1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 88 #include <asm/uaccess.h> 89 #include <asm/unistd.h> 90 91 #include <net/compat.h> 92 93 #include <net/sock.h> 94 #include <linux/netfilter.h> 95 96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103 static int sock_close(struct inode *inode, struct file *file); 104 static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107 #ifdef CONFIG_COMPAT 108 static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #endif 111 static int sock_fasync(int fd, struct file *filp, int on); 112 static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115 /* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120 static const struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127 #ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129 #endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136 }; 137 138 /* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142 static DEFINE_SPINLOCK(net_family_lock); 143 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145 /* 146 * Statistics counters of the socket lists 147 */ 148 149 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151 /* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178 { 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207 { 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229 } 230 231 #define SOCKFS_MAGIC 0x534F434B 232 233 static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_destroy_inode(struct inode *inode) 255 { 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258 } 259 260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261 { 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 inode_init_once(&ei->vfs_inode); 265 } 266 267 static int init_inodecache(void) 268 { 269 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 270 sizeof(struct socket_alloc), 271 0, 272 (SLAB_HWCACHE_ALIGN | 273 SLAB_RECLAIM_ACCOUNT | 274 SLAB_MEM_SPREAD), 275 init_once); 276 if (sock_inode_cachep == NULL) 277 return -ENOMEM; 278 return 0; 279 } 280 281 static struct super_operations sockfs_ops = { 282 .alloc_inode = sock_alloc_inode, 283 .destroy_inode =sock_destroy_inode, 284 .statfs = simple_statfs, 285 }; 286 287 static int sockfs_get_sb(struct file_system_type *fs_type, 288 int flags, const char *dev_name, void *data, 289 struct vfsmount *mnt) 290 { 291 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 292 mnt); 293 } 294 295 static struct vfsmount *sock_mnt __read_mostly; 296 297 static struct file_system_type sock_fs_type = { 298 .name = "sockfs", 299 .get_sb = sockfs_get_sb, 300 .kill_sb = kill_anon_super, 301 }; 302 303 static int sockfs_delete_dentry(struct dentry *dentry) 304 { 305 /* 306 * At creation time, we pretended this dentry was hashed 307 * (by clearing DCACHE_UNHASHED bit in d_flags) 308 * At delete time, we restore the truth : not hashed. 309 * (so that dput() can proceed correctly) 310 */ 311 dentry->d_flags |= DCACHE_UNHASHED; 312 return 0; 313 } 314 315 /* 316 * sockfs_dname() is called from d_path(). 317 */ 318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 319 { 320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 321 dentry->d_inode->i_ino); 322 } 323 324 static struct dentry_operations sockfs_dentry_operations = { 325 .d_delete = sockfs_delete_dentry, 326 .d_dname = sockfs_dname, 327 }; 328 329 /* 330 * Obtains the first available file descriptor and sets it up for use. 331 * 332 * These functions create file structures and maps them to fd space 333 * of the current process. On success it returns file descriptor 334 * and file struct implicitly stored in sock->file. 335 * Note that another thread may close file descriptor before we return 336 * from this function. We use the fact that now we do not refer 337 * to socket after mapping. If one day we will need it, this 338 * function will increment ref. count on file by 1. 339 * 340 * In any case returned fd MAY BE not valid! 341 * This race condition is unavoidable 342 * with shared fd spaces, we cannot solve it inside kernel, 343 * but we take care of internal coherence yet. 344 */ 345 346 static int sock_alloc_fd(struct file **filep) 347 { 348 int fd; 349 350 fd = get_unused_fd(); 351 if (likely(fd >= 0)) { 352 struct file *file = get_empty_filp(); 353 354 *filep = file; 355 if (unlikely(!file)) { 356 put_unused_fd(fd); 357 return -ENFILE; 358 } 359 } else 360 *filep = NULL; 361 return fd; 362 } 363 364 static int sock_attach_fd(struct socket *sock, struct file *file) 365 { 366 struct qstr name = { .name = "" }; 367 368 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 369 if (unlikely(!file->f_path.dentry)) 370 return -ENOMEM; 371 372 file->f_path.dentry->d_op = &sockfs_dentry_operations; 373 /* 374 * We dont want to push this dentry into global dentry hash table. 375 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 376 * This permits a working /proc/$pid/fd/XXX on sockets 377 */ 378 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 379 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 380 file->f_path.mnt = mntget(sock_mnt); 381 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 382 383 sock->file = file; 384 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 385 file->f_mode = FMODE_READ | FMODE_WRITE; 386 file->f_flags = O_RDWR; 387 file->f_pos = 0; 388 file->private_data = sock; 389 390 return 0; 391 } 392 393 int sock_map_fd(struct socket *sock) 394 { 395 struct file *newfile; 396 int fd = sock_alloc_fd(&newfile); 397 398 if (likely(fd >= 0)) { 399 int err = sock_attach_fd(sock, newfile); 400 401 if (unlikely(err < 0)) { 402 put_filp(newfile); 403 put_unused_fd(fd); 404 return err; 405 } 406 fd_install(fd, newfile); 407 } 408 return fd; 409 } 410 411 static struct socket *sock_from_file(struct file *file, int *err) 412 { 413 if (file->f_op == &socket_file_ops) 414 return file->private_data; /* set in sock_map_fd */ 415 416 *err = -ENOTSOCK; 417 return NULL; 418 } 419 420 /** 421 * sockfd_lookup - Go from a file number to its socket slot 422 * @fd: file handle 423 * @err: pointer to an error code return 424 * 425 * The file handle passed in is locked and the socket it is bound 426 * too is returned. If an error occurs the err pointer is overwritten 427 * with a negative errno code and NULL is returned. The function checks 428 * for both invalid handles and passing a handle which is not a socket. 429 * 430 * On a success the socket object pointer is returned. 431 */ 432 433 struct socket *sockfd_lookup(int fd, int *err) 434 { 435 struct file *file; 436 struct socket *sock; 437 438 file = fget(fd); 439 if (!file) { 440 *err = -EBADF; 441 return NULL; 442 } 443 444 sock = sock_from_file(file, err); 445 if (!sock) 446 fput(file); 447 return sock; 448 } 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 *err = -EBADF; 456 file = fget_light(fd, fput_needed); 457 if (file) { 458 sock = sock_from_file(file, err); 459 if (sock) 460 return sock; 461 fput_light(file, *fput_needed); 462 } 463 return NULL; 464 } 465 466 /** 467 * sock_alloc - allocate a socket 468 * 469 * Allocate a new inode and socket object. The two are bound together 470 * and initialised. The socket is then returned. If we are out of inodes 471 * NULL is returned. 