xref: /openbmc/linux/net/socket.c (revision c9c554f2)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 		__poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.get_poll_head = sock_get_poll_head,
147 	.poll_mask =	sock_poll_mask,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.release =	sock_close,
155 	.fasync =	sock_fasync,
156 	.sendpage =	sock_sendpage,
157 	.splice_write = generic_splice_sendpage,
158 	.splice_read =	sock_splice_read,
159 };
160 
161 /*
162  *	The protocol list. Each protocol is registered in here.
163  */
164 
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	BUG_ON(klen > sizeof(struct sockaddr_storage));
220 	err = get_user(len, ulen);
221 	if (err)
222 		return err;
223 	if (len > klen)
224 		len = klen;
225 	if (len < 0)
226 		return -EINVAL;
227 	if (len) {
228 		if (audit_sockaddr(klen, kaddr))
229 			return -ENOMEM;
230 		if (copy_to_user(uaddr, kaddr, len))
231 			return -EFAULT;
232 	}
233 	/*
234 	 *      "fromlen shall refer to the value before truncation.."
235 	 *                      1003.1g
236 	 */
237 	return __put_user(klen, ulen);
238 }
239 
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 	struct socket_wq *wq;
246 
247 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 	if (!ei)
249 		return NULL;
250 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 	if (!wq) {
252 		kmem_cache_free(sock_inode_cachep, ei);
253 		return NULL;
254 	}
255 	init_waitqueue_head(&wq->wait);
256 	wq->fasync_list = NULL;
257 	wq->flags = 0;
258 	RCU_INIT_POINTER(ei->socket.wq, wq);
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 	struct socket_wq *wq;
273 
274 	ei = container_of(inode, struct socket_alloc, vfs_inode);
275 	wq = rcu_dereference_protected(ei->socket.wq, 1);
276 	kfree_rcu(wq, rcu);
277 	kmem_cache_free(sock_inode_cachep, ei);
278 }
279 
280 static void init_once(void *foo)
281 {
282 	struct socket_alloc *ei = (struct socket_alloc *)foo;
283 
284 	inode_init_once(&ei->vfs_inode);
285 }
286 
287 static void init_inodecache(void)
288 {
289 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 					      sizeof(struct socket_alloc),
291 					      0,
292 					      (SLAB_HWCACHE_ALIGN |
293 					       SLAB_RECLAIM_ACCOUNT |
294 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 					      init_once);
296 	BUG_ON(sock_inode_cachep == NULL);
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				d_inode(dentry)->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 			    struct dentry *dentry, struct inode *inode,
320 			    const char *suffix, void *value, size_t size)
321 {
322 	if (value) {
323 		if (dentry->d_name.len + 1 > size)
324 			return -ERANGE;
325 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 	}
327 	return dentry->d_name.len + 1;
328 }
329 
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333 
334 static const struct xattr_handler sockfs_xattr_handler = {
335 	.name = XATTR_NAME_SOCKPROTONAME,
336 	.get = sockfs_xattr_get,
337 };
338 
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 				     struct dentry *dentry, struct inode *inode,
341 				     const char *suffix, const void *value,
342 				     size_t size, int flags)
343 {
344 	/* Handled by LSM. */
345 	return -EAGAIN;
346 }
347 
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 	.prefix = XATTR_SECURITY_PREFIX,
350 	.set = sockfs_security_xattr_set,
351 };
352 
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 	&sockfs_xattr_handler,
355 	&sockfs_security_xattr_handler,
356 	NULL
357 };
358 
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 			 int flags, const char *dev_name, void *data)
361 {
362 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 				  sockfs_xattr_handlers,
364 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.mount =	sockfs_mount,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 	struct qstr name = { .name = "" };
395 	struct path path;
396 	struct file *file;
397 
398 	if (dname) {
399 		name.name = dname;
400 		name.len = strlen(name.name);
401 	} else if (sock->sk) {
402 		name.name = sock->sk->sk_prot_creator->name;
403 		name.len = strlen(name.name);
404 	}
405 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
406 	if (unlikely(!path.dentry)) {
407 		sock_release(sock);
408 		return ERR_PTR(-ENOMEM);
409 	}
410 	path.mnt = mntget(sock_mnt);
411 
412 	d_instantiate(path.dentry, SOCK_INODE(sock));
413 
414 	file = alloc_file(&path, O_RDWR | (flags & O_NONBLOCK),
415 		  &socket_file_ops);
416 	if (IS_ERR(file)) {
417 		/* drop dentry, keep inode for a bit */
418 		ihold(d_inode(path.dentry));
419 		path_put(&path);
420 		/* ... and now kill it properly */
421 		sock_release(sock);
422 		return file;
423 	}
424 
425 	sock->file = file;
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0)) {
436 		sock_release(sock);
437 		return fd;
438 	}
439 
440 	newfile = sock_alloc_file(sock, flags, NULL);
441 	if (likely(!IS_ERR(newfile))) {
442 		fd_install(fd, newfile);
443 		return fd;
444 	}
445 
446 	put_unused_fd(fd);
447 	return PTR_ERR(newfile);
448 }
449 
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 	if (file->f_op == &socket_file_ops)
453 		return file->private_data;	/* set in sock_map_fd */
454 
455 	*err = -ENOTSOCK;
456 	return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459 
460 /**
461  *	sockfd_lookup - Go from a file number to its socket slot
462  *	@fd: file handle
463  *	@err: pointer to an error code return
464  *
465  *	The file handle passed in is locked and the socket it is bound
466  *	to is returned. If an error occurs the err pointer is overwritten
467  *	with a negative errno code and NULL is returned. The function checks
468  *	for both invalid handles and passing a handle which is not a socket.
469  *
470  *	On a success the socket object pointer is returned.
471  */
472 
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 	struct file *file;
476 	struct socket *sock;
477 
478 	file = fget(fd);
479 	if (!file) {
480 		*err = -EBADF;
481 		return NULL;
482 	}
483 
484 	sock = sock_from_file(file, err);
485 	if (!sock)
486 		fput(file);
487 	return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490 
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 	struct fd f = fdget(fd);
494 	struct socket *sock;
495 
496 	*err = -EBADF;
497 	if (f.file) {
498 		sock = sock_from_file(f.file, err);
499 		if (likely(sock)) {
500 			*fput_needed = f.flags;
501 			return sock;
502 		}
503 		fdput(f);
504 	}
505 	return NULL;
506 }
507 
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 				size_t size)
510 {
511 	ssize_t len;
512 	ssize_t used = 0;
513 
514 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 	if (len < 0)
516 		return len;
517 	used += len;
518 	if (buffer) {
519 		if (size < used)
520 			return -ERANGE;
521 		buffer += len;
522 	}
523 
524 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 	used += len;
526 	if (buffer) {
527 		if (size < used)
528 			return -ERANGE;
529 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 		buffer += len;
531 	}
532 
533 	return used;
534 }
535 
536 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 	int err = simple_setattr(dentry, iattr);
539 
540 	if (!err && (iattr->ia_valid & ATTR_UID)) {
541 		struct socket *sock = SOCKET_I(d_inode(dentry));
542 
543 		if (sock->sk)
544 			sock->sk->sk_uid = iattr->ia_uid;
545 		else
546 			err = -ENOENT;
547 	}
548 
549 	return err;
550 }
551 
552 static const struct inode_operations sockfs_inode_ops = {
553 	.listxattr = sockfs_listxattr,
554 	.setattr = sockfs_setattr,
555 };
556 
557 /**
558  *	sock_alloc	-	allocate a socket
559  *
560  *	Allocate a new inode and socket object. The two are bound together
561  *	and initialised. The socket is then returned. If we are out of inodes
562  *	NULL is returned.
563  */
564 
565 struct socket *sock_alloc(void)
566 {
567 	struct inode *inode;
568 	struct socket *sock;
569 
570 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
571 	if (!inode)
572 		return NULL;
573 
574 	sock = SOCKET_I(inode);
575 
576 	inode->i_ino = get_next_ino();
577 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
578 	inode->i_uid = current_fsuid();
579 	inode->i_gid = current_fsgid();
580 	inode->i_op = &sockfs_inode_ops;
581 
582 	return sock;
583 }
584 EXPORT_SYMBOL(sock_alloc);
585 
586 /**
587  *	sock_release	-	close a socket
588  *	@sock: socket to close
589  *
590  *	The socket is released from the protocol stack if it has a release
591  *	callback, and the inode is then released if the socket is bound to
592  *	an inode not a file.
593  */
594 
595 static void __sock_release(struct socket *sock, struct inode *inode)
596 {
597 	if (sock->ops) {
598 		struct module *owner = sock->ops->owner;
599 
600 		if (inode)
601 			inode_lock(inode);
602 		sock->ops->release(sock);
603 		if (inode)
604 			inode_unlock(inode);
605 		sock->ops = NULL;
606 		module_put(owner);
607 	}
608 
609 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
610 		pr_err("%s: fasync list not empty!\n", __func__);
611 
612 	if (!sock->file) {
613 		iput(SOCK_INODE(sock));
614 		return;
615 	}
616 	sock->file = NULL;
617 }
618 
619 void sock_release(struct socket *sock)
620 {
621 	__sock_release(sock, NULL);
622 }
623 EXPORT_SYMBOL(sock_release);
624 
625 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
626 {
627 	u8 flags = *tx_flags;
628 
629 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
630 		flags |= SKBTX_HW_TSTAMP;
631 
632 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
633 		flags |= SKBTX_SW_TSTAMP;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
636 		flags |= SKBTX_SCHED_TSTAMP;
637 
638 	*tx_flags = flags;
639 }
640 EXPORT_SYMBOL(__sock_tx_timestamp);
641 
642 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
643 {
644 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
645 	BUG_ON(ret == -EIOCBQUEUED);
646 	return ret;
647 }
648 
649 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
650 {
651 	int err = security_socket_sendmsg(sock, msg,
652 					  msg_data_left(msg));
653 
654 	return err ?: sock_sendmsg_nosec(sock, msg);
655 }
656 EXPORT_SYMBOL(sock_sendmsg);
657 
658 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
659 		   struct kvec *vec, size_t num, size_t size)
660 {
661 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
662 	return sock_sendmsg(sock, msg);
663 }
664 EXPORT_SYMBOL(kernel_sendmsg);
665 
666 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
667 			  struct kvec *vec, size_t num, size_t size)
668 {
669 	struct socket *sock = sk->sk_socket;
670 
671 	if (!sock->ops->sendmsg_locked)
672 		return sock_no_sendmsg_locked(sk, msg, size);
673 
674 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
675 
676 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
677 }
678 EXPORT_SYMBOL(kernel_sendmsg_locked);
679 
680 static bool skb_is_err_queue(const struct sk_buff *skb)
681 {
682 	/* pkt_type of skbs enqueued on the error queue are set to
683 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
684 	 * in recvmsg, since skbs received on a local socket will never
685 	 * have a pkt_type of PACKET_OUTGOING.
686 	 */
687 	return skb->pkt_type == PACKET_OUTGOING;
688 }
689 
690 /* On transmit, software and hardware timestamps are returned independently.
691  * As the two skb clones share the hardware timestamp, which may be updated
692  * before the software timestamp is received, a hardware TX timestamp may be
693  * returned only if there is no software TX timestamp. Ignore false software
694  * timestamps, which may be made in the __sock_recv_timestamp() call when the
695  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
696  * hardware timestamp.
