xref: /openbmc/linux/net/socket.c (revision d0efb162)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117 
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 			      struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 			      unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 			     int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 				struct pipe_inode_info *pipe, size_t len,
131 				unsigned int flags);
132 
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 	struct socket *sock = f->private_data;
137 
138 	if (sock->ops->show_fdinfo)
139 		sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144 
145 /*
146  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147  *	in the operation structures but are done directly via the socketcall() multiplexor.
148  */
149 
150 static const struct file_operations socket_file_ops = {
151 	.owner =	THIS_MODULE,
152 	.llseek =	no_llseek,
153 	.read_iter =	sock_read_iter,
154 	.write_iter =	sock_write_iter,
155 	.poll =		sock_poll,
156 	.unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 	.compat_ioctl = compat_sock_ioctl,
159 #endif
160 	.mmap =		sock_mmap,
161 	.release =	sock_close,
162 	.fasync =	sock_fasync,
163 	.sendpage =	sock_sendpage,
164 	.splice_write = generic_splice_sendpage,
165 	.splice_read =	sock_splice_read,
166 	.show_fdinfo =	sock_show_fdinfo,
167 };
168 
169 static const char * const pf_family_names[] = {
170 	[PF_UNSPEC]	= "PF_UNSPEC",
171 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
172 	[PF_INET]	= "PF_INET",
173 	[PF_AX25]	= "PF_AX25",
174 	[PF_IPX]	= "PF_IPX",
175 	[PF_APPLETALK]	= "PF_APPLETALK",
176 	[PF_NETROM]	= "PF_NETROM",
177 	[PF_BRIDGE]	= "PF_BRIDGE",
178 	[PF_ATMPVC]	= "PF_ATMPVC",
179 	[PF_X25]	= "PF_X25",
180 	[PF_INET6]	= "PF_INET6",
181 	[PF_ROSE]	= "PF_ROSE",
182 	[PF_DECnet]	= "PF_DECnet",
183 	[PF_NETBEUI]	= "PF_NETBEUI",
184 	[PF_SECURITY]	= "PF_SECURITY",
185 	[PF_KEY]	= "PF_KEY",
186 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
187 	[PF_PACKET]	= "PF_PACKET",
188 	[PF_ASH]	= "PF_ASH",
189 	[PF_ECONET]	= "PF_ECONET",
190 	[PF_ATMSVC]	= "PF_ATMSVC",
191 	[PF_RDS]	= "PF_RDS",
192 	[PF_SNA]	= "PF_SNA",
193 	[PF_IRDA]	= "PF_IRDA",
194 	[PF_PPPOX]	= "PF_PPPOX",
195 	[PF_WANPIPE]	= "PF_WANPIPE",
196 	[PF_LLC]	= "PF_LLC",
197 	[PF_IB]		= "PF_IB",
198 	[PF_MPLS]	= "PF_MPLS",
199 	[PF_CAN]	= "PF_CAN",
200 	[PF_TIPC]	= "PF_TIPC",
201 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
202 	[PF_IUCV]	= "PF_IUCV",
203 	[PF_RXRPC]	= "PF_RXRPC",
204 	[PF_ISDN]	= "PF_ISDN",
205 	[PF_PHONET]	= "PF_PHONET",
206 	[PF_IEEE802154]	= "PF_IEEE802154",
207 	[PF_CAIF]	= "PF_CAIF",
208 	[PF_ALG]	= "PF_ALG",
209 	[PF_NFC]	= "PF_NFC",
210 	[PF_VSOCK]	= "PF_VSOCK",
211 	[PF_KCM]	= "PF_KCM",
212 	[PF_QIPCRTR]	= "PF_QIPCRTR",
213 	[PF_SMC]	= "PF_SMC",
214 	[PF_XDP]	= "PF_XDP",
215 };
216 
217 /*
218  *	The protocol list. Each protocol is registered in here.
219  */
220 
221 static DEFINE_SPINLOCK(net_family_lock);
222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223 
224 /*
225  * Support routines.
226  * Move socket addresses back and forth across the kernel/user
227  * divide and look after the messy bits.
228  */
229 
230 /**
231  *	move_addr_to_kernel	-	copy a socket address into kernel space
232  *	@uaddr: Address in user space
233  *	@kaddr: Address in kernel space
234  *	@ulen: Length in user space
235  *
236  *	The address is copied into kernel space. If the provided address is
237  *	too long an error code of -EINVAL is returned. If the copy gives
238  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
239  */
240 
241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242 {
243 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 		return -EINVAL;
245 	if (ulen == 0)
246 		return 0;
247 	if (copy_from_user(kaddr, uaddr, ulen))
248 		return -EFAULT;
249 	return audit_sockaddr(ulen, kaddr);
250 }
251 
252 /**
253  *	move_addr_to_user	-	copy an address to user space
254  *	@kaddr: kernel space address
255  *	@klen: length of address in kernel
256  *	@uaddr: user space address
257  *	@ulen: pointer to user length field
258  *
259  *	The value pointed to by ulen on entry is the buffer length available.
260  *	This is overwritten with the buffer space used. -EINVAL is returned
261  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
262  *	is returned if either the buffer or the length field are not
263  *	accessible.
264  *	After copying the data up to the limit the user specifies, the true
265  *	length of the data is written over the length limit the user
266  *	specified. Zero is returned for a success.
267  */
268 
269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 			     void __user *uaddr, int __user *ulen)
271 {
272 	int err;
273 	int len;
274 
275 	BUG_ON(klen > sizeof(struct sockaddr_storage));
276 	err = get_user(len, ulen);
277 	if (err)
278 		return err;
279 	if (len > klen)
280 		len = klen;
281 	if (len < 0)
282 		return -EINVAL;
283 	if (len) {
284 		if (audit_sockaddr(klen, kaddr))
285 			return -ENOMEM;
286 		if (copy_to_user(uaddr, kaddr, len))
287 			return -EFAULT;
288 	}
289 	/*
290 	 *      "fromlen shall refer to the value before truncation.."
291 	 *                      1003.1g
292 	 */
293 	return __put_user(klen, ulen);
294 }
295 
296 static struct kmem_cache *sock_inode_cachep __ro_after_init;
297 
298 static struct inode *sock_alloc_inode(struct super_block *sb)
299 {
300 	struct socket_alloc *ei;
301 
302 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 	if (!ei)
304 		return NULL;
305 	init_waitqueue_head(&ei->socket.wq.wait);
306 	ei->socket.wq.fasync_list = NULL;
307 	ei->socket.wq.flags = 0;
308 
309 	ei->socket.state = SS_UNCONNECTED;
310 	ei->socket.flags = 0;
311 	ei->socket.ops = NULL;
312 	ei->socket.sk = NULL;
313 	ei->socket.file = NULL;
314 
315 	return &ei->vfs_inode;
316 }
317 
318 static void sock_free_inode(struct inode *inode)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = container_of(inode, struct socket_alloc, vfs_inode);
323 	kmem_cache_free(sock_inode_cachep, ei);
324 }
325 
326 static void init_once(void *foo)
327 {
328 	struct socket_alloc *ei = (struct socket_alloc *)foo;
329 
330 	inode_init_once(&ei->vfs_inode);
331 }
332 
333 static void init_inodecache(void)
334 {
335 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 					      sizeof(struct socket_alloc),
337 					      0,
338 					      (SLAB_HWCACHE_ALIGN |
339 					       SLAB_RECLAIM_ACCOUNT |
340 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 					      init_once);
342 	BUG_ON(sock_inode_cachep == NULL);
343 }
344 
345 static const struct super_operations sockfs_ops = {
346 	.alloc_inode	= sock_alloc_inode,
347 	.free_inode	= sock_free_inode,
348 	.statfs		= simple_statfs,
349 };
350 
351 /*
352  * sockfs_dname() is called from d_path().
353  */
354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355 {
356 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 				d_inode(dentry)->i_ino);
358 }
359 
360 static const struct dentry_operations sockfs_dentry_operations = {
361 	.d_dname  = sockfs_dname,
362 };
363 
364 static int sockfs_xattr_get(const struct xattr_handler *handler,
365 			    struct dentry *dentry, struct inode *inode,
366 			    const char *suffix, void *value, size_t size)
367 {
368 	if (value) {
369 		if (dentry->d_name.len + 1 > size)
370 			return -ERANGE;
371 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 	}
373 	return dentry->d_name.len + 1;
374 }
375 
376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379 
380 static const struct xattr_handler sockfs_xattr_handler = {
381 	.name = XATTR_NAME_SOCKPROTONAME,
382 	.get = sockfs_xattr_get,
383 };
384 
385 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 				     struct user_namespace *mnt_userns,
387 				     struct dentry *dentry, struct inode *inode,
388 				     const char *suffix, const void *value,
389 				     size_t size, int flags)
390 {
391 	/* Handled by LSM. */
392 	return -EAGAIN;
393 }
394 
395 static const struct xattr_handler sockfs_security_xattr_handler = {
396 	.prefix = XATTR_SECURITY_PREFIX,
397 	.set = sockfs_security_xattr_set,
398 };
399 
400 static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 	&sockfs_xattr_handler,
402 	&sockfs_security_xattr_handler,
403 	NULL
404 };
405 
406 static int sockfs_init_fs_context(struct fs_context *fc)
407 {
408 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 	if (!ctx)
410 		return -ENOMEM;
411 	ctx->ops = &sockfs_ops;
412 	ctx->dops = &sockfs_dentry_operations;
413 	ctx->xattr = sockfs_xattr_handlers;
414 	return 0;
415 }
416 
417 static struct vfsmount *sock_mnt __read_mostly;
418 
419 static struct file_system_type sock_fs_type = {
420 	.name =		"sockfs",
421 	.init_fs_context = sockfs_init_fs_context,
422 	.kill_sb =	kill_anon_super,
423 };
424 
425 /*
426  *	Obtains the first available file descriptor and sets it up for use.
427  *
428  *	These functions create file structures and maps them to fd space
429  *	of the current process. On success it returns file descriptor
430  *	and file struct implicitly stored in sock->file.
431  *	Note that another thread may close file descriptor before we return
432  *	from this function. We use the fact that now we do not refer
433  *	to socket after mapping. If one day we will need it, this
434  *	function will increment ref. count on file by 1.
435  *
436  *	In any case returned fd MAY BE not valid!
437  *	This race condition is unavoidable
438  *	with shared fd spaces, we cannot solve it inside kernel,
439  *	but we take care of internal coherence yet.
440  */
441 
442 /**
443  *	sock_alloc_file - Bind a &socket to a &file
444  *	@sock: socket
445  *	@flags: file status flags
446  *	@dname: protocol name
447  *
448  *	Returns the &file bound with @sock, implicitly storing it
449  *	in sock->file. If dname is %NULL, sets to "".
450  *	On failure the return is a ERR pointer (see linux/err.h).
451  *	This function uses GFP_KERNEL internally.
452  */
453 
454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455 {
456 	struct file *file;
457 
458 	if (!dname)
459 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460 
461 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 				O_RDWR | (flags & O_NONBLOCK),
463 				&socket_file_ops);
464 	if (IS_ERR(file)) {
465 		sock_release(sock);
466 		return file;
467 	}
468 
469 	sock->file = file;
470 	file->private_data = sock;
471 	stream_open(SOCK_INODE(sock), file);
472 	return file;
473 }
474 EXPORT_SYMBOL(sock_alloc_file);
475 
476 static int sock_map_fd(struct socket *sock, int flags)
477 {
478 	struct file *newfile;
479 	int fd = get_unused_fd_flags(flags);
480 	if (unlikely(fd < 0)) {
481 		sock_release(sock);
482 		return fd;
483 	}
484 
485 	newfile = sock_alloc_file(sock, flags, NULL);
486 	if (!IS_ERR(newfile)) {
487 		fd_install(fd, newfile);
488 		return fd;
489 	}
490 
491 	put_unused_fd(fd);
492 	return PTR_ERR(newfile);
493 }
494 
495 /**
496  *	sock_from_file - Return the &socket bounded to @file.
497  *	@file: file
498  *
499  *	On failure returns %NULL.
500  */
501 
502 struct socket *sock_from_file(struct file *file)
503 {
504 	if (file->f_op == &socket_file_ops)
505 		return file->private_data;	/* set in sock_map_fd */
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL(sock_from_file);
510 
511 /**
512  *	sockfd_lookup - Go from a file number to its socket slot
513  *	@fd: file handle
514  *	@err: pointer to an error code return
515  *
516  *	The file handle passed in is locked and the socket it is bound
517  *	to is returned. If an error occurs the err pointer is overwritten
518  *	with a negative errno code and NULL is returned. The function checks
519  *	for both invalid handles and passing a handle which is not a socket.
520  *
521  *	On a success the socket object pointer is returned.
