xref: /openbmc/linux/net/socket.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 
140 	if (sock->ops->show_fdinfo)
141 		sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146 
147 /*
148  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149  *	in the operation structures but are done directly via the socketcall() multiplexor.
150  */
151 
152 static const struct file_operations socket_file_ops = {
153 	.owner =	THIS_MODULE,
154 	.llseek =	no_llseek,
155 	.read_iter =	sock_read_iter,
156 	.write_iter =	sock_write_iter,
157 	.poll =		sock_poll,
158 	.unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 	.compat_ioctl = compat_sock_ioctl,
161 #endif
162 	.mmap =		sock_mmap,
163 	.release =	sock_close,
164 	.fasync =	sock_fasync,
165 	.sendpage =	sock_sendpage,
166 	.splice_write = generic_splice_sendpage,
167 	.splice_read =	sock_splice_read,
168 	.show_fdinfo =	sock_show_fdinfo,
169 };
170 
171 static const char * const pf_family_names[] = {
172 	[PF_UNSPEC]	= "PF_UNSPEC",
173 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
174 	[PF_INET]	= "PF_INET",
175 	[PF_AX25]	= "PF_AX25",
176 	[PF_IPX]	= "PF_IPX",
177 	[PF_APPLETALK]	= "PF_APPLETALK",
178 	[PF_NETROM]	= "PF_NETROM",
179 	[PF_BRIDGE]	= "PF_BRIDGE",
180 	[PF_ATMPVC]	= "PF_ATMPVC",
181 	[PF_X25]	= "PF_X25",
182 	[PF_INET6]	= "PF_INET6",
183 	[PF_ROSE]	= "PF_ROSE",
184 	[PF_DECnet]	= "PF_DECnet",
185 	[PF_NETBEUI]	= "PF_NETBEUI",
186 	[PF_SECURITY]	= "PF_SECURITY",
187 	[PF_KEY]	= "PF_KEY",
188 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
189 	[PF_PACKET]	= "PF_PACKET",
190 	[PF_ASH]	= "PF_ASH",
191 	[PF_ECONET]	= "PF_ECONET",
192 	[PF_ATMSVC]	= "PF_ATMSVC",
193 	[PF_RDS]	= "PF_RDS",
194 	[PF_SNA]	= "PF_SNA",
195 	[PF_IRDA]	= "PF_IRDA",
196 	[PF_PPPOX]	= "PF_PPPOX",
197 	[PF_WANPIPE]	= "PF_WANPIPE",
198 	[PF_LLC]	= "PF_LLC",
199 	[PF_IB]		= "PF_IB",
200 	[PF_MPLS]	= "PF_MPLS",
201 	[PF_CAN]	= "PF_CAN",
202 	[PF_TIPC]	= "PF_TIPC",
203 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
204 	[PF_IUCV]	= "PF_IUCV",
205 	[PF_RXRPC]	= "PF_RXRPC",
206 	[PF_ISDN]	= "PF_ISDN",
207 	[PF_PHONET]	= "PF_PHONET",
208 	[PF_IEEE802154]	= "PF_IEEE802154",
209 	[PF_CAIF]	= "PF_CAIF",
210 	[PF_ALG]	= "PF_ALG",
211 	[PF_NFC]	= "PF_NFC",
212 	[PF_VSOCK]	= "PF_VSOCK",
213 	[PF_KCM]	= "PF_KCM",
214 	[PF_QIPCRTR]	= "PF_QIPCRTR",
215 	[PF_SMC]	= "PF_SMC",
216 	[PF_XDP]	= "PF_XDP",
217 	[PF_MCTP]	= "PF_MCTP",
218 };
219 
220 /*
221  *	The protocol list. Each protocol is registered in here.
222  */
223 
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226 
227 /*
228  * Support routines.
229  * Move socket addresses back and forth across the kernel/user
230  * divide and look after the messy bits.
231  */
232 
233 /**
234  *	move_addr_to_kernel	-	copy a socket address into kernel space
235  *	@uaddr: Address in user space
236  *	@kaddr: Address in kernel space
237  *	@ulen: Length in user space
238  *
239  *	The address is copied into kernel space. If the provided address is
240  *	too long an error code of -EINVAL is returned. If the copy gives
241  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
242  */
243 
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 		return -EINVAL;
248 	if (ulen == 0)
249 		return 0;
250 	if (copy_from_user(kaddr, uaddr, ulen))
251 		return -EFAULT;
252 	return audit_sockaddr(ulen, kaddr);
253 }
254 
255 /**
256  *	move_addr_to_user	-	copy an address to user space
257  *	@kaddr: kernel space address
258  *	@klen: length of address in kernel
259  *	@uaddr: user space address
260  *	@ulen: pointer to user length field
261  *
262  *	The value pointed to by ulen on entry is the buffer length available.
263  *	This is overwritten with the buffer space used. -EINVAL is returned
264  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
265  *	is returned if either the buffer or the length field are not
266  *	accessible.
267  *	After copying the data up to the limit the user specifies, the true
268  *	length of the data is written over the length limit the user
269  *	specified. Zero is returned for a success.
270  */
271 
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 			     void __user *uaddr, int __user *ulen)
274 {
275 	int err;
276 	int len;
277 
278 	BUG_ON(klen > sizeof(struct sockaddr_storage));
279 	err = get_user(len, ulen);
280 	if (err)
281 		return err;
282 	if (len > klen)
283 		len = klen;
284 	if (len < 0)
285 		return -EINVAL;
286 	if (len) {
287 		if (audit_sockaddr(klen, kaddr))
288 			return -ENOMEM;
289 		if (copy_to_user(uaddr, kaddr, len))
290 			return -EFAULT;
291 	}
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	return __put_user(klen, ulen);
297 }
298 
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 	struct socket_alloc *ei;
304 
305 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 	if (!ei)
307 		return NULL;
308 	init_waitqueue_head(&ei->socket.wq.wait);
309 	ei->socket.wq.fasync_list = NULL;
310 	ei->socket.wq.flags = 0;
311 
312 	ei->socket.state = SS_UNCONNECTED;
313 	ei->socket.flags = 0;
314 	ei->socket.ops = NULL;
315 	ei->socket.sk = NULL;
316 	ei->socket.file = NULL;
317 
318 	return &ei->vfs_inode;
319 }
320 
321 static void sock_free_inode(struct inode *inode)
322 {
323 	struct socket_alloc *ei;
324 
325 	ei = container_of(inode, struct socket_alloc, vfs_inode);
326 	kmem_cache_free(sock_inode_cachep, ei);
327 }
328 
329 static void init_once(void *foo)
330 {
331 	struct socket_alloc *ei = (struct socket_alloc *)foo;
332 
333 	inode_init_once(&ei->vfs_inode);
334 }
335 
336 static void init_inodecache(void)
337 {
338 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 					      sizeof(struct socket_alloc),
340 					      0,
341 					      (SLAB_HWCACHE_ALIGN |
342 					       SLAB_RECLAIM_ACCOUNT |
343 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 					      init_once);
345 	BUG_ON(sock_inode_cachep == NULL);
346 }
347 
348 static const struct super_operations sockfs_ops = {
349 	.alloc_inode	= sock_alloc_inode,
350 	.free_inode	= sock_free_inode,
351 	.statfs		= simple_statfs,
352 };
353 
354 /*
355  * sockfs_dname() is called from d_path().
356  */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 				d_inode(dentry)->i_ino);
361 }
362 
363 static const struct dentry_operations sockfs_dentry_operations = {
364 	.d_dname  = sockfs_dname,
365 };
366 
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 			    struct dentry *dentry, struct inode *inode,
369 			    const char *suffix, void *value, size_t size)
370 {
371 	if (value) {
372 		if (dentry->d_name.len + 1 > size)
373 			return -ERANGE;
374 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 	}
376 	return dentry->d_name.len + 1;
377 }
378 
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 
383 static const struct xattr_handler sockfs_xattr_handler = {
384 	.name = XATTR_NAME_SOCKPROTONAME,
385 	.get = sockfs_xattr_get,
386 };
387 
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 				     struct mnt_idmap *idmap,
390 				     struct dentry *dentry, struct inode *inode,
391 				     const char *suffix, const void *value,
392 				     size_t size, int flags)
393 {
394 	/* Handled by LSM. */
395 	return -EAGAIN;
396 }
397 
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 	.prefix = XATTR_SECURITY_PREFIX,
400 	.set = sockfs_security_xattr_set,
401 };
402 
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 	&sockfs_xattr_handler,
405 	&sockfs_security_xattr_handler,
406 	NULL
407 };
408 
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 	if (!ctx)
413 		return -ENOMEM;
414 	ctx->ops = &sockfs_ops;
415 	ctx->dops = &sockfs_dentry_operations;
416 	ctx->xattr = sockfs_xattr_handlers;
417 	return 0;
418 }
419 
420 static struct vfsmount *sock_mnt __read_mostly;
421 
422 static struct file_system_type sock_fs_type = {
423 	.name =		"sockfs",
424 	.init_fs_context = sockfs_init_fs_context,
425 	.kill_sb =	kill_anon_super,
426 };
427 
428 /*
429  *	Obtains the first available file descriptor and sets it up for use.
430  *
431  *	These functions create file structures and maps them to fd space
432  *	of the current process. On success it returns file descriptor
433  *	and file struct implicitly stored in sock->file.
434  *	Note that another thread may close file descriptor before we return
435  *	from this function. We use the fact that now we do not refer
436  *	to socket after mapping. If one day we will need it, this
437  *	function will increment ref. count on file by 1.
438  *
439  *	In any case returned fd MAY BE not valid!
440  *	This race condition is unavoidable
441  *	with shared fd spaces, we cannot solve it inside kernel,
442  *	but we take care of internal coherence yet.
443  */
444 
445 /**
446  *	sock_alloc_file - Bind a &socket to a &file
447  *	@sock: socket
448  *	@flags: file status flags
449  *	@dname: protocol name
450  *
451  *	Returns the &file bound with @sock, implicitly storing it
452  *	in sock->file. If dname is %NULL, sets to "".
453  *
454  *	On failure @sock is released, and an ERR pointer is returned.
455  *
456  *	This function uses GFP_KERNEL internally.
457  */
458 
459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 	struct file *file;
462 
463 	if (!dname)
464 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465 
466 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 				O_RDWR | (flags & O_NONBLOCK),
468 				&socket_file_ops);
469 	if (IS_ERR(file)) {
470 		sock_release(sock);
471 		return file;
472 	}
473 
474 	sock->file = file;
475 	file->private_data = sock;
476 	stream_open(SOCK_INODE(sock), file);
477 	return file;
478 }
479 EXPORT_SYMBOL(sock_alloc_file);
480 
481 static int sock_map_fd(struct socket *sock, int flags)
482 {
483 	struct file *newfile;
484 	int fd = get_unused_fd_flags(flags);
485 	if (unlikely(fd < 0)) {
486 		sock_release(sock);
487 		return fd;
488 	}
489 
490 	newfile = sock_alloc_file(sock, flags, NULL);
491 	if (!IS_ERR(newfile)) {
492 		fd_install(fd, newfile);
493 		return fd;
494 	}
495 
496 	put_unused_fd(fd);
497 	return PTR_ERR(newfile);
498 }
499 
500 /**
501  *	sock_from_file - Return the &socket bounded to @file.
502  *	@file: file
503  *
504  *	On failure returns %NULL.
505  */
506 
507 struct socket *sock_from_file(struct file *file)
508 {
509 	if (file->f_op == &socket_file_ops)
510 		return file->private_data;	/* set in sock_alloc_file */
511 
512 	return NULL;
513 }
514 EXPORT_SYMBOL(sock_from_file);
515 
516 /**
517  *	sockfd_lookup - Go from a file number to its socket slot
518  *	@fd: file handle
519  *	@err: pointer to an error code return
520  *
521  *	The file handle passed in is locked and the socket it is bound
522  *	to is returned. If an error occurs the err pointer is overwritten
523  *	with a negative errno code and NULL is returned. The function checks
524  *	for both invalid handles and passing a handle which is not a socket.
525  *
526  *	On a success the socket object pointer is returned.
