xref: /openbmc/linux/net/socket.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 /**
741  *	sock_sendmsg - send a message through @sock
742  *	@sock: socket
743  *	@msg: message to send
744  *
745  *	Sends @msg through @sock, passing through LSM.
746  *	Returns the number of bytes sent, or an error code.
747  */
748 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
749 {
750 	int err = security_socket_sendmsg(sock, msg,
751 					  msg_data_left(msg));
752 
753 	return err ?: sock_sendmsg_nosec(sock, msg);
754 }
755 EXPORT_SYMBOL(sock_sendmsg);
756 
757 /**
758  *	kernel_sendmsg - send a message through @sock (kernel-space)
759  *	@sock: socket
760  *	@msg: message header
761  *	@vec: kernel vec
762  *	@num: vec array length
763  *	@size: total message data size
764  *
765  *	Builds the message data with @vec and sends it through @sock.
766  *	Returns the number of bytes sent, or an error code.
767  */
768 
769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 		   struct kvec *vec, size_t num, size_t size)
771 {
772 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 	return sock_sendmsg(sock, msg);
774 }
775 EXPORT_SYMBOL(kernel_sendmsg);
776 
777 /**
778  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
779  *	@sk: sock
780  *	@msg: message header
781  *	@vec: output s/g array
782  *	@num: output s/g array length
783  *	@size: total message data size
784  *
785  *	Builds the message data with @vec and sends it through @sock.
786  *	Returns the number of bytes sent, or an error code.
787  *	Caller must hold @sk.
788  */
789 
790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 			  struct kvec *vec, size_t num, size_t size)
792 {
793 	struct socket *sock = sk->sk_socket;
794 	const struct proto_ops *ops = READ_ONCE(sock->ops);
795 
796 	if (!ops->sendmsg_locked)
797 		return sock_no_sendmsg_locked(sk, msg, size);
798 
799 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800 
801 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802 }
803 EXPORT_SYMBOL(kernel_sendmsg_locked);
804 
805 static bool skb_is_err_queue(const struct sk_buff *skb)
806 {
807 	/* pkt_type of skbs enqueued on the error queue are set to
808 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 	 * in recvmsg, since skbs received on a local socket will never
810 	 * have a pkt_type of PACKET_OUTGOING.
811 	 */
812 	return skb->pkt_type == PACKET_OUTGOING;
813 }
814 
815 /* On transmit, software and hardware timestamps are returned independently.
816  * As the two skb clones share the hardware timestamp, which may be updated
817  * before the software timestamp is received, a hardware TX timestamp may be
818  * returned only if there is no software TX timestamp. Ignore false software
819  * timestamps, which may be made in the __sock_recv_timestamp() call when the
820  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821  * hardware timestamp.
822  */
823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824 {
825 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826 }
827 
828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829 {
830 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
831 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 	struct net_device *orig_dev;
833 	ktime_t hwtstamp;
834 
835 	rcu_read_lock();
836 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 	if (orig_dev) {
838 		*if_index = orig_dev->ifindex;
839 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 	} else {
841 		hwtstamp = shhwtstamps->hwtstamp;
842 	}
843 	rcu_read_unlock();
844 
845 	return hwtstamp;
846 }
847 
848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 			   int if_index)
850 {
851 	struct scm_ts_pktinfo ts_pktinfo;
852 	struct net_device *orig_dev;
853 
854 	if (!skb_mac_header_was_set(skb))
855 		return;
856 
857 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858 
859 	if (!if_index) {
860 		rcu_read_lock();
861 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 		if (orig_dev)
863 			if_index = orig_dev->ifindex;
864 		rcu_read_unlock();
865 	}
866 	ts_pktinfo.if_index = if_index;
867 
868 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 		 sizeof(ts_pktinfo), &ts_pktinfo);
871 }
872 
873 /*
874  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875  */
876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 	struct sk_buff *skb)
878 {
879 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 	struct scm_timestamping_internal tss;
882 
883 	int empty = 1, false_tstamp = 0;
884 	struct skb_shared_hwtstamps *shhwtstamps =
885 		skb_hwtstamps(skb);
886 	int if_index;
887 	ktime_t hwtstamp;
888 
889 	/* Race occurred between timestamp enabling and packet
890 	   receiving.  Fill in the current time for now. */
891 	if (need_software_tstamp && skb->tstamp == 0) {
892 		__net_timestamp(skb);
893 		false_tstamp = 1;
894 	}
895 
896 	if (need_software_tstamp) {
897 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 			if (new_tstamp) {
899 				struct __kernel_sock_timeval tv;
900 
901 				skb_get_new_timestamp(skb, &tv);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 					 sizeof(tv), &tv);
904 			} else {
905 				struct __kernel_old_timeval tv;
906 
907 				skb_get_timestamp(skb, &tv);
908 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 					 sizeof(tv), &tv);
910 			}
911 		} else {
912 			if (new_tstamp) {
913 				struct __kernel_timespec ts;
914 
915 				skb_get_new_timestampns(skb, &ts);
916 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 					 sizeof(ts), &ts);
918 			} else {
919 				struct __kernel_old_timespec ts;
920 
921 				skb_get_timestampns(skb, &ts);
922 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 					 sizeof(ts), &ts);
924 			}
925 		}
926 	}
927 
928 	memset(&tss, 0, sizeof(tss));
929 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
930 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
931 		empty = 0;
932 	if (shhwtstamps &&
933 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
934 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
935 		if_index = 0;
936 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
937 			hwtstamp = get_timestamp(sk, skb, &if_index);
938 		else
939 			hwtstamp = shhwtstamps->hwtstamp;
940 
941 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
942 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
943 							 sk->sk_bind_phc);
944 
945 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
946 			empty = 0;
947 
948 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
949 			    !skb_is_err_queue(skb))
950 				put_ts_pktinfo(msg, skb, if_index);
951 		}
952 	}
953 	if (!empty) {
954 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
955 			put_cmsg_scm_timestamping64(msg, &tss);
956 		else
957 			put_cmsg_scm_timestamping(msg, &tss);
958 
959 		if (skb_is_err_queue(skb) && skb->len &&
960 		    SKB_EXT_ERR(skb)->opt_stats)
961 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
962 				 skb->len, skb->data);
963 	}
964 }
965 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
966 
967 #ifdef CONFIG_WIRELESS
968 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
969 	struct sk_buff *skb)
970 {
971 	int ack;
972 
973 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
974 		return;
975 	if (!skb->wifi_acked_valid)
976 		return;
977 
978 	ack = skb->wifi_acked;
979 
980 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
981 }
982 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
983 #endif
984 
985 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
986 				   struct sk_buff *skb)
987 {
988 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
989 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
990 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
991 }
992 
993 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
994 			   struct sk_buff *skb)
995 {
996 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
997 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
998 		__u32 mark = skb->mark;
999 
1000 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1001 	}
1002 }
1003 
1004 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1005 		       struct sk_buff *skb)
1006 {
1007 	sock_recv_timestamp(msg, sk, skb);
1008 	sock_recv_drops(msg, sk, skb);
1009 	sock_recv_mark(msg, sk, skb);
1010 }
1011 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1012 
1013 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1014 					   size_t, int));
1015 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1016 					    size_t, int));
1017 
1018 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1019 {
1020 	trace_sock_recv_length(sk, ret, flags);
1021 }
1022 
1023 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1024 				     int flags)
1025 {
1026 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1027 				     inet6_recvmsg,
1028 				     inet_recvmsg, sock, msg,
1029 				     msg_data_left(msg), flags);
1030 	if (trace_sock_recv_length_enabled())
1031 		call_trace_sock_recv_length(sock->sk, ret, flags);
1032 	return ret;
1033 }
1034 
1035 /**
1036  *	sock_recvmsg - receive a message from @sock
1037  *	@sock: socket
1038  *	@msg: message to receive
1039  *	@flags: message flags
1040  *
1041  *	Receives @msg from @sock, passing through LSM. Returns the total number
1042  *	of bytes received, or an error.
1043  */
1044 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1045 {
1046 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1047 
1048 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1049 }
1050 EXPORT_SYMBOL(sock_recvmsg);
1051 
1052 /**
1053  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1054  *	@sock: The socket to receive the message from
1055  *	@msg: Received message
1056  *	@vec: Input s/g array for message data
1057  *	@num: Size of input s/g array
1058  *	@size: Number of bytes to read
1059  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1060  *
1061  *	On return the msg structure contains the scatter/gather array passed in the
1062  *	vec argument. The array is modified so that it consists of the unfilled
1063  *	portion of the original array.
1064  *
1065  *	The returned value is the total number of bytes received, or an error.
1066  */
1067 
1068 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1069 		   struct kvec *vec, size_t num, size_t size, int flags)
1070 {
1071 	msg->msg_control_is_user = false;
1072 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1073 	return sock_recvmsg(sock, msg, flags);
1074 }
1075 EXPORT_SYMBOL(kernel_recvmsg);
1076 
1077 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1078 				struct pipe_inode_info *pipe, size_t len,
1079 				unsigned int flags)
1080 {
1081 	struct socket *sock = file->private_data;
1082 	const struct proto_ops *ops;
1083 
1084 	ops = READ_ONCE(sock->ops);
1085 	if (unlikely(!ops->splice_read))
1086 		return copy_splice_read(file, ppos, pipe, len, flags);
1087 
1088 	return ops->splice_read(sock, ppos, pipe, len, flags);
1089 }
1090 
1091 static void sock_splice_eof(struct file *file)
1092 {
1093 	struct socket *sock = file->private_data;
1094 	const struct proto_ops *ops;
1095 
1096 	ops = READ_ONCE(sock->ops);
1097 	if (ops->splice_eof)
1098 		ops->splice_eof(sock);
1099 }
1100 
1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1102 {
1103 	struct file *file = iocb->ki_filp;
1104 	struct socket *sock = file->private_data;
1105 	struct msghdr msg = {.msg_iter = *to,
1106 			     .msg_iocb = iocb};
1107 	ssize_t res;
1108 
1109 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1110 		msg.msg_flags = MSG_DONTWAIT;
1111 
1112 	if (iocb->ki_pos != 0)
1113 		return -ESPIPE;
1114 
1115 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1116 		return 0;
1117 
1118 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1119 	*to = msg.msg_iter;
1120 	return res;
1121 }
1122 
1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1124 {
1125 	struct file *file = iocb->ki_filp;
1126 	struct socket *sock = file->private_data;
1127 	struct msghdr msg = {.msg_iter = *from,
1128 			     .msg_iocb = iocb};
1129 	ssize_t res;
1130 
1131 	if (iocb->ki_pos != 0)
1132 		return -ESPIPE;
1133 
1134 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1135 		msg.msg_flags = MSG_DONTWAIT;
1136 
1137 	if (sock->type == SOCK_SEQPACKET)
1138 		msg.msg_flags |= MSG_EOR;
1139 
1140 	res = sock_sendmsg(sock, &msg);
1141 	*from = msg.msg_iter;
1142 	return res;
1143 }
1144 
1145 /*
1146  * Atomic setting of ioctl hooks to avoid race
1147  * with module unload.
