1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .llseek = no_llseek, 157 .read_iter = sock_read_iter, 158 .write_iter = sock_write_iter, 159 .poll = sock_poll, 160 .unlocked_ioctl = sock_ioctl, 161 #ifdef CONFIG_COMPAT 162 .compat_ioctl = compat_sock_ioctl, 163 #endif 164 .uring_cmd = io_uring_cmd_sock, 165 .mmap = sock_mmap, 166 .release = sock_close, 167 .fasync = sock_fasync, 168 .splice_write = splice_to_socket, 169 .splice_read = sock_splice_read, 170 .splice_eof = sock_splice_eof, 171 .show_fdinfo = sock_show_fdinfo, 172 }; 173 174 static const char * const pf_family_names[] = { 175 [PF_UNSPEC] = "PF_UNSPEC", 176 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 177 [PF_INET] = "PF_INET", 178 [PF_AX25] = "PF_AX25", 179 [PF_IPX] = "PF_IPX", 180 [PF_APPLETALK] = "PF_APPLETALK", 181 [PF_NETROM] = "PF_NETROM", 182 [PF_BRIDGE] = "PF_BRIDGE", 183 [PF_ATMPVC] = "PF_ATMPVC", 184 [PF_X25] = "PF_X25", 185 [PF_INET6] = "PF_INET6", 186 [PF_ROSE] = "PF_ROSE", 187 [PF_DECnet] = "PF_DECnet", 188 [PF_NETBEUI] = "PF_NETBEUI", 189 [PF_SECURITY] = "PF_SECURITY", 190 [PF_KEY] = "PF_KEY", 191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 192 [PF_PACKET] = "PF_PACKET", 193 [PF_ASH] = "PF_ASH", 194 [PF_ECONET] = "PF_ECONET", 195 [PF_ATMSVC] = "PF_ATMSVC", 196 [PF_RDS] = "PF_RDS", 197 [PF_SNA] = "PF_SNA", 198 [PF_IRDA] = "PF_IRDA", 199 [PF_PPPOX] = "PF_PPPOX", 200 [PF_WANPIPE] = "PF_WANPIPE", 201 [PF_LLC] = "PF_LLC", 202 [PF_IB] = "PF_IB", 203 [PF_MPLS] = "PF_MPLS", 204 [PF_CAN] = "PF_CAN", 205 [PF_TIPC] = "PF_TIPC", 206 [PF_BLUETOOTH] = "PF_BLUETOOTH", 207 [PF_IUCV] = "PF_IUCV", 208 [PF_RXRPC] = "PF_RXRPC", 209 [PF_ISDN] = "PF_ISDN", 210 [PF_PHONET] = "PF_PHONET", 211 [PF_IEEE802154] = "PF_IEEE802154", 212 [PF_CAIF] = "PF_CAIF", 213 [PF_ALG] = "PF_ALG", 214 [PF_NFC] = "PF_NFC", 215 [PF_VSOCK] = "PF_VSOCK", 216 [PF_KCM] = "PF_KCM", 217 [PF_QIPCRTR] = "PF_QIPCRTR", 218 [PF_SMC] = "PF_SMC", 219 [PF_XDP] = "PF_XDP", 220 [PF_MCTP] = "PF_MCTP", 221 }; 222 223 /* 224 * The protocol list. Each protocol is registered in here. 225 */ 226 227 static DEFINE_SPINLOCK(net_family_lock); 228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 229 230 /* 231 * Support routines. 232 * Move socket addresses back and forth across the kernel/user 233 * divide and look after the messy bits. 234 */ 235 236 /** 237 * move_addr_to_kernel - copy a socket address into kernel space 238 * @uaddr: Address in user space 239 * @kaddr: Address in kernel space 240 * @ulen: Length in user space 241 * 242 * The address is copied into kernel space. If the provided address is 243 * too long an error code of -EINVAL is returned. If the copy gives 244 * invalid addresses -EFAULT is returned. On a success 0 is returned. 245 */ 246 247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 248 { 249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 250 return -EINVAL; 251 if (ulen == 0) 252 return 0; 253 if (copy_from_user(kaddr, uaddr, ulen)) 254 return -EFAULT; 255 return audit_sockaddr(ulen, kaddr); 256 } 257 258 /** 259 * move_addr_to_user - copy an address to user space 260 * @kaddr: kernel space address 261 * @klen: length of address in kernel 262 * @uaddr: user space address 263 * @ulen: pointer to user length field 264 * 265 * The value pointed to by ulen on entry is the buffer length available. 266 * This is overwritten with the buffer space used. -EINVAL is returned 267 * if an overlong buffer is specified or a negative buffer size. -EFAULT 268 * is returned if either the buffer or the length field are not 269 * accessible. 270 * After copying the data up to the limit the user specifies, the true 271 * length of the data is written over the length limit the user 272 * specified. Zero is returned for a success. 273 */ 274 275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 276 void __user *uaddr, int __user *ulen) 277 { 278 int err; 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 err = get_user(len, ulen); 283 if (err) 284 return err; 285 if (len > klen) 286 len = klen; 287 if (len < 0) 288 return -EINVAL; 289 if (len) { 290 if (audit_sockaddr(klen, kaddr)) 291 return -ENOMEM; 292 if (copy_to_user(uaddr, kaddr, len)) 293 return -EFAULT; 294 } 295 /* 296 * "fromlen shall refer to the value before truncation.." 297 * 1003.1g 298 */ 299 return __put_user(klen, ulen); 300 } 301 302 static struct kmem_cache *sock_inode_cachep __ro_after_init; 303 304 static struct inode *sock_alloc_inode(struct super_block *sb) 305 { 306 struct socket_alloc *ei; 307 308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 309 if (!ei) 310 return NULL; 311 init_waitqueue_head(&ei->socket.wq.wait); 312 ei->socket.wq.fasync_list = NULL; 313 ei->socket.wq.flags = 0; 314 315 ei->socket.state = SS_UNCONNECTED; 316 ei->socket.flags = 0; 317 ei->socket.ops = NULL; 318 ei->socket.sk = NULL; 319 ei->socket.file = NULL; 320 321 return &ei->vfs_inode; 322 } 323 324 static void sock_free_inode(struct inode *inode) 325 { 326 struct socket_alloc *ei; 327 328 ei = container_of(inode, struct socket_alloc, vfs_inode); 329 kmem_cache_free(sock_inode_cachep, ei); 330 } 331 332 static void init_once(void *foo) 333 { 334 struct socket_alloc *ei = (struct socket_alloc *)foo; 335 336 inode_init_once(&ei->vfs_inode); 337 } 338 339 static void init_inodecache(void) 340 { 341 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 342 sizeof(struct socket_alloc), 343 0, 344 (SLAB_HWCACHE_ALIGN | 345 SLAB_RECLAIM_ACCOUNT | 346 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 347 init_once); 348 BUG_ON(sock_inode_cachep == NULL); 349 } 350 351 static const struct super_operations sockfs_ops = { 352 .alloc_inode = sock_alloc_inode, 353 .free_inode = sock_free_inode, 354 .statfs = simple_statfs, 355 }; 356 357 /* 358 * sockfs_dname() is called from d_path(). 359 */ 360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 361 { 362 return dynamic_dname(buffer, buflen, "socket:[%lu]", 363 d_inode(dentry)->i_ino); 364 } 365 366 static const struct dentry_operations sockfs_dentry_operations = { 367 .d_dname = sockfs_dname, 368 }; 369 370 static int sockfs_xattr_get(const struct xattr_handler *handler, 371 struct dentry *dentry, struct inode *inode, 372 const char *suffix, void *value, size_t size) 373 { 374 if (value) { 375 if (dentry->d_name.len + 1 > size) 376 return -ERANGE; 377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 378 } 379 return dentry->d_name.len + 1; 380 } 381 382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 385 386 static const struct xattr_handler sockfs_xattr_handler = { 387 .name = XATTR_NAME_SOCKPROTONAME, 388 .get = sockfs_xattr_get, 389 }; 390 391 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 392 struct mnt_idmap *idmap, 393 struct dentry *dentry, struct inode *inode, 394 const char *suffix, const void *value, 395 size_t size, int flags) 396 { 397 /* Handled by LSM. */ 398 return -EAGAIN; 399 } 400 401 static const struct xattr_handler sockfs_security_xattr_handler = { 402 .prefix = XATTR_SECURITY_PREFIX, 403 .set = sockfs_security_xattr_set, 404 }; 405 406 static const struct xattr_handler *sockfs_xattr_handlers[] = { 407 &sockfs_xattr_handler, 408 &sockfs_security_xattr_handler, 409 NULL 410 }; 411 412 static int sockfs_init_fs_context(struct fs_context *fc) 413 { 414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 415 if (!ctx) 416 return -ENOMEM; 417 ctx->ops = &sockfs_ops; 418 ctx->dops = &sockfs_dentry_operations; 419 ctx->xattr = sockfs_xattr_handlers; 420 return 0; 421 } 422 423 static struct vfsmount *sock_mnt __read_mostly; 424 425 static struct file_system_type sock_fs_type = { 426 .name = "sockfs", 427 .init_fs_context = sockfs_init_fs_context, 428 .kill_sb = kill_anon_super, 429 }; 430 431 /* 432 * Obtains the first available file descriptor and sets it up for use. 433 * 434 * These functions create file structures and maps them to fd space 435 * of the current process. On success it returns file descriptor 436 * and file struct implicitly stored in sock->file. 437 * Note that another thread may close file descriptor before we return 438 * from this function. We use the fact that now we do not refer 439 * to socket after mapping. If one day we will need it, this 440 * function will increment ref. count on file by 1. 441 * 442 * In any case returned fd MAY BE not valid! 443 * This race condition is unavoidable 444 * with shared fd spaces, we cannot solve it inside kernel, 445 * but we take care of internal coherence yet. 446 */ 447 448 /** 449 * sock_alloc_file - Bind a &socket to a &file 450 * @sock: socket 451 * @flags: file status flags 452 * @dname: protocol name 453 * 454 * Returns the &file bound with @sock, implicitly storing it 455 * in sock->file. If dname is %NULL, sets to "". 456 * 457 * On failure @sock is released, and an ERR pointer is returned. 458 * 459 * This function uses GFP_KERNEL internally. 460 */ 461 462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 463 { 464 struct file *file; 465 466 if (!dname) 467 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 468 469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 470 O_RDWR | (flags & O_NONBLOCK), 471 &socket_file_ops); 472 if (IS_ERR(file)) { 473 sock_release(sock); 474 return file; 475 } 476 477 file->f_mode |= FMODE_NOWAIT; 478 sock->file = file; 479 file->private_data = sock; 480 stream_open(SOCK_INODE(sock), file); 481 return file; 482 } 483 EXPORT_SYMBOL(sock_alloc_file); 484 485 static int sock_map_fd(struct socket *sock, int flags) 486 { 487 struct file *newfile; 488 int fd = get_unused_fd_flags(flags); 489 if (unlikely(fd < 0)) { 490 sock_release(sock); 491 return fd; 492 } 493 494 newfile = sock_alloc_file(sock, flags, NULL); 495 if (!IS_ERR(newfile)) { 496 fd_install(fd, newfile); 497 return fd; 498 } 499 500 put_unused_fd(fd); 501 return PTR_ERR(newfile); 502 } 503 504 /** 505 * sock_from_file - Return the &socket bounded to @file. 506 * @file: file 507 * 508 * On failure returns %NULL. 509 */ 510 511 struct socket *sock_from_file(struct file *file) 512 { 513 if (file->f_op == &socket_file_ops) 514 return file->private_data; /* set in sock_alloc_file */ 515 516 return NULL; 517 } 518 EXPORT_SYMBOL(sock_from_file); 519 520 /** 521 * sockfd_lookup - Go from a file number to its socket slot 522 * @fd: file handle 523 * @err: pointer to an error code return 524 * 525 * The file handle passed in is locked and the socket it is bound 526 * to is returned. If an error occurs the err pointer is overwritten 527 * with a negative errno code and NULL is returned. The function checks 528 * for both invalid handles and passing a handle which is not a socket. 529 * 530 * On a success the socket object pointer is returned. 531 */ 532 533 struct socket *sockfd_lookup(int fd, int *err) 534 { 535 struct file *file; 536 struct socket *sock; 537 538 file = fget(fd); 539 if (!file) { 540 *err = -EBADF; 541 return NULL; 542 } 543 544 sock = sock_from_file(file); 545 if (!sock) { 546 *err = -ENOTSOCK; 547 fput(file); 548 } 549 return sock; 550 } 551 EXPORT_SYMBOL(sockfd_lookup); 552 553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 554 { 555 struct fd f = fdget(fd); 556 struct socket *sock; 557 558 *err = -EBADF; 559 if (f.file) { 560 sock = sock_from_file(f.file); 561 if (likely(sock)) { 562 *fput_needed = f.flags & FDPUT_FPUT; 563 return sock; 564 } 565 *err = -ENOTSOCK; 566 fdput(f); 567 } 568 return NULL; 569 } 570 571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 572 size_t size) 573 { 574 ssize_t len; 575 ssize_t used = 0; 576 577 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 578 if (len < 0) 579 return len; 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 buffer += len; 585 } 586 587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 588 used += len; 589 if (buffer) { 590 if (size < used) 591 return -ERANGE; 592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 593 buffer += len; 594 } 595 596 return used; 597 } 598 599 static int sockfs_setattr(struct mnt_idmap *idmap, 600 struct dentry *dentry, struct iattr *iattr) 601 { 602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 603 604 if (!err && (iattr->ia_valid & ATTR_UID)) { 605 struct socket *sock = SOCKET_I(d_inode(dentry)); 606 607 if (sock->sk) 608 sock->sk->sk_uid = iattr->ia_uid; 609 else 610 err = -ENOENT; 611 } 612 613 return err; 614 } 615 616 static const struct inode_operations sockfs_inode_ops = { 617 .listxattr = sockfs_listxattr, 618 .setattr = sockfs_setattr, 619 }; 620 621 /** 622 * sock_alloc - allocate a socket 623 * 624 * Allocate a new inode and socket object. The two are bound together 625 * and initialised. The socket is then returned. If we are out of inodes 626 * NULL is returned. This functions uses GFP_KERNEL internally. 