527  */
528 
529 struct socket *sockfd_lookup(int fd, int *err)
530 {
531 	struct file *file;
532 	struct socket *sock;
533 
534 	file = fget(fd);
535 	if (!file) {
536 		*err = -EBADF;
537 		return NULL;
538 	}
539 
540 	sock = sock_from_file(file);
541 	if (!sock) {
542 		*err = -ENOTSOCK;
543 		fput(file);
544 	}
545 	return sock;
546 }
547 EXPORT_SYMBOL(sockfd_lookup);
548 
549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
550 {
551 	struct fd f = fdget(fd);
552 	struct socket *sock;
553 
554 	*err = -EBADF;
555 	if (f.file) {
556 		sock = sock_from_file(f.file);
557 		if (likely(sock)) {
558 			*fput_needed = f.flags & FDPUT_FPUT;
559 			return sock;
560 		}
561 		*err = -ENOTSOCK;
562 		fdput(f);
563 	}
564 	return NULL;
565 }
566 
567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
568 				size_t size)
569 {
570 	ssize_t len;
571 	ssize_t used = 0;
572 
573 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
574 	if (len < 0)
575 		return len;
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		buffer += len;
581 	}
582 
583 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 	used += len;
585 	if (buffer) {
586 		if (size < used)
587 			return -ERANGE;
588 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
589 		buffer += len;
590 	}
591 
592 	return used;
593 }
594 
595 static int sockfs_setattr(struct mnt_idmap *idmap,
596 			  struct dentry *dentry, struct iattr *iattr)
597 {
598 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
599 
600 	if (!err && (iattr->ia_valid & ATTR_UID)) {
601 		struct socket *sock = SOCKET_I(d_inode(dentry));
602 
603 		if (sock->sk)
604 			sock->sk->sk_uid = iattr->ia_uid;
605 		else
606 			err = -ENOENT;
607 	}
608 
609 	return err;
610 }
611 
612 static const struct inode_operations sockfs_inode_ops = {
613 	.listxattr = sockfs_listxattr,
614 	.setattr = sockfs_setattr,
615 };
616 
617 /**
618  *	sock_alloc - allocate a socket
619  *
620  *	Allocate a new inode and socket object. The two are bound together
621  *	and initialised. The socket is then returned. If we are out of inodes
622  *	NULL is returned. This functions uses GFP_KERNEL internally.
623  */
624 
625 struct socket *sock_alloc(void)
626 {
627 	struct inode *inode;
628 	struct socket *sock;
629 
630 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 	if (!inode)
632 		return NULL;
633 
634 	sock = SOCKET_I(inode);
635 
636 	inode->i_ino = get_next_ino();
637 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
638 	inode->i_uid = current_fsuid();
639 	inode->i_gid = current_fsgid();
640 	inode->i_op = &sockfs_inode_ops;
641 
642 	return sock;
643 }
644 EXPORT_SYMBOL(sock_alloc);
645 
646 static void __sock_release(struct socket *sock, struct inode *inode)
647 {
648 	if (sock->ops) {
649 		struct module *owner = sock->ops->owner;
650 
651 		if (inode)
652 			inode_lock(inode);
653 		sock->ops->release(sock);
654 		sock->sk = NULL;
655 		if (inode)
656 			inode_unlock(inode);
657 		sock->ops = NULL;
658 		module_put(owner);
659 	}
660 
661 	if (sock->wq.fasync_list)
662 		pr_err("%s: fasync list not empty!\n", __func__);
663 
664 	if (!sock->file) {
665 		iput(SOCK_INODE(sock));
666 		return;
667 	}
668 	sock->file = NULL;
669 }
670 
671 /**
672  *	sock_release - close a socket
673  *	@sock: socket to close
674  *
675  *	The socket is released from the protocol stack if it has a release
676  *	callback, and the inode is then released if the socket is bound to
677  *	an inode not a file.
678  */
679 void sock_release(struct socket *sock)
680 {
681 	__sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684 
685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
686 {
687 	u8 flags = *tx_flags;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
690 		flags |= SKBTX_HW_TSTAMP;
691 
692 		/* PTP hardware clocks can provide a free running cycle counter
693 		 * as a time base for virtual clocks. Tell driver to use the
694 		 * free running cycle counter for timestamp if socket is bound
695 		 * to virtual clock.
696 		 */
697 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
698 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 	}
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	*tx_flags = flags;
708 }
709 EXPORT_SYMBOL(__sock_tx_timestamp);
710 
711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
712 					   size_t));
713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 					    size_t));
715 
716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 						 int flags)
718 {
719 	trace_sock_send_length(sk, ret, 0);
720 }
721 
722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
723 {
724 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
725 				     inet_sendmsg, sock, msg,
726 				     msg_data_left(msg));
727 	BUG_ON(ret == -EIOCBQUEUED);
728 
729 	if (trace_sock_send_length_enabled())
730 		call_trace_sock_send_length(sock->sk, ret, 0);
731 	return ret;
732 }
733 
734 /**
735  *	sock_sendmsg - send a message through @sock
736  *	@sock: socket
737  *	@msg: message to send
738  *
739  *	Sends @msg through @sock, passing through LSM.
740  *	Returns the number of bytes sent, or an error code.
741  */
742 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
743 {
744 	int err = security_socket_sendmsg(sock, msg,
745 					  msg_data_left(msg));
746 
747 	return err ?: sock_sendmsg_nosec(sock, msg);
748 }
749 EXPORT_SYMBOL(sock_sendmsg);
750 
751 /**
752  *	kernel_sendmsg - send a message through @sock (kernel-space)
753  *	@sock: socket
754  *	@msg: message header
755  *	@vec: kernel vec
756  *	@num: vec array length
757  *	@size: total message data size
758  *
759  *	Builds the message data with @vec and sends it through @sock.
760  *	Returns the number of bytes sent, or an error code.
761  */
762 
763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
764 		   struct kvec *vec, size_t num, size_t size)
765 {
766 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
767 	return sock_sendmsg(sock, msg);
768 }
769 EXPORT_SYMBOL(kernel_sendmsg);
770 
771 /**
772  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
773  *	@sk: sock
774  *	@msg: message header
775  *	@vec: output s/g array
776  *	@num: output s/g array length
777  *	@size: total message data size
778  *
779  *	Builds the message data with @vec and sends it through @sock.
780  *	Returns the number of bytes sent, or an error code.
781  *	Caller must hold @sk.
782  */
783 
784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
785 			  struct kvec *vec, size_t num, size_t size)
786 {
787 	struct socket *sock = sk->sk_socket;
788 
789 	if (!sock->ops->sendmsg_locked)
790 		return sock_no_sendmsg_locked(sk, msg, size);
791 
792 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793 
794 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
795 }
796 EXPORT_SYMBOL(kernel_sendmsg_locked);
797 
798 static bool skb_is_err_queue(const struct sk_buff *skb)
799 {
800 	/* pkt_type of skbs enqueued on the error queue are set to
801 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
802 	 * in recvmsg, since skbs received on a local socket will never
803 	 * have a pkt_type of PACKET_OUTGOING.
804 	 */
805 	return skb->pkt_type == PACKET_OUTGOING;
806 }
807 
808 /* On transmit, software and hardware timestamps are returned independently.
809  * As the two skb clones share the hardware timestamp, which may be updated
810  * before the software timestamp is received, a hardware TX timestamp may be
811  * returned only if there is no software TX timestamp. Ignore false software
812  * timestamps, which may be made in the __sock_recv_timestamp() call when the
813  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
814  * hardware timestamp.
815  */
816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
817 {
818 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 }
820 
821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
822 {
823 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
824 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
825 	struct net_device *orig_dev;
826 	ktime_t hwtstamp;
827 
828 	rcu_read_lock();
829 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
830 	if (orig_dev) {
831 		*if_index = orig_dev->ifindex;
832 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
833 	} else {
834 		hwtstamp = shhwtstamps->hwtstamp;
835 	}
836 	rcu_read_unlock();
837 
838 	return hwtstamp;
839 }
840 
841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 			   int if_index)
843 {
844 	struct scm_ts_pktinfo ts_pktinfo;
845 	struct net_device *orig_dev;
846 
847 	if (!skb_mac_header_was_set(skb))
848 		return;
849 
850 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
851 
852 	if (!if_index) {
853 		rcu_read_lock();
854 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 		if (orig_dev)
856 			if_index = orig_dev->ifindex;
857 		rcu_read_unlock();
858 	}
859 	ts_pktinfo.if_index = if_index;
860 
861 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
862 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
863 		 sizeof(ts_pktinfo), &ts_pktinfo);
864 }
865 
866 /*
867  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
868  */
869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 	struct sk_buff *skb)
871 {
872 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
873 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
874 	struct scm_timestamping_internal tss;
875 
876 	int empty = 1, false_tstamp = 0;
877 	struct skb_shared_hwtstamps *shhwtstamps =
878 		skb_hwtstamps(skb);
879 	int if_index;
880 	ktime_t hwtstamp;
881 
882 	/* Race occurred between timestamp enabling and packet
883 	   receiving.  Fill in the current time for now. */
884 	if (need_software_tstamp && skb->tstamp == 0) {
885 		__net_timestamp(skb);
886 		false_tstamp = 1;
887 	}
888 
889 	if (need_software_tstamp) {
890 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
891 			if (new_tstamp) {
892 				struct __kernel_sock_timeval tv;
893 
894 				skb_get_new_timestamp(skb, &tv);
895 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 					 sizeof(tv), &tv);
897 			} else {
898 				struct __kernel_old_timeval tv;
899 
900 				skb_get_timestamp(skb, &tv);
901 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
902 					 sizeof(tv), &tv);
903 			}
904 		} else {
905 			if (new_tstamp) {
906 				struct __kernel_timespec ts;
907 
908 				skb_get_new_timestampns(skb, &ts);
909 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 					 sizeof(ts), &ts);
911 			} else {
912 				struct __kernel_old_timespec ts;
913 
914 				skb_get_timestampns(skb, &ts);
915 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
916 					 sizeof(ts), &ts);
917 			}
918 		}
919 	}
920 
921 	memset(&tss, 0, sizeof(tss));
922 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
923 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 		empty = 0;
925 	if (shhwtstamps &&
926 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
927 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
928 		if_index = 0;
929 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
930 			hwtstamp = get_timestamp(sk, skb, &if_index);
931 		else
932 			hwtstamp = shhwtstamps->hwtstamp;
933 
934 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
935 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 							 sk->sk_bind_phc);
937 
938 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 			empty = 0;
940 
941 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
942 			    !skb_is_err_queue(skb))
943 				put_ts_pktinfo(msg, skb, if_index);
944 		}
945 	}
946 	if (!empty) {
947 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
948 			put_cmsg_scm_timestamping64(msg, &tss);
949 		else
950 			put_cmsg_scm_timestamping(msg, &tss);
951 
952 		if (skb_is_err_queue(skb) && skb->len &&
953 		    SKB_EXT_ERR(skb)->opt_stats)
954 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
955 				 skb->len, skb->data);
956 	}
957 }
958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
959 
960 #ifdef CONFIG_WIRELESS
961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
962 	struct sk_buff *skb)
963 {
964 	int ack;
965 
966 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
967 		return;
968 	if (!skb->wifi_acked_valid)
969 		return;
970 
971 	ack = skb->wifi_acked;
972 
973 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
974 }
975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
976 #endif
977 
978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
979 				   struct sk_buff *skb)
980 {
981 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
982 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
983 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
984 }
985 
986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
987 			   struct sk_buff *skb)
988 {
989 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
990 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
991 		__u32 mark = skb->mark;
992 
993 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
994 	}
995 }
996 
997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
998 		       struct sk_buff *skb)
999 {
1000 	sock_recv_timestamp(msg, sk, skb);
1001 	sock_recv_drops(msg, sk, skb);
1002 	sock_recv_mark(msg, sk, skb);
1003 }
1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1005 
1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1007 					   size_t, int));
1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1009 					    size_t, int));
1010 
1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1012 {
1013 	trace_sock_recv_length(sk, ret, flags);
1014 }
1015 
1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1017 				     int flags)
1018 {
1019 	int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1020 				     inet_recvmsg, sock, msg,
1021 				     msg_data_left(msg), flags);
1022 	if (trace_sock_recv_length_enabled())
1023 		call_trace_sock_recv_length(sock->sk, ret, flags);
1024 	return ret;
1025 }
1026 
1027 /**
1028  *	sock_recvmsg - receive a message from @sock
1029  *	@sock: socket
1030  *	@msg: message to receive
1031  *	@flags: message flags
1032  *
1033  *	Receives @msg from @sock, passing through LSM. Returns the total number
1034  *	of bytes received, or an error.
1035  */
1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1037 {
1038 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1039 
1040 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1041 }
1042 EXPORT_SYMBOL(sock_recvmsg);
1043 
1044 /**
1045  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1046  *	@sock: The socket to receive the message from
1047  *	@msg: Received message
1048  *	@vec: Input s/g array for message data
1049  *	@num: Size of input s/g array
1050  *	@size: Number of bytes to read
1051  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1052  *
1053  *	On return the msg structure contains the scatter/gather array passed in the
1054  *	vec argument. The array is modified so that it consists of the unfilled
1055  *	portion of the original array.
1056  *
1057  *	The returned value is the total number of bytes received, or an error.
