xref: /openbmc/linux/net/socket.c (revision cc69837f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags & FDPUT_FPUT;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		if (inode)
595 			inode_lock(inode);
596 		sock->ops->release(sock);
597 		sock->sk = NULL;
598 		if (inode)
599 			inode_unlock(inode);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (sock->wq.fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	if (!sock->file) {
608 		iput(SOCK_INODE(sock));
609 		return;
610 	}
611 	sock->file = NULL;
612 }
613 
614 /**
615  *	sock_release - close a socket
616  *	@sock: socket to close
617  *
618  *	The socket is released from the protocol stack if it has a release
619  *	callback, and the inode is then released if the socket is bound to
620  *	an inode not a file.
621  */
622 void sock_release(struct socket *sock)
623 {
624 	__sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627 
628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 	u8 flags = *tx_flags;
631 
632 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 		flags |= SKBTX_HW_TSTAMP;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 		flags |= SKBTX_SW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 		flags |= SKBTX_SCHED_TSTAMP;
640 
641 	*tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644 
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 					   size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 					    size_t));
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 				     inet_sendmsg, sock, msg,
653 				     msg_data_left(msg));
654 	BUG_ON(ret == -EIOCBQUEUED);
655 	return ret;
656 }
657 
658 /**
659  *	sock_sendmsg - send a message through @sock
660  *	@sock: socket
661  *	@msg: message to send
662  *
663  *	Sends @msg through @sock, passing through LSM.
664  *	Returns the number of bytes sent, or an error code.
665  */
666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 	int err = security_socket_sendmsg(sock, msg,
669 					  msg_data_left(msg));
670 
671 	return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674 
675 /**
676  *	kernel_sendmsg - send a message through @sock (kernel-space)
677  *	@sock: socket
678  *	@msg: message header
679  *	@vec: kernel vec
680  *	@num: vec array length
681  *	@size: total message data size
682  *
683  *	Builds the message data with @vec and sends it through @sock.
684  *	Returns the number of bytes sent, or an error code.
685  */
686 
687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 		   struct kvec *vec, size_t num, size_t size)
689 {
690 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 	return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694 
695 /**
696  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
697  *	@sk: sock
698  *	@msg: message header
699  *	@vec: output s/g array
700  *	@num: output s/g array length
701  *	@size: total message data size
702  *
703  *	Builds the message data with @vec and sends it through @sock.
704  *	Returns the number of bytes sent, or an error code.
705  *	Caller must hold @sk.
706  */
707 
708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 			  struct kvec *vec, size_t num, size_t size)
710 {
711 	struct socket *sock = sk->sk_socket;
712 
713 	if (!sock->ops->sendmsg_locked)
714 		return sock_no_sendmsg_locked(sk, msg, size);
715 
716 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717 
718 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721 
722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 	/* pkt_type of skbs enqueued on the error queue are set to
725 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 	 * in recvmsg, since skbs received on a local socket will never
727 	 * have a pkt_type of PACKET_OUTGOING.
728 	 */
729 	return skb->pkt_type == PACKET_OUTGOING;
730 }
731 
732 /* On transmit, software and hardware timestamps are returned independently.
733  * As the two skb clones share the hardware timestamp, which may be updated
734  * before the software timestamp is received, a hardware TX timestamp may be
735  * returned only if there is no software TX timestamp. Ignore false software
736  * timestamps, which may be made in the __sock_recv_timestamp() call when the
737  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738  * hardware timestamp.
739  */
740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744 
745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 	struct scm_ts_pktinfo ts_pktinfo;
748 	struct net_device *orig_dev;
749 
750 	if (!skb_mac_header_was_set(skb))
751 		return;
752 
753 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754 
755 	rcu_read_lock();
756 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 	if (orig_dev)
758 		ts_pktinfo.if_index = orig_dev->ifindex;
759 	rcu_read_unlock();
760 
761 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 		 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765 
766 /*
767  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768  */
769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 	struct sk_buff *skb)
771 {
772 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 	struct scm_timestamping_internal tss;
775 
776 	int empty = 1, false_tstamp = 0;
777 	struct skb_shared_hwtstamps *shhwtstamps =
778 		skb_hwtstamps(skb);
779 
780 	/* Race occurred between timestamp enabling and packet
781 	   receiving.  Fill in the current time for now. */
782 	if (need_software_tstamp && skb->tstamp == 0) {
783 		__net_timestamp(skb);
784 		false_tstamp = 1;
785 	}
786 
787 	if (need_software_tstamp) {
788 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 			if (new_tstamp) {
790 				struct __kernel_sock_timeval tv;
791 
792 				skb_get_new_timestamp(skb, &tv);
793 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 					 sizeof(tv), &tv);
795 			} else {
796 				struct __kernel_old_timeval tv;
797 
798 				skb_get_timestamp(skb, &tv);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 					 sizeof(tv), &tv);
801 			}
802 		} else {
803 			if (new_tstamp) {
804 				struct __kernel_timespec ts;
805 
806 				skb_get_new_timestampns(skb, &ts);
807 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 					 sizeof(ts), &ts);
809 			} else {
810 				struct __kernel_old_timespec ts;
811 
812 				skb_get_timestampns(skb, &ts);
813 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 					 sizeof(ts), &ts);
815 			}
816 		}
817 	}
818 
819 	memset(&tss, 0, sizeof(tss));
820 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 		empty = 0;
823 	if (shhwtstamps &&
824 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 		empty = 0;
828 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 		    !skb_is_err_queue(skb))
830 			put_ts_pktinfo(msg, skb);
831 	}
832 	if (!empty) {
833 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 			put_cmsg_scm_timestamping64(msg, &tss);
835 		else
836 			put_cmsg_scm_timestamping(msg, &tss);
837 
838 		if (skb_is_err_queue(skb) && skb->len &&
839 		    SKB_EXT_ERR(skb)->opt_stats)
840 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 				 skb->len, skb->data);
842 	}
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845 
846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 	struct sk_buff *skb)
848 {
849 	int ack;
850 
851 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 		return;
853 	if (!skb->wifi_acked_valid)
854 		return;
855 
856 	ack = skb->wifi_acked;
857 
858 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861 
862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 				   struct sk_buff *skb)
864 {
865 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869 
870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 	struct sk_buff *skb)
872 {
873 	sock_recv_timestamp(msg, sk, skb);
874 	sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877 
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 					   size_t, int));
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
881 					    size_t, int));
882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
883 				     int flags)
884 {
885 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
886 				  inet_recvmsg, sock, msg, msg_data_left(msg),
887 				  flags);
888 }
889 
890 /**
891  *	sock_recvmsg - receive a message from @sock
892  *	@sock: socket
893  *	@msg: message to receive
894  *	@flags: message flags
895  *
896  *	Receives @msg from @sock, passing through LSM. Returns the total number
897  *	of bytes received, or an error.
898  */
899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
900 {
901 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
902 
903 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
904 }
905 EXPORT_SYMBOL(sock_recvmsg);
906 
907 /**
908  *	kernel_recvmsg - Receive a message from a socket (kernel space)
909  *	@sock: The socket to receive the message from
910  *	@msg: Received message
911  *	@vec: Input s/g array for message data
912  *	@num: Size of input s/g array
913  *	@size: Number of bytes to read
914  *	@flags: Message flags (MSG_DONTWAIT, etc...)
915  *
916  *	On return the msg structure contains the scatter/gather array passed in the
917  *	vec argument. The array is modified so that it consists of the unfilled
918  *	portion of the original array.
919  *
920  *	The returned value is the total number of bytes received, or an error.
921  */
922 
923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
924 		   struct kvec *vec, size_t num, size_t size, int flags)
925 {
926 	msg->msg_control_is_user = false;
927 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
928 	return sock_recvmsg(sock, msg, flags);
929 }
930 EXPORT_SYMBOL(kernel_recvmsg);
931 
932 static ssize_t sock_sendpage(struct file *file, struct page *page,
933 			     int offset, size_t size, loff_t *ppos, int more)
934 {
935 	struct socket *sock;
936 	int flags;
937 
938 	sock = file->private_data;
939 
940 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
941 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
942 	flags |= more;
943 
944 	return kernel_sendpage(sock, page, offset, size, flags);
945 }
946 
947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
948 				struct pipe_inode_info *pipe, size_t len,
949 				unsigned int flags)
950 {
951 	struct socket *sock = file->private_data;
952 
953 	if (unlikely(!sock->ops->splice_read))
954 		return generic_file_splice_read(file, ppos, pipe, len, flags);
955 
956 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
957 }
958 
959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
960 {
961 	struct file *file = iocb->ki_filp;
962 	struct socket *sock = file->private_data;
963 	struct msghdr msg = {.msg_iter = *to,
964 			     .msg_iocb = iocb};
965 	ssize_t res;
966 
967 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
968 		msg.msg_flags = MSG_DONTWAIT;
969 
970 	if (iocb->ki_pos != 0)
971 		return -ESPIPE;
972 
973 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
974 		return 0;
975 
976 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
977 	*to = msg.msg_iter;
978 	return res;
979 }
980 
981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
982 {
983 	struct file *file = iocb->ki_filp;
984 	struct socket *sock = file->private_data;
985 	struct msghdr msg = {.msg_iter = *from,
986 			     .msg_iocb = iocb};
987 	ssize_t res;
988 
989 	if (iocb->ki_pos != 0)
990 		return -ESPIPE;
991 
992 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
993 		msg.msg_flags = MSG_DONTWAIT;
994 
995 	if (sock->type == SOCK_SEQPACKET)
996 		msg.msg_flags |= MSG_EOR;
997 
998 	res = sock_sendmsg(sock, &msg);
999 	*from = msg.msg_iter;
1000 	return res;
1001 }
1002 
1003 /*
1004  * Atomic setting of ioctl hooks to avoid race
1005  * with module unload.
1006  */
1007 
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010 
1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 	mutex_lock(&br_ioctl_mutex);
1014 	br_ioctl_hook = hook;
1015 	mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018 
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021 
1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 	mutex_lock(&vlan_ioctl_mutex);
1025 	vlan_ioctl_hook = hook;
1026 	mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029 
1030 static long sock_do_ioctl(struct net *net, struct socket *sock,
1031 			  unsigned int cmd, unsigned long arg)
1032 {
1033 	int err;
1034 	void __user *argp = (void __user *)arg;
1035 
1036 	err = sock->ops->ioctl(sock, cmd, arg);
1037 
1038 	/*
1039 	 * If this ioctl is unknown try to hand it down
1040 	 * to the NIC driver.
1041 	 */
1042 	if (err != -ENOIOCTLCMD)
1043 		return err;
1044 
1045 	if (cmd == SIOCGIFCONF) {
1046 		struct ifconf ifc;
1047 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1048 			return -EFAULT;
1049 		rtnl_lock();
1050 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1051 		rtnl_unlock();
1052 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1053 			err = -EFAULT;
1054 	} else {
1055 		struct ifreq ifr;
1056 		bool need_copyout;
1057 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1058 			return -EFAULT;
1059 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1060 		if (!err && need_copyout)
1061 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1062 				return -EFAULT;
1063 	}
1064 	return err;
1065 }
1066 
1067 /*
1068  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1069  *	what to do with it - that's up to the protocol still.