697  */
698 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
699 {
700 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
701 }
702 
703 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
704 {
705 	struct scm_ts_pktinfo ts_pktinfo;
706 	struct net_device *orig_dev;
707 
708 	if (!skb_mac_header_was_set(skb))
709 		return;
710 
711 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
712 
713 	rcu_read_lock();
714 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
715 	if (orig_dev)
716 		ts_pktinfo.if_index = orig_dev->ifindex;
717 	rcu_read_unlock();
718 
719 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
720 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
721 		 sizeof(ts_pktinfo), &ts_pktinfo);
722 }
723 
724 /*
725  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
726  */
727 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
728 	struct sk_buff *skb)
729 {
730 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
731 	struct scm_timestamping tss;
732 	int empty = 1, false_tstamp = 0;
733 	struct skb_shared_hwtstamps *shhwtstamps =
734 		skb_hwtstamps(skb);
735 
736 	/* Race occurred between timestamp enabling and packet
737 	   receiving.  Fill in the current time for now. */
738 	if (need_software_tstamp && skb->tstamp == 0) {
739 		__net_timestamp(skb);
740 		false_tstamp = 1;
741 	}
742 
743 	if (need_software_tstamp) {
744 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
745 			struct timeval tv;
746 			skb_get_timestamp(skb, &tv);
747 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
748 				 sizeof(tv), &tv);
749 		} else {
750 			struct timespec ts;
751 			skb_get_timestampns(skb, &ts);
752 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
753 				 sizeof(ts), &ts);
754 		}
755 	}
756 
757 	memset(&tss, 0, sizeof(tss));
758 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
759 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
760 		empty = 0;
761 	if (shhwtstamps &&
762 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
763 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
764 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
765 		empty = 0;
766 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
767 		    !skb_is_err_queue(skb))
768 			put_ts_pktinfo(msg, skb);
769 	}
770 	if (!empty) {
771 		put_cmsg(msg, SOL_SOCKET,
772 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
773 
774 		if (skb_is_err_queue(skb) && skb->len &&
775 		    SKB_EXT_ERR(skb)->opt_stats)
776 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
777 				 skb->len, skb->data);
778 	}
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
781 
782 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
783 	struct sk_buff *skb)
784 {
785 	int ack;
786 
787 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
788 		return;
789 	if (!skb->wifi_acked_valid)
790 		return;
791 
792 	ack = skb->wifi_acked;
793 
794 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
795 }
796 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
797 
798 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
799 				   struct sk_buff *skb)
800 {
801 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
802 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
803 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
804 }
805 
806 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
807 	struct sk_buff *skb)
808 {
809 	sock_recv_timestamp(msg, sk, skb);
810 	sock_recv_drops(msg, sk, skb);
811 }
812 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
813 
814 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
815 				     int flags)
816 {
817 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
818 }
819 
820 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
821 {
822 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
823 
824 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
825 }
826 EXPORT_SYMBOL(sock_recvmsg);
827 
828 /**
829  * kernel_recvmsg - Receive a message from a socket (kernel space)
830  * @sock:       The socket to receive the message from
831  * @msg:        Received message
832  * @vec:        Input s/g array for message data
833  * @num:        Size of input s/g array
834  * @size:       Number of bytes to read
835  * @flags:      Message flags (MSG_DONTWAIT, etc...)
836  *
837  * On return the msg structure contains the scatter/gather array passed in the
838  * vec argument. The array is modified so that it consists of the unfilled
839  * portion of the original array.
840  *
841  * The returned value is the total number of bytes received, or an error.
842  */
843 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
844 		   struct kvec *vec, size_t num, size_t size, int flags)
845 {
846 	mm_segment_t oldfs = get_fs();
847 	int result;
848 
849 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
850 	set_fs(KERNEL_DS);
851 	result = sock_recvmsg(sock, msg, flags);
852 	set_fs(oldfs);
853 	return result;
854 }
855 EXPORT_SYMBOL(kernel_recvmsg);
856 
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 			     int offset, size_t size, loff_t *ppos, int more)
859 {
860 	struct socket *sock;
861 	int flags;
862 
863 	sock = file->private_data;
864 
865 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 	flags |= more;
868 
869 	return kernel_sendpage(sock, page, offset, size, flags);
870 }
871 
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 				struct pipe_inode_info *pipe, size_t len,
874 				unsigned int flags)
875 {
876 	struct socket *sock = file->private_data;
877 
878 	if (unlikely(!sock->ops->splice_read))
879 		return -EINVAL;
880 
881 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
882 }
883 
884 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
885 {
886 	struct file *file = iocb->ki_filp;
887 	struct socket *sock = file->private_data;
888 	struct msghdr msg = {.msg_iter = *to,
889 			     .msg_iocb = iocb};
890 	ssize_t res;
891 
892 	if (file->f_flags & O_NONBLOCK)
893 		msg.msg_flags = MSG_DONTWAIT;
894 
895 	if (iocb->ki_pos != 0)
896 		return -ESPIPE;
897 
898 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
899 		return 0;
900 
901 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
902 	*to = msg.msg_iter;
903 	return res;
904 }
905 
906 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
907 {
908 	struct file *file = iocb->ki_filp;
909 	struct socket *sock = file->private_data;
910 	struct msghdr msg = {.msg_iter = *from,
911 			     .msg_iocb = iocb};
912 	ssize_t res;
913 
914 	if (iocb->ki_pos != 0)
915 		return -ESPIPE;
916 
917 	if (file->f_flags & O_NONBLOCK)
918 		msg.msg_flags = MSG_DONTWAIT;
919 
920 	if (sock->type == SOCK_SEQPACKET)
921 		msg.msg_flags |= MSG_EOR;
922 
923 	res = sock_sendmsg(sock, &msg);
924 	*from = msg.msg_iter;
925 	return res;
926 }
927 
928 /*
929  * Atomic setting of ioctl hooks to avoid race
930  * with module unload.
931  */
932 
933 static DEFINE_MUTEX(br_ioctl_mutex);
934 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
935 
936 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
937 {
938 	mutex_lock(&br_ioctl_mutex);
939 	br_ioctl_hook = hook;
940 	mutex_unlock(&br_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(brioctl_set);
943 
944 static DEFINE_MUTEX(vlan_ioctl_mutex);
945 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
946 
947 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
948 {
949 	mutex_lock(&vlan_ioctl_mutex);
950 	vlan_ioctl_hook = hook;
951 	mutex_unlock(&vlan_ioctl_mutex);
952 }
953 EXPORT_SYMBOL(vlan_ioctl_set);
954 
955 static DEFINE_MUTEX(dlci_ioctl_mutex);
956 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
957 
958 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
959 {
960 	mutex_lock(&dlci_ioctl_mutex);
961 	dlci_ioctl_hook = hook;
962 	mutex_unlock(&dlci_ioctl_mutex);
963 }
964 EXPORT_SYMBOL(dlci_ioctl_set);
965 
966 static long sock_do_ioctl(struct net *net, struct socket *sock,
967 				 unsigned int cmd, unsigned long arg)
968 {
969 	int err;
970 	void __user *argp = (void __user *)arg;
971 
972 	err = sock->ops->ioctl(sock, cmd, arg);
973 
974 	/*
975 	 * If this ioctl is unknown try to hand it down
976 	 * to the NIC driver.
977 	 */
978 	if (err != -ENOIOCTLCMD)
979 		return err;
980 
981 	if (cmd == SIOCGIFCONF) {
982 		struct ifconf ifc;
983 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
984 			return -EFAULT;
985 		rtnl_lock();
986 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
987 		rtnl_unlock();
988 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
989 			err = -EFAULT;
990 	} else {
991 		struct ifreq ifr;
992 		bool need_copyout;
993 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
994 			return -EFAULT;
995 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
996 		if (!err && need_copyout)
997 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
998 				return -EFAULT;
999 	}
1000 	return err;
1001 }
1002 
1003 /*
1004  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1005  *	what to do with it - that's up to the protocol still.
1006  */
1007 
1008 struct ns_common *get_net_ns(struct ns_common *ns)
1009 {
1010 	return &get_net(container_of(ns, struct net, ns))->ns;
1011 }
1012 EXPORT_SYMBOL_GPL(get_net_ns);
1013 
1014 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1015 {
1016 	struct socket *sock;
1017 	struct sock *sk;
1018 	void __user *argp = (void __user *)arg;
1019 	int pid, err;
1020 	struct net *net;
1021 
1022 	sock = file->private_data;
1023 	sk = sock->sk;
1024 	net = sock_net(sk);
1025 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1026 		struct ifreq ifr;
1027 		bool need_copyout;
1028 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1029 			return -EFAULT;
1030 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1031 		if (!err && need_copyout)
1032 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1033 				return -EFAULT;
1034 	} else
1035 #ifdef CONFIG_WEXT_CORE
1036 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1037 		err = wext_handle_ioctl(net, cmd, argp);
1038 	} else
1039 #endif
1040 		switch (cmd) {
1041 		case FIOSETOWN:
1042 		case SIOCSPGRP:
1043 			err = -EFAULT;
1044 			if (get_user(pid, (int __user *)argp))
1045 				break;
1046 			err = f_setown(sock->file, pid, 1);
1047 			break;
1048 		case FIOGETOWN:
1049 		case SIOCGPGRP:
1050 			err = put_user(f_getown(sock->file),
1051 				       (int __user *)argp);
1052 			break;
1053 		case SIOCGIFBR:
1054 		case SIOCSIFBR:
1055 		case SIOCBRADDBR:
1056 		case SIOCBRDELBR:
1057 			err = -ENOPKG;
1058 			if (!br_ioctl_hook)
1059 				request_module("bridge");
1060 
1061 			mutex_lock(&br_ioctl_mutex);
1062 			if (br_ioctl_hook)
1063 				err = br_ioctl_hook(net, cmd, argp);
1064 			mutex_unlock(&br_ioctl_mutex);
1065 			break;
1066 		case SIOCGIFVLAN:
1067 		case SIOCSIFVLAN:
1068 			err = -ENOPKG;
1069 			if (!vlan_ioctl_hook)
1070 				request_module("8021q");
1071 
1072 			mutex_lock(&vlan_ioctl_mutex);
1073 			if (vlan_ioctl_hook)
1074 				err = vlan_ioctl_hook(net, argp);
1075 			mutex_unlock(&vlan_ioctl_mutex);
1076 			break;
1077 		case SIOCADDDLCI:
1078 		case SIOCDELDLCI:
1079 			err = -ENOPKG;
1080 			if (!dlci_ioctl_hook)
1081 				request_module("dlci");
1082 
1083 			mutex_lock(&dlci_ioctl_mutex);
1084 			if (dlci_ioctl_hook)
1085 				err = dlci_ioctl_hook(cmd, argp);
1086 			mutex_unlock(&dlci_ioctl_mutex);
1087 			break;
1088 		case SIOCGSKNS:
1089 			err = -EPERM;
1090 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1091 				break;
1092 
1093 			err = open_related_ns(&net->ns, get_net_ns);
1094 			break;
1095 		default:
1096 			err = sock_do_ioctl(net, sock, cmd, arg);
1097 			break;
1098 		}
1099 	return err;
1100 }
1101 
1102 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1103 {
1104 	int err;
1105 	struct socket *sock = NULL;
1106 
1107 	err = security_socket_create(family, type, protocol, 1);
1108 	if (err)
1109 		goto out;
1110 
1111 	sock = sock_alloc();
1112 	if (!sock) {
1113 		err = -ENOMEM;
1114 		goto out;
1115 	}
1116 
1117 	sock->type = type;
1118 	err = security_socket_post_create(sock, family, type, protocol, 1);
1119 	if (err)
1120 		goto out_release;
1121 
1122 out:
1123 	*res = sock;
1124 	return err;
1125 out_release:
1126 	sock_release(sock);
1127 	sock = NULL;
1128 	goto out;
1129 }
1130 EXPORT_SYMBOL(sock_create_lite);
1131 
1132 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1133 		__poll_t events)
1134 {
1135 	struct socket *sock = file->private_data;
1136 
1137 	if (!sock->ops->poll_mask)
1138 		return NULL;
1139 	sock_poll_busy_loop(sock, events);
1140 	return sk_sleep(sock->sk);
1141 }
1142 
1143 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1144 {
1145 	struct socket *sock = file->private_data;
1146 
1147 	/*
1148 	 * We need to be sure we are in sync with the socket flags modification.
