EFAULT;
3031 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 		return -EFAULT;
3033 
3034 	return dev_ioctl(net, cmd, u_ifreq64);
3035 }
3036 
3037 static int dev_ifsioc(struct net *net, struct socket *sock,
3038 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039 {
3040 	struct ifreq __user *uifr;
3041 	int err;
3042 
3043 	uifr = compat_alloc_user_space(sizeof(*uifr));
3044 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 		return -EFAULT;
3046 
3047 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048 
3049 	if (!err) {
3050 		switch (cmd) {
3051 		case SIOCGIFFLAGS:
3052 		case SIOCGIFMETRIC:
3053 		case SIOCGIFMTU:
3054 		case SIOCGIFMEM:
3055 		case SIOCGIFHWADDR:
3056 		case SIOCGIFINDEX:
3057 		case SIOCGIFADDR:
3058 		case SIOCGIFBRDADDR:
3059 		case SIOCGIFDSTADDR:
3060 		case SIOCGIFNETMASK:
3061 		case SIOCGIFPFLAGS:
3062 		case SIOCGIFTXQLEN:
3063 		case SIOCGMIIPHY:
3064 		case SIOCGMIIREG:
3065 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066 				err = -EFAULT;
3067 			break;
3068 		}
3069 	}
3070 	return err;
3071 }
3072 
3073 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074 			struct compat_ifreq __user *uifr32)
3075 {
3076 	struct ifreq ifr;
3077 	struct compat_ifmap __user *uifmap32;
3078 	mm_segment_t old_fs;
3079 	int err;
3080 
3081 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089 	if (err)
3090 		return -EFAULT;
3091 
3092 	old_fs = get_fs();
3093 	set_fs(KERNEL_DS);
3094 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3095 	set_fs(old_fs);
3096 
3097 	if (cmd == SIOCGIFMAP && !err) {
3098 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105 		if (err)
3106 			err = -EFAULT;
3107 	}
3108 	return err;
3109 }
3110 
3111 struct rtentry32 {
3112 	u32		rt_pad1;
3113 	struct sockaddr rt_dst;         /* target address               */
3114 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3115 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3116 	unsigned short	rt_flags;
3117 	short		rt_pad2;
3118 	u32		rt_pad3;
3119 	unsigned char	rt_tos;
3120 	unsigned char	rt_class;
3121 	short		rt_pad4;
3122 	short		rt_metric;      /* +1 for binary compatibility! */
3123 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3124 	u32		rt_mtu;         /* per route MTU/Window         */
3125 	u32		rt_window;      /* Window clamping              */
3126 	unsigned short  rt_irtt;        /* Initial RTT                  */
3127 };
3128 
3129 struct in6_rtmsg32 {
3130 	struct in6_addr		rtmsg_dst;
3131 	struct in6_addr		rtmsg_src;
3132 	struct in6_addr		rtmsg_gateway;
3133 	u32			rtmsg_type;
3134 	u16			rtmsg_dst_len;
3135 	u16			rtmsg_src_len;
3136 	u32			rtmsg_metric;
3137 	u32			rtmsg_info;
3138 	u32			rtmsg_flags;
3139 	s32			rtmsg_ifindex;
3140 };
3141 
3142 static int routing_ioctl(struct net *net, struct socket *sock,
3143 			 unsigned int cmd, void __user *argp)
3144 {
3145 	int ret;
3146 	void *r = NULL;
3147 	struct in6_rtmsg r6;
3148 	struct rtentry r4;
3149 	char devname[16];
3150 	u32 rtdev;
3151 	mm_segment_t old_fs = get_fs();
3152 
3153 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154 		struct in6_rtmsg32 __user *ur6 = argp;
3155 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156 			3 * sizeof(struct in6_addr));
3157 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164 
3165 		r = (void *) &r6;
3166 	} else { /* ipv4 */
3167 		struct rtentry32 __user *ur4 = argp;
3168 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169 					3 * sizeof(struct sockaddr));
3170 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175 		ret |= get_user(rtdev, &(ur4->rt_dev));
3176 		if (rtdev) {
3177 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178 			r4.rt_dev = (char __user __force *)devname;