1070  */
1071 
1072 /**
1073  *	get_net_ns - increment the refcount of the network namespace
1074  *	@ns: common namespace (net)
1075  *
1076  *	Returns the net's common namespace.
1077  */
1078 
1079 struct ns_common *get_net_ns(struct ns_common *ns)
1080 {
1081 	return &get_net(container_of(ns, struct net, ns))->ns;
1082 }
1083 EXPORT_SYMBOL_GPL(get_net_ns);
1084 
1085 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1086 {
1087 	struct socket *sock;
1088 	struct sock *sk;
1089 	void __user *argp = (void __user *)arg;
1090 	int pid, err;
1091 	struct net *net;
1092 
1093 	sock = file->private_data;
1094 	sk = sock->sk;
1095 	net = sock_net(sk);
1096 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1097 		struct ifreq ifr;
1098 		bool need_copyout;
1099 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1100 			return -EFAULT;
1101 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1102 		if (!err && need_copyout)
1103 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1104 				return -EFAULT;
1105 	} else
1106 #ifdef CONFIG_WEXT_CORE
1107 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1108 		err = wext_handle_ioctl(net, cmd, argp);
1109 	} else
1110 #endif
1111 		switch (cmd) {
1112 		case FIOSETOWN:
1113 		case SIOCSPGRP:
1114 			err = -EFAULT;
1115 			if (get_user(pid, (int __user *)argp))
1116 				break;
1117 			err = f_setown(sock->file, pid, 1);
1118 			break;
1119 		case FIOGETOWN:
1120 		case SIOCGPGRP:
1121 			err = put_user(f_getown(sock->file),
1122 				       (int __user *)argp);
1123 			break;
1124 		case SIOCGIFBR:
1125 		case SIOCSIFBR:
1126 		case SIOCBRADDBR:
1127 		case SIOCBRDELBR:
1128 			err = -ENOPKG;
1129 			if (!br_ioctl_hook)
1130 				request_module("bridge");
1131 
1132 			mutex_lock(&br_ioctl_mutex);
1133 			if (br_ioctl_hook)
1134 				err = br_ioctl_hook(net, cmd, argp);
1135 			mutex_unlock(&br_ioctl_mutex);
1136 			break;
1137 		case SIOCGIFVLAN:
1138 		case SIOCSIFVLAN:
1139 			err = -ENOPKG;
1140 			if (!vlan_ioctl_hook)
1141 				request_module("8021q");
1142 
1143 			mutex_lock(&vlan_ioctl_mutex);
1144 			if (vlan_ioctl_hook)
1145 				err = vlan_ioctl_hook(net, argp);
1146 			mutex_unlock(&vlan_ioctl_mutex);
1147 			break;
1148 		case SIOCGSKNS:
1149 			err = -EPERM;
1150 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1151 				break;
1152 
1153 			err = open_related_ns(&net->ns, get_net_ns);
1154 			break;
1155 		case SIOCGSTAMP_OLD:
1156 		case SIOCGSTAMPNS_OLD:
1157 			if (!sock->ops->gettstamp) {
1158 				err = -ENOIOCTLCMD;
1159 				break;
1160 			}
1161 			err = sock->ops->gettstamp(sock, argp,
1162 						   cmd == SIOCGSTAMP_OLD,
1163 						   !IS_ENABLED(CONFIG_64BIT));
1164 			break;
1165 		case SIOCGSTAMP_NEW:
1166 		case SIOCGSTAMPNS_NEW:
1167 			if (!sock->ops->gettstamp) {
1168 				err = -ENOIOCTLCMD;
1169 				break;
1170 			}
1171 			err = sock->ops->gettstamp(sock, argp,
1172 						   cmd == SIOCGSTAMP_NEW,
1173 						   false);
1174 			break;
1175 		default:
1176 			err = sock_do_ioctl(net, sock, cmd, arg);
1177 			break;
1178 		}
1179 	return err;
1180 }
1181 
1182 /**
1183  *	sock_create_lite - creates a socket
1184  *	@family: protocol family (AF_INET, ...)
1185  *	@type: communication type (SOCK_STREAM, ...)
1186  *	@protocol: protocol (0, ...)
1187  *	@res: new socket
1188  *
1189  *	Creates a new socket and assigns it to @res, passing through LSM.
1190  *	The new socket initialization is not complete, see kernel_accept().
1191  *	Returns 0 or an error. On failure @res is set to %NULL.
1192  *	This function internally uses GFP_KERNEL.
1193  */
1194 
1195 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1196 {
1197 	int err;
1198 	struct socket *sock = NULL;
1199 
1200 	err = security_socket_create(family, type, protocol, 1);
1201 	if (err)
1202 		goto out;
1203 
1204 	sock = sock_alloc();
1205 	if (!sock) {
1206 		err = -ENOMEM;
1207 		goto out;
1208 	}
1209 
1210 	sock->type = type;
1211 	err = security_socket_post_create(sock, family, type, protocol, 1);
1212 	if (err)
1213 		goto out_release;
1214 
1215 out:
1216 	*res = sock;
1217 	return err;
1218 out_release:
1219 	sock_release(sock);
1220 	sock = NULL;
1221 	goto out;
1222 }
1223 EXPORT_SYMBOL(sock_create_lite);
1224 
1225 /* No kernel lock held - perfect */
1226 static __poll_t sock_poll(struct file *file, poll_table *wait)
1227 {
1228 	struct socket *sock = file->private_data;
1229 	__poll_t events = poll_requested_events(wait), flag = 0;
1230 
1231 	if (!sock->ops->poll)
1232 		return 0;
1233 
1234 	if (sk_can_busy_loop(sock->sk)) {
1235 		/* poll once if requested by the syscall */
1236 		if (events & POLL_BUSY_LOOP)
1237 			sk_busy_loop(sock->sk, 1);
1238 
1239 		/* if this socket can poll_ll, tell the system call */
1240 		flag = POLL_BUSY_LOOP;
1241 	}
1242 
1243 	return sock->ops->poll(file, sock, wait) | flag;
1244 }
1245 
1246 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1247 {
1248 	struct socket *sock = file->private_data;
1249 
1250 	return sock->ops->mmap(file, sock, vma);
1251 }
1252 
1253 static int sock_close(struct inode *inode, struct file *filp)
1254 {
1255 	__sock_release(SOCKET_I(inode), inode);
1256 	return 0;
1257 }
1258 
1259 /*
1260  *	Update the socket async list
1261  *
1262  *	Fasync_list locking strategy.
1263  *
1264  *	1. fasync_list is modified only under process context socket lock
1265  *	   i.e. under semaphore.
1266  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1267  *	   or under socket lock
1268  */
1269 
1270 static int sock_fasync(int fd, struct file *filp, int on)
1271 {
1272 	struct socket *sock = filp->private_data;
1273 	struct sock *sk = sock->sk;
1274 	struct socket_wq *wq = &sock->wq;
1275 
1276 	if (sk == NULL)
1277 		return -EINVAL;
1278 
1279 	lock_sock(sk);
1280 	fasync_helper(fd, filp, on, &wq->fasync_list);
1281 
1282 	if (!wq->fasync_list)
1283 		sock_reset_flag(sk, SOCK_FASYNC);
1284 	else
1285 		sock_set_flag(sk, SOCK_FASYNC);
1286 
1287 	release_sock(sk);
1288 	return 0;
1289 }
1290 
1291 /* This function may be called only under rcu_lock */
1292 
1293 int sock_wake_async(struct socket_wq *wq, int how, int band)
1294 {
1295 	if (!wq || !wq->fasync_list)
1296 		return -1;
1297 
1298 	switch (how) {
1299 	case SOCK_WAKE_WAITD:
1300 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1301 			break;
1302 		goto call_kill;
1303 	case SOCK_WAKE_SPACE:
1304 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1305 			break;
1306 		fallthrough;
1307 	case SOCK_WAKE_IO:
1308 call_kill:
1309 		kill_fasync(&wq->fasync_list, SIGIO, band);
1310 		break;
1311 	case SOCK_WAKE_URG:
1312 		kill_fasync(&wq->fasync_list, SIGURG, band);
1313 	}
1314 
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL(sock_wake_async);
1318 
1319 /**
1320  *	__sock_create - creates a socket
1321  *	@net: net namespace
1322  *	@family: protocol family (AF_INET, ...)
1323  *	@type: communication type (SOCK_STREAM, ...)
1324  *	@protocol: protocol (0, ...)
1325  *	@res: new socket
1326  *	@kern: boolean for kernel space sockets
1327  *
1328  *	Creates a new socket and assigns it to @res, passing through LSM.
1329  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1330  *	be set to true if the socket resides in kernel space.
1331  *	This function internally uses GFP_KERNEL.
1332  */
1333 
1334 int __sock_create(struct net *net, int family, int type, int protocol,
1335 			 struct socket **res, int kern)
1336 {
1337 	int err;
1338 	struct socket *sock;
1339 	const struct net_proto_family *pf;
1340 
1341 	/*
1342 	 *      Check protocol is in range
1343 	 */
1344 	if (family < 0 || family >= NPROTO)
1345 		return -EAFNOSUPPORT;
1346 	if (type < 0 || type >= SOCK_MAX)
1347 		return -EINVAL;
1348 
1349 	/* Compatibility.
1350 
1351 	   This uglymoron is moved from INET layer to here to avoid
1352 	   deadlock in module load.
1353 	 */
1354 	if (family == PF_INET && type == SOCK_PACKET) {
1355 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1356 			     current->comm);
1357 		family = PF_PACKET;
1358 	}
1359 
1360 	err = security_socket_create(family, type, protocol, kern);
1361 	if (err)
1362 		return err;
1363 
1364 	/*
1365 	 *	Allocate the socket and allow the family to set things up. if
1366 	 *	the protocol is 0, the family is instructed to select an appropriate
1367 	 *	default.
1368 	 */
1369 	sock = sock_alloc();
1370 	if (!sock) {
1371 		net_warn_ratelimited("socket: no more sockets\n");
1372 		return -ENFILE;	/* Not exactly a match, but its the
1373 				   closest posix thing */
1374 	}
1375 
1376 	sock->type = type;
1377 
1378 #ifdef CONFIG_MODULES
1379 	/* Attempt to load a protocol module if the find failed.
1380 	 *
1381 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1382 	 * requested real, full-featured networking support upon configuration.
1383 	 * Otherwise module support will break!
1384 	 */
1385 	if (rcu_access_pointer(net_families[family]) == NULL)
1386 		request_module("net-pf-%d", family);
1387 #endif
1388 
1389 	rcu_read_lock();
1390 	pf = rcu_dereference(net_families[family]);
1391 	err = -EAFNOSUPPORT;
1392 	if (!pf)
1393 		goto out_release;
1394 
1395 	/*
1396 	 * We will call the ->create function, that possibly is in a loadable
1397 	 * module, so we have to bump that loadable module refcnt first.
1398 	 */
1399 	if (!try_module_get(pf->owner))
1400 		goto out_release;
1401 
1402 	/* Now protected by module ref count */
1403 	rcu_read_unlock();
1404 
1405 	err = pf->create(net, sock, protocol, kern);
1406 	if (err < 0)
1407 		goto out_module_put;
1408 
1409 	/*
1410 	 * Now to bump the refcnt of the [loadable] module that owns this
1411 	 * socket at sock_release time we decrement its refcnt.