1149 	 *
1150 	 * This memory barrier is paired in the wq_has_sleeper.
1151 	 */
1152 	smp_mb();
1153 
1154 	/* this socket can poll_ll so tell the system call */
1155 	return sock->ops->poll_mask(sock, events) |
1156 		(sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1157 }
1158 
1159 /* No kernel lock held - perfect */
1160 static __poll_t sock_poll(struct file *file, poll_table *wait)
1161 {
1162 	struct socket *sock = file->private_data;
1163 	__poll_t events = poll_requested_events(wait), mask = 0;
1164 
1165 	if (sock->ops->poll) {
1166 		sock_poll_busy_loop(sock, events);
1167 		mask = sock->ops->poll(file, sock, wait);
1168 	} else if (sock->ops->poll_mask) {
1169 		sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1170 		mask = sock->ops->poll_mask(sock, events);
1171 	}
1172 
1173 	return mask | sock_poll_busy_flag(sock);
1174 }
1175 
1176 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1177 {
1178 	struct socket *sock = file->private_data;
1179 
1180 	return sock->ops->mmap(file, sock, vma);
1181 }
1182 
1183 static int sock_close(struct inode *inode, struct file *filp)
1184 {
1185 	__sock_release(SOCKET_I(inode), inode);
1186 	return 0;
1187 }
1188 
1189 /*
1190  *	Update the socket async list
1191  *
1192  *	Fasync_list locking strategy.
1193  *
1194  *	1. fasync_list is modified only under process context socket lock
1195  *	   i.e. under semaphore.
1196  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1197  *	   or under socket lock
1198  */
1199 
1200 static int sock_fasync(int fd, struct file *filp, int on)
1201 {
1202 	struct socket *sock = filp->private_data;
1203 	struct sock *sk = sock->sk;
1204 	struct socket_wq *wq;
1205 
1206 	if (sk == NULL)
1207 		return -EINVAL;
1208 
1209 	lock_sock(sk);
1210 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1211 	fasync_helper(fd, filp, on, &wq->fasync_list);
1212 
1213 	if (!wq->fasync_list)
1214 		sock_reset_flag(sk, SOCK_FASYNC);
1215 	else
1216 		sock_set_flag(sk, SOCK_FASYNC);
1217 
1218 	release_sock(sk);
1219 	return 0;
1220 }
1221 
1222 /* This function may be called only under rcu_lock */
1223 
1224 int sock_wake_async(struct socket_wq *wq, int how, int band)
1225 {
1226 	if (!wq || !wq->fasync_list)
1227 		return -1;
1228 
1229 	switch (how) {
1230 	case SOCK_WAKE_WAITD:
1231 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1232 			break;
1233 		goto call_kill;
1234 	case SOCK_WAKE_SPACE:
1235 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1236 			break;
1237 		/* fall through */
1238 	case SOCK_WAKE_IO:
1239 call_kill:
1240 		kill_fasync(&wq->fasync_list, SIGIO, band);
1241 		break;
1242 	case SOCK_WAKE_URG:
1243 		kill_fasync(&wq->fasync_list, SIGURG, band);
1244 	}
1245 
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL(sock_wake_async);
1249 
1250 int __sock_create(struct net *net, int family, int type, int protocol,
1251 			 struct socket **res, int kern)
1252 {
1253 	int err;
1254 	struct socket *sock;
1255 	const struct net_proto_family *pf;
1256 
1257 	/*
1258 	 *      Check protocol is in range
1259 	 */
1260 	if (family < 0 || family >= NPROTO)
1261 		return -EAFNOSUPPORT;
1262 	if (type < 0 || type >= SOCK_MAX)
1263 		return -EINVAL;
1264 
1265 	/* Compatibility.
1266 
1267 	   This uglymoron is moved from INET layer to here to avoid
1268 	   deadlock in module load.
1269 	 */
1270 	if (family == PF_INET && type == SOCK_PACKET) {
1271 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1272 			     current->comm);
1273 		family = PF_PACKET;
1274 	}
1275 
1276 	err = security_socket_create(family, type, protocol, kern);
1277 	if (err)
1278 		return err;
1279 
1280 	/*
1281 	 *	Allocate the socket and allow the family to set things up. if
1282 	 *	the protocol is 0, the family is instructed to select an appropriate
1283 	 *	default.
1284 	 */
1285 	sock = sock_alloc();
1286 	if (!sock) {
1287 		net_warn_ratelimited("socket: no more sockets\n");
1288 		return -ENFILE;	/* Not exactly a match, but its the
1289 				   closest posix thing */
1290 	}
1291 
1292 	sock->type = type;
1293 
1294 #ifdef CONFIG_MODULES
1295 	/* Attempt to load a protocol module if the find failed.
1296 	 *
1297 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298 	 * requested real, full-featured networking support upon configuration.
1299 	 * Otherwise module support will break!
1300 	 */
1301 	if (rcu_access_pointer(net_families[family]) == NULL)
1302 		request_module("net-pf-%d", family);
1303 #endif
1304 
1305 	rcu_read_lock();
1306 	pf = rcu_dereference(net_families[family]);
1307 	err = -EAFNOSUPPORT;
1308 	if (!pf)
1309 		goto out_release;
1310 
1311 	/*
1312 	 * We will call the ->create function, that possibly is in a loadable
1313 	 * module, so we have to bump that loadable module refcnt first.
1314 	 */
1315 	if (!try_module_get(pf->owner))
1316 		goto out_release;
1317 
1318 	/* Now protected by module ref count */
1319 	rcu_read_unlock();
1320 
1321 	err = pf->create(net, sock, protocol, kern);
1322 	if (err < 0)
1323 		goto out_module_put;
1324 
1325 	/*
1326 	 * Now to bump the refcnt of the [loadable] module that owns this
1327 	 * socket at sock_release time we decrement its refcnt.
1328 	 */
1329 	if (!try_module_get(sock->ops->owner))
1330 		goto out_module_busy;
1331 
1332 	/*
1333 	 * Now that we're done with the ->create function, the [loadable]
1334 	 * module can have its refcnt decremented
1335 	 */
1336 	module_put(pf->owner);
1337 	err = security_socket_post_create(sock, family, type, protocol, kern);
1338 	if (err)
1339 		goto out_sock_release;
1340 	*res = sock;
1341 
1342 	return 0;
1343 
1344 out_module_busy:
1345 	err = -EAFNOSUPPORT;
1346 out_module_put:
1347 	sock->ops = NULL;
1348 	module_put(pf->owner);
1349 out_sock_release:
1350 	sock_release(sock);
1351 	return err;
1352 
1353 out_release:
1354 	rcu_read_unlock();
1355 	goto out_sock_release;
1356 }
1357 EXPORT_SYMBOL(__sock_create);
1358 
1359 int sock_create(int family, int type, int protocol, struct socket **res)
1360 {
1361 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362 }
1363 EXPORT_SYMBOL(sock_create);
1364 
1365 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1366 {
1367 	return __sock_create(net, family, type, protocol, res, 1);
1368 }
1369 EXPORT_SYMBOL(sock_create_kern);
1370 
1371 int __sys_socket(int family, int type, int protocol)
1372 {
1373 	int retval;
1374 	struct socket *sock;
1375 	int flags;
1376 
1377 	/* Check the SOCK_* constants for consistency.  */
1378 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382 
1383 	flags = type & ~SOCK_TYPE_MASK;
1384 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385 		return -EINVAL;
1386 	type &= SOCK_TYPE_MASK;
1387 
1388 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390 
1391 	retval = sock_create(family, type, protocol, &sock);
1392 	if (retval < 0)
1393 		return retval;
1394 
1395 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396 }
1397 
1398 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1399 {
1400 	return __sys_socket(family, type, protocol);
1401 }
1402 
1403 /*
1404  *	Create a pair of connected sockets.
1405  */
1406 
1407 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1408 {
1409 	struct socket *sock1, *sock2;
1410 	int fd1, fd2, err;
1411 	struct file *newfile1, *newfile2;
1412 	int flags;
1413 
1414 	flags = type & ~SOCK_TYPE_MASK;
1415 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1416 		return -EINVAL;
1417 	type &= SOCK_TYPE_MASK;
1418 
1419 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1420 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1421 
1422 	/*
1423 	 * reserve descriptors and make sure we won't fail
1424 	 * to return them to userland.
1425 	 */
1426 	fd1 = get_unused_fd_flags(flags);
1427 	if (unlikely(fd1 < 0))
1428 		return fd1;
1429 
1430 	fd2 = get_unused_fd_flags(flags);
1431 	if (unlikely(fd2 < 0)) {
1432 		put_unused_fd(fd1);
1433 		return fd2;
1434 	}
1435 
1436 	err = put_user(fd1, &usockvec[0]);
1437 	if (err)
1438 		goto out;
1439 
1440 	err = put_user(fd2, &usockvec[1]);
1441 	if (err)
1442 		goto out;
1443 
1444 	/*
1445 	 * Obtain the first socket and check if the underlying protocol
1446 	 * supports the socketpair call.
1447 	 */
1448 
1449 	err = sock_create(family, type, protocol, &sock1);
1450 	if (unlikely(err < 0))
1451 		goto out;
1452 
1453 	err = sock_create(family, type, protocol, &sock2);
1454 	if (unlikely(err < 0)) {
1455 		sock_release(sock1);
1456 		goto out;
1457 	}
1458 
1459 	err = security_socket_socketpair(sock1, sock2);
1460 	if (unlikely(err)) {
1461 		sock_release(sock2);
1462 		sock_release(sock1);
1463 		goto out;
1464 	}
1465 
1466 	err = sock1->ops->socketpair(sock1, sock2);
1467 	if (unlikely(err < 0)) {
1468 		sock_release(sock2);
1469 		sock_release(sock1);
1470 		goto out;
1471 	}
1472 
1473 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1474 	if (IS_ERR(newfile1)) {
1475 		err = PTR_ERR(newfile1);
1476 		sock_release(sock2);
1477 		goto out;
1478 	}
1479 
1480 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1481 	if (IS_ERR(newfile2)) {
1482 		err = PTR_ERR(newfile2);
1483 		fput(newfile1);
1484 		goto out;
1485 	}
1486 
1487 	audit_fd_pair(fd1, fd2);
1488 
1489 	fd_install(fd1, newfile1);
1490 	fd_install(fd2, newfile2);
1491 	return 0;
1492 
1493 out:
1494 	put_unused_fd(fd2);
1495 	put_unused_fd(fd1);
1496 	return err;
1497 }
1498 
1499 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1500 		int __user *, usockvec)
1501 {
1502 	return __sys_socketpair(family, type, protocol, usockvec);
1503 }
1504 
1505 /*
1506  *	Bind a name to a socket. Nothing much to do here since it's
1507  *	the protocol's responsibility to handle the local address.