522  */
523 
524 struct socket *sockfd_lookup(int fd, int *err)
525 {
526 	struct file *file;
527 	struct socket *sock;
528 
529 	file = fget(fd);
530 	if (!file) {
531 		*err = -EBADF;
532 		return NULL;
533 	}
534 
535 	sock = sock_from_file(file);
536 	if (!sock) {
537 		*err = -ENOTSOCK;
538 		fput(file);
539 	}
540 	return sock;
541 }
542 EXPORT_SYMBOL(sockfd_lookup);
543 
544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545 {
546 	struct fd f = fdget(fd);
547 	struct socket *sock;
548 
549 	*err = -EBADF;
550 	if (f.file) {
551 		sock = sock_from_file(f.file);
552 		if (likely(sock)) {
553 			*fput_needed = f.flags & FDPUT_FPUT;
554 			return sock;
555 		}
556 		*err = -ENOTSOCK;
557 		fdput(f);
558 	}
559 	return NULL;
560 }
561 
562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 				size_t size)
564 {
565 	ssize_t len;
566 	ssize_t used = 0;
567 
568 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 	if (len < 0)
570 		return len;
571 	used += len;
572 	if (buffer) {
573 		if (size < used)
574 			return -ERANGE;
575 		buffer += len;
576 	}
577 
578 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 	used += len;
580 	if (buffer) {
581 		if (size < used)
582 			return -ERANGE;
583 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 		buffer += len;
585 	}
586 
587 	return used;
588 }
589 
590 static int sockfs_setattr(struct user_namespace *mnt_userns,
591 			  struct dentry *dentry, struct iattr *iattr)
592 {
593 	int err = simple_setattr(&init_user_ns, dentry, iattr);
594 
595 	if (!err && (iattr->ia_valid & ATTR_UID)) {
596 		struct socket *sock = SOCKET_I(d_inode(dentry));
597 
598 		if (sock->sk)
599 			sock->sk->sk_uid = iattr->ia_uid;
600 		else
601 			err = -ENOENT;
602 	}
603 
604 	return err;
605 }
606 
607 static const struct inode_operations sockfs_inode_ops = {
608 	.listxattr = sockfs_listxattr,
609 	.setattr = sockfs_setattr,
610 };
611 
612 /**
613  *	sock_alloc - allocate a socket
614  *
615  *	Allocate a new inode and socket object. The two are bound together
616  *	and initialised. The socket is then returned. If we are out of inodes
617  *	NULL is returned. This functions uses GFP_KERNEL internally.
618  */
619 
620 struct socket *sock_alloc(void)
621 {
622 	struct inode *inode;
623 	struct socket *sock;
624 
625 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 	if (!inode)
627 		return NULL;
628 
629 	sock = SOCKET_I(inode);
630 
631 	inode->i_ino = get_next_ino();
632 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 	inode->i_uid = current_fsuid();
634 	inode->i_gid = current_fsgid();
635 	inode->i_op = &sockfs_inode_ops;
636 
637 	return sock;
638 }
639 EXPORT_SYMBOL(sock_alloc);
640 
641 static void __sock_release(struct socket *sock, struct inode *inode)
642 {
643 	if (sock->ops) {
644 		struct module *owner = sock->ops->owner;
645 
646 		if (inode)
647 			inode_lock(inode);
648 		sock->ops->release(sock);
649 		sock->sk = NULL;
650 		if (inode)
651 			inode_unlock(inode);
652 		sock->ops = NULL;
653 		module_put(owner);
654 	}
655 
656 	if (sock->wq.fasync_list)
657 		pr_err("%s: fasync list not empty!\n", __func__);
658 
659 	if (!sock->file) {
660 		iput(SOCK_INODE(sock));
661 		return;
662 	}
663 	sock->file = NULL;
664 }
665 
666 /**
667  *	sock_release - close a socket
668  *	@sock: socket to close
669  *
670  *	The socket is released from the protocol stack if it has a release
671  *	callback, and the inode is then released if the socket is bound to
672  *	an inode not a file.
673  */
674 void sock_release(struct socket *sock)
675 {
676 	__sock_release(sock, NULL);
677 }
678 EXPORT_SYMBOL(sock_release);
679 
680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681 {
682 	u8 flags = *tx_flags;
683 
684 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 		flags |= SKBTX_HW_TSTAMP;
686 
687 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 		flags |= SKBTX_SW_TSTAMP;
689 
690 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 		flags |= SKBTX_SCHED_TSTAMP;
692 
693 	*tx_flags = flags;
694 }
695 EXPORT_SYMBOL(__sock_tx_timestamp);
696 
697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 					   size_t));
699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 					    size_t));
701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702 {
703 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 				     inet_sendmsg, sock, msg,
705 				     msg_data_left(msg));
706 	BUG_ON(ret == -EIOCBQUEUED);
707 	return ret;
708 }
709 
710 /**
711  *	sock_sendmsg - send a message through @sock
712  *	@sock: socket
713  *	@msg: message to send
714  *
715  *	Sends @msg through @sock, passing through LSM.
716  *	Returns the number of bytes sent, or an error code.
717  */
718 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719 {
720 	int err = security_socket_sendmsg(sock, msg,
721 					  msg_data_left(msg));
722 
723 	return err ?: sock_sendmsg_nosec(sock, msg);
724 }
725 EXPORT_SYMBOL(sock_sendmsg);
726 
727 /**
728  *	kernel_sendmsg - send a message through @sock (kernel-space)
729  *	@sock: socket
730  *	@msg: message header
731  *	@vec: kernel vec
732  *	@num: vec array length
733  *	@size: total message data size
734  *
735  *	Builds the message data with @vec and sends it through @sock.
736  *	Returns the number of bytes sent, or an error code.
737  */
738 
739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size)
741 {
742 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 	return sock_sendmsg(sock, msg);
744 }
745 EXPORT_SYMBOL(kernel_sendmsg);
746 
747 /**
748  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
749  *	@sk: sock
750  *	@msg: message header
751  *	@vec: output s/g array
752  *	@num: output s/g array length
753  *	@size: total message data size
754  *
755  *	Builds the message data with @vec and sends it through @sock.
756  *	Returns the number of bytes sent, or an error code.
757  *	Caller must hold @sk.
758  */
759 
760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 			  struct kvec *vec, size_t num, size_t size)
762 {
763 	struct socket *sock = sk->sk_socket;
764 
765 	if (!sock->ops->sendmsg_locked)
766 		return sock_no_sendmsg_locked(sk, msg, size);
767 
768 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769 
770 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771 }
772 EXPORT_SYMBOL(kernel_sendmsg_locked);
773 
774 static bool skb_is_err_queue(const struct sk_buff *skb)
775 {
776 	/* pkt_type of skbs enqueued on the error queue are set to
777 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 	 * in recvmsg, since skbs received on a local socket will never
779 	 * have a pkt_type of PACKET_OUTGOING.
780 	 */
781 	return skb->pkt_type == PACKET_OUTGOING;
782 }
783 
784 /* On transmit, software and hardware timestamps are returned independently.
785  * As the two skb clones share the hardware timestamp, which may be updated
786  * before the software timestamp is received, a hardware TX timestamp may be
787  * returned only if there is no software TX timestamp. Ignore false software
788  * timestamps, which may be made in the __sock_recv_timestamp() call when the
789  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790  * hardware timestamp.
791  */
792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793 {
794 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795 }
796 
797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798 {
799 	struct scm_ts_pktinfo ts_pktinfo;
800 	struct net_device *orig_dev;
801 
802 	if (!skb_mac_header_was_set(skb))
803 		return;
804 
805 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806 
807 	rcu_read_lock();
808 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 	if (orig_dev)
810 		ts_pktinfo.if_index = orig_dev->ifindex;
811 	rcu_read_unlock();
812 
813 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 		 sizeof(ts_pktinfo), &ts_pktinfo);
816 }
817 
818 /*
819  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820  */
821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 	struct sk_buff *skb)
823 {
824 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 	struct scm_timestamping_internal tss;
827 
828 	int empty = 1, false_tstamp = 0;
829 	struct skb_shared_hwtstamps *shhwtstamps =
830 		skb_hwtstamps(skb);
831 
832 	/* Race occurred between timestamp enabling and packet
833 	   receiving.  Fill in the current time for now. */
834 	if (need_software_tstamp && skb->tstamp == 0) {
835 		__net_timestamp(skb);
836 		false_tstamp = 1;
837 	}
838 
839 	if (need_software_tstamp) {
840 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 			if (new_tstamp) {
842 				struct __kernel_sock_timeval tv;
843 
844 				skb_get_new_timestamp(skb, &tv);
845 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 					 sizeof(tv), &tv);
847 			} else {
848 				struct __kernel_old_timeval tv;
849 
850 				skb_get_timestamp(skb, &tv);
851 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 					 sizeof(tv), &tv);
853 			}
854 		} else {
855 			if (new_tstamp) {
856 				struct __kernel_timespec ts;
857 
858 				skb_get_new_timestampns(skb, &ts);
859 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 					 sizeof(ts), &ts);
861 			} else {
862 				struct __kernel_old_timespec ts;
863 
864 				skb_get_timestampns(skb, &ts);
865 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 					 sizeof(ts), &ts);
867 			}
868 		}
869 	}
870 
871 	memset(&tss, 0, sizeof(tss));
872 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 		empty = 0;
875 	if (shhwtstamps &&
876 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880 
881 		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 					     tss.ts + 2)) {
883 			empty = 0;
884 
885 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 			    !skb_is_err_queue(skb))
887 				put_ts_pktinfo(msg, skb);
888 		}
889 	}
890 	if (!empty) {
891 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 			put_cmsg_scm_timestamping64(msg, &tss);
893 		else
894 			put_cmsg_scm_timestamping(msg, &tss);
895 
896 		if (skb_is_err_queue(skb) && skb->len &&
897 		    SKB_EXT_ERR(skb)->opt_stats)
898 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 				 skb->len, skb->data);
900 	}
901 }
902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903 
904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 	struct sk_buff *skb)
906 {
907 	int ack;
908 
909 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 		return;
911 	if (!skb->wifi_acked_valid)
912 		return;
913 
914 	ack = skb->wifi_acked;
915 
916 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917 }
918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919 
920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 				   struct sk_buff *skb)
922 {
923 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926 }
927 
928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 	struct sk_buff *skb)
930 {
931 	sock_recv_timestamp(msg, sk, skb);
932 	sock_recv_drops(msg, sk, skb);
933 }
934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935 
936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 					   size_t, int));
938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 					    size_t, int));
940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 				     int flags)
942 {
943 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 				  inet_recvmsg, sock, msg, msg_data_left(msg),
945 				  flags);
946 }
947 
948 /**
949  *	sock_recvmsg - receive a message from @sock
950  *	@sock: socket
951  *	@msg: message to receive
952  *	@flags: message flags
953  *
954  *	Receives @msg from @sock, passing through LSM. Returns the total number
955  *	of bytes received, or an error.
956  */
957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958 {
959 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960 
961 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
962 }
963 EXPORT_SYMBOL(sock_recvmsg);
964 
965 /**
966  *	kernel_recvmsg - Receive a message from a socket (kernel space)
967  *	@sock: The socket to receive the message from
968  *	@msg: Received message
969  *	@vec: Input s/g array for message data
970  *	@num: Size of input s/g array
971  *	@size: Number of bytes to read
972  *	@flags: Message flags (MSG_DONTWAIT, etc...)
973  *
974  *	On return the msg structure contains the scatter/gather array passed in the
975  *	vec argument. The array is modified so that it consists of the unfilled
976  *	portion of the original array.
977  *
978  *	The returned value is the total number of bytes received, or an error.
979  */
980 
981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 		   struct kvec *vec, size_t num, size_t size, int flags)
983 {
984 	msg->msg_control_is_user = false;
985 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 	return sock_recvmsg(sock, msg, flags);
987 }
988 EXPORT_SYMBOL(kernel_recvmsg);
989 
990 static ssize_t sock_sendpage(struct file *file, struct page *page,
991 			     int offset, size_t size, loff_t *ppos, int more)
992 {
993 	struct socket *sock;
994 	int flags;
995 
996 	sock = file->private_data;
997 
998 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 	flags |= more;
1001 
1002 	return kernel_sendpage(sock, page, offset, size, flags);
1003 }
1004 
1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 				struct pipe_inode_info *pipe, size_t len,
1007 				unsigned int flags)
1008 {
1009 	struct socket *sock = file->private_data;
1010 
1011 	if (unlikely(!sock->ops->splice_read))
1012 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013 
1014 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015 }
1016 
1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018 {
1019 	struct file *file = iocb->ki_filp;
1020 	struct socket *sock = file->private_data;
1021 	struct msghdr msg = {.msg_iter = *to,
1022 			     .msg_iocb = iocb};
1023 	ssize_t res;
1024 
1025 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 		msg.msg_flags = MSG_DONTWAIT;
1027 
1028 	if (iocb->ki_pos != 0)
1029 		return -ESPIPE;
1030 
1031 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032 		return 0;
1033 
1034 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 	*to = msg.msg_iter;
1036 	return res;
1037 }
1038 
1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040 {
1041 	struct file *file = iocb->ki_filp;
1042 	struct socket *sock = file->private_data;
1043 	struct msghdr msg = {.msg_iter = *from,
1044 			     .msg_iocb = iocb};
1045 	ssize_t res;
1046 
1047 	if (iocb->ki_pos != 0)
1048 		return -ESPIPE;
1049 
1050 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 		msg.msg_flags = MSG_DONTWAIT;
1052 
1053 	if (sock->type == SOCK_SEQPACKET)
1054 		msg.msg_flags |= MSG_EOR;
1055 
1056 	res = sock_sendmsg(sock, &msg);
1057 	*from = msg.msg_iter;
1058 	return res;
1059 }
1060 
1061 /*
1062  * Atomic setting of ioctl hooks to avoid race
1063  * with module unload.