472 */ 473 474 static struct socket *sock_alloc(void) 475 { 476 struct inode *inode; 477 struct socket *sock; 478 479 inode = new_inode(sock_mnt->mnt_sb); 480 if (!inode) 481 return NULL; 482 483 sock = SOCKET_I(inode); 484 485 inode->i_mode = S_IFSOCK | S_IRWXUGO; 486 inode->i_uid = current->fsuid; 487 inode->i_gid = current->fsgid; 488 489 get_cpu_var(sockets_in_use)++; 490 put_cpu_var(sockets_in_use); 491 return sock; 492 } 493 494 /* 495 * In theory you can't get an open on this inode, but /proc provides 496 * a back door. Remember to keep it shut otherwise you'll let the 497 * creepy crawlies in. 498 */ 499 500 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 501 { 502 return -ENXIO; 503 } 504 505 const struct file_operations bad_sock_fops = { 506 .owner = THIS_MODULE, 507 .open = sock_no_open, 508 }; 509 510 /** 511 * sock_release - close a socket 512 * @sock: socket to close 513 * 514 * The socket is released from the protocol stack if it has a release 515 * callback, and the inode is then released if the socket is bound to 516 * an inode not a file. 517 */ 518 519 void sock_release(struct socket *sock) 520 { 521 if (sock->ops) { 522 struct module *owner = sock->ops->owner; 523 524 sock->ops->release(sock); 525 sock->ops = NULL; 526 module_put(owner); 527 } 528 529 if (sock->fasync_list) 530 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 531 532 get_cpu_var(sockets_in_use)--; 533 put_cpu_var(sockets_in_use); 534 if (!sock->file) { 535 iput(SOCK_INODE(sock)); 536 return; 537 } 538 sock->file = NULL; 539 } 540 541 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 542 struct msghdr *msg, size_t size) 543 { 544 struct sock_iocb *si = kiocb_to_siocb(iocb); 545 int err; 546 547 si->sock = sock; 548 si->scm = NULL; 549 si->msg = msg; 550 si->size = size; 551 552 err = security_socket_sendmsg(sock, msg, size); 553 if (err) 554 return err; 555 556 return sock->ops->sendmsg(iocb, sock, msg, size); 557 } 558 559 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 560 { 561 struct kiocb iocb; 562 struct sock_iocb siocb; 563 int ret; 564 565 init_sync_kiocb(&iocb, NULL); 566 iocb.private = &siocb; 567 ret = __sock_sendmsg(&iocb, sock, msg, size); 568 if (-EIOCBQUEUED == ret) 569 ret = wait_on_sync_kiocb(&iocb); 570 return ret; 571 } 572 573 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 574 struct kvec *vec, size_t num, size_t size) 575 { 576 mm_segment_t oldfs = get_fs(); 577 int result; 578 579 set_fs(KERNEL_DS); 580 /* 581 * the following is safe, since for compiler definitions of kvec and 582 * iovec are identical, yielding the same in-core layout and alignment 583 */ 584 msg->msg_iov = (struct iovec *)vec; 585 msg->msg_iovlen = num; 586 result = sock_sendmsg(sock, msg, size); 587 set_fs(oldfs); 588 return result; 589 } 590 591 /* 592 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 593 */ 594 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 595 struct sk_buff *skb) 596 { 597 ktime_t kt = skb->tstamp; 598 599 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 600 struct timeval tv; 601 /* Race occurred between timestamp enabling and packet 602 receiving. Fill in the current time for now. */ 603 if (kt.tv64 == 0) 604 kt = ktime_get_real(); 605 skb->tstamp = kt; 606 tv = ktime_to_timeval(kt); 607 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 608 } else { 609 struct timespec ts; 610 /* Race occurred between timestamp enabling and packet 611 receiving. Fill in the current time for now. */ 612 if (kt.tv64 == 0) 613 kt = ktime_get_real(); 614 skb->tstamp = kt; 615 ts = ktime_to_timespec(kt); 616 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 617 } 618 } 619 620 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 621 622 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 623 struct msghdr *msg, size_t size, int flags) 624 { 625 int err; 626 struct sock_iocb *si = kiocb_to_siocb(iocb); 627 628 si->sock = sock; 629 si->scm = NULL; 630 si->msg = msg; 631 si->size = size; 632 si->flags = flags; 633 634 err = security_socket_recvmsg(sock, msg, size, flags); 635 if (err) 636 return err; 637 638 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 639 } 640 641 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 642 size_t size, int flags) 643 { 644 struct kiocb iocb; 645 struct sock_iocb siocb; 646 int ret; 647 648 init_sync_kiocb(&iocb, NULL); 649 iocb.private = &siocb; 650 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 651 if (-EIOCBQUEUED == ret) 652 ret = wait_on_sync_kiocb(&iocb); 653 return ret; 654 } 655 656 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 657 struct kvec *vec, size_t num, size_t size, int flags) 658 { 659 mm_segment_t oldfs = get_fs(); 660 int result; 661 662 set_fs(KERNEL_DS); 663 /* 664 * the following is safe, since for compiler definitions of kvec and 665 * iovec are identical, yielding the same in-core layout and alignment 666 */ 667 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 668 result = sock_recvmsg(sock, msg, size, flags); 669 set_fs(oldfs); 670 return result; 671 } 672 673 static void sock_aio_dtor(struct kiocb *iocb) 674 { 675 kfree(iocb->private); 676 } 677 678 static ssize_t sock_sendpage(struct file *file, struct page *page, 679 int offset, size_t size, loff_t *ppos, int more) 680 { 681 struct socket *sock; 682 int flags; 683 684 sock = file->private_data; 685 686 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 687 if (more) 688 flags |= MSG_MORE; 689 690 return sock->ops->sendpage(sock, page, offset, size, flags); 691 } 692 693 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 694 struct sock_iocb *siocb) 695 { 696 if (!is_sync_kiocb(iocb)) { 697 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 698 if (!siocb) 699 return NULL; 700 iocb->ki_dtor = sock_aio_dtor; 701 } 702 703 siocb->kiocb = iocb; 704 iocb->private = siocb; 705 return siocb; 706 } 707 708 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 709 struct file *file, const struct iovec *iov, 710 unsigned long nr_segs) 711 { 712 struct socket *sock = file->private_data; 713 size_t size = 0; 714 int i; 715 716 for (i = 0; i < nr_segs; i++) 717 size += iov[i].iov_len; 718 719 msg->msg_name = NULL; 720 msg->msg_namelen = 0; 721 msg->msg_control = NULL; 722 msg->msg_controllen = 0; 723 msg->msg_iov = (struct iovec *)iov; 724 msg->msg_iovlen = nr_segs; 725 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 726 727 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 728 } 729 730 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 731 unsigned long nr_segs, loff_t pos) 732 { 733 struct sock_iocb siocb, *x; 734 735 if (pos != 0) 736 return -ESPIPE; 737 738 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 739 return 0; 740 741 742 x = alloc_sock_iocb(iocb, &siocb); 743 if (!x) 744 return -ENOMEM; 745 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 746 } 747 748 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 749 struct file *file, const struct iovec *iov, 750 unsigned long nr_segs) 751 { 752 struct socket *sock = file->private_data; 753 size_t size = 0; 754 int i; 755 756 for (i = 0; i < nr_segs; i++) 757 size += iov[i].iov_len; 758 759 msg->msg_name = NULL; 760 msg->msg_namelen = 0; 761 msg->msg_control = NULL; 762 msg->msg_controllen = 0; 763 msg->msg_iov = (struct iovec *)iov; 764 msg->msg_iovlen = nr_segs; 765 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 766 if (sock->type == SOCK_SEQPACKET) 767 msg->msg_flags |= MSG_EOR; 768 769 return __sock_sendmsg(iocb, sock, msg, size); 770 } 771 772 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 773 unsigned long nr_segs, loff_t pos) 774 { 775 struct sock_iocb siocb, *x; 776 777 if (pos != 0) 778 return -ESPIPE; 779 780 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 781 return 0; 782 783 x = alloc_sock_iocb(iocb, &siocb); 784 if (!x) 785 return -ENOMEM; 786 787 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 788 } 789 790 /* 791 * Atomic setting of ioctl hooks to avoid race 792 * with module unload. 793 */ 794 795 static DEFINE_MUTEX(br_ioctl_mutex); 796 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 797 798 void brioctl_set(int (*hook) (unsigned int, void __user *)) 799 { 800 mutex_lock(&br_ioctl_mutex); 801 br_ioctl_hook = hook; 802 mutex_unlock(&br_ioctl_mutex); 803 } 804 805 EXPORT_SYMBOL(brioctl_set); 806 807 static DEFINE_MUTEX(vlan_ioctl_mutex); 808 static int (*vlan_ioctl_hook) (void __user *arg); 809 810 void vlan_ioctl_set(int (*hook) (void __user *)) 811 { 812 mutex_lock(&vlan_ioctl_mutex); 813 vlan_ioctl_hook = hook; 814 mutex_unlock(&vlan_ioctl_mutex); 815 } 816 817 EXPORT_SYMBOL(vlan_ioctl_set); 818 819 static DEFINE_MUTEX(dlci_ioctl_mutex); 820 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 821 822 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 823 { 824 mutex_lock(&dlci_ioctl_mutex); 825 dlci_ioctl_hook = hook; 826 mutex_unlock(&dlci_ioctl_mutex); 827 } 828 829 EXPORT_SYMBOL(dlci_ioctl_set); 830 831 /* 832 * With an ioctl, arg may well be a user mode pointer, but we don't know 833 * what to do with it - that's up to the protocol still. 834 */ 835 836 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 837 { 838 struct socket *sock; 839 void __user *argp = (void __user *)arg; 840 int pid, err; 841 842 sock = file->private_data; 843 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 844 err = dev_ioctl(cmd, argp); 845 } else 846 #ifdef CONFIG_WIRELESS_EXT 847 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 848 err = dev_ioctl(cmd, argp); 849 } else 850 #endif /* CONFIG_WIRELESS_EXT */ 851 switch (cmd) { 852 case FIOSETOWN: 853 case SIOCSPGRP: 854 err = -EFAULT; 855 if (get_user(pid, (int __user *)argp)) 856 break; 857 err = f_setown(sock->file, pid, 1); 858 break; 859 case FIOGETOWN: 860 case SIOCGPGRP: 861 err = put_user(f_getown(sock->file), 862 (int __user *)argp); 863 break; 864 case SIOCGIFBR: 865 case SIOCSIFBR: 866 case SIOCBRADDBR: 867 case SIOCBRDELBR: 868 err = -ENOPKG; 869 if (!br_ioctl_hook) 870 request_module("bridge"); 871 872 mutex_lock(&br_ioctl_mutex); 873 if (br_ioctl_hook) 874 err = br_ioctl_hook(cmd, argp); 875 mutex_unlock(&br_ioctl_mutex); 876 break; 877 case SIOCGIFVLAN: 878 case SIOCSIFVLAN: 879 err = -ENOPKG; 880 if (!vlan_ioctl_hook) 881 request_module("8021q"); 882 883 mutex_lock(&vlan_ioctl_mutex); 884 if (vlan_ioctl_hook) 885 err = vlan_ioctl_hook(argp); 886 mutex_unlock(&vlan_ioctl_mutex); 887 break; 888 case SIOCADDDLCI: 889 case SIOCDELDLCI: 890 err = -ENOPKG; 891 if (!dlci_ioctl_hook) 892 request_module("dlci"); 893 894 if (dlci_ioctl_hook) { 895 mutex_lock(&dlci_ioctl_mutex); 896 err = dlci_ioctl_hook(cmd, argp); 897 mutex_unlock(&dlci_ioctl_mutex); 898 } 899 break; 900 default: 901 err = sock->ops->ioctl(sock, cmd, arg); 902 903 /* 904 * If this ioctl is unknown try to hand it down 905 * to the NIC driver. 906 */ 907 if (err == -ENOIOCTLCMD) 908 err = dev_ioctl(cmd, argp); 909 break; 910 } 911 return err; 912 } 913 914 int sock_create_lite(int family, int type, int protocol, struct socket **res) 915 { 916 int err; 917 struct socket *sock = NULL; 918 919 err = security_socket_create(family, type, protocol, 1); 920 if (err) 921 goto out; 922 923 sock = sock_alloc(); 924 if (!sock) { 925 err = -ENOMEM; 926 goto out; 927 } 928 929 sock->type = type; 930 err = security_socket_post_create(sock, family, type, protocol, 1); 931 if (err) 932 goto out_release; 933 934 out: 935 *res = sock; 936 return err; 937 out_release: 938 sock_release(sock); 939 sock = NULL; 940 goto out; 941 } 942 943 /* No kernel lock held - perfect */ 944 static unsigned int sock_poll(struct file *file, poll_table *wait) 945 { 946 struct socket *sock; 947 948 /* 949 * We can't return errors to poll, so it's either yes or no. 950 */ 951 sock = file->private_data; 952 return sock->ops->poll(file, sock, wait); 953 } 954 955 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 956 { 957 struct socket *sock = file->private_data; 958 959 return sock->ops->mmap(file, sock, vma); 960 } 961 962 static int sock_close(struct inode *inode, struct file *filp) 963 { 964 /* 965 * It was possible the inode is NULL we were 966 * closing an unfinished socket. 967 */ 968 969 if (!inode) { 970 printk(KERN_DEBUG "sock_close: NULL inode\n"); 971 return 0; 972 } 973 sock_fasync(-1, filp, 0); 974 sock_release(SOCKET_I(inode)); 975 return 0; 976 } 977 978 /* 979 * Update the socket async list 980 * 981 * Fasync_list locking strategy. 982 * 983 * 1. fasync_list is modified only under process context socket lock 984 * i.e. under semaphore. 985 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 986 * or under socket lock. 987 * 3. fasync_list can be used from softirq context, so that 988 * modification under socket lock have to be enhanced with 989 * write_lock_bh(&sk->sk_callback_lock). 