3179 			devname[15] = 0;
3180 		} else
3181 			r4.rt_dev = NULL;
3182 
3183 		r = (void *) &r4;
3184 	}
3185 
3186 	if (ret) {
3187 		ret = -EFAULT;
3188 		goto out;
3189 	}
3190 
3191 	set_fs(KERNEL_DS);
3192 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193 	set_fs(old_fs);
3194 
3195 out:
3196 	return ret;
3197 }
3198 
3199 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200  * for some operations; this forces use of the newer bridge-utils that
3201  * use compatible ioctls
3202  */
3203 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204 {
3205 	compat_ulong_t tmp;
3206 
3207 	if (get_user(tmp, argp))
3208 		return -EFAULT;
3209 	if (tmp == BRCTL_GET_VERSION)
3210 		return BRCTL_VERSION + 1;
3211 	return -EINVAL;
3212 }
3213 
3214 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215 			 unsigned int cmd, unsigned long arg)
3216 {
3217 	void __user *argp = compat_ptr(arg);
3218 	struct sock *sk = sock->sk;
3219 	struct net *net = sock_net(sk);
3220 
3221 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222 		return compat_ifr_data_ioctl(net, cmd, argp);
3223 
3224 	switch (cmd) {
3225 	case SIOCSIFBR:
3226 	case SIOCGIFBR:
3227 		return old_bridge_ioctl(argp);
3228 	case SIOCGIFNAME:
3229 		return dev_ifname32(net, argp);
3230 	case SIOCGIFCONF:
3231 		return dev_ifconf(net, argp);
3232 	case SIOCETHTOOL:
3233 		return ethtool_ioctl(net, argp);
3234 	case SIOCWANDEV:
3235 		return compat_siocwandev(net, argp);
3236 	case SIOCGIFMAP:
3237 	case SIOCSIFMAP:
3238 		return compat_sioc_ifmap(net, cmd, argp);
3239 	case SIOCBONDENSLAVE:
3240 	case SIOCBONDRELEASE:
3241 	case SIOCBONDSETHWADDR:
3242 	case SIOCBONDCHANGEACTIVE:
3243 		return bond_ioctl(net, cmd, argp);
3244 	case SIOCADDRT:
3245 	case SIOCDELRT:
3246 		return routing_ioctl(net, sock, cmd, argp);
3247 	case SIOCGSTAMP:
3248 		return do_siocgstamp(net, sock, cmd, argp);
3249 	case SIOCGSTAMPNS:
3250 		return do_siocgstampns(net, sock, cmd, argp);
3251 	case SIOCBONDSLAVEINFOQUERY:
3252 	case SIOCBONDINFOQUERY:
3253 	case SIOCSHWTSTAMP:
3254 	case SIOCGHWTSTAMP:
3255 		return compat_ifr_data_ioctl(net, cmd, argp);
3256 
3257 	case FIOSETOWN:
3258 	case SIOCSPGRP:
3259 	case FIOGETOWN:
3260 	case SIOCGPGRP:
3261 	case SIOCBRADDBR:
3262 	case SIOCBRDELBR:
3263 	case SIOCGIFVLAN:
3264 	case SIOCSIFVLAN:
3265 	case SIOCADDDLCI:
3266 	case SIOCDELDLCI:
3267 		return sock_ioctl(file, cmd, arg);
3268 
3269 	case SIOCGIFFLAGS:
3270 	case SIOCSIFFLAGS:
3271 	case SIOCGIFMETRIC:
3272 	case SIOCSIFMETRIC:
3273 	case SIOCGIFMTU:
3274 	case SIOCSIFMTU:
3275 	case SIOCGIFMEM:
3276 	case SIOCSIFMEM:
3277 	case SIOCGIFHWADDR:
3278 	case SIOCSIFHWADDR:
3279 	case SIOCADDMULTI:
3280 	case SIOCDELMULTI:
3281 	case SIOCGIFINDEX:
3282 	case SIOCGIFADDR:
3283 	case SIOCSIFADDR:
3284 	case SIOCSIFHWBROADCAST:
3285 	case SIOCDIFADDR:
3286 	case SIOCGIFBRDADDR:
3287 	case SIOCSIFBRDADDR:
3288 	case SIOCGIFDSTADDR:
3289 	case SIOCSIFDSTADDR:
3290 	case SIOCGIFNETMASK:
3291 	case SIOCSIFNETMASK:
3292 	case SIOCSIFPFLAGS:
3293 	case SIOCGIFPFLAGS:
3294 	case SIOCGIFTXQLEN:
3295 	case SIOCSIFTXQLEN:
3296 	case SIOCBRADDIF:
3297 	case SIOCBRDELIF:
3298 	case SIOCSIFNAME:
3299 	case SIOCGMIIPHY:
3300 	case SIOCGMIIREG:
3301 	case SIOCSMIIREG:
3302 		return dev_ifsioc(net, sock, cmd, argp);
3303 
3304 	case SIOCSARP:
3305 	case SIOCGARP:
3306 	case SIOCDARP:
3307 	case SIOCATMARK:
3308 		return sock_do_ioctl(net, sock, cmd, arg);
3309 	}
3310 
3311 	return -ENOIOCTLCMD;
3312 }
3313 
3314 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 			      unsigned long arg)
3316 {
3317 	struct socket *sock = file->private_data;
3318 	int ret = -ENOIOCTLCMD;
3319 	struct sock *sk;
3320 	struct net *net;