1148  */
1149 
1150 static DEFINE_MUTEX(br_ioctl_mutex);
1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1152 			    unsigned int cmd, struct ifreq *ifr,
1153 			    void __user *uarg);
1154 
1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1156 			     unsigned int cmd, struct ifreq *ifr,
1157 			     void __user *uarg))
1158 {
1159 	mutex_lock(&br_ioctl_mutex);
1160 	br_ioctl_hook = hook;
1161 	mutex_unlock(&br_ioctl_mutex);
1162 }
1163 EXPORT_SYMBOL(brioctl_set);
1164 
1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1166 		  struct ifreq *ifr, void __user *uarg)
1167 {
1168 	int err = -ENOPKG;
1169 
1170 	if (!br_ioctl_hook)
1171 		request_module("bridge");
1172 
1173 	mutex_lock(&br_ioctl_mutex);
1174 	if (br_ioctl_hook)
1175 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1176 	mutex_unlock(&br_ioctl_mutex);
1177 
1178 	return err;
1179 }
1180 
1181 static DEFINE_MUTEX(vlan_ioctl_mutex);
1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1183 
1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1185 {
1186 	mutex_lock(&vlan_ioctl_mutex);
1187 	vlan_ioctl_hook = hook;
1188 	mutex_unlock(&vlan_ioctl_mutex);
1189 }
1190 EXPORT_SYMBOL(vlan_ioctl_set);
1191 
1192 static long sock_do_ioctl(struct net *net, struct socket *sock,
1193 			  unsigned int cmd, unsigned long arg)
1194 {
1195 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1196 	struct ifreq ifr;
1197 	bool need_copyout;
1198 	int err;
1199 	void __user *argp = (void __user *)arg;
1200 	void __user *data;
1201 
1202 	err = ops->ioctl(sock, cmd, arg);
1203 
1204 	/*
1205 	 * If this ioctl is unknown try to hand it down
1206 	 * to the NIC driver.
1207 	 */
1208 	if (err != -ENOIOCTLCMD)
1209 		return err;
1210 
1211 	if (!is_socket_ioctl_cmd(cmd))
1212 		return -ENOTTY;
1213 
1214 	if (get_user_ifreq(&ifr, &data, argp))
1215 		return -EFAULT;
1216 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1217 	if (!err && need_copyout)
1218 		if (put_user_ifreq(&ifr, argp))
1219 			return -EFAULT;
1220 
1221 	return err;
1222 }
1223 
1224 /*
1225  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1226  *	what to do with it - that's up to the protocol still.
1227  */
1228 
1229 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1230 {
1231 	const struct proto_ops  *ops;
1232 	struct socket *sock;
1233 	struct sock *sk;
1234 	void __user *argp = (void __user *)arg;
1235 	int pid, err;
1236 	struct net *net;
1237 
1238 	sock = file->private_data;
1239 	ops = READ_ONCE(sock->ops);
1240 	sk = sock->sk;
1241 	net = sock_net(sk);
1242 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1243 		struct ifreq ifr;
1244 		void __user *data;
1245 		bool need_copyout;
1246 		if (get_user_ifreq(&ifr, &data, argp))
1247 			return -EFAULT;
1248 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1249 		if (!err && need_copyout)
1250 			if (put_user_ifreq(&ifr, argp))
1251 				return -EFAULT;
1252 	} else
1253 #ifdef CONFIG_WEXT_CORE
1254 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1255 		err = wext_handle_ioctl(net, cmd, argp);
1256 	} else
1257 #endif
1258 		switch (cmd) {
1259 		case FIOSETOWN:
1260 		case SIOCSPGRP:
1261 			err = -EFAULT;
1262 			if (get_user(pid, (int __user *)argp))
1263 				break;
1264 			err = f_setown(sock->file, pid, 1);
1265 			break;
1266 		case FIOGETOWN:
1267 		case SIOCGPGRP:
1268 			err = put_user(f_getown(sock->file),
1269 				       (int __user *)argp);
1270 			break;
1271 		case SIOCGIFBR:
1272 		case SIOCSIFBR:
1273 		case SIOCBRADDBR:
1274 		case SIOCBRDELBR:
1275 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1276 			break;
1277 		case SIOCGIFVLAN:
1278 		case SIOCSIFVLAN:
1279 			err = -ENOPKG;
1280 			if (!vlan_ioctl_hook)
1281 				request_module("8021q");
1282 
1283 			mutex_lock(&vlan_ioctl_mutex);
1284 			if (vlan_ioctl_hook)
1285 				err = vlan_ioctl_hook(net, argp);
1286 			mutex_unlock(&vlan_ioctl_mutex);
1287 			break;
1288 		case SIOCGSKNS:
1289 			err = -EPERM;
1290 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1291 				break;
1292 
1293 			err = open_related_ns(&net->ns, get_net_ns);
1294 			break;
1295 		case SIOCGSTAMP_OLD:
1296 		case SIOCGSTAMPNS_OLD:
1297 			if (!ops->gettstamp) {
1298 				err = -ENOIOCTLCMD;
1299 				break;
1300 			}
1301 			err = ops->gettstamp(sock, argp,
1302 					     cmd == SIOCGSTAMP_OLD,
1303 					     !IS_ENABLED(CONFIG_64BIT));
1304 			break;
1305 		case SIOCGSTAMP_NEW:
1306 		case SIOCGSTAMPNS_NEW:
1307 			if (!ops->gettstamp) {
1308 				err = -ENOIOCTLCMD;
1309 				break;
1310 			}
1311 			err = ops->gettstamp(sock, argp,
1312 					     cmd == SIOCGSTAMP_NEW,
1313 					     false);
1314 			break;
1315 
1316 		case SIOCGIFCONF:
1317 			err = dev_ifconf(net, argp);
1318 			break;
1319 
1320 		default:
1321 			err = sock_do_ioctl(net, sock, cmd, arg);
1322 			break;
1323 		}
1324 	return err;
1325 }
1326 
1327 /**
1328  *	sock_create_lite - creates a socket
1329  *	@family: protocol family (AF_INET, ...)
1330  *	@type: communication type (SOCK_STREAM, ...)
1331  *	@protocol: protocol (0, ...)
1332  *	@res: new socket
1333  *
1334  *	Creates a new socket and assigns it to @res, passing through LSM.
1335  *	The new socket initialization is not complete, see kernel_accept().
1336  *	Returns 0 or an error. On failure @res is set to %NULL.
1337  *	This function internally uses GFP_KERNEL.
1338  */
1339 
1340 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1341 {
1342 	int err;
1343 	struct socket *sock = NULL;
1344 
1345 	err = security_socket_create(family, type, protocol, 1);
1346 	if (err)
1347 		goto out;
1348 
1349 	sock = sock_alloc();
1350 	if (!sock) {
1351 		err = -ENOMEM;
1352 		goto out;
1353 	}
1354 
1355 	sock->type = type;
1356 	err = security_socket_post_create(sock, family, type, protocol, 1);
1357 	if (err)
1358 		goto out_release;
1359 
1360 out:
1361 	*res = sock;
1362 	return err;
1363 out_release:
1364 	sock_release(sock);
1365 	sock = NULL;
1366 	goto out;
1367 }
1368 EXPORT_SYMBOL(sock_create_lite);
1369 
1370 /* No kernel lock held - perfect */
1371 static __poll_t sock_poll(struct file *file, poll_table *wait)
1372 {
1373 	struct socket *sock = file->private_data;
1374 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1375 	__poll_t events = poll_requested_events(wait), flag = 0;
1376 
1377 	if (!ops->poll)
1378 		return 0;
1379 
1380 	if (sk_can_busy_loop(sock->sk)) {
1381 		/* poll once if requested by the syscall */
1382 		if (events & POLL_BUSY_LOOP)
1383 			sk_busy_loop(sock->sk, 1);
1384 
1385 		/* if this socket can poll_ll, tell the system call */
1386 		flag = POLL_BUSY_LOOP;
1387 	}
1388 
1389 	return ops->poll(file, sock, wait) | flag;
1390 }
1391 
1392 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1393 {
1394 	struct socket *sock = file->private_data;
1395 
1396 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1397 }
1398 
1399 static int sock_close(struct inode *inode, struct file *filp)
1400 {
1401 	__sock_release(SOCKET_I(inode), inode);
1402 	return 0;
1403 }
1404 
1405 /*
1406  *	Update the socket async list
1407  *
1408  *	Fasync_list locking strategy.
1409  *
1410  *	1. fasync_list is modified only under process context socket lock
1411  *	   i.e. under semaphore.
1412  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1413  *	   or under socket lock
1414  */
1415 
1416 static int sock_fasync(int fd, struct file *filp, int on)
1417 {
1418 	struct socket *sock = filp->private_data;
1419 	struct sock *sk = sock->sk;
1420 	struct socket_wq *wq = &sock->wq;
1421 
1422 	if (sk == NULL)
1423 		return -EINVAL;
1424 
1425 	lock_sock(sk);
1426 	fasync_helper(fd, filp, on, &wq->fasync_list);
1427 
1428 	if (!wq->fasync_list)
1429 		sock_reset_flag(sk, SOCK_FASYNC);
1430 	else
1431 		sock_set_flag(sk, SOCK_FASYNC);
1432 
1433 	release_sock(sk);
1434 	return 0;
1435 }
1436 
1437 /* This function may be called only under rcu_lock */
1438 
1439 int sock_wake_async(struct socket_wq *wq, int how, int band)
1440 {
1441 	if (!wq || !wq->fasync_list)
1442 		return -1;
1443 
1444 	switch (how) {
1445 	case SOCK_WAKE_WAITD:
1446 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1447 			break;
1448 		goto call_kill;
1449 	case SOCK_WAKE_SPACE:
1450 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1451 			break;
1452 		fallthrough;
1453 	case SOCK_WAKE_IO:
1454 call_kill:
1455 		kill_fasync(&wq->fasync_list, SIGIO, band);
1456 		break;
1457 	case SOCK_WAKE_URG:
1458 		kill_fasync(&wq->fasync_list, SIGURG, band);
1459 	}
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL(sock_wake_async);
1464 
1465 /**
1466  *	__sock_create - creates a socket
1467  *	@net: net namespace
1468  *	@family: protocol family (AF_INET, ...)