1508  *
1509  *	We move the socket address to kernel space before we call
1510  *	the protocol layer (having also checked the address is ok).
1511  */
1512 
1513 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1514 {
1515 	struct socket *sock;
1516 	struct sockaddr_storage address;
1517 	int err, fput_needed;
1518 
1519 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1520 	if (sock) {
1521 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1522 		if (err >= 0) {
1523 			err = security_socket_bind(sock,
1524 						   (struct sockaddr *)&address,
1525 						   addrlen);
1526 			if (!err)
1527 				err = sock->ops->bind(sock,
1528 						      (struct sockaddr *)
1529 						      &address, addrlen);
1530 		}
1531 		fput_light(sock->file, fput_needed);
1532 	}
1533 	return err;
1534 }
1535 
1536 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1537 {
1538 	return __sys_bind(fd, umyaddr, addrlen);
1539 }
1540 
1541 /*
1542  *	Perform a listen. Basically, we allow the protocol to do anything
1543  *	necessary for a listen, and if that works, we mark the socket as
1544  *	ready for listening.
1545  */
1546 
1547 int __sys_listen(int fd, int backlog)
1548 {
1549 	struct socket *sock;
1550 	int err, fput_needed;
1551 	int somaxconn;
1552 
1553 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 	if (sock) {
1555 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1556 		if ((unsigned int)backlog > somaxconn)
1557 			backlog = somaxconn;
1558 
1559 		err = security_socket_listen(sock, backlog);
1560 		if (!err)
1561 			err = sock->ops->listen(sock, backlog);
1562 
1563 		fput_light(sock->file, fput_needed);
1564 	}
1565 	return err;
1566 }
1567 
1568 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1569 {
1570 	return __sys_listen(fd, backlog);
1571 }
1572 
1573 /*
1574  *	For accept, we attempt to create a new socket, set up the link
1575  *	with the client, wake up the client, then return the new
1576  *	connected fd. We collect the address of the connector in kernel
1577  *	space and move it to user at the very end. This is unclean because
1578  *	we open the socket then return an error.
1579  *
1580  *	1003.1g adds the ability to recvmsg() to query connection pending
1581  *	status to recvmsg. We need to add that support in a way thats
1582  *	clean when we restructure accept also.
1583  */
1584 
1585 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1586 		  int __user *upeer_addrlen, int flags)
1587 {
1588 	struct socket *sock, *newsock;
1589 	struct file *newfile;
1590 	int err, len, newfd, fput_needed;
1591 	struct sockaddr_storage address;
1592 
1593 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1594 		return -EINVAL;
1595 
1596 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1597 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1598 
1599 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 	if (!sock)
1601 		goto out;
1602 
1603 	err = -ENFILE;
1604 	newsock = sock_alloc();
1605 	if (!newsock)
1606 		goto out_put;
1607 
1608 	newsock->type = sock->type;
1609 	newsock->ops = sock->ops;
1610 
1611 	/*
1612 	 * We don't need try_module_get here, as the listening socket (sock)
1613 	 * has the protocol module (sock->ops->owner) held.
1614 	 */
1615 	__module_get(newsock->ops->owner);
1616 
1617 	newfd = get_unused_fd_flags(flags);
1618 	if (unlikely(newfd < 0)) {
1619 		err = newfd;
1620 		sock_release(newsock);
1621 		goto out_put;
1622 	}
1623 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1624 	if (IS_ERR(newfile)) {
1625 		err = PTR_ERR(newfile);
1626 		put_unused_fd(newfd);
1627 		goto out_put;
1628 	}
1629 
1630 	err = security_socket_accept(sock, newsock);
1631 	if (err)
1632 		goto out_fd;
1633 
1634 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1635 	if (err < 0)
1636 		goto out_fd;
1637 
1638 	if (upeer_sockaddr) {
1639 		len = newsock->ops->getname(newsock,
1640 					(struct sockaddr *)&address, 2);
1641 		if (len < 0) {
1642 			err = -ECONNABORTED;
1643 			goto out_fd;
1644 		}
1645 		err = move_addr_to_user(&address,
1646 					len, upeer_sockaddr, upeer_addrlen);
1647 		if (err < 0)
1648 			goto out_fd;
1649 	}
1650 
1651 	/* File flags are not inherited via accept() unlike another OSes. */
1652 
1653 	fd_install(newfd, newfile);
1654 	err = newfd;
1655 
1656 out_put:
1657 	fput_light(sock->file, fput_needed);
1658 out:
1659 	return err;
1660 out_fd:
1661 	fput(newfile);
1662 	put_unused_fd(newfd);
1663 	goto out_put;
1664 }
1665 
1666 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1667 		int __user *, upeer_addrlen, int, flags)
1668 {
1669 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1670 }
1671 
1672 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1673 		int __user *, upeer_addrlen)
1674 {
1675 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1676 }
1677 
1678 /*
1679  *	Attempt to connect to a socket with the server address.  The address
1680  *	is in user space so we verify it is OK and move it to kernel space.
1681  *
1682  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1683  *	break bindings
1684  *
1685  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1686  *	other SEQPACKET protocols that take time to connect() as it doesn't
1687  *	include the -EINPROGRESS status for such sockets.
1688  */
1689 
1690 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1691 {
1692 	struct socket *sock;
1693 	struct sockaddr_storage address;
1694 	int err, fput_needed;
1695 
1696 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1697 	if (!sock)
1698 		goto out;
1699 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1700 	if (err < 0)
1701 		goto out_put;
1702 
1703 	err =
1704 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1705 	if (err)
1706 		goto out_put;
1707 
1708 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1709 				 sock->file->f_flags);
1710 out_put:
1711 	fput_light(sock->file, fput_needed);
1712 out:
1713 	return err;
1714 }
1715 
1716 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1717 		int, addrlen)
1718 {
1719 	return __sys_connect(fd, uservaddr, addrlen);
1720 }
1721 
1722 /*
1723  *	Get the local address ('name') of a socket object. Move the obtained
1724  *	name to user space.
1725  */
1726 
1727 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1728 		      int __user *usockaddr_len)
1729 {
1730 	struct socket *sock;
1731 	struct sockaddr_storage address;
1732 	int err, fput_needed;
1733 
1734 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 	if (!sock)
1736 		goto out;
1737 
1738 	err = security_socket_getsockname(sock);
1739 	if (err)
1740 		goto out_put;
1741 
1742 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1743 	if (err < 0)
1744 		goto out_put;
1745         /* "err" is actually length in this case */
1746 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1747 
1748 out_put:
1749 	fput_light(sock->file, fput_needed);
1750 out:
1751 	return err;
1752 }
1753 
1754 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1755 		int __user *, usockaddr_len)
1756 {
1757 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1758 }
1759 
1760 /*
1761  *	Get the remote address ('name') of a socket object. Move the obtained
1762  *	name to user space.
1763  */
1764 
1765 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1766 		      int __user *usockaddr_len)
1767 {
1768 	struct socket *sock;
1769 	struct sockaddr_storage address;
1770 	int err, fput_needed;
1771 
1772 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773 	if (sock != NULL) {
1774 		err = security_socket_getpeername(sock);
1775 		if (err) {
1776 			fput_light(sock->file, fput_needed);
1777 			return err;
1778 		}
1779 
1780 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1781 		if (err >= 0)
1782 			/* "err" is actually length in this case */
1783 			err = move_addr_to_user(&address, err, usockaddr,
1784 						usockaddr_len);
1785 		fput_light(sock->file, fput_needed);
1786 	}
1787 	return err;
1788 }
1789 
1790 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1791 		int __user *, usockaddr_len)
1792 {
1793 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1794 }
1795 
1796 /*
1797  *	Send a datagram to a given address. We move the address into kernel
1798  *	space and check the user space data area is readable before invoking
1799  *	the protocol.
1800  */
1801 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1802 		 struct sockaddr __user *addr,  int addr_len)
1803 {
1804 	struct socket *sock;
1805 	struct sockaddr_storage address;
1806 	int err;
1807 	struct msghdr msg;
1808 	struct iovec iov;
1809 	int fput_needed;
1810 
1811 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1812 	if (unlikely(err))
1813 		return err;
1814 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 	if (!sock)
1816 		goto out;
1817 
1818 	msg.msg_name = NULL;
1819 	msg.msg_control = NULL;
1820 	msg.msg_controllen = 0;
1821 	msg.msg_namelen = 0;
1822 	if (addr) {
1823 		err = move_addr_to_kernel(addr, addr_len, &address);
1824 		if (err < 0)
1825 			goto out_put;
1826 		msg.msg_name = (struct sockaddr *)&address;
1827 		msg.msg_namelen = addr_len;
1828 	}
1829 	if (sock->file->f_flags & O_NONBLOCK)
1830 		flags |= MSG_DONTWAIT;
1831 	msg.msg_flags = flags;
1832 	err = sock_sendmsg(sock, &msg);
1833 
1834 out_put:
1835 	fput_light(sock->file, fput_needed);
1836 out:
1837 	return err;
1838 }
1839 
1840 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1841 		unsigned int, flags, struct sockaddr __user *, addr,
1842 		int, addr_len)
1843 {
1844 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1845 }
1846 
1847 /*
1848  *	Send a datagram down a socket.
1849  */
1850 
1851 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1852 		unsigned int, flags)
1853 {
1854 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1855 }
1856 
1857 /*
1858  *	Receive a frame from the socket and optionally record the address of the
1859  *	sender. We verify the buffers are writable and if needed move the
1860  *	sender address from kernel to user space.
1861  */
1862 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1863 		   struct sockaddr __user *addr, int __user *addr_len)
1864 {
1865 	struct socket *sock;
1866 	struct iovec iov;
1867 	struct msghdr msg;
1868 	struct sockaddr_storage address;
1869 	int err, err2;
1870 	int fput_needed;
1871 
1872 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1873 	if (unlikely(err))
1874 		return err;
1875 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1876 	if (!sock)
1877 		goto out;
1878 
1879 	msg.msg_control = NULL;
1880 	msg.msg_controllen = 0;
1881 	/* Save some cycles and don't copy the address if not needed */
1882 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1883 	/* We assume all kernel code knows the size of sockaddr_storage */
1884 	msg.msg_namelen = 0;
1885 	msg.msg_iocb = NULL;
1886 	msg.msg_flags = 0;
1887 	if (sock->file->f_flags & O_NONBLOCK)
1888 		flags |= MSG_DONTWAIT;
1889 	err = sock_recvmsg(sock, &msg, flags);
1890 
1891 	if (err >= 0 && addr != NULL) {
1892 		err2 = move_addr_to_user(&address,
1893 					 msg.msg_namelen, addr, addr_len);
1894 		if (err2 < 0)
1895 			err = err2;
1896 	}
1897 
1898 	fput_light(sock->file, fput_needed);
1899 out:
1900 	return err;
1901 }
1902 
1903 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1904 		unsigned int, flags, struct sockaddr __user *, addr,
1905 		int __user *, addr_len)
1906 {
1907 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1908 }
1909 
1910 /*
1911  *	Receive a datagram from a socket.