1412 	 */
1413 	if (!try_module_get(sock->ops->owner))
1414 		goto out_module_busy;
1415 
1416 	/*
1417 	 * Now that we're done with the ->create function, the [loadable]
1418 	 * module can have its refcnt decremented
1419 	 */
1420 	module_put(pf->owner);
1421 	err = security_socket_post_create(sock, family, type, protocol, kern);
1422 	if (err)
1423 		goto out_sock_release;
1424 	*res = sock;
1425 
1426 	return 0;
1427 
1428 out_module_busy:
1429 	err = -EAFNOSUPPORT;
1430 out_module_put:
1431 	sock->ops = NULL;
1432 	module_put(pf->owner);
1433 out_sock_release:
1434 	sock_release(sock);
1435 	return err;
1436 
1437 out_release:
1438 	rcu_read_unlock();
1439 	goto out_sock_release;
1440 }
1441 EXPORT_SYMBOL(__sock_create);
1442 
1443 /**
1444  *	sock_create - creates a socket
1445  *	@family: protocol family (AF_INET, ...)
1446  *	@type: communication type (SOCK_STREAM, ...)
1447  *	@protocol: protocol (0, ...)
1448  *	@res: new socket
1449  *
1450  *	A wrapper around __sock_create().
1451  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1452  */
1453 
1454 int sock_create(int family, int type, int protocol, struct socket **res)
1455 {
1456 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1457 }
1458 EXPORT_SYMBOL(sock_create);
1459 
1460 /**
1461  *	sock_create_kern - creates a socket (kernel space)
1462  *	@net: net namespace
1463  *	@family: protocol family (AF_INET, ...)
1464  *	@type: communication type (SOCK_STREAM, ...)
1465  *	@protocol: protocol (0, ...)
1466  *	@res: new socket
1467  *
1468  *	A wrapper around __sock_create().
1469  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1470  */
1471 
1472 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1473 {
1474 	return __sock_create(net, family, type, protocol, res, 1);
1475 }
1476 EXPORT_SYMBOL(sock_create_kern);
1477 
1478 int __sys_socket(int family, int type, int protocol)
1479 {
1480 	int retval;
1481 	struct socket *sock;
1482 	int flags;
1483 
1484 	/* Check the SOCK_* constants for consistency.  */
1485 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1486 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1487 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1488 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1489 
1490 	flags = type & ~SOCK_TYPE_MASK;
1491 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1492 		return -EINVAL;
1493 	type &= SOCK_TYPE_MASK;
1494 
1495 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1496 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1497 
1498 	retval = sock_create(family, type, protocol, &sock);
1499 	if (retval < 0)
1500 		return retval;
1501 
1502 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1503 }
1504 
1505 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1506 {
1507 	return __sys_socket(family, type, protocol);
1508 }
1509 
1510 /*
1511  *	Create a pair of connected sockets.
1512  */
1513 
1514 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1515 {
1516 	struct socket *sock1, *sock2;
1517 	int fd1, fd2, err;
1518 	struct file *newfile1, *newfile2;
1519 	int flags;
1520 
1521 	flags = type & ~SOCK_TYPE_MASK;
1522 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1523 		return -EINVAL;
1524 	type &= SOCK_TYPE_MASK;
1525 
1526 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1527 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1528 
1529 	/*
1530 	 * reserve descriptors and make sure we won't fail
1531 	 * to return them to userland.
1532 	 */
1533 	fd1 = get_unused_fd_flags(flags);
1534 	if (unlikely(fd1 < 0))
1535 		return fd1;
1536 
1537 	fd2 = get_unused_fd_flags(flags);
1538 	if (unlikely(fd2 < 0)) {
1539 		put_unused_fd(fd1);
1540 		return fd2;
1541 	}
1542 
1543 	err = put_user(fd1, &usockvec[0]);
1544 	if (err)
1545 		goto out;
1546 
1547 	err = put_user(fd2, &usockvec[1]);
1548 	if (err)
1549 		goto out;
1550 
1551 	/*
1552 	 * Obtain the first socket and check if the underlying protocol
1553 	 * supports the socketpair call.
1554 	 */
1555 
1556 	err = sock_create(family, type, protocol, &sock1);
1557 	if (unlikely(err < 0))
1558 		goto out;
1559 
1560 	err = sock_create(family, type, protocol, &sock2);
1561 	if (unlikely(err < 0)) {
1562 		sock_release(sock1);
1563 		goto out;
1564 	}
1565 
1566 	err = security_socket_socketpair(sock1, sock2);
1567 	if (unlikely(err)) {
1568 		sock_release(sock2);
1569 		sock_release(sock1);
1570 		goto out;
1571 	}
1572 
1573 	err = sock1->ops->socketpair(sock1, sock2);
1574 	if (unlikely(err < 0)) {
1575 		sock_release(sock2);
1576 		sock_release(sock1);
1577 		goto out;
1578 	}
1579 
1580 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1581 	if (IS_ERR(newfile1)) {
1582 		err = PTR_ERR(newfile1);
1583 		sock_release(sock2);
1584 		goto out;
1585 	}
1586 
1587 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1588 	if (IS_ERR(newfile2)) {
1589 		err = PTR_ERR(newfile2);
1590 		fput(newfile1);
1591 		goto out;
1592 	}
1593 
1594 	audit_fd_pair(fd1, fd2);
1595 
1596 	fd_install(fd1, newfile1);
1597 	fd_install(fd2, newfile2);
1598 	return 0;
1599 
1600 out:
1601 	put_unused_fd(fd2);
1602 	put_unused_fd(fd1);
1603 	return err;
1604 }
1605 
1606 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1607 		int __user *, usockvec)
1608 {
1609 	return __sys_socketpair(family, type, protocol, usockvec);
1610 }
1611 
1612 /*
1613  *	Bind a name to a socket. Nothing much to do here since it's
1614  *	the protocol's responsibility to handle the local address.
1615  *
1616  *	We move the socket address to kernel space before we call
1617  *	the protocol layer (having also checked the address is ok).
1618  */
1619 
1620 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1621 {
1622 	struct socket *sock;
1623 	struct sockaddr_storage address;
1624 	int err, fput_needed;
1625 
1626 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 	if (sock) {
1628 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1629 		if (!err) {
1630 			err = security_socket_bind(sock,
1631 						   (struct sockaddr *)&address,
1632 						   addrlen);
1633 			if (!err)
1634 				err = sock->ops->bind(sock,
1635 						      (struct sockaddr *)
1636 						      &address, addrlen);
1637 		}
1638 		fput_light(sock->file, fput_needed);
1639 	}
1640 	return err;
1641 }
1642 
1643 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1644 {
1645 	return __sys_bind(fd, umyaddr, addrlen);
1646 }
1647 
1648 /*
1649  *	Perform a listen. Basically, we allow the protocol to do anything
1650  *	necessary for a listen, and if that works, we mark the socket as
1651  *	ready for listening.
1652  */
1653 
1654 int __sys_listen(int fd, int backlog)
1655 {
1656 	struct socket *sock;
1657 	int err, fput_needed;
1658 	int somaxconn;
1659 
1660 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1661 	if (sock) {
1662 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1663 		if ((unsigned int)backlog > somaxconn)
1664 			backlog = somaxconn;
1665 
1666 		err = security_socket_listen(sock, backlog);
1667 		if (!err)
1668 			err = sock->ops->listen(sock, backlog);
1669 
1670 		fput_light(sock->file, fput_needed);
1671 	}
1672 	return err;
1673 }
1674 
1675 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1676 {
1677 	return __sys_listen(fd, backlog);
1678 }
1679 
1680 int __sys_accept4_file(struct file *file, unsigned file_flags,
1681 		       struct sockaddr __user *upeer_sockaddr,
1682 		       int __user *upeer_addrlen, int flags,
1683 		       unsigned long nofile)
1684 {
1685 	struct socket *sock, *newsock;
1686 	struct file *newfile;
1687 	int err, len, newfd;
1688 	struct sockaddr_storage address;
1689 
1690 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1691 		return -EINVAL;
1692 
1693 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1694 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1695 
1696 	sock = sock_from_file(file, &err);
1697 	if (!sock)
1698 		goto out;
1699 
1700 	err = -ENFILE;
1701 	newsock = sock_alloc();
1702 	if (!newsock)
1703 		goto out;
1704 
1705 	newsock->type = sock->type;
1706 	newsock->ops = sock->ops;
1707 
1708 	/*
1709 	 * We don't need try_module_get here, as the listening socket (sock)
1710 	 * has the protocol module (sock->ops->owner) held.
1711 	 */
1712 	__module_get(newsock->ops->owner);
1713 
1714 	newfd = __get_unused_fd_flags(flags, nofile);
1715 	if (unlikely(newfd < 0)) {
1716 		err = newfd;
1717 		sock_release(newsock);
1718 		goto out;
1719 	}
1720 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1721 	if (IS_ERR(newfile)) {
1722 		err = PTR_ERR(newfile);
1723 		put_unused_fd(newfd);
1724 		goto out;
1725 	}
1726 
1727 	err = security_socket_accept(sock, newsock);
1728 	if (err)
1729 		goto out_fd;
1730 
1731 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1732 					false);
1733 	if (err < 0)
1734 		goto out_fd;
1735 
1736 	if (upeer_sockaddr) {
1737 		len = newsock->ops->getname(newsock,
1738 					(struct sockaddr *)&address, 2);
1739 		if (len < 0) {
1740 			err = -ECONNABORTED;
1741 			goto out_fd;
1742 		}
1743 		err = move_addr_to_user(&address,
1744 					len, upeer_sockaddr, upeer_addrlen);
1745 		if (err < 0)
1746 			goto out_fd;
1747 	}
1748 
1749 	/* File flags are not inherited via accept() unlike another OSes. */
1750 
1751 	fd_install(newfd, newfile);
1752 	err = newfd;
1753 out:
1754 	return err;
1755 out_fd:
1756 	fput(newfile);
1757 	put_unused_fd(newfd);
1758 	goto out;
1759 
1760 }
1761 
1762 /*
1763  *	For accept, we attempt to create a new socket, set up the link
1764  *	with the client, wake up the client, then return the new
1765  *	connected fd. We collect the address of the connector in kernel
1766  *	space and move it to user at the very end. This is unclean because
1767  *	we open the socket then return an error.
1768  *
1769  *	1003.1g adds the ability to recvmsg() to query connection pending
1770  *	status to recvmsg. We need to add that support in a way thats
1771  *	clean when we restructure accept also.
1772  */
1773 
1774 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1775 		  int __user *upeer_addrlen, int flags)
1776 {
1777 	int ret = -EBADF;
1778 	struct fd f;
1779 
1780 	f = fdget(fd);
1781 	if (f.file) {
1782 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1783 						upeer_addrlen, flags,
1784 						rlimit(RLIMIT_NOFILE));
1785 		fdput(f);
1786 	}
1787 
1788 	return ret;
1789 }
1790 
1791 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1792 		int __user *, upeer_addrlen, int, flags)
1793 {
1794 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1795 }
1796 
1797 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1798 		int __user *, upeer_addrlen)
1799 {
1800 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1801 }
1802 
1803 /*
1804  *	Attempt to connect to a socket with the server address.  The address
1805  *	is in user space so we verify it is OK and move it to kernel space.