1469  *	@type: communication type (SOCK_STREAM, ...)
1470  *	@protocol: protocol (0, ...)
1471  *	@res: new socket
1472  *	@kern: boolean for kernel space sockets
1473  *
1474  *	Creates a new socket and assigns it to @res, passing through LSM.
1475  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1476  *	be set to true if the socket resides in kernel space.
1477  *	This function internally uses GFP_KERNEL.
1478  */
1479 
1480 int __sock_create(struct net *net, int family, int type, int protocol,
1481 			 struct socket **res, int kern)
1482 {
1483 	int err;
1484 	struct socket *sock;
1485 	const struct net_proto_family *pf;
1486 
1487 	/*
1488 	 *      Check protocol is in range
1489 	 */
1490 	if (family < 0 || family >= NPROTO)
1491 		return -EAFNOSUPPORT;
1492 	if (type < 0 || type >= SOCK_MAX)
1493 		return -EINVAL;
1494 
1495 	/* Compatibility.
1496 
1497 	   This uglymoron is moved from INET layer to here to avoid
1498 	   deadlock in module load.
1499 	 */
1500 	if (family == PF_INET && type == SOCK_PACKET) {
1501 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1502 			     current->comm);
1503 		family = PF_PACKET;
1504 	}
1505 
1506 	err = security_socket_create(family, type, protocol, kern);
1507 	if (err)
1508 		return err;
1509 
1510 	/*
1511 	 *	Allocate the socket and allow the family to set things up. if
1512 	 *	the protocol is 0, the family is instructed to select an appropriate
1513 	 *	default.
1514 	 */
1515 	sock = sock_alloc();
1516 	if (!sock) {
1517 		net_warn_ratelimited("socket: no more sockets\n");
1518 		return -ENFILE;	/* Not exactly a match, but its the
1519 				   closest posix thing */
1520 	}
1521 
1522 	sock->type = type;
1523 
1524 #ifdef CONFIG_MODULES
1525 	/* Attempt to load a protocol module if the find failed.
1526 	 *
1527 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1528 	 * requested real, full-featured networking support upon configuration.
1529 	 * Otherwise module support will break!
1530 	 */
1531 	if (rcu_access_pointer(net_families[family]) == NULL)
1532 		request_module("net-pf-%d", family);
1533 #endif
1534 
1535 	rcu_read_lock();
1536 	pf = rcu_dereference(net_families[family]);
1537 	err = -EAFNOSUPPORT;
1538 	if (!pf)
1539 		goto out_release;
1540 
1541 	/*
1542 	 * We will call the ->create function, that possibly is in a loadable
1543 	 * module, so we have to bump that loadable module refcnt first.
1544 	 */
1545 	if (!try_module_get(pf->owner))
1546 		goto out_release;
1547 
1548 	/* Now protected by module ref count */
1549 	rcu_read_unlock();
1550 
1551 	err = pf->create(net, sock, protocol, kern);
1552 	if (err < 0)
1553 		goto out_module_put;
1554 
1555 	/*
1556 	 * Now to bump the refcnt of the [loadable] module that owns this
1557 	 * socket at sock_release time we decrement its refcnt.
1558 	 */
1559 	if (!try_module_get(sock->ops->owner))
1560 		goto out_module_busy;
1561 
1562 	/*
1563 	 * Now that we're done with the ->create function, the [loadable]
1564 	 * module can have its refcnt decremented
1565 	 */
1566 	module_put(pf->owner);
1567 	err = security_socket_post_create(sock, family, type, protocol, kern);
1568 	if (err)
1569 		goto out_sock_release;
1570 	*res = sock;
1571 
1572 	return 0;
1573 
1574 out_module_busy:
1575 	err = -EAFNOSUPPORT;
1576 out_module_put:
1577 	sock->ops = NULL;
1578 	module_put(pf->owner);
1579 out_sock_release:
1580 	sock_release(sock);
1581 	return err;
1582 
1583 out_release:
1584 	rcu_read_unlock();
1585 	goto out_sock_release;
1586 }
1587 EXPORT_SYMBOL(__sock_create);
1588 
1589 /**
1590  *	sock_create - creates a socket
1591  *	@family: protocol family (AF_INET, ...)
1592  *	@type: communication type (SOCK_STREAM, ...)
1593  *	@protocol: protocol (0, ...)
1594  *	@res: new socket
1595  *
1596  *	A wrapper around __sock_create().
1597  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1598  */
1599 
1600 int sock_create(int family, int type, int protocol, struct socket **res)
1601 {
1602 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1603 }
1604 EXPORT_SYMBOL(sock_create);
1605 
1606 /**
1607  *	sock_create_kern - creates a socket (kernel space)
1608  *	@net: net namespace
1609  *	@family: protocol family (AF_INET, ...)
1610  *	@type: communication type (SOCK_STREAM, ...)
1611  *	@protocol: protocol (0, ...)
1612  *	@res: new socket
1613  *
1614  *	A wrapper around __sock_create().
1615  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1616  */
1617 
1618 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1619 {
1620 	return __sock_create(net, family, type, protocol, res, 1);
1621 }
1622 EXPORT_SYMBOL(sock_create_kern);
1623 
1624 static struct socket *__sys_socket_create(int family, int type, int protocol)
1625 {
1626 	struct socket *sock;
1627 	int retval;
1628 
1629 	/* Check the SOCK_* constants for consistency.  */
1630 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1631 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1632 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1633 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1634 
1635 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1636 		return ERR_PTR(-EINVAL);
1637 	type &= SOCK_TYPE_MASK;
1638 
1639 	retval = sock_create(family, type, protocol, &sock);
1640 	if (retval < 0)
1641 		return ERR_PTR(retval);
1642 
1643 	return sock;
1644 }
1645 
1646 struct file *__sys_socket_file(int family, int type, int protocol)
1647 {
1648 	struct socket *sock;
1649 	int flags;
1650 
1651 	sock = __sys_socket_create(family, type, protocol);
1652 	if (IS_ERR(sock))
1653 		return ERR_CAST(sock);
1654 
1655 	flags = type & ~SOCK_TYPE_MASK;
1656 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1657 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1658 
1659 	return sock_alloc_file(sock, flags, NULL);
1660 }
1661 
1662 /*	A hook for bpf progs to attach to and update socket protocol.
1663  *
1664  *	A static noinline declaration here could cause the compiler to
1665  *	optimize away the function. A global noinline declaration will
1666  *	keep the definition, but may optimize away the callsite.
1667  *	Therefore, __weak is needed to ensure that the call is still
1668  *	emitted, by telling the compiler that we don't know what the
1669  *	function might eventually be.
1670  *
1671  *	__diag_* below are needed to dismiss the missing prototype warning.
1672  */
1673 
1674 __diag_push();
1675 __diag_ignore_all("-Wmissing-prototypes",
1676 		  "A fmod_ret entry point for BPF programs");
1677 
1678 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1679 {
1680 	return protocol;
1681 }
1682 
1683 __diag_pop();
1684 
1685 int __sys_socket(int family, int type, int protocol)
1686 {
1687 	struct socket *sock;
1688 	int flags;
1689 
1690 	sock = __sys_socket_create(family, type,
1691 				   update_socket_protocol(family, type, protocol));
1692 	if (IS_ERR(sock))
1693 		return PTR_ERR(sock);
1694 
1695 	flags = type & ~SOCK_TYPE_MASK;
1696 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698 
1699 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1700 }
1701 
1702 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1703 {
1704 	return __sys_socket(family, type, protocol);
1705 }
1706 
1707 /*
1708  *	Create a pair of connected sockets.
1709  */
1710 
1711 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1712 {
1713 	struct socket *sock1, *sock2;
1714 	int fd1, fd2, err;
1715 	struct file *newfile1, *newfile2;
1716 	int flags;
1717 
1718 	flags = type & ~SOCK_TYPE_MASK;
1719 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1720 		return -EINVAL;
1721 	type &= SOCK_TYPE_MASK;
1722 
1723 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1724 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1725 
1726 	/*
1727 	 * reserve descriptors and make sure we won't fail
1728 	 * to return them to userland.
1729 	 */
1730 	fd1 = get_unused_fd_flags(flags);
1731 	if (unlikely(fd1 < 0))
1732 		return fd1;
1733 
1734 	fd2 = get_unused_fd_flags(flags);
1735 	if (unlikely(fd2 < 0)) {
1736 		put_unused_fd(fd1);
1737 		return fd2;
1738 	}
1739 
1740 	err = put_user(fd1, &usockvec[0]);
1741 	if (err)
1742 		goto out;
1743 
1744 	err = put_user(fd2, &usockvec[1]);
1745 	if (err)
1746 		goto out;
1747 
1748 	/*
1749 	 * Obtain the first socket and check if the underlying protocol
1750 	 * supports the socketpair call.
1751 	 */
1752 
1753 	err = sock_create(family, type, protocol, &sock1);
1754 	if (unlikely(err < 0))
1755 		goto out;
1756 
1757 	err = sock_create(family, type, protocol, &sock2);
1758 	if (unlikely(err < 0)) {
1759 		sock_release(sock1);
1760 		goto out;
1761 	}
1762 
1763 	err = security_socket_socketpair(sock1, sock2);
1764 	if (unlikely(err)) {
1765 		sock_release(sock2);
1766 		sock_release(sock1);
1767 		goto out;
1768 	}
1769 
1770 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1771 	if (unlikely(err < 0)) {
1772 		sock_release(sock2);
1773 		sock_release(sock1);
1774 		goto out;
1775 	}
1776 
1777 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1778 	if (IS_ERR(newfile1)) {
1779 		err = PTR_ERR(newfile1);
1780 		sock_release(sock2);
1781 		goto out;
1782 	}
1783 
1784 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1785 	if (IS_ERR(newfile2)) {
1786 		err = PTR_ERR(newfile2);
1787 		fput(newfile1);
1788 		goto out;
1789 	}
1790 
1791 	audit_fd_pair(fd1, fd2);
1792 
1793 	fd_install(fd1, newfile1);
1794 	fd_install(fd2, newfile2);
1795 	return 0;
1796 
1797 out:
1798 	put_unused_fd(fd2);
1799 	put_unused_fd(fd1);
1800 	return err;
1801 }
1802 
1803 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1804 		int __user *, usockvec)
1805 {
1806 	return __sys_socketpair(family, type, protocol, usockvec);
1807 }
1808 
1809 /*
1810  *	Bind a name to a socket. Nothing much to do here since it's
1811  *	the protocol's responsibility to handle the local address.
1812  *
1813  *	We move the socket address to kernel space before we call
1814  *	the protocol layer (having also checked the address is ok).