627 */ 628 629 struct socket *sock_alloc(void) 630 { 631 struct inode *inode; 632 struct socket *sock; 633 634 inode = new_inode_pseudo(sock_mnt->mnt_sb); 635 if (!inode) 636 return NULL; 637 638 sock = SOCKET_I(inode); 639 640 inode->i_ino = get_next_ino(); 641 inode->i_mode = S_IFSOCK | S_IRWXUGO; 642 inode->i_uid = current_fsuid(); 643 inode->i_gid = current_fsgid(); 644 inode->i_op = &sockfs_inode_ops; 645 646 return sock; 647 } 648 EXPORT_SYMBOL(sock_alloc); 649 650 static void __sock_release(struct socket *sock, struct inode *inode) 651 { 652 const struct proto_ops *ops = READ_ONCE(sock->ops); 653 654 if (ops) { 655 struct module *owner = ops->owner; 656 657 if (inode) 658 inode_lock(inode); 659 ops->release(sock); 660 sock->sk = NULL; 661 if (inode) 662 inode_unlock(inode); 663 sock->ops = NULL; 664 module_put(owner); 665 } 666 667 if (sock->wq.fasync_list) 668 pr_err("%s: fasync list not empty!\n", __func__); 669 670 if (!sock->file) { 671 iput(SOCK_INODE(sock)); 672 return; 673 } 674 sock->file = NULL; 675 } 676 677 /** 678 * sock_release - close a socket 679 * @sock: socket to close 680 * 681 * The socket is released from the protocol stack if it has a release 682 * callback, and the inode is then released if the socket is bound to 683 * an inode not a file. 684 */ 685 void sock_release(struct socket *sock) 686 { 687 __sock_release(sock, NULL); 688 } 689 EXPORT_SYMBOL(sock_release); 690 691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 692 { 693 u8 flags = *tx_flags; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 696 flags |= SKBTX_HW_TSTAMP; 697 698 /* PTP hardware clocks can provide a free running cycle counter 699 * as a time base for virtual clocks. Tell driver to use the 700 * free running cycle counter for timestamp if socket is bound 701 * to virtual clock. 702 */ 703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 705 } 706 707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 708 flags |= SKBTX_SW_TSTAMP; 709 710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 711 flags |= SKBTX_SCHED_TSTAMP; 712 713 *tx_flags = flags; 714 } 715 EXPORT_SYMBOL(__sock_tx_timestamp); 716 717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 720 size_t)); 721 722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 723 int flags) 724 { 725 trace_sock_send_length(sk, ret, 0); 726 } 727 728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 729 { 730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 731 inet_sendmsg, sock, msg, 732 msg_data_left(msg)); 733 BUG_ON(ret == -EIOCBQUEUED); 734 735 if (trace_sock_send_length_enabled()) 736 call_trace_sock_send_length(sock->sk, ret, 0); 737 return ret; 738 } 739 740 /** 741 * sock_sendmsg - send a message through @sock 742 * @sock: socket 743 * @msg: message to send 744 * 745 * Sends @msg through @sock, passing through LSM. 746 * Returns the number of bytes sent, or an error code. 747 */ 748 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 749 { 750 int err = security_socket_sendmsg(sock, msg, 751 msg_data_left(msg)); 752 753 return err ?: sock_sendmsg_nosec(sock, msg); 754 } 755 EXPORT_SYMBOL(sock_sendmsg); 756 757 /** 758 * kernel_sendmsg - send a message through @sock (kernel-space) 759 * @sock: socket 760 * @msg: message header 761 * @vec: kernel vec 762 * @num: vec array length 763 * @size: total message data size 764 * 765 * Builds the message data with @vec and sends it through @sock. 766 * Returns the number of bytes sent, or an error code. 767 */ 768 769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 770 struct kvec *vec, size_t num, size_t size) 771 { 772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 773 return sock_sendmsg(sock, msg); 774 } 775 EXPORT_SYMBOL(kernel_sendmsg); 776 777 /** 778 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 779 * @sk: sock 780 * @msg: message header 781 * @vec: output s/g array 782 * @num: output s/g array length 783 * @size: total message data size 784 * 785 * Builds the message data with @vec and sends it through @sock. 786 * Returns the number of bytes sent, or an error code. 787 * Caller must hold @sk. 788 */ 789 790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 791 struct kvec *vec, size_t num, size_t size) 792 { 793 struct socket *sock = sk->sk_socket; 794 const struct proto_ops *ops = READ_ONCE(sock->ops); 795 796 if (!ops->sendmsg_locked) 797 return sock_no_sendmsg_locked(sk, msg, size); 798 799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 800 801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 802 } 803 EXPORT_SYMBOL(kernel_sendmsg_locked); 804 805 static bool skb_is_err_queue(const struct sk_buff *skb) 806 { 807 /* pkt_type of skbs enqueued on the error queue are set to 808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 809 * in recvmsg, since skbs received on a local socket will never 810 * have a pkt_type of PACKET_OUTGOING. 811 */ 812 return skb->pkt_type == PACKET_OUTGOING; 813 } 814 815 /* On transmit, software and hardware timestamps are returned independently. 816 * As the two skb clones share the hardware timestamp, which may be updated 817 * before the software timestamp is received, a hardware TX timestamp may be 818 * returned only if there is no software TX timestamp. Ignore false software 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 821 * hardware timestamp. 822 */ 823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 824 { 825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 826 } 827 828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 829 { 830 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 832 struct net_device *orig_dev; 833 ktime_t hwtstamp; 834 835 rcu_read_lock(); 836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 837 if (orig_dev) { 838 *if_index = orig_dev->ifindex; 839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 840 } else { 841 hwtstamp = shhwtstamps->hwtstamp; 842 } 843 rcu_read_unlock(); 844 845 return hwtstamp; 846 } 847 848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 849 int if_index) 850 { 851 struct scm_ts_pktinfo ts_pktinfo; 852 struct net_device *orig_dev; 853 854 if (!skb_mac_header_was_set(skb)) 855 return; 856 857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 858 859 if (!if_index) { 860 rcu_read_lock(); 861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 862 if (orig_dev) 863 if_index = orig_dev->ifindex; 864 rcu_read_unlock(); 865 } 866 ts_pktinfo.if_index = if_index; 867 868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 870 sizeof(ts_pktinfo), &ts_pktinfo); 871 } 872 873 /* 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 875 */ 876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 877 struct sk_buff *skb) 878 { 879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 881 struct scm_timestamping_internal tss; 882 883 int empty = 1, false_tstamp = 0; 884 struct skb_shared_hwtstamps *shhwtstamps = 885 skb_hwtstamps(skb); 886 int if_index; 887 ktime_t hwtstamp; 888 889 /* Race occurred between timestamp enabling and packet 890 receiving. Fill in the current time for now. */ 891 if (need_software_tstamp && skb->tstamp == 0) { 892 __net_timestamp(skb); 893 false_tstamp = 1; 894 } 895 896 if (need_software_tstamp) { 897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 898 if (new_tstamp) { 899 struct __kernel_sock_timeval tv; 900 901 skb_get_new_timestamp(skb, &tv); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 903 sizeof(tv), &tv); 904 } else { 905 struct __kernel_old_timeval tv; 906 907 skb_get_timestamp(skb, &tv); 908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 909 sizeof(tv), &tv); 910 } 911 } else { 912 if (new_tstamp) { 913 struct __kernel_timespec ts; 914 915 skb_get_new_timestampns(skb, &ts); 916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 917 sizeof(ts), &ts); 918 } else { 919 struct __kernel_old_timespec ts; 920 921 skb_get_timestampns(skb, &ts); 922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 923 sizeof(ts), &ts); 924 } 925 } 926 } 927 928 memset(&tss, 0, sizeof(tss)); 929 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 930 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 931 empty = 0; 932 if (shhwtstamps && 933 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 934 !skb_is_swtx_tstamp(skb, false_tstamp)) { 935 if_index = 0; 936 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 937 hwtstamp = get_timestamp(sk, skb, &if_index); 938 else 939 hwtstamp = shhwtstamps->hwtstamp; 940 941 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 942 hwtstamp = ptp_convert_timestamp(&hwtstamp, 943 sk->sk_bind_phc); 944 945 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 946 empty = 0; 947 948 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 949 !skb_is_err_queue(skb)) 950 put_ts_pktinfo(msg, skb, if_index); 951 } 952 } 953 if (!empty) { 954 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 955 put_cmsg_scm_timestamping64(msg, &tss); 956 else 957 put_cmsg_scm_timestamping(msg, &tss); 958 959 if (skb_is_err_queue(skb) && skb->len && 960 SKB_EXT_ERR(skb)->opt_stats) 961 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 962 skb->len, skb->data); 963 } 964 } 965 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 966 967 #ifdef CONFIG_WIRELESS 968 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 969 struct sk_buff *skb) 970 { 971 int ack; 972 973 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 974 return; 975 if (!skb->wifi_acked_valid) 976 return; 977 978 ack = skb->wifi_acked; 979 980 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 981 } 982 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 983 #endif 984 985 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 986 struct sk_buff *skb) 987 { 988 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 989 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 990 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 991 } 992 993 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 994 struct sk_buff *skb) 995 { 996 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 997 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 998 __u32 mark = skb->mark; 999 1000 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1001 } 1002 } 1003 1004 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1005 struct sk_buff *skb) 1006 { 1007 sock_recv_timestamp(msg, sk, skb); 1008 sock_recv_drops(msg, sk, skb); 1009 sock_recv_mark(msg, sk, skb); 1010 } 1011 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1012 1013 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1014 size_t, int)); 1015 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1016 size_t, int)); 1017 1018 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1019 { 1020 trace_sock_recv_length(sk, ret, flags); 1021 } 1022 1023 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1024 int flags) 1025 { 1026 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1027 inet6_recvmsg, 1028 inet_recvmsg, sock, msg, 1029 msg_data_left(msg), flags); 1030 if (trace_sock_recv_length_enabled()) 1031 call_trace_sock_recv_length(sock->sk, ret, flags); 1032 return ret; 1033 } 1034 1035 /** 1036 * sock_recvmsg - receive a message from @sock 1037 * @sock: socket 1038 * @msg: message to receive 1039 * @flags: message flags 1040 * 1041 * Receives @msg from @sock, passing through LSM. Returns the total number 1042 * of bytes received, or an error. 