1058  */
1059 
1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1061 		   struct kvec *vec, size_t num, size_t size, int flags)
1062 {
1063 	msg->msg_control_is_user = false;
1064 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1065 	return sock_recvmsg(sock, msg, flags);
1066 }
1067 EXPORT_SYMBOL(kernel_recvmsg);
1068 
1069 static ssize_t sock_sendpage(struct file *file, struct page *page,
1070 			     int offset, size_t size, loff_t *ppos, int more)
1071 {
1072 	struct socket *sock;
1073 	int flags;
1074 	int ret;
1075 
1076 	sock = file->private_data;
1077 
1078 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1079 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1080 	flags |= more;
1081 
1082 	ret = kernel_sendpage(sock, page, offset, size, flags);
1083 
1084 	if (trace_sock_send_length_enabled())
1085 		call_trace_sock_send_length(sock->sk, ret, 0);
1086 	return ret;
1087 }
1088 
1089 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1090 				struct pipe_inode_info *pipe, size_t len,
1091 				unsigned int flags)
1092 {
1093 	struct socket *sock = file->private_data;
1094 
1095 	if (unlikely(!sock->ops->splice_read))
1096 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1097 
1098 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1099 }
1100 
1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1102 {
1103 	struct file *file = iocb->ki_filp;
1104 	struct socket *sock = file->private_data;
1105 	struct msghdr msg = {.msg_iter = *to,
1106 			     .msg_iocb = iocb};
1107 	ssize_t res;
1108 
1109 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1110 		msg.msg_flags = MSG_DONTWAIT;
1111 
1112 	if (iocb->ki_pos != 0)
1113 		return -ESPIPE;
1114 
1115 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1116 		return 0;
1117 
1118 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1119 	*to = msg.msg_iter;
1120 	return res;
1121 }
1122 
1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1124 {
1125 	struct file *file = iocb->ki_filp;
1126 	struct socket *sock = file->private_data;
1127 	struct msghdr msg = {.msg_iter = *from,
1128 			     .msg_iocb = iocb};
1129 	ssize_t res;
1130 
1131 	if (iocb->ki_pos != 0)
1132 		return -ESPIPE;
1133 
1134 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1135 		msg.msg_flags = MSG_DONTWAIT;
1136 
1137 	if (sock->type == SOCK_SEQPACKET)
1138 		msg.msg_flags |= MSG_EOR;
1139 
1140 	res = sock_sendmsg(sock, &msg);
1141 	*from = msg.msg_iter;
1142 	return res;
1143 }
1144 
1145 /*
1146  * Atomic setting of ioctl hooks to avoid race
1147  * with module unload.
1148  */
1149 
1150 static DEFINE_MUTEX(br_ioctl_mutex);
1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1152 			    unsigned int cmd, struct ifreq *ifr,
1153 			    void __user *uarg);
1154 
1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1156 			     unsigned int cmd, struct ifreq *ifr,
1157 			     void __user *uarg))
1158 {
1159 	mutex_lock(&br_ioctl_mutex);
1160 	br_ioctl_hook = hook;
1161 	mutex_unlock(&br_ioctl_mutex);
1162 }
1163 EXPORT_SYMBOL(brioctl_set);
1164 
1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1166 		  struct ifreq *ifr, void __user *uarg)
1167 {
1168 	int err = -ENOPKG;
1169 
1170 	if (!br_ioctl_hook)
1171 		request_module("bridge");
1172 
1173 	mutex_lock(&br_ioctl_mutex);
1174 	if (br_ioctl_hook)
1175 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1176 	mutex_unlock(&br_ioctl_mutex);
1177 
1178 	return err;
1179 }
1180 
1181 static DEFINE_MUTEX(vlan_ioctl_mutex);
1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1183 
1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1185 {
1186 	mutex_lock(&vlan_ioctl_mutex);
1187 	vlan_ioctl_hook = hook;
1188 	mutex_unlock(&vlan_ioctl_mutex);
1189 }
1190 EXPORT_SYMBOL(vlan_ioctl_set);
1191 
1192 static long sock_do_ioctl(struct net *net, struct socket *sock,
1193 			  unsigned int cmd, unsigned long arg)
1194 {
1195 	struct ifreq ifr;
1196 	bool need_copyout;
1197 	int err;
1198 	void __user *argp = (void __user *)arg;
1199 	void __user *data;
1200 
1201 	err = sock->ops->ioctl(sock, cmd, arg);
1202 
1203 	/*
1204 	 * If this ioctl is unknown try to hand it down
1205 	 * to the NIC driver.
1206 	 */
1207 	if (err != -ENOIOCTLCMD)
1208 		return err;
1209 
1210 	if (!is_socket_ioctl_cmd(cmd))
1211 		return -ENOTTY;
1212 
1213 	if (get_user_ifreq(&ifr, &data, argp))
1214 		return -EFAULT;
1215 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1216 	if (!err && need_copyout)
1217 		if (put_user_ifreq(&ifr, argp))
1218 			return -EFAULT;
1219 
1220 	return err;
1221 }
1222 
1223 /*
1224  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1225  *	what to do with it - that's up to the protocol still.
1226  */
1227 
1228 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1229 {
1230 	struct socket *sock;
1231 	struct sock *sk;
1232 	void __user *argp = (void __user *)arg;
1233 	int pid, err;
1234 	struct net *net;
1235 
1236 	sock = file->private_data;
1237 	sk = sock->sk;
1238 	net = sock_net(sk);
1239 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1240 		struct ifreq ifr;
1241 		void __user *data;
1242 		bool need_copyout;
1243 		if (get_user_ifreq(&ifr, &data, argp))
1244 			return -EFAULT;
1245 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1246 		if (!err && need_copyout)
1247 			if (put_user_ifreq(&ifr, argp))
1248 				return -EFAULT;
1249 	} else
1250 #ifdef CONFIG_WEXT_CORE
1251 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1252 		err = wext_handle_ioctl(net, cmd, argp);
1253 	} else
1254 #endif
1255 		switch (cmd) {
1256 		case FIOSETOWN:
1257 		case SIOCSPGRP:
1258 			err = -EFAULT;
1259 			if (get_user(pid, (int __user *)argp))
1260 				break;
1261 			err = f_setown(sock->file, pid, 1);
1262 			break;
1263 		case FIOGETOWN:
1264 		case SIOCGPGRP:
1265 			err = put_user(f_getown(sock->file),
1266 				       (int __user *)argp);
1267 			break;
1268 		case SIOCGIFBR:
1269 		case SIOCSIFBR:
1270 		case SIOCBRADDBR:
1271 		case SIOCBRDELBR:
1272 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273 			break;
1274 		case SIOCGIFVLAN:
1275 		case SIOCSIFVLAN:
1276 			err = -ENOPKG;
1277 			if (!vlan_ioctl_hook)
1278 				request_module("8021q");
1279 
1280 			mutex_lock(&vlan_ioctl_mutex);
1281 			if (vlan_ioctl_hook)
1282 				err = vlan_ioctl_hook(net, argp);
1283 			mutex_unlock(&vlan_ioctl_mutex);
1284 			break;
1285 		case SIOCGSKNS:
1286 			err = -EPERM;
1287 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1288 				break;
1289 
1290 			err = open_related_ns(&net->ns, get_net_ns);
1291 			break;
1292 		case SIOCGSTAMP_OLD:
1293 		case SIOCGSTAMPNS_OLD:
1294 			if (!sock->ops->gettstamp) {
1295 				err = -ENOIOCTLCMD;
1296 				break;
1297 			}
1298 			err = sock->ops->gettstamp(sock, argp,
1299 						   cmd == SIOCGSTAMP_OLD,
1300 						   !IS_ENABLED(CONFIG_64BIT));
1301 			break;
1302 		case SIOCGSTAMP_NEW:
1303 		case SIOCGSTAMPNS_NEW:
1304 			if (!sock->ops->gettstamp) {
1305 				err = -ENOIOCTLCMD;
1306 				break;
1307 			}
1308 			err = sock->ops->gettstamp(sock, argp,
1309 						   cmd == SIOCGSTAMP_NEW,
1310 						   false);
1311 			break;
1312 
1313 		case SIOCGIFCONF:
1314 			err = dev_ifconf(net, argp);
1315 			break;
1316 
1317 		default:
1318 			err = sock_do_ioctl(net, sock, cmd, arg);
1319 			break;
1320 		}
1321 	return err;
1322 }
1323 
1324 /**
1325  *	sock_create_lite - creates a socket
1326  *	@family: protocol family (AF_INET, ...)
1327  *	@type: communication type (SOCK_STREAM, ...)
1328  *	@protocol: protocol (0, ...)
1329  *	@res: new socket
1330  *
1331  *	Creates a new socket and assigns it to @res, passing through LSM.
1332  *	The new socket initialization is not complete, see kernel_accept().
1333  *	Returns 0 or an error. On failure @res is set to %NULL.
1334  *	This function internally uses GFP_KERNEL.
1335  */
1336 
1337 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1338 {
1339 	int err;
1340 	struct socket *sock = NULL;
1341 
1342 	err = security_socket_create(family, type, protocol, 1);
1343 	if (err)
1344 		goto out;
1345 
1346 	sock = sock_alloc();
1347 	if (!sock) {
1348 		err = -ENOMEM;
1349 		goto out;
1350 	}
1351 
1352 	sock->type = type;
1353 	err = security_socket_post_create(sock, family, type, protocol, 1);
1354 	if (err)
1355 		goto out_release;
1356 
1357 out:
1358 	*res = sock;
1359 	return err;
1360 out_release:
1361 	sock_release(sock);
1362 	sock = NULL;
1363 	goto out;
1364 }
1365 EXPORT_SYMBOL(sock_create_lite);
1366 
1367 /* No kernel lock held - perfect */
1368 static __poll_t sock_poll(struct file *file, poll_table *wait)
1369 {
1370 	struct socket *sock = file->private_data;
1371 	__poll_t events = poll_requested_events(wait), flag = 0;
1372 
1373 	if (!sock->ops->poll)
1374 		return 0;
1375 
1376 	if (sk_can_busy_loop(sock->sk)) {
1377 		/* poll once if requested by the syscall */
1378 		if (events & POLL_BUSY_LOOP)
1379 			sk_busy_loop(sock->sk, 1);
1380 
1381 		/* if this socket can poll_ll, tell the system call */
1382 		flag = POLL_BUSY_LOOP;
1383 	}
1384 
1385 	return sock->ops->poll(file, sock, wait) | flag;
1386 }
1387 
1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 	struct socket *sock = file->private_data;
1391 
1392 	return sock->ops->mmap(file, sock, vma);
1393 }
1394 
1395 static int sock_close(struct inode *inode, struct file *filp)
1396 {
1397 	__sock_release(SOCKET_I(inode), inode);
1398 	return 0;
1399 }
1400 
1401 /*
1402  *	Update the socket async list
1403  *
1404  *	Fasync_list locking strategy.
1405  *
1406  *	1. fasync_list is modified only under process context socket lock
1407  *	   i.e. under semaphore.
1408  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1409  *	   or under socket lock
1410  */
1411 
1412 static int sock_fasync(int fd, struct file *filp, int on)
1413 {
1414 	struct socket *sock = filp->private_data;
1415 	struct sock *sk = sock->sk;
1416 	struct socket_wq *wq = &sock->wq;
1417 
1418 	if (sk == NULL)
1419 		return -EINVAL;
1420 
1421 	lock_sock(sk);
1422 	fasync_helper(fd, filp, on, &wq->fasync_list);
1423 
1424 	if (!wq->fasync_list)
1425 		sock_reset_flag(sk, SOCK_FASYNC);
1426 	else
1427 		sock_set_flag(sk, SOCK_FASYNC);
1428 
1429 	release_sock(sk);
1430 	return 0;
1431 }
1432 
1433 /* This function may be called only under rcu_lock */
1434 
1435 int sock_wake_async(struct socket_wq *wq, int how, int band)
1436 {
1437 	if (!wq || !wq->fasync_list)
1438 		return -1;
1439 
1440 	switch (how) {
1441 	case SOCK_WAKE_WAITD:
1442 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1443 			break;
1444 		goto call_kill;
1445 	case SOCK_WAKE_SPACE:
1446 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1447 			break;
1448 		fallthrough;
1449 	case SOCK_WAKE_IO:
1450 call_kill:
1451 		kill_fasync(&wq->fasync_list, SIGIO, band);
1452 		break;
1453 	case SOCK_WAKE_URG:
1454 		kill_fasync(&wq->fasync_list, SIGURG, band);
1455 	}
1456 
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(sock_wake_async);
1460 
1461 /**
1462  *	__sock_create - creates a socket
1463  *	@net: net namespace
1464  *	@family: protocol family (AF_INET, ...)
1465  *	@type: communication type (SOCK_STREAM, ...)
1466  *	@protocol: protocol (0, ...)
1467  *	@res: new socket
1468  *	@kern: boolean for kernel space sockets
1469  *
1470  *	Creates a new socket and assigns it to @res, passing through LSM.