1064  */
1065 
1066 static DEFINE_MUTEX(br_ioctl_mutex);
1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068 
1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070 {
1071 	mutex_lock(&br_ioctl_mutex);
1072 	br_ioctl_hook = hook;
1073 	mutex_unlock(&br_ioctl_mutex);
1074 }
1075 EXPORT_SYMBOL(brioctl_set);
1076 
1077 static DEFINE_MUTEX(vlan_ioctl_mutex);
1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079 
1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081 {
1082 	mutex_lock(&vlan_ioctl_mutex);
1083 	vlan_ioctl_hook = hook;
1084 	mutex_unlock(&vlan_ioctl_mutex);
1085 }
1086 EXPORT_SYMBOL(vlan_ioctl_set);
1087 
1088 static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 			  unsigned int cmd, unsigned long arg)
1090 {
1091 	int err;
1092 	void __user *argp = (void __user *)arg;
1093 
1094 	err = sock->ops->ioctl(sock, cmd, arg);
1095 
1096 	/*
1097 	 * If this ioctl is unknown try to hand it down
1098 	 * to the NIC driver.
1099 	 */
1100 	if (err != -ENOIOCTLCMD)
1101 		return err;
1102 
1103 	if (cmd == SIOCGIFCONF) {
1104 		struct ifconf ifc;
1105 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106 			return -EFAULT;
1107 		rtnl_lock();
1108 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109 		rtnl_unlock();
1110 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111 			err = -EFAULT;
1112 	} else if (is_socket_ioctl_cmd(cmd)) {
1113 		struct ifreq ifr;
1114 		bool need_copyout;
1115 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 			return -EFAULT;
1117 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 		if (!err && need_copyout)
1119 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 				return -EFAULT;
1121 	} else {
1122 		err = -ENOTTY;
1123 	}
1124 	return err;
1125 }
1126 
1127 /*
1128  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1129  *	what to do with it - that's up to the protocol still.
1130  */
1131 
1132 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133 {
1134 	struct socket *sock;
1135 	struct sock *sk;
1136 	void __user *argp = (void __user *)arg;
1137 	int pid, err;
1138 	struct net *net;
1139 
1140 	sock = file->private_data;
1141 	sk = sock->sk;
1142 	net = sock_net(sk);
1143 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144 		struct ifreq ifr;
1145 		bool need_copyout;
1146 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147 			return -EFAULT;
1148 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149 		if (!err && need_copyout)
1150 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151 				return -EFAULT;
1152 	} else
1153 #ifdef CONFIG_WEXT_CORE
1154 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155 		err = wext_handle_ioctl(net, cmd, argp);
1156 	} else
1157 #endif
1158 		switch (cmd) {
1159 		case FIOSETOWN:
1160 		case SIOCSPGRP:
1161 			err = -EFAULT;
1162 			if (get_user(pid, (int __user *)argp))
1163 				break;
1164 			err = f_setown(sock->file, pid, 1);
1165 			break;
1166 		case FIOGETOWN:
1167 		case SIOCGPGRP:
1168 			err = put_user(f_getown(sock->file),
1169 				       (int __user *)argp);
1170 			break;
1171 		case SIOCGIFBR:
1172 		case SIOCSIFBR:
1173 		case SIOCBRADDBR:
1174 		case SIOCBRDELBR:
1175 			err = -ENOPKG;
1176 			if (!br_ioctl_hook)
1177 				request_module("bridge");
1178 
1179 			mutex_lock(&br_ioctl_mutex);
1180 			if (br_ioctl_hook)
1181 				err = br_ioctl_hook(net, cmd, argp);
1182 			mutex_unlock(&br_ioctl_mutex);
1183 			break;
1184 		case SIOCGIFVLAN:
1185 		case SIOCSIFVLAN:
1186 			err = -ENOPKG;
1187 			if (!vlan_ioctl_hook)
1188 				request_module("8021q");
1189 
1190 			mutex_lock(&vlan_ioctl_mutex);
1191 			if (vlan_ioctl_hook)
1192 				err = vlan_ioctl_hook(net, argp);
1193 			mutex_unlock(&vlan_ioctl_mutex);
1194 			break;
1195 		case SIOCGSKNS:
1196 			err = -EPERM;
1197 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198 				break;
1199 
1200 			err = open_related_ns(&net->ns, get_net_ns);
1201 			break;
1202 		case SIOCGSTAMP_OLD:
1203 		case SIOCGSTAMPNS_OLD:
1204 			if (!sock->ops->gettstamp) {
1205 				err = -ENOIOCTLCMD;
1206 				break;
1207 			}
1208 			err = sock->ops->gettstamp(sock, argp,
1209 						   cmd == SIOCGSTAMP_OLD,
1210 						   !IS_ENABLED(CONFIG_64BIT));
1211 			break;
1212 		case SIOCGSTAMP_NEW:
1213 		case SIOCGSTAMPNS_NEW:
1214 			if (!sock->ops->gettstamp) {
1215 				err = -ENOIOCTLCMD;
1216 				break;
1217 			}
1218 			err = sock->ops->gettstamp(sock, argp,
1219 						   cmd == SIOCGSTAMP_NEW,
1220 						   false);
1221 			break;
1222 		default:
1223 			err = sock_do_ioctl(net, sock, cmd, arg);
1224 			break;
1225 		}
1226 	return err;
1227 }
1228 
1229 /**
1230  *	sock_create_lite - creates a socket
1231  *	@family: protocol family (AF_INET, ...)
1232  *	@type: communication type (SOCK_STREAM, ...)
1233  *	@protocol: protocol (0, ...)
1234  *	@res: new socket
1235  *
1236  *	Creates a new socket and assigns it to @res, passing through LSM.
1237  *	The new socket initialization is not complete, see kernel_accept().
1238  *	Returns 0 or an error. On failure @res is set to %NULL.
1239  *	This function internally uses GFP_KERNEL.
1240  */
1241 
1242 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243 {
1244 	int err;
1245 	struct socket *sock = NULL;
1246 
1247 	err = security_socket_create(family, type, protocol, 1);
1248 	if (err)
1249 		goto out;
1250 
1251 	sock = sock_alloc();
1252 	if (!sock) {
1253 		err = -ENOMEM;
1254 		goto out;
1255 	}
1256 
1257 	sock->type = type;
1258 	err = security_socket_post_create(sock, family, type, protocol, 1);
1259 	if (err)
1260 		goto out_release;
1261 
1262 out:
1263 	*res = sock;
1264 	return err;
1265 out_release:
1266 	sock_release(sock);
1267 	sock = NULL;
1268 	goto out;
1269 }
1270 EXPORT_SYMBOL(sock_create_lite);
1271 
1272 /* No kernel lock held - perfect */
1273 static __poll_t sock_poll(struct file *file, poll_table *wait)
1274 {
1275 	struct socket *sock = file->private_data;
1276 	__poll_t events = poll_requested_events(wait), flag = 0;
1277 
1278 	if (!sock->ops->poll)
1279 		return 0;
1280 
1281 	if (sk_can_busy_loop(sock->sk)) {
1282 		/* poll once if requested by the syscall */
1283 		if (events & POLL_BUSY_LOOP)
1284 			sk_busy_loop(sock->sk, 1);
1285 
1286 		/* if this socket can poll_ll, tell the system call */
1287 		flag = POLL_BUSY_LOOP;
1288 	}
1289 
1290 	return sock->ops->poll(file, sock, wait) | flag;
1291 }
1292 
1293 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294 {
1295 	struct socket *sock = file->private_data;
1296 
1297 	return sock->ops->mmap(file, sock, vma);
1298 }
1299 
1300 static int sock_close(struct inode *inode, struct file *filp)
1301 {
1302 	__sock_release(SOCKET_I(inode), inode);
1303 	return 0;
1304 }
1305 
1306 /*
1307  *	Update the socket async list
1308  *
1309  *	Fasync_list locking strategy.
1310  *
1311  *	1. fasync_list is modified only under process context socket lock
1312  *	   i.e. under semaphore.
1313  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314  *	   or under socket lock
1315  */
1316 
1317 static int sock_fasync(int fd, struct file *filp, int on)
1318 {
1319 	struct socket *sock = filp->private_data;
1320 	struct sock *sk = sock->sk;
1321 	struct socket_wq *wq = &sock->wq;
1322 
1323 	if (sk == NULL)
1324 		return -EINVAL;
1325 
1326 	lock_sock(sk);
1327 	fasync_helper(fd, filp, on, &wq->fasync_list);
1328 
1329 	if (!wq->fasync_list)
1330 		sock_reset_flag(sk, SOCK_FASYNC);
1331 	else
1332 		sock_set_flag(sk, SOCK_FASYNC);
1333 
1334 	release_sock(sk);
1335 	return 0;
1336 }
1337 
1338 /* This function may be called only under rcu_lock */
1339 
1340 int sock_wake_async(struct socket_wq *wq, int how, int band)
1341 {
1342 	if (!wq || !wq->fasync_list)
1343 		return -1;
1344 
1345 	switch (how) {
1346 	case SOCK_WAKE_WAITD:
1347 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348 			break;
1349 		goto call_kill;
1350 	case SOCK_WAKE_SPACE:
1351 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352 			break;
1353 		fallthrough;
1354 	case SOCK_WAKE_IO:
1355 call_kill:
1356 		kill_fasync(&wq->fasync_list, SIGIO, band);
1357 		break;
1358 	case SOCK_WAKE_URG:
1359 		kill_fasync(&wq->fasync_list, SIGURG, band);
1360 	}
1361 
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL(sock_wake_async);
1365 
1366 /**
1367  *	__sock_create - creates a socket
1368  *	@net: net namespace
1369  *	@family: protocol family (AF_INET, ...)
1370  *	@type: communication type (SOCK_STREAM, ...)
1371  *	@protocol: protocol (0, ...)
1372  *	@res: new socket
1373  *	@kern: boolean for kernel space sockets
1374  *
1375  *	Creates a new socket and assigns it to @res, passing through LSM.
1376  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377  *	be set to true if the socket resides in kernel space.
1378  *	This function internally uses GFP_KERNEL.
1379  */
1380 
1381 int __sock_create(struct net *net, int family, int type, int protocol,
1382 			 struct socket **res, int kern)
1383 {
1384 	int err;
1385 	struct socket *sock;
1386 	const struct net_proto_family *pf;
1387 
1388 	/*
1389 	 *      Check protocol is in range
1390 	 */
1391 	if (family < 0 || family >= NPROTO)
1392 		return -EAFNOSUPPORT;
1393 	if (type < 0 || type >= SOCK_MAX)
1394 		return -EINVAL;
1395 
1396 	/* Compatibility.
1397 
1398 	   This uglymoron is moved from INET layer to here to avoid
1399 	   deadlock in module load.
1400 	 */
1401 	if (family == PF_INET && type == SOCK_PACKET) {
1402 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403 			     current->comm);
1404 		family = PF_PACKET;
1405 	}
1406 
1407 	err = security_socket_create(family, type, protocol, kern);
1408 	if (err)
1409 		return err;
1410 
1411 	/*
1412 	 *	Allocate the socket and allow the family to set things up. if
1413 	 *	the protocol is 0, the family is instructed to select an appropriate
1414 	 *	default.
1415 	 */
1416 	sock = sock_alloc();
1417 	if (!sock) {
1418 		net_warn_ratelimited("socket: no more sockets\n");
1419 		return -ENFILE;	/* Not exactly a match, but its the
1420 				   closest posix thing */
1421 	}
1422 
1423 	sock->type = type;
1424 
1425 #ifdef CONFIG_MODULES
1426 	/* Attempt to load a protocol module if the find failed.
1427 	 *
1428 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429 	 * requested real, full-featured networking support upon configuration.
1430 	 * Otherwise module support will break!
1431 	 */
1432 	if (rcu_access_pointer(net_families[family]) == NULL)
1433 		request_module("net-pf-%d", family);
1434 #endif
1435 
1436 	rcu_read_lock();
1437 	pf = rcu_dereference(net_families[family]);
1438 	err = -EAFNOSUPPORT;
1439 	if (!pf)
1440 		goto out_release;
1441 
1442 	/*
1443 	 * We will call the ->create function, that possibly is in a loadable
1444 	 * module, so we have to bump that loadable module refcnt first.
1445 	 */
1446 	if (!try_module_get(pf->owner))
1447 		goto out_release;
1448 
1449 	/* Now protected by module ref count */
1450 	rcu_read_unlock();
1451 
1452 	err = pf->create(net, sock, protocol, kern);
1453 	if (err < 0)
1454 		goto out_module_put;
1455 
1456 	/*
1457 	 * Now to bump the refcnt of the [loadable] module that owns this
1458 	 * socket at sock_release time we decrement its refcnt.