1043 */ 1044 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1045 { 1046 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1047 1048 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1049 } 1050 EXPORT_SYMBOL(sock_recvmsg); 1051 1052 /** 1053 * kernel_recvmsg - Receive a message from a socket (kernel space) 1054 * @sock: The socket to receive the message from 1055 * @msg: Received message 1056 * @vec: Input s/g array for message data 1057 * @num: Size of input s/g array 1058 * @size: Number of bytes to read 1059 * @flags: Message flags (MSG_DONTWAIT, etc...) 1060 * 1061 * On return the msg structure contains the scatter/gather array passed in the 1062 * vec argument. The array is modified so that it consists of the unfilled 1063 * portion of the original array. 1064 * 1065 * The returned value is the total number of bytes received, or an error. 1066 */ 1067 1068 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1069 struct kvec *vec, size_t num, size_t size, int flags) 1070 { 1071 msg->msg_control_is_user = false; 1072 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1073 return sock_recvmsg(sock, msg, flags); 1074 } 1075 EXPORT_SYMBOL(kernel_recvmsg); 1076 1077 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1078 struct pipe_inode_info *pipe, size_t len, 1079 unsigned int flags) 1080 { 1081 struct socket *sock = file->private_data; 1082 const struct proto_ops *ops; 1083 1084 ops = READ_ONCE(sock->ops); 1085 if (unlikely(!ops->splice_read)) 1086 return copy_splice_read(file, ppos, pipe, len, flags); 1087 1088 return ops->splice_read(sock, ppos, pipe, len, flags); 1089 } 1090 1091 static void sock_splice_eof(struct file *file) 1092 { 1093 struct socket *sock = file->private_data; 1094 const struct proto_ops *ops; 1095 1096 ops = READ_ONCE(sock->ops); 1097 if (ops->splice_eof) 1098 ops->splice_eof(sock); 1099 } 1100 1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1102 { 1103 struct file *file = iocb->ki_filp; 1104 struct socket *sock = file->private_data; 1105 struct msghdr msg = {.msg_iter = *to, 1106 .msg_iocb = iocb}; 1107 ssize_t res; 1108 1109 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1110 msg.msg_flags = MSG_DONTWAIT; 1111 1112 if (iocb->ki_pos != 0) 1113 return -ESPIPE; 1114 1115 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1116 return 0; 1117 1118 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1119 *to = msg.msg_iter; 1120 return res; 1121 } 1122 1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1124 { 1125 struct file *file = iocb->ki_filp; 1126 struct socket *sock = file->private_data; 1127 struct msghdr msg = {.msg_iter = *from, 1128 .msg_iocb = iocb}; 1129 ssize_t res; 1130 1131 if (iocb->ki_pos != 0) 1132 return -ESPIPE; 1133 1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1135 msg.msg_flags = MSG_DONTWAIT; 1136 1137 if (sock->type == SOCK_SEQPACKET) 1138 msg.msg_flags |= MSG_EOR; 1139 1140 res = sock_sendmsg(sock, &msg); 1141 *from = msg.msg_iter; 1142 return res; 1143 } 1144 1145 /* 1146 * Atomic setting of ioctl hooks to avoid race 1147 * with module unload. 1148 */ 1149 1150 static DEFINE_MUTEX(br_ioctl_mutex); 1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1152 unsigned int cmd, struct ifreq *ifr, 1153 void __user *uarg); 1154 1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1156 unsigned int cmd, struct ifreq *ifr, 1157 void __user *uarg)) 1158 { 1159 mutex_lock(&br_ioctl_mutex); 1160 br_ioctl_hook = hook; 1161 mutex_unlock(&br_ioctl_mutex); 1162 } 1163 EXPORT_SYMBOL(brioctl_set); 1164 1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1166 struct ifreq *ifr, void __user *uarg) 1167 { 1168 int err = -ENOPKG; 1169 1170 if (!br_ioctl_hook) 1171 request_module("bridge"); 1172 1173 mutex_lock(&br_ioctl_mutex); 1174 if (br_ioctl_hook) 1175 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1176 mutex_unlock(&br_ioctl_mutex); 1177 1178 return err; 1179 } 1180 1181 static DEFINE_MUTEX(vlan_ioctl_mutex); 1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1183 1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1185 { 1186 mutex_lock(&vlan_ioctl_mutex); 1187 vlan_ioctl_hook = hook; 1188 mutex_unlock(&vlan_ioctl_mutex); 1189 } 1190 EXPORT_SYMBOL(vlan_ioctl_set); 1191 1192 static long sock_do_ioctl(struct net *net, struct socket *sock, 1193 unsigned int cmd, unsigned long arg) 1194 { 1195 const struct proto_ops *ops = READ_ONCE(sock->ops); 1196 struct ifreq ifr; 1197 bool need_copyout; 1198 int err; 1199 void __user *argp = (void __user *)arg; 1200 void __user *data; 1201 1202 err = ops->ioctl(sock, cmd, arg); 1203 1204 /* 1205 * If this ioctl is unknown try to hand it down 1206 * to the NIC driver. 1207 */ 1208 if (err != -ENOIOCTLCMD) 1209 return err; 1210 1211 if (!is_socket_ioctl_cmd(cmd)) 1212 return -ENOTTY; 1213 1214 if (get_user_ifreq(&ifr, &data, argp)) 1215 return -EFAULT; 1216 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1217 if (!err && need_copyout) 1218 if (put_user_ifreq(&ifr, argp)) 1219 return -EFAULT; 1220 1221 return err; 1222 } 1223 1224 /* 1225 * With an ioctl, arg may well be a user mode pointer, but we don't know 1226 * what to do with it - that's up to the protocol still. 1227 */ 1228 1229 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1230 { 1231 const struct proto_ops *ops; 1232 struct socket *sock; 1233 struct sock *sk; 1234 void __user *argp = (void __user *)arg; 1235 int pid, err; 1236 struct net *net; 1237 1238 sock = file->private_data; 1239 ops = READ_ONCE(sock->ops); 1240 sk = sock->sk; 1241 net = sock_net(sk); 1242 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1243 struct ifreq ifr; 1244 void __user *data; 1245 bool need_copyout; 1246 if (get_user_ifreq(&ifr, &data, argp)) 1247 return -EFAULT; 1248 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1249 if (!err && need_copyout) 1250 if (put_user_ifreq(&ifr, argp)) 1251 return -EFAULT; 1252 } else 1253 #ifdef CONFIG_WEXT_CORE 1254 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1255 err = wext_handle_ioctl(net, cmd, argp); 1256 } else 1257 #endif 1258 switch (cmd) { 1259 case FIOSETOWN: 1260 case SIOCSPGRP: 1261 err = -EFAULT; 1262 if (get_user(pid, (int __user *)argp)) 1263 break; 1264 err = f_setown(sock->file, pid, 1); 1265 break; 1266 case FIOGETOWN: 1267 case SIOCGPGRP: 1268 err = put_user(f_getown(sock->file), 1269 (int __user *)argp); 1270 break; 1271 case SIOCGIFBR: 1272 case SIOCSIFBR: 1273 case SIOCBRADDBR: 1274 case SIOCBRDELBR: 1275 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1276 break; 1277 case SIOCGIFVLAN: 1278 case SIOCSIFVLAN: 1279 err = -ENOPKG; 1280 if (!vlan_ioctl_hook) 1281 request_module("8021q"); 1282 1283 mutex_lock(&vlan_ioctl_mutex); 1284 if (vlan_ioctl_hook) 1285 err = vlan_ioctl_hook(net, argp); 1286 mutex_unlock(&vlan_ioctl_mutex); 1287 break; 1288 case SIOCGSKNS: 1289 err = -EPERM; 1290 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1291 break; 1292 1293 err = open_related_ns(&net->ns, get_net_ns); 1294 break; 1295 case SIOCGSTAMP_OLD: 1296 case SIOCGSTAMPNS_OLD: 1297 if (!ops->gettstamp) { 1298 err = -ENOIOCTLCMD; 1299 break; 1300 } 1301 err = ops->gettstamp(sock, argp, 1302 cmd == SIOCGSTAMP_OLD, 1303 !IS_ENABLED(CONFIG_64BIT)); 1304 break; 1305 case SIOCGSTAMP_NEW: 1306 case SIOCGSTAMPNS_NEW: 1307 if (!ops->gettstamp) { 1308 err = -ENOIOCTLCMD; 1309 break; 1310 } 1311 err = ops->gettstamp(sock, argp, 1312 cmd == SIOCGSTAMP_NEW, 1313 false); 1314 break; 1315 1316 case SIOCGIFCONF: 1317 err = dev_ifconf(net, argp); 1318 break; 1319 1320 default: 1321 err = sock_do_ioctl(net, sock, cmd, arg); 1322 break; 1323 } 1324 return err; 1325 } 1326 1327 /** 1328 * sock_create_lite - creates a socket 1329 * @family: protocol family (AF_INET, ...) 1330 * @type: communication type (SOCK_STREAM, ...) 1331 * @protocol: protocol (0, ...) 1332 * @res: new socket 1333 * 1334 * Creates a new socket and assigns it to @res, passing through LSM. 1335 * The new socket initialization is not complete, see kernel_accept(). 1336 * Returns 0 or an error. On failure @res is set to %NULL. 1337 * This function internally uses GFP_KERNEL. 1338 */ 1339 1340 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1341 { 1342 int err; 1343 struct socket *sock = NULL; 1344 1345 err = security_socket_create(family, type, protocol, 1); 1346 if (err) 1347 goto out; 1348 1349 sock = sock_alloc(); 1350 if (!sock) { 1351 err = -ENOMEM; 1352 goto out; 1353 } 1354 1355 sock->type = type; 1356 err = security_socket_post_create(sock, family, type, protocol, 1); 1357 if (err) 1358 goto out_release; 1359 1360 out: 1361 *res = sock; 1362 return err; 1363 out_release: 1364 sock_release(sock); 1365 sock = NULL; 1366 goto out; 1367 } 1368 EXPORT_SYMBOL(sock_create_lite); 1369 1370 /* No kernel lock held - perfect */ 1371 static __poll_t sock_poll(struct file *file, poll_table *wait) 1372 { 1373 struct socket *sock = file->private_data; 1374 const struct proto_ops *ops = READ_ONCE(sock->ops); 1375 __poll_t events = poll_requested_events(wait), flag = 0; 1376 1377 if (!ops->poll) 1378 return 0; 1379 1380 if (sk_can_busy_loop(sock->sk)) { 1381 /* poll once if requested by the syscall */ 1382 if (events & POLL_BUSY_LOOP) 1383 sk_busy_loop(sock->sk, 1); 1384 1385 /* if this socket can poll_ll, tell the system call */ 1386 flag = POLL_BUSY_LOOP; 1387 } 1388 1389 return ops->poll(file, sock, wait) | flag; 1390 } 1391 1392 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1393 { 1394 struct socket *sock = file->private_data; 1395 1396 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1397 } 1398 1399 static int sock_close(struct inode *inode, struct file *filp) 1400 { 1401 __sock_release(SOCKET_I(inode), inode); 1402 return 0; 1403 } 1404 1405 /* 1406 * Update the socket async list 1407 * 1408 * Fasync_list locking strategy. 1409 * 1410 * 1. fasync_list is modified only under process context socket lock 1411 * i.e. under semaphore. 1412 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1413 * or under socket lock 1414 */ 1415 1416 static int sock_fasync(int fd, struct file *filp, int on) 1417 { 1418 struct socket *sock = filp->private_data; 1419 struct sock *sk = sock->sk; 1420 struct socket_wq *wq = &sock->wq; 1421 1422 if (sk == NULL) 1423 return -EINVAL; 1424 1425 lock_sock(sk); 1426 fasync_helper(fd, filp, on, &wq->fasync_list); 1427 1428 if (!wq->fasync_list) 1429 sock_reset_flag(sk, SOCK_FASYNC); 1430 else 1431 sock_set_flag(sk, SOCK_FASYNC); 1432 1433 release_sock(sk); 1434 return 0; 1435 } 1436 1437 /* This function may be called only under rcu_lock */ 1438 1439 int sock_wake_async(struct socket_wq *wq, int how, int band) 1440 { 1441 if (!wq || !wq->fasync_list) 1442 return -1; 1443 1444 switch (how) { 1445 case SOCK_WAKE_WAITD: 1446 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1447 break; 1448 goto call_kill; 1449 case SOCK_WAKE_SPACE: 1450 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1451 break; 1452 fallthrough; 1453 case SOCK_WAKE_IO: 1454 call_kill: 1455 kill_fasync(&wq->fasync_list, SIGIO, band); 1456 break; 1457 case SOCK_WAKE_URG: 1458 kill_fasync(&wq->fasync_list, SIGURG, band); 1459 } 1460 1461 return 0; 1462 } 1463 EXPORT_SYMBOL(sock_wake_async); 1464 1465 /** 1466 * __sock_create - creates a socket 1467 * @net: net namespace 1468 * @family: protocol family (AF_INET, ...) 1469 * @type: communication type (SOCK_STREAM, ...) 1470 * @protocol: protocol (0, ...) 