1815  */
1816 
1817 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1818 {
1819 	struct socket *sock;
1820 	struct sockaddr_storage address;
1821 	int err, fput_needed;
1822 
1823 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1824 	if (sock) {
1825 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1826 		if (!err) {
1827 			err = security_socket_bind(sock,
1828 						   (struct sockaddr *)&address,
1829 						   addrlen);
1830 			if (!err)
1831 				err = READ_ONCE(sock->ops)->bind(sock,
1832 						      (struct sockaddr *)
1833 						      &address, addrlen);
1834 		}
1835 		fput_light(sock->file, fput_needed);
1836 	}
1837 	return err;
1838 }
1839 
1840 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1841 {
1842 	return __sys_bind(fd, umyaddr, addrlen);
1843 }
1844 
1845 /*
1846  *	Perform a listen. Basically, we allow the protocol to do anything
1847  *	necessary for a listen, and if that works, we mark the socket as
1848  *	ready for listening.
1849  */
1850 
1851 int __sys_listen(int fd, int backlog)
1852 {
1853 	struct socket *sock;
1854 	int err, fput_needed;
1855 	int somaxconn;
1856 
1857 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 	if (sock) {
1859 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1860 		if ((unsigned int)backlog > somaxconn)
1861 			backlog = somaxconn;
1862 
1863 		err = security_socket_listen(sock, backlog);
1864 		if (!err)
1865 			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1866 
1867 		fput_light(sock->file, fput_needed);
1868 	}
1869 	return err;
1870 }
1871 
1872 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1873 {
1874 	return __sys_listen(fd, backlog);
1875 }
1876 
1877 struct file *do_accept(struct file *file, unsigned file_flags,
1878 		       struct sockaddr __user *upeer_sockaddr,
1879 		       int __user *upeer_addrlen, int flags)
1880 {
1881 	struct socket *sock, *newsock;
1882 	struct file *newfile;
1883 	int err, len;
1884 	struct sockaddr_storage address;
1885 	const struct proto_ops *ops;
1886 
1887 	sock = sock_from_file(file);
1888 	if (!sock)
1889 		return ERR_PTR(-ENOTSOCK);
1890 
1891 	newsock = sock_alloc();
1892 	if (!newsock)
1893 		return ERR_PTR(-ENFILE);
1894 	ops = READ_ONCE(sock->ops);
1895 
1896 	newsock->type = sock->type;
1897 	newsock->ops = ops;
1898 
1899 	/*
1900 	 * We don't need try_module_get here, as the listening socket (sock)
1901 	 * has the protocol module (sock->ops->owner) held.
1902 	 */
1903 	__module_get(ops->owner);
1904 
1905 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1906 	if (IS_ERR(newfile))
1907 		return newfile;
1908 
1909 	err = security_socket_accept(sock, newsock);
1910 	if (err)
1911 		goto out_fd;
1912 
1913 	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1914 					false);
1915 	if (err < 0)
1916 		goto out_fd;
1917 
1918 	if (upeer_sockaddr) {
1919 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1920 		if (len < 0) {
1921 			err = -ECONNABORTED;
1922 			goto out_fd;
1923 		}
1924 		err = move_addr_to_user(&address,
1925 					len, upeer_sockaddr, upeer_addrlen);
1926 		if (err < 0)
1927 			goto out_fd;
1928 	}
1929 
1930 	/* File flags are not inherited via accept() unlike another OSes. */
1931 	return newfile;
1932 out_fd:
1933 	fput(newfile);
1934 	return ERR_PTR(err);
1935 }
1936 
1937 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1938 			      int __user *upeer_addrlen, int flags)
1939 {
1940 	struct file *newfile;
1941 	int newfd;
1942 
1943 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1944 		return -EINVAL;
1945 
1946 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1947 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1948 
1949 	newfd = get_unused_fd_flags(flags);
1950 	if (unlikely(newfd < 0))
1951 		return newfd;
1952 
1953 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1954 			    flags);
1955 	if (IS_ERR(newfile)) {
1956 		put_unused_fd(newfd);
1957 		return PTR_ERR(newfile);
1958 	}
1959 	fd_install(newfd, newfile);
1960 	return newfd;
1961 }
1962 
1963 /*
1964  *	For accept, we attempt to create a new socket, set up the link
1965  *	with the client, wake up the client, then return the new
1966  *	connected fd. We collect the address of the connector in kernel
1967  *	space and move it to user at the very end. This is unclean because
1968  *	we open the socket then return an error.
1969  *
1970  *	1003.1g adds the ability to recvmsg() to query connection pending
1971  *	status to recvmsg. We need to add that support in a way thats
1972  *	clean when we restructure accept also.
1973  */
1974 
1975 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1976 		  int __user *upeer_addrlen, int flags)
1977 {
1978 	int ret = -EBADF;
1979 	struct fd f;
1980 
1981 	f = fdget(fd);
1982 	if (f.file) {
1983 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1984 					 upeer_addrlen, flags);
1985 		fdput(f);
1986 	}
1987 
1988 	return ret;
1989 }
1990 
1991 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1992 		int __user *, upeer_addrlen, int, flags)
1993 {
1994 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1995 }
1996 
1997 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1998 		int __user *, upeer_addrlen)
1999 {
2000 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2001 }
2002 
2003 /*
2004  *	Attempt to connect to a socket with the server address.  The address
2005  *	is in user space so we verify it is OK and move it to kernel space.
2006  *
2007  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2008  *	break bindings
2009  *
2010  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2011  *	other SEQPACKET protocols that take time to connect() as it doesn't
2012  *	include the -EINPROGRESS status for such sockets.
2013  */
2014 
2015 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2016 		       int addrlen, int file_flags)
2017 {
2018 	struct socket *sock;
2019 	int err;
2020 
2021 	sock = sock_from_file(file);
2022 	if (!sock) {
2023 		err = -ENOTSOCK;
2024 		goto out;
2025 	}
2026 
2027 	err =
2028 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2029 	if (err)
2030 		goto out;
2031 
2032 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2033 				addrlen, sock->file->f_flags | file_flags);
2034 out:
2035 	return err;
2036 }
2037 
2038 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2039 {
2040 	int ret = -EBADF;
2041 	struct fd f;
2042 
2043 	f = fdget(fd);
2044 	if (f.file) {
2045 		struct sockaddr_storage address;
2046 
2047 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2048 		if (!ret)
2049 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2050 		fdput(f);
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2057 		int, addrlen)
2058 {
2059 	return __sys_connect(fd, uservaddr, addrlen);
2060 }
2061 
2062 /*
2063  *	Get the local address ('name') of a socket object. Move the obtained
2064  *	name to user space.
2065  */
2066 
2067 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2068 		      int __user *usockaddr_len)
2069 {
2070 	struct socket *sock;
2071 	struct sockaddr_storage address;
2072 	int err, fput_needed;
2073 
2074 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2075 	if (!sock)
2076 		goto out;
2077 
2078 	err = security_socket_getsockname(sock);
2079 	if (err)
2080 		goto out_put;
2081 
2082 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2083 	if (err < 0)
2084 		goto out_put;
2085 	/* "err" is actually length in this case */
2086 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2087 
2088 out_put:
2089 	fput_light(sock->file, fput_needed);
2090 out:
2091 	return err;
2092 }
2093 
2094 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2095 		int __user *, usockaddr_len)
2096 {
2097 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2098 }
2099 
2100 /*
2101  *	Get the remote address ('name') of a socket object. Move the obtained
2102  *	name to user space.
2103  */
2104 
2105 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2106 		      int __user *usockaddr_len)
2107 {
2108 	struct socket *sock;
2109 	struct sockaddr_storage address;
2110 	int err, fput_needed;
2111 
2112 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2113 	if (sock != NULL) {
2114 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2115 
2116 		err = security_socket_getpeername(sock);
2117 		if (err) {
2118 			fput_light(sock->file, fput_needed);
2119 			return err;
2120 		}
2121 
2122 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2123 		if (err >= 0)
2124 			/* "err" is actually length in this case */
2125 			err = move_addr_to_user(&address, err, usockaddr,
2126 						usockaddr_len);
2127 		fput_light(sock->file, fput_needed);
2128 	}
2129 	return err;
2130 }
2131 
2132 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2133 		int __user *, usockaddr_len)
2134 {
2135 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2136 }
2137 
2138 /*
2139  *	Send a datagram to a given address. We move the address into kernel
2140  *	space and check the user space data area is readable before invoking
2141  *	the protocol.
2142  */
2143 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2144 		 struct sockaddr __user *addr,  int addr_len)
2145 {
2146 	struct socket *sock;
2147 	struct sockaddr_storage address;
2148 	int err;
2149 	struct msghdr msg;
2150 	struct iovec iov;
2151 	int fput_needed;
2152 
2153 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2154 	if (unlikely(err))
2155 		return err;
2156 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157 	if (!sock)
2158 		goto out;
2159 
2160 	msg.msg_name = NULL;
2161 	msg.msg_control = NULL;
2162 	msg.msg_controllen = 0;
2163 	msg.msg_namelen = 0;
2164 	msg.msg_ubuf = NULL;
2165 	if (addr) {
2166 		err = move_addr_to_kernel(addr, addr_len, &address);
2167 		if (err < 0)
2168 			goto out_put;
2169 		msg.msg_name = (struct sockaddr *)&address;
2170 		msg.msg_namelen = addr_len;
2171 	}
2172 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2173 	if (sock->file->f_flags & O_NONBLOCK)
2174 		flags |= MSG_DONTWAIT;
2175 	msg.msg_flags = flags;
2176 	err = sock_sendmsg(sock, &msg);
2177 
2178 out_put:
2179 	fput_light(sock->file, fput_needed);
2180 out:
2181 	return err;
2182 }
2183 
2184 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2185 		unsigned int, flags, struct sockaddr __user *, addr,
2186 		int, addr_len)
2187 {
2188 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2189 }
2190 
2191 /*
2192  *	Send a datagram down a socket.
2193  */
2194 
2195 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2196 		unsigned int, flags)
2197 {
2198 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2199 }
2200 
2201 /*
2202  *	Receive a frame from the socket and optionally record the address of the
2203  *	sender. We verify the buffers are writable and if needed move the
2204  *	sender address from kernel to user space.