1806  *
1807  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1808  *	break bindings
1809  *
1810  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1811  *	other SEQPACKET protocols that take time to connect() as it doesn't
1812  *	include the -EINPROGRESS status for such sockets.
1813  */
1814 
1815 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1816 		       int addrlen, int file_flags)
1817 {
1818 	struct socket *sock;
1819 	int err;
1820 
1821 	sock = sock_from_file(file, &err);
1822 	if (!sock)
1823 		goto out;
1824 
1825 	err =
1826 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1827 	if (err)
1828 		goto out;
1829 
1830 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1831 				 sock->file->f_flags | file_flags);
1832 out:
1833 	return err;
1834 }
1835 
1836 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1837 {
1838 	int ret = -EBADF;
1839 	struct fd f;
1840 
1841 	f = fdget(fd);
1842 	if (f.file) {
1843 		struct sockaddr_storage address;
1844 
1845 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1846 		if (!ret)
1847 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1848 		fdput(f);
1849 	}
1850 
1851 	return ret;
1852 }
1853 
1854 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1855 		int, addrlen)
1856 {
1857 	return __sys_connect(fd, uservaddr, addrlen);
1858 }
1859 
1860 /*
1861  *	Get the local address ('name') of a socket object. Move the obtained
1862  *	name to user space.
1863  */
1864 
1865 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1866 		      int __user *usockaddr_len)
1867 {
1868 	struct socket *sock;
1869 	struct sockaddr_storage address;
1870 	int err, fput_needed;
1871 
1872 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 	if (!sock)
1874 		goto out;
1875 
1876 	err = security_socket_getsockname(sock);
1877 	if (err)
1878 		goto out_put;
1879 
1880 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1881 	if (err < 0)
1882 		goto out_put;
1883         /* "err" is actually length in this case */
1884 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1885 
1886 out_put:
1887 	fput_light(sock->file, fput_needed);
1888 out:
1889 	return err;
1890 }
1891 
1892 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1893 		int __user *, usockaddr_len)
1894 {
1895 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1896 }
1897 
1898 /*
1899  *	Get the remote address ('name') of a socket object. Move the obtained
1900  *	name to user space.
1901  */
1902 
1903 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1904 		      int __user *usockaddr_len)
1905 {
1906 	struct socket *sock;
1907 	struct sockaddr_storage address;
1908 	int err, fput_needed;
1909 
1910 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1911 	if (sock != NULL) {
1912 		err = security_socket_getpeername(sock);
1913 		if (err) {
1914 			fput_light(sock->file, fput_needed);
1915 			return err;
1916 		}
1917 
1918 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1919 		if (err >= 0)
1920 			/* "err" is actually length in this case */
1921 			err = move_addr_to_user(&address, err, usockaddr,
1922 						usockaddr_len);
1923 		fput_light(sock->file, fput_needed);
1924 	}
1925 	return err;
1926 }
1927 
1928 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1929 		int __user *, usockaddr_len)
1930 {
1931 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1932 }
1933 
1934 /*
1935  *	Send a datagram to a given address. We move the address into kernel
1936  *	space and check the user space data area is readable before invoking
1937  *	the protocol.
1938  */
1939 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1940 		 struct sockaddr __user *addr,  int addr_len)
1941 {
1942 	struct socket *sock;
1943 	struct sockaddr_storage address;
1944 	int err;
1945 	struct msghdr msg;
1946 	struct iovec iov;
1947 	int fput_needed;
1948 
1949 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1950 	if (unlikely(err))
1951 		return err;
1952 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 	if (!sock)
1954 		goto out;
1955 
1956 	msg.msg_name = NULL;
1957 	msg.msg_control = NULL;
1958 	msg.msg_controllen = 0;
1959 	msg.msg_namelen = 0;
1960 	if (addr) {
1961 		err = move_addr_to_kernel(addr, addr_len, &address);
1962 		if (err < 0)
1963 			goto out_put;
1964 		msg.msg_name = (struct sockaddr *)&address;
1965 		msg.msg_namelen = addr_len;
1966 	}
1967 	if (sock->file->f_flags & O_NONBLOCK)
1968 		flags |= MSG_DONTWAIT;
1969 	msg.msg_flags = flags;
1970 	err = sock_sendmsg(sock, &msg);
1971 
1972 out_put:
1973 	fput_light(sock->file, fput_needed);
1974 out:
1975 	return err;
1976 }
1977 
1978 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1979 		unsigned int, flags, struct sockaddr __user *, addr,
1980 		int, addr_len)
1981 {
1982 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1983 }
1984 
1985 /*
1986  *	Send a datagram down a socket.
1987  */
1988 
1989 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1990 		unsigned int, flags)
1991 {
1992 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1993 }
1994 
1995 /*
1996  *	Receive a frame from the socket and optionally record the address of the
1997  *	sender. We verify the buffers are writable and if needed move the
1998  *	sender address from kernel to user space.
1999  */
2000 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2001 		   struct sockaddr __user *addr, int __user *addr_len)
2002 {
2003 	struct socket *sock;
2004 	struct iovec iov;
2005 	struct msghdr msg;
2006 	struct sockaddr_storage address;
2007 	int err, err2;
2008 	int fput_needed;
2009 
2010 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2011 	if (unlikely(err))
2012 		return err;
2013 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2014 	if (!sock)
2015 		goto out;
2016 
2017 	msg.msg_control = NULL;
2018 	msg.msg_controllen = 0;
2019 	/* Save some cycles and don't copy the address if not needed */
2020 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2021 	/* We assume all kernel code knows the size of sockaddr_storage */
2022 	msg.msg_namelen = 0;
2023 	msg.msg_iocb = NULL;
2024 	msg.msg_flags = 0;
2025 	if (sock->file->f_flags & O_NONBLOCK)
2026 		flags |= MSG_DONTWAIT;
2027 	err = sock_recvmsg(sock, &msg, flags);
2028 
2029 	if (err >= 0 && addr != NULL) {
2030 		err2 = move_addr_to_user(&address,
2031 					 msg.msg_namelen, addr, addr_len);
2032 		if (err2 < 0)
2033 			err = err2;
2034 	}
2035 
2036 	fput_light(sock->file, fput_needed);
2037 out:
2038 	return err;
2039 }
2040 
2041 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2042 		unsigned int, flags, struct sockaddr __user *, addr,
2043 		int __user *, addr_len)
2044 {
2045 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2046 }
2047 
2048 /*
2049  *	Receive a datagram from a socket.
2050  */
2051 
2052 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2053 		unsigned int, flags)
2054 {
2055 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2056 }
2057 
2058 static bool sock_use_custom_sol_socket(const struct socket *sock)
2059 {
2060 	const struct sock *sk = sock->sk;
2061 
2062 	/* Use sock->ops->setsockopt() for MPTCP */
2063 	return IS_ENABLED(CONFIG_MPTCP) &&
2064 	       sk->sk_protocol == IPPROTO_MPTCP &&
2065 	       sk->sk_type == SOCK_STREAM &&
2066 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2067 }
2068 
2069 /*
2070  *	Set a socket option. Because we don't know the option lengths we have
2071  *	to pass the user mode parameter for the protocols to sort out.
2072  */
2073 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2074 		int optlen)
2075 {
2076 	sockptr_t optval = USER_SOCKPTR(user_optval);
2077 	char *kernel_optval = NULL;
2078 	int err, fput_needed;
2079 	struct socket *sock;
2080 
2081 	if (optlen < 0)
2082 		return -EINVAL;
2083 
2084 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2085 	if (!sock)
2086 		return err;
2087 
2088 	err = security_socket_setsockopt(sock, level, optname);
2089 	if (err)
2090 		goto out_put;
2091 
2092 	if (!in_compat_syscall())
2093 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2094 						     user_optval, &optlen,
2095 						     &kernel_optval);
2096 	if (err < 0)
2097 		goto out_put;
2098 	if (err > 0) {
2099 		err = 0;
2100 		goto out_put;
2101 	}
2102 
2103 	if (kernel_optval)
2104 		optval = KERNEL_SOCKPTR(kernel_optval);
2105 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2106 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2107 	else if (unlikely(!sock->ops->setsockopt))
2108 		err = -EOPNOTSUPP;
2109 	else
2110 		err = sock->ops->setsockopt(sock, level, optname, optval,
2111 					    optlen);
2112 	kfree(kernel_optval);
2113 out_put:
2114 	fput_light(sock->file, fput_needed);
2115 	return err;
2116 }
2117 
2118 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2119 		char __user *, optval, int, optlen)
2120 {
2121 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2122 }
2123 
2124 /*
2125  *	Get a socket option. Because we don't know the option lengths we have
2126  *	to pass a user mode parameter for the protocols to sort out.
2127  */
2128 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2129 		int __user *optlen)
2130 {
2131 	int err, fput_needed;
2132 	struct socket *sock;
2133 	int max_optlen;
2134 
2135 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 	if (!sock)
2137 		return err;
2138 
2139 	err = security_socket_getsockopt(sock, level, optname);
2140 	if (err)
2141 		goto out_put;
2142 
2143 	if (!in_compat_syscall())
2144 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2145 
2146 	if (level == SOL_SOCKET)
2147 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2148 	else if (unlikely(!sock->ops->getsockopt))
2149 		err = -EOPNOTSUPP;
2150 	else
2151 		err = sock->ops->getsockopt(sock, level, optname, optval,
2152 					    optlen);
2153 
2154 	if (!in_compat_syscall())
2155 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2156 						     optval, optlen, max_optlen,
2157 						     err);
2158 out_put:
2159 	fput_light(sock->file, fput_needed);
2160 	return err;
2161 }
2162 
2163 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2164 		char __user *, optval, int __user *, optlen)
2165 {
2166 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2167 }
2168 
2169 /*
2170  *	Shutdown a socket.
2171  */
2172 
2173 int __sys_shutdown(int fd, int how)
2174 {
2175 	int err, fput_needed;
2176 	struct socket *sock;
2177 
2178 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2179 	if (sock != NULL) {
2180 		err = security_socket_shutdown(sock, how);
2181 		if (!err)
2182 			err = sock->ops->shutdown(sock, how);
2183 		fput_light(sock->file, fput_needed);
2184 	}
2185 	return err;
2186 }
2187 
2188 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2189 {
2190 	return __sys_shutdown(fd, how);
2191 }
2192 
2193 /* A couple of helpful macros for getting the address of the 32/64 bit
2194  * fields which are the same type (int / unsigned) on our platforms.