1471 * @res: new socket 1472 * @kern: boolean for kernel space sockets 1473 * 1474 * Creates a new socket and assigns it to @res, passing through LSM. 1475 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1476 * be set to true if the socket resides in kernel space. 1477 * This function internally uses GFP_KERNEL. 1478 */ 1479 1480 int __sock_create(struct net *net, int family, int type, int protocol, 1481 struct socket **res, int kern) 1482 { 1483 int err; 1484 struct socket *sock; 1485 const struct net_proto_family *pf; 1486 1487 /* 1488 * Check protocol is in range 1489 */ 1490 if (family < 0 || family >= NPROTO) 1491 return -EAFNOSUPPORT; 1492 if (type < 0 || type >= SOCK_MAX) 1493 return -EINVAL; 1494 1495 /* Compatibility. 1496 1497 This uglymoron is moved from INET layer to here to avoid 1498 deadlock in module load. 1499 */ 1500 if (family == PF_INET && type == SOCK_PACKET) { 1501 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1502 current->comm); 1503 family = PF_PACKET; 1504 } 1505 1506 err = security_socket_create(family, type, protocol, kern); 1507 if (err) 1508 return err; 1509 1510 /* 1511 * Allocate the socket and allow the family to set things up. if 1512 * the protocol is 0, the family is instructed to select an appropriate 1513 * default. 1514 */ 1515 sock = sock_alloc(); 1516 if (!sock) { 1517 net_warn_ratelimited("socket: no more sockets\n"); 1518 return -ENFILE; /* Not exactly a match, but its the 1519 closest posix thing */ 1520 } 1521 1522 sock->type = type; 1523 1524 #ifdef CONFIG_MODULES 1525 /* Attempt to load a protocol module if the find failed. 1526 * 1527 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1528 * requested real, full-featured networking support upon configuration. 1529 * Otherwise module support will break! 1530 */ 1531 if (rcu_access_pointer(net_families[family]) == NULL) 1532 request_module("net-pf-%d", family); 1533 #endif 1534 1535 rcu_read_lock(); 1536 pf = rcu_dereference(net_families[family]); 1537 err = -EAFNOSUPPORT; 1538 if (!pf) 1539 goto out_release; 1540 1541 /* 1542 * We will call the ->create function, that possibly is in a loadable 1543 * module, so we have to bump that loadable module refcnt first. 1544 */ 1545 if (!try_module_get(pf->owner)) 1546 goto out_release; 1547 1548 /* Now protected by module ref count */ 1549 rcu_read_unlock(); 1550 1551 err = pf->create(net, sock, protocol, kern); 1552 if (err < 0) 1553 goto out_module_put; 1554 1555 /* 1556 * Now to bump the refcnt of the [loadable] module that owns this 1557 * socket at sock_release time we decrement its refcnt. 1558 */ 1559 if (!try_module_get(sock->ops->owner)) 1560 goto out_module_busy; 1561 1562 /* 1563 * Now that we're done with the ->create function, the [loadable] 1564 * module can have its refcnt decremented 1565 */ 1566 module_put(pf->owner); 1567 err = security_socket_post_create(sock, family, type, protocol, kern); 1568 if (err) 1569 goto out_sock_release; 1570 *res = sock; 1571 1572 return 0; 1573 1574 out_module_busy: 1575 err = -EAFNOSUPPORT; 1576 out_module_put: 1577 sock->ops = NULL; 1578 module_put(pf->owner); 1579 out_sock_release: 1580 sock_release(sock); 1581 return err; 1582 1583 out_release: 1584 rcu_read_unlock(); 1585 goto out_sock_release; 1586 } 1587 EXPORT_SYMBOL(__sock_create); 1588 1589 /** 1590 * sock_create - creates a socket 1591 * @family: protocol family (AF_INET, ...) 1592 * @type: communication type (SOCK_STREAM, ...) 1593 * @protocol: protocol (0, ...) 1594 * @res: new socket 1595 * 1596 * A wrapper around __sock_create(). 1597 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1598 */ 1599 1600 int sock_create(int family, int type, int protocol, struct socket **res) 1601 { 1602 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1603 } 1604 EXPORT_SYMBOL(sock_create); 1605 1606 /** 1607 * sock_create_kern - creates a socket (kernel space) 1608 * @net: net namespace 1609 * @family: protocol family (AF_INET, ...) 1610 * @type: communication type (SOCK_STREAM, ...) 1611 * @protocol: protocol (0, ...) 1612 * @res: new socket 1613 * 1614 * A wrapper around __sock_create(). 1615 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1616 */ 1617 1618 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1619 { 1620 return __sock_create(net, family, type, protocol, res, 1); 1621 } 1622 EXPORT_SYMBOL(sock_create_kern); 1623 1624 static struct socket *__sys_socket_create(int family, int type, int protocol) 1625 { 1626 struct socket *sock; 1627 int retval; 1628 1629 /* Check the SOCK_* constants for consistency. */ 1630 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1631 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1632 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1633 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1634 1635 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1636 return ERR_PTR(-EINVAL); 1637 type &= SOCK_TYPE_MASK; 1638 1639 retval = sock_create(family, type, protocol, &sock); 1640 if (retval < 0) 1641 return ERR_PTR(retval); 1642 1643 return sock; 1644 } 1645 1646 struct file *__sys_socket_file(int family, int type, int protocol) 1647 { 1648 struct socket *sock; 1649 int flags; 1650 1651 sock = __sys_socket_create(family, type, protocol); 1652 if (IS_ERR(sock)) 1653 return ERR_CAST(sock); 1654 1655 flags = type & ~SOCK_TYPE_MASK; 1656 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1657 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1658 1659 return sock_alloc_file(sock, flags, NULL); 1660 } 1661 1662 /* A hook for bpf progs to attach to and update socket protocol. 1663 * 1664 * A static noinline declaration here could cause the compiler to 1665 * optimize away the function. A global noinline declaration will 1666 * keep the definition, but may optimize away the callsite. 1667 * Therefore, __weak is needed to ensure that the call is still 1668 * emitted, by telling the compiler that we don't know what the 1669 * function might eventually be. 1670 * 1671 * __diag_* below are needed to dismiss the missing prototype warning. 1672 */ 1673 1674 __diag_push(); 1675 __diag_ignore_all("-Wmissing-prototypes", 1676 "A fmod_ret entry point for BPF programs"); 1677 1678 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1679 { 1680 return protocol; 1681 } 1682 1683 __diag_pop(); 1684 1685 int __sys_socket(int family, int type, int protocol) 1686 { 1687 struct socket *sock; 1688 int flags; 1689 1690 sock = __sys_socket_create(family, type, 1691 update_socket_protocol(family, type, protocol)); 1692 if (IS_ERR(sock)) 1693 return PTR_ERR(sock); 1694 1695 flags = type & ~SOCK_TYPE_MASK; 1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1698 1699 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1700 } 1701 1702 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1703 { 1704 return __sys_socket(family, type, protocol); 1705 } 1706 1707 /* 1708 * Create a pair of connected sockets. 1709 */ 1710 1711 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1712 { 1713 struct socket *sock1, *sock2; 1714 int fd1, fd2, err; 1715 struct file *newfile1, *newfile2; 1716 int flags; 1717 1718 flags = type & ~SOCK_TYPE_MASK; 1719 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1720 return -EINVAL; 1721 type &= SOCK_TYPE_MASK; 1722 1723 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1724 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1725 1726 /* 1727 * reserve descriptors and make sure we won't fail 1728 * to return them to userland. 1729 */ 1730 fd1 = get_unused_fd_flags(flags); 1731 if (unlikely(fd1 < 0)) 1732 return fd1; 1733 1734 fd2 = get_unused_fd_flags(flags); 1735 if (unlikely(fd2 < 0)) { 1736 put_unused_fd(fd1); 1737 return fd2; 1738 } 1739 1740 err = put_user(fd1, &usockvec[0]); 1741 if (err) 1742 goto out; 1743 1744 err = put_user(fd2, &usockvec[1]); 1745 if (err) 1746 goto out; 1747 1748 /* 1749 * Obtain the first socket and check if the underlying protocol 1750 * supports the socketpair call. 1751 */ 1752 1753 err = sock_create(family, type, protocol, &sock1); 1754 if (unlikely(err < 0)) 1755 goto out; 1756 1757 err = sock_create(family, type, protocol, &sock2); 1758 if (unlikely(err < 0)) { 1759 sock_release(sock1); 1760 goto out; 1761 } 1762 1763 err = security_socket_socketpair(sock1, sock2); 1764 if (unlikely(err)) { 1765 sock_release(sock2); 1766 sock_release(sock1); 1767 goto out; 1768 } 1769 1770 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1771 if (unlikely(err < 0)) { 1772 sock_release(sock2); 1773 sock_release(sock1); 1774 goto out; 1775 } 1776 1777 newfile1 = sock_alloc_file(sock1, flags, NULL); 1778 if (IS_ERR(newfile1)) { 1779 err = PTR_ERR(newfile1); 1780 sock_release(sock2); 1781 goto out; 1782 } 1783 1784 newfile2 = sock_alloc_file(sock2, flags, NULL); 1785 if (IS_ERR(newfile2)) { 1786 err = PTR_ERR(newfile2); 1787 fput(newfile1); 1788 goto out; 1789 } 1790 1791 audit_fd_pair(fd1, fd2); 1792 1793 fd_install(fd1, newfile1); 1794 fd_install(fd2, newfile2); 1795 return 0; 1796 1797 out: 1798 put_unused_fd(fd2); 1799 put_unused_fd(fd1); 1800 return err; 1801 } 1802 1803 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1804 int __user *, usockvec) 1805 { 1806 return __sys_socketpair(family, type, protocol, usockvec); 1807 } 1808 1809 /* 1810 * Bind a name to a socket. Nothing much to do here since it's 1811 * the protocol's responsibility to handle the local address. 1812 * 1813 * We move the socket address to kernel space before we call 1814 * the protocol layer (having also checked the address is ok). 1815 */ 1816 1817 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1818 { 1819 struct socket *sock; 1820 struct sockaddr_storage address; 1821 int err, fput_needed; 1822 1823 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1824 if (sock) { 1825 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1826 if (!err) { 1827 err = security_socket_bind(sock, 1828 (struct sockaddr *)&address, 1829 addrlen); 1830 if (!err) 1831 err = READ_ONCE(sock->ops)->bind(sock, 1832 (struct sockaddr *) 1833 &address, addrlen); 1834 } 1835 fput_light(sock->file, fput_needed); 1836 } 1837 return err; 1838 } 1839 1840 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1841 { 1842 return __sys_bind(fd, umyaddr, addrlen); 1843 } 1844 1845 /* 1846 * Perform a listen. Basically, we allow the protocol to do anything 1847 * necessary for a listen, and if that works, we mark the socket as 1848 * ready for listening. 