1471  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1472  *	be set to true if the socket resides in kernel space.
1473  *	This function internally uses GFP_KERNEL.
1474  */
1475 
1476 int __sock_create(struct net *net, int family, int type, int protocol,
1477 			 struct socket **res, int kern)
1478 {
1479 	int err;
1480 	struct socket *sock;
1481 	const struct net_proto_family *pf;
1482 
1483 	/*
1484 	 *      Check protocol is in range
1485 	 */
1486 	if (family < 0 || family >= NPROTO)
1487 		return -EAFNOSUPPORT;
1488 	if (type < 0 || type >= SOCK_MAX)
1489 		return -EINVAL;
1490 
1491 	/* Compatibility.
1492 
1493 	   This uglymoron is moved from INET layer to here to avoid
1494 	   deadlock in module load.
1495 	 */
1496 	if (family == PF_INET && type == SOCK_PACKET) {
1497 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1498 			     current->comm);
1499 		family = PF_PACKET;
1500 	}
1501 
1502 	err = security_socket_create(family, type, protocol, kern);
1503 	if (err)
1504 		return err;
1505 
1506 	/*
1507 	 *	Allocate the socket and allow the family to set things up. if
1508 	 *	the protocol is 0, the family is instructed to select an appropriate
1509 	 *	default.
1510 	 */
1511 	sock = sock_alloc();
1512 	if (!sock) {
1513 		net_warn_ratelimited("socket: no more sockets\n");
1514 		return -ENFILE;	/* Not exactly a match, but its the
1515 				   closest posix thing */
1516 	}
1517 
1518 	sock->type = type;
1519 
1520 #ifdef CONFIG_MODULES
1521 	/* Attempt to load a protocol module if the find failed.
1522 	 *
1523 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1524 	 * requested real, full-featured networking support upon configuration.
1525 	 * Otherwise module support will break!
1526 	 */
1527 	if (rcu_access_pointer(net_families[family]) == NULL)
1528 		request_module("net-pf-%d", family);
1529 #endif
1530 
1531 	rcu_read_lock();
1532 	pf = rcu_dereference(net_families[family]);
1533 	err = -EAFNOSUPPORT;
1534 	if (!pf)
1535 		goto out_release;
1536 
1537 	/*
1538 	 * We will call the ->create function, that possibly is in a loadable
1539 	 * module, so we have to bump that loadable module refcnt first.
1540 	 */
1541 	if (!try_module_get(pf->owner))
1542 		goto out_release;
1543 
1544 	/* Now protected by module ref count */
1545 	rcu_read_unlock();
1546 
1547 	err = pf->create(net, sock, protocol, kern);
1548 	if (err < 0)
1549 		goto out_module_put;
1550 
1551 	/*
1552 	 * Now to bump the refcnt of the [loadable] module that owns this
1553 	 * socket at sock_release time we decrement its refcnt.
1554 	 */
1555 	if (!try_module_get(sock->ops->owner))
1556 		goto out_module_busy;
1557 
1558 	/*
1559 	 * Now that we're done with the ->create function, the [loadable]
1560 	 * module can have its refcnt decremented
1561 	 */
1562 	module_put(pf->owner);
1563 	err = security_socket_post_create(sock, family, type, protocol, kern);
1564 	if (err)
1565 		goto out_sock_release;
1566 	*res = sock;
1567 
1568 	return 0;
1569 
1570 out_module_busy:
1571 	err = -EAFNOSUPPORT;
1572 out_module_put:
1573 	sock->ops = NULL;
1574 	module_put(pf->owner);
1575 out_sock_release:
1576 	sock_release(sock);
1577 	return err;
1578 
1579 out_release:
1580 	rcu_read_unlock();
1581 	goto out_sock_release;
1582 }
1583 EXPORT_SYMBOL(__sock_create);
1584 
1585 /**
1586  *	sock_create - creates a socket
1587  *	@family: protocol family (AF_INET, ...)
1588  *	@type: communication type (SOCK_STREAM, ...)
1589  *	@protocol: protocol (0, ...)
1590  *	@res: new socket
1591  *
1592  *	A wrapper around __sock_create().
1593  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1594  */
1595 
1596 int sock_create(int family, int type, int protocol, struct socket **res)
1597 {
1598 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1599 }
1600 EXPORT_SYMBOL(sock_create);
1601 
1602 /**
1603  *	sock_create_kern - creates a socket (kernel space)
1604  *	@net: net namespace
1605  *	@family: protocol family (AF_INET, ...)
1606  *	@type: communication type (SOCK_STREAM, ...)
1607  *	@protocol: protocol (0, ...)
1608  *	@res: new socket
1609  *
1610  *	A wrapper around __sock_create().
1611  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1612  */
1613 
1614 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1615 {
1616 	return __sock_create(net, family, type, protocol, res, 1);
1617 }
1618 EXPORT_SYMBOL(sock_create_kern);
1619 
1620 static struct socket *__sys_socket_create(int family, int type, int protocol)
1621 {
1622 	struct socket *sock;
1623 	int retval;
1624 
1625 	/* Check the SOCK_* constants for consistency.  */
1626 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1627 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1628 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1629 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1630 
1631 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1632 		return ERR_PTR(-EINVAL);
1633 	type &= SOCK_TYPE_MASK;
1634 
1635 	retval = sock_create(family, type, protocol, &sock);
1636 	if (retval < 0)
1637 		return ERR_PTR(retval);
1638 
1639 	return sock;
1640 }
1641 
1642 struct file *__sys_socket_file(int family, int type, int protocol)
1643 {
1644 	struct socket *sock;
1645 	int flags;
1646 
1647 	sock = __sys_socket_create(family, type, protocol);
1648 	if (IS_ERR(sock))
1649 		return ERR_CAST(sock);
1650 
1651 	flags = type & ~SOCK_TYPE_MASK;
1652 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1653 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1654 
1655 	return sock_alloc_file(sock, flags, NULL);
1656 }
1657 
1658 int __sys_socket(int family, int type, int protocol)
1659 {
1660 	struct socket *sock;
1661 	int flags;
1662 
1663 	sock = __sys_socket_create(family, type, protocol);
1664 	if (IS_ERR(sock))
1665 		return PTR_ERR(sock);
1666 
1667 	flags = type & ~SOCK_TYPE_MASK;
1668 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670 
1671 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1672 }
1673 
1674 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1675 {
1676 	return __sys_socket(family, type, protocol);
1677 }
1678 
1679 /*
1680  *	Create a pair of connected sockets.
1681  */
1682 
1683 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1684 {
1685 	struct socket *sock1, *sock2;
1686 	int fd1, fd2, err;
1687 	struct file *newfile1, *newfile2;
1688 	int flags;
1689 
1690 	flags = type & ~SOCK_TYPE_MASK;
1691 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1692 		return -EINVAL;
1693 	type &= SOCK_TYPE_MASK;
1694 
1695 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1696 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1697 
1698 	/*
1699 	 * reserve descriptors and make sure we won't fail
1700 	 * to return them to userland.
1701 	 */
1702 	fd1 = get_unused_fd_flags(flags);
1703 	if (unlikely(fd1 < 0))
1704 		return fd1;
1705 
1706 	fd2 = get_unused_fd_flags(flags);
1707 	if (unlikely(fd2 < 0)) {
1708 		put_unused_fd(fd1);
1709 		return fd2;
1710 	}
1711 
1712 	err = put_user(fd1, &usockvec[0]);
1713 	if (err)
1714 		goto out;
1715 
1716 	err = put_user(fd2, &usockvec[1]);
1717 	if (err)
1718 		goto out;
1719 
1720 	/*
1721 	 * Obtain the first socket and check if the underlying protocol
1722 	 * supports the socketpair call.
1723 	 */
1724 
1725 	err = sock_create(family, type, protocol, &sock1);
1726 	if (unlikely(err < 0))
1727 		goto out;
1728 
1729 	err = sock_create(family, type, protocol, &sock2);
1730 	if (unlikely(err < 0)) {
1731 		sock_release(sock1);
1732 		goto out;
1733 	}
1734 
1735 	err = security_socket_socketpair(sock1, sock2);
1736 	if (unlikely(err)) {
1737 		sock_release(sock2);
1738 		sock_release(sock1);
1739 		goto out;
1740 	}
1741 
1742 	err = sock1->ops->socketpair(sock1, sock2);
1743 	if (unlikely(err < 0)) {
1744 		sock_release(sock2);
1745 		sock_release(sock1);
1746 		goto out;
1747 	}
1748 
1749 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1750 	if (IS_ERR(newfile1)) {
1751 		err = PTR_ERR(newfile1);
1752 		sock_release(sock2);
1753 		goto out;
1754 	}
1755 
1756 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1757 	if (IS_ERR(newfile2)) {
1758 		err = PTR_ERR(newfile2);
1759 		fput(newfile1);
1760 		goto out;
1761 	}
1762 
1763 	audit_fd_pair(fd1, fd2);
1764 
1765 	fd_install(fd1, newfile1);
1766 	fd_install(fd2, newfile2);
1767 	return 0;
1768 
1769 out:
1770 	put_unused_fd(fd2);
1771 	put_unused_fd(fd1);
1772 	return err;
1773 }
1774 
1775 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1776 		int __user *, usockvec)
1777 {
1778 	return __sys_socketpair(family, type, protocol, usockvec);
1779 }
1780 
1781 /*
1782  *	Bind a name to a socket. Nothing much to do here since it's
1783  *	the protocol's responsibility to handle the local address.
1784  *
1785  *	We move the socket address to kernel space before we call
1786  *	the protocol layer (having also checked the address is ok).
1787  */
1788 
1789 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1790 {
1791 	struct socket *sock;
1792 	struct sockaddr_storage address;
1793 	int err, fput_needed;
1794 
1795 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 	if (sock) {
1797 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1798 		if (!err) {
1799 			err = security_socket_bind(sock,
1800 						   (struct sockaddr *)&address,
1801 						   addrlen);
1802 			if (!err)
1803 				err = sock->ops->bind(sock,
1804 						      (struct sockaddr *)
1805 						      &address, addrlen);
1806 		}
1807 		fput_light(sock->file, fput_needed);
1808 	}
1809 	return err;
1810 }
1811 
1812 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1813 {
1814 	return __sys_bind(fd, umyaddr, addrlen);
1815 }
1816 
1817 /*
1818  *	Perform a listen. Basically, we allow the protocol to do anything
1819  *	necessary for a listen, and if that works, we mark the socket as
1820  *	ready for listening.
1821  */
1822 
1823 int __sys_listen(int fd, int backlog)
1824 {
1825 	struct socket *sock;
1826 	int err, fput_needed;
1827 	int somaxconn;
1828 
1829 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 	if (sock) {
1831 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1832 		if ((unsigned int)backlog > somaxconn)
1833 			backlog = somaxconn;
1834 
1835 		err = security_socket_listen(sock, backlog);
1836 		if (!err)
1837 			err = sock->ops->listen(sock, backlog);
1838 
1839 		fput_light(sock->file, fput_needed);
1840 	}
1841 	return err;
1842 }
1843 
1844 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1845 {
1846 	return __sys_listen(fd, backlog);
1847 }
1848 
1849 struct file *do_accept(struct file *file, unsigned file_flags,
1850 		       struct sockaddr __user *upeer_sockaddr,
1851 		       int __user *upeer_addrlen, int flags)
1852 {
1853 	struct socket *sock, *newsock;
1854 	struct file *newfile;
1855 	int err, len;
1856 	struct sockaddr_storage address;
1857 
1858 	sock = sock_from_file(file);
1859 	if (!sock)
1860 		return ERR_PTR(-ENOTSOCK);
1861 
1862 	newsock = sock_alloc();
1863 	if (!newsock)
1864 		return ERR_PTR(-ENFILE);
1865 
1866 	newsock->type = sock->type;
1867 	newsock->ops = sock->ops;
1868 
1869 	/*
1870 	 * We don't need try_module_get here, as the listening socket (sock)
1871 	 * has the protocol module (sock->ops->owner) held.