2195  */
2196 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2197 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2198 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2199 
2200 struct used_address {
2201 	struct sockaddr_storage name;
2202 	unsigned int name_len;
2203 };
2204 
2205 int __copy_msghdr_from_user(struct msghdr *kmsg,
2206 			    struct user_msghdr __user *umsg,
2207 			    struct sockaddr __user **save_addr,
2208 			    struct iovec __user **uiov, size_t *nsegs)
2209 {
2210 	struct user_msghdr msg;
2211 	ssize_t err;
2212 
2213 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2214 		return -EFAULT;
2215 
2216 	kmsg->msg_control_is_user = true;
2217 	kmsg->msg_control_user = msg.msg_control;
2218 	kmsg->msg_controllen = msg.msg_controllen;
2219 	kmsg->msg_flags = msg.msg_flags;
2220 
2221 	kmsg->msg_namelen = msg.msg_namelen;
2222 	if (!msg.msg_name)
2223 		kmsg->msg_namelen = 0;
2224 
2225 	if (kmsg->msg_namelen < 0)
2226 		return -EINVAL;
2227 
2228 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2229 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2230 
2231 	if (save_addr)
2232 		*save_addr = msg.msg_name;
2233 
2234 	if (msg.msg_name && kmsg->msg_namelen) {
2235 		if (!save_addr) {
2236 			err = move_addr_to_kernel(msg.msg_name,
2237 						  kmsg->msg_namelen,
2238 						  kmsg->msg_name);
2239 			if (err < 0)
2240 				return err;
2241 		}
2242 	} else {
2243 		kmsg->msg_name = NULL;
2244 		kmsg->msg_namelen = 0;
2245 	}
2246 
2247 	if (msg.msg_iovlen > UIO_MAXIOV)
2248 		return -EMSGSIZE;
2249 
2250 	kmsg->msg_iocb = NULL;
2251 	*uiov = msg.msg_iov;
2252 	*nsegs = msg.msg_iovlen;
2253 	return 0;
2254 }
2255 
2256 static int copy_msghdr_from_user(struct msghdr *kmsg,
2257 				 struct user_msghdr __user *umsg,
2258 				 struct sockaddr __user **save_addr,
2259 				 struct iovec **iov)
2260 {
2261 	struct user_msghdr msg;
2262 	ssize_t err;
2263 
2264 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2265 					&msg.msg_iovlen);
2266 	if (err)
2267 		return err;
2268 
2269 	err = import_iovec(save_addr ? READ : WRITE,
2270 			    msg.msg_iov, msg.msg_iovlen,
2271 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2272 	return err < 0 ? err : 0;
2273 }
2274 
2275 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2276 			   unsigned int flags, struct used_address *used_address,
2277 			   unsigned int allowed_msghdr_flags)
2278 {
2279 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2280 				__aligned(sizeof(__kernel_size_t));
2281 	/* 20 is size of ipv6_pktinfo */
2282 	unsigned char *ctl_buf = ctl;
2283 	int ctl_len;
2284 	ssize_t err;
2285 
2286 	err = -ENOBUFS;
2287 
2288 	if (msg_sys->msg_controllen > INT_MAX)
2289 		goto out;
2290 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2291 	ctl_len = msg_sys->msg_controllen;
2292 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2293 		err =
2294 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2295 						     sizeof(ctl));
2296 		if (err)
2297 			goto out;
2298 		ctl_buf = msg_sys->msg_control;
2299 		ctl_len = msg_sys->msg_controllen;
2300 	} else if (ctl_len) {
2301 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2302 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2303 		if (ctl_len > sizeof(ctl)) {
2304 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2305 			if (ctl_buf == NULL)
2306 				goto out;
2307 		}
2308 		err = -EFAULT;
2309 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2310 			goto out_freectl;
2311 		msg_sys->msg_control = ctl_buf;
2312 		msg_sys->msg_control_is_user = false;
2313 	}
2314 	msg_sys->msg_flags = flags;
2315 
2316 	if (sock->file->f_flags & O_NONBLOCK)
2317 		msg_sys->msg_flags |= MSG_DONTWAIT;
2318 	/*
2319 	 * If this is sendmmsg() and current destination address is same as
2320 	 * previously succeeded address, omit asking LSM's decision.
2321 	 * used_address->name_len is initialized to UINT_MAX so that the first
2322 	 * destination address never matches.
2323 	 */
2324 	if (used_address && msg_sys->msg_name &&
2325 	    used_address->name_len == msg_sys->msg_namelen &&
2326 	    !memcmp(&used_address->name, msg_sys->msg_name,
2327 		    used_address->name_len)) {
2328 		err = sock_sendmsg_nosec(sock, msg_sys);
2329 		goto out_freectl;
2330 	}
2331 	err = sock_sendmsg(sock, msg_sys);
2332 	/*
2333 	 * If this is sendmmsg() and sending to current destination address was
2334 	 * successful, remember it.
2335 	 */
2336 	if (used_address && err >= 0) {
2337 		used_address->name_len = msg_sys->msg_namelen;
2338 		if (msg_sys->msg_name)
2339 			memcpy(&used_address->name, msg_sys->msg_name,
2340 			       used_address->name_len);
2341 	}
2342 
2343 out_freectl:
2344 	if (ctl_buf != ctl)
2345 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2346 out:
2347 	return err;
2348 }
2349 
2350 int sendmsg_copy_msghdr(struct msghdr *msg,
2351 			struct user_msghdr __user *umsg, unsigned flags,
2352 			struct iovec **iov)
2353 {
2354 	int err;
2355 
2356 	if (flags & MSG_CMSG_COMPAT) {
2357 		struct compat_msghdr __user *msg_compat;
2358 
2359 		msg_compat = (struct compat_msghdr __user *) umsg;
2360 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2361 	} else {
2362 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2363 	}
2364 	if (err < 0)
2365 		return err;
2366 
2367 	return 0;
2368 }
2369 
2370 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2371 			 struct msghdr *msg_sys, unsigned int flags,
2372 			 struct used_address *used_address,
2373 			 unsigned int allowed_msghdr_flags)
2374 {
2375 	struct sockaddr_storage address;
2376 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2377 	ssize_t err;
2378 
2379 	msg_sys->msg_name = &address;
2380 
2381 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2382 	if (err < 0)
2383 		return err;
2384 
2385 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2386 				allowed_msghdr_flags);
2387 	kfree(iov);
2388 	return err;
2389 }
2390 
2391 /*
2392  *	BSD sendmsg interface
2393  */
2394 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2395 			unsigned int flags)
2396 {
2397 	/* disallow ancillary data requests from this path */
2398 	if (msg->msg_control || msg->msg_controllen)
2399 		return -EINVAL;
2400 
2401 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2402 }
2403 
2404 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2405 		   bool forbid_cmsg_compat)
2406 {
2407 	int fput_needed, err;
2408 	struct msghdr msg_sys;
2409 	struct socket *sock;
2410 
2411 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2412 		return -EINVAL;
2413 
2414 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2415 	if (!sock)
2416 		goto out;
2417 
2418 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2419 
2420 	fput_light(sock->file, fput_needed);
2421 out:
2422 	return err;
2423 }
2424 
2425 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2426 {
2427 	return __sys_sendmsg(fd, msg, flags, true);
2428 }
2429 
2430 /*
2431  *	Linux sendmmsg interface
2432  */
2433 
2434 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2435 		   unsigned int flags, bool forbid_cmsg_compat)
2436 {
2437 	int fput_needed, err, datagrams;
2438 	struct socket *sock;
2439 	struct mmsghdr __user *entry;
2440 	struct compat_mmsghdr __user *compat_entry;
2441 	struct msghdr msg_sys;
2442 	struct used_address used_address;
2443 	unsigned int oflags = flags;
2444 
2445 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2446 		return -EINVAL;
2447 
2448 	if (vlen > UIO_MAXIOV)
2449 		vlen = UIO_MAXIOV;
2450 
2451 	datagrams = 0;
2452 
2453 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2454 	if (!sock)
2455 		return err;
2456 
2457 	used_address.name_len = UINT_MAX;
2458 	entry = mmsg;
2459 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2460 	err = 0;
2461 	flags |= MSG_BATCH;
2462 
2463 	while (datagrams < vlen) {
2464 		if (datagrams == vlen - 1)
2465 			flags = oflags;
2466 
2467 		if (MSG_CMSG_COMPAT & flags) {
2468 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2469 					     &msg_sys, flags, &used_address, MSG_EOR);
2470 			if (err < 0)
2471 				break;
2472 			err = __put_user(err, &compat_entry->msg_len);
2473 			++compat_entry;
2474 		} else {
2475 			err = ___sys_sendmsg(sock,
2476 					     (struct user_msghdr __user *)entry,
2477 					     &msg_sys, flags, &used_address, MSG_EOR);
2478 			if (err < 0)
2479 				break;
2480 			err = put_user(err, &entry->msg_len);
2481 			++entry;
2482 		}
2483 
2484 		if (err)
2485 			break;
2486 		++datagrams;
2487 		if (msg_data_left(&msg_sys))
2488 			break;
2489 		cond_resched();
2490 	}
2491 
2492 	fput_light(sock->file, fput_needed);
2493 
2494 	/* We only return an error if no datagrams were able to be sent */
2495 	if (datagrams != 0)
2496 		return datagrams;
2497 
2498 	return err;
2499 }
2500 
2501 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2502 		unsigned int, vlen, unsigned int, flags)
2503 {
2504 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2505 }
2506 
2507 int recvmsg_copy_msghdr(struct msghdr *msg,
2508 			struct user_msghdr __user *umsg, unsigned flags,
2509 			struct sockaddr __user **uaddr,
2510 			struct iovec **iov)
2511 {
2512 	ssize_t err;
2513 
2514 	if (MSG_CMSG_COMPAT & flags) {
2515 		struct compat_msghdr __user *msg_compat;
2516 
2517 		msg_compat = (struct compat_msghdr __user *) umsg;
2518 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2519 	} else {
2520 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2521 	}
2522 	if (err < 0)
2523 		return err;
2524 
2525 	return 0;
2526 }
2527 
2528 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2529 			   struct user_msghdr __user *msg,
2530 			   struct sockaddr __user *uaddr,
2531 			   unsigned int flags, int nosec)
2532 {
2533 	struct compat_msghdr __user *msg_compat =
2534 					(struct compat_msghdr __user *) msg;
2535 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2536 	struct sockaddr_storage addr;
2537 	unsigned long cmsg_ptr;
2538 	int len;
2539 	ssize_t err;
2540 
2541 	msg_sys->msg_name = &addr;
2542 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2543 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2544 
2545 	/* We assume all kernel code knows the size of sockaddr_storage */
2546 	msg_sys->msg_namelen = 0;
2547 
2548 	if (sock->file->f_flags & O_NONBLOCK)
2549 		flags |= MSG_DONTWAIT;
2550 
2551 	if (unlikely(nosec))
2552 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2553 	else
2554 		err = sock_recvmsg(sock, msg_sys, flags);
2555 
2556 	if (err < 0)
2557 		goto out;
2558 	len = err;
2559 
2560 	if (uaddr != NULL) {
2561 		err = move_addr_to_user(&addr,
2562 					msg_sys->msg_namelen, uaddr,
2563 					uaddr_len);
2564 		if (err < 0)
2565 			goto out;
2566 	}
2567 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2568 			 COMPAT_FLAGS(msg));
2569 	if (err)
2570 		goto out;
2571 	if (MSG_CMSG_COMPAT & flags)
2572 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2573 				 &msg_compat->msg_controllen);
2574 	else
2575 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2576 				 &msg->msg_controllen);
2577 	if (err)
2578 		goto out;
2579 	err = len;
2580 out:
2581 	return err;
2582 }
2583 
2584 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2585 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2586 {
2587 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2588 	/* user mode address pointers */
2589 	struct sockaddr __user *uaddr;
2590 	ssize_t err;
2591 
2592 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2593 	if (err < 0)
2594 		return err;
2595 
2596 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2597 	kfree(iov);
2598 	return err;
2599 }
2600 
2601 /*
2602  *	BSD recvmsg interface
2603  */
2604 
2605 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2606 			struct user_msghdr __user *umsg,
2607 			struct sockaddr __user *uaddr, unsigned int flags)
2608 {
2609 	if (msg->msg_control || msg->msg_controllen) {
2610 		/* disallow ancillary data reqs unless cmsg is plain data */
2611 		if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2612 			return -EINVAL;
2613 	}
2614 
2615 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2616 }
2617 
2618 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2619 		   bool forbid_cmsg_compat)
2620 {
2621 	int fput_needed, err;
2622 	struct msghdr msg_sys;
2623 	struct socket *sock;
2624 
2625 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2626 		return -EINVAL;
2627 
2628 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2629 	if (!sock)
2630 		goto out;
2631 
2632 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2633 
2634 	fput_light(sock->file, fput_needed);
2635 out:
2636 	return err;
2637 }
2638 
2639 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2640 		unsigned int, flags)
2641 {
2642 	return __sys_recvmsg(fd, msg, flags, true);
2643 }
2644 
2645 /*
2646  *     Linux recvmmsg interface
2647  */
2648 
2649 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2650 			  unsigned int vlen, unsigned int flags,
2651 			  struct timespec64 *timeout)
2652 {
2653 	int fput_needed, err, datagrams;
2654 	struct socket *sock;
2655 	struct mmsghdr __user *entry;
2656 	struct compat_mmsghdr __user *compat_entry;
2657 	struct msghdr msg_sys;
2658 	struct timespec64 end_time;
2659 	struct timespec64 timeout64;
2660 
2661 	if (timeout &&
2662 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2663 				    timeout->tv_nsec))
2664 		return -EINVAL;
2665 
2666 	datagrams = 0;
2667 
2668 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2669 	if (!sock)
2670 		return err;
2671 
2672 	if (likely(!(flags & MSG_ERRQUEUE))) {
2673 		err = sock_error(sock->sk);
2674 		if (err) {
2675 			datagrams = err;
2676 			goto out_put;
2677 		}
2678 	}
2679 
2680 	entry = mmsg;
2681 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2682 
2683 	while (datagrams < vlen) {
2684 		/*
2685 		 * No need to ask LSM for more than the first datagram.