1459 	 */
1460 	if (!try_module_get(sock->ops->owner))
1461 		goto out_module_busy;
1462 
1463 	/*
1464 	 * Now that we're done with the ->create function, the [loadable]
1465 	 * module can have its refcnt decremented
1466 	 */
1467 	module_put(pf->owner);
1468 	err = security_socket_post_create(sock, family, type, protocol, kern);
1469 	if (err)
1470 		goto out_sock_release;
1471 	*res = sock;
1472 
1473 	return 0;
1474 
1475 out_module_busy:
1476 	err = -EAFNOSUPPORT;
1477 out_module_put:
1478 	sock->ops = NULL;
1479 	module_put(pf->owner);
1480 out_sock_release:
1481 	sock_release(sock);
1482 	return err;
1483 
1484 out_release:
1485 	rcu_read_unlock();
1486 	goto out_sock_release;
1487 }
1488 EXPORT_SYMBOL(__sock_create);
1489 
1490 /**
1491  *	sock_create - creates a socket
1492  *	@family: protocol family (AF_INET, ...)
1493  *	@type: communication type (SOCK_STREAM, ...)
1494  *	@protocol: protocol (0, ...)
1495  *	@res: new socket
1496  *
1497  *	A wrapper around __sock_create().
1498  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1499  */
1500 
1501 int sock_create(int family, int type, int protocol, struct socket **res)
1502 {
1503 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504 }
1505 EXPORT_SYMBOL(sock_create);
1506 
1507 /**
1508  *	sock_create_kern - creates a socket (kernel space)
1509  *	@net: net namespace
1510  *	@family: protocol family (AF_INET, ...)
1511  *	@type: communication type (SOCK_STREAM, ...)
1512  *	@protocol: protocol (0, ...)
1513  *	@res: new socket
1514  *
1515  *	A wrapper around __sock_create().
1516  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1517  */
1518 
1519 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520 {
1521 	return __sock_create(net, family, type, protocol, res, 1);
1522 }
1523 EXPORT_SYMBOL(sock_create_kern);
1524 
1525 int __sys_socket(int family, int type, int protocol)
1526 {
1527 	int retval;
1528 	struct socket *sock;
1529 	int flags;
1530 
1531 	/* Check the SOCK_* constants for consistency.  */
1532 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536 
1537 	flags = type & ~SOCK_TYPE_MASK;
1538 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539 		return -EINVAL;
1540 	type &= SOCK_TYPE_MASK;
1541 
1542 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544 
1545 	retval = sock_create(family, type, protocol, &sock);
1546 	if (retval < 0)
1547 		return retval;
1548 
1549 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550 }
1551 
1552 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553 {
1554 	return __sys_socket(family, type, protocol);
1555 }
1556 
1557 /*
1558  *	Create a pair of connected sockets.
1559  */
1560 
1561 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562 {
1563 	struct socket *sock1, *sock2;
1564 	int fd1, fd2, err;
1565 	struct file *newfile1, *newfile2;
1566 	int flags;
1567 
1568 	flags = type & ~SOCK_TYPE_MASK;
1569 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 		return -EINVAL;
1571 	type &= SOCK_TYPE_MASK;
1572 
1573 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575 
1576 	/*
1577 	 * reserve descriptors and make sure we won't fail
1578 	 * to return them to userland.
1579 	 */
1580 	fd1 = get_unused_fd_flags(flags);
1581 	if (unlikely(fd1 < 0))
1582 		return fd1;
1583 
1584 	fd2 = get_unused_fd_flags(flags);
1585 	if (unlikely(fd2 < 0)) {
1586 		put_unused_fd(fd1);
1587 		return fd2;
1588 	}
1589 
1590 	err = put_user(fd1, &usockvec[0]);
1591 	if (err)
1592 		goto out;
1593 
1594 	err = put_user(fd2, &usockvec[1]);
1595 	if (err)
1596 		goto out;
1597 
1598 	/*
1599 	 * Obtain the first socket and check if the underlying protocol
1600 	 * supports the socketpair call.
1601 	 */
1602 
1603 	err = sock_create(family, type, protocol, &sock1);
1604 	if (unlikely(err < 0))
1605 		goto out;
1606 
1607 	err = sock_create(family, type, protocol, &sock2);
1608 	if (unlikely(err < 0)) {
1609 		sock_release(sock1);
1610 		goto out;
1611 	}
1612 
1613 	err = security_socket_socketpair(sock1, sock2);
1614 	if (unlikely(err)) {
1615 		sock_release(sock2);
1616 		sock_release(sock1);
1617 		goto out;
1618 	}
1619 
1620 	err = sock1->ops->socketpair(sock1, sock2);
1621 	if (unlikely(err < 0)) {
1622 		sock_release(sock2);
1623 		sock_release(sock1);
1624 		goto out;
1625 	}
1626 
1627 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1628 	if (IS_ERR(newfile1)) {
1629 		err = PTR_ERR(newfile1);
1630 		sock_release(sock2);
1631 		goto out;
1632 	}
1633 
1634 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1635 	if (IS_ERR(newfile2)) {
1636 		err = PTR_ERR(newfile2);
1637 		fput(newfile1);
1638 		goto out;
1639 	}
1640 
1641 	audit_fd_pair(fd1, fd2);
1642 
1643 	fd_install(fd1, newfile1);
1644 	fd_install(fd2, newfile2);
1645 	return 0;
1646 
1647 out:
1648 	put_unused_fd(fd2);
1649 	put_unused_fd(fd1);
1650 	return err;
1651 }
1652 
1653 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654 		int __user *, usockvec)
1655 {
1656 	return __sys_socketpair(family, type, protocol, usockvec);
1657 }
1658 
1659 /*
1660  *	Bind a name to a socket. Nothing much to do here since it's
1661  *	the protocol's responsibility to handle the local address.
1662  *
1663  *	We move the socket address to kernel space before we call
1664  *	the protocol layer (having also checked the address is ok).
1665  */
1666 
1667 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err, fput_needed;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (sock) {
1675 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676 		if (!err) {
1677 			err = security_socket_bind(sock,
1678 						   (struct sockaddr *)&address,
1679 						   addrlen);
1680 			if (!err)
1681 				err = sock->ops->bind(sock,
1682 						      (struct sockaddr *)
1683 						      &address, addrlen);
1684 		}
1685 		fput_light(sock->file, fput_needed);
1686 	}
1687 	return err;
1688 }
1689 
1690 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691 {
1692 	return __sys_bind(fd, umyaddr, addrlen);
1693 }
1694 
1695 /*
1696  *	Perform a listen. Basically, we allow the protocol to do anything
1697  *	necessary for a listen, and if that works, we mark the socket as
1698  *	ready for listening.
1699  */
1700 
1701 int __sys_listen(int fd, int backlog)
1702 {
1703 	struct socket *sock;
1704 	int err, fput_needed;
1705 	int somaxconn;
1706 
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (sock) {
1709 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710 		if ((unsigned int)backlog > somaxconn)
1711 			backlog = somaxconn;
1712 
1713 		err = security_socket_listen(sock, backlog);
1714 		if (!err)
1715 			err = sock->ops->listen(sock, backlog);
1716 
1717 		fput_light(sock->file, fput_needed);
1718 	}
1719 	return err;
1720 }
1721 
1722 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723 {
1724 	return __sys_listen(fd, backlog);
1725 }
1726 
1727 int __sys_accept4_file(struct file *file, unsigned file_flags,
1728 		       struct sockaddr __user *upeer_sockaddr,
1729 		       int __user *upeer_addrlen, int flags,
1730 		       unsigned long nofile)
1731 {
1732 	struct socket *sock, *newsock;
1733 	struct file *newfile;
1734 	int err, len, newfd;
1735 	struct sockaddr_storage address;
1736 
1737 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 		return -EINVAL;
1739 
1740 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742 
1743 	sock = sock_from_file(file);
1744 	if (!sock) {
1745 		err = -ENOTSOCK;
1746 		goto out;
1747 	}
1748 
1749 	err = -ENFILE;
1750 	newsock = sock_alloc();
1751 	if (!newsock)
1752 		goto out;
1753 
1754 	newsock->type = sock->type;
1755 	newsock->ops = sock->ops;
1756 
1757 	/*
1758 	 * We don't need try_module_get here, as the listening socket (sock)
1759 	 * has the protocol module (sock->ops->owner) held.
1760 	 */
1761 	__module_get(newsock->ops->owner);
1762 
1763 	newfd = __get_unused_fd_flags(flags, nofile);
1764 	if (unlikely(newfd < 0)) {
1765 		err = newfd;
1766 		sock_release(newsock);
1767 		goto out;
1768 	}
1769 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770 	if (IS_ERR(newfile)) {
1771 		err = PTR_ERR(newfile);
1772 		put_unused_fd(newfd);
1773 		goto out;
1774 	}
1775 
1776 	err = security_socket_accept(sock, newsock);
1777 	if (err)
1778 		goto out_fd;
1779 
1780 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781 					false);
1782 	if (err < 0)
1783 		goto out_fd;
1784 
1785 	if (upeer_sockaddr) {
1786 		len = newsock->ops->getname(newsock,
1787 					(struct sockaddr *)&address, 2);
1788 		if (len < 0) {
1789 			err = -ECONNABORTED;
1790 			goto out_fd;
1791 		}
1792 		err = move_addr_to_user(&address,
1793 					len, upeer_sockaddr, upeer_addrlen);
1794 		if (err < 0)
1795 			goto out_fd;
1796 	}
1797 
1798 	/* File flags are not inherited via accept() unlike another OSes. */
1799 
1800 	fd_install(newfd, newfile);
1801 	err = newfd;
1802 out:
1803 	return err;
1804 out_fd:
1805 	fput(newfile);
1806 	put_unused_fd(newfd);
1807 	goto out;
1808 
1809 }
1810 
1811 /*
1812  *	For accept, we attempt to create a new socket, set up the link
1813  *	with the client, wake up the client, then return the new
1814  *	connected fd. We collect the address of the connector in kernel
1815  *	space and move it to user at the very end. This is unclean because
1816  *	we open the socket then return an error.
1817  *
1818  *	1003.1g adds the ability to recvmsg() to query connection pending
1819  *	status to recvmsg. We need to add that support in a way thats
1820  *	clean when we restructure accept also.
1821  */
1822 
1823 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824 		  int __user *upeer_addrlen, int flags)
1825 {
1826 	int ret = -EBADF;
1827 	struct fd f;
1828 
1829 	f = fdget(fd);
1830 	if (f.file) {
1831 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832 						upeer_addrlen, flags,
1833 						rlimit(RLIMIT_NOFILE));
1834 		fdput(f);
1835 	}
1836 
1837 	return ret;
1838 }
1839 
1840 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841 		int __user *, upeer_addrlen, int, flags)
1842 {
1843 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844 }
1845 
1846 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847 		int __user *, upeer_addrlen)
1848 {
1849 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850 }
1851 
1852 /*
1853  *	Attempt to connect to a socket with the server address.  The address
1854  *	is in user space so we verify it is OK and move it to kernel space.
1855  *
1856  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857  *	break bindings
1858  *
1859  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860  *	other SEQPACKET protocols that take time to connect() as it doesn't
1861  *	include the -EINPROGRESS status for such sockets.
1862  */
1863 
1864 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865 		       int addrlen, int file_flags)
1866 {
1867 	struct socket *sock;
1868 	int err;
1869 
1870 	sock = sock_from_file(file);
1871 	if (!sock) {
1872 		err = -ENOTSOCK;
1873 		goto out;
1874 	}
1875 
1876 	err =
1877 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878 	if (err)
1879 		goto out;
1880 
1881 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882 				 sock->file->f_flags | file_flags);
1883 out:
1884 	return err;
1885 }
1886 
1887 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888 {
1889 	int ret = -EBADF;
1890 	struct fd f;
1891 
1892 	f = fdget(fd);
1893 	if (f.file) {
1894 		struct sockaddr_storage address;
1895 
1896 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897 		if (!ret)
1898 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899 		fdput(f);
1900 	}
1901 
1902 	return ret;
1903 }
1904 
1905 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906 		int, addrlen)
1907 {
1908 	return __sys_connect(fd, uservaddr, addrlen);
1909 }
1910 
1911 /*
1912  *	Get the local address ('name') of a socket object. Move the obtained
1913  *	name to user space.
1914  */
1915 
1916 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917 		      int __user *usockaddr_len)
1918 {
1919 	struct socket *sock;
1920 	struct sockaddr_storage address;
1921 	int err, fput_needed;
1922 
1923 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 	if (!sock)
1925 		goto out;
1926 
1927 	err = security_socket_getsockname(sock);
1928 	if (err)
1929 		goto out_put;
1930 
1931 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932 	if (err < 0)
1933 		goto out_put;
1934         /* "err" is actually length in this case */
1935 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936 
1937 out_put:
1938 	fput_light(sock->file, fput_needed);
1939 out:
1940 	return err;
1941 }
1942 
1943 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944 		int __user *, usockaddr_len)
1945 {
1946 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947 }
1948 
1949 /*
1950  *	Get the remote address ('name') of a socket object. Move the obtained
1951  *	name to user space.