990 * --ANK (990710) 991 */ 992 993 static int sock_fasync(int fd, struct file *filp, int on) 994 { 995 struct fasync_struct *fa, *fna = NULL, **prev; 996 struct socket *sock; 997 struct sock *sk; 998 999 if (on) { 1000 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1001 if (fna == NULL) 1002 return -ENOMEM; 1003 } 1004 1005 sock = filp->private_data; 1006 1007 sk = sock->sk; 1008 if (sk == NULL) { 1009 kfree(fna); 1010 return -EINVAL; 1011 } 1012 1013 lock_sock(sk); 1014 1015 prev = &(sock->fasync_list); 1016 1017 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1018 if (fa->fa_file == filp) 1019 break; 1020 1021 if (on) { 1022 if (fa != NULL) { 1023 write_lock_bh(&sk->sk_callback_lock); 1024 fa->fa_fd = fd; 1025 write_unlock_bh(&sk->sk_callback_lock); 1026 1027 kfree(fna); 1028 goto out; 1029 } 1030 fna->fa_file = filp; 1031 fna->fa_fd = fd; 1032 fna->magic = FASYNC_MAGIC; 1033 fna->fa_next = sock->fasync_list; 1034 write_lock_bh(&sk->sk_callback_lock); 1035 sock->fasync_list = fna; 1036 write_unlock_bh(&sk->sk_callback_lock); 1037 } else { 1038 if (fa != NULL) { 1039 write_lock_bh(&sk->sk_callback_lock); 1040 *prev = fa->fa_next; 1041 write_unlock_bh(&sk->sk_callback_lock); 1042 kfree(fa); 1043 } 1044 } 1045 1046 out: 1047 release_sock(sock->sk); 1048 return 0; 1049 } 1050 1051 /* This function may be called only under socket lock or callback_lock */ 1052 1053 int sock_wake_async(struct socket *sock, int how, int band) 1054 { 1055 if (!sock || !sock->fasync_list) 1056 return -1; 1057 switch (how) { 1058 case 1: 1059 1060 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1061 break; 1062 goto call_kill; 1063 case 2: 1064 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1065 break; 1066 /* fall through */ 1067 case 0: 1068 call_kill: 1069 __kill_fasync(sock->fasync_list, SIGIO, band); 1070 break; 1071 case 3: 1072 __kill_fasync(sock->fasync_list, SIGURG, band); 1073 } 1074 return 0; 1075 } 1076 1077 static int __sock_create(int family, int type, int protocol, 1078 struct socket **res, int kern) 1079 { 1080 int err; 1081 struct socket *sock; 1082 const struct net_proto_family *pf; 1083 1084 /* 1085 * Check protocol is in range 1086 */ 1087 if (family < 0 || family >= NPROTO) 1088 return -EAFNOSUPPORT; 1089 if (type < 0 || type >= SOCK_MAX) 1090 return -EINVAL; 1091 1092 /* Compatibility. 1093 1094 This uglymoron is moved from INET layer to here to avoid 1095 deadlock in module load. 1096 */ 1097 if (family == PF_INET && type == SOCK_PACKET) { 1098 static int warned; 1099 if (!warned) { 1100 warned = 1; 1101 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1102 current->comm); 1103 } 1104 family = PF_PACKET; 1105 } 1106 1107 err = security_socket_create(family, type, protocol, kern); 1108 if (err) 1109 return err; 1110 1111 /* 1112 * Allocate the socket and allow the family to set things up. if 1113 * the protocol is 0, the family is instructed to select an appropriate 1114 * default. 1115 */ 1116 sock = sock_alloc(); 1117 if (!sock) { 1118 if (net_ratelimit()) 1119 printk(KERN_WARNING "socket: no more sockets\n"); 1120 return -ENFILE; /* Not exactly a match, but its the 1121 closest posix thing */ 1122 } 1123 1124 sock->type = type; 1125 1126 #if defined(CONFIG_KMOD) 1127 /* Attempt to load a protocol module if the find failed. 1128 * 1129 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1130 * requested real, full-featured networking support upon configuration. 1131 * Otherwise module support will break! 1132 */ 1133 if (net_families[family] == NULL) 1134 request_module("net-pf-%d", family); 1135 #endif 1136 1137 rcu_read_lock(); 1138 pf = rcu_dereference(net_families[family]); 1139 err = -EAFNOSUPPORT; 1140 if (!pf) 1141 goto out_release; 1142 1143 /* 1144 * We will call the ->create function, that possibly is in a loadable 1145 * module, so we have to bump that loadable module refcnt first. 1146 */ 1147 if (!try_module_get(pf->owner)) 1148 goto out_release; 1149 1150 /* Now protected by module ref count */ 1151 rcu_read_unlock(); 1152 1153 err = pf->create(sock, protocol); 1154 if (err < 0) 1155 goto out_module_put; 1156 1157 /* 1158 * Now to bump the refcnt of the [loadable] module that owns this 1159 * socket at sock_release time we decrement its refcnt. 1160 */ 1161 if (!try_module_get(sock->ops->owner)) 1162 goto out_module_busy; 1163 1164 /* 1165 * Now that we're done with the ->create function, the [loadable] 1166 * module can have its refcnt decremented 1167 */ 1168 module_put(pf->owner); 1169 err = security_socket_post_create(sock, family, type, protocol, kern); 1170 if (err) 1171 goto out_release; 1172 *res = sock; 1173 1174 return 0; 1175 1176 out_module_busy: 1177 err = -EAFNOSUPPORT; 1178 out_module_put: 1179 sock->ops = NULL; 1180 module_put(pf->owner); 1181 out_sock_release: 1182 sock_release(sock); 1183 return err; 1184 1185 out_release: 1186 rcu_read_unlock(); 1187 goto out_sock_release; 1188 } 1189 1190 int sock_create(int family, int type, int protocol, struct socket **res) 1191 { 1192 return __sock_create(family, type, protocol, res, 0); 1193 } 1194 1195 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1196 { 1197 return __sock_create(family, type, protocol, res, 1); 1198 } 1199 1200 asmlinkage long sys_socket(int family, int type, int protocol) 1201 { 1202 int retval; 1203 struct socket *sock; 1204 1205 retval = sock_create(family, type, protocol, &sock); 1206 if (retval < 0) 1207 goto out; 1208 1209 retval = sock_map_fd(sock); 1210 if (retval < 0) 1211 goto out_release; 1212 1213 out: 1214 /* It may be already another descriptor 8) Not kernel problem. */ 1215 return retval; 1216 1217 out_release: 1218 sock_release(sock); 1219 return retval; 1220 } 1221 1222 /* 1223 * Create a pair of connected sockets. 1224 */ 1225 1226 asmlinkage long sys_socketpair(int family, int type, int protocol, 1227 int __user *usockvec) 1228 { 1229 struct socket *sock1, *sock2; 1230 int fd1, fd2, err; 1231 struct file *newfile1, *newfile2; 1232 1233 /* 1234 * Obtain the first socket and check if the underlying protocol 1235 * supports the socketpair call. 1236 */ 1237 1238 err = sock_create(family, type, protocol, &sock1); 1239 if (err < 0) 1240 goto out; 1241 1242 err = sock_create(family, type, protocol, &sock2); 1243 if (err < 0) 1244 goto out_release_1; 1245 1246 err = sock1->ops->socketpair(sock1, sock2); 1247 if (err < 0) 1248 goto out_release_both; 1249 1250 fd1 = sock_alloc_fd(&newfile1); 1251 if (unlikely(fd1 < 0)) 1252 goto out_release_both; 1253 1254 fd2 = sock_alloc_fd(&newfile2); 1255 if (unlikely(fd2 < 0)) { 1256 put_filp(newfile1); 1257 put_unused_fd(fd1); 1258 goto out_release_both; 1259 } 1260 1261 err = sock_attach_fd(sock1, newfile1); 1262 if (unlikely(err < 0)) { 1263 goto out_fd2; 1264 } 1265 1266 err = sock_attach_fd(sock2, newfile2); 1267 if (unlikely(err < 0)) { 1268 fput(newfile1); 1269 goto out_fd1; 1270 } 1271 1272 err = audit_fd_pair(fd1, fd2); 1273 if (err < 0) { 1274 fput(newfile1); 1275 fput(newfile2); 1276 goto out_fd; 1277 } 1278 1279 fd_install(fd1, newfile1); 1280 fd_install(fd2, newfile2); 1281 /* fd1 and fd2 may be already another descriptors. 1282 * Not kernel problem. 1283 */ 1284 1285 err = put_user(fd1, &usockvec[0]); 1286 if (!err) 1287 err = put_user(fd2, &usockvec[1]); 1288 if (!err) 1289 return 0; 1290 1291 sys_close(fd2); 1292 sys_close(fd1); 1293 return err; 1294 1295 out_release_both: 1296 sock_release(sock2); 1297 out_release_1: 1298 sock_release(sock1); 1299 out: 1300 return err; 1301 1302 out_fd2: 1303 put_filp(newfile1); 1304 sock_release(sock1); 1305 out_fd1: 1306 put_filp(newfile2); 1307 sock_release(sock2); 1308 out_fd: 1309 put_unused_fd(fd1); 1310 put_unused_fd(fd2); 1311 goto out; 1312 } 1313 1314 /* 1315 * Bind a name to a socket. Nothing much to do here since it's 1316 * the protocol's responsibility to handle the local address. 