2205  */
2206 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2207 		   struct sockaddr __user *addr, int __user *addr_len)
2208 {
2209 	struct sockaddr_storage address;
2210 	struct msghdr msg = {
2211 		/* Save some cycles and don't copy the address if not needed */
2212 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2213 	};
2214 	struct socket *sock;
2215 	struct iovec iov;
2216 	int err, err2;
2217 	int fput_needed;
2218 
2219 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2220 	if (unlikely(err))
2221 		return err;
2222 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2223 	if (!sock)
2224 		goto out;
2225 
2226 	if (sock->file->f_flags & O_NONBLOCK)
2227 		flags |= MSG_DONTWAIT;
2228 	err = sock_recvmsg(sock, &msg, flags);
2229 
2230 	if (err >= 0 && addr != NULL) {
2231 		err2 = move_addr_to_user(&address,
2232 					 msg.msg_namelen, addr, addr_len);
2233 		if (err2 < 0)
2234 			err = err2;
2235 	}
2236 
2237 	fput_light(sock->file, fput_needed);
2238 out:
2239 	return err;
2240 }
2241 
2242 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2243 		unsigned int, flags, struct sockaddr __user *, addr,
2244 		int __user *, addr_len)
2245 {
2246 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2247 }
2248 
2249 /*
2250  *	Receive a datagram from a socket.
2251  */
2252 
2253 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2254 		unsigned int, flags)
2255 {
2256 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2257 }
2258 
2259 static bool sock_use_custom_sol_socket(const struct socket *sock)
2260 {
2261 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2262 }
2263 
2264 /*
2265  *	Set a socket option. Because we don't know the option lengths we have
2266  *	to pass the user mode parameter for the protocols to sort out.
2267  */
2268 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2269 		int optlen)
2270 {
2271 	sockptr_t optval = USER_SOCKPTR(user_optval);
2272 	const struct proto_ops *ops;
2273 	char *kernel_optval = NULL;
2274 	int err, fput_needed;
2275 	struct socket *sock;
2276 
2277 	if (optlen < 0)
2278 		return -EINVAL;
2279 
2280 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281 	if (!sock)
2282 		return err;
2283 
2284 	err = security_socket_setsockopt(sock, level, optname);
2285 	if (err)
2286 		goto out_put;
2287 
2288 	if (!in_compat_syscall())
2289 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2290 						     user_optval, &optlen,
2291 						     &kernel_optval);
2292 	if (err < 0)
2293 		goto out_put;
2294 	if (err > 0) {
2295 		err = 0;
2296 		goto out_put;
2297 	}
2298 
2299 	if (kernel_optval)
2300 		optval = KERNEL_SOCKPTR(kernel_optval);
2301 	ops = READ_ONCE(sock->ops);
2302 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2303 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2304 	else if (unlikely(!ops->setsockopt))
2305 		err = -EOPNOTSUPP;
2306 	else
2307 		err = ops->setsockopt(sock, level, optname, optval,
2308 					    optlen);
2309 	kfree(kernel_optval);
2310 out_put:
2311 	fput_light(sock->file, fput_needed);
2312 	return err;
2313 }
2314 
2315 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2316 		char __user *, optval, int, optlen)
2317 {
2318 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2319 }
2320 
2321 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2322 							 int optname));
2323 
2324 /*
2325  *	Get a socket option. Because we don't know the option lengths we have
2326  *	to pass a user mode parameter for the protocols to sort out.
2327  */
2328 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2329 		int __user *optlen)
2330 {
2331 	int max_optlen __maybe_unused;
2332 	const struct proto_ops *ops;
2333 	int err, fput_needed;
2334 	struct socket *sock;
2335 
2336 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2337 	if (!sock)
2338 		return err;
2339 
2340 	err = security_socket_getsockopt(sock, level, optname);
2341 	if (err)
2342 		goto out_put;
2343 
2344 	if (!in_compat_syscall())
2345 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2346 
2347 	ops = READ_ONCE(sock->ops);
2348 	if (level == SOL_SOCKET)
2349 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2350 	else if (unlikely(!ops->getsockopt))
2351 		err = -EOPNOTSUPP;
2352 	else
2353 		err = ops->getsockopt(sock, level, optname, optval,
2354 					    optlen);
2355 
2356 	if (!in_compat_syscall())
2357 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2358 						     optval, optlen, max_optlen,
2359 						     err);
2360 out_put:
2361 	fput_light(sock->file, fput_needed);
2362 	return err;
2363 }
2364 
2365 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2366 		char __user *, optval, int __user *, optlen)
2367 {
2368 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2369 }
2370 
2371 /*
2372  *	Shutdown a socket.
2373  */
2374 
2375 int __sys_shutdown_sock(struct socket *sock, int how)
2376 {
2377 	int err;
2378 
2379 	err = security_socket_shutdown(sock, how);
2380 	if (!err)
2381 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2382 
2383 	return err;
2384 }
2385 
2386 int __sys_shutdown(int fd, int how)
2387 {
2388 	int err, fput_needed;
2389 	struct socket *sock;
2390 
2391 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392 	if (sock != NULL) {
2393 		err = __sys_shutdown_sock(sock, how);
2394 		fput_light(sock->file, fput_needed);
2395 	}
2396 	return err;
2397 }
2398 
2399 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2400 {
2401 	return __sys_shutdown(fd, how);
2402 }
2403 
2404 /* A couple of helpful macros for getting the address of the 32/64 bit
2405  * fields which are the same type (int / unsigned) on our platforms.
2406  */
2407 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2408 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2409 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2410 
2411 struct used_address {
2412 	struct sockaddr_storage name;
2413 	unsigned int name_len;
2414 };
2415 
2416 int __copy_msghdr(struct msghdr *kmsg,
2417 		  struct user_msghdr *msg,
2418 		  struct sockaddr __user **save_addr)
2419 {
2420 	ssize_t err;
2421 
2422 	kmsg->msg_control_is_user = true;
2423 	kmsg->msg_get_inq = 0;
2424 	kmsg->msg_control_user = msg->msg_control;
2425 	kmsg->msg_controllen = msg->msg_controllen;
2426 	kmsg->msg_flags = msg->msg_flags;
2427 
2428 	kmsg->msg_namelen = msg->msg_namelen;
2429 	if (!msg->msg_name)
2430 		kmsg->msg_namelen = 0;
2431 
2432 	if (kmsg->msg_namelen < 0)
2433 		return -EINVAL;
2434 
2435 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2436 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2437 
2438 	if (save_addr)
2439 		*save_addr = msg->msg_name;
2440 
2441 	if (msg->msg_name && kmsg->msg_namelen) {
2442 		if (!save_addr) {
2443 			err = move_addr_to_kernel(msg->msg_name,
2444 						  kmsg->msg_namelen,
2445 						  kmsg->msg_name);
2446 			if (err < 0)
2447 				return err;
2448 		}
2449 	} else {
2450 		kmsg->msg_name = NULL;
2451 		kmsg->msg_namelen = 0;
2452 	}
2453 
2454 	if (msg->msg_iovlen > UIO_MAXIOV)
2455 		return -EMSGSIZE;
2456 
2457 	kmsg->msg_iocb = NULL;
2458 	kmsg->msg_ubuf = NULL;
2459 	return 0;
2460 }
2461 
2462 static int copy_msghdr_from_user(struct msghdr *kmsg,
2463 				 struct user_msghdr __user *umsg,
2464 				 struct sockaddr __user **save_addr,
2465 				 struct iovec **iov)
2466 {
2467 	struct user_msghdr msg;
2468 	ssize_t err;
2469 
2470 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2471 		return -EFAULT;
2472 
2473 	err = __copy_msghdr(kmsg, &msg, save_addr);
2474 	if (err)
2475 		return err;
2476 
2477 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2478 			    msg.msg_iov, msg.msg_iovlen,
2479 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2480 	return err < 0 ? err : 0;
2481 }
2482 
2483 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2484 			   unsigned int flags, struct used_address *used_address,
2485 			   unsigned int allowed_msghdr_flags)
2486 {
2487 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2488 				__aligned(sizeof(__kernel_size_t));
2489 	/* 20 is size of ipv6_pktinfo */
2490 	unsigned char *ctl_buf = ctl;
2491 	int ctl_len;
2492 	ssize_t err;
2493 
2494 	err = -ENOBUFS;
2495 
2496 	if (msg_sys->msg_controllen > INT_MAX)
2497 		goto out;
2498 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2499 	ctl_len = msg_sys->msg_controllen;
2500 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2501 		err =
2502 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2503 						     sizeof(ctl));
2504 		if (err)
2505 			goto out;
2506 		ctl_buf = msg_sys->msg_control;
2507 		ctl_len = msg_sys->msg_controllen;
2508 	} else if (ctl_len) {
2509 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2510 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2511 		if (ctl_len > sizeof(ctl)) {
2512 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2513 			if (ctl_buf == NULL)
2514 				goto out;
2515 		}
2516 		err = -EFAULT;
2517 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2518 			goto out_freectl;
2519 		msg_sys->msg_control = ctl_buf;
2520 		msg_sys->msg_control_is_user = false;
2521 	}
2522 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2523 	msg_sys->msg_flags = flags;
2524 
2525 	if (sock->file->f_flags & O_NONBLOCK)
2526 		msg_sys->msg_flags |= MSG_DONTWAIT;
2527 	/*
2528 	 * If this is sendmmsg() and current destination address is same as
2529 	 * previously succeeded address, omit asking LSM's decision.
2530 	 * used_address->name_len is initialized to UINT_MAX so that the first
2531 	 * destination address never matches.
2532 	 */
2533 	if (used_address && msg_sys->msg_name &&
2534 	    used_address->name_len == msg_sys->msg_namelen &&
2535 	    !memcmp(&used_address->name, msg_sys->msg_name,
2536 		    used_address->name_len)) {
2537 		err = sock_sendmsg_nosec(sock, msg_sys);
2538 		goto out_freectl;
2539 	}
2540 	err = sock_sendmsg(sock, msg_sys);
2541 	/*
2542 	 * If this is sendmmsg() and sending to current destination address was
2543 	 * successful, remember it.