1912  */
1913 
1914 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1915 		unsigned int, flags)
1916 {
1917 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1918 }
1919 
1920 /*
1921  *	Set a socket option. Because we don't know the option lengths we have
1922  *	to pass the user mode parameter for the protocols to sort out.
1923  */
1924 
1925 static int __sys_setsockopt(int fd, int level, int optname,
1926 			    char __user *optval, int optlen)
1927 {
1928 	int err, fput_needed;
1929 	struct socket *sock;
1930 
1931 	if (optlen < 0)
1932 		return -EINVAL;
1933 
1934 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 	if (sock != NULL) {
1936 		err = security_socket_setsockopt(sock, level, optname);
1937 		if (err)
1938 			goto out_put;
1939 
1940 		if (level == SOL_SOCKET)
1941 			err =
1942 			    sock_setsockopt(sock, level, optname, optval,
1943 					    optlen);
1944 		else
1945 			err =
1946 			    sock->ops->setsockopt(sock, level, optname, optval,
1947 						  optlen);
1948 out_put:
1949 		fput_light(sock->file, fput_needed);
1950 	}
1951 	return err;
1952 }
1953 
1954 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1955 		char __user *, optval, int, optlen)
1956 {
1957 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1958 }
1959 
1960 /*
1961  *	Get a socket option. Because we don't know the option lengths we have
1962  *	to pass a user mode parameter for the protocols to sort out.
1963  */
1964 
1965 static int __sys_getsockopt(int fd, int level, int optname,
1966 			    char __user *optval, int __user *optlen)
1967 {
1968 	int err, fput_needed;
1969 	struct socket *sock;
1970 
1971 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972 	if (sock != NULL) {
1973 		err = security_socket_getsockopt(sock, level, optname);
1974 		if (err)
1975 			goto out_put;
1976 
1977 		if (level == SOL_SOCKET)
1978 			err =
1979 			    sock_getsockopt(sock, level, optname, optval,
1980 					    optlen);
1981 		else
1982 			err =
1983 			    sock->ops->getsockopt(sock, level, optname, optval,
1984 						  optlen);
1985 out_put:
1986 		fput_light(sock->file, fput_needed);
1987 	}
1988 	return err;
1989 }
1990 
1991 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1992 		char __user *, optval, int __user *, optlen)
1993 {
1994 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1995 }
1996 
1997 /*
1998  *	Shutdown a socket.
1999  */
2000 
2001 int __sys_shutdown(int fd, int how)
2002 {
2003 	int err, fput_needed;
2004 	struct socket *sock;
2005 
2006 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2007 	if (sock != NULL) {
2008 		err = security_socket_shutdown(sock, how);
2009 		if (!err)
2010 			err = sock->ops->shutdown(sock, how);
2011 		fput_light(sock->file, fput_needed);
2012 	}
2013 	return err;
2014 }
2015 
2016 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2017 {
2018 	return __sys_shutdown(fd, how);
2019 }
2020 
2021 /* A couple of helpful macros for getting the address of the 32/64 bit
2022  * fields which are the same type (int / unsigned) on our platforms.
2023  */
2024 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2025 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2026 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2027 
2028 struct used_address {
2029 	struct sockaddr_storage name;
2030 	unsigned int name_len;
2031 };
2032 
2033 static int copy_msghdr_from_user(struct msghdr *kmsg,
2034 				 struct user_msghdr __user *umsg,
2035 				 struct sockaddr __user **save_addr,
2036 				 struct iovec **iov)
2037 {
2038 	struct user_msghdr msg;
2039 	ssize_t err;
2040 
2041 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2042 		return -EFAULT;
2043 
2044 	kmsg->msg_control = (void __force *)msg.msg_control;
2045 	kmsg->msg_controllen = msg.msg_controllen;
2046 	kmsg->msg_flags = msg.msg_flags;
2047 
2048 	kmsg->msg_namelen = msg.msg_namelen;
2049 	if (!msg.msg_name)
2050 		kmsg->msg_namelen = 0;
2051 
2052 	if (kmsg->msg_namelen < 0)
2053 		return -EINVAL;
2054 
2055 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2056 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2057 
2058 	if (save_addr)
2059 		*save_addr = msg.msg_name;
2060 
2061 	if (msg.msg_name && kmsg->msg_namelen) {
2062 		if (!save_addr) {
2063 			err = move_addr_to_kernel(msg.msg_name,
2064 						  kmsg->msg_namelen,
2065 						  kmsg->msg_name);
2066 			if (err < 0)
2067 				return err;
2068 		}
2069 	} else {
2070 		kmsg->msg_name = NULL;
2071 		kmsg->msg_namelen = 0;
2072 	}
2073 
2074 	if (msg.msg_iovlen > UIO_MAXIOV)
2075 		return -EMSGSIZE;
2076 
2077 	kmsg->msg_iocb = NULL;
2078 
2079 	return import_iovec(save_addr ? READ : WRITE,
2080 			    msg.msg_iov, msg.msg_iovlen,
2081 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2082 }
2083 
2084 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2085 			 struct msghdr *msg_sys, unsigned int flags,
2086 			 struct used_address *used_address,
2087 			 unsigned int allowed_msghdr_flags)
2088 {
2089 	struct compat_msghdr __user *msg_compat =
2090 	    (struct compat_msghdr __user *)msg;
2091 	struct sockaddr_storage address;
2092 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2093 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2094 				__aligned(sizeof(__kernel_size_t));
2095 	/* 20 is size of ipv6_pktinfo */
2096 	unsigned char *ctl_buf = ctl;
2097 	int ctl_len;
2098 	ssize_t err;
2099 
2100 	msg_sys->msg_name = &address;
2101 
2102 	if (MSG_CMSG_COMPAT & flags)
2103 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2104 	else
2105 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2106 	if (err < 0)
2107 		return err;
2108 
2109 	err = -ENOBUFS;
2110 
2111 	if (msg_sys->msg_controllen > INT_MAX)
2112 		goto out_freeiov;
2113 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2114 	ctl_len = msg_sys->msg_controllen;
2115 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2116 		err =
2117 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2118 						     sizeof(ctl));
2119 		if (err)
2120 			goto out_freeiov;
2121 		ctl_buf = msg_sys->msg_control;
2122 		ctl_len = msg_sys->msg_controllen;
2123 	} else if (ctl_len) {
2124 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2125 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2126 		if (ctl_len > sizeof(ctl)) {
2127 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2128 			if (ctl_buf == NULL)
2129 				goto out_freeiov;
2130 		}
2131 		err = -EFAULT;
2132 		/*
2133 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2134 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2135 		 * checking falls down on this.
2136 		 */
2137 		if (copy_from_user(ctl_buf,
2138 				   (void __user __force *)msg_sys->msg_control,
2139 				   ctl_len))
2140 			goto out_freectl;
2141 		msg_sys->msg_control = ctl_buf;
2142 	}
2143 	msg_sys->msg_flags = flags;
2144 
2145 	if (sock->file->f_flags & O_NONBLOCK)
2146 		msg_sys->msg_flags |= MSG_DONTWAIT;
2147 	/*
2148 	 * If this is sendmmsg() and current destination address is same as
2149 	 * previously succeeded address, omit asking LSM's decision.
2150 	 * used_address->name_len is initialized to UINT_MAX so that the first
2151 	 * destination address never matches.
2152 	 */
2153 	if (used_address && msg_sys->msg_name &&
2154 	    used_address->name_len == msg_sys->msg_namelen &&
2155 	    !memcmp(&used_address->name, msg_sys->msg_name,
2156 		    used_address->name_len)) {
2157 		err = sock_sendmsg_nosec(sock, msg_sys);
2158 		goto out_freectl;
2159 	}
2160 	err = sock_sendmsg(sock, msg_sys);
2161 	/*
2162 	 * If this is sendmmsg() and sending to current destination address was
2163 	 * successful, remember it.
2164 	 */
2165 	if (used_address && err >= 0) {
2166 		used_address->name_len = msg_sys->msg_namelen;
2167 		if (msg_sys->msg_name)
2168 			memcpy(&used_address->name, msg_sys->msg_name,
2169 			       used_address->name_len);
2170 	}
2171 
2172 out_freectl:
2173 	if (ctl_buf != ctl)
2174 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2175 out_freeiov:
2176 	kfree(iov);
2177 	return err;
2178 }
2179 
2180 /*
2181  *	BSD sendmsg interface
2182  */
2183 
2184 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2185 		   bool forbid_cmsg_compat)
2186 {
2187 	int fput_needed, err;
2188 	struct msghdr msg_sys;
2189 	struct socket *sock;
2190 
2191 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2192 		return -EINVAL;
2193 
2194 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195 	if (!sock)
2196 		goto out;
2197 
2198 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2199 
2200 	fput_light(sock->file, fput_needed);
2201 out:
2202 	return err;
2203 }
2204 
2205 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2206 {
2207 	return __sys_sendmsg(fd, msg, flags, true);
2208 }
2209 
2210 /*
2211  *	Linux sendmmsg interface
2212  */
2213 
2214 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2215 		   unsigned int flags, bool forbid_cmsg_compat)
2216 {
2217 	int fput_needed, err, datagrams;
2218 	struct socket *sock;
2219 	struct mmsghdr __user *entry;
2220 	struct compat_mmsghdr __user *compat_entry;
2221 	struct msghdr msg_sys;
2222 	struct used_address used_address;
2223 	unsigned int oflags = flags;
2224 
2225 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2226 		return -EINVAL;
2227 
2228 	if (vlen > UIO_MAXIOV)
2229 		vlen = UIO_MAXIOV;
2230 
2231 	datagrams = 0;
2232 
2233 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2234 	if (!sock)
2235 		return err;
2236 
2237 	used_address.name_len = UINT_MAX;
2238 	entry = mmsg;
2239 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2240 	err = 0;
2241 	flags |= MSG_BATCH;
2242 
2243 	while (datagrams < vlen) {
2244 		if (datagrams == vlen - 1)
2245 			flags = oflags;
2246 
2247 		if (MSG_CMSG_COMPAT & flags) {
2248 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2249 					     &msg_sys, flags, &used_address, MSG_EOR);
2250 			if (err < 0)
2251 				break;
2252 			err = __put_user(err, &compat_entry->msg_len);
2253 			++compat_entry;
2254 		} else {
2255 			err = ___sys_sendmsg(sock,
2256 					     (struct user_msghdr __user *)entry,
2257 					     &msg_sys, flags, &used_address, MSG_EOR);
2258 			if (err < 0)
2259 				break;
2260 			err = put_user(err, &entry->msg_len);
2261 			++entry;
2262 		}
2263 
2264 		if (err)
2265 			break;
2266 		++datagrams;
2267 		if (msg_data_left(&msg_sys))
2268 			break;
2269 		cond_resched();
2270 	}
2271 
2272 	fput_light(sock->file, fput_needed);
2273 
2274 	/* We only return an error if no datagrams were able to be sent */
2275 	if (datagrams != 0)
2276 		return datagrams;
2277 
2278 	return err;
2279 }
2280 
2281 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2282 		unsigned int, vlen, unsigned int, flags)
2283 {
2284 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2285 }
2286 
2287 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2288 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2289 {
2290 	struct compat_msghdr __user *msg_compat =
2291 	    (struct compat_msghdr __user *)msg;
2292 	struct iovec iovstack[UIO_FASTIOV];
2293 	struct iovec *iov = iovstack;
2294 	unsigned long cmsg_ptr;
2295 	int len;
2296 	ssize_t err;
2297 
2298 	/* kernel mode address */
2299 	struct sockaddr_storage addr;
2300 
2301 	/* user mode address pointers */