1872 	 */
1873 	__module_get(newsock->ops->owner);
1874 
1875 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1876 	if (IS_ERR(newfile))
1877 		return newfile;
1878 
1879 	err = security_socket_accept(sock, newsock);
1880 	if (err)
1881 		goto out_fd;
1882 
1883 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1884 					false);
1885 	if (err < 0)
1886 		goto out_fd;
1887 
1888 	if (upeer_sockaddr) {
1889 		len = newsock->ops->getname(newsock,
1890 					(struct sockaddr *)&address, 2);
1891 		if (len < 0) {
1892 			err = -ECONNABORTED;
1893 			goto out_fd;
1894 		}
1895 		err = move_addr_to_user(&address,
1896 					len, upeer_sockaddr, upeer_addrlen);
1897 		if (err < 0)
1898 			goto out_fd;
1899 	}
1900 
1901 	/* File flags are not inherited via accept() unlike another OSes. */
1902 	return newfile;
1903 out_fd:
1904 	fput(newfile);
1905 	return ERR_PTR(err);
1906 }
1907 
1908 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1909 			      int __user *upeer_addrlen, int flags)
1910 {
1911 	struct file *newfile;
1912 	int newfd;
1913 
1914 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1915 		return -EINVAL;
1916 
1917 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1918 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1919 
1920 	newfd = get_unused_fd_flags(flags);
1921 	if (unlikely(newfd < 0))
1922 		return newfd;
1923 
1924 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1925 			    flags);
1926 	if (IS_ERR(newfile)) {
1927 		put_unused_fd(newfd);
1928 		return PTR_ERR(newfile);
1929 	}
1930 	fd_install(newfd, newfile);
1931 	return newfd;
1932 }
1933 
1934 /*
1935  *	For accept, we attempt to create a new socket, set up the link
1936  *	with the client, wake up the client, then return the new
1937  *	connected fd. We collect the address of the connector in kernel
1938  *	space and move it to user at the very end. This is unclean because
1939  *	we open the socket then return an error.
1940  *
1941  *	1003.1g adds the ability to recvmsg() to query connection pending
1942  *	status to recvmsg. We need to add that support in a way thats
1943  *	clean when we restructure accept also.
1944  */
1945 
1946 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1947 		  int __user *upeer_addrlen, int flags)
1948 {
1949 	int ret = -EBADF;
1950 	struct fd f;
1951 
1952 	f = fdget(fd);
1953 	if (f.file) {
1954 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1955 					 upeer_addrlen, flags);
1956 		fdput(f);
1957 	}
1958 
1959 	return ret;
1960 }
1961 
1962 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1963 		int __user *, upeer_addrlen, int, flags)
1964 {
1965 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1966 }
1967 
1968 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1969 		int __user *, upeer_addrlen)
1970 {
1971 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1972 }
1973 
1974 /*
1975  *	Attempt to connect to a socket with the server address.  The address
1976  *	is in user space so we verify it is OK and move it to kernel space.
1977  *
1978  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1979  *	break bindings
1980  *
1981  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1982  *	other SEQPACKET protocols that take time to connect() as it doesn't
1983  *	include the -EINPROGRESS status for such sockets.
1984  */
1985 
1986 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1987 		       int addrlen, int file_flags)
1988 {
1989 	struct socket *sock;
1990 	int err;
1991 
1992 	sock = sock_from_file(file);
1993 	if (!sock) {
1994 		err = -ENOTSOCK;
1995 		goto out;
1996 	}
1997 
1998 	err =
1999 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2000 	if (err)
2001 		goto out;
2002 
2003 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2004 				 sock->file->f_flags | file_flags);
2005 out:
2006 	return err;
2007 }
2008 
2009 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2010 {
2011 	int ret = -EBADF;
2012 	struct fd f;
2013 
2014 	f = fdget(fd);
2015 	if (f.file) {
2016 		struct sockaddr_storage address;
2017 
2018 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2019 		if (!ret)
2020 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2021 		fdput(f);
2022 	}
2023 
2024 	return ret;
2025 }
2026 
2027 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2028 		int, addrlen)
2029 {
2030 	return __sys_connect(fd, uservaddr, addrlen);
2031 }
2032 
2033 /*
2034  *	Get the local address ('name') of a socket object. Move the obtained
2035  *	name to user space.
2036  */
2037 
2038 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2039 		      int __user *usockaddr_len)
2040 {
2041 	struct socket *sock;
2042 	struct sockaddr_storage address;
2043 	int err, fput_needed;
2044 
2045 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2046 	if (!sock)
2047 		goto out;
2048 
2049 	err = security_socket_getsockname(sock);
2050 	if (err)
2051 		goto out_put;
2052 
2053 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2054 	if (err < 0)
2055 		goto out_put;
2056 	/* "err" is actually length in this case */
2057 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2058 
2059 out_put:
2060 	fput_light(sock->file, fput_needed);
2061 out:
2062 	return err;
2063 }
2064 
2065 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2066 		int __user *, usockaddr_len)
2067 {
2068 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2069 }
2070 
2071 /*
2072  *	Get the remote address ('name') of a socket object. Move the obtained
2073  *	name to user space.
2074  */
2075 
2076 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2077 		      int __user *usockaddr_len)
2078 {
2079 	struct socket *sock;
2080 	struct sockaddr_storage address;
2081 	int err, fput_needed;
2082 
2083 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 	if (sock != NULL) {
2085 		err = security_socket_getpeername(sock);
2086 		if (err) {
2087 			fput_light(sock->file, fput_needed);
2088 			return err;
2089 		}
2090 
2091 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2092 		if (err >= 0)
2093 			/* "err" is actually length in this case */
2094 			err = move_addr_to_user(&address, err, usockaddr,
2095 						usockaddr_len);
2096 		fput_light(sock->file, fput_needed);
2097 	}
2098 	return err;
2099 }
2100 
2101 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2102 		int __user *, usockaddr_len)
2103 {
2104 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2105 }
2106 
2107 /*
2108  *	Send a datagram to a given address. We move the address into kernel
2109  *	space and check the user space data area is readable before invoking
2110  *	the protocol.
2111  */
2112 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2113 		 struct sockaddr __user *addr,  int addr_len)
2114 {
2115 	struct socket *sock;
2116 	struct sockaddr_storage address;
2117 	int err;
2118 	struct msghdr msg;
2119 	struct iovec iov;
2120 	int fput_needed;
2121 
2122 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2123 	if (unlikely(err))
2124 		return err;
2125 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126 	if (!sock)
2127 		goto out;
2128 
2129 	msg.msg_name = NULL;
2130 	msg.msg_control = NULL;
2131 	msg.msg_controllen = 0;
2132 	msg.msg_namelen = 0;
2133 	msg.msg_ubuf = NULL;
2134 	if (addr) {
2135 		err = move_addr_to_kernel(addr, addr_len, &address);
2136 		if (err < 0)
2137 			goto out_put;
2138 		msg.msg_name = (struct sockaddr *)&address;
2139 		msg.msg_namelen = addr_len;
2140 	}
2141 	if (sock->file->f_flags & O_NONBLOCK)
2142 		flags |= MSG_DONTWAIT;
2143 	msg.msg_flags = flags;
2144 	err = sock_sendmsg(sock, &msg);
2145 
2146 out_put:
2147 	fput_light(sock->file, fput_needed);
2148 out:
2149 	return err;
2150 }
2151 
2152 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2153 		unsigned int, flags, struct sockaddr __user *, addr,
2154 		int, addr_len)
2155 {
2156 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2157 }
2158 
2159 /*
2160  *	Send a datagram down a socket.
2161  */
2162 
2163 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2164 		unsigned int, flags)
2165 {
2166 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2167 }
2168 
2169 /*
2170  *	Receive a frame from the socket and optionally record the address of the
2171  *	sender. We verify the buffers are writable and if needed move the
2172  *	sender address from kernel to user space.
2173  */
2174 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2175 		   struct sockaddr __user *addr, int __user *addr_len)
2176 {
2177 	struct sockaddr_storage address;
2178 	struct msghdr msg = {
2179 		/* Save some cycles and don't copy the address if not needed */
2180 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2181 	};
2182 	struct socket *sock;
2183 	struct iovec iov;
2184 	int err, err2;
2185 	int fput_needed;
2186 
2187 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2188 	if (unlikely(err))
2189 		return err;
2190 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 	if (!sock)
2192 		goto out;
2193 
2194 	if (sock->file->f_flags & O_NONBLOCK)
2195 		flags |= MSG_DONTWAIT;
2196 	err = sock_recvmsg(sock, &msg, flags);
2197 
2198 	if (err >= 0 && addr != NULL) {
2199 		err2 = move_addr_to_user(&address,
2200 					 msg.msg_namelen, addr, addr_len);
2201 		if (err2 < 0)
2202 			err = err2;
2203 	}
2204 
2205 	fput_light(sock->file, fput_needed);
2206 out:
2207 	return err;
2208 }
2209 
2210 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2211 		unsigned int, flags, struct sockaddr __user *, addr,
2212 		int __user *, addr_len)
2213 {
2214 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2215 }
2216 
2217 /*
2218  *	Receive a datagram from a socket.
2219  */
2220 
2221 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2222 		unsigned int, flags)
2223 {
2224 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2225 }
2226 
2227 static bool sock_use_custom_sol_socket(const struct socket *sock)
2228 {
2229 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2230 }
2231 
2232 /*
2233  *	Set a socket option. Because we don't know the option lengths we have
2234  *	to pass the user mode parameter for the protocols to sort out.
2235  */
2236 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2237 		int optlen)
2238 {
2239 	sockptr_t optval = USER_SOCKPTR(user_optval);
2240 	char *kernel_optval = NULL;
2241 	int err, fput_needed;
2242 	struct socket *sock;
2243 
2244 	if (optlen < 0)
2245 		return -EINVAL;
2246 
2247 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 	if (!sock)
2249 		return err;
2250 
2251 	err = security_socket_setsockopt(sock, level, optname);
2252 	if (err)
2253 		goto out_put;
2254 
2255 	if (!in_compat_syscall())
2256 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2257 						     user_optval, &optlen,
2258 						     &kernel_optval);
2259 	if (err < 0)
2260 		goto out_put;
2261 	if (err > 0) {
2262 		err = 0;
2263 		goto out_put;
2264 	}
2265 
2266 	if (kernel_optval)
2267 		optval = KERNEL_SOCKPTR(kernel_optval);
2268 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2269 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2270 	else if (unlikely(!sock->ops->setsockopt))
2271 		err = -EOPNOTSUPP;
2272 	else
2273 		err = sock->ops->setsockopt(sock, level, optname, optval,
2274 					    optlen);
2275 	kfree(kernel_optval);
2276 out_put:
2277 	fput_light(sock->file, fput_needed);
2278 	return err;
2279 }
2280 
2281 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2282 		char __user *, optval, int, optlen)
2283 {
2284 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2285 }
2286 
2287 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2288 							 int optname));
2289 
2290 /*
2291  *	Get a socket option. Because we don't know the option lengths we have
2292  *	to pass a user mode parameter for the protocols to sort out.
2293  */
2294 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2295 		int __user *optlen)
2296 {
2297 	int max_optlen __maybe_unused;
2298 	int err, fput_needed;
2299 	struct socket *sock;
2300 
2301 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2302 	if (!sock)
2303 		return err;
2304 
2305 	err = security_socket_getsockopt(sock, level, optname);
2306 	if (err)
2307 		goto out_put;
2308 
2309 	if (!in_compat_syscall())
2310 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2311 
2312 	if (level == SOL_SOCKET)
2313 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2314 	else if (unlikely(!sock->ops->getsockopt))
2315 		err = -EOPNOTSUPP;
2316 	else
2317 		err = sock->ops->getsockopt(sock, level, optname, optval,
2318 					    optlen);
2319 
2320 	if (!in_compat_syscall())
2321 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2322 						     optval, optlen, max_optlen,
2323 						     err);
2324 out_put:
2325 	fput_light(sock->file, fput_needed);
2326 	return err;
2327 }
2328 
2329 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2330 		char __user *, optval, int __user *, optlen)
2331 {
2332 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2333 }
2334 
2335 /*
2336  *	Shutdown a socket.
2337  */
2338 
2339 int __sys_shutdown_sock(struct socket *sock, int how)
2340 {
2341 	int err;
2342 
2343 	err = security_socket_shutdown(sock, how);
2344 	if (!err)
2345 		err = sock->ops->shutdown(sock, how);
2346 
2347 	return err;
2348 }
2349 
2350 int __sys_shutdown(int fd, int how)
2351 {
2352 	int err, fput_needed;
2353 	struct socket *sock;
2354 
2355 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2356 	if (sock != NULL) {
2357 		err = __sys_shutdown_sock(sock, how);
2358 		fput_light(sock->file, fput_needed);
2359 	}
2360 	return err;
2361 }
2362 
2363 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2364 {
2365 	return __sys_shutdown(fd, how);
2366 }
2367 
2368 /* A couple of helpful macros for getting the address of the 32/64 bit
2369  * fields which are the same type (int / unsigned) on our platforms.