2544 	 */
2545 	if (used_address && err >= 0) {
2546 		used_address->name_len = msg_sys->msg_namelen;
2547 		if (msg_sys->msg_name)
2548 			memcpy(&used_address->name, msg_sys->msg_name,
2549 			       used_address->name_len);
2550 	}
2551 
2552 out_freectl:
2553 	if (ctl_buf != ctl)
2554 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2555 out:
2556 	return err;
2557 }
2558 
2559 int sendmsg_copy_msghdr(struct msghdr *msg,
2560 			struct user_msghdr __user *umsg, unsigned flags,
2561 			struct iovec **iov)
2562 {
2563 	int err;
2564 
2565 	if (flags & MSG_CMSG_COMPAT) {
2566 		struct compat_msghdr __user *msg_compat;
2567 
2568 		msg_compat = (struct compat_msghdr __user *) umsg;
2569 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2570 	} else {
2571 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2572 	}
2573 	if (err < 0)
2574 		return err;
2575 
2576 	return 0;
2577 }
2578 
2579 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2580 			 struct msghdr *msg_sys, unsigned int flags,
2581 			 struct used_address *used_address,
2582 			 unsigned int allowed_msghdr_flags)
2583 {
2584 	struct sockaddr_storage address;
2585 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2586 	ssize_t err;
2587 
2588 	msg_sys->msg_name = &address;
2589 
2590 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2591 	if (err < 0)
2592 		return err;
2593 
2594 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2595 				allowed_msghdr_flags);
2596 	kfree(iov);
2597 	return err;
2598 }
2599 
2600 /*
2601  *	BSD sendmsg interface
2602  */
2603 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2604 			unsigned int flags)
2605 {
2606 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2607 }
2608 
2609 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2610 		   bool forbid_cmsg_compat)
2611 {
2612 	int fput_needed, err;
2613 	struct msghdr msg_sys;
2614 	struct socket *sock;
2615 
2616 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2617 		return -EINVAL;
2618 
2619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2620 	if (!sock)
2621 		goto out;
2622 
2623 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2624 
2625 	fput_light(sock->file, fput_needed);
2626 out:
2627 	return err;
2628 }
2629 
2630 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2631 {
2632 	return __sys_sendmsg(fd, msg, flags, true);
2633 }
2634 
2635 /*
2636  *	Linux sendmmsg interface
2637  */
2638 
2639 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2640 		   unsigned int flags, bool forbid_cmsg_compat)
2641 {
2642 	int fput_needed, err, datagrams;
2643 	struct socket *sock;
2644 	struct mmsghdr __user *entry;
2645 	struct compat_mmsghdr __user *compat_entry;
2646 	struct msghdr msg_sys;
2647 	struct used_address used_address;
2648 	unsigned int oflags = flags;
2649 
2650 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2651 		return -EINVAL;
2652 
2653 	if (vlen > UIO_MAXIOV)
2654 		vlen = UIO_MAXIOV;
2655 
2656 	datagrams = 0;
2657 
2658 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2659 	if (!sock)
2660 		return err;
2661 
2662 	used_address.name_len = UINT_MAX;
2663 	entry = mmsg;
2664 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2665 	err = 0;
2666 	flags |= MSG_BATCH;
2667 
2668 	while (datagrams < vlen) {
2669 		if (datagrams == vlen - 1)
2670 			flags = oflags;
2671 
2672 		if (MSG_CMSG_COMPAT & flags) {
2673 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2674 					     &msg_sys, flags, &used_address, MSG_EOR);
2675 			if (err < 0)
2676 				break;
2677 			err = __put_user(err, &compat_entry->msg_len);
2678 			++compat_entry;
2679 		} else {
2680 			err = ___sys_sendmsg(sock,
2681 					     (struct user_msghdr __user *)entry,
2682 					     &msg_sys, flags, &used_address, MSG_EOR);
2683 			if (err < 0)
2684 				break;
2685 			err = put_user(err, &entry->msg_len);
2686 			++entry;
2687 		}
2688 
2689 		if (err)
2690 			break;
2691 		++datagrams;
2692 		if (msg_data_left(&msg_sys))
2693 			break;
2694 		cond_resched();
2695 	}
2696 
2697 	fput_light(sock->file, fput_needed);
2698 
2699 	/* We only return an error if no datagrams were able to be sent */
2700 	if (datagrams != 0)
2701 		return datagrams;
2702 
2703 	return err;
2704 }
2705 
2706 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2707 		unsigned int, vlen, unsigned int, flags)
2708 {
2709 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2710 }
2711 
2712 int recvmsg_copy_msghdr(struct msghdr *msg,
2713 			struct user_msghdr __user *umsg, unsigned flags,
2714 			struct sockaddr __user **uaddr,
2715 			struct iovec **iov)
2716 {
2717 	ssize_t err;
2718 
2719 	if (MSG_CMSG_COMPAT & flags) {
2720 		struct compat_msghdr __user *msg_compat;
2721 
2722 		msg_compat = (struct compat_msghdr __user *) umsg;
2723 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2724 	} else {
2725 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2726 	}
2727 	if (err < 0)
2728 		return err;
2729 
2730 	return 0;
2731 }
2732 
2733 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2734 			   struct user_msghdr __user *msg,
2735 			   struct sockaddr __user *uaddr,
2736 			   unsigned int flags, int nosec)
2737 {
2738 	struct compat_msghdr __user *msg_compat =
2739 					(struct compat_msghdr __user *) msg;
2740 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2741 	struct sockaddr_storage addr;
2742 	unsigned long cmsg_ptr;
2743 	int len;
2744 	ssize_t err;
2745 
2746 	msg_sys->msg_name = &addr;
2747 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2748 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2749 
2750 	/* We assume all kernel code knows the size of sockaddr_storage */
2751 	msg_sys->msg_namelen = 0;
2752 
2753 	if (sock->file->f_flags & O_NONBLOCK)
2754 		flags |= MSG_DONTWAIT;
2755 
2756 	if (unlikely(nosec))
2757 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2758 	else
2759 		err = sock_recvmsg(sock, msg_sys, flags);
2760 
2761 	if (err < 0)
2762 		goto out;
2763 	len = err;
2764 
2765 	if (uaddr != NULL) {
2766 		err = move_addr_to_user(&addr,
2767 					msg_sys->msg_namelen, uaddr,
2768 					uaddr_len);
2769 		if (err < 0)
2770 			goto out;
2771 	}
2772 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2773 			 COMPAT_FLAGS(msg));
2774 	if (err)
2775 		goto out;
2776 	if (MSG_CMSG_COMPAT & flags)
2777 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2778 				 &msg_compat->msg_controllen);
2779 	else
2780 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2781 				 &msg->msg_controllen);
2782 	if (err)
2783 		goto out;
2784 	err = len;
2785 out:
2786 	return err;
2787 }
2788 
2789 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2790 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2791 {
2792 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2793 	/* user mode address pointers */
2794 	struct sockaddr __user *uaddr;
2795 	ssize_t err;
2796 
2797 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2798 	if (err < 0)
2799 		return err;
2800 
2801 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2802 	kfree(iov);
2803 	return err;
2804 }
2805 
2806 /*
2807  *	BSD recvmsg interface
2808  */
2809 
2810 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2811 			struct user_msghdr __user *umsg,
2812 			struct sockaddr __user *uaddr, unsigned int flags)
2813 {
2814 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2815 }
2816 
2817 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2818 		   bool forbid_cmsg_compat)
2819 {
2820 	int fput_needed, err;
2821 	struct msghdr msg_sys;
2822 	struct socket *sock;
2823 
2824 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2825 		return -EINVAL;
2826 
2827 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2828 	if (!sock)
2829 		goto out;
2830 
2831 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2832 
2833 	fput_light(sock->file, fput_needed);
2834 out:
2835 	return err;
2836 }
2837 
2838 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2839 		unsigned int, flags)
2840 {
2841 	return __sys_recvmsg(fd, msg, flags, true);
2842 }
2843 
2844 /*
2845  *     Linux recvmmsg interface
2846  */
2847 
2848 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2849 			  unsigned int vlen, unsigned int flags,
2850 			  struct timespec64 *timeout)
2851 {
2852 	int fput_needed, err, datagrams;
2853 	struct socket *sock;
2854 	struct mmsghdr __user *entry;
2855 	struct compat_mmsghdr __user *compat_entry;
2856 	struct msghdr msg_sys;
2857 	struct timespec64 end_time;
2858 	struct timespec64 timeout64;
2859 
2860 	if (timeout &&
2861 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2862 				    timeout->tv_nsec))
2863 		return -EINVAL;
2864 
2865 	datagrams = 0;
2866 
2867 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2868 	if (!sock)
2869 		return err;
2870 
2871 	if (likely(!(flags & MSG_ERRQUEUE))) {
2872 		err = sock_error(sock->sk);
2873 		if (err) {
2874 			datagrams = err;
2875 			goto out_put;
2876 		}
2877 	}
2878 
2879 	entry = mmsg;
2880 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2881 
2882 	while (datagrams < vlen) {
2883 		/*
2884 		 * No need to ask LSM for more than the first datagram.
2885 		 */
2886 		if (MSG_CMSG_COMPAT & flags) {
2887 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2888 					     &msg_sys, flags & ~MSG_WAITFORONE,
2889 					     datagrams);
2890 			if (err < 0)
2891 				break;
2892 			err = __put_user(err, &compat_entry->msg_len);
2893 			++compat_entry;
2894 		} else {
2895 			err = ___sys_recvmsg(sock,
2896 					     (struct user_msghdr __user *)entry,
2897 					     &msg_sys, flags & ~MSG_WAITFORONE,
2898 					     datagrams);
2899 			if (err < 0)
2900 				break;
2901 			err = put_user(err, &entry->msg_len);
2902 			++entry;
2903 		}
2904 
2905 		if (err)
2906 			break;
2907 		++datagrams;
2908 
2909 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2910 		if (flags & MSG_WAITFORONE)
2911 			flags |= MSG_DONTWAIT;
2912 
2913 		if (timeout) {
2914 			ktime_get_ts64(&timeout64);
2915 			*timeout = timespec64_sub(end_time, timeout64);
2916 			if (timeout->tv_sec < 0) {
2917 				timeout->tv_sec = timeout->tv_nsec = 0;
2918 				break;
2919 			}
2920 
2921 			/* Timeout, return less than vlen datagrams */
2922 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2923 				break;
2924 		}
2925 
2926 		/* Out of band data, return right away */
2927 		if (msg_sys.msg_flags & MSG_OOB)
2928 			break;
2929 		cond_resched();
2930 	}
2931 
2932 	if (err == 0)
2933 		goto out_put;
2934 
2935 	if (datagrams == 0) {
2936 		datagrams = err;
2937 		goto out_put;
2938 	}
2939 
2940 	/*
2941 	 * We may return less entries than requested (vlen) if the
2942 	 * sock is non block and there aren't enough datagrams...
2943 	 */
2944 	if (err != -EAGAIN) {
2945 		/*
2946 		 * ... or  if recvmsg returns an error after we
2947 		 * received some datagrams, where we record the
2948 		 * error to return on the next call or if the
2949 		 * app asks about it using getsockopt(SO_ERROR).