1952  */
1953 
1954 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955 		      int __user *usockaddr_len)
1956 {
1957 	struct socket *sock;
1958 	struct sockaddr_storage address;
1959 	int err, fput_needed;
1960 
1961 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 	if (sock != NULL) {
1963 		err = security_socket_getpeername(sock);
1964 		if (err) {
1965 			fput_light(sock->file, fput_needed);
1966 			return err;
1967 		}
1968 
1969 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970 		if (err >= 0)
1971 			/* "err" is actually length in this case */
1972 			err = move_addr_to_user(&address, err, usockaddr,
1973 						usockaddr_len);
1974 		fput_light(sock->file, fput_needed);
1975 	}
1976 	return err;
1977 }
1978 
1979 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980 		int __user *, usockaddr_len)
1981 {
1982 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983 }
1984 
1985 /*
1986  *	Send a datagram to a given address. We move the address into kernel
1987  *	space and check the user space data area is readable before invoking
1988  *	the protocol.
1989  */
1990 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991 		 struct sockaddr __user *addr,  int addr_len)
1992 {
1993 	struct socket *sock;
1994 	struct sockaddr_storage address;
1995 	int err;
1996 	struct msghdr msg;
1997 	struct iovec iov;
1998 	int fput_needed;
1999 
2000 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001 	if (unlikely(err))
2002 		return err;
2003 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004 	if (!sock)
2005 		goto out;
2006 
2007 	msg.msg_name = NULL;
2008 	msg.msg_control = NULL;
2009 	msg.msg_controllen = 0;
2010 	msg.msg_namelen = 0;
2011 	if (addr) {
2012 		err = move_addr_to_kernel(addr, addr_len, &address);
2013 		if (err < 0)
2014 			goto out_put;
2015 		msg.msg_name = (struct sockaddr *)&address;
2016 		msg.msg_namelen = addr_len;
2017 	}
2018 	if (sock->file->f_flags & O_NONBLOCK)
2019 		flags |= MSG_DONTWAIT;
2020 	msg.msg_flags = flags;
2021 	err = sock_sendmsg(sock, &msg);
2022 
2023 out_put:
2024 	fput_light(sock->file, fput_needed);
2025 out:
2026 	return err;
2027 }
2028 
2029 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030 		unsigned int, flags, struct sockaddr __user *, addr,
2031 		int, addr_len)
2032 {
2033 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034 }
2035 
2036 /*
2037  *	Send a datagram down a socket.
2038  */
2039 
2040 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041 		unsigned int, flags)
2042 {
2043 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044 }
2045 
2046 /*
2047  *	Receive a frame from the socket and optionally record the address of the
2048  *	sender. We verify the buffers are writable and if needed move the
2049  *	sender address from kernel to user space.
2050  */
2051 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052 		   struct sockaddr __user *addr, int __user *addr_len)
2053 {
2054 	struct socket *sock;
2055 	struct iovec iov;
2056 	struct msghdr msg;
2057 	struct sockaddr_storage address;
2058 	int err, err2;
2059 	int fput_needed;
2060 
2061 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062 	if (unlikely(err))
2063 		return err;
2064 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 	if (!sock)
2066 		goto out;
2067 
2068 	msg.msg_control = NULL;
2069 	msg.msg_controllen = 0;
2070 	/* Save some cycles and don't copy the address if not needed */
2071 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072 	/* We assume all kernel code knows the size of sockaddr_storage */
2073 	msg.msg_namelen = 0;
2074 	msg.msg_iocb = NULL;
2075 	msg.msg_flags = 0;
2076 	if (sock->file->f_flags & O_NONBLOCK)
2077 		flags |= MSG_DONTWAIT;
2078 	err = sock_recvmsg(sock, &msg, flags);
2079 
2080 	if (err >= 0 && addr != NULL) {
2081 		err2 = move_addr_to_user(&address,
2082 					 msg.msg_namelen, addr, addr_len);
2083 		if (err2 < 0)
2084 			err = err2;
2085 	}
2086 
2087 	fput_light(sock->file, fput_needed);
2088 out:
2089 	return err;
2090 }
2091 
2092 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093 		unsigned int, flags, struct sockaddr __user *, addr,
2094 		int __user *, addr_len)
2095 {
2096 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097 }
2098 
2099 /*
2100  *	Receive a datagram from a socket.
2101  */
2102 
2103 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104 		unsigned int, flags)
2105 {
2106 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107 }
2108 
2109 static bool sock_use_custom_sol_socket(const struct socket *sock)
2110 {
2111 	const struct sock *sk = sock->sk;
2112 
2113 	/* Use sock->ops->setsockopt() for MPTCP */
2114 	return IS_ENABLED(CONFIG_MPTCP) &&
2115 	       sk->sk_protocol == IPPROTO_MPTCP &&
2116 	       sk->sk_type == SOCK_STREAM &&
2117 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118 }
2119 
2120 /*
2121  *	Set a socket option. Because we don't know the option lengths we have
2122  *	to pass the user mode parameter for the protocols to sort out.
2123  */
2124 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125 		int optlen)
2126 {
2127 	sockptr_t optval = USER_SOCKPTR(user_optval);
2128 	char *kernel_optval = NULL;
2129 	int err, fput_needed;
2130 	struct socket *sock;
2131 
2132 	if (optlen < 0)
2133 		return -EINVAL;
2134 
2135 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 	if (!sock)
2137 		return err;
2138 
2139 	err = security_socket_setsockopt(sock, level, optname);
2140 	if (err)
2141 		goto out_put;
2142 
2143 	if (!in_compat_syscall())
2144 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145 						     user_optval, &optlen,
2146 						     &kernel_optval);
2147 	if (err < 0)
2148 		goto out_put;
2149 	if (err > 0) {
2150 		err = 0;
2151 		goto out_put;
2152 	}
2153 
2154 	if (kernel_optval)
2155 		optval = KERNEL_SOCKPTR(kernel_optval);
2156 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2158 	else if (unlikely(!sock->ops->setsockopt))
2159 		err = -EOPNOTSUPP;
2160 	else
2161 		err = sock->ops->setsockopt(sock, level, optname, optval,
2162 					    optlen);
2163 	kfree(kernel_optval);
2164 out_put:
2165 	fput_light(sock->file, fput_needed);
2166 	return err;
2167 }
2168 
2169 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170 		char __user *, optval, int, optlen)
2171 {
2172 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2173 }
2174 
2175 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176 							 int optname));
2177 
2178 /*
2179  *	Get a socket option. Because we don't know the option lengths we have
2180  *	to pass a user mode parameter for the protocols to sort out.
2181  */
2182 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183 		int __user *optlen)
2184 {
2185 	int err, fput_needed;
2186 	struct socket *sock;
2187 	int max_optlen;
2188 
2189 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 	if (!sock)
2191 		return err;
2192 
2193 	err = security_socket_getsockopt(sock, level, optname);
2194 	if (err)
2195 		goto out_put;
2196 
2197 	if (!in_compat_syscall())
2198 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199 
2200 	if (level == SOL_SOCKET)
2201 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2202 	else if (unlikely(!sock->ops->getsockopt))
2203 		err = -EOPNOTSUPP;
2204 	else
2205 		err = sock->ops->getsockopt(sock, level, optname, optval,
2206 					    optlen);
2207 
2208 	if (!in_compat_syscall())
2209 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210 						     optval, optlen, max_optlen,
2211 						     err);
2212 out_put:
2213 	fput_light(sock->file, fput_needed);
2214 	return err;
2215 }
2216 
2217 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218 		char __user *, optval, int __user *, optlen)
2219 {
2220 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2221 }
2222 
2223 /*
2224  *	Shutdown a socket.
2225  */
2226 
2227 int __sys_shutdown_sock(struct socket *sock, int how)
2228 {
2229 	int err;
2230 
2231 	err = security_socket_shutdown(sock, how);
2232 	if (!err)
2233 		err = sock->ops->shutdown(sock, how);
2234 
2235 	return err;
2236 }
2237 
2238 int __sys_shutdown(int fd, int how)
2239 {
2240 	int err, fput_needed;
2241 	struct socket *sock;
2242 
2243 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244 	if (sock != NULL) {
2245 		err = __sys_shutdown_sock(sock, how);
2246 		fput_light(sock->file, fput_needed);
2247 	}
2248 	return err;
2249 }
2250 
2251 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252 {
2253 	return __sys_shutdown(fd, how);
2254 }
2255 
2256 /* A couple of helpful macros for getting the address of the 32/64 bit
2257  * fields which are the same type (int / unsigned) on our platforms.
2258  */
2259 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2261 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2262 
2263 struct used_address {
2264 	struct sockaddr_storage name;
2265 	unsigned int name_len;
2266 };
2267 
2268 int __copy_msghdr_from_user(struct msghdr *kmsg,
2269 			    struct user_msghdr __user *umsg,
2270 			    struct sockaddr __user **save_addr,
2271 			    struct iovec __user **uiov, size_t *nsegs)
2272 {
2273 	struct user_msghdr msg;
2274 	ssize_t err;
2275 
2276 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277 		return -EFAULT;
2278 
2279 	kmsg->msg_control_is_user = true;
2280 	kmsg->msg_control_user = msg.msg_control;
2281 	kmsg->msg_controllen = msg.msg_controllen;
2282 	kmsg->msg_flags = msg.msg_flags;
2283 
2284 	kmsg->msg_namelen = msg.msg_namelen;
2285 	if (!msg.msg_name)
2286 		kmsg->msg_namelen = 0;
2287 
2288 	if (kmsg->msg_namelen < 0)
2289 		return -EINVAL;
2290 
2291 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293 
2294 	if (save_addr)
2295 		*save_addr = msg.msg_name;
2296 
2297 	if (msg.msg_name && kmsg->msg_namelen) {
2298 		if (!save_addr) {
2299 			err = move_addr_to_kernel(msg.msg_name,
2300 						  kmsg->msg_namelen,
2301 						  kmsg->msg_name);
2302 			if (err < 0)
2303 				return err;
2304 		}
2305 	} else {
2306 		kmsg->msg_name = NULL;
2307 		kmsg->msg_namelen = 0;
2308 	}
2309 
2310 	if (msg.msg_iovlen > UIO_MAXIOV)
2311 		return -EMSGSIZE;
2312 
2313 	kmsg->msg_iocb = NULL;
2314 	*uiov = msg.msg_iov;
2315 	*nsegs = msg.msg_iovlen;
2316 	return 0;
2317 }
2318 
2319 static int copy_msghdr_from_user(struct msghdr *kmsg,
2320 				 struct user_msghdr __user *umsg,
2321 				 struct sockaddr __user **save_addr,
2322 				 struct iovec **iov)
2323 {
2324 	struct user_msghdr msg;
2325 	ssize_t err;
2326 
2327 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328 					&msg.msg_iovlen);
2329 	if (err)
2330 		return err;
2331 
2332 	err = import_iovec(save_addr ? READ : WRITE,
2333 			    msg.msg_iov, msg.msg_iovlen,
2334 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2335 	return err < 0 ? err : 0;
2336 }
2337 
2338 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339 			   unsigned int flags, struct used_address *used_address,
2340 			   unsigned int allowed_msghdr_flags)
2341 {
2342 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343 				__aligned(sizeof(__kernel_size_t));
2344 	/* 20 is size of ipv6_pktinfo */
2345 	unsigned char *ctl_buf = ctl;
2346 	int ctl_len;
2347 	ssize_t err;
2348 
2349 	err = -ENOBUFS;
2350 
2351 	if (msg_sys->msg_controllen > INT_MAX)
2352 		goto out;
2353 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354 	ctl_len = msg_sys->msg_controllen;
2355 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356 		err =
2357 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358 						     sizeof(ctl));
2359 		if (err)
2360 			goto out;
2361 		ctl_buf = msg_sys->msg_control;
2362 		ctl_len = msg_sys->msg_controllen;
2363 	} else if (ctl_len) {
2364 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2366 		if (ctl_len > sizeof(ctl)) {
2367 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368 			if (ctl_buf == NULL)
2369 				goto out;
2370 		}
2371 		err = -EFAULT;
2372 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373 			goto out_freectl;
2374 		msg_sys->msg_control = ctl_buf;
2375 		msg_sys->msg_control_is_user = false;
2376 	}
2377 	msg_sys->msg_flags = flags;
2378 
2379 	if (sock->file->f_flags & O_NONBLOCK)
2380 		msg_sys->msg_flags |= MSG_DONTWAIT;
2381 	/*
2382 	 * If this is sendmmsg() and current destination address is same as
2383 	 * previously succeeded address, omit asking LSM's decision.
2384 	 * used_address->name_len is initialized to UINT_MAX so that the first
2385 	 * destination address never matches.
2386 	 */
2387 	if (used_address && msg_sys->msg_name &&
2388 	    used_address->name_len == msg_sys->msg_namelen &&
2389 	    !memcmp(&used_address->name, msg_sys->msg_name,
2390 		    used_address->name_len)) {
2391 		err = sock_sendmsg_nosec(sock, msg_sys);
2392 		goto out_freectl;
2393 	}
2394 	err = sock_sendmsg(sock, msg_sys);
2395 	/*
2396 	 * If this is sendmmsg() and sending to current destination address was
2397 	 * successful, remember it.