1849 */ 1850 1851 int __sys_listen(int fd, int backlog) 1852 { 1853 struct socket *sock; 1854 int err, fput_needed; 1855 int somaxconn; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock) { 1859 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1860 if ((unsigned int)backlog > somaxconn) 1861 backlog = somaxconn; 1862 1863 err = security_socket_listen(sock, backlog); 1864 if (!err) 1865 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1866 1867 fput_light(sock->file, fput_needed); 1868 } 1869 return err; 1870 } 1871 1872 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1873 { 1874 return __sys_listen(fd, backlog); 1875 } 1876 1877 struct file *do_accept(struct file *file, unsigned file_flags, 1878 struct sockaddr __user *upeer_sockaddr, 1879 int __user *upeer_addrlen, int flags) 1880 { 1881 struct socket *sock, *newsock; 1882 struct file *newfile; 1883 int err, len; 1884 struct sockaddr_storage address; 1885 const struct proto_ops *ops; 1886 1887 sock = sock_from_file(file); 1888 if (!sock) 1889 return ERR_PTR(-ENOTSOCK); 1890 1891 newsock = sock_alloc(); 1892 if (!newsock) 1893 return ERR_PTR(-ENFILE); 1894 ops = READ_ONCE(sock->ops); 1895 1896 newsock->type = sock->type; 1897 newsock->ops = ops; 1898 1899 /* 1900 * We don't need try_module_get here, as the listening socket (sock) 1901 * has the protocol module (sock->ops->owner) held. 1902 */ 1903 __module_get(ops->owner); 1904 1905 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1906 if (IS_ERR(newfile)) 1907 return newfile; 1908 1909 err = security_socket_accept(sock, newsock); 1910 if (err) 1911 goto out_fd; 1912 1913 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1914 false); 1915 if (err < 0) 1916 goto out_fd; 1917 1918 if (upeer_sockaddr) { 1919 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1920 if (len < 0) { 1921 err = -ECONNABORTED; 1922 goto out_fd; 1923 } 1924 err = move_addr_to_user(&address, 1925 len, upeer_sockaddr, upeer_addrlen); 1926 if (err < 0) 1927 goto out_fd; 1928 } 1929 1930 /* File flags are not inherited via accept() unlike another OSes. */ 1931 return newfile; 1932 out_fd: 1933 fput(newfile); 1934 return ERR_PTR(err); 1935 } 1936 1937 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1938 int __user *upeer_addrlen, int flags) 1939 { 1940 struct file *newfile; 1941 int newfd; 1942 1943 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1944 return -EINVAL; 1945 1946 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1947 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1948 1949 newfd = get_unused_fd_flags(flags); 1950 if (unlikely(newfd < 0)) 1951 return newfd; 1952 1953 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1954 flags); 1955 if (IS_ERR(newfile)) { 1956 put_unused_fd(newfd); 1957 return PTR_ERR(newfile); 1958 } 1959 fd_install(newfd, newfile); 1960 return newfd; 1961 } 1962 1963 /* 1964 * For accept, we attempt to create a new socket, set up the link 1965 * with the client, wake up the client, then return the new 1966 * connected fd. We collect the address of the connector in kernel 1967 * space and move it to user at the very end. This is unclean because 1968 * we open the socket then return an error. 1969 * 1970 * 1003.1g adds the ability to recvmsg() to query connection pending 1971 * status to recvmsg. We need to add that support in a way thats 1972 * clean when we restructure accept also. 1973 */ 1974 1975 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1976 int __user *upeer_addrlen, int flags) 1977 { 1978 int ret = -EBADF; 1979 struct fd f; 1980 1981 f = fdget(fd); 1982 if (f.file) { 1983 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1984 upeer_addrlen, flags); 1985 fdput(f); 1986 } 1987 1988 return ret; 1989 } 1990 1991 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1992 int __user *, upeer_addrlen, int, flags) 1993 { 1994 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1995 } 1996 1997 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1998 int __user *, upeer_addrlen) 1999 { 2000 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2001 } 2002 2003 /* 2004 * Attempt to connect to a socket with the server address. The address 2005 * is in user space so we verify it is OK and move it to kernel space. 2006 * 2007 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2008 * break bindings 2009 * 2010 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2011 * other SEQPACKET protocols that take time to connect() as it doesn't 2012 * include the -EINPROGRESS status for such sockets. 2013 */ 2014 2015 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2016 int addrlen, int file_flags) 2017 { 2018 struct socket *sock; 2019 int err; 2020 2021 sock = sock_from_file(file); 2022 if (!sock) { 2023 err = -ENOTSOCK; 2024 goto out; 2025 } 2026 2027 err = 2028 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2029 if (err) 2030 goto out; 2031 2032 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2033 addrlen, sock->file->f_flags | file_flags); 2034 out: 2035 return err; 2036 } 2037 2038 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2039 { 2040 int ret = -EBADF; 2041 struct fd f; 2042 2043 f = fdget(fd); 2044 if (f.file) { 2045 struct sockaddr_storage address; 2046 2047 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2048 if (!ret) 2049 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2050 fdput(f); 2051 } 2052 2053 return ret; 2054 } 2055 2056 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2057 int, addrlen) 2058 { 2059 return __sys_connect(fd, uservaddr, addrlen); 2060 } 2061 2062 /* 2063 * Get the local address ('name') of a socket object. Move the obtained 2064 * name to user space. 2065 */ 2066 2067 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2068 int __user *usockaddr_len) 2069 { 2070 struct socket *sock; 2071 struct sockaddr_storage address; 2072 int err, fput_needed; 2073 2074 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2075 if (!sock) 2076 goto out; 2077 2078 err = security_socket_getsockname(sock); 2079 if (err) 2080 goto out_put; 2081 2082 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2083 if (err < 0) 2084 goto out_put; 2085 /* "err" is actually length in this case */ 2086 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2087 2088 out_put: 2089 fput_light(sock->file, fput_needed); 2090 out: 2091 return err; 2092 } 2093 2094 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2095 int __user *, usockaddr_len) 2096 { 2097 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2098 } 2099 2100 /* 2101 * Get the remote address ('name') of a socket object. Move the obtained 2102 * name to user space. 2103 */ 2104 2105 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2106 int __user *usockaddr_len) 2107 { 2108 struct socket *sock; 2109 struct sockaddr_storage address; 2110 int err, fput_needed; 2111 2112 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2113 if (sock != NULL) { 2114 const struct proto_ops *ops = READ_ONCE(sock->ops); 2115 2116 err = security_socket_getpeername(sock); 2117 if (err) { 2118 fput_light(sock->file, fput_needed); 2119 return err; 2120 } 2121 2122 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2123 if (err >= 0) 2124 /* "err" is actually length in this case */ 2125 err = move_addr_to_user(&address, err, usockaddr, 2126 usockaddr_len); 2127 fput_light(sock->file, fput_needed); 2128 } 2129 return err; 2130 } 2131 2132 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2133 int __user *, usockaddr_len) 2134 { 2135 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2136 } 2137 2138 /* 2139 * Send a datagram to a given address. We move the address into kernel 2140 * space and check the user space data area is readable before invoking 2141 * the protocol. 2142 */ 2143 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2144 struct sockaddr __user *addr, int addr_len) 2145 { 2146 struct socket *sock; 2147 struct sockaddr_storage address; 2148 int err; 2149 struct msghdr msg; 2150 struct iovec iov; 2151 int fput_needed; 2152 2153 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2154 if (unlikely(err)) 2155 return err; 2156 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2157 if (!sock) 2158 goto out; 2159 2160 msg.msg_name = NULL; 2161 msg.msg_control = NULL; 2162 msg.msg_controllen = 0; 2163 msg.msg_namelen = 0; 2164 msg.msg_ubuf = NULL; 2165 if (addr) { 2166 err = move_addr_to_kernel(addr, addr_len, &address); 2167 if (err < 0) 2168 goto out_put; 2169 msg.msg_name = (struct sockaddr *)&address; 2170 msg.msg_namelen = addr_len; 2171 } 2172 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2173 if (sock->file->f_flags & O_NONBLOCK) 2174 flags |= MSG_DONTWAIT; 2175 msg.msg_flags = flags; 2176 err = sock_sendmsg(sock, &msg); 2177 2178 out_put: 2179 fput_light(sock->file, fput_needed); 2180 out: 2181 return err; 2182 } 2183 2184 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2185 unsigned int, flags, struct sockaddr __user *, addr, 2186 int, addr_len) 2187 { 2188 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2189 } 2190 2191 /* 2192 * Send a datagram down a socket. 2193 */ 2194 2195 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2196 unsigned int, flags) 2197 { 2198 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2199 } 2200 2201 /* 2202 * Receive a frame from the socket and optionally record the address of the 2203 * sender. We verify the buffers are writable and if needed move the 2204 * sender address from kernel to user space. 2205 */ 2206 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2207 struct sockaddr __user *addr, int __user *addr_len) 2208 { 2209 struct sockaddr_storage address; 2210 struct msghdr msg = { 2211 /* Save some cycles and don't copy the address if not needed */ 2212 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2213 }; 2214 struct socket *sock; 2215 struct iovec iov; 2216 int err, err2; 2217 int fput_needed; 2218 2219 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2220 if (unlikely(err)) 2221 return err; 2222 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2223 if (!sock) 2224 goto out; 2225 2226 if (sock->file->f_flags & O_NONBLOCK) 2227 flags |= MSG_DONTWAIT; 2228 err = sock_recvmsg(sock, &msg, flags); 2229 2230 if (err >= 0 && addr != NULL) { 2231 err2 = move_addr_to_user(&address, 2232 msg.msg_namelen, addr, addr_len); 2233 if (err2 < 0) 2234 err = err2; 2235 } 2236 2237 fput_light(sock->file, fput_needed); 2238 out: 2239 return err; 2240 } 2241 2242 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2243 unsigned int, flags, struct sockaddr __user *, addr, 2244 int __user *, addr_len) 2245 { 2246 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2247 } 2248 2249 /* 2250 * Receive a datagram from a socket. 2251 */ 2252 2253 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2254 unsigned int, flags) 2255 { 2256 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2257 } 2258 2259 static bool sock_use_custom_sol_socket(const struct socket *sock) 2260 { 2261 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2262 } 2263 2264 /* 2265 * Set a socket option. Because we don't know the option lengths we have 2266 * to pass the user mode parameter for the protocols to sort out. 2267 */ 2268 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2269 int optlen) 2270 { 2271 sockptr_t optval = USER_SOCKPTR(user_optval); 2272 const struct proto_ops *ops; 2273 char *kernel_optval = NULL; 2274 int err, fput_needed; 2275 struct socket *sock; 2276 2277 if (optlen < 0) 2278 return -EINVAL; 2279 2280 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2281 if (!sock) 2282 return err; 2283 2284 err = security_socket_setsockopt(sock, level, optname); 2285 if (err) 2286 goto out_put; 2287 2288 if (!in_compat_syscall()) 2289 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2290 user_optval, &optlen, 2291 &kernel_optval); 2292 if (err < 0) 2293 goto out_put; 2294 if (err > 0) { 2295 err = 0; 2296 goto out_put; 2297 } 2298 2299 if (kernel_optval) 2300 optval = KERNEL_SOCKPTR(kernel_optval); 2301 ops = READ_ONCE(sock->ops); 2302 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2303 err = sock_setsockopt(sock, level, optname, optval, optlen); 2304 else if (unlikely(!ops->setsockopt)) 2305 err = -EOPNOTSUPP; 2306 else 2307 err = ops->setsockopt(sock, level, optname, optval, 2308 optlen); 2309 kfree(kernel_optval); 2310 out_put: 2311 fput_light(sock->file, fput_needed); 2312 return err; 2313 } 2314 2315 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2316 char __user *, optval, int, optlen) 2317 { 2318 return __sys_setsockopt(fd, level, optname, optval, optlen); 2319 } 2320 2321 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2322 int optname)); 2323 2324 /* 2325 * Get a socket option. Because we don't know the option lengths we have 2326 * to pass a user mode parameter for the protocols to sort out. 2327 */ 2328 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2329 int __user *optlen) 2330 { 2331 int max_optlen __maybe_unused; 2332 const struct proto_ops *ops; 2333 int err, fput_needed; 2334 struct socket *sock; 2335 2336 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2337 if (!sock) 2338 return err; 2339 2340 err = security_socket_getsockopt(sock, level, optname); 2341 if (err) 2342 goto out_put; 2343 2344 if (!in_compat_syscall()) 2345 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2346 2347 ops = READ_ONCE(sock->ops); 2348 if (level == SOL_SOCKET) 2349 err = sock_getsockopt(sock, level, optname, optval, optlen); 2350 else if (unlikely(!ops->getsockopt)) 2351 err = -EOPNOTSUPP; 2352 else 2353 err = ops->getsockopt(sock, level, optname, optval, 2354 optlen); 2355 2356 if (!in_compat_syscall()) 2357 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2358 optval, optlen, max_optlen, 2359 err); 2360 out_put: 2361 fput_light(sock->file, fput_needed); 2362 return err; 2363 } 2364 2365 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2366 char __user *, optval, int __user *, optlen) 2367 { 2368 return __sys_getsockopt(fd, level, optname, optval, optlen); 2369 } 2370 2371 /* 2372 * Shutdown a socket. 