3321 
3322 	sk = sock->sk;
3323 	net = sock_net(sk);
3324 
3325 	if (sock->ops->compat_ioctl)
3326 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327 
3328 	if (ret == -ENOIOCTLCMD &&
3329 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3331 
3332 	if (ret == -ENOIOCTLCMD)
3333 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334 
3335 	return ret;
3336 }
3337 #endif
3338 
3339 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340 {
3341 	return sock->ops->bind(sock, addr, addrlen);
3342 }
3343 EXPORT_SYMBOL(kernel_bind);
3344 
3345 int kernel_listen(struct socket *sock, int backlog)
3346 {
3347 	return sock->ops->listen(sock, backlog);
3348 }
3349 EXPORT_SYMBOL(kernel_listen);
3350 
3351 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352 {
3353 	struct sock *sk = sock->sk;
3354 	int err;
3355 
3356 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357 			       newsock);
3358 	if (err < 0)
3359 		goto done;
3360 
3361 	err = sock->ops->accept(sock, *newsock, flags);
3362 	if (err < 0) {
3363 		sock_release(*newsock);
3364 		*newsock = NULL;
3365 		goto done;
3366 	}
3367 
3368 	(*newsock)->ops = sock->ops;
3369 	__module_get((*newsock)->ops->owner);
3370 
3371 done:
3372 	return err;
3373 }
3374 EXPORT_SYMBOL(kernel_accept);
3375 
3376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 		   int flags)
3378 {
3379 	return sock->ops->connect(sock, addr, addrlen, flags);
3380 }
3381 EXPORT_SYMBOL(kernel_connect);
3382 
3383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 			 int *addrlen)
3385 {
3386 	return sock->ops->getname(sock, addr, addrlen, 0);
3387 }
3388 EXPORT_SYMBOL(kernel_getsockname);
3389 
3390 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 			 int *addrlen)
3392 {
3393 	return sock->ops->getname(sock, addr, addrlen, 1);
3394 }
3395 EXPORT_SYMBOL(kernel_getpeername);
3396 
3397 int kernel_getsockopt(struct socket *sock, int level, int optname,
3398 			char *optval, int *optlen)
3399 {
3400 	mm_segment_t oldfs = get_fs();
3401 	char __user *uoptval;
3402 	int __user *uoptlen;
3403 	int err;
3404 
3405 	uoptval = (char __user __force *) optval;
3406 	uoptlen = (int __user __force *) optlen;
3407 
3408 	set_fs(KERNEL_DS);
3409 	if (level == SOL_SOCKET)
3410 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411 	else
3412 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413 					    uoptlen);
3414 	set_fs(oldfs);
3415 	return err;
3416 }
3417 EXPORT_SYMBOL(kernel_getsockopt);
3418 
3419 int kernel_setsockopt(struct socket *sock, int level, int optname,
3420 			char *optval, unsigned int optlen)
3421 {
3422 	mm_segment_t oldfs = get_fs();
3423 	char __user *uoptval;
3424 	int err;
3425 
3426 	uoptval = (char __user __force *) optval;
3427 
3428 	set_fs(KERNEL_DS);
3429 	if (level == SOL_SOCKET)
3430 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431 	else
3432 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433 					    optlen);
3434 	set_fs(oldfs);
3435 	return err;
3436 }
3437 EXPORT_SYMBOL(kernel_setsockopt);
3438 
3439 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440 		    size_t size, int flags)
3441 {
3442 	if (sock->ops->sendpage)
3443 		return sock->ops->sendpage(sock, page, offset, size, flags);
3444 
3445 	return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448 
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451 	mm_segment_t oldfs = get_fs();
3452 	int err;
3453 
3454 	set_fs(KERNEL_DS);
3455 	err = sock->ops->ioctl(sock, cmd, arg);
3456 	set_fs(oldfs);
3457 
3458 	return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461 
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464 	return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);
3467