2370  */
2371 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2372 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2373 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2374 
2375 struct used_address {
2376 	struct sockaddr_storage name;
2377 	unsigned int name_len;
2378 };
2379 
2380 int __copy_msghdr(struct msghdr *kmsg,
2381 		  struct user_msghdr *msg,
2382 		  struct sockaddr __user **save_addr)
2383 {
2384 	ssize_t err;
2385 
2386 	kmsg->msg_control_is_user = true;
2387 	kmsg->msg_get_inq = 0;
2388 	kmsg->msg_control_user = msg->msg_control;
2389 	kmsg->msg_controllen = msg->msg_controllen;
2390 	kmsg->msg_flags = msg->msg_flags;
2391 
2392 	kmsg->msg_namelen = msg->msg_namelen;
2393 	if (!msg->msg_name)
2394 		kmsg->msg_namelen = 0;
2395 
2396 	if (kmsg->msg_namelen < 0)
2397 		return -EINVAL;
2398 
2399 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2400 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2401 
2402 	if (save_addr)
2403 		*save_addr = msg->msg_name;
2404 
2405 	if (msg->msg_name && kmsg->msg_namelen) {
2406 		if (!save_addr) {
2407 			err = move_addr_to_kernel(msg->msg_name,
2408 						  kmsg->msg_namelen,
2409 						  kmsg->msg_name);
2410 			if (err < 0)
2411 				return err;
2412 		}
2413 	} else {
2414 		kmsg->msg_name = NULL;
2415 		kmsg->msg_namelen = 0;
2416 	}
2417 
2418 	if (msg->msg_iovlen > UIO_MAXIOV)
2419 		return -EMSGSIZE;
2420 
2421 	kmsg->msg_iocb = NULL;
2422 	kmsg->msg_ubuf = NULL;
2423 	return 0;
2424 }
2425 
2426 static int copy_msghdr_from_user(struct msghdr *kmsg,
2427 				 struct user_msghdr __user *umsg,
2428 				 struct sockaddr __user **save_addr,
2429 				 struct iovec **iov)
2430 {
2431 	struct user_msghdr msg;
2432 	ssize_t err;
2433 
2434 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2435 		return -EFAULT;
2436 
2437 	err = __copy_msghdr(kmsg, &msg, save_addr);
2438 	if (err)
2439 		return err;
2440 
2441 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2442 			    msg.msg_iov, msg.msg_iovlen,
2443 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2444 	return err < 0 ? err : 0;
2445 }
2446 
2447 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2448 			   unsigned int flags, struct used_address *used_address,
2449 			   unsigned int allowed_msghdr_flags)
2450 {
2451 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2452 				__aligned(sizeof(__kernel_size_t));
2453 	/* 20 is size of ipv6_pktinfo */
2454 	unsigned char *ctl_buf = ctl;
2455 	int ctl_len;
2456 	ssize_t err;
2457 
2458 	err = -ENOBUFS;
2459 
2460 	if (msg_sys->msg_controllen > INT_MAX)
2461 		goto out;
2462 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2463 	ctl_len = msg_sys->msg_controllen;
2464 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2465 		err =
2466 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2467 						     sizeof(ctl));
2468 		if (err)
2469 			goto out;
2470 		ctl_buf = msg_sys->msg_control;
2471 		ctl_len = msg_sys->msg_controllen;
2472 	} else if (ctl_len) {
2473 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2474 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2475 		if (ctl_len > sizeof(ctl)) {
2476 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2477 			if (ctl_buf == NULL)
2478 				goto out;
2479 		}
2480 		err = -EFAULT;
2481 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2482 			goto out_freectl;
2483 		msg_sys->msg_control = ctl_buf;
2484 		msg_sys->msg_control_is_user = false;
2485 	}
2486 	msg_sys->msg_flags = flags;
2487 
2488 	if (sock->file->f_flags & O_NONBLOCK)
2489 		msg_sys->msg_flags |= MSG_DONTWAIT;
2490 	/*
2491 	 * If this is sendmmsg() and current destination address is same as
2492 	 * previously succeeded address, omit asking LSM's decision.
2493 	 * used_address->name_len is initialized to UINT_MAX so that the first
2494 	 * destination address never matches.
2495 	 */
2496 	if (used_address && msg_sys->msg_name &&
2497 	    used_address->name_len == msg_sys->msg_namelen &&
2498 	    !memcmp(&used_address->name, msg_sys->msg_name,
2499 		    used_address->name_len)) {
2500 		err = sock_sendmsg_nosec(sock, msg_sys);
2501 		goto out_freectl;
2502 	}
2503 	err = sock_sendmsg(sock, msg_sys);
2504 	/*
2505 	 * If this is sendmmsg() and sending to current destination address was
2506 	 * successful, remember it.
2507 	 */
2508 	if (used_address && err >= 0) {
2509 		used_address->name_len = msg_sys->msg_namelen;
2510 		if (msg_sys->msg_name)
2511 			memcpy(&used_address->name, msg_sys->msg_name,
2512 			       used_address->name_len);
2513 	}
2514 
2515 out_freectl:
2516 	if (ctl_buf != ctl)
2517 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2518 out:
2519 	return err;
2520 }
2521 
2522 int sendmsg_copy_msghdr(struct msghdr *msg,
2523 			struct user_msghdr __user *umsg, unsigned flags,
2524 			struct iovec **iov)
2525 {
2526 	int err;
2527 
2528 	if (flags & MSG_CMSG_COMPAT) {
2529 		struct compat_msghdr __user *msg_compat;
2530 
2531 		msg_compat = (struct compat_msghdr __user *) umsg;
2532 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2533 	} else {
2534 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2535 	}
2536 	if (err < 0)
2537 		return err;
2538 
2539 	return 0;
2540 }
2541 
2542 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2543 			 struct msghdr *msg_sys, unsigned int flags,
2544 			 struct used_address *used_address,
2545 			 unsigned int allowed_msghdr_flags)
2546 {
2547 	struct sockaddr_storage address;
2548 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2549 	ssize_t err;
2550 
2551 	msg_sys->msg_name = &address;
2552 
2553 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2554 	if (err < 0)
2555 		return err;
2556 
2557 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2558 				allowed_msghdr_flags);
2559 	kfree(iov);
2560 	return err;
2561 }
2562 
2563 /*
2564  *	BSD sendmsg interface
2565  */
2566 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2567 			unsigned int flags)
2568 {
2569 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2570 }
2571 
2572 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2573 		   bool forbid_cmsg_compat)
2574 {
2575 	int fput_needed, err;
2576 	struct msghdr msg_sys;
2577 	struct socket *sock;
2578 
2579 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2580 		return -EINVAL;
2581 
2582 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2583 	if (!sock)
2584 		goto out;
2585 
2586 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2587 
2588 	fput_light(sock->file, fput_needed);
2589 out:
2590 	return err;
2591 }
2592 
2593 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2594 {
2595 	return __sys_sendmsg(fd, msg, flags, true);
2596 }
2597 
2598 /*
2599  *	Linux sendmmsg interface
2600  */
2601 
2602 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2603 		   unsigned int flags, bool forbid_cmsg_compat)
2604 {
2605 	int fput_needed, err, datagrams;
2606 	struct socket *sock;
2607 	struct mmsghdr __user *entry;
2608 	struct compat_mmsghdr __user *compat_entry;
2609 	struct msghdr msg_sys;
2610 	struct used_address used_address;
2611 	unsigned int oflags = flags;
2612 
2613 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2614 		return -EINVAL;
2615 
2616 	if (vlen > UIO_MAXIOV)
2617 		vlen = UIO_MAXIOV;
2618 
2619 	datagrams = 0;
2620 
2621 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2622 	if (!sock)
2623 		return err;
2624 
2625 	used_address.name_len = UINT_MAX;
2626 	entry = mmsg;
2627 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2628 	err = 0;
2629 	flags |= MSG_BATCH;
2630 
2631 	while (datagrams < vlen) {
2632 		if (datagrams == vlen - 1)
2633 			flags = oflags;
2634 
2635 		if (MSG_CMSG_COMPAT & flags) {
2636 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2637 					     &msg_sys, flags, &used_address, MSG_EOR);
2638 			if (err < 0)
2639 				break;
2640 			err = __put_user(err, &compat_entry->msg_len);
2641 			++compat_entry;
2642 		} else {
2643 			err = ___sys_sendmsg(sock,
2644 					     (struct user_msghdr __user *)entry,
2645 					     &msg_sys, flags, &used_address, MSG_EOR);
2646 			if (err < 0)
2647 				break;
2648 			err = put_user(err, &entry->msg_len);
2649 			++entry;
2650 		}
2651 
2652 		if (err)
2653 			break;
2654 		++datagrams;
2655 		if (msg_data_left(&msg_sys))
2656 			break;
2657 		cond_resched();
2658 	}
2659 
2660 	fput_light(sock->file, fput_needed);
2661 
2662 	/* We only return an error if no datagrams were able to be sent */
2663 	if (datagrams != 0)
2664 		return datagrams;
2665 
2666 	return err;
2667 }
2668 
2669 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2670 		unsigned int, vlen, unsigned int, flags)
2671 {
2672 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2673 }
2674 
2675 int recvmsg_copy_msghdr(struct msghdr *msg,
2676 			struct user_msghdr __user *umsg, unsigned flags,
2677 			struct sockaddr __user **uaddr,
2678 			struct iovec **iov)
2679 {
2680 	ssize_t err;
2681 
2682 	if (MSG_CMSG_COMPAT & flags) {
2683 		struct compat_msghdr __user *msg_compat;
2684 
2685 		msg_compat = (struct compat_msghdr __user *) umsg;
2686 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2687 	} else {
2688 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2689 	}
2690 	if (err < 0)
2691 		return err;
2692 
2693 	return 0;
2694 }
2695 
2696 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2697 			   struct user_msghdr __user *msg,
2698 			   struct sockaddr __user *uaddr,
2699 			   unsigned int flags, int nosec)
2700 {
2701 	struct compat_msghdr __user *msg_compat =
2702 					(struct compat_msghdr __user *) msg;
2703 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2704 	struct sockaddr_storage addr;
2705 	unsigned long cmsg_ptr;
2706 	int len;
2707 	ssize_t err;
2708 
2709 	msg_sys->msg_name = &addr;
2710 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2711 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2712 
2713 	/* We assume all kernel code knows the size of sockaddr_storage */
2714 	msg_sys->msg_namelen = 0;
2715 
2716 	if (sock->file->f_flags & O_NONBLOCK)
2717 		flags |= MSG_DONTWAIT;
2718 
2719 	if (unlikely(nosec))
2720 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2721 	else
2722 		err = sock_recvmsg(sock, msg_sys, flags);
2723 
2724 	if (err < 0)
2725 		goto out;
2726 	len = err;
2727 
2728 	if (uaddr != NULL) {
2729 		err = move_addr_to_user(&addr,
2730 					msg_sys->msg_namelen, uaddr,
2731 					uaddr_len);
2732 		if (err < 0)
2733 			goto out;
2734 	}
2735 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2736 			 COMPAT_FLAGS(msg));
2737 	if (err)
2738 		goto out;
2739 	if (MSG_CMSG_COMPAT & flags)
2740 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2741 				 &msg_compat->msg_controllen);
2742 	else
2743 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2744 				 &msg->msg_controllen);
2745 	if (err)
2746 		goto out;
2747 	err = len;
2748 out:
2749 	return err;
2750 }
2751 
2752 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2753 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2754 {
2755 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2756 	/* user mode address pointers */
2757 	struct sockaddr __user *uaddr;
2758 	ssize_t err;
2759 
2760 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2761 	if (err < 0)
2762 		return err;
2763 
2764 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2765 	kfree(iov);
2766 	return err;
2767 }
2768 
2769 /*
2770  *	BSD recvmsg interface
2771  */
2772 
2773 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2774 			struct user_msghdr __user *umsg,
2775 			struct sockaddr __user *uaddr, unsigned int flags)
2776 {
2777 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2778 }
2779 
2780 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2781 		   bool forbid_cmsg_compat)
2782 {
2783 	int fput_needed, err;
2784 	struct msghdr msg_sys;
2785 	struct socket *sock;
2786 
2787 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2788 		return -EINVAL;
2789 
2790 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2791 	if (!sock)
2792 		goto out;
2793 
2794 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2795 
2796 	fput_light(sock->file, fput_needed);
2797 out:
2798 	return err;
2799 }
2800 
2801 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2802 		unsigned int, flags)
2803 {
2804 	return __sys_recvmsg(fd, msg, flags, true);
2805 }
2806 
2807 /*
2808  *     Linux recvmmsg interface
2809  */
2810 
2811 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2812 			  unsigned int vlen, unsigned int flags,
2813 			  struct timespec64 *timeout)
2814 {
2815 	int fput_needed, err, datagrams;
2816 	struct socket *sock;
2817 	struct mmsghdr __user *entry;
2818 	struct compat_mmsghdr __user *compat_entry;
2819 	struct msghdr msg_sys;
2820 	struct timespec64 end_time;
2821 	struct timespec64 timeout64;
2822 
2823 	if (timeout &&
2824 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2825 				    timeout->tv_nsec))
2826 		return -EINVAL;
2827 
2828 	datagrams = 0;
2829 
2830 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2831 	if (!sock)
2832 		return err;
2833 
2834 	if (likely(!(flags & MSG_ERRQUEUE))) {
2835 		err = sock_error(sock->sk);
2836 		if (err) {
2837 			datagrams = err;
2838 			goto out_put;
2839 		}
2840 	}
2841 
2842 	entry = mmsg;
2843 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2844 
2845 	while (datagrams < vlen) {
2846 		/*
2847 		 * No need to ask LSM for more than the first datagram.