2686 		 */
2687 		if (MSG_CMSG_COMPAT & flags) {
2688 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2689 					     &msg_sys, flags & ~MSG_WAITFORONE,
2690 					     datagrams);
2691 			if (err < 0)
2692 				break;
2693 			err = __put_user(err, &compat_entry->msg_len);
2694 			++compat_entry;
2695 		} else {
2696 			err = ___sys_recvmsg(sock,
2697 					     (struct user_msghdr __user *)entry,
2698 					     &msg_sys, flags & ~MSG_WAITFORONE,
2699 					     datagrams);
2700 			if (err < 0)
2701 				break;
2702 			err = put_user(err, &entry->msg_len);
2703 			++entry;
2704 		}
2705 
2706 		if (err)
2707 			break;
2708 		++datagrams;
2709 
2710 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2711 		if (flags & MSG_WAITFORONE)
2712 			flags |= MSG_DONTWAIT;
2713 
2714 		if (timeout) {
2715 			ktime_get_ts64(&timeout64);
2716 			*timeout = timespec64_sub(end_time, timeout64);
2717 			if (timeout->tv_sec < 0) {
2718 				timeout->tv_sec = timeout->tv_nsec = 0;
2719 				break;
2720 			}
2721 
2722 			/* Timeout, return less than vlen datagrams */
2723 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2724 				break;
2725 		}
2726 
2727 		/* Out of band data, return right away */
2728 		if (msg_sys.msg_flags & MSG_OOB)
2729 			break;
2730 		cond_resched();
2731 	}
2732 
2733 	if (err == 0)
2734 		goto out_put;
2735 
2736 	if (datagrams == 0) {
2737 		datagrams = err;
2738 		goto out_put;
2739 	}
2740 
2741 	/*
2742 	 * We may return less entries than requested (vlen) if the
2743 	 * sock is non block and there aren't enough datagrams...
2744 	 */
2745 	if (err != -EAGAIN) {
2746 		/*
2747 		 * ... or  if recvmsg returns an error after we
2748 		 * received some datagrams, where we record the
2749 		 * error to return on the next call or if the
2750 		 * app asks about it using getsockopt(SO_ERROR).
2751 		 */
2752 		sock->sk->sk_err = -err;
2753 	}
2754 out_put:
2755 	fput_light(sock->file, fput_needed);
2756 
2757 	return datagrams;
2758 }
2759 
2760 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2761 		   unsigned int vlen, unsigned int flags,
2762 		   struct __kernel_timespec __user *timeout,
2763 		   struct old_timespec32 __user *timeout32)
2764 {
2765 	int datagrams;
2766 	struct timespec64 timeout_sys;
2767 
2768 	if (timeout && get_timespec64(&timeout_sys, timeout))
2769 		return -EFAULT;
2770 
2771 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2772 		return -EFAULT;
2773 
2774 	if (!timeout && !timeout32)
2775 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2776 
2777 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2778 
2779 	if (datagrams <= 0)
2780 		return datagrams;
2781 
2782 	if (timeout && put_timespec64(&timeout_sys, timeout))
2783 		datagrams = -EFAULT;
2784 
2785 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2786 		datagrams = -EFAULT;
2787 
2788 	return datagrams;
2789 }
2790 
2791 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2792 		unsigned int, vlen, unsigned int, flags,
2793 		struct __kernel_timespec __user *, timeout)
2794 {
2795 	if (flags & MSG_CMSG_COMPAT)
2796 		return -EINVAL;
2797 
2798 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2799 }
2800 
2801 #ifdef CONFIG_COMPAT_32BIT_TIME
2802 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2803 		unsigned int, vlen, unsigned int, flags,
2804 		struct old_timespec32 __user *, timeout)
2805 {
2806 	if (flags & MSG_CMSG_COMPAT)
2807 		return -EINVAL;
2808 
2809 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2810 }
2811 #endif
2812 
2813 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2814 /* Argument list sizes for sys_socketcall */
2815 #define AL(x) ((x) * sizeof(unsigned long))
2816 static const unsigned char nargs[21] = {
2817 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2818 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2819 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2820 	AL(4), AL(5), AL(4)
2821 };
2822 
2823 #undef AL
2824 
2825 /*
2826  *	System call vectors.
2827  *
2828  *	Argument checking cleaned up. Saved 20% in size.
2829  *  This function doesn't need to set the kernel lock because
2830  *  it is set by the callees.
2831  */
2832 
2833 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2834 {
2835 	unsigned long a[AUDITSC_ARGS];
2836 	unsigned long a0, a1;
2837 	int err;
2838 	unsigned int len;
2839 
2840 	if (call < 1 || call > SYS_SENDMMSG)
2841 		return -EINVAL;
2842 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2843 
2844 	len = nargs[call];
2845 	if (len > sizeof(a))
2846 		return -EINVAL;
2847 
2848 	/* copy_from_user should be SMP safe. */
2849 	if (copy_from_user(a, args, len))
2850 		return -EFAULT;
2851 
2852 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2853 	if (err)
2854 		return err;
2855 
2856 	a0 = a[0];
2857 	a1 = a[1];
2858 
2859 	switch (call) {
2860 	case SYS_SOCKET:
2861 		err = __sys_socket(a0, a1, a[2]);
2862 		break;
2863 	case SYS_BIND:
2864 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2865 		break;
2866 	case SYS_CONNECT:
2867 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2868 		break;
2869 	case SYS_LISTEN:
2870 		err = __sys_listen(a0, a1);
2871 		break;
2872 	case SYS_ACCEPT:
2873 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2874 				    (int __user *)a[2], 0);
2875 		break;
2876 	case SYS_GETSOCKNAME:
2877 		err =
2878 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2879 				      (int __user *)a[2]);
2880 		break;
2881 	case SYS_GETPEERNAME:
2882 		err =
2883 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2884 				      (int __user *)a[2]);
2885 		break;
2886 	case SYS_SOCKETPAIR:
2887 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2888 		break;
2889 	case SYS_SEND:
2890 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2891 				   NULL, 0);
2892 		break;
2893 	case SYS_SENDTO:
2894 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2895 				   (struct sockaddr __user *)a[4], a[5]);
2896 		break;
2897 	case SYS_RECV:
2898 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2899 				     NULL, NULL);
2900 		break;
2901 	case SYS_RECVFROM:
2902 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2903 				     (struct sockaddr __user *)a[4],
2904 				     (int __user *)a[5]);
2905 		break;
2906 	case SYS_SHUTDOWN:
2907 		err = __sys_shutdown(a0, a1);
2908 		break;
2909 	case SYS_SETSOCKOPT:
2910 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2911 				       a[4]);
2912 		break;
2913 	case SYS_GETSOCKOPT:
2914 		err =
2915 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2916 				     (int __user *)a[4]);
2917 		break;
2918 	case SYS_SENDMSG:
2919 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2920 				    a[2], true);
2921 		break;
2922 	case SYS_SENDMMSG:
2923 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2924 				     a[3], true);
2925 		break;
2926 	case SYS_RECVMSG:
2927 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2928 				    a[2], true);
2929 		break;
2930 	case SYS_RECVMMSG:
2931 		if (IS_ENABLED(CONFIG_64BIT))
2932 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2933 					     a[2], a[3],
2934 					     (struct __kernel_timespec __user *)a[4],
2935 					     NULL);
2936 		else
2937 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2938 					     a[2], a[3], NULL,
2939 					     (struct old_timespec32 __user *)a[4]);
2940 		break;
2941 	case SYS_ACCEPT4:
2942 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2943 				    (int __user *)a[2], a[3]);
2944 		break;
2945 	default:
2946 		err = -EINVAL;
2947 		break;
2948 	}
2949 	return err;
2950 }
2951 
2952 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2953 
2954 /**
2955  *	sock_register - add a socket protocol handler
2956  *	@ops: description of protocol
2957  *
2958  *	This function is called by a protocol handler that wants to
2959  *	advertise its address family, and have it linked into the
2960  *	socket interface. The value ops->family corresponds to the
2961  *	socket system call protocol family.
2962  */
2963 int sock_register(const struct net_proto_family *ops)
2964 {
2965 	int err;
2966 
2967 	if (ops->family >= NPROTO) {
2968 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2969 		return -ENOBUFS;
2970 	}
2971 
2972 	spin_lock(&net_family_lock);
2973 	if (rcu_dereference_protected(net_families[ops->family],
2974 				      lockdep_is_held(&net_family_lock)))
2975 		err = -EEXIST;
2976 	else {
2977 		rcu_assign_pointer(net_families[ops->family], ops);
2978 		err = 0;
2979 	}
2980 	spin_unlock(&net_family_lock);
2981 
2982 	pr_info("NET: Registered protocol family %d\n", ops->family);
2983 	return err;
2984 }
2985 EXPORT_SYMBOL(sock_register);
2986 
2987 /**
2988  *	sock_unregister - remove a protocol handler
2989  *	@family: protocol family to remove
2990  *
2991  *	This function is called by a protocol handler that wants to
2992  *	remove its address family, and have it unlinked from the
2993  *	new socket creation.