2950 		 */
2951 		WRITE_ONCE(sock->sk->sk_err, -err);
2952 	}
2953 out_put:
2954 	fput_light(sock->file, fput_needed);
2955 
2956 	return datagrams;
2957 }
2958 
2959 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2960 		   unsigned int vlen, unsigned int flags,
2961 		   struct __kernel_timespec __user *timeout,
2962 		   struct old_timespec32 __user *timeout32)
2963 {
2964 	int datagrams;
2965 	struct timespec64 timeout_sys;
2966 
2967 	if (timeout && get_timespec64(&timeout_sys, timeout))
2968 		return -EFAULT;
2969 
2970 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2971 		return -EFAULT;
2972 
2973 	if (!timeout && !timeout32)
2974 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2975 
2976 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2977 
2978 	if (datagrams <= 0)
2979 		return datagrams;
2980 
2981 	if (timeout && put_timespec64(&timeout_sys, timeout))
2982 		datagrams = -EFAULT;
2983 
2984 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2985 		datagrams = -EFAULT;
2986 
2987 	return datagrams;
2988 }
2989 
2990 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2991 		unsigned int, vlen, unsigned int, flags,
2992 		struct __kernel_timespec __user *, timeout)
2993 {
2994 	if (flags & MSG_CMSG_COMPAT)
2995 		return -EINVAL;
2996 
2997 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2998 }
2999 
3000 #ifdef CONFIG_COMPAT_32BIT_TIME
3001 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3002 		unsigned int, vlen, unsigned int, flags,
3003 		struct old_timespec32 __user *, timeout)
3004 {
3005 	if (flags & MSG_CMSG_COMPAT)
3006 		return -EINVAL;
3007 
3008 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3009 }
3010 #endif
3011 
3012 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3013 /* Argument list sizes for sys_socketcall */
3014 #define AL(x) ((x) * sizeof(unsigned long))
3015 static const unsigned char nargs[21] = {
3016 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3017 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3018 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3019 	AL(4), AL(5), AL(4)
3020 };
3021 
3022 #undef AL
3023 
3024 /*
3025  *	System call vectors.
3026  *
3027  *	Argument checking cleaned up. Saved 20% in size.
3028  *  This function doesn't need to set the kernel lock because
3029  *  it is set by the callees.
3030  */
3031 
3032 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3033 {
3034 	unsigned long a[AUDITSC_ARGS];
3035 	unsigned long a0, a1;
3036 	int err;
3037 	unsigned int len;
3038 
3039 	if (call < 1 || call > SYS_SENDMMSG)
3040 		return -EINVAL;
3041 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3042 
3043 	len = nargs[call];
3044 	if (len > sizeof(a))
3045 		return -EINVAL;
3046 
3047 	/* copy_from_user should be SMP safe. */
3048 	if (copy_from_user(a, args, len))
3049 		return -EFAULT;
3050 
3051 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3052 	if (err)
3053 		return err;
3054 
3055 	a0 = a[0];
3056 	a1 = a[1];
3057 
3058 	switch (call) {
3059 	case SYS_SOCKET:
3060 		err = __sys_socket(a0, a1, a[2]);
3061 		break;
3062 	case SYS_BIND:
3063 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3064 		break;
3065 	case SYS_CONNECT:
3066 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3067 		break;
3068 	case SYS_LISTEN:
3069 		err = __sys_listen(a0, a1);
3070 		break;
3071 	case SYS_ACCEPT:
3072 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3073 				    (int __user *)a[2], 0);
3074 		break;
3075 	case SYS_GETSOCKNAME:
3076 		err =
3077 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3078 				      (int __user *)a[2]);
3079 		break;
3080 	case SYS_GETPEERNAME:
3081 		err =
3082 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3083 				      (int __user *)a[2]);
3084 		break;
3085 	case SYS_SOCKETPAIR:
3086 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3087 		break;
3088 	case SYS_SEND:
3089 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3090 				   NULL, 0);
3091 		break;
3092 	case SYS_SENDTO:
3093 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3094 				   (struct sockaddr __user *)a[4], a[5]);
3095 		break;
3096 	case SYS_RECV:
3097 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3098 				     NULL, NULL);
3099 		break;
3100 	case SYS_RECVFROM:
3101 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3102 				     (struct sockaddr __user *)a[4],
3103 				     (int __user *)a[5]);
3104 		break;
3105 	case SYS_SHUTDOWN:
3106 		err = __sys_shutdown(a0, a1);
3107 		break;
3108 	case SYS_SETSOCKOPT:
3109 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3110 				       a[4]);
3111 		break;
3112 	case SYS_GETSOCKOPT:
3113 		err =
3114 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3115 				     (int __user *)a[4]);
3116 		break;
3117 	case SYS_SENDMSG:
3118 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3119 				    a[2], true);
3120 		break;
3121 	case SYS_SENDMMSG:
3122 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3123 				     a[3], true);
3124 		break;
3125 	case SYS_RECVMSG:
3126 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3127 				    a[2], true);
3128 		break;
3129 	case SYS_RECVMMSG:
3130 		if (IS_ENABLED(CONFIG_64BIT))
3131 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3132 					     a[2], a[3],
3133 					     (struct __kernel_timespec __user *)a[4],
3134 					     NULL);
3135 		else
3136 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3137 					     a[2], a[3], NULL,
3138 					     (struct old_timespec32 __user *)a[4]);
3139 		break;
3140 	case SYS_ACCEPT4:
3141 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3142 				    (int __user *)a[2], a[3]);
3143 		break;
3144 	default:
3145 		err = -EINVAL;
3146 		break;
3147 	}
3148 	return err;
3149 }
3150 
3151 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3152 
3153 /**
3154  *	sock_register - add a socket protocol handler
3155  *	@ops: description of protocol
3156  *
3157  *	This function is called by a protocol handler that wants to
3158  *	advertise its address family, and have it linked into the
3159  *	socket interface. The value ops->family corresponds to the
3160  *	socket system call protocol family.
3161  */
3162 int sock_register(const struct net_proto_family *ops)
3163 {
3164 	int err;
3165 
3166 	if (ops->family >= NPROTO) {
3167 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3168 		return -ENOBUFS;
3169 	}
3170 
3171 	spin_lock(&net_family_lock);
3172 	if (rcu_dereference_protected(net_families[ops->family],
3173 				      lockdep_is_held(&net_family_lock)))
3174 		err = -EEXIST;
3175 	else {
3176 		rcu_assign_pointer(net_families[ops->family], ops);
3177 		err = 0;
3178 	}
3179 	spin_unlock(&net_family_lock);
3180 
3181 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3182 	return err;
3183 }
3184 EXPORT_SYMBOL(sock_register);
3185 
3186 /**
3187  *	sock_unregister - remove a protocol handler
3188  *	@family: protocol family to remove
3189  *
3190  *	This function is called by a protocol handler that wants to
3191  *	remove its address family, and have it unlinked from the
3192  *	new socket creation.
3193  *
3194  *	If protocol handler is a module, then it can use module reference
3195  *	counts to protect against new references. If protocol handler is not
3196  *	a module then it needs to provide its own protection in
3197  *	the ops->create routine.
3198  */
3199 void sock_unregister(int family)
3200 {
3201 	BUG_ON(family < 0 || family >= NPROTO);
3202 
3203 	spin_lock(&net_family_lock);
3204 	RCU_INIT_POINTER(net_families[family], NULL);
3205 	spin_unlock(&net_family_lock);
3206 
3207 	synchronize_rcu();
3208 
3209 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3210 }
3211 EXPORT_SYMBOL(sock_unregister);
3212 
3213 bool sock_is_registered(int family)
3214 {
3215 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3216 }
3217 
3218 static int __init sock_init(void)
3219 {
3220 	int err;
3221 	/*
3222 	 *      Initialize the network sysctl infrastructure.
3223 	 */
3224 	err = net_sysctl_init();
3225 	if (err)
3226 		goto out;
3227 
3228 	/*
3229 	 *      Initialize skbuff SLAB cache
3230 	 */
3231 	skb_init();
3232 
3233 	/*
3234 	 *      Initialize the protocols module.
3235 	 */
3236 
3237 	init_inodecache();
3238 
3239 	err = register_filesystem(&sock_fs_type);
3240 	if (err)
3241 		goto out;
3242 	sock_mnt = kern_mount(&sock_fs_type);
3243 	if (IS_ERR(sock_mnt)) {
3244 		err = PTR_ERR(sock_mnt);
3245 		goto out_mount;
3246 	}
3247 
3248 	/* The real protocol initialization is performed in later initcalls.
3249 	 */
3250 
3251 #ifdef CONFIG_NETFILTER
3252 	err = netfilter_init();
3253 	if (err)
3254 		goto out;
3255 #endif
3256 
3257 	ptp_classifier_init();
3258 
3259 out:
3260 	return err;
3261 
3262 out_mount:
3263 	unregister_filesystem(&sock_fs_type);
3264 	goto out;
3265 }
3266 
3267 core_initcall(sock_init);	/* early initcall */
3268 
3269 #ifdef CONFIG_PROC_FS
3270 void socket_seq_show(struct seq_file *seq)
3271 {
3272 	seq_printf(seq, "sockets: used %d\n",
3273 		   sock_inuse_get(seq->private));
3274 }
3275 #endif				/* CONFIG_PROC_FS */
3276 
3277 /* Handle the fact that while struct ifreq has the same *layout* on
3278  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3279  * which are handled elsewhere, it still has different *size* due to
3280  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3281  * resulting in struct ifreq being 32 and 40 bytes respectively).
3282  * As a result, if the struct happens to be at the end of a page and
3283  * the next page isn't readable/writable, we get a fault. To prevent
3284  * that, copy back and forth to the full size.