2398 	 */
2399 	if (used_address && err >= 0) {
2400 		used_address->name_len = msg_sys->msg_namelen;
2401 		if (msg_sys->msg_name)
2402 			memcpy(&used_address->name, msg_sys->msg_name,
2403 			       used_address->name_len);
2404 	}
2405 
2406 out_freectl:
2407 	if (ctl_buf != ctl)
2408 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409 out:
2410 	return err;
2411 }
2412 
2413 int sendmsg_copy_msghdr(struct msghdr *msg,
2414 			struct user_msghdr __user *umsg, unsigned flags,
2415 			struct iovec **iov)
2416 {
2417 	int err;
2418 
2419 	if (flags & MSG_CMSG_COMPAT) {
2420 		struct compat_msghdr __user *msg_compat;
2421 
2422 		msg_compat = (struct compat_msghdr __user *) umsg;
2423 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424 	} else {
2425 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426 	}
2427 	if (err < 0)
2428 		return err;
2429 
2430 	return 0;
2431 }
2432 
2433 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434 			 struct msghdr *msg_sys, unsigned int flags,
2435 			 struct used_address *used_address,
2436 			 unsigned int allowed_msghdr_flags)
2437 {
2438 	struct sockaddr_storage address;
2439 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440 	ssize_t err;
2441 
2442 	msg_sys->msg_name = &address;
2443 
2444 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445 	if (err < 0)
2446 		return err;
2447 
2448 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449 				allowed_msghdr_flags);
2450 	kfree(iov);
2451 	return err;
2452 }
2453 
2454 /*
2455  *	BSD sendmsg interface
2456  */
2457 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458 			unsigned int flags)
2459 {
2460 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461 }
2462 
2463 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464 		   bool forbid_cmsg_compat)
2465 {
2466 	int fput_needed, err;
2467 	struct msghdr msg_sys;
2468 	struct socket *sock;
2469 
2470 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471 		return -EINVAL;
2472 
2473 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474 	if (!sock)
2475 		goto out;
2476 
2477 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478 
2479 	fput_light(sock->file, fput_needed);
2480 out:
2481 	return err;
2482 }
2483 
2484 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485 {
2486 	return __sys_sendmsg(fd, msg, flags, true);
2487 }
2488 
2489 /*
2490  *	Linux sendmmsg interface
2491  */
2492 
2493 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494 		   unsigned int flags, bool forbid_cmsg_compat)
2495 {
2496 	int fput_needed, err, datagrams;
2497 	struct socket *sock;
2498 	struct mmsghdr __user *entry;
2499 	struct compat_mmsghdr __user *compat_entry;
2500 	struct msghdr msg_sys;
2501 	struct used_address used_address;
2502 	unsigned int oflags = flags;
2503 
2504 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505 		return -EINVAL;
2506 
2507 	if (vlen > UIO_MAXIOV)
2508 		vlen = UIO_MAXIOV;
2509 
2510 	datagrams = 0;
2511 
2512 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513 	if (!sock)
2514 		return err;
2515 
2516 	used_address.name_len = UINT_MAX;
2517 	entry = mmsg;
2518 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519 	err = 0;
2520 	flags |= MSG_BATCH;
2521 
2522 	while (datagrams < vlen) {
2523 		if (datagrams == vlen - 1)
2524 			flags = oflags;
2525 
2526 		if (MSG_CMSG_COMPAT & flags) {
2527 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 					     &msg_sys, flags, &used_address, MSG_EOR);
2529 			if (err < 0)
2530 				break;
2531 			err = __put_user(err, &compat_entry->msg_len);
2532 			++compat_entry;
2533 		} else {
2534 			err = ___sys_sendmsg(sock,
2535 					     (struct user_msghdr __user *)entry,
2536 					     &msg_sys, flags, &used_address, MSG_EOR);
2537 			if (err < 0)
2538 				break;
2539 			err = put_user(err, &entry->msg_len);
2540 			++entry;
2541 		}
2542 
2543 		if (err)
2544 			break;
2545 		++datagrams;
2546 		if (msg_data_left(&msg_sys))
2547 			break;
2548 		cond_resched();
2549 	}
2550 
2551 	fput_light(sock->file, fput_needed);
2552 
2553 	/* We only return an error if no datagrams were able to be sent */
2554 	if (datagrams != 0)
2555 		return datagrams;
2556 
2557 	return err;
2558 }
2559 
2560 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561 		unsigned int, vlen, unsigned int, flags)
2562 {
2563 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564 }
2565 
2566 int recvmsg_copy_msghdr(struct msghdr *msg,
2567 			struct user_msghdr __user *umsg, unsigned flags,
2568 			struct sockaddr __user **uaddr,
2569 			struct iovec **iov)
2570 {
2571 	ssize_t err;
2572 
2573 	if (MSG_CMSG_COMPAT & flags) {
2574 		struct compat_msghdr __user *msg_compat;
2575 
2576 		msg_compat = (struct compat_msghdr __user *) umsg;
2577 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578 	} else {
2579 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580 	}
2581 	if (err < 0)
2582 		return err;
2583 
2584 	return 0;
2585 }
2586 
2587 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588 			   struct user_msghdr __user *msg,
2589 			   struct sockaddr __user *uaddr,
2590 			   unsigned int flags, int nosec)
2591 {
2592 	struct compat_msghdr __user *msg_compat =
2593 					(struct compat_msghdr __user *) msg;
2594 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595 	struct sockaddr_storage addr;
2596 	unsigned long cmsg_ptr;
2597 	int len;
2598 	ssize_t err;
2599 
2600 	msg_sys->msg_name = &addr;
2601 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603 
2604 	/* We assume all kernel code knows the size of sockaddr_storage */
2605 	msg_sys->msg_namelen = 0;
2606 
2607 	if (sock->file->f_flags & O_NONBLOCK)
2608 		flags |= MSG_DONTWAIT;
2609 
2610 	if (unlikely(nosec))
2611 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612 	else
2613 		err = sock_recvmsg(sock, msg_sys, flags);
2614 
2615 	if (err < 0)
2616 		goto out;
2617 	len = err;
2618 
2619 	if (uaddr != NULL) {
2620 		err = move_addr_to_user(&addr,
2621 					msg_sys->msg_namelen, uaddr,
2622 					uaddr_len);
2623 		if (err < 0)
2624 			goto out;
2625 	}
2626 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627 			 COMPAT_FLAGS(msg));
2628 	if (err)
2629 		goto out;
2630 	if (MSG_CMSG_COMPAT & flags)
2631 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632 				 &msg_compat->msg_controllen);
2633 	else
2634 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635 				 &msg->msg_controllen);
2636 	if (err)
2637 		goto out;
2638 	err = len;
2639 out:
2640 	return err;
2641 }
2642 
2643 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645 {
2646 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647 	/* user mode address pointers */
2648 	struct sockaddr __user *uaddr;
2649 	ssize_t err;
2650 
2651 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652 	if (err < 0)
2653 		return err;
2654 
2655 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656 	kfree(iov);
2657 	return err;
2658 }
2659 
2660 /*
2661  *	BSD recvmsg interface
2662  */
2663 
2664 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665 			struct user_msghdr __user *umsg,
2666 			struct sockaddr __user *uaddr, unsigned int flags)
2667 {
2668 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669 }
2670 
2671 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672 		   bool forbid_cmsg_compat)
2673 {
2674 	int fput_needed, err;
2675 	struct msghdr msg_sys;
2676 	struct socket *sock;
2677 
2678 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679 		return -EINVAL;
2680 
2681 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 	if (!sock)
2683 		goto out;
2684 
2685 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686 
2687 	fput_light(sock->file, fput_needed);
2688 out:
2689 	return err;
2690 }
2691 
2692 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693 		unsigned int, flags)
2694 {
2695 	return __sys_recvmsg(fd, msg, flags, true);
2696 }
2697 
2698 /*
2699  *     Linux recvmmsg interface
2700  */
2701 
2702 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703 			  unsigned int vlen, unsigned int flags,
2704 			  struct timespec64 *timeout)
2705 {
2706 	int fput_needed, err, datagrams;
2707 	struct socket *sock;
2708 	struct mmsghdr __user *entry;
2709 	struct compat_mmsghdr __user *compat_entry;
2710 	struct msghdr msg_sys;
2711 	struct timespec64 end_time;
2712 	struct timespec64 timeout64;
2713 
2714 	if (timeout &&
2715 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2716 				    timeout->tv_nsec))
2717 		return -EINVAL;
2718 
2719 	datagrams = 0;
2720 
2721 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722 	if (!sock)
2723 		return err;
2724 
2725 	if (likely(!(flags & MSG_ERRQUEUE))) {
2726 		err = sock_error(sock->sk);
2727 		if (err) {
2728 			datagrams = err;
2729 			goto out_put;
2730 		}
2731 	}
2732 
2733 	entry = mmsg;
2734 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735 
2736 	while (datagrams < vlen) {
2737 		/*
2738 		 * No need to ask LSM for more than the first datagram.
2739 		 */
2740 		if (MSG_CMSG_COMPAT & flags) {
2741 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742 					     &msg_sys, flags & ~MSG_WAITFORONE,
2743 					     datagrams);
2744 			if (err < 0)
2745 				break;
2746 			err = __put_user(err, &compat_entry->msg_len);
2747 			++compat_entry;
2748 		} else {
2749 			err = ___sys_recvmsg(sock,
2750 					     (struct user_msghdr __user *)entry,
2751 					     &msg_sys, flags & ~MSG_WAITFORONE,
2752 					     datagrams);
2753 			if (err < 0)
2754 				break;
2755 			err = put_user(err, &entry->msg_len);
2756 			++entry;
2757 		}
2758 
2759 		if (err)
2760 			break;
2761 		++datagrams;
2762 
2763 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764 		if (flags & MSG_WAITFORONE)
2765 			flags |= MSG_DONTWAIT;
2766 
2767 		if (timeout) {
2768 			ktime_get_ts64(&timeout64);
2769 			*timeout = timespec64_sub(end_time, timeout64);
2770 			if (timeout->tv_sec < 0) {
2771 				timeout->tv_sec = timeout->tv_nsec = 0;
2772 				break;
2773 			}
2774 
2775 			/* Timeout, return less than vlen datagrams */
2776 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777 				break;
2778 		}
2779 
2780 		/* Out of band data, return right away */
2781 		if (msg_sys.msg_flags & MSG_OOB)
2782 			break;
2783 		cond_resched();
2784 	}
2785 
2786 	if (err == 0)
2787 		goto out_put;
2788 
2789 	if (datagrams == 0) {
2790 		datagrams = err;
2791 		goto out_put;
2792 	}
2793 
2794 	/*
2795 	 * We may return less entries than requested (vlen) if the
2796 	 * sock is non block and there aren't enough datagrams...
2797 	 */
2798 	if (err != -EAGAIN) {
2799 		/*
2800 		 * ... or  if recvmsg returns an error after we
2801 		 * received some datagrams, where we record the
2802 		 * error to return on the next call or if the
2803 		 * app asks about it using getsockopt(SO_ERROR).
2804 		 */
2805 		sock->sk->sk_err = -err;
2806 	}
2807 out_put:
2808 	fput_light(sock->file, fput_needed);
2809 
2810 	return datagrams;
2811 }
2812 
2813 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814 		   unsigned int vlen, unsigned int flags,
2815 		   struct __kernel_timespec __user *timeout,
2816 		   struct old_timespec32 __user *timeout32)
2817 {
2818 	int datagrams;
2819 	struct timespec64 timeout_sys;
2820 
2821 	if (timeout && get_timespec64(&timeout_sys, timeout))
2822 		return -EFAULT;
2823 
2824 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825 		return -EFAULT;
2826 
2827 	if (!timeout && !timeout32)
2828 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829 
2830 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831 
2832 	if (datagrams <= 0)
2833 		return datagrams;
2834 
2835 	if (timeout && put_timespec64(&timeout_sys, timeout))
2836 		datagrams = -EFAULT;
2837 
2838 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839 		datagrams = -EFAULT;
2840 
2841 	return datagrams;
2842 }
2843 
2844 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845 		unsigned int, vlen, unsigned int, flags,
2846 		struct __kernel_timespec __user *, timeout)
2847 {
2848 	if (flags & MSG_CMSG_COMPAT)
2849 		return -EINVAL;
2850 
2851 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852 }
2853 
2854 #ifdef CONFIG_COMPAT_32BIT_TIME
2855 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856 		unsigned int, vlen, unsigned int, flags,
2857 		struct old_timespec32 __user *, timeout)
2858 {
2859 	if (flags & MSG_CMSG_COMPAT)
2860 		return -EINVAL;
2861 
2862 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863 }
2864 #endif
2865 
2866 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2867 /* Argument list sizes for sys_socketcall */
2868 #define AL(x) ((x) * sizeof(unsigned long))
2869 static const unsigned char nargs[21] = {
2870 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873 	AL(4), AL(5), AL(4)
2874 };
2875 
2876 #undef AL
2877 
2878 /*
2879  *	System call vectors.
2880  *
2881  *	Argument checking cleaned up. Saved 20% in size.
2882  *  This function doesn't need to set the kernel lock because
2883  *  it is set by the callees.