2994  *
2995  *	If protocol handler is a module, then it can use module reference
2996  *	counts to protect against new references. If protocol handler is not
2997  *	a module then it needs to provide its own protection in
2998  *	the ops->create routine.
2999  */
3000 void sock_unregister(int family)
3001 {
3002 	BUG_ON(family < 0 || family >= NPROTO);
3003 
3004 	spin_lock(&net_family_lock);
3005 	RCU_INIT_POINTER(net_families[family], NULL);
3006 	spin_unlock(&net_family_lock);
3007 
3008 	synchronize_rcu();
3009 
3010 	pr_info("NET: Unregistered protocol family %d\n", family);
3011 }
3012 EXPORT_SYMBOL(sock_unregister);
3013 
3014 bool sock_is_registered(int family)
3015 {
3016 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3017 }
3018 
3019 static int __init sock_init(void)
3020 {
3021 	int err;
3022 	/*
3023 	 *      Initialize the network sysctl infrastructure.
3024 	 */
3025 	err = net_sysctl_init();
3026 	if (err)
3027 		goto out;
3028 
3029 	/*
3030 	 *      Initialize skbuff SLAB cache
3031 	 */
3032 	skb_init();
3033 
3034 	/*
3035 	 *      Initialize the protocols module.
3036 	 */
3037 
3038 	init_inodecache();
3039 
3040 	err = register_filesystem(&sock_fs_type);
3041 	if (err)
3042 		goto out;
3043 	sock_mnt = kern_mount(&sock_fs_type);
3044 	if (IS_ERR(sock_mnt)) {
3045 		err = PTR_ERR(sock_mnt);
3046 		goto out_mount;
3047 	}
3048 
3049 	/* The real protocol initialization is performed in later initcalls.
3050 	 */
3051 
3052 #ifdef CONFIG_NETFILTER
3053 	err = netfilter_init();
3054 	if (err)
3055 		goto out;
3056 #endif
3057 
3058 	ptp_classifier_init();
3059 
3060 out:
3061 	return err;
3062 
3063 out_mount:
3064 	unregister_filesystem(&sock_fs_type);
3065 	goto out;
3066 }
3067 
3068 core_initcall(sock_init);	/* early initcall */
3069 
3070 #ifdef CONFIG_PROC_FS
3071 void socket_seq_show(struct seq_file *seq)
3072 {
3073 	seq_printf(seq, "sockets: used %d\n",
3074 		   sock_inuse_get(seq->private));
3075 }
3076 #endif				/* CONFIG_PROC_FS */
3077 
3078 #ifdef CONFIG_COMPAT
3079 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3080 {
3081 	struct compat_ifconf ifc32;
3082 	struct ifconf ifc;
3083 	int err;
3084 
3085 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3086 		return -EFAULT;
3087 
3088 	ifc.ifc_len = ifc32.ifc_len;
3089 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3090 
3091 	rtnl_lock();
3092 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3093 	rtnl_unlock();
3094 	if (err)
3095 		return err;
3096 
3097 	ifc32.ifc_len = ifc.ifc_len;
3098 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3099 		return -EFAULT;
3100 
3101 	return 0;
3102 }
3103 
3104 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3105 {
3106 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3107 	bool convert_in = false, convert_out = false;
3108 	size_t buf_size = 0;
3109 	struct ethtool_rxnfc __user *rxnfc = NULL;
3110 	struct ifreq ifr;
3111 	u32 rule_cnt = 0, actual_rule_cnt;
3112 	u32 ethcmd;
3113 	u32 data;
3114 	int ret;
3115 
3116 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3117 		return -EFAULT;
3118 
3119 	compat_rxnfc = compat_ptr(data);
3120 
3121 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3122 		return -EFAULT;
3123 
3124 	/* Most ethtool structures are defined without padding.
3125 	 * Unfortunately struct ethtool_rxnfc is an exception.
3126 	 */
3127 	switch (ethcmd) {
3128 	default:
3129 		break;
3130 	case ETHTOOL_GRXCLSRLALL:
3131 		/* Buffer size is variable */
3132 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3133 			return -EFAULT;
3134 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3135 			return -ENOMEM;
3136 		buf_size += rule_cnt * sizeof(u32);
3137 		fallthrough;
3138 	case ETHTOOL_GRXRINGS:
3139 	case ETHTOOL_GRXCLSRLCNT:
3140 	case ETHTOOL_GRXCLSRULE:
3141 	case ETHTOOL_SRXCLSRLINS:
3142 		convert_out = true;
3143 		fallthrough;
3144 	case ETHTOOL_SRXCLSRLDEL:
3145 		buf_size += sizeof(struct ethtool_rxnfc);
3146 		convert_in = true;
3147 		rxnfc = compat_alloc_user_space(buf_size);
3148 		break;
3149 	}
3150 
3151 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3152 		return -EFAULT;
3153 
3154 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3155 
3156 	if (convert_in) {
3157 		/* We expect there to be holes between fs.m_ext and
3158 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3159 		 */
3160 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3161 			     sizeof(compat_rxnfc->fs.m_ext) !=
3162 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3163 			     sizeof(rxnfc->fs.m_ext));
3164 		BUILD_BUG_ON(
3165 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3166 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3167 			offsetof(struct ethtool_rxnfc, fs.location) -
3168 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3169 
3170 		if (copy_in_user(rxnfc, compat_rxnfc,
3171 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3172 				 (void __user *)rxnfc) ||
3173 		    copy_in_user(&rxnfc->fs.ring_cookie,
3174 				 &compat_rxnfc->fs.ring_cookie,
3175 				 (void __user *)(&rxnfc->fs.location + 1) -
3176 				 (void __user *)&rxnfc->fs.ring_cookie))
3177 			return -EFAULT;
3178 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3179 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3180 				return -EFAULT;
3181 		} else if (copy_in_user(&rxnfc->rule_cnt,
3182 					&compat_rxnfc->rule_cnt,
3183 					sizeof(rxnfc->rule_cnt)))
3184 			return -EFAULT;
3185 	}
3186 
3187 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3188 	if (ret)
3189 		return ret;
3190 
3191 	if (convert_out) {
3192 		if (copy_in_user(compat_rxnfc, rxnfc,
3193 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3194 				 (const void __user *)rxnfc) ||
3195 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3196 				 &rxnfc->fs.ring_cookie,
3197 				 (const void __user *)(&rxnfc->fs.location + 1) -
3198 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3199 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3200 				 sizeof(rxnfc->rule_cnt)))
3201 			return -EFAULT;
3202 
3203 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3204 			/* As an optimisation, we only copy the actual
3205 			 * number of rules that the underlying
3206 			 * function returned.  Since Mallory might
3207 			 * change the rule count in user memory, we
3208 			 * check that it is less than the rule count
3209 			 * originally given (as the user buffer size),
3210 			 * which has been range-checked.
3211 			 */
3212 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3213 				return -EFAULT;
3214 			if (actual_rule_cnt < rule_cnt)
3215 				rule_cnt = actual_rule_cnt;
3216 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3217 					 &rxnfc->rule_locs[0],
3218 					 rule_cnt * sizeof(u32)))
3219 				return -EFAULT;
3220 		}
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3227 {
3228 	compat_uptr_t uptr32;
3229 	struct ifreq ifr;
3230 	void __user *saved;
3231 	int err;
3232 
3233 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3234 		return -EFAULT;
3235 
3236 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3237 		return -EFAULT;
3238 
3239 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3240 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3241 
3242 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3243 	if (!err) {
3244 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3245 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3246 			err = -EFAULT;
3247 	}
3248 	return err;
3249 }
3250 
3251 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3252 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3253 				 struct compat_ifreq __user *u_ifreq32)
3254 {
3255 	struct ifreq ifreq;
3256 	u32 data32;
3257 
3258 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3259 		return -EFAULT;
3260 	if (get_user(data32, &u_ifreq32->ifr_data))
3261 		return -EFAULT;
3262 	ifreq.ifr_data = compat_ptr(data32);
3263 
3264 	return dev_ioctl(net, cmd, &ifreq, NULL);
3265 }
3266 
3267 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3268 			      unsigned int cmd,
3269 			      struct compat_ifreq __user *uifr32)
3270 {
3271 	struct ifreq __user *uifr;
3272 	int err;
3273 
3274 	/* Handle the fact that while struct ifreq has the same *layout* on
3275 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3276 	 * which are handled elsewhere, it still has different *size* due to
3277 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3278 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3279 	 * As a result, if the struct happens to be at the end of a page and
3280 	 * the next page isn't readable/writable, we get a fault. To prevent
3281 	 * that, copy back and forth to the full size.