2373 */ 2374 2375 int __sys_shutdown_sock(struct socket *sock, int how) 2376 { 2377 int err; 2378 2379 err = security_socket_shutdown(sock, how); 2380 if (!err) 2381 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2382 2383 return err; 2384 } 2385 2386 int __sys_shutdown(int fd, int how) 2387 { 2388 int err, fput_needed; 2389 struct socket *sock; 2390 2391 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2392 if (sock != NULL) { 2393 err = __sys_shutdown_sock(sock, how); 2394 fput_light(sock->file, fput_needed); 2395 } 2396 return err; 2397 } 2398 2399 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2400 { 2401 return __sys_shutdown(fd, how); 2402 } 2403 2404 /* A couple of helpful macros for getting the address of the 32/64 bit 2405 * fields which are the same type (int / unsigned) on our platforms. 2406 */ 2407 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2408 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2409 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2410 2411 struct used_address { 2412 struct sockaddr_storage name; 2413 unsigned int name_len; 2414 }; 2415 2416 int __copy_msghdr(struct msghdr *kmsg, 2417 struct user_msghdr *msg, 2418 struct sockaddr __user **save_addr) 2419 { 2420 ssize_t err; 2421 2422 kmsg->msg_control_is_user = true; 2423 kmsg->msg_get_inq = 0; 2424 kmsg->msg_control_user = msg->msg_control; 2425 kmsg->msg_controllen = msg->msg_controllen; 2426 kmsg->msg_flags = msg->msg_flags; 2427 2428 kmsg->msg_namelen = msg->msg_namelen; 2429 if (!msg->msg_name) 2430 kmsg->msg_namelen = 0; 2431 2432 if (kmsg->msg_namelen < 0) 2433 return -EINVAL; 2434 2435 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2436 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2437 2438 if (save_addr) 2439 *save_addr = msg->msg_name; 2440 2441 if (msg->msg_name && kmsg->msg_namelen) { 2442 if (!save_addr) { 2443 err = move_addr_to_kernel(msg->msg_name, 2444 kmsg->msg_namelen, 2445 kmsg->msg_name); 2446 if (err < 0) 2447 return err; 2448 } 2449 } else { 2450 kmsg->msg_name = NULL; 2451 kmsg->msg_namelen = 0; 2452 } 2453 2454 if (msg->msg_iovlen > UIO_MAXIOV) 2455 return -EMSGSIZE; 2456 2457 kmsg->msg_iocb = NULL; 2458 kmsg->msg_ubuf = NULL; 2459 return 0; 2460 } 2461 2462 static int copy_msghdr_from_user(struct msghdr *kmsg, 2463 struct user_msghdr __user *umsg, 2464 struct sockaddr __user **save_addr, 2465 struct iovec **iov) 2466 { 2467 struct user_msghdr msg; 2468 ssize_t err; 2469 2470 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2471 return -EFAULT; 2472 2473 err = __copy_msghdr(kmsg, &msg, save_addr); 2474 if (err) 2475 return err; 2476 2477 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2478 msg.msg_iov, msg.msg_iovlen, 2479 UIO_FASTIOV, iov, &kmsg->msg_iter); 2480 return err < 0 ? err : 0; 2481 } 2482 2483 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2484 unsigned int flags, struct used_address *used_address, 2485 unsigned int allowed_msghdr_flags) 2486 { 2487 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2488 __aligned(sizeof(__kernel_size_t)); 2489 /* 20 is size of ipv6_pktinfo */ 2490 unsigned char *ctl_buf = ctl; 2491 int ctl_len; 2492 ssize_t err; 2493 2494 err = -ENOBUFS; 2495 2496 if (msg_sys->msg_controllen > INT_MAX) 2497 goto out; 2498 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2499 ctl_len = msg_sys->msg_controllen; 2500 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2501 err = 2502 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2503 sizeof(ctl)); 2504 if (err) 2505 goto out; 2506 ctl_buf = msg_sys->msg_control; 2507 ctl_len = msg_sys->msg_controllen; 2508 } else if (ctl_len) { 2509 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2510 CMSG_ALIGN(sizeof(struct cmsghdr))); 2511 if (ctl_len > sizeof(ctl)) { 2512 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2513 if (ctl_buf == NULL) 2514 goto out; 2515 } 2516 err = -EFAULT; 2517 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2518 goto out_freectl; 2519 msg_sys->msg_control = ctl_buf; 2520 msg_sys->msg_control_is_user = false; 2521 } 2522 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2523 msg_sys->msg_flags = flags; 2524 2525 if (sock->file->f_flags & O_NONBLOCK) 2526 msg_sys->msg_flags |= MSG_DONTWAIT; 2527 /* 2528 * If this is sendmmsg() and current destination address is same as 2529 * previously succeeded address, omit asking LSM's decision. 2530 * used_address->name_len is initialized to UINT_MAX so that the first 2531 * destination address never matches. 2532 */ 2533 if (used_address && msg_sys->msg_name && 2534 used_address->name_len == msg_sys->msg_namelen && 2535 !memcmp(&used_address->name, msg_sys->msg_name, 2536 used_address->name_len)) { 2537 err = sock_sendmsg_nosec(sock, msg_sys); 2538 goto out_freectl; 2539 } 2540 err = sock_sendmsg(sock, msg_sys); 2541 /* 2542 * If this is sendmmsg() and sending to current destination address was 2543 * successful, remember it. 2544 */ 2545 if (used_address && err >= 0) { 2546 used_address->name_len = msg_sys->msg_namelen; 2547 if (msg_sys->msg_name) 2548 memcpy(&used_address->name, msg_sys->msg_name, 2549 used_address->name_len); 2550 } 2551 2552 out_freectl: 2553 if (ctl_buf != ctl) 2554 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2555 out: 2556 return err; 2557 } 2558 2559 int sendmsg_copy_msghdr(struct msghdr *msg, 2560 struct user_msghdr __user *umsg, unsigned flags, 2561 struct iovec **iov) 2562 { 2563 int err; 2564 2565 if (flags & MSG_CMSG_COMPAT) { 2566 struct compat_msghdr __user *msg_compat; 2567 2568 msg_compat = (struct compat_msghdr __user *) umsg; 2569 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2570 } else { 2571 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2572 } 2573 if (err < 0) 2574 return err; 2575 2576 return 0; 2577 } 2578 2579 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2580 struct msghdr *msg_sys, unsigned int flags, 2581 struct used_address *used_address, 2582 unsigned int allowed_msghdr_flags) 2583 { 2584 struct sockaddr_storage address; 2585 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2586 ssize_t err; 2587 2588 msg_sys->msg_name = &address; 2589 2590 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2591 if (err < 0) 2592 return err; 2593 2594 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2595 allowed_msghdr_flags); 2596 kfree(iov); 2597 return err; 2598 } 2599 2600 /* 2601 * BSD sendmsg interface 2602 */ 2603 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2604 unsigned int flags) 2605 { 2606 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2607 } 2608 2609 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2610 bool forbid_cmsg_compat) 2611 { 2612 int fput_needed, err; 2613 struct msghdr msg_sys; 2614 struct socket *sock; 2615 2616 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2617 return -EINVAL; 2618 2619 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2620 if (!sock) 2621 goto out; 2622 2623 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2624 2625 fput_light(sock->file, fput_needed); 2626 out: 2627 return err; 2628 } 2629 2630 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2631 { 2632 return __sys_sendmsg(fd, msg, flags, true); 2633 } 2634 2635 /* 2636 * Linux sendmmsg interface 2637 */ 2638 2639 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2640 unsigned int flags, bool forbid_cmsg_compat) 2641 { 2642 int fput_needed, err, datagrams; 2643 struct socket *sock; 2644 struct mmsghdr __user *entry; 2645 struct compat_mmsghdr __user *compat_entry; 2646 struct msghdr msg_sys; 2647 struct used_address used_address; 2648 unsigned int oflags = flags; 2649 2650 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2651 return -EINVAL; 2652 2653 if (vlen > UIO_MAXIOV) 2654 vlen = UIO_MAXIOV; 2655 2656 datagrams = 0; 2657 2658 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2659 if (!sock) 2660 return err; 2661 2662 used_address.name_len = UINT_MAX; 2663 entry = mmsg; 2664 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2665 err = 0; 2666 flags |= MSG_BATCH; 2667 2668 while (datagrams < vlen) { 2669 if (datagrams == vlen - 1) 2670 flags = oflags; 2671 2672 if (MSG_CMSG_COMPAT & flags) { 2673 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2674 &msg_sys, flags, &used_address, MSG_EOR); 2675 if (err < 0) 2676 break; 2677 err = __put_user(err, &compat_entry->msg_len); 2678 ++compat_entry; 2679 } else { 2680 err = ___sys_sendmsg(sock, 2681 (struct user_msghdr __user *)entry, 2682 &msg_sys, flags, &used_address, MSG_EOR); 2683 if (err < 0) 2684 break; 2685 err = put_user(err, &entry->msg_len); 2686 ++entry; 2687 } 2688 2689 if (err) 2690 break; 2691 ++datagrams; 2692 if (msg_data_left(&msg_sys)) 2693 break; 2694 cond_resched(); 2695 } 2696 2697 fput_light(sock->file, fput_needed); 2698 2699 /* We only return an error if no datagrams were able to be sent */ 2700 if (datagrams != 0) 2701 return datagrams; 2702 2703 return err; 2704 } 2705 2706 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2707 unsigned int, vlen, unsigned int, flags) 2708 { 2709 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2710 } 2711 2712 int recvmsg_copy_msghdr(struct msghdr *msg, 2713 struct user_msghdr __user *umsg, unsigned flags, 2714 struct sockaddr __user **uaddr, 2715 struct iovec **iov) 2716 { 2717 ssize_t err; 2718 2719 if (MSG_CMSG_COMPAT & flags) { 2720 struct compat_msghdr __user *msg_compat; 2721 2722 msg_compat = (struct compat_msghdr __user *) umsg; 2723 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2724 } else { 2725 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2726 } 2727 if (err < 0) 2728 return err; 2729 2730 return 0; 2731 } 2732 2733 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2734 struct user_msghdr __user *msg, 2735 struct sockaddr __user *uaddr, 2736 unsigned int flags, int nosec) 2737 { 2738 struct compat_msghdr __user *msg_compat = 2739 (struct compat_msghdr __user *) msg; 2740 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2741 struct sockaddr_storage addr; 2742 unsigned long cmsg_ptr; 2743 int len; 2744 ssize_t err; 2745 2746 msg_sys->msg_name = &addr; 2747 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2748 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2749 2750 /* We assume all kernel code knows the size of sockaddr_storage */ 2751 msg_sys->msg_namelen = 0; 2752 2753 if (sock->file->f_flags & O_NONBLOCK) 2754 flags |= MSG_DONTWAIT; 2755 2756 if (unlikely(nosec)) 2757 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2758 else 2759 err = sock_recvmsg(sock, msg_sys, flags); 2760 2761 if (err < 0) 2762 goto out; 2763 len = err; 2764 2765 if (uaddr != NULL) { 2766 err = move_addr_to_user(&addr, 2767 msg_sys->msg_namelen, uaddr, 2768 uaddr_len); 2769 if (err < 0) 2770 goto out; 2771 } 2772 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2773 COMPAT_FLAGS(msg)); 2774 if (err) 2775 goto out; 2776 if (MSG_CMSG_COMPAT & flags) 2777 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2778 &msg_compat->msg_controllen); 2779 else 2780 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2781 &msg->msg_controllen); 