xref: /openbmc/linux/net/socket.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 	if (!ei->socket.wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&ei->socket.wq->wait);
253 	ei->socket.wq->fasync_list = NULL;
254 
255 	ei->socket.state = SS_UNCONNECTED;
256 	ei->socket.flags = 0;