2848 		 */
2849 		if (MSG_CMSG_COMPAT & flags) {
2850 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2851 					     &msg_sys, flags & ~MSG_WAITFORONE,
2852 					     datagrams);
2853 			if (err < 0)
2854 				break;
2855 			err = __put_user(err, &compat_entry->msg_len);
2856 			++compat_entry;
2857 		} else {
2858 			err = ___sys_recvmsg(sock,
2859 					     (struct user_msghdr __user *)entry,
2860 					     &msg_sys, flags & ~MSG_WAITFORONE,
2861 					     datagrams);
2862 			if (err < 0)
2863 				break;
2864 			err = put_user(err, &entry->msg_len);
2865 			++entry;
2866 		}
2867 
2868 		if (err)
2869 			break;
2870 		++datagrams;
2871 
2872 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2873 		if (flags & MSG_WAITFORONE)
2874 			flags |= MSG_DONTWAIT;
2875 
2876 		if (timeout) {
2877 			ktime_get_ts64(&timeout64);
2878 			*timeout = timespec64_sub(end_time, timeout64);
2879 			if (timeout->tv_sec < 0) {
2880 				timeout->tv_sec = timeout->tv_nsec = 0;
2881 				break;
2882 			}
2883 
2884 			/* Timeout, return less than vlen datagrams */
2885 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2886 				break;
2887 		}
2888 
2889 		/* Out of band data, return right away */
2890 		if (msg_sys.msg_flags & MSG_OOB)
2891 			break;
2892 		cond_resched();
2893 	}
2894 
2895 	if (err == 0)
2896 		goto out_put;
2897 
2898 	if (datagrams == 0) {
2899 		datagrams = err;
2900 		goto out_put;
2901 	}
2902 
2903 	/*
2904 	 * We may return less entries than requested (vlen) if the
2905 	 * sock is non block and there aren't enough datagrams...
2906 	 */
2907 	if (err != -EAGAIN) {
2908 		/*
2909 		 * ... or  if recvmsg returns an error after we
2910 		 * received some datagrams, where we record the
2911 		 * error to return on the next call or if the
2912 		 * app asks about it using getsockopt(SO_ERROR).
2913 		 */
2914 		WRITE_ONCE(sock->sk->sk_err, -err);
2915 	}
2916 out_put:
2917 	fput_light(sock->file, fput_needed);
2918 
2919 	return datagrams;
2920 }
2921 
2922 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2923 		   unsigned int vlen, unsigned int flags,
2924 		   struct __kernel_timespec __user *timeout,
2925 		   struct old_timespec32 __user *timeout32)
2926 {
2927 	int datagrams;
2928 	struct timespec64 timeout_sys;
2929 
2930 	if (timeout && get_timespec64(&timeout_sys, timeout))
2931 		return -EFAULT;
2932 
2933 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2934 		return -EFAULT;
2935 
2936 	if (!timeout && !timeout32)
2937 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2938 
2939 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2940 
2941 	if (datagrams <= 0)
2942 		return datagrams;
2943 
2944 	if (timeout && put_timespec64(&timeout_sys, timeout))
2945 		datagrams = -EFAULT;
2946 
2947 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2948 		datagrams = -EFAULT;
2949 
2950 	return datagrams;
2951 }
2952 
2953 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2954 		unsigned int, vlen, unsigned int, flags,
2955 		struct __kernel_timespec __user *, timeout)
2956 {
2957 	if (flags & MSG_CMSG_COMPAT)
2958 		return -EINVAL;
2959 
2960 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2961 }
2962 
2963 #ifdef CONFIG_COMPAT_32BIT_TIME
2964 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2965 		unsigned int, vlen, unsigned int, flags,
2966 		struct old_timespec32 __user *, timeout)
2967 {
2968 	if (flags & MSG_CMSG_COMPAT)
2969 		return -EINVAL;
2970 
2971 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2972 }
2973 #endif
2974 
2975 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2976 /* Argument list sizes for sys_socketcall */
2977 #define AL(x) ((x) * sizeof(unsigned long))
2978 static const unsigned char nargs[21] = {
2979 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2980 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2981 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2982 	AL(4), AL(5), AL(4)
2983 };
2984 
2985 #undef AL
2986 
2987 /*
2988  *	System call vectors.
2989  *
2990  *	Argument checking cleaned up. Saved 20% in size.
2991  *  This function doesn't need to set the kernel lock because
2992  *  it is set by the callees.
2993  */
2994 
2995 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2996 {
2997 	unsigned long a[AUDITSC_ARGS];
2998 	unsigned long a0, a1;
2999 	int err;
3000 	unsigned int len;
3001 
3002 	if (call < 1 || call > SYS_SENDMMSG)
3003 		return -EINVAL;
3004 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3005 
3006 	len = nargs[call];
3007 	if (len > sizeof(a))
3008 		return -EINVAL;
3009 
3010 	/* copy_from_user should be SMP safe. */
3011 	if (copy_from_user(a, args, len))
3012 		return -EFAULT;
3013 
3014 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3015 	if (err)
3016 		return err;
3017 
3018 	a0 = a[0];
3019 	a1 = a[1];
3020 
3021 	switch (call) {
3022 	case SYS_SOCKET:
3023 		err = __sys_socket(a0, a1, a[2]);
3024 		break;
3025 	case SYS_BIND:
3026 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3027 		break;
3028 	case SYS_CONNECT:
3029 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3030 		break;
3031 	case SYS_LISTEN:
3032 		err = __sys_listen(a0, a1);
3033 		break;
3034 	case SYS_ACCEPT:
3035 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3036 				    (int __user *)a[2], 0);
3037 		break;
3038 	case SYS_GETSOCKNAME:
3039 		err =
3040 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3041 				      (int __user *)a[2]);
3042 		break;
3043 	case SYS_GETPEERNAME:
3044 		err =
3045 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3046 				      (int __user *)a[2]);
3047 		break;
3048 	case SYS_SOCKETPAIR:
3049 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3050 		break;
3051 	case SYS_SEND:
3052 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3053 				   NULL, 0);
3054 		break;
3055 	case SYS_SENDTO:
3056 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3057 				   (struct sockaddr __user *)a[4], a[5]);
3058 		break;
3059 	case SYS_RECV:
3060 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3061 				     NULL, NULL);
3062 		break;
3063 	case SYS_RECVFROM:
3064 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3065 				     (struct sockaddr __user *)a[4],
3066 				     (int __user *)a[5]);
3067 		break;
3068 	case SYS_SHUTDOWN:
3069 		err = __sys_shutdown(a0, a1);
3070 		break;
3071 	case SYS_SETSOCKOPT:
3072 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3073 				       a[4]);
3074 		break;
3075 	case SYS_GETSOCKOPT:
3076 		err =
3077 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3078 				     (int __user *)a[4]);
3079 		break;
3080 	case SYS_SENDMSG:
3081 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3082 				    a[2], true);
3083 		break;
3084 	case SYS_SENDMMSG:
3085 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3086 				     a[3], true);
3087 		break;
3088 	case SYS_RECVMSG:
3089 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3090 				    a[2], true);
3091 		break;
3092 	case SYS_RECVMMSG:
3093 		if (IS_ENABLED(CONFIG_64BIT))
3094 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3095 					     a[2], a[3],
3096 					     (struct __kernel_timespec __user *)a[4],
3097 					     NULL);
3098 		else
3099 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3100 					     a[2], a[3], NULL,
3101 					     (struct old_timespec32 __user *)a[4]);
3102 		break;
3103 	case SYS_ACCEPT4:
3104 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3105 				    (int __user *)a[2], a[3]);
3106 		break;
3107 	default:
3108 		err = -EINVAL;
3109 		break;
3110 	}
3111 	return err;
3112 }
3113 
3114 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3115 
3116 /**
3117  *	sock_register - add a socket protocol handler
3118  *	@ops: description of protocol
3119  *
3120  *	This function is called by a protocol handler that wants to
3121  *	advertise its address family, and have it linked into the
3122  *	socket interface. The value ops->family corresponds to the
3123  *	socket system call protocol family.
3124  */
3125 int sock_register(const struct net_proto_family *ops)
3126 {
3127 	int err;
3128 
3129 	if (ops->family >= NPROTO) {
3130 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3131 		return -ENOBUFS;
3132 	}
3133 
3134 	spin_lock(&net_family_lock);
3135 	if (rcu_dereference_protected(net_families[ops->family],
3136 				      lockdep_is_held(&net_family_lock)))
3137 		err = -EEXIST;
3138 	else {
3139 		rcu_assign_pointer(net_families[ops->family], ops);
3140 		err = 0;
3141 	}
3142 	spin_unlock(&net_family_lock);
3143 
3144 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3145 	return err;
3146 }
3147 EXPORT_SYMBOL(sock_register);
3148 
3149 /**
3150  *	sock_unregister - remove a protocol handler
3151  *	@family: protocol family to remove
3152  *
3153  *	This function is called by a protocol handler that wants to
3154  *	remove its address family, and have it unlinked from the
3155  *	new socket creation.
3156  *
3157  *	If protocol handler is a module, then it can use module reference
3158  *	counts to protect against new references. If protocol handler is not
3159  *	a module then it needs to provide its own protection in
3160  *	the ops->create routine.
3161  */
3162 void sock_unregister(int family)
3163 {
3164 	BUG_ON(family < 0 || family >= NPROTO);
3165 
3166 	spin_lock(&net_family_lock);
3167 	RCU_INIT_POINTER(net_families[family], NULL);
3168 	spin_unlock(&net_family_lock);
3169 
3170 	synchronize_rcu();
3171 
3172 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3173 }
3174 EXPORT_SYMBOL(sock_unregister);
3175 
3176 bool sock_is_registered(int family)
3177 {
3178 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3179 }
3180 
3181 static int __init sock_init(void)
3182 {
3183 	int err;
3184 	/*
3185 	 *      Initialize the network sysctl infrastructure.
3186 	 */
3187 	err = net_sysctl_init();
3188 	if (err)
3189 		goto out;
3190 
3191 	/*
3192 	 *      Initialize skbuff SLAB cache
3193 	 */
3194 	skb_init();
3195 
3196 	/*
3197 	 *      Initialize the protocols module.
3198 	 */
3199 
3200 	init_inodecache();
3201 
3202 	err = register_filesystem(&sock_fs_type);
3203 	if (err)
3204 		goto out;
3205 	sock_mnt = kern_mount(&sock_fs_type);
3206 	if (IS_ERR(sock_mnt)) {
3207 		err = PTR_ERR(sock_mnt);
3208 		goto out_mount;
3209 	}
3210 
3211 	/* The real protocol initialization is performed in later initcalls.
3212 	 */
3213 
3214 #ifdef CONFIG_NETFILTER
3215 	err = netfilter_init();
3216 	if (err)
3217 		goto out;
3218 #endif
3219 
3220 	ptp_classifier_init();
3221 
3222 out:
3223 	return err;
3224 
3225 out_mount:
3226 	unregister_filesystem(&sock_fs_type);
3227 	goto out;
3228 }
3229 
3230 core_initcall(sock_init);	/* early initcall */
3231 
3232 #ifdef CONFIG_PROC_FS
3233 void socket_seq_show(struct seq_file *seq)
3234 {
3235 	seq_printf(seq, "sockets: used %d\n",
3236 		   sock_inuse_get(seq->private));
3237 }
3238 #endif				/* CONFIG_PROC_FS */
3239 
3240 /* Handle the fact that while struct ifreq has the same *layout* on
3241  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3242  * which are handled elsewhere, it still has different *size* due to
3243  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3244  * resulting in struct ifreq being 32 and 40 bytes respectively).
3245  * As a result, if the struct happens to be at the end of a page and
3246  * the next page isn't readable/writable, we get a fault. To prevent
3247  * that, copy back and forth to the full size.