2302 	struct sockaddr __user *uaddr;
2303 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2304 
2305 	msg_sys->msg_name = &addr;
2306 
2307 	if (MSG_CMSG_COMPAT & flags)
2308 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2309 	else
2310 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2311 	if (err < 0)
2312 		return err;
2313 
2314 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2315 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2316 
2317 	/* We assume all kernel code knows the size of sockaddr_storage */
2318 	msg_sys->msg_namelen = 0;
2319 
2320 	if (sock->file->f_flags & O_NONBLOCK)
2321 		flags |= MSG_DONTWAIT;
2322 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2323 	if (err < 0)
2324 		goto out_freeiov;
2325 	len = err;
2326 
2327 	if (uaddr != NULL) {
2328 		err = move_addr_to_user(&addr,
2329 					msg_sys->msg_namelen, uaddr,
2330 					uaddr_len);
2331 		if (err < 0)
2332 			goto out_freeiov;
2333 	}
2334 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2335 			 COMPAT_FLAGS(msg));
2336 	if (err)
2337 		goto out_freeiov;
2338 	if (MSG_CMSG_COMPAT & flags)
2339 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2340 				 &msg_compat->msg_controllen);
2341 	else
2342 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2343 				 &msg->msg_controllen);
2344 	if (err)
2345 		goto out_freeiov;
2346 	err = len;
2347 
2348 out_freeiov:
2349 	kfree(iov);
2350 	return err;
2351 }
2352 
2353 /*
2354  *	BSD recvmsg interface
2355  */
2356 
2357 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2358 		   bool forbid_cmsg_compat)
2359 {
2360 	int fput_needed, err;
2361 	struct msghdr msg_sys;
2362 	struct socket *sock;
2363 
2364 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2365 		return -EINVAL;
2366 
2367 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2368 	if (!sock)
2369 		goto out;
2370 
2371 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2372 
2373 	fput_light(sock->file, fput_needed);
2374 out:
2375 	return err;
2376 }
2377 
2378 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2379 		unsigned int, flags)
2380 {
2381 	return __sys_recvmsg(fd, msg, flags, true);
2382 }
2383 
2384 /*
2385  *     Linux recvmmsg interface
2386  */
2387 
2388 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2389 		   unsigned int flags, struct timespec *timeout)
2390 {
2391 	int fput_needed, err, datagrams;
2392 	struct socket *sock;
2393 	struct mmsghdr __user *entry;
2394 	struct compat_mmsghdr __user *compat_entry;
2395 	struct msghdr msg_sys;
2396 	struct timespec64 end_time;
2397 	struct timespec64 timeout64;
2398 
2399 	if (timeout &&
2400 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2401 				    timeout->tv_nsec))
2402 		return -EINVAL;
2403 
2404 	datagrams = 0;
2405 
2406 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2407 	if (!sock)
2408 		return err;
2409 
2410 	if (likely(!(flags & MSG_ERRQUEUE))) {
2411 		err = sock_error(sock->sk);
2412 		if (err) {
2413 			datagrams = err;
2414 			goto out_put;
2415 		}
2416 	}
2417 
2418 	entry = mmsg;
2419 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2420 
2421 	while (datagrams < vlen) {
2422 		/*
2423 		 * No need to ask LSM for more than the first datagram.
2424 		 */
2425 		if (MSG_CMSG_COMPAT & flags) {
2426 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2427 					     &msg_sys, flags & ~MSG_WAITFORONE,
2428 					     datagrams);
2429 			if (err < 0)
2430 				break;
2431 			err = __put_user(err, &compat_entry->msg_len);
2432 			++compat_entry;
2433 		} else {
2434 			err = ___sys_recvmsg(sock,
2435 					     (struct user_msghdr __user *)entry,
2436 					     &msg_sys, flags & ~MSG_WAITFORONE,
2437 					     datagrams);
2438 			if (err < 0)
2439 				break;
2440 			err = put_user(err, &entry->msg_len);
2441 			++entry;
2442 		}
2443 
2444 		if (err)
2445 			break;
2446 		++datagrams;
2447 
2448 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2449 		if (flags & MSG_WAITFORONE)
2450 			flags |= MSG_DONTWAIT;
2451 
2452 		if (timeout) {
2453 			ktime_get_ts64(&timeout64);
2454 			*timeout = timespec64_to_timespec(
2455 					timespec64_sub(end_time, timeout64));
2456 			if (timeout->tv_sec < 0) {
2457 				timeout->tv_sec = timeout->tv_nsec = 0;
2458 				break;
2459 			}
2460 
2461 			/* Timeout, return less than vlen datagrams */
2462 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2463 				break;
2464 		}
2465 
2466 		/* Out of band data, return right away */
2467 		if (msg_sys.msg_flags & MSG_OOB)
2468 			break;
2469 		cond_resched();
2470 	}
2471 
2472 	if (err == 0)
2473 		goto out_put;
2474 
2475 	if (datagrams == 0) {
2476 		datagrams = err;
2477 		goto out_put;
2478 	}
2479 
2480 	/*
2481 	 * We may return less entries than requested (vlen) if the
2482 	 * sock is non block and there aren't enough datagrams...
2483 	 */
2484 	if (err != -EAGAIN) {
2485 		/*
2486 		 * ... or  if recvmsg returns an error after we
2487 		 * received some datagrams, where we record the
2488 		 * error to return on the next call or if the
2489 		 * app asks about it using getsockopt(SO_ERROR).
2490 		 */
2491 		sock->sk->sk_err = -err;
2492 	}
2493 out_put:
2494 	fput_light(sock->file, fput_needed);
2495 
2496 	return datagrams;
2497 }
2498 
2499 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2500 			   unsigned int vlen, unsigned int flags,
2501 			   struct timespec __user *timeout)
2502 {
2503 	int datagrams;
2504 	struct timespec timeout_sys;
2505 
2506 	if (flags & MSG_CMSG_COMPAT)
2507 		return -EINVAL;
2508 
2509 	if (!timeout)
2510 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2511 
2512 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2513 		return -EFAULT;
2514 
2515 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2516 
2517 	if (datagrams > 0 &&
2518 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2519 		datagrams = -EFAULT;
2520 
2521 	return datagrams;
2522 }
2523 
2524 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2525 		unsigned int, vlen, unsigned int, flags,
2526 		struct timespec __user *, timeout)
2527 {
2528 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2529 }
2530 
2531 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2532 /* Argument list sizes for sys_socketcall */
2533 #define AL(x) ((x) * sizeof(unsigned long))
2534 static const unsigned char nargs[21] = {
2535 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2536 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2537 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2538 	AL(4), AL(5), AL(4)
2539 };
2540 
2541 #undef AL
2542 
2543 /*
2544  *	System call vectors.
2545  *
2546  *	Argument checking cleaned up. Saved 20% in size.
2547  *  This function doesn't need to set the kernel lock because
2548  *  it is set by the callees.
2549  */
2550 
2551 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2552 {
2553 	unsigned long a[AUDITSC_ARGS];
2554 	unsigned long a0, a1;
2555 	int err;
2556 	unsigned int len;
2557 
2558 	if (call < 1 || call > SYS_SENDMMSG)
2559 		return -EINVAL;
2560 
2561 	len = nargs[call];
2562 	if (len > sizeof(a))
2563 		return -EINVAL;
2564 
2565 	/* copy_from_user should be SMP safe. */
2566 	if (copy_from_user(a, args, len))
2567 		return -EFAULT;
2568 
2569 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2570 	if (err)
2571 		return err;
2572 
2573 	a0 = a[0];
2574 	a1 = a[1];
2575 
2576 	switch (call) {
2577 	case SYS_SOCKET:
2578 		err = __sys_socket(a0, a1, a[2]);
2579 		break;
2580 	case SYS_BIND:
2581 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2582 		break;
2583 	case SYS_CONNECT:
2584 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2585 		break;
2586 	case SYS_LISTEN:
2587 		err = __sys_listen(a0, a1);
2588 		break;
2589 	case SYS_ACCEPT:
2590 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2591 				    (int __user *)a[2], 0);
2592 		break;
2593 	case SYS_GETSOCKNAME:
2594 		err =
2595 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2596 				      (int __user *)a[2]);
2597 		break;
2598 	case SYS_GETPEERNAME:
2599 		err =
2600 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2601 				      (int __user *)a[2]);
2602 		break;
2603 	case SYS_SOCKETPAIR:
2604 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2605 		break;
2606 	case SYS_SEND:
2607 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2608 				   NULL, 0);
2609 		break;
2610 	case SYS_SENDTO:
2611 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2612 				   (struct sockaddr __user *)a[4], a[5]);
2613 		break;
2614 	case SYS_RECV:
2615 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2616 				     NULL, NULL);
2617 		break;
2618 	case SYS_RECVFROM:
2619 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2620 				     (struct sockaddr __user *)a[4],
2621 				     (int __user *)a[5]);
2622 		break;
2623 	case SYS_SHUTDOWN:
2624 		err = __sys_shutdown(a0, a1);
2625 		break;
2626 	case SYS_SETSOCKOPT:
2627 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2628 				       a[4]);
2629 		break;
2630 	case SYS_GETSOCKOPT:
2631 		err =
2632 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2633 				     (int __user *)a[4]);
2634 		break;
2635 	case SYS_SENDMSG:
2636 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2637 				    a[2], true);
2638 		break;
2639 	case SYS_SENDMMSG:
2640 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2641 				     a[3], true);
2642 		break;
2643 	case SYS_RECVMSG:
2644 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2645 				    a[2], true);
2646 		break;
2647 	case SYS_RECVMMSG:
2648 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2649 				      a[3], (struct timespec __user *)a[4]);
2650 		break;
2651 	case SYS_ACCEPT4:
2652 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2653 				    (int __user *)a[2], a[3]);
2654 		break;
2655 	default:
2656 		err = -EINVAL;
2657 		break;
2658 	}
2659 	return err;
2660 }
2661 
2662 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2663 
2664 /**
2665  *	sock_register - add a socket protocol handler
2666  *	@ops: description of protocol
2667  *
2668  *	This function is called by a protocol handler that wants to
2669  *	advertise its address family, and have it linked into the
2670  *	socket interface. The value ops->family corresponds to the
2671  *	socket system call protocol family.
2672  */
2673 int sock_register(const struct net_proto_family *ops)
2674 {
2675 	int err;
2676 
2677 	if (ops->family >= NPROTO) {
2678 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2679 		return -ENOBUFS;
2680 	}
2681 
2682 	spin_lock(&net_family_lock);
2683 	if (rcu_dereference_protected(net_families[ops->family],
2684 				      lockdep_is_held(&net_family_lock)))
2685 		err = -EEXIST;
2686 	else {
2687 		rcu_assign_pointer(net_families[ops->family], ops);
2688 		err = 0;
2689 	}
2690 	spin_unlock(&net_family_lock);
2691 
2692 	pr_info("NET: Registered protocol family %d\n", ops->family);
2693 	return err;
2694 }
2695 EXPORT_SYMBOL(sock_register);
2696 
2697 /**
2698  *	sock_unregister - remove a protocol handler
2699  *	@family: protocol family to remove
2700  *
2701  *	This function is called by a protocol handler that wants to
2702  *	remove its address family, and have it unlinked from the
2703  *	new socket creation.