1317 * 1318 * We move the socket address to kernel space before we call 1319 * the protocol layer (having also checked the address is ok). 1320 */ 1321 1322 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1323 { 1324 struct socket *sock; 1325 char address[MAX_SOCK_ADDR]; 1326 int err, fput_needed; 1327 1328 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1329 if (sock) { 1330 err = move_addr_to_kernel(umyaddr, addrlen, address); 1331 if (err >= 0) { 1332 err = security_socket_bind(sock, 1333 (struct sockaddr *)address, 1334 addrlen); 1335 if (!err) 1336 err = sock->ops->bind(sock, 1337 (struct sockaddr *) 1338 address, addrlen); 1339 } 1340 fput_light(sock->file, fput_needed); 1341 } 1342 return err; 1343 } 1344 1345 /* 1346 * Perform a listen. Basically, we allow the protocol to do anything 1347 * necessary for a listen, and if that works, we mark the socket as 1348 * ready for listening. 1349 */ 1350 1351 int sysctl_somaxconn __read_mostly = SOMAXCONN; 1352 1353 asmlinkage long sys_listen(int fd, int backlog) 1354 { 1355 struct socket *sock; 1356 int err, fput_needed; 1357 1358 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1359 if (sock) { 1360 if ((unsigned)backlog > sysctl_somaxconn) 1361 backlog = sysctl_somaxconn; 1362 1363 err = security_socket_listen(sock, backlog); 1364 if (!err) 1365 err = sock->ops->listen(sock, backlog); 1366 1367 fput_light(sock->file, fput_needed); 1368 } 1369 return err; 1370 } 1371 1372 /* 1373 * For accept, we attempt to create a new socket, set up the link 1374 * with the client, wake up the client, then return the new 1375 * connected fd. We collect the address of the connector in kernel 1376 * space and move it to user at the very end. This is unclean because 1377 * we open the socket then return an error. 1378 * 1379 * 1003.1g adds the ability to recvmsg() to query connection pending 1380 * status to recvmsg. We need to add that support in a way thats 1381 * clean when we restucture accept also. 1382 */ 1383 1384 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1385 int __user *upeer_addrlen) 1386 { 1387 struct socket *sock, *newsock; 1388 struct file *newfile; 1389 int err, len, newfd, fput_needed; 1390 char address[MAX_SOCK_ADDR]; 1391 1392 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1393 if (!sock) 1394 goto out; 1395 1396 err = -ENFILE; 1397 if (!(newsock = sock_alloc())) 1398 goto out_put; 1399 1400 newsock->type = sock->type; 1401 newsock->ops = sock->ops; 1402 1403 /* 1404 * We don't need try_module_get here, as the listening socket (sock) 1405 * has the protocol module (sock->ops->owner) held. 1406 */ 1407 __module_get(newsock->ops->owner); 1408 1409 newfd = sock_alloc_fd(&newfile); 1410 if (unlikely(newfd < 0)) { 1411 err = newfd; 1412 sock_release(newsock); 1413 goto out_put; 1414 } 1415 1416 err = sock_attach_fd(newsock, newfile); 1417 if (err < 0) 1418 goto out_fd_simple; 1419 1420 err = security_socket_accept(sock, newsock); 1421 if (err) 1422 goto out_fd; 1423 1424 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1425 if (err < 0) 1426 goto out_fd; 1427 1428 if (upeer_sockaddr) { 1429 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1430 &len, 2) < 0) { 1431 err = -ECONNABORTED; 1432 goto out_fd; 1433 } 1434 err = move_addr_to_user(address, len, upeer_sockaddr, 1435 upeer_addrlen); 1436 if (err < 0) 1437 goto out_fd; 1438 } 1439 1440 /* File flags are not inherited via accept() unlike another OSes. */ 1441 1442 fd_install(newfd, newfile); 1443 err = newfd; 1444 1445 security_socket_post_accept(sock, newsock); 1446 1447 out_put: 1448 fput_light(sock->file, fput_needed); 1449 out: 1450 return err; 1451 out_fd_simple: 1452 sock_release(newsock); 1453 put_filp(newfile); 1454 put_unused_fd(newfd); 1455 goto out_put; 1456 out_fd: 1457 fput(newfile); 1458 put_unused_fd(newfd); 1459 goto out_put; 1460 } 1461 1462 /* 1463 * Attempt to connect to a socket with the server address. The address 1464 * is in user space so we verify it is OK and move it to kernel space. 1465 * 1466 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1467 * break bindings 1468 * 1469 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1470 * other SEQPACKET protocols that take time to connect() as it doesn't 1471 * include the -EINPROGRESS status for such sockets. 1472 */ 1473 1474 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1475 int addrlen) 1476 { 1477 struct socket *sock; 1478 char address[MAX_SOCK_ADDR]; 1479 int err, fput_needed; 1480 1481 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1482 if (!sock) 1483 goto out; 1484 err = move_addr_to_kernel(uservaddr, addrlen, address); 1485 if (err < 0) 1486 goto out_put; 1487 1488 err = 1489 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1490 if (err) 1491 goto out_put; 1492 1493 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1494 sock->file->f_flags); 1495 out_put: 1496 fput_light(sock->file, fput_needed); 1497 out: 1498 return err; 1499 } 1500 1501 /* 1502 * Get the local address ('name') of a socket object. Move the obtained 1503 * name to user space. 1504 */ 1505 1506 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1507 int __user *usockaddr_len) 1508 { 1509 struct socket *sock; 1510 char address[MAX_SOCK_ADDR]; 1511 int len, err, fput_needed; 1512 1513 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1514 if (!sock) 1515 goto out; 1516 1517 err = security_socket_getsockname(sock); 1518 if (err) 1519 goto out_put; 1520 1521 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1522 if (err) 1523 goto out_put; 1524 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1525 1526 out_put: 1527 fput_light(sock->file, fput_needed); 1528 out: 1529 return err; 1530 } 1531 1532 /* 1533 * Get the remote address ('name') of a socket object. Move the obtained 1534 * name to user space. 1535 */ 1536 1537 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1538 int __user *usockaddr_len) 1539 { 1540 struct socket *sock; 1541 char address[MAX_SOCK_ADDR]; 1542 int len, err, fput_needed; 1543 1544 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1545 if (sock != NULL) { 1546 err = security_socket_getpeername(sock); 1547 if (err) { 1548 fput_light(sock->file, fput_needed); 1549 return err; 1550 } 1551 1552 err = 1553 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1554 1); 1555 if (!err) 1556 err = move_addr_to_user(address, len, usockaddr, 1557 usockaddr_len); 1558 fput_light(sock->file, fput_needed); 1559 } 1560 return err; 1561 } 1562 1563 /* 1564 * Send a datagram to a given address. We move the address into kernel 1565 * space and check the user space data area is readable before invoking 1566 * the protocol. 