3248  */
3249 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3250 {
3251 	if (in_compat_syscall()) {
3252 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3253 
3254 		memset(ifr, 0, sizeof(*ifr));
3255 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3256 			return -EFAULT;
3257 
3258 		if (ifrdata)
3259 			*ifrdata = compat_ptr(ifr32->ifr_data);
3260 
3261 		return 0;
3262 	}
3263 
3264 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3265 		return -EFAULT;
3266 
3267 	if (ifrdata)
3268 		*ifrdata = ifr->ifr_data;
3269 
3270 	return 0;
3271 }
3272 EXPORT_SYMBOL(get_user_ifreq);
3273 
3274 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3275 {
3276 	size_t size = sizeof(*ifr);
3277 
3278 	if (in_compat_syscall())
3279 		size = sizeof(struct compat_ifreq);
3280 
3281 	if (copy_to_user(arg, ifr, size))
3282 		return -EFAULT;
3283 
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL(put_user_ifreq);
3287 
3288 #ifdef CONFIG_COMPAT
3289 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3290 {
3291 	compat_uptr_t uptr32;
3292 	struct ifreq ifr;
3293 	void __user *saved;
3294 	int err;
3295 
3296 	if (get_user_ifreq(&ifr, NULL, uifr32))
3297 		return -EFAULT;
3298 
3299 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3300 		return -EFAULT;
3301 
3302 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3303 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3304 
3305 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3306 	if (!err) {
3307 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3308 		if (put_user_ifreq(&ifr, uifr32))
3309 			err = -EFAULT;
3310 	}
3311 	return err;
3312 }
3313 
3314 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3315 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3316 				 struct compat_ifreq __user *u_ifreq32)
3317 {
3318 	struct ifreq ifreq;
3319 	void __user *data;
3320 
3321 	if (!is_socket_ioctl_cmd(cmd))
3322 		return -ENOTTY;
3323 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3324 		return -EFAULT;
3325 	ifreq.ifr_data = data;
3326 
3327 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3328 }
3329 
3330 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3331 			 unsigned int cmd, unsigned long arg)
3332 {
3333 	void __user *argp = compat_ptr(arg);
3334 	struct sock *sk = sock->sk;
3335 	struct net *net = sock_net(sk);
3336 
3337 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3338 		return sock_ioctl(file, cmd, (unsigned long)argp);
3339 
3340 	switch (cmd) {
3341 	case SIOCWANDEV:
3342 		return compat_siocwandev(net, argp);
3343 	case SIOCGSTAMP_OLD:
3344 	case SIOCGSTAMPNS_OLD:
3345 		if (!sock->ops->gettstamp)
3346 			return -ENOIOCTLCMD;
3347 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3348 					    !COMPAT_USE_64BIT_TIME);
3349 
3350 	case SIOCETHTOOL:
3351 	case SIOCBONDSLAVEINFOQUERY:
3352 	case SIOCBONDINFOQUERY:
3353 	case SIOCSHWTSTAMP:
3354 	case SIOCGHWTSTAMP:
3355 		return compat_ifr_data_ioctl(net, cmd, argp);
3356 
3357 	case FIOSETOWN:
3358 	case SIOCSPGRP:
3359 	case FIOGETOWN:
3360 	case SIOCGPGRP:
3361 	case SIOCBRADDBR:
3362 	case SIOCBRDELBR:
3363 	case SIOCGIFVLAN:
3364 	case SIOCSIFVLAN:
3365 	case SIOCGSKNS:
3366 	case SIOCGSTAMP_NEW:
3367 	case SIOCGSTAMPNS_NEW:
3368 	case SIOCGIFCONF:
3369 	case SIOCSIFBR:
3370 	case SIOCGIFBR:
3371 		return sock_ioctl(file, cmd, arg);
3372 
3373 	case SIOCGIFFLAGS:
3374 	case SIOCSIFFLAGS:
3375 	case SIOCGIFMAP:
3376 	case SIOCSIFMAP:
3377 	case SIOCGIFMETRIC:
3378 	case SIOCSIFMETRIC:
3379 	case SIOCGIFMTU:
3380 	case SIOCSIFMTU:
3381 	case SIOCGIFMEM:
3382 	case SIOCSIFMEM:
3383 	case SIOCGIFHWADDR:
3384 	case SIOCSIFHWADDR:
3385 	case SIOCADDMULTI:
3386 	case SIOCDELMULTI:
3387 	case SIOCGIFINDEX:
3388 	case SIOCGIFADDR:
3389 	case SIOCSIFADDR:
3390 	case SIOCSIFHWBROADCAST:
3391 	case SIOCDIFADDR:
3392 	case SIOCGIFBRDADDR:
3393 	case SIOCSIFBRDADDR:
3394 	case SIOCGIFDSTADDR:
3395 	case SIOCSIFDSTADDR:
3396 	case SIOCGIFNETMASK:
3397 	case SIOCSIFNETMASK:
3398 	case SIOCSIFPFLAGS:
3399 	case SIOCGIFPFLAGS:
3400 	case SIOCGIFTXQLEN:
3401 	case SIOCSIFTXQLEN:
3402 	case SIOCBRADDIF:
3403 	case SIOCBRDELIF:
3404 	case SIOCGIFNAME:
3405 	case SIOCSIFNAME:
3406 	case SIOCGMIIPHY:
3407 	case SIOCGMIIREG:
3408 	case SIOCSMIIREG:
3409 	case SIOCBONDENSLAVE:
3410 	case SIOCBONDRELEASE:
3411 	case SIOCBONDSETHWADDR:
3412 	case SIOCBONDCHANGEACTIVE:
3413 	case SIOCSARP:
3414 	case SIOCGARP:
3415 	case SIOCDARP:
3416 	case SIOCOUTQ:
3417 	case SIOCOUTQNSD:
3418 	case SIOCATMARK:
3419 		return sock_do_ioctl(net, sock, cmd, arg);
3420 	}
3421 
3422 	return -ENOIOCTLCMD;
3423 }
3424 
3425 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3426 			      unsigned long arg)
3427 {
3428 	struct socket *sock = file->private_data;
3429 	int ret = -ENOIOCTLCMD;
3430 	struct sock *sk;
3431 	struct net *net;
3432 
3433 	sk = sock->sk;
3434 	net = sock_net(sk);
3435 
3436 	if (sock->ops->compat_ioctl)
3437 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3438 
3439 	if (ret == -ENOIOCTLCMD &&
3440 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3441 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3442 
3443 	if (ret == -ENOIOCTLCMD)
3444 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3445 
3446 	return ret;
3447 }
3448 #endif
3449 
3450 /**
3451  *	kernel_bind - bind an address to a socket (kernel space)
3452  *	@sock: socket
3453  *	@addr: address
3454  *	@addrlen: length of address
3455  *
3456  *	Returns 0 or an error.
3457  */
3458 
3459 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3460 {
3461 	return sock->ops->bind(sock, addr, addrlen);
3462 }
3463 EXPORT_SYMBOL(kernel_bind);
3464 
3465 /**
3466  *	kernel_listen - move socket to listening state (kernel space)
3467  *	@sock: socket
3468  *	@backlog: pending connections queue size
3469  *
3470  *	Returns 0 or an error.
3471  */
3472 
3473 int kernel_listen(struct socket *sock, int backlog)
3474 {
3475 	return sock->ops->listen(sock, backlog);
3476 }
3477 EXPORT_SYMBOL(kernel_listen);
3478 
3479 /**
3480  *	kernel_accept - accept a connection (kernel space)
3481  *	@sock: listening socket
3482  *	@newsock: new connected socket
3483  *	@flags: flags
3484  *
3485  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3486  *	If it fails, @newsock is guaranteed to be %NULL.
3487  *	Returns 0 or an error.
3488  */
3489 
3490 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3491 {
3492 	struct sock *sk = sock->sk;
3493 	int err;
3494 
3495 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3496 			       newsock);
3497 	if (err < 0)
3498 		goto done;
3499 
3500 	err = sock->ops->accept(sock, *newsock, flags, true);
3501 	if (err < 0) {
3502 		sock_release(*newsock);
3503 		*newsock = NULL;
3504 		goto done;
3505 	}
3506 
3507 	(*newsock)->ops = sock->ops;
3508 	__module_get((*newsock)->ops->owner);
3509 
3510 done:
3511 	return err;
3512 }
3513 EXPORT_SYMBOL(kernel_accept);
3514 
3515 /**
3516  *	kernel_connect - connect a socket (kernel space)
3517  *	@sock: socket
3518  *	@addr: address
3519  *	@addrlen: address length
3520  *	@flags: flags (O_NONBLOCK, ...)
3521  *
3522  *	For datagram sockets, @addr is the address to which datagrams are sent
3523  *	by default, and the only address from which datagrams are received.
3524  *	For stream sockets, attempts to connect to @addr.
3525  *	Returns 0 or an error code.
3526  */
3527 
3528 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3529 		   int flags)
3530 {
3531 	return sock->ops->connect(sock, addr, addrlen, flags);
3532 }
3533 EXPORT_SYMBOL(kernel_connect);
3534 
3535 /**
3536  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3537  *	@sock: socket
3538  *	@addr: address holder
3539  *
3540  * 	Fills the @addr pointer with the address which the socket is bound.
3541  *	Returns the length of the address in bytes or an error code.
3542  */
3543 
3544 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3545 {
3546 	return sock->ops->getname(sock, addr, 0);
3547 }
3548 EXPORT_SYMBOL(kernel_getsockname);
3549 
3550 /**
3551  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3552  *	@sock: socket
3553  *	@addr: address holder
3554  *
3555  * 	Fills the @addr pointer with the address which the socket is connected.
3556  *	Returns the length of the address in bytes or an error code.
3557  */
3558 
3559 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3560 {
3561 	return sock->ops->getname(sock, addr, 1);
3562 }
3563 EXPORT_SYMBOL(kernel_getpeername);
3564 
3565 /**
3566  *	kernel_sendpage - send a &page through a socket (kernel space)
3567  *	@sock: socket
3568  *	@page: page
3569  *	@offset: page offset
3570  *	@size: total size in bytes
3571  *	@flags: flags (MSG_DONTWAIT, ...)
3572  *
3573  *	Returns the total amount sent in bytes or an error.
3574  */
3575 
3576 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3577 		    size_t size, int flags)
3578 {
3579 	if (sock->ops->sendpage) {
3580 		/* Warn in case the improper page to zero-copy send */
3581 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3582 		return sock->ops->sendpage(sock, page, offset, size, flags);
3583 	}
3584 	return sock_no_sendpage(sock, page, offset, size, flags);
3585 }
3586 EXPORT_SYMBOL(kernel_sendpage);
3587 
3588 /**
3589  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3590  *	@sk: sock
3591  *	@page: page
3592  *	@offset: page offset
3593  *	@size: total size in bytes
3594  *	@flags: flags (MSG_DONTWAIT, ...)
3595  *
3596  *	Returns the total amount sent in bytes or an error.
3597  *	Caller must hold @sk.
3598  */
3599 
3600 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3601 			   size_t size, int flags)
3602 {
3603 	struct socket *sock = sk->sk_socket;
3604 
3605 	if (sock->ops->sendpage_locked)
3606 		return sock->ops->sendpage_locked(sk, page, offset, size,
3607 						  flags);
3608 
3609 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3610 }
3611 EXPORT_SYMBOL(kernel_sendpage_locked);
3612 
3613 /**
3614  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3615  *	@sock: socket
3616  *	@how: connection part
3617  *
3618  *	Returns 0 or an error.
3619  */
3620 
3621 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3622 {
3623 	return sock->ops->shutdown(sock, how);
3624 }
3625 EXPORT_SYMBOL(kernel_sock_shutdown);
3626 
3627 /**
3628  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3629  *	@sk: socket
3630  *
3631  *	This routine returns the IP overhead imposed by a socket i.e.
3632  *	the length of the underlying IP header, depending on whether
3633  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3634  *	on at the socket. Assumes that the caller has a lock on the socket.
3635  */
3636 
3637 u32 kernel_sock_ip_overhead(struct sock *sk)
3638 {
3639 	struct inet_sock *inet;
3640 	struct ip_options_rcu *opt;
3641 	u32 overhead = 0;
3642 #if IS_ENABLED(CONFIG_IPV6)
3643 	struct ipv6_pinfo *np;
3644 	struct ipv6_txoptions *optv6 = NULL;
3645 #endif /* IS_ENABLED(CONFIG_IPV6) */
3646 
3647 	if (!sk)
3648 		return overhead;
3649 
3650 	switch (sk->sk_family) {
3651 	case AF_INET:
3652 		inet = inet_sk(sk);
3653 		overhead += sizeof(struct iphdr);
3654 		opt = rcu_dereference_protected(inet->inet_opt,
3655 						sock_owned_by_user(sk));
3656 		if (opt)
3657 			overhead += opt->opt.optlen;
3658 		return overhead;
3659 #if IS_ENABLED(CONFIG_IPV6)
3660 	case AF_INET6:
3661 		np = inet6_sk(sk);
3662 		overhead += sizeof(struct ipv6hdr);
3663 		if (np)
3664 			optv6 = rcu_dereference_protected(np->opt,
3665 							  sock_owned_by_user(sk));
3666 		if (optv6)
3667 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3668 		return overhead;
3669 #endif /* IS_ENABLED(CONFIG_IPV6) */
3670 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3671 		return overhead;
3672 	}
3673 }
3674 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3675