2884  */
2885 
2886 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887 {
2888 	unsigned long a[AUDITSC_ARGS];
2889 	unsigned long a0, a1;
2890 	int err;
2891 	unsigned int len;
2892 
2893 	if (call < 1 || call > SYS_SENDMMSG)
2894 		return -EINVAL;
2895 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896 
2897 	len = nargs[call];
2898 	if (len > sizeof(a))
2899 		return -EINVAL;
2900 
2901 	/* copy_from_user should be SMP safe. */
2902 	if (copy_from_user(a, args, len))
2903 		return -EFAULT;
2904 
2905 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906 	if (err)
2907 		return err;
2908 
2909 	a0 = a[0];
2910 	a1 = a[1];
2911 
2912 	switch (call) {
2913 	case SYS_SOCKET:
2914 		err = __sys_socket(a0, a1, a[2]);
2915 		break;
2916 	case SYS_BIND:
2917 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918 		break;
2919 	case SYS_CONNECT:
2920 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921 		break;
2922 	case SYS_LISTEN:
2923 		err = __sys_listen(a0, a1);
2924 		break;
2925 	case SYS_ACCEPT:
2926 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927 				    (int __user *)a[2], 0);
2928 		break;
2929 	case SYS_GETSOCKNAME:
2930 		err =
2931 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932 				      (int __user *)a[2]);
2933 		break;
2934 	case SYS_GETPEERNAME:
2935 		err =
2936 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937 				      (int __user *)a[2]);
2938 		break;
2939 	case SYS_SOCKETPAIR:
2940 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941 		break;
2942 	case SYS_SEND:
2943 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944 				   NULL, 0);
2945 		break;
2946 	case SYS_SENDTO:
2947 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948 				   (struct sockaddr __user *)a[4], a[5]);
2949 		break;
2950 	case SYS_RECV:
2951 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952 				     NULL, NULL);
2953 		break;
2954 	case SYS_RECVFROM:
2955 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956 				     (struct sockaddr __user *)a[4],
2957 				     (int __user *)a[5]);
2958 		break;
2959 	case SYS_SHUTDOWN:
2960 		err = __sys_shutdown(a0, a1);
2961 		break;
2962 	case SYS_SETSOCKOPT:
2963 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964 				       a[4]);
2965 		break;
2966 	case SYS_GETSOCKOPT:
2967 		err =
2968 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969 				     (int __user *)a[4]);
2970 		break;
2971 	case SYS_SENDMSG:
2972 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973 				    a[2], true);
2974 		break;
2975 	case SYS_SENDMMSG:
2976 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977 				     a[3], true);
2978 		break;
2979 	case SYS_RECVMSG:
2980 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981 				    a[2], true);
2982 		break;
2983 	case SYS_RECVMMSG:
2984 		if (IS_ENABLED(CONFIG_64BIT))
2985 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986 					     a[2], a[3],
2987 					     (struct __kernel_timespec __user *)a[4],
2988 					     NULL);
2989 		else
2990 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991 					     a[2], a[3], NULL,
2992 					     (struct old_timespec32 __user *)a[4]);
2993 		break;
2994 	case SYS_ACCEPT4:
2995 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996 				    (int __user *)a[2], a[3]);
2997 		break;
2998 	default:
2999 		err = -EINVAL;
3000 		break;
3001 	}
3002 	return err;
3003 }
3004 
3005 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3006 
3007 /**
3008  *	sock_register - add a socket protocol handler
3009  *	@ops: description of protocol
3010  *
3011  *	This function is called by a protocol handler that wants to
3012  *	advertise its address family, and have it linked into the
3013  *	socket interface. The value ops->family corresponds to the
3014  *	socket system call protocol family.
3015  */
3016 int sock_register(const struct net_proto_family *ops)
3017 {
3018 	int err;
3019 
3020 	if (ops->family >= NPROTO) {
3021 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022 		return -ENOBUFS;
3023 	}
3024 
3025 	spin_lock(&net_family_lock);
3026 	if (rcu_dereference_protected(net_families[ops->family],
3027 				      lockdep_is_held(&net_family_lock)))
3028 		err = -EEXIST;
3029 	else {
3030 		rcu_assign_pointer(net_families[ops->family], ops);
3031 		err = 0;
3032 	}
3033 	spin_unlock(&net_family_lock);
3034 
3035 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036 	return err;
3037 }
3038 EXPORT_SYMBOL(sock_register);
3039 
3040 /**
3041  *	sock_unregister - remove a protocol handler
3042  *	@family: protocol family to remove
3043  *
3044  *	This function is called by a protocol handler that wants to
3045  *	remove its address family, and have it unlinked from the
3046  *	new socket creation.
3047  *
3048  *	If protocol handler is a module, then it can use module reference
3049  *	counts to protect against new references. If protocol handler is not
3050  *	a module then it needs to provide its own protection in
3051  *	the ops->create routine.
3052  */
3053 void sock_unregister(int family)
3054 {
3055 	BUG_ON(family < 0 || family >= NPROTO);
3056 
3057 	spin_lock(&net_family_lock);
3058 	RCU_INIT_POINTER(net_families[family], NULL);
3059 	spin_unlock(&net_family_lock);
3060 
3061 	synchronize_rcu();
3062 
3063 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064 }
3065 EXPORT_SYMBOL(sock_unregister);
3066 
3067 bool sock_is_registered(int family)
3068 {
3069 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3070 }
3071 
3072 static int __init sock_init(void)
3073 {
3074 	int err;
3075 	/*
3076 	 *      Initialize the network sysctl infrastructure.
3077 	 */
3078 	err = net_sysctl_init();
3079 	if (err)
3080 		goto out;
3081 
3082 	/*
3083 	 *      Initialize skbuff SLAB cache
3084 	 */
3085 	skb_init();
3086 
3087 	/*
3088 	 *      Initialize the protocols module.
3089 	 */
3090 
3091 	init_inodecache();
3092 
3093 	err = register_filesystem(&sock_fs_type);
3094 	if (err)
3095 		goto out;
3096 	sock_mnt = kern_mount(&sock_fs_type);
3097 	if (IS_ERR(sock_mnt)) {
3098 		err = PTR_ERR(sock_mnt);
3099 		goto out_mount;
3100 	}
3101 
3102 	/* The real protocol initialization is performed in later initcalls.
3103 	 */
3104 
3105 #ifdef CONFIG_NETFILTER
3106 	err = netfilter_init();
3107 	if (err)
3108 		goto out;
3109 #endif
3110 
3111 	ptp_classifier_init();
3112 
3113 out:
3114 	return err;
3115 
3116 out_mount:
3117 	unregister_filesystem(&sock_fs_type);
3118 	goto out;
3119 }
3120 
3121 core_initcall(sock_init);	/* early initcall */
3122 
3123 #ifdef CONFIG_PROC_FS
3124 void socket_seq_show(struct seq_file *seq)
3125 {
3126 	seq_printf(seq, "sockets: used %d\n",
3127 		   sock_inuse_get(seq->private));
3128 }
3129 #endif				/* CONFIG_PROC_FS */
3130 
3131 #ifdef CONFIG_COMPAT
3132 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133 {
3134 	struct compat_ifconf ifc32;
3135 	struct ifconf ifc;
3136 	int err;
3137 
3138 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139 		return -EFAULT;
3140 
3141 	ifc.ifc_len = ifc32.ifc_len;
3142 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143 
3144 	rtnl_lock();
3145 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146 	rtnl_unlock();
3147 	if (err)
3148 		return err;
3149 
3150 	ifc32.ifc_len = ifc.ifc_len;
3151 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152 		return -EFAULT;
3153 
3154 	return 0;
3155 }
3156 
3157 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3158 {
3159 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3160 	bool convert_in = false, convert_out = false;
3161 	size_t buf_size = 0;
3162 	struct ethtool_rxnfc __user *rxnfc = NULL;
3163 	struct ifreq ifr;
3164 	u32 rule_cnt = 0, actual_rule_cnt;
3165 	u32 ethcmd;
3166 	u32 data;
3167 	int ret;
3168 
3169 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3170 		return -EFAULT;
3171 
3172 	compat_rxnfc = compat_ptr(data);
3173 
3174 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3175 		return -EFAULT;
3176 
3177 	/* Most ethtool structures are defined without padding.
3178 	 * Unfortunately struct ethtool_rxnfc is an exception.
3179 	 */
3180 	switch (ethcmd) {
3181 	default:
3182 		break;
3183 	case ETHTOOL_GRXCLSRLALL:
3184 		/* Buffer size is variable */
3185 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3186 			return -EFAULT;
3187 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3188 			return -ENOMEM;
3189 		buf_size += rule_cnt * sizeof(u32);
3190 		fallthrough;
3191 	case ETHTOOL_GRXRINGS:
3192 	case ETHTOOL_GRXCLSRLCNT:
3193 	case ETHTOOL_GRXCLSRULE:
3194 	case ETHTOOL_SRXCLSRLINS:
3195 		convert_out = true;
3196 		fallthrough;
3197 	case ETHTOOL_SRXCLSRLDEL:
3198 		buf_size += sizeof(struct ethtool_rxnfc);
3199 		convert_in = true;
3200 		rxnfc = compat_alloc_user_space(buf_size);
3201 		break;
3202 	}
3203 
3204 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3205 		return -EFAULT;
3206 
3207 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3208 
3209 	if (convert_in) {
3210 		/* We expect there to be holes between fs.m_ext and
3211 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3212 		 */
3213 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3214 			     sizeof(compat_rxnfc->fs.m_ext) !=
3215 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3216 			     sizeof(rxnfc->fs.m_ext));
3217 		BUILD_BUG_ON(
3218 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3219 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3220 			offsetof(struct ethtool_rxnfc, fs.location) -
3221 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3222 
3223 		if (copy_in_user(rxnfc, compat_rxnfc,
3224 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3225 				 (void __user *)rxnfc) ||
3226 		    copy_in_user(&rxnfc->fs.ring_cookie,
3227 				 &compat_rxnfc->fs.ring_cookie,
3228 				 (void __user *)(&rxnfc->fs.location + 1) -
3229 				 (void __user *)&rxnfc->fs.ring_cookie))
3230 			return -EFAULT;
3231 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3232 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3233 				return -EFAULT;
3234 		} else if (copy_in_user(&rxnfc->rule_cnt,
3235 					&compat_rxnfc->rule_cnt,
3236 					sizeof(rxnfc->rule_cnt)))
3237 			return -EFAULT;
3238 	}
3239 
3240 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3241 	if (ret)
3242 		return ret;
3243 
3244 	if (convert_out) {
3245 		if (copy_in_user(compat_rxnfc, rxnfc,
3246 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3247 				 (const void __user *)rxnfc) ||
3248 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3249 				 &rxnfc->fs.ring_cookie,
3250 				 (const void __user *)(&rxnfc->fs.location + 1) -
3251 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3252 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3253 				 sizeof(rxnfc->rule_cnt)))
3254 			return -EFAULT;
3255 
3256 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3257 			/* As an optimisation, we only copy the actual
3258 			 * number of rules that the underlying
3259 			 * function returned.  Since Mallory might
3260 			 * change the rule count in user memory, we
3261 			 * check that it is less than the rule count
3262 			 * originally given (as the user buffer size),
3263 			 * which has been range-checked.
3264 			 */
3265 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3266 				return -EFAULT;
3267 			if (actual_rule_cnt < rule_cnt)
3268 				rule_cnt = actual_rule_cnt;
3269 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3270 					 &rxnfc->rule_locs[0],
3271 					 rule_cnt * sizeof(u32)))
3272 				return -EFAULT;
3273 		}
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3280 {
3281 	compat_uptr_t uptr32;
3282 	struct ifreq ifr;
3283 	void __user *saved;
3284 	int err;
3285 
3286 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3287 		return -EFAULT;
3288 
3289 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3290 		return -EFAULT;
3291 
3292 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3293 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3294 
3295 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3296 	if (!err) {
3297 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3298 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3299 			err = -EFAULT;
3300 	}
3301 	return err;
3302 }
3303 
3304 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3305 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3306 				 struct compat_ifreq __user *u_ifreq32)
3307 {
3308 	struct ifreq ifreq;
3309 	u32 data32;
3310 
3311 	if (!is_socket_ioctl_cmd(cmd))
3312 		return -ENOTTY;
3313 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3314 		return -EFAULT;
3315 	if (get_user(data32, &u_ifreq32->ifr_data))
3316 		return -EFAULT;
3317 	ifreq.ifr_data = compat_ptr(data32);
3318 
3319 	return dev_ioctl(net, cmd, &ifreq, NULL);
3320 }
3321 
3322 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3323 			      unsigned int cmd,
3324 			      struct compat_ifreq __user *uifr32)
3325 {
3326 	struct ifreq __user *uifr;
3327 	int err;
3328 
3329 	/* Handle the fact that while struct ifreq has the same *layout* on
3330 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3331 	 * which are handled elsewhere, it still has different *size* due to
3332 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3333 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3334 	 * As a result, if the struct happens to be at the end of a page and
3335 	 * the next page isn't readable/writable, we get a fault. To prevent
3336 	 * that, copy back and forth to the full size.