1567 */ 1568 1569 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1570 unsigned flags, struct sockaddr __user *addr, 1571 int addr_len) 1572 { 1573 struct socket *sock; 1574 char address[MAX_SOCK_ADDR]; 1575 int err; 1576 struct msghdr msg; 1577 struct iovec iov; 1578 int fput_needed; 1579 struct file *sock_file; 1580 1581 sock_file = fget_light(fd, &fput_needed); 1582 err = -EBADF; 1583 if (!sock_file) 1584 goto out; 1585 1586 sock = sock_from_file(sock_file, &err); 1587 if (!sock) 1588 goto out_put; 1589 iov.iov_base = buff; 1590 iov.iov_len = len; 1591 msg.msg_name = NULL; 1592 msg.msg_iov = &iov; 1593 msg.msg_iovlen = 1; 1594 msg.msg_control = NULL; 1595 msg.msg_controllen = 0; 1596 msg.msg_namelen = 0; 1597 if (addr) { 1598 err = move_addr_to_kernel(addr, addr_len, address); 1599 if (err < 0) 1600 goto out_put; 1601 msg.msg_name = address; 1602 msg.msg_namelen = addr_len; 1603 } 1604 if (sock->file->f_flags & O_NONBLOCK) 1605 flags |= MSG_DONTWAIT; 1606 msg.msg_flags = flags; 1607 err = sock_sendmsg(sock, &msg, len); 1608 1609 out_put: 1610 fput_light(sock_file, fput_needed); 1611 out: 1612 return err; 1613 } 1614 1615 /* 1616 * Send a datagram down a socket. 1617 */ 1618 1619 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1620 { 1621 return sys_sendto(fd, buff, len, flags, NULL, 0); 1622 } 1623 1624 /* 1625 * Receive a frame from the socket and optionally record the address of the 1626 * sender. We verify the buffers are writable and if needed move the 1627 * sender address from kernel to user space. 1628 */ 1629 1630 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1631 unsigned flags, struct sockaddr __user *addr, 1632 int __user *addr_len) 1633 { 1634 struct socket *sock; 1635 struct iovec iov; 1636 struct msghdr msg; 1637 char address[MAX_SOCK_ADDR]; 1638 int err, err2; 1639 struct file *sock_file; 1640 int fput_needed; 1641 1642 sock_file = fget_light(fd, &fput_needed); 1643 err = -EBADF; 1644 if (!sock_file) 1645 goto out; 1646 1647 sock = sock_from_file(sock_file, &err); 1648 if (!sock) 1649 goto out_put; 1650 1651 msg.msg_control = NULL; 1652 msg.msg_controllen = 0; 1653 msg.msg_iovlen = 1; 1654 msg.msg_iov = &iov; 1655 iov.iov_len = size; 1656 iov.iov_base = ubuf; 1657 msg.msg_name = address; 1658 msg.msg_namelen = MAX_SOCK_ADDR; 1659 if (sock->file->f_flags & O_NONBLOCK) 1660 flags |= MSG_DONTWAIT; 1661 err = sock_recvmsg(sock, &msg, size, flags); 1662 1663 if (err >= 0 && addr != NULL) { 1664 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1665 if (err2 < 0) 1666 err = err2; 1667 } 1668 out_put: 1669 fput_light(sock_file, fput_needed); 1670 out: 1671 return err; 1672 } 1673 1674 /* 1675 * Receive a datagram from a socket. 1676 */ 1677 1678 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1679 unsigned flags) 1680 { 1681 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1682 } 1683 1684 /* 1685 * Set a socket option. Because we don't know the option lengths we have 1686 * to pass the user mode parameter for the protocols to sort out. 1687 */ 1688 1689 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1690 char __user *optval, int optlen) 1691 { 1692 int err, fput_needed; 1693 struct socket *sock; 1694 1695 if (optlen < 0) 1696 return -EINVAL; 1697 1698 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1699 if (sock != NULL) { 1700 err = security_socket_setsockopt(sock, level, optname); 1701 if (err) 1702 goto out_put; 1703 1704 if (level == SOL_SOCKET) 1705 err = 1706 sock_setsockopt(sock, level, optname, optval, 1707 optlen); 1708 else 1709 err = 1710 sock->ops->setsockopt(sock, level, optname, optval, 1711 optlen); 1712 out_put: 1713 fput_light(sock->file, fput_needed); 1714 } 1715 return err; 1716 } 1717 1718 /* 1719 * Get a socket option. Because we don't know the option lengths we have 1720 * to pass a user mode parameter for the protocols to sort out. 1721 */ 1722 1723 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1724 char __user *optval, int __user *optlen) 1725 { 1726 int err, fput_needed; 1727 struct socket *sock; 1728 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (sock != NULL) { 1731 err = security_socket_getsockopt(sock, level, optname); 1732 if (err) 1733 goto out_put; 1734 1735 if (level == SOL_SOCKET) 1736 err = 1737 sock_getsockopt(sock, level, optname, optval, 1738 optlen); 1739 else 1740 err = 1741 sock->ops->getsockopt(sock, level, optname, optval, 1742 optlen); 1743 out_put: 1744 fput_light(sock->file, fput_needed); 1745 } 1746 return err; 1747 } 1748 1749 /* 1750 * Shutdown a socket. 1751 */ 1752 1753 asmlinkage long sys_shutdown(int fd, int how) 1754 { 1755 int err, fput_needed; 1756 struct socket *sock; 1757 1758 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1759 if (sock != NULL) { 1760 err = security_socket_shutdown(sock, how); 1761 if (!err) 1762 err = sock->ops->shutdown(sock, how); 1763 fput_light(sock->file, fput_needed); 1764 } 1765 return err; 1766 } 1767 1768 /* A couple of helpful macros for getting the address of the 32/64 bit 1769 * fields which are the same type (int / unsigned) on our platforms. 1770 */ 1771 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1772 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1773 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1774 1775 /* 1776 * BSD sendmsg interface 1777 */ 1778 1779 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1780 { 1781 struct compat_msghdr __user *msg_compat = 1782 (struct compat_msghdr __user *)msg; 1783 struct socket *sock; 1784 char address[MAX_SOCK_ADDR]; 1785 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1786 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1787 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1788 /* 20 is size of ipv6_pktinfo */ 1789 unsigned char *ctl_buf = ctl; 1790 struct msghdr msg_sys; 1791 int err, ctl_len, iov_size, total_len; 1792 int fput_needed; 1793 1794 err = -EFAULT; 1795 if (MSG_CMSG_COMPAT & flags) { 1796 if (get_compat_msghdr(&msg_sys, msg_compat)) 1797 return -EFAULT; 1798 } 1799 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1800 return -EFAULT; 1801 1802 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1803 if (!sock) 1804 goto out; 1805 1806 /* do not move before msg_sys is valid */ 1807 err = -EMSGSIZE; 1808 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1809 goto out_put; 1810 1811 /* Check whether to allocate the iovec area */ 1812 err = -ENOMEM; 1813 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1814 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1815 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1816 if (!iov) 1817 goto out_put; 1818 } 1819 1820 /* This will also move the address data into kernel space */ 1821 if (MSG_CMSG_COMPAT & flags) { 1822 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1823 } else 1824 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1825 if (err < 0) 1826 goto out_freeiov; 1827 total_len = err; 1828 1829 err = -ENOBUFS; 1830 1831 if (msg_sys.msg_controllen > INT_MAX) 1832 goto out_freeiov; 1833 ctl_len = msg_sys.msg_controllen; 1834 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1835 err = 1836 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1837 sizeof(ctl)); 1838 if (err) 1839 goto out_freeiov; 1840 ctl_buf = msg_sys.msg_control; 1841 ctl_len = msg_sys.msg_controllen; 1842 } else if (ctl_len) { 1843 if (ctl_len > sizeof(ctl)) { 1844 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1845 if (ctl_buf == NULL) 1846 goto out_freeiov; 1847 } 1848 err = -EFAULT; 1849 /* 1850 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1851 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1852 * checking falls down on this. 1853 */ 1854 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1855 ctl_len)) 1856 goto out_freectl; 1857 msg_sys.msg_control = ctl_buf; 1858 } 1859 msg_sys.msg_flags = flags; 1860 1861 if (sock->file->f_flags & O_NONBLOCK) 1862 msg_sys.msg_flags |= MSG_DONTWAIT; 1863 err = sock_sendmsg(sock, &msg_sys, total_len); 1864 1865 out_freectl: 1866 if (ctl_buf != ctl) 1867 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1868 out_freeiov: 1869 if (iov != iovstack) 1870 sock_kfree_s(sock->sk, iov, iov_size); 1871 out_put: 1872 fput_light(sock->file, fput_needed); 1873 out: 1874 return err; 1875 } 1876 1877 /* 1878 * BSD recvmsg interface 1879 */ 1880 1881 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1882 unsigned int flags) 1883 { 1884 struct compat_msghdr __user *msg_compat = 1885 (struct compat_msghdr __user *)msg; 1886 struct socket *sock; 1887 struct iovec iovstack[UIO_FASTIOV]; 1888 struct iovec *iov = iovstack; 1889 struct msghdr msg_sys; 1890 unsigned long cmsg_ptr; 1891 int err, iov_size, total_len, len; 1892 int fput_needed; 1893 1894 /* kernel mode address */ 1895 char addr[MAX_SOCK_ADDR]; 1896 1897 /* user mode address pointers */ 1898 struct sockaddr __user *uaddr; 1899 int __user *uaddr_len; 1900 1901 if (MSG_CMSG_COMPAT & flags) { 1902 if (get_compat_msghdr(&msg_sys, msg_compat)) 1903 return -EFAULT; 1904 } 1905 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1906 return -EFAULT; 1907 1908 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1909 if (!sock) 1910 goto out; 1911 1912 err = -EMSGSIZE; 1913 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1914 goto out_put; 1915 1916 /* Check whether to allocate the iovec area */ 1917 err = -ENOMEM; 1918 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1919 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1920 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1921 if (!iov) 1922 goto out_put; 1923 } 1924 1925 /* 1926 * Save the user-mode address (verify_iovec will change the 1927 * kernel msghdr to use the kernel address space) 1928 */ 1929 1930 uaddr = (void __user *)msg_sys.msg_name; 1931 uaddr_len = COMPAT_NAMELEN(msg); 1932 if (MSG_CMSG_COMPAT & flags) { 1933 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1934 } else 1935 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1936 if (err < 0) 1937 goto out_freeiov; 1938 total_len = err; 1939 1940 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1941 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1942 1943 if (sock->file->f_flags & O_NONBLOCK) 1944 flags |= MSG_DONTWAIT; 1945 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1946 if (err < 0) 1947 goto out_freeiov; 1948 len = err; 1949 1950 if (uaddr != NULL) { 1951 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1952 uaddr_len); 1953 if (err < 0) 1954 goto out_freeiov; 1955 } 1956 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1957 COMPAT_FLAGS(msg)); 1958 if (err) 1959 goto out_freeiov; 1960 if (MSG_CMSG_COMPAT & flags) 1961 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1962 &msg_compat->msg_controllen); 1963 else 1964 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1965 &msg->msg_controllen); 1966 if (err) 1967 goto out_freeiov; 1968 err = len; 1969 1970 out_freeiov: 1971 if (iov != iovstack) 1972 sock_kfree_s(sock->sk, iov, iov_size); 1973 out_put: 1974 fput_light(sock->file, fput_needed); 1975 out: 1976 return err; 1977 } 1978 1979 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1980 1981 /* Argument list sizes for sys_socketcall */ 1982 #define AL(x) ((x) * sizeof(unsigned long)) 1983 static const unsigned char nargs[18]={ 1984 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1985 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1986 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1987 }; 1988 1989 #undef AL 1990 1991 /* 1992 * System call vectors. 1993 * 1994 * Argument checking cleaned up. Saved 20% in size. 1995 * This function doesn't need to set the kernel lock because 1996 * it is set by the callees. 1997 */ 1998 1999 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2000 { 2001 unsigned long a[6]; 2002 unsigned long a0, a1; 2003 int err; 2004 2005 if (call < 1 || call > SYS_RECVMSG) 2006 return -EINVAL; 2007 2008 /* copy_from_user should be SMP safe. */ 2009 if (copy_from_user(a, args, nargs[call])) 2010 return -EFAULT; 2011 2012 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2013 if (err) 2014 return err; 2015 2016 a0 = a[0]; 2017 a1 = a[1]; 2018 2019 switch (call) { 2020 case SYS_SOCKET: 2021 err = sys_socket(a0, a1, a[2]); 2022 break; 2023 case SYS_BIND: 2024 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2025 break; 2026 case SYS_CONNECT: 2027 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2028 break; 2029 case SYS_LISTEN: 2030 err = sys_listen(a0, a1); 2031 break; 2032 case SYS_ACCEPT: 2033 err = 2034 sys_accept(a0, (struct sockaddr __user *)a1, 2035 (int __user *)a[2]); 2036 break; 2037 case SYS_GETSOCKNAME: 2038 err = 2039 sys_getsockname(a0, (struct sockaddr __user *)a1, 2040 (int __user *)a[2]); 2041 break; 2042 case SYS_GETPEERNAME: 2043 err = 2044 sys_getpeername(a0, (struct sockaddr __user *)a1, 2045 (int __user *)a[2]); 2046 break; 2047 case SYS_SOCKETPAIR: 2048 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2049 break; 2050 case SYS_SEND: 2051 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2052 break; 2053 case SYS_SENDTO: 2054 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2055 (struct sockaddr __user *)a[4], a[5]); 2056 break; 2057 case SYS_RECV: 2058 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2059 break; 2060 case SYS_RECVFROM: 2061 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2062 (struct sockaddr __user *)a[4], 2063 (int __user *)a[5]); 2064 break; 2065 case SYS_SHUTDOWN: 2066 err = sys_shutdown(a0, a1); 2067 break; 2068 case SYS_SETSOCKOPT: 2069 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2070 break; 2071 case SYS_GETSOCKOPT: 2072 err = 2073 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2074 (int __user *)a[4]); 2075 break; 2076 case SYS_SENDMSG: 2077 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2078 break; 2079 case SYS_RECVMSG: 2080 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2081 break; 2082 default: 2083 err = -EINVAL; 2084 break; 2085 } 2086 return err; 2087 } 2088 2089 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2090 2091 /** 2092 * sock_register - add a socket protocol handler 2093 * @ops: description of protocol 2094 * 2095 * This function is called by a protocol handler that wants to 2096 * advertise its address family, and have it linked into the 2097 * socket interface. The value ops->family coresponds to the 2098 * socket system call protocol family. 