2782 if (err) 2783 goto out; 2784 err = len; 2785 out: 2786 return err; 2787 } 2788 2789 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2790 struct msghdr *msg_sys, unsigned int flags, int nosec) 2791 { 2792 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2793 /* user mode address pointers */ 2794 struct sockaddr __user *uaddr; 2795 ssize_t err; 2796 2797 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2798 if (err < 0) 2799 return err; 2800 2801 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2802 kfree(iov); 2803 return err; 2804 } 2805 2806 /* 2807 * BSD recvmsg interface 2808 */ 2809 2810 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2811 struct user_msghdr __user *umsg, 2812 struct sockaddr __user *uaddr, unsigned int flags) 2813 { 2814 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2815 } 2816 2817 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2818 bool forbid_cmsg_compat) 2819 { 2820 int fput_needed, err; 2821 struct msghdr msg_sys; 2822 struct socket *sock; 2823 2824 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2825 return -EINVAL; 2826 2827 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2828 if (!sock) 2829 goto out; 2830 2831 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2832 2833 fput_light(sock->file, fput_needed); 2834 out: 2835 return err; 2836 } 2837 2838 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2839 unsigned int, flags) 2840 { 2841 return __sys_recvmsg(fd, msg, flags, true); 2842 } 2843 2844 /* 2845 * Linux recvmmsg interface 2846 */ 2847 2848 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2849 unsigned int vlen, unsigned int flags, 2850 struct timespec64 *timeout) 2851 { 2852 int fput_needed, err, datagrams; 2853 struct socket *sock; 2854 struct mmsghdr __user *entry; 2855 struct compat_mmsghdr __user *compat_entry; 2856 struct msghdr msg_sys; 2857 struct timespec64 end_time; 2858 struct timespec64 timeout64; 2859 2860 if (timeout && 2861 poll_select_set_timeout(&end_time, timeout->tv_sec, 2862 timeout->tv_nsec)) 2863 return -EINVAL; 2864 2865 datagrams = 0; 2866 2867 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2868 if (!sock) 2869 return err; 2870 2871 if (likely(!(flags & MSG_ERRQUEUE))) { 2872 err = sock_error(sock->sk); 2873 if (err) { 2874 datagrams = err; 2875 goto out_put; 2876 } 2877 } 2878 2879 entry = mmsg; 2880 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2881 2882 while (datagrams < vlen) { 2883 /* 2884 * No need to ask LSM for more than the first datagram. 2885 */ 2886 if (MSG_CMSG_COMPAT & flags) { 2887 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2888 &msg_sys, flags & ~MSG_WAITFORONE, 2889 datagrams); 2890 if (err < 0) 2891 break; 2892 err = __put_user(err, &compat_entry->msg_len); 2893 ++compat_entry; 2894 } else { 2895 err = ___sys_recvmsg(sock, 2896 (struct user_msghdr __user *)entry, 2897 &msg_sys, flags & ~MSG_WAITFORONE, 2898 datagrams); 2899 if (err < 0) 2900 break; 2901 err = put_user(err, &entry->msg_len); 2902 ++entry; 2903 } 2904 2905 if (err) 2906 break; 2907 ++datagrams; 2908 2909 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2910 if (flags & MSG_WAITFORONE) 2911 flags |= MSG_DONTWAIT; 2912 2913 if (timeout) { 2914 ktime_get_ts64(&timeout64); 2915 *timeout = timespec64_sub(end_time, timeout64); 2916 if (timeout->tv_sec < 0) { 2917 timeout->tv_sec = timeout->tv_nsec = 0; 2918 break; 2919 } 2920 2921 /* Timeout, return less than vlen datagrams */ 2922 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2923 break; 2924 } 2925 2926 /* Out of band data, return right away */ 2927 if (msg_sys.msg_flags & MSG_OOB) 2928 break; 2929 cond_resched(); 2930 } 2931 2932 if (err == 0) 2933 goto out_put; 2934 2935 if (datagrams == 0) { 2936 datagrams = err; 2937 goto out_put; 2938 } 2939 2940 /* 2941 * We may return less entries than requested (vlen) if the 2942 * sock is non block and there aren't enough datagrams... 2943 */ 2944 if (err != -EAGAIN) { 2945 /* 2946 * ... or if recvmsg returns an error after we 2947 * received some datagrams, where we record the 2948 * error to return on the next call or if the 2949 * app asks about it using getsockopt(SO_ERROR). 2950 */ 2951 WRITE_ONCE(sock->sk->sk_err, -err); 2952 } 2953 out_put: 2954 fput_light(sock->file, fput_needed); 2955 2956 return datagrams; 2957 } 2958 2959 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2960 unsigned int vlen, unsigned int flags, 2961 struct __kernel_timespec __user *timeout, 2962 struct old_timespec32 __user *timeout32) 2963 { 2964 int datagrams; 2965 struct timespec64 timeout_sys; 2966 2967 if (timeout && get_timespec64(&timeout_sys, timeout)) 2968 return -EFAULT; 2969 2970 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2971 return -EFAULT; 2972 2973 if (!timeout && !timeout32) 2974 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2975 2976 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2977 2978 if (datagrams <= 0) 2979 return datagrams; 2980 2981 if (timeout && put_timespec64(&timeout_sys, timeout)) 2982 datagrams = -EFAULT; 2983 2984 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2985 datagrams = -EFAULT; 2986 2987 return datagrams; 2988 } 2989 2990 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2991 unsigned int, vlen, unsigned int, flags, 2992 struct __kernel_timespec __user *, timeout) 2993 { 2994 if (flags & MSG_CMSG_COMPAT) 2995 return -EINVAL; 2996 2997 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2998 } 2999 3000 #ifdef CONFIG_COMPAT_32BIT_TIME 3001 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3002 unsigned int, vlen, unsigned int, flags, 3003 struct old_timespec32 __user *, timeout) 3004 { 3005 if (flags & MSG_CMSG_COMPAT) 3006 return -EINVAL; 3007 3008 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3009 } 3010 #endif 3011 3012 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3013 /* Argument list sizes for sys_socketcall */ 3014 #define AL(x) ((x) * sizeof(unsigned long)) 3015 static const unsigned char nargs[21] = { 3016 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3017 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3018 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3019 AL(4), AL(5), AL(4) 3020 }; 3021 3022 #undef AL 3023 3024 /* 3025 * System call vectors. 3026 * 3027 * Argument checking cleaned up. Saved 20% in size. 3028 * This function doesn't need to set the kernel lock because 3029 * it is set by the callees. 3030 */ 3031 3032 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3033 { 3034 unsigned long a[AUDITSC_ARGS]; 3035 unsigned long a0, a1; 3036 int err; 3037 unsigned int len; 3038 3039 if (call < 1 || call > SYS_SENDMMSG) 3040 return -EINVAL; 3041 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3042 3043 len = nargs[call]; 3044 if (len > sizeof(a)) 3045 return -EINVAL; 3046 3047 /* copy_from_user should be SMP safe. */ 3048 if (copy_from_user(a, args, len)) 3049 return -EFAULT; 3050 3051 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3052 if (err) 3053 return err; 3054 3055 a0 = a[0]; 3056 a1 = a[1]; 3057 3058 switch (call) { 3059 case SYS_SOCKET: 3060 err = __sys_socket(a0, a1, a[2]); 3061 break; 3062 case SYS_BIND: 3063 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3064 break; 3065 case SYS_CONNECT: 3066 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3067 break; 3068 case SYS_LISTEN: 3069 err = __sys_listen(a0, a1); 3070 break; 3071 case SYS_ACCEPT: 3072 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3073 (int __user *)a[2], 0); 3074 break; 3075 case SYS_GETSOCKNAME: 3076 err = 3077 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3078 (int __user *)a[2]); 3079 break; 3080 case SYS_GETPEERNAME: 3081 err = 3082 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3083 (int __user *)a[2]); 3084 break; 3085 case SYS_SOCKETPAIR: 3086 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3087 break; 3088 case SYS_SEND: 3089 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3090 NULL, 0); 3091 break; 3092 case SYS_SENDTO: 3093 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3094 (struct sockaddr __user *)a[4], a[5]); 3095 break; 3096 case SYS_RECV: 3097 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3098 NULL, NULL); 3099 break; 3100 case SYS_RECVFROM: 3101 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3102 (struct sockaddr __user *)a[4], 3103 (int __user *)a[5]); 3104 break; 3105 case SYS_SHUTDOWN: 3106 err = __sys_shutdown(a0, a1); 3107 break; 3108 case SYS_SETSOCKOPT: 3109 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3110 a[4]); 3111 break; 3112 case SYS_GETSOCKOPT: 3113 err = 3114 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3115 (int __user *)a[4]); 3116 break; 3117 case SYS_SENDMSG: 3118 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3119 a[2], true); 3120 break; 3121 case SYS_SENDMMSG: 3122 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3123 a[3], true); 3124 break; 3125 case SYS_RECVMSG: 3126 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3127 a[2], true); 3128 break; 3129 case SYS_RECVMMSG: 3130 if (IS_ENABLED(CONFIG_64BIT)) 3131 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3132 a[2], a[3], 3133 (struct __kernel_timespec __user *)a[4], 3134 NULL); 3135 else 3136 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3137 a[2], a[3], NULL, 3138 (struct old_timespec32 __user *)a[4]); 3139 break; 3140 case SYS_ACCEPT4: 3141 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3142 (int __user *)a[2], a[3]); 3143 break; 3144 default: 3145 err = -EINVAL; 3146 break; 3147 } 3148 return err; 3149 } 3150 3151 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3152 3153 /** 3154 * sock_register - add a socket protocol handler 3155 * @ops: description of protocol 3156 * 3157 * This function is called by a protocol handler that wants to 3158 * advertise its address family, and have it linked into the 3159 * socket interface. The value ops->family corresponds to the 3160 * socket system call protocol family. 3161 */ 3162 int sock_register(const struct net_proto_family *ops) 3163 { 3164 int err; 3165 3166 if (ops->family >= NPROTO) { 3167 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3168 return -ENOBUFS; 3169 } 3170 3171 spin_lock(&net_family_lock); 3172 if (rcu_dereference_protected(net_families[ops->family], 3173 lockdep_is_held(&net_family_lock))) 3174 err = -EEXIST; 3175 else { 3176 rcu_assign_pointer(net_families[ops->family], ops); 3177 err = 0; 3178 } 3179 spin_unlock(&net_family_lock); 3180 3181 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3182 return err; 3183 } 3184 EXPORT_SYMBOL(sock_register); 3185 3186 /** 3187 * sock_unregister - remove a protocol handler 3188 * @family: protocol family to remove 3189 * 3190 * This function is called by a protocol handler that wants to 3191 * remove its address family, and have it unlinked from the 3192 * new socket creation. 3193 * 3194 * If protocol handler is a module, then it can use module reference 3195 * counts to protect against new references. If protocol handler is not 3196 * a module then it needs to provide its own protection in 3197 * the ops->create routine. 3198 */ 3199 void sock_unregister(int family) 3200 { 3201 BUG_ON(family < 0 || family >= NPROTO); 3202 3203 spin_lock(&net_family_lock); 3204 RCU_INIT_POINTER(net_families[family], NULL); 3205 spin_unlock(&net_family_lock); 3206 3207 synchronize_rcu(); 3208 3209 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3210 } 3211 EXPORT_SYMBOL(sock_unregister); 3212 3213 bool sock_is_registered(int family) 3214 { 3215 return family < NPROTO && rcu_access_pointer(net_families[family]); 3216 } 3217 3218 static int __init sock_init(void) 3219 { 3220 int err; 3221 /* 3222 * Initialize the network sysctl infrastructure. 