3285  */
3286 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3287 {
3288 	if (in_compat_syscall()) {
3289 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3290 
3291 		memset(ifr, 0, sizeof(*ifr));
3292 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3293 			return -EFAULT;
3294 
3295 		if (ifrdata)
3296 			*ifrdata = compat_ptr(ifr32->ifr_data);
3297 
3298 		return 0;
3299 	}
3300 
3301 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3302 		return -EFAULT;
3303 
3304 	if (ifrdata)
3305 		*ifrdata = ifr->ifr_data;
3306 
3307 	return 0;
3308 }
3309 EXPORT_SYMBOL(get_user_ifreq);
3310 
3311 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3312 {
3313 	size_t size = sizeof(*ifr);
3314 
3315 	if (in_compat_syscall())
3316 		size = sizeof(struct compat_ifreq);
3317 
3318 	if (copy_to_user(arg, ifr, size))
3319 		return -EFAULT;
3320 
3321 	return 0;
3322 }
3323 EXPORT_SYMBOL(put_user_ifreq);
3324 
3325 #ifdef CONFIG_COMPAT
3326 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3327 {
3328 	compat_uptr_t uptr32;
3329 	struct ifreq ifr;
3330 	void __user *saved;
3331 	int err;
3332 
3333 	if (get_user_ifreq(&ifr, NULL, uifr32))
3334 		return -EFAULT;
3335 
3336 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3337 		return -EFAULT;
3338 
3339 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3340 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3341 
3342 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3343 	if (!err) {
3344 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3345 		if (put_user_ifreq(&ifr, uifr32))
3346 			err = -EFAULT;
3347 	}
3348 	return err;
3349 }
3350 
3351 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3352 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3353 				 struct compat_ifreq __user *u_ifreq32)
3354 {
3355 	struct ifreq ifreq;
3356 	void __user *data;
3357 
3358 	if (!is_socket_ioctl_cmd(cmd))
3359 		return -ENOTTY;
3360 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3361 		return -EFAULT;
3362 	ifreq.ifr_data = data;
3363 
3364 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3365 }
3366 
3367 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3368 			 unsigned int cmd, unsigned long arg)
3369 {
3370 	void __user *argp = compat_ptr(arg);
3371 	struct sock *sk = sock->sk;
3372 	struct net *net = sock_net(sk);
3373 	const struct proto_ops *ops;
3374 
3375 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3376 		return sock_ioctl(file, cmd, (unsigned long)argp);
3377 
3378 	switch (cmd) {
3379 	case SIOCWANDEV:
3380 		return compat_siocwandev(net, argp);
3381 	case SIOCGSTAMP_OLD:
3382 	case SIOCGSTAMPNS_OLD:
3383 		ops = READ_ONCE(sock->ops);
3384 		if (!ops->gettstamp)
3385 			return -ENOIOCTLCMD;
3386 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3387 				      !COMPAT_USE_64BIT_TIME);
3388 
3389 	case SIOCETHTOOL:
3390 	case SIOCBONDSLAVEINFOQUERY:
3391 	case SIOCBONDINFOQUERY:
3392 	case SIOCSHWTSTAMP:
3393 	case SIOCGHWTSTAMP:
3394 		return compat_ifr_data_ioctl(net, cmd, argp);
3395 
3396 	case FIOSETOWN:
3397 	case SIOCSPGRP:
3398 	case FIOGETOWN:
3399 	case SIOCGPGRP:
3400 	case SIOCBRADDBR:
3401 	case SIOCBRDELBR:
3402 	case SIOCGIFVLAN:
3403 	case SIOCSIFVLAN:
3404 	case SIOCGSKNS:
3405 	case SIOCGSTAMP_NEW:
3406 	case SIOCGSTAMPNS_NEW:
3407 	case SIOCGIFCONF:
3408 	case SIOCSIFBR:
3409 	case SIOCGIFBR:
3410 		return sock_ioctl(file, cmd, arg);
3411 
3412 	case SIOCGIFFLAGS:
3413 	case SIOCSIFFLAGS:
3414 	case SIOCGIFMAP:
3415 	case SIOCSIFMAP:
3416 	case SIOCGIFMETRIC:
3417 	case SIOCSIFMETRIC:
3418 	case SIOCGIFMTU:
3419 	case SIOCSIFMTU:
3420 	case SIOCGIFMEM:
3421 	case SIOCSIFMEM:
3422 	case SIOCGIFHWADDR:
3423 	case SIOCSIFHWADDR:
3424 	case SIOCADDMULTI:
3425 	case SIOCDELMULTI:
3426 	case SIOCGIFINDEX:
3427 	case SIOCGIFADDR:
3428 	case SIOCSIFADDR:
3429 	case SIOCSIFHWBROADCAST:
3430 	case SIOCDIFADDR:
3431 	case SIOCGIFBRDADDR:
3432 	case SIOCSIFBRDADDR:
3433 	case SIOCGIFDSTADDR:
3434 	case SIOCSIFDSTADDR:
3435 	case SIOCGIFNETMASK:
3436 	case SIOCSIFNETMASK:
3437 	case SIOCSIFPFLAGS:
3438 	case SIOCGIFPFLAGS:
3439 	case SIOCGIFTXQLEN:
3440 	case SIOCSIFTXQLEN:
3441 	case SIOCBRADDIF:
3442 	case SIOCBRDELIF:
3443 	case SIOCGIFNAME:
3444 	case SIOCSIFNAME:
3445 	case SIOCGMIIPHY:
3446 	case SIOCGMIIREG:
3447 	case SIOCSMIIREG:
3448 	case SIOCBONDENSLAVE:
3449 	case SIOCBONDRELEASE:
3450 	case SIOCBONDSETHWADDR:
3451 	case SIOCBONDCHANGEACTIVE:
3452 	case SIOCSARP:
3453 	case SIOCGARP:
3454 	case SIOCDARP:
3455 	case SIOCOUTQ:
3456 	case SIOCOUTQNSD:
3457 	case SIOCATMARK:
3458 		return sock_do_ioctl(net, sock, cmd, arg);
3459 	}
3460 
3461 	return -ENOIOCTLCMD;
3462 }
3463 
3464 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3465 			      unsigned long arg)
3466 {
3467 	struct socket *sock = file->private_data;
3468 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3469 	int ret = -ENOIOCTLCMD;
3470 	struct sock *sk;
3471 	struct net *net;
3472 
3473 	sk = sock->sk;
3474 	net = sock_net(sk);
3475 
3476 	if (ops->compat_ioctl)
3477 		ret = ops->compat_ioctl(sock, cmd, arg);
3478 
3479 	if (ret == -ENOIOCTLCMD &&
3480 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3481 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3482 
3483 	if (ret == -ENOIOCTLCMD)
3484 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3485 
3486 	return ret;
3487 }
3488 #endif
3489 
3490 /**
3491  *	kernel_bind - bind an address to a socket (kernel space)
3492  *	@sock: socket
3493  *	@addr: address
3494  *	@addrlen: length of address
3495  *
3496  *	Returns 0 or an error.
3497  */
3498 
3499 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3500 {
3501 	return READ_ONCE(sock->ops)->bind(sock, addr, addrlen);
3502 }
3503 EXPORT_SYMBOL(kernel_bind);
3504 
3505 /**
3506  *	kernel_listen - move socket to listening state (kernel space)
3507  *	@sock: socket
3508  *	@backlog: pending connections queue size
3509  *
3510  *	Returns 0 or an error.
3511  */
3512 
3513 int kernel_listen(struct socket *sock, int backlog)
3514 {
3515 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3516 }
3517 EXPORT_SYMBOL(kernel_listen);
3518 
3519 /**
3520  *	kernel_accept - accept a connection (kernel space)
3521  *	@sock: listening socket
3522  *	@newsock: new connected socket
3523  *	@flags: flags
3524  *
3525  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3526  *	If it fails, @newsock is guaranteed to be %NULL.
3527  *	Returns 0 or an error.
3528  */
3529 
3530 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3531 {
3532 	struct sock *sk = sock->sk;
3533 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3534 	int err;
3535 
3536 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3537 			       newsock);
3538 	if (err < 0)
3539 		goto done;
3540 
3541 	err = ops->accept(sock, *newsock, flags, true);
3542 	if (err < 0) {
3543 		sock_release(*newsock);
3544 		*newsock = NULL;
3545 		goto done;
3546 	}
3547 
3548 	(*newsock)->ops = ops;
3549 	__module_get(ops->owner);
3550 
3551 done:
3552 	return err;
3553 }
3554 EXPORT_SYMBOL(kernel_accept);
3555 
3556 /**
3557  *	kernel_connect - connect a socket (kernel space)
3558  *	@sock: socket
3559  *	@addr: address
3560  *	@addrlen: address length
3561  *	@flags: flags (O_NONBLOCK, ...)
3562  *
3563  *	For datagram sockets, @addr is the address to which datagrams are sent
3564  *	by default, and the only address from which datagrams are received.
3565  *	For stream sockets, attempts to connect to @addr.
3566  *	Returns 0 or an error code.
3567  */
3568 
3569 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3570 		   int flags)
3571 {
3572 	struct sockaddr_storage address;
3573 
3574 	memcpy(&address, addr, addrlen);
3575 
3576 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3577 					     addrlen, flags);
3578 }
3579 EXPORT_SYMBOL(kernel_connect);
3580 
3581 /**
3582  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3583  *	@sock: socket
3584  *	@addr: address holder
3585  *
3586  * 	Fills the @addr pointer with the address which the socket is bound.
3587  *	Returns the length of the address in bytes or an error code.
3588  */
3589 
3590 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3591 {
3592 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3593 }
3594 EXPORT_SYMBOL(kernel_getsockname);
3595 
3596 /**
3597  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3598  *	@sock: socket
3599  *	@addr: address holder
3600  *
3601  * 	Fills the @addr pointer with the address which the socket is connected.
3602  *	Returns the length of the address in bytes or an error code.
3603  */
3604 
3605 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3606 {
3607 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3608 }
3609 EXPORT_SYMBOL(kernel_getpeername);
3610 
3611 /**
3612  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3613  *	@sock: socket
3614  *	@how: connection part
3615  *
3616  *	Returns 0 or an error.
3617  */
3618 
3619 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3620 {
3621 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3622 }
3623 EXPORT_SYMBOL(kernel_sock_shutdown);
3624 
3625 /**
3626  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3627  *	@sk: socket
3628  *
3629  *	This routine returns the IP overhead imposed by a socket i.e.
3630  *	the length of the underlying IP header, depending on whether
3631  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3632  *	on at the socket. Assumes that the caller has a lock on the socket.
3633  */
3634 
3635 u32 kernel_sock_ip_overhead(struct sock *sk)
3636 {
3637 	struct inet_sock *inet;
3638 	struct ip_options_rcu *opt;
3639 	u32 overhead = 0;
3640 #if IS_ENABLED(CONFIG_IPV6)
3641 	struct ipv6_pinfo *np;
3642 	struct ipv6_txoptions *optv6 = NULL;
3643 #endif /* IS_ENABLED(CONFIG_IPV6) */
3644 
3645 	if (!sk)
3646 		return overhead;
3647 
3648 	switch (sk->sk_family) {
3649 	case AF_INET:
3650 		inet = inet_sk(sk);
3651 		overhead += sizeof(struct iphdr);
3652 		opt = rcu_dereference_protected(inet->inet_opt,
3653 						sock_owned_by_user(sk));
3654 		if (opt)
3655 			overhead += opt->opt.optlen;
3656 		return overhead;
3657 #if IS_ENABLED(CONFIG_IPV6)
3658 	case AF_INET6:
3659 		np = inet6_sk(sk);
3660 		overhead += sizeof(struct ipv6hdr);
3661 		if (np)
3662 			optv6 = rcu_dereference_protected(np->opt,
3663 							  sock_owned_by_user(sk));
3664 		if (optv6)
3665 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3666 		return overhead;
3667 #endif /* IS_ENABLED(CONFIG_IPV6) */
3668 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3669 		return overhead;
3670 	}
3671 }
3672 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3673