2099 */ 2100 int sock_register(const struct net_proto_family *ops) 2101 { 2102 int err; 2103 2104 if (ops->family >= NPROTO) { 2105 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2106 NPROTO); 2107 return -ENOBUFS; 2108 } 2109 2110 spin_lock(&net_family_lock); 2111 if (net_families[ops->family]) 2112 err = -EEXIST; 2113 else { 2114 net_families[ops->family] = ops; 2115 err = 0; 2116 } 2117 spin_unlock(&net_family_lock); 2118 2119 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2120 return err; 2121 } 2122 2123 /** 2124 * sock_unregister - remove a protocol handler 2125 * @family: protocol family to remove 2126 * 2127 * This function is called by a protocol handler that wants to 2128 * remove its address family, and have it unlinked from the 2129 * new socket creation. 2130 * 2131 * If protocol handler is a module, then it can use module reference 2132 * counts to protect against new references. If protocol handler is not 2133 * a module then it needs to provide its own protection in 2134 * the ops->create routine. 2135 */ 2136 void sock_unregister(int family) 2137 { 2138 BUG_ON(family < 0 || family >= NPROTO); 2139 2140 spin_lock(&net_family_lock); 2141 net_families[family] = NULL; 2142 spin_unlock(&net_family_lock); 2143 2144 synchronize_rcu(); 2145 2146 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2147 } 2148 2149 static int __init sock_init(void) 2150 { 2151 /* 2152 * Initialize sock SLAB cache. 2153 */ 2154 2155 sk_init(); 2156 2157 /* 2158 * Initialize skbuff SLAB cache 2159 */ 2160 skb_init(); 2161 2162 /* 2163 * Initialize the protocols module. 2164 */ 2165 2166 init_inodecache(); 2167 register_filesystem(&sock_fs_type); 2168 sock_mnt = kern_mount(&sock_fs_type); 2169 2170 /* The real protocol initialization is performed in later initcalls. 2171 */ 2172 2173 #ifdef CONFIG_NETFILTER 2174 netfilter_init(); 2175 #endif 2176 2177 return 0; 2178 } 2179 2180 core_initcall(sock_init); /* early initcall */ 2181 2182 #ifdef CONFIG_PROC_FS 2183 void socket_seq_show(struct seq_file *seq) 2184 { 2185 int cpu; 2186 int counter = 0; 2187 2188 for_each_possible_cpu(cpu) 2189 counter += per_cpu(sockets_in_use, cpu); 2190 2191 /* It can be negative, by the way. 8) */ 2192 if (counter < 0) 2193 counter = 0; 2194 2195 seq_printf(seq, "sockets: used %d\n", counter); 2196 } 2197 #endif /* CONFIG_PROC_FS */ 2198 2199 #ifdef CONFIG_COMPAT 2200 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2201 unsigned long arg) 2202 { 2203 struct socket *sock = file->private_data; 2204 int ret = -ENOIOCTLCMD; 2205 2206 if (sock->ops->compat_ioctl) 2207 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2208 2209 return ret; 2210 } 2211 #endif 2212 2213 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2214 { 2215 return sock->ops->bind(sock, addr, addrlen); 2216 } 2217 2218 int kernel_listen(struct socket *sock, int backlog) 2219 { 2220 return sock->ops->listen(sock, backlog); 2221 } 2222 2223 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2224 { 2225 struct sock *sk = sock->sk; 2226 int err; 2227 2228 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2229 newsock); 2230 if (err < 0) 2231 goto done; 2232 2233 err = sock->ops->accept(sock, *newsock, flags); 2234 if (err < 0) { 2235 sock_release(*newsock); 2236 goto done; 2237 } 2238 2239 (*newsock)->ops = sock->ops; 2240 2241 done: 2242 return err; 2243 } 2244 2245 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2246 int flags) 2247 { 2248 return sock->ops->connect(sock, addr, addrlen, flags); 2249 } 2250 2251 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2252 int *addrlen) 2253 { 2254 return sock->ops->getname(sock, addr, addrlen, 0); 2255 } 2256 2257 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2258 int *addrlen) 2259 { 2260 return sock->ops->getname(sock, addr, addrlen, 1); 2261 } 2262 2263 int kernel_getsockopt(struct socket *sock, int level, int optname, 2264 char *optval, int *optlen) 2265 { 2266 mm_segment_t oldfs = get_fs(); 2267 int err; 2268 2269 set_fs(KERNEL_DS); 2270 if (level == SOL_SOCKET) 2271 err = sock_getsockopt(sock, level, optname, optval, optlen); 2272 else 2273 err = sock->ops->getsockopt(sock, level, optname, optval, 2274 optlen); 2275 set_fs(oldfs); 2276 return err; 2277 } 2278 2279 int kernel_setsockopt(struct socket *sock, int level, int optname, 2280 char *optval, int optlen) 2281 { 2282 mm_segment_t oldfs = get_fs(); 2283 int err; 2284 2285 set_fs(KERNEL_DS); 2286 if (level == SOL_SOCKET) 2287 err = sock_setsockopt(sock, level, optname, optval, optlen); 2288 else 2289 err = sock->ops->setsockopt(sock, level, optname, optval, 2290 optlen); 2291 set_fs(oldfs); 2292 return err; 2293 } 2294 2295 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2296 size_t size, int flags) 2297 { 2298 if (sock->ops->sendpage) 2299 return sock->ops->sendpage(sock, page, offset, size, flags); 2300 2301 return sock_no_sendpage(sock, page, offset, size, flags); 2302 } 2303 2304 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2305 { 2306 mm_segment_t oldfs = get_fs(); 2307 int err; 2308 2309 set_fs(KERNEL_DS); 2310 err = sock->ops->ioctl(sock, cmd, arg); 2311 set_fs(oldfs); 2312 2313 return err; 2314 } 2315 2316 /* ABI emulation layers need these two */ 2317 EXPORT_SYMBOL(move_addr_to_kernel); 2318 EXPORT_SYMBOL(move_addr_to_user); 2319 EXPORT_SYMBOL(sock_create); 2320 EXPORT_SYMBOL(sock_create_kern); 2321 EXPORT_SYMBOL(sock_create_lite); 2322 EXPORT_SYMBOL(sock_map_fd); 2323 EXPORT_SYMBOL(sock_recvmsg); 2324 EXPORT_SYMBOL(sock_register); 2325 EXPORT_SYMBOL(sock_release); 2326 EXPORT_SYMBOL(sock_sendmsg); 2327 EXPORT_SYMBOL(sock_unregister); 2328 EXPORT_SYMBOL(sock_wake_async); 2329 EXPORT_SYMBOL(sockfd_lookup); 2330 EXPORT_SYMBOL(kernel_sendmsg); 2331 EXPORT_SYMBOL(kernel_recvmsg); 2332 EXPORT_SYMBOL(kernel_bind); 2333 EXPORT_SYMBOL(kernel_listen); 2334 EXPORT_SYMBOL(kernel_accept); 2335 EXPORT_SYMBOL(kernel_connect); 2336 EXPORT_SYMBOL(kernel_getsockname); 2337 EXPORT_SYMBOL(kernel_getpeername); 2338 EXPORT_SYMBOL(kernel_getsockopt); 2339 EXPORT_SYMBOL(kernel_setsockopt); 2340 EXPORT_SYMBOL(kernel_sendpage); 2341 EXPORT_SYMBOL(kernel_sock_ioctl); 2342