2704  *
2705  *	If protocol handler is a module, then it can use module reference
2706  *	counts to protect against new references. If protocol handler is not
2707  *	a module then it needs to provide its own protection in
2708  *	the ops->create routine.
2709  */
2710 void sock_unregister(int family)
2711 {
2712 	BUG_ON(family < 0 || family >= NPROTO);
2713 
2714 	spin_lock(&net_family_lock);
2715 	RCU_INIT_POINTER(net_families[family], NULL);
2716 	spin_unlock(&net_family_lock);
2717 
2718 	synchronize_rcu();
2719 
2720 	pr_info("NET: Unregistered protocol family %d\n", family);
2721 }
2722 EXPORT_SYMBOL(sock_unregister);
2723 
2724 bool sock_is_registered(int family)
2725 {
2726 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2727 }
2728 
2729 static int __init sock_init(void)
2730 {
2731 	int err;
2732 	/*
2733 	 *      Initialize the network sysctl infrastructure.
2734 	 */
2735 	err = net_sysctl_init();
2736 	if (err)
2737 		goto out;
2738 
2739 	/*
2740 	 *      Initialize skbuff SLAB cache
2741 	 */
2742 	skb_init();
2743 
2744 	/*
2745 	 *      Initialize the protocols module.
2746 	 */
2747 
2748 	init_inodecache();
2749 
2750 	err = register_filesystem(&sock_fs_type);
2751 	if (err)
2752 		goto out_fs;
2753 	sock_mnt = kern_mount(&sock_fs_type);
2754 	if (IS_ERR(sock_mnt)) {
2755 		err = PTR_ERR(sock_mnt);
2756 		goto out_mount;
2757 	}
2758 
2759 	/* The real protocol initialization is performed in later initcalls.
2760 	 */
2761 
2762 #ifdef CONFIG_NETFILTER
2763 	err = netfilter_init();
2764 	if (err)
2765 		goto out;
2766 #endif
2767 
2768 	ptp_classifier_init();
2769 
2770 out:
2771 	return err;
2772 
2773 out_mount:
2774 	unregister_filesystem(&sock_fs_type);
2775 out_fs:
2776 	goto out;
2777 }
2778 
2779 core_initcall(sock_init);	/* early initcall */
2780 
2781 #ifdef CONFIG_PROC_FS
2782 void socket_seq_show(struct seq_file *seq)
2783 {
2784 	seq_printf(seq, "sockets: used %d\n",
2785 		   sock_inuse_get(seq->private));
2786 }
2787 #endif				/* CONFIG_PROC_FS */
2788 
2789 #ifdef CONFIG_COMPAT
2790 static int do_siocgstamp(struct net *net, struct socket *sock,
2791 			 unsigned int cmd, void __user *up)
2792 {
2793 	mm_segment_t old_fs = get_fs();
2794 	struct timeval ktv;
2795 	int err;
2796 
2797 	set_fs(KERNEL_DS);
2798 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2799 	set_fs(old_fs);
2800 	if (!err)
2801 		err = compat_put_timeval(&ktv, up);
2802 
2803 	return err;
2804 }
2805 
2806 static int do_siocgstampns(struct net *net, struct socket *sock,
2807 			   unsigned int cmd, void __user *up)
2808 {
2809 	mm_segment_t old_fs = get_fs();
2810 	struct timespec kts;
2811 	int err;
2812 
2813 	set_fs(KERNEL_DS);
2814 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2815 	set_fs(old_fs);
2816 	if (!err)
2817 		err = compat_put_timespec(&kts, up);
2818 
2819 	return err;
2820 }
2821 
2822 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2823 {
2824 	struct compat_ifconf ifc32;
2825 	struct ifconf ifc;
2826 	int err;
2827 
2828 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2829 		return -EFAULT;
2830 
2831 	ifc.ifc_len = ifc32.ifc_len;
2832 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2833 
2834 	rtnl_lock();
2835 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2836 	rtnl_unlock();
2837 	if (err)
2838 		return err;
2839 
2840 	ifc32.ifc_len = ifc.ifc_len;
2841 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2842 		return -EFAULT;
2843 
2844 	return 0;
2845 }
2846 
2847 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2848 {
2849 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2850 	bool convert_in = false, convert_out = false;
2851 	size_t buf_size = 0;
2852 	struct ethtool_rxnfc __user *rxnfc = NULL;
2853 	struct ifreq ifr;
2854 	u32 rule_cnt = 0, actual_rule_cnt;
2855 	u32 ethcmd;
2856 	u32 data;
2857 	int ret;
2858 
2859 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2860 		return -EFAULT;
2861 
2862 	compat_rxnfc = compat_ptr(data);
2863 
2864 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2865 		return -EFAULT;
2866 
2867 	/* Most ethtool structures are defined without padding.
2868 	 * Unfortunately struct ethtool_rxnfc is an exception.
2869 	 */
2870 	switch (ethcmd) {
2871 	default:
2872 		break;
2873 	case ETHTOOL_GRXCLSRLALL:
2874 		/* Buffer size is variable */
2875 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2876 			return -EFAULT;
2877 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2878 			return -ENOMEM;
2879 		buf_size += rule_cnt * sizeof(u32);
2880 		/* fall through */
2881 	case ETHTOOL_GRXRINGS:
2882 	case ETHTOOL_GRXCLSRLCNT:
2883 	case ETHTOOL_GRXCLSRULE:
2884 	case ETHTOOL_SRXCLSRLINS:
2885 		convert_out = true;
2886 		/* fall through */
2887 	case ETHTOOL_SRXCLSRLDEL:
2888 		buf_size += sizeof(struct ethtool_rxnfc);
2889 		convert_in = true;
2890 		rxnfc = compat_alloc_user_space(buf_size);
2891 		break;
2892 	}
2893 
2894 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2895 		return -EFAULT;
2896 
2897 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2898 
2899 	if (convert_in) {
2900 		/* We expect there to be holes between fs.m_ext and
2901 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2902 		 */
2903 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2904 			     sizeof(compat_rxnfc->fs.m_ext) !=
2905 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2906 			     sizeof(rxnfc->fs.m_ext));
2907 		BUILD_BUG_ON(
2908 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2909 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2910 			offsetof(struct ethtool_rxnfc, fs.location) -
2911 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2912 
2913 		if (copy_in_user(rxnfc, compat_rxnfc,
2914 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2915 				 (void __user *)rxnfc) ||
2916 		    copy_in_user(&rxnfc->fs.ring_cookie,
2917 				 &compat_rxnfc->fs.ring_cookie,
2918 				 (void __user *)(&rxnfc->fs.location + 1) -
2919 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2920 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2921 				 sizeof(rxnfc->rule_cnt)))
2922 			return -EFAULT;
2923 	}
2924 
2925 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2926 	if (ret)
2927 		return ret;
2928 
2929 	if (convert_out) {
2930 		if (copy_in_user(compat_rxnfc, rxnfc,
2931 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2932 				 (const void __user *)rxnfc) ||
2933 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2934 				 &rxnfc->fs.ring_cookie,
2935 				 (const void __user *)(&rxnfc->fs.location + 1) -
2936 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2937 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2938 				 sizeof(rxnfc->rule_cnt)))
2939 			return -EFAULT;
2940 
2941 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2942 			/* As an optimisation, we only copy the actual
2943 			 * number of rules that the underlying
2944 			 * function returned.  Since Mallory might
2945 			 * change the rule count in user memory, we
2946 			 * check that it is less than the rule count
2947 			 * originally given (as the user buffer size),
2948 			 * which has been range-checked.
2949 			 */
2950 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2951 				return -EFAULT;
2952 			if (actual_rule_cnt < rule_cnt)
2953 				rule_cnt = actual_rule_cnt;
2954 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2955 					 &rxnfc->rule_locs[0],
2956 					 rule_cnt * sizeof(u32)))
2957 				return -EFAULT;
2958 		}
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2965 {
2966 	compat_uptr_t uptr32;
2967 	struct ifreq ifr;
2968 	void __user *saved;
2969 	int err;
2970 
2971 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2972 		return -EFAULT;
2973 
2974 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2975 		return -EFAULT;
2976 
2977 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2978 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2979 
2980 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2981 	if (!err) {
2982 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2983 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2984 			err = -EFAULT;
2985 	}
2986 	return err;
2987 }
2988 
2989 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2990 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2991 				 struct compat_ifreq __user *u_ifreq32)
2992 {
2993 	struct ifreq ifreq;
2994 	u32 data32;
2995 
2996 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2997 		return -EFAULT;
2998 	if (get_user(data32, &u_ifreq32->ifr_data))
2999 		return -EFAULT;
3000 	ifreq.ifr_data = compat_ptr(data32);
3001 
3002 	return dev_ioctl(net, cmd, &ifreq, NULL);
3003 }
3004 
3005 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3006 			struct compat_ifreq __user *uifr32)
3007 {
3008 	struct ifreq ifr;
3009 	struct compat_ifmap __user *uifmap32;
3010 	int err;
3011 
3012 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3013 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3014 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3015 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3016 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3017 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3018 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3019 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3020 	if (err)
3021 		return -EFAULT;
3022 
3023 	err = dev_ioctl(net, cmd, &ifr, NULL);
3024 
3025 	if (cmd == SIOCGIFMAP && !err) {
3026 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3027 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3028 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3029 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3030 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3031 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3032 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3033 		if (err)
3034 			err = -EFAULT;
3035 	}
3036 	return err;
3037 }
3038 
3039 struct rtentry32 {
3040 	u32		rt_pad1;
3041 	struct sockaddr rt_dst;         /* target address               */
3042 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3043 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3044 	unsigned short	rt_flags;
3045 	short		rt_pad2;
3046 	u32		rt_pad3;
3047 	unsigned char	rt_tos;
3048 	unsigned char	rt_class;
3049 	short		rt_pad4;
3050 	short		rt_metric;      /* +1 for binary compatibility! */
3051 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3052 	u32		rt_mtu;         /* per route MTU/Window         */
3053 	u32		rt_window;      /* Window clamping              */
3054 	unsigned short  rt_irtt;        /* Initial RTT                  */
3055 };
3056 
3057 struct in6_rtmsg32 {
3058 	struct in6_addr		rtmsg_dst;
3059 	struct in6_addr		rtmsg_src;