3337 	 */
3338 
3339 	uifr = compat_alloc_user_space(sizeof(*uifr));
3340 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3341 		return -EFAULT;
3342 
3343 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3344 
3345 	if (!err) {
3346 		switch (cmd) {
3347 		case SIOCGIFFLAGS:
3348 		case SIOCGIFMETRIC:
3349 		case SIOCGIFMTU:
3350 		case SIOCGIFMEM:
3351 		case SIOCGIFHWADDR:
3352 		case SIOCGIFINDEX:
3353 		case SIOCGIFADDR:
3354 		case SIOCGIFBRDADDR:
3355 		case SIOCGIFDSTADDR:
3356 		case SIOCGIFNETMASK:
3357 		case SIOCGIFPFLAGS:
3358 		case SIOCGIFTXQLEN:
3359 		case SIOCGMIIPHY:
3360 		case SIOCGMIIREG:
3361 		case SIOCGIFNAME:
3362 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3363 				err = -EFAULT;
3364 			break;
3365 		}
3366 	}
3367 	return err;
3368 }
3369 
3370 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3371 			struct compat_ifreq __user *uifr32)
3372 {
3373 	struct ifreq ifr;
3374 	struct compat_ifmap __user *uifmap32;
3375 	int err;
3376 
3377 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3378 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3379 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3380 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3381 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3382 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3383 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3384 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3385 	if (err)
3386 		return -EFAULT;
3387 
3388 	err = dev_ioctl(net, cmd, &ifr, NULL);
3389 
3390 	if (cmd == SIOCGIFMAP && !err) {
3391 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3392 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3393 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3394 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3395 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3396 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3397 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3398 		if (err)
3399 			err = -EFAULT;
3400 	}
3401 	return err;
3402 }
3403 
3404 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3405  * for some operations; this forces use of the newer bridge-utils that
3406  * use compatible ioctls
3407  */
3408 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3409 {
3410 	compat_ulong_t tmp;
3411 
3412 	if (get_user(tmp, argp))
3413 		return -EFAULT;
3414 	if (tmp == BRCTL_GET_VERSION)
3415 		return BRCTL_VERSION + 1;
3416 	return -EINVAL;
3417 }
3418 
3419 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3420 			 unsigned int cmd, unsigned long arg)
3421 {
3422 	void __user *argp = compat_ptr(arg);
3423 	struct sock *sk = sock->sk;
3424 	struct net *net = sock_net(sk);
3425 
3426 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3427 		return compat_ifr_data_ioctl(net, cmd, argp);
3428 
3429 	switch (cmd) {
3430 	case SIOCSIFBR:
3431 	case SIOCGIFBR:
3432 		return old_bridge_ioctl(argp);
3433 	case SIOCGIFCONF:
3434 		return compat_dev_ifconf(net, argp);
3435 	case SIOCETHTOOL:
3436 		return ethtool_ioctl(net, argp);
3437 	case SIOCWANDEV:
3438 		return compat_siocwandev(net, argp);
3439 	case SIOCGIFMAP:
3440 	case SIOCSIFMAP:
3441 		return compat_sioc_ifmap(net, cmd, argp);
3442 	case SIOCGSTAMP_OLD:
3443 	case SIOCGSTAMPNS_OLD:
3444 		if (!sock->ops->gettstamp)
3445 			return -ENOIOCTLCMD;
3446 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3447 					    !COMPAT_USE_64BIT_TIME);
3448 
3449 	case SIOCBONDSLAVEINFOQUERY:
3450 	case SIOCBONDINFOQUERY:
3451 	case SIOCSHWTSTAMP:
3452 	case SIOCGHWTSTAMP:
3453 		return compat_ifr_data_ioctl(net, cmd, argp);
3454 
3455 	case FIOSETOWN:
3456 	case SIOCSPGRP:
3457 	case FIOGETOWN:
3458 	case SIOCGPGRP:
3459 	case SIOCBRADDBR:
3460 	case SIOCBRDELBR:
3461 	case SIOCGIFVLAN:
3462 	case SIOCSIFVLAN:
3463 	case SIOCGSKNS:
3464 	case SIOCGSTAMP_NEW:
3465 	case SIOCGSTAMPNS_NEW:
3466 		return sock_ioctl(file, cmd, arg);
3467 
3468 	case SIOCGIFFLAGS:
3469 	case SIOCSIFFLAGS:
3470 	case SIOCGIFMETRIC:
3471 	case SIOCSIFMETRIC:
3472 	case SIOCGIFMTU:
3473 	case SIOCSIFMTU:
3474 	case SIOCGIFMEM:
3475 	case SIOCSIFMEM:
3476 	case SIOCGIFHWADDR:
3477 	case SIOCSIFHWADDR:
3478 	case SIOCADDMULTI:
3479 	case SIOCDELMULTI:
3480 	case SIOCGIFINDEX:
3481 	case SIOCGIFADDR:
3482 	case SIOCSIFADDR:
3483 	case SIOCSIFHWBROADCAST:
3484 	case SIOCDIFADDR:
3485 	case SIOCGIFBRDADDR:
3486 	case SIOCSIFBRDADDR:
3487 	case SIOCGIFDSTADDR:
3488 	case SIOCSIFDSTADDR:
3489 	case SIOCGIFNETMASK:
3490 	case SIOCSIFNETMASK:
3491 	case SIOCSIFPFLAGS:
3492 	case SIOCGIFPFLAGS:
3493 	case SIOCGIFTXQLEN:
3494 	case SIOCSIFTXQLEN:
3495 	case SIOCBRADDIF:
3496 	case SIOCBRDELIF:
3497 	case SIOCGIFNAME:
3498 	case SIOCSIFNAME:
3499 	case SIOCGMIIPHY:
3500 	case SIOCGMIIREG:
3501 	case SIOCSMIIREG:
3502 	case SIOCBONDENSLAVE:
3503 	case SIOCBONDRELEASE:
3504 	case SIOCBONDSETHWADDR:
3505 	case SIOCBONDCHANGEACTIVE:
3506 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3507 
3508 	case SIOCSARP:
3509 	case SIOCGARP:
3510 	case SIOCDARP:
3511 	case SIOCOUTQ:
3512 	case SIOCOUTQNSD:
3513 	case SIOCATMARK:
3514 		return sock_do_ioctl(net, sock, cmd, arg);
3515 	}
3516 
3517 	return -ENOIOCTLCMD;
3518 }
3519 
3520 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3521 			      unsigned long arg)
3522 {
3523 	struct socket *sock = file->private_data;
3524 	int ret = -ENOIOCTLCMD;
3525 	struct sock *sk;
3526 	struct net *net;
3527 
3528 	sk = sock->sk;
3529 	net = sock_net(sk);
3530 
3531 	if (sock->ops->compat_ioctl)
3532 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3533 
3534 	if (ret == -ENOIOCTLCMD &&
3535 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3536 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3537 
3538 	if (ret == -ENOIOCTLCMD)
3539 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3540 
3541 	return ret;
3542 }
3543 #endif
3544 
3545 /**
3546  *	kernel_bind - bind an address to a socket (kernel space)
3547  *	@sock: socket
3548  *	@addr: address
3549  *	@addrlen: length of address
3550  *
3551  *	Returns 0 or an error.
3552  */
3553 
3554 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3555 {
3556 	return sock->ops->bind(sock, addr, addrlen);
3557 }
3558 EXPORT_SYMBOL(kernel_bind);
3559 
3560 /**
3561  *	kernel_listen - move socket to listening state (kernel space)
3562  *	@sock: socket
3563  *	@backlog: pending connections queue size
3564  *
3565  *	Returns 0 or an error.
3566  */
3567 
3568 int kernel_listen(struct socket *sock, int backlog)
3569 {
3570 	return sock->ops->listen(sock, backlog);
3571 }
3572 EXPORT_SYMBOL(kernel_listen);
3573 
3574 /**
3575  *	kernel_accept - accept a connection (kernel space)
3576  *	@sock: listening socket
3577  *	@newsock: new connected socket
3578  *	@flags: flags
3579  *
3580  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3581  *	If it fails, @newsock is guaranteed to be %NULL.
3582  *	Returns 0 or an error.
3583  */
3584 
3585 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3586 {
3587 	struct sock *sk = sock->sk;
3588 	int err;
3589 
3590 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3591 			       newsock);
3592 	if (err < 0)
3593 		goto done;
3594 
3595 	err = sock->ops->accept(sock, *newsock, flags, true);
3596 	if (err < 0) {
3597 		sock_release(*newsock);
3598 		*newsock = NULL;
3599 		goto done;
3600 	}
3601 
3602 	(*newsock)->ops = sock->ops;
3603 	__module_get((*newsock)->ops->owner);
3604 
3605 done:
3606 	return err;
3607 }
3608 EXPORT_SYMBOL(kernel_accept);
3609 
3610 /**
3611  *	kernel_connect - connect a socket (kernel space)
3612  *	@sock: socket
3613  *	@addr: address
3614  *	@addrlen: address length
3615  *	@flags: flags (O_NONBLOCK, ...)
3616  *
3617  *	For datagram sockets, @addr is the address to which datagrams are sent
3618  *	by default, and the only address from which datagrams are received.
3619  *	For stream sockets, attempts to connect to @addr.
3620  *	Returns 0 or an error code.
3621  */
3622 
3623 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3624 		   int flags)
3625 {
3626 	return sock->ops->connect(sock, addr, addrlen, flags);
3627 }
3628 EXPORT_SYMBOL(kernel_connect);
3629 
3630 /**
3631  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632  *	@sock: socket
3633  *	@addr: address holder
3634  *
3635  * 	Fills the @addr pointer with the address which the socket is bound.
3636  *	Returns 0 or an error code.
3637  */
3638 
3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640 {
3641 	return sock->ops->getname(sock, addr, 0);
3642 }
3643 EXPORT_SYMBOL(kernel_getsockname);
3644 
3645 /**
3646  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647  *	@sock: socket
3648  *	@addr: address holder
3649  *
3650  * 	Fills the @addr pointer with the address which the socket is connected.
3651  *	Returns 0 or an error code.
3652  */
3653 
3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655 {
3656 	return sock->ops->getname(sock, addr, 1);
3657 }
3658 EXPORT_SYMBOL(kernel_getpeername);
3659 
3660 /**
3661  *	kernel_sendpage - send a &page through a socket (kernel space)
3662  *	@sock: socket
3663  *	@page: page
3664  *	@offset: page offset
3665  *	@size: total size in bytes
3666  *	@flags: flags (MSG_DONTWAIT, ...)
3667  *
3668  *	Returns the total amount sent in bytes or an error.
3669  */
3670 
3671 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3672 		    size_t size, int flags)
3673 {
3674 	if (sock->ops->sendpage) {
3675 		/* Warn in case the improper page to zero-copy send */
3676 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3677 		return sock->ops->sendpage(sock, page, offset, size, flags);
3678 	}
3679 	return sock_no_sendpage(sock, page, offset, size, flags);
3680 }
3681 EXPORT_SYMBOL(kernel_sendpage);
3682 
3683 /**
3684  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3685  *	@sk: sock
3686  *	@page: page
3687  *	@offset: page offset
3688  *	@size: total size in bytes
3689  *	@flags: flags (MSG_DONTWAIT, ...)
3690  *
3691  *	Returns the total amount sent in bytes or an error.
3692  *	Caller must hold @sk.
3693  */
3694 
3695 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3696 			   size_t size, int flags)
3697 {
3698 	struct socket *sock = sk->sk_socket;
3699 
3700 	if (sock->ops->sendpage_locked)
3701 		return sock->ops->sendpage_locked(sk, page, offset, size,
3702 						  flags);
3703 
3704 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3705 }
3706 EXPORT_SYMBOL(kernel_sendpage_locked);
3707 
3708 /**
3709  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3710  *	@sock: socket
3711  *	@how: connection part
3712  *
3713  *	Returns 0 or an error.
3714  */
3715 
3716 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3717 {
3718 	return sock->ops->shutdown(sock, how);
3719 }
3720 EXPORT_SYMBOL(kernel_sock_shutdown);
3721 
3722 /**
3723  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3724  *	@sk: socket
3725  *
3726  *	This routine returns the IP overhead imposed by a socket i.e.
3727  *	the length of the underlying IP header, depending on whether
3728  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3729  *	on at the socket. Assumes that the caller has a lock on the socket.
3730  */
3731 
3732 u32 kernel_sock_ip_overhead(struct sock *sk)
3733 {
3734 	struct inet_sock *inet;
3735 	struct ip_options_rcu *opt;
3736 	u32 overhead = 0;
3737 #if IS_ENABLED(CONFIG_IPV6)
3738 	struct ipv6_pinfo *np;
3739 	struct ipv6_txoptions *optv6 = NULL;
3740 #endif /* IS_ENABLED(CONFIG_IPV6) */
3741 
3742 	if (!sk)
3743 		return overhead;
3744 
3745 	switch (sk->sk_family) {
3746 	case AF_INET:
3747 		inet = inet_sk(sk);
3748 		overhead += sizeof(struct iphdr);
3749 		opt = rcu_dereference_protected(inet->inet_opt,
3750 						sock_owned_by_user(sk));
3751 		if (opt)
3752 			overhead += opt->opt.optlen;
3753 		return overhead;
3754 #if IS_ENABLED(CONFIG_IPV6)
3755 	case AF_INET6:
3756 		np = inet6_sk(sk);
3757 		overhead += sizeof(struct ipv6hdr);
3758 		if (np)
3759 			optv6 = rcu_dereference_protected(np->opt,
3760 							  sock_owned_by_user(sk));
3761 		if (optv6)
3762 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3763 		return overhead;
3764 #endif /* IS_ENABLED(CONFIG_IPV6) */
3765 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3766 		return overhead;
3767 	}
3768 }
3769 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3770