3223 */ 3224 err = net_sysctl_init(); 3225 if (err) 3226 goto out; 3227 3228 /* 3229 * Initialize skbuff SLAB cache 3230 */ 3231 skb_init(); 3232 3233 /* 3234 * Initialize the protocols module. 3235 */ 3236 3237 init_inodecache(); 3238 3239 err = register_filesystem(&sock_fs_type); 3240 if (err) 3241 goto out; 3242 sock_mnt = kern_mount(&sock_fs_type); 3243 if (IS_ERR(sock_mnt)) { 3244 err = PTR_ERR(sock_mnt); 3245 goto out_mount; 3246 } 3247 3248 /* The real protocol initialization is performed in later initcalls. 3249 */ 3250 3251 #ifdef CONFIG_NETFILTER 3252 err = netfilter_init(); 3253 if (err) 3254 goto out; 3255 #endif 3256 3257 ptp_classifier_init(); 3258 3259 out: 3260 return err; 3261 3262 out_mount: 3263 unregister_filesystem(&sock_fs_type); 3264 goto out; 3265 } 3266 3267 core_initcall(sock_init); /* early initcall */ 3268 3269 #ifdef CONFIG_PROC_FS 3270 void socket_seq_show(struct seq_file *seq) 3271 { 3272 seq_printf(seq, "sockets: used %d\n", 3273 sock_inuse_get(seq->private)); 3274 } 3275 #endif /* CONFIG_PROC_FS */ 3276 3277 /* Handle the fact that while struct ifreq has the same *layout* on 3278 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3279 * which are handled elsewhere, it still has different *size* due to 3280 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3281 * resulting in struct ifreq being 32 and 40 bytes respectively). 3282 * As a result, if the struct happens to be at the end of a page and 3283 * the next page isn't readable/writable, we get a fault. To prevent 3284 * that, copy back and forth to the full size. 3285 */ 3286 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3287 { 3288 if (in_compat_syscall()) { 3289 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3290 3291 memset(ifr, 0, sizeof(*ifr)); 3292 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3293 return -EFAULT; 3294 3295 if (ifrdata) 3296 *ifrdata = compat_ptr(ifr32->ifr_data); 3297 3298 return 0; 3299 } 3300 3301 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3302 return -EFAULT; 3303 3304 if (ifrdata) 3305 *ifrdata = ifr->ifr_data; 3306 3307 return 0; 3308 } 3309 EXPORT_SYMBOL(get_user_ifreq); 3310 3311 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3312 { 3313 size_t size = sizeof(*ifr); 3314 3315 if (in_compat_syscall()) 3316 size = sizeof(struct compat_ifreq); 3317 3318 if (copy_to_user(arg, ifr, size)) 3319 return -EFAULT; 3320 3321 return 0; 3322 } 3323 EXPORT_SYMBOL(put_user_ifreq); 3324 3325 #ifdef CONFIG_COMPAT 3326 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3327 { 3328 compat_uptr_t uptr32; 3329 struct ifreq ifr; 3330 void __user *saved; 3331 int err; 3332 3333 if (get_user_ifreq(&ifr, NULL, uifr32)) 3334 return -EFAULT; 3335 3336 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3337 return -EFAULT; 3338 3339 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3340 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3341 3342 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3343 if (!err) { 3344 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3345 if (put_user_ifreq(&ifr, uifr32)) 3346 err = -EFAULT; 3347 } 3348 return err; 3349 } 3350 3351 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3352 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3353 struct compat_ifreq __user *u_ifreq32) 3354 { 3355 struct ifreq ifreq; 3356 void __user *data; 3357 3358 if (!is_socket_ioctl_cmd(cmd)) 3359 return -ENOTTY; 3360 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3361 return -EFAULT; 3362 ifreq.ifr_data = data; 3363 3364 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3365 } 3366 3367 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3368 unsigned int cmd, unsigned long arg) 3369 { 3370 void __user *argp = compat_ptr(arg); 3371 struct sock *sk = sock->sk; 3372 struct net *net = sock_net(sk); 3373 const struct proto_ops *ops; 3374 3375 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3376 return sock_ioctl(file, cmd, (unsigned long)argp); 3377 3378 switch (cmd) { 3379 case SIOCWANDEV: 3380 return compat_siocwandev(net, argp); 3381 case SIOCGSTAMP_OLD: 3382 case SIOCGSTAMPNS_OLD: 3383 ops = READ_ONCE(sock->ops); 3384 if (!ops->gettstamp) 3385 return -ENOIOCTLCMD; 3386 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3387 !COMPAT_USE_64BIT_TIME); 3388 3389 case SIOCETHTOOL: 3390 case SIOCBONDSLAVEINFOQUERY: 3391 case SIOCBONDINFOQUERY: 3392 case SIOCSHWTSTAMP: 3393 case SIOCGHWTSTAMP: 3394 return compat_ifr_data_ioctl(net, cmd, argp); 3395 3396 case FIOSETOWN: 3397 case SIOCSPGRP: 3398 case FIOGETOWN: 3399 case SIOCGPGRP: 3400 case SIOCBRADDBR: 3401 case SIOCBRDELBR: 3402 case SIOCGIFVLAN: 3403 case SIOCSIFVLAN: 3404 case SIOCGSKNS: 3405 case SIOCGSTAMP_NEW: 3406 case SIOCGSTAMPNS_NEW: 3407 case SIOCGIFCONF: 3408 case SIOCSIFBR: 3409 case SIOCGIFBR: 3410 return sock_ioctl(file, cmd, arg); 3411 3412 case SIOCGIFFLAGS: 3413 case SIOCSIFFLAGS: 3414 case SIOCGIFMAP: 3415 case SIOCSIFMAP: 3416 case SIOCGIFMETRIC: 3417 case SIOCSIFMETRIC: 3418 case SIOCGIFMTU: 3419 case SIOCSIFMTU: 3420 case SIOCGIFMEM: 3421 case SIOCSIFMEM: 3422 case SIOCGIFHWADDR: 3423 case SIOCSIFHWADDR: 3424 case SIOCADDMULTI: 3425 case SIOCDELMULTI: 3426 case SIOCGIFINDEX: 3427 case SIOCGIFADDR: 3428 case SIOCSIFADDR: 3429 case SIOCSIFHWBROADCAST: 3430 case SIOCDIFADDR: 3431 case SIOCGIFBRDADDR: 3432 case SIOCSIFBRDADDR: 3433 case SIOCGIFDSTADDR: 3434 case SIOCSIFDSTADDR: 3435 case SIOCGIFNETMASK: 3436 case SIOCSIFNETMASK: 3437 case SIOCSIFPFLAGS: 3438 case SIOCGIFPFLAGS: 3439 case SIOCGIFTXQLEN: 3440 case SIOCSIFTXQLEN: 3441 case SIOCBRADDIF: 3442 case SIOCBRDELIF: 3443 case SIOCGIFNAME: 3444 case SIOCSIFNAME: 3445 case SIOCGMIIPHY: 3446 case SIOCGMIIREG: 3447 case SIOCSMIIREG: 3448 case SIOCBONDENSLAVE: 3449 case SIOCBONDRELEASE: 3450 case SIOCBONDSETHWADDR: 3451 case SIOCBONDCHANGEACTIVE: 3452 case SIOCSARP: 3453 case SIOCGARP: 3454 case SIOCDARP: 3455 case SIOCOUTQ: 3456 case SIOCOUTQNSD: 3457 case SIOCATMARK: 3458 return sock_do_ioctl(net, sock, cmd, arg); 3459 } 3460 3461 return -ENOIOCTLCMD; 3462 } 3463 3464 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3465 unsigned long arg) 3466 { 3467 struct socket *sock = file->private_data; 3468 const struct proto_ops *ops = READ_ONCE(sock->ops); 3469 int ret = -ENOIOCTLCMD; 3470 struct sock *sk; 3471 struct net *net; 3472 3473 sk = sock->sk; 3474 net = sock_net(sk); 3475 3476 if (ops->compat_ioctl) 3477 ret = ops->compat_ioctl(sock, cmd, arg); 3478 3479 if (ret == -ENOIOCTLCMD && 3480 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3481 ret = compat_wext_handle_ioctl(net, cmd, arg); 3482 3483 if (ret == -ENOIOCTLCMD) 3484 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3485 3486 return ret; 3487 } 3488 #endif 3489 3490 /** 3491 * kernel_bind - bind an address to a socket (kernel space) 3492 * @sock: socket 3493 * @addr: address 3494 * @addrlen: length of address 3495 * 3496 * Returns 0 or an error. 3497 */ 3498 3499 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3500 { 3501 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen); 3502 } 3503 EXPORT_SYMBOL(kernel_bind); 3504 3505 /** 3506 * kernel_listen - move socket to listening state (kernel space) 3507 * @sock: socket 3508 * @backlog: pending connections queue size 3509 * 3510 * Returns 0 or an error. 3511 */ 3512 3513 int kernel_listen(struct socket *sock, int backlog) 3514 { 3515 return READ_ONCE(sock->ops)->listen(sock, backlog); 3516 } 3517 EXPORT_SYMBOL(kernel_listen); 3518 3519 /** 3520 * kernel_accept - accept a connection (kernel space) 3521 * @sock: listening socket 3522 * @newsock: new connected socket 3523 * @flags: flags 3524 * 3525 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3526 * If it fails, @newsock is guaranteed to be %NULL. 3527 * Returns 0 or an error. 3528 */ 3529 3530 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3531 { 3532 struct sock *sk = sock->sk; 3533 const struct proto_ops *ops = READ_ONCE(sock->ops); 3534 int err; 3535 3536 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3537 newsock); 3538 if (err < 0) 3539 goto done; 3540 3541 err = ops->accept(sock, *newsock, flags, true); 3542 if (err < 0) { 3543 sock_release(*newsock); 3544 *newsock = NULL; 3545 goto done; 3546 } 3547 3548 (*newsock)->ops = ops; 3549 __module_get(ops->owner); 3550 3551 done: 3552 return err; 3553 } 3554 EXPORT_SYMBOL(kernel_accept); 3555 3556 /** 3557 * kernel_connect - connect a socket (kernel space) 3558 * @sock: socket 3559 * @addr: address 3560 * @addrlen: address length 3561 * @flags: flags (O_NONBLOCK, ...) 3562 * 3563 * For datagram sockets, @addr is the address to which datagrams are sent 3564 * by default, and the only address from which datagrams are received. 3565 * For stream sockets, attempts to connect to @addr. 3566 * Returns 0 or an error code. 3567 */ 3568 3569 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3570 int flags) 3571 { 3572 struct sockaddr_storage address; 3573 3574 memcpy(&address, addr, addrlen); 3575 3576 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3577 addrlen, flags); 3578 } 3579 EXPORT_SYMBOL(kernel_connect); 3580 3581 /** 3582 * kernel_getsockname - get the address which the socket is bound (kernel space) 3583 * @sock: socket 3584 * @addr: address holder 3585 * 3586 * Fills the @addr pointer with the address which the socket is bound. 3587 * Returns the length of the address in bytes or an error code. 3588 */ 3589 3590 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3591 { 3592 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3593 } 3594 EXPORT_SYMBOL(kernel_getsockname); 3595 3596 /** 3597 * kernel_getpeername - get the address which the socket is connected (kernel space) 3598 * @sock: socket 3599 * @addr: address holder 3600 * 3601 * Fills the @addr pointer with the address which the socket is connected. 3602 * Returns the length of the address in bytes or an error code. 3603 */ 3604 3605 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3606 { 3607 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3608 } 3609 EXPORT_SYMBOL(kernel_getpeername); 3610 3611 /** 3612 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3613 * @sock: socket 3614 * @how: connection part 3615 * 3616 * Returns 0 or an error. 3617 */ 3618 3619 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3620 { 3621 return READ_ONCE(sock->ops)->shutdown(sock, how); 3622 } 3623 EXPORT_SYMBOL(kernel_sock_shutdown); 3624 3625 /** 3626 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3627 * @sk: socket 3628 * 3629 * This routine returns the IP overhead imposed by a socket i.e. 3630 * the length of the underlying IP header, depending on whether 3631 * this is an IPv4 or IPv6 socket and the length from IP options turned 3632 * on at the socket. Assumes that the caller has a lock on the socket. 3633 */ 3634 3635 u32 kernel_sock_ip_overhead(struct sock *sk) 3636 { 3637 struct inet_sock *inet; 3638 struct ip_options_rcu *opt; 3639 u32 overhead = 0; 3640 #if IS_ENABLED(CONFIG_IPV6) 3641 struct ipv6_pinfo *np; 3642 struct ipv6_txoptions *optv6 = NULL; 3643 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3644 3645 if (!sk) 3646 return overhead; 3647 3648 switch (sk->sk_family) { 3649 case AF_INET: 3650 inet = inet_sk(sk); 3651 overhead += sizeof(struct iphdr); 3652 opt = rcu_dereference_protected(inet->inet_opt, 3653 sock_owned_by_user(sk)); 3654 if (opt) 3655 overhead += opt->opt.optlen; 3656 return overhead; 3657 #if IS_ENABLED(CONFIG_IPV6) 3658 case AF_INET6: 3659 np = inet6_sk(sk); 3660 overhead += sizeof(struct ipv6hdr); 3661 if (np) 3662 optv6 = rcu_dereference_protected(np->opt, 3663 sock_owned_by_user(sk)); 3664 if (optv6) 3665 overhead += (optv6->opt_flen + optv6->opt_nflen); 3666 return overhead; 3667 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3668 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3669 return overhead; 3670 } 3671 } 3672 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3673