3060 	struct in6_addr		rtmsg_gateway;
3061 	u32			rtmsg_type;
3062 	u16			rtmsg_dst_len;
3063 	u16			rtmsg_src_len;
3064 	u32			rtmsg_metric;
3065 	u32			rtmsg_info;
3066 	u32			rtmsg_flags;
3067 	s32			rtmsg_ifindex;
3068 };
3069 
3070 static int routing_ioctl(struct net *net, struct socket *sock,
3071 			 unsigned int cmd, void __user *argp)
3072 {
3073 	int ret;
3074 	void *r = NULL;
3075 	struct in6_rtmsg r6;
3076 	struct rtentry r4;
3077 	char devname[16];
3078 	u32 rtdev;
3079 	mm_segment_t old_fs = get_fs();
3080 
3081 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3082 		struct in6_rtmsg32 __user *ur6 = argp;
3083 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3084 			3 * sizeof(struct in6_addr));
3085 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3086 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3087 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3088 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3089 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3090 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3091 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3092 
3093 		r = (void *) &r6;
3094 	} else { /* ipv4 */
3095 		struct rtentry32 __user *ur4 = argp;
3096 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3097 					3 * sizeof(struct sockaddr));
3098 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3099 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3100 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3101 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3102 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3103 		ret |= get_user(rtdev, &(ur4->rt_dev));
3104 		if (rtdev) {
3105 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3106 			r4.rt_dev = (char __user __force *)devname;
3107 			devname[15] = 0;
3108 		} else
3109 			r4.rt_dev = NULL;
3110 
3111 		r = (void *) &r4;
3112 	}
3113 
3114 	if (ret) {
3115 		ret = -EFAULT;
3116 		goto out;
3117 	}
3118 
3119 	set_fs(KERNEL_DS);
3120 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3121 	set_fs(old_fs);
3122 
3123 out:
3124 	return ret;
3125 }
3126 
3127 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3128  * for some operations; this forces use of the newer bridge-utils that
3129  * use compatible ioctls
3130  */
3131 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3132 {
3133 	compat_ulong_t tmp;
3134 
3135 	if (get_user(tmp, argp))
3136 		return -EFAULT;
3137 	if (tmp == BRCTL_GET_VERSION)
3138 		return BRCTL_VERSION + 1;
3139 	return -EINVAL;
3140 }
3141 
3142 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3143 			 unsigned int cmd, unsigned long arg)
3144 {
3145 	void __user *argp = compat_ptr(arg);
3146 	struct sock *sk = sock->sk;
3147 	struct net *net = sock_net(sk);
3148 
3149 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3150 		return compat_ifr_data_ioctl(net, cmd, argp);
3151 
3152 	switch (cmd) {
3153 	case SIOCSIFBR:
3154 	case SIOCGIFBR:
3155 		return old_bridge_ioctl(argp);
3156 	case SIOCGIFCONF:
3157 		return compat_dev_ifconf(net, argp);
3158 	case SIOCETHTOOL:
3159 		return ethtool_ioctl(net, argp);
3160 	case SIOCWANDEV:
3161 		return compat_siocwandev(net, argp);
3162 	case SIOCGIFMAP:
3163 	case SIOCSIFMAP:
3164 		return compat_sioc_ifmap(net, cmd, argp);
3165 	case SIOCADDRT:
3166 	case SIOCDELRT:
3167 		return routing_ioctl(net, sock, cmd, argp);
3168 	case SIOCGSTAMP:
3169 		return do_siocgstamp(net, sock, cmd, argp);
3170 	case SIOCGSTAMPNS:
3171 		return do_siocgstampns(net, sock, cmd, argp);
3172 	case SIOCBONDSLAVEINFOQUERY:
3173 	case SIOCBONDINFOQUERY:
3174 	case SIOCSHWTSTAMP:
3175 	case SIOCGHWTSTAMP:
3176 		return compat_ifr_data_ioctl(net, cmd, argp);
3177 
3178 	case FIOSETOWN:
3179 	case SIOCSPGRP:
3180 	case FIOGETOWN:
3181 	case SIOCGPGRP:
3182 	case SIOCBRADDBR:
3183 	case SIOCBRDELBR:
3184 	case SIOCGIFVLAN:
3185 	case SIOCSIFVLAN:
3186 	case SIOCADDDLCI:
3187 	case SIOCDELDLCI:
3188 	case SIOCGSKNS:
3189 		return sock_ioctl(file, cmd, arg);
3190 
3191 	case SIOCGIFFLAGS:
3192 	case SIOCSIFFLAGS:
3193 	case SIOCGIFMETRIC:
3194 	case SIOCSIFMETRIC:
3195 	case SIOCGIFMTU:
3196 	case SIOCSIFMTU:
3197 	case SIOCGIFMEM:
3198 	case SIOCSIFMEM:
3199 	case SIOCGIFHWADDR:
3200 	case SIOCSIFHWADDR:
3201 	case SIOCADDMULTI:
3202 	case SIOCDELMULTI:
3203 	case SIOCGIFINDEX:
3204 	case SIOCGIFADDR:
3205 	case SIOCSIFADDR:
3206 	case SIOCSIFHWBROADCAST:
3207 	case SIOCDIFADDR:
3208 	case SIOCGIFBRDADDR:
3209 	case SIOCSIFBRDADDR:
3210 	case SIOCGIFDSTADDR:
3211 	case SIOCSIFDSTADDR:
3212 	case SIOCGIFNETMASK:
3213 	case SIOCSIFNETMASK:
3214 	case SIOCSIFPFLAGS:
3215 	case SIOCGIFPFLAGS:
3216 	case SIOCGIFTXQLEN:
3217 	case SIOCSIFTXQLEN:
3218 	case SIOCBRADDIF:
3219 	case SIOCBRDELIF:
3220 	case SIOCSIFNAME:
3221 	case SIOCGMIIPHY:
3222 	case SIOCGMIIREG:
3223 	case SIOCSMIIREG:
3224 	case SIOCSARP:
3225 	case SIOCGARP:
3226 	case SIOCDARP:
3227 	case SIOCATMARK:
3228 	case SIOCBONDENSLAVE:
3229 	case SIOCBONDRELEASE:
3230 	case SIOCBONDSETHWADDR:
3231 	case SIOCBONDCHANGEACTIVE:
3232 	case SIOCGIFNAME:
3233 		return sock_do_ioctl(net, sock, cmd, arg);
3234 	}
3235 
3236 	return -ENOIOCTLCMD;
3237 }
3238 
3239 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3240 			      unsigned long arg)
3241 {
3242 	struct socket *sock = file->private_data;
3243 	int ret = -ENOIOCTLCMD;
3244 	struct sock *sk;
3245 	struct net *net;
3246 
3247 	sk = sock->sk;
3248 	net = sock_net(sk);
3249 
3250 	if (sock->ops->compat_ioctl)
3251 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3252 
3253 	if (ret == -ENOIOCTLCMD &&
3254 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3255 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3256 
3257 	if (ret == -ENOIOCTLCMD)
3258 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3259 
3260 	return ret;
3261 }
3262 #endif
3263 
3264 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3265 {
3266 	return sock->ops->bind(sock, addr, addrlen);
3267 }
3268 EXPORT_SYMBOL(kernel_bind);
3269 
3270 int kernel_listen(struct socket *sock, int backlog)
3271 {
3272 	return sock->ops->listen(sock, backlog);
3273 }
3274 EXPORT_SYMBOL(kernel_listen);
3275 
3276 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3277 {
3278 	struct sock *sk = sock->sk;
3279 	int err;
3280 
3281 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3282 			       newsock);
3283 	if (err < 0)
3284 		goto done;
3285 
3286 	err = sock->ops->accept(sock, *newsock, flags, true);
3287 	if (err < 0) {
3288 		sock_release(*newsock);
3289 		*newsock = NULL;
3290 		goto done;
3291 	}
3292 
3293 	(*newsock)->ops = sock->ops;
3294 	__module_get((*newsock)->ops->owner);
3295 
3296 done:
3297 	return err;
3298 }
3299 EXPORT_SYMBOL(kernel_accept);
3300 
3301 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3302 		   int flags)
3303 {
3304 	return sock->ops->connect(sock, addr, addrlen, flags);
3305 }
3306 EXPORT_SYMBOL(kernel_connect);
3307 
3308 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3309 {
3310 	return sock->ops->getname(sock, addr, 0);
3311 }
3312 EXPORT_SYMBOL(kernel_getsockname);
3313 
3314 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3315 {
3316 	return sock->ops->getname(sock, addr, 1);
3317 }
3318 EXPORT_SYMBOL(kernel_getpeername);
3319 
3320 int kernel_getsockopt(struct socket *sock, int level, int optname,
3321 			char *optval, int *optlen)
3322 {
3323 	mm_segment_t oldfs = get_fs();
3324 	char __user *uoptval;
3325 	int __user *uoptlen;
3326 	int err;
3327 
3328 	uoptval = (char __user __force *) optval;
3329 	uoptlen = (int __user __force *) optlen;
3330 
3331 	set_fs(KERNEL_DS);
3332 	if (level == SOL_SOCKET)
3333 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3334 	else
3335 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3336 					    uoptlen);
3337 	set_fs(oldfs);
3338 	return err;
3339 }
3340 EXPORT_SYMBOL(kernel_getsockopt);
3341 
3342 int kernel_setsockopt(struct socket *sock, int level, int optname,
3343 			char *optval, unsigned int optlen)
3344 {
3345 	mm_segment_t oldfs = get_fs();
3346 	char __user *uoptval;
3347 	int err;
3348 
3349 	uoptval = (char __user __force *) optval;
3350 
3351 	set_fs(KERNEL_DS);
3352 	if (level == SOL_SOCKET)
3353 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3354 	else
3355 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3356 					    optlen);
3357 	set_fs(oldfs);
3358 	return err;
3359 }
3360 EXPORT_SYMBOL(kernel_setsockopt);
3361 
3362 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3363 		    size_t size, int flags)
3364 {
3365 	if (sock->ops->sendpage)
3366 		return sock->ops->sendpage(sock, page, offset, size, flags);
3367 
3368 	return sock_no_sendpage(sock, page, offset, size, flags);
3369 }
3370 EXPORT_SYMBOL(kernel_sendpage);
3371 
3372 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3373 			   size_t size, int flags)
3374 {
3375 	struct socket *sock = sk->sk_socket;
3376 
3377 	if (sock->ops->sendpage_locked)
3378 		return sock->ops->sendpage_locked(sk, page, offset, size,
3379 						  flags);
3380 
3381 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_sendpage_locked);
3384 
3385 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3386 {
3387 	return sock->ops->shutdown(sock, how);
3388 }
3389 EXPORT_SYMBOL(kernel_sock_shutdown);
3390 
3391 /* This routine returns the IP overhead imposed by a socket i.e.
3392  * the length of the underlying IP header, depending on whether
3393  * this is an IPv4 or IPv6 socket and the length from IP options turned
3394  * on at the socket. Assumes that the caller has a lock on the socket.
3395  */
3396 u32 kernel_sock_ip_overhead(struct sock *sk)
3397 {
3398 	struct inet_sock *inet;
3399 	struct ip_options_rcu *opt;
3400 	u32 overhead = 0;
3401 #if IS_ENABLED(CONFIG_IPV6)
3402 	struct ipv6_pinfo *np;
3403 	struct ipv6_txoptions *optv6 = NULL;
3404 #endif /* IS_ENABLED(CONFIG_IPV6) */
3405 
3406 	if (!sk)
3407 		return overhead;
3408 
3409 	switch (sk->sk_family) {
3410 	case AF_INET:
3411 		inet = inet_sk(sk);
3412 		overhead += sizeof(struct iphdr);
3413 		opt = rcu_dereference_protected(inet->inet_opt,
3414 						sock_owned_by_user(sk));
3415 		if (opt)
3416 			overhead += opt->opt.optlen;
3417 		return overhead;
3418 #if IS_ENABLED(CONFIG_IPV6)
3419 	case AF_INET6:
3420 		np = inet6_sk(sk);
3421 		overhead += sizeof(struct ipv6hdr);
3422 		if (np)
3423 			optv6 = rcu_dereference_protected(np->opt,
3424 							  sock_owned_by_user(sk));
3425 		if (optv6)
3426 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3427 		return overhead;
3428 #endif /* IS_ENABLED(CONFIG_IPV6) */
3429 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3430 		return overhead;
3431 	}
3432 }
3433 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3434