3282 	 */
3283 
3284 	uifr = compat_alloc_user_space(sizeof(*uifr));
3285 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3286 		return -EFAULT;
3287 
3288 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3289 
3290 	if (!err) {
3291 		switch (cmd) {
3292 		case SIOCGIFFLAGS:
3293 		case SIOCGIFMETRIC:
3294 		case SIOCGIFMTU:
3295 		case SIOCGIFMEM:
3296 		case SIOCGIFHWADDR:
3297 		case SIOCGIFINDEX:
3298 		case SIOCGIFADDR:
3299 		case SIOCGIFBRDADDR:
3300 		case SIOCGIFDSTADDR:
3301 		case SIOCGIFNETMASK:
3302 		case SIOCGIFPFLAGS:
3303 		case SIOCGIFTXQLEN:
3304 		case SIOCGMIIPHY:
3305 		case SIOCGMIIREG:
3306 		case SIOCGIFNAME:
3307 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3308 				err = -EFAULT;
3309 			break;
3310 		}
3311 	}
3312 	return err;
3313 }
3314 
3315 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3316 			struct compat_ifreq __user *uifr32)
3317 {
3318 	struct ifreq ifr;
3319 	struct compat_ifmap __user *uifmap32;
3320 	int err;
3321 
3322 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3323 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3324 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3325 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3326 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3327 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3328 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3329 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3330 	if (err)
3331 		return -EFAULT;
3332 
3333 	err = dev_ioctl(net, cmd, &ifr, NULL);
3334 
3335 	if (cmd == SIOCGIFMAP && !err) {
3336 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3337 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3338 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3339 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3340 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3341 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3342 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3343 		if (err)
3344 			err = -EFAULT;
3345 	}
3346 	return err;
3347 }
3348 
3349 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3350  * for some operations; this forces use of the newer bridge-utils that
3351  * use compatible ioctls
3352  */
3353 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3354 {
3355 	compat_ulong_t tmp;
3356 
3357 	if (get_user(tmp, argp))
3358 		return -EFAULT;
3359 	if (tmp == BRCTL_GET_VERSION)
3360 		return BRCTL_VERSION + 1;
3361 	return -EINVAL;
3362 }
3363 
3364 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3365 			 unsigned int cmd, unsigned long arg)
3366 {
3367 	void __user *argp = compat_ptr(arg);
3368 	struct sock *sk = sock->sk;
3369 	struct net *net = sock_net(sk);
3370 
3371 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3372 		return compat_ifr_data_ioctl(net, cmd, argp);
3373 
3374 	switch (cmd) {
3375 	case SIOCSIFBR:
3376 	case SIOCGIFBR:
3377 		return old_bridge_ioctl(argp);
3378 	case SIOCGIFCONF:
3379 		return compat_dev_ifconf(net, argp);
3380 	case SIOCETHTOOL:
3381 		return ethtool_ioctl(net, argp);
3382 	case SIOCWANDEV:
3383 		return compat_siocwandev(net, argp);
3384 	case SIOCGIFMAP:
3385 	case SIOCSIFMAP:
3386 		return compat_sioc_ifmap(net, cmd, argp);
3387 	case SIOCGSTAMP_OLD:
3388 	case SIOCGSTAMPNS_OLD:
3389 		if (!sock->ops->gettstamp)
3390 			return -ENOIOCTLCMD;
3391 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3392 					    !COMPAT_USE_64BIT_TIME);
3393 
3394 	case SIOCBONDSLAVEINFOQUERY:
3395 	case SIOCBONDINFOQUERY:
3396 	case SIOCSHWTSTAMP:
3397 	case SIOCGHWTSTAMP:
3398 		return compat_ifr_data_ioctl(net, cmd, argp);
3399 
3400 	case FIOSETOWN:
3401 	case SIOCSPGRP:
3402 	case FIOGETOWN:
3403 	case SIOCGPGRP:
3404 	case SIOCBRADDBR:
3405 	case SIOCBRDELBR:
3406 	case SIOCGIFVLAN:
3407 	case SIOCSIFVLAN:
3408 	case SIOCGSKNS:
3409 	case SIOCGSTAMP_NEW:
3410 	case SIOCGSTAMPNS_NEW:
3411 		return sock_ioctl(file, cmd, arg);
3412 
3413 	case SIOCGIFFLAGS:
3414 	case SIOCSIFFLAGS:
3415 	case SIOCGIFMETRIC:
3416 	case SIOCSIFMETRIC:
3417 	case SIOCGIFMTU:
3418 	case SIOCSIFMTU:
3419 	case SIOCGIFMEM:
3420 	case SIOCSIFMEM:
3421 	case SIOCGIFHWADDR:
3422 	case SIOCSIFHWADDR:
3423 	case SIOCADDMULTI:
3424 	case SIOCDELMULTI:
3425 	case SIOCGIFINDEX:
3426 	case SIOCGIFADDR:
3427 	case SIOCSIFADDR:
3428 	case SIOCSIFHWBROADCAST:
3429 	case SIOCDIFADDR:
3430 	case SIOCGIFBRDADDR:
3431 	case SIOCSIFBRDADDR:
3432 	case SIOCGIFDSTADDR:
3433 	case SIOCSIFDSTADDR:
3434 	case SIOCGIFNETMASK:
3435 	case SIOCSIFNETMASK:
3436 	case SIOCSIFPFLAGS:
3437 	case SIOCGIFPFLAGS:
3438 	case SIOCGIFTXQLEN:
3439 	case SIOCSIFTXQLEN:
3440 	case SIOCBRADDIF:
3441 	case SIOCBRDELIF:
3442 	case SIOCGIFNAME:
3443 	case SIOCSIFNAME:
3444 	case SIOCGMIIPHY:
3445 	case SIOCGMIIREG:
3446 	case SIOCSMIIREG:
3447 	case SIOCBONDENSLAVE:
3448 	case SIOCBONDRELEASE:
3449 	case SIOCBONDSETHWADDR:
3450 	case SIOCBONDCHANGEACTIVE:
3451 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3452 
3453 	case SIOCSARP:
3454 	case SIOCGARP:
3455 	case SIOCDARP:
3456 	case SIOCOUTQ:
3457 	case SIOCOUTQNSD:
3458 	case SIOCATMARK:
3459 		return sock_do_ioctl(net, sock, cmd, arg);
3460 	}
3461 
3462 	return -ENOIOCTLCMD;
3463 }
3464 
3465 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3466 			      unsigned long arg)
3467 {
3468 	struct socket *sock = file->private_data;
3469 	int ret = -ENOIOCTLCMD;
3470 	struct sock *sk;
3471 	struct net *net;
3472 
3473 	sk = sock->sk;
3474 	net = sock_net(sk);
3475 
3476 	if (sock->ops->compat_ioctl)
3477 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3478 
3479 	if (ret == -ENOIOCTLCMD &&
3480 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3481 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3482 
3483 	if (ret == -ENOIOCTLCMD)
3484 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3485 
3486 	return ret;
3487 }
3488 #endif
3489 
3490 /**
3491  *	kernel_bind - bind an address to a socket (kernel space)
3492  *	@sock: socket
3493  *	@addr: address
3494  *	@addrlen: length of address
3495  *
3496  *	Returns 0 or an error.
3497  */
3498 
3499 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3500 {
3501 	return sock->ops->bind(sock, addr, addrlen);
3502 }
3503 EXPORT_SYMBOL(kernel_bind);
3504 
3505 /**
3506  *	kernel_listen - move socket to listening state (kernel space)
3507  *	@sock: socket
3508  *	@backlog: pending connections queue size
3509  *
3510  *	Returns 0 or an error.
3511  */
3512 
3513 int kernel_listen(struct socket *sock, int backlog)
3514 {
3515 	return sock->ops->listen(sock, backlog);
3516 }
3517 EXPORT_SYMBOL(kernel_listen);
3518 
3519 /**
3520  *	kernel_accept - accept a connection (kernel space)
3521  *	@sock: listening socket
3522  *	@newsock: new connected socket
3523  *	@flags: flags
3524  *
3525  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3526  *	If it fails, @newsock is guaranteed to be %NULL.
3527  *	Returns 0 or an error.
3528  */
3529 
3530 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3531 {
3532 	struct sock *sk = sock->sk;
3533 	int err;
3534 
3535 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3536 			       newsock);
3537 	if (err < 0)
3538 		goto done;
3539 
3540 	err = sock->ops->accept(sock, *newsock, flags, true);
3541 	if (err < 0) {
3542 		sock_release(*newsock);
3543 		*newsock = NULL;
3544 		goto done;
3545 	}
3546 
3547 	(*newsock)->ops = sock->ops;
3548 	__module_get((*newsock)->ops->owner);
3549 
3550 done:
3551 	return err;
3552 }
3553 EXPORT_SYMBOL(kernel_accept);
3554 
3555 /**
3556  *	kernel_connect - connect a socket (kernel space)
3557  *	@sock: socket
3558  *	@addr: address
3559  *	@addrlen: address length
3560  *	@flags: flags (O_NONBLOCK, ...)
3561  *
3562  *	For datagram sockets, @addr is the addres to which datagrams are sent
3563  *	by default, and the only address from which datagrams are received.
3564  *	For stream sockets, attempts to connect to @addr.
3565  *	Returns 0 or an error code.
3566  */
3567 
3568 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3569 		   int flags)
3570 {
3571 	return sock->ops->connect(sock, addr, addrlen, flags);
3572 }
3573 EXPORT_SYMBOL(kernel_connect);
3574 
3575 /**
3576  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3577  *	@sock: socket
3578  *	@addr: address holder
3579  *
3580  * 	Fills the @addr pointer with the address which the socket is bound.
3581  *	Returns 0 or an error code.
3582  */
3583 
3584 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3585 {
3586 	return sock->ops->getname(sock, addr, 0);
3587 }
3588 EXPORT_SYMBOL(kernel_getsockname);
3589 
3590 /**
3591  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3592  *	@sock: socket
3593  *	@addr: address holder
3594  *
3595  * 	Fills the @addr pointer with the address which the socket is connected.
3596  *	Returns 0 or an error code.
3597  */
3598 
3599 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3600 {
3601 	return sock->ops->getname(sock, addr, 1);
3602 }
3603 EXPORT_SYMBOL(kernel_getpeername);
3604 
3605 /**
3606  *	kernel_sendpage - send a &page through a socket (kernel space)
3607  *	@sock: socket
3608  *	@page: page
3609  *	@offset: page offset
3610  *	@size: total size in bytes
3611  *	@flags: flags (MSG_DONTWAIT, ...)
3612  *
3613  *	Returns the total amount sent in bytes or an error.
3614  */
3615 
3616 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3617 		    size_t size, int flags)
3618 {
3619 	if (sock->ops->sendpage) {
3620 		/* Warn in case the improper page to zero-copy send */
3621 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3622 		return sock->ops->sendpage(sock, page, offset, size, flags);
3623 	}
3624 	return sock_no_sendpage(sock, page, offset, size, flags);
3625 }
3626 EXPORT_SYMBOL(kernel_sendpage);
3627 
3628 /**
3629  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3630  *	@sk: sock
3631  *	@page: page
3632  *	@offset: page offset
3633  *	@size: total size in bytes
3634  *	@flags: flags (MSG_DONTWAIT, ...)
3635  *
3636  *	Returns the total amount sent in bytes or an error.
3637  *	Caller must hold @sk.
3638  */
3639 
3640 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3641 			   size_t size, int flags)
3642 {
3643 	struct socket *sock = sk->sk_socket;
3644 
3645 	if (sock->ops->sendpage_locked)
3646 		return sock->ops->sendpage_locked(sk, page, offset, size,
3647 						  flags);
3648 
3649 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3650 }
3651 EXPORT_SYMBOL(kernel_sendpage_locked);
3652 
3653 /**
3654  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3655  *	@sock: socket
3656  *	@how: connection part
3657  *
3658  *	Returns 0 or an error.
3659  */
3660 
3661 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3662 {
3663 	return sock->ops->shutdown(sock, how);
3664 }
3665 EXPORT_SYMBOL(kernel_sock_shutdown);
3666 
3667 /**
3668  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3669  *	@sk: socket
3670  *
3671  *	This routine returns the IP overhead imposed by a socket i.e.
3672  *	the length of the underlying IP header, depending on whether
3673  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3674  *	on at the socket. Assumes that the caller has a lock on the socket.
3675  */
3676 
3677 u32 kernel_sock_ip_overhead(struct sock *sk)
3678 {
3679 	struct inet_sock *inet;
3680 	struct ip_options_rcu *opt;
3681 	u32 overhead = 0;
3682 #if IS_ENABLED(CONFIG_IPV6)
3683 	struct ipv6_pinfo *np;
3684 	struct ipv6_txoptions *optv6 = NULL;
3685 #endif /* IS_ENABLED(CONFIG_IPV6) */
3686 
3687 	if (!sk)
3688 		return overhead;
3689 
3690 	switch (sk->sk_family) {
3691 	case AF_INET:
3692 		inet = inet_sk(sk);
3693 		overhead += sizeof(struct iphdr);
3694 		opt = rcu_dereference_protected(inet->inet_opt,
3695 						sock_owned_by_user(sk));
3696 		if (opt)
3697 			overhead += opt->opt.optlen;
3698 		return overhead;
3699 #if IS_ENABLED(CONFIG_IPV6)
3700 	case AF_INET6:
3701 		np = inet6_sk(sk);
3702 		overhead += sizeof(struct ipv6hdr);
3703 		if (np)
3704 			optv6 = rcu_dereference_protected(np->opt,
3705 							  sock_owned_by_user(sk));
3706 		if (optv6)
3707 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3708 		return overhead;
3709 #endif /* IS_ENABLED(CONFIG_IPV6) */
3710 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3711 		return overhead;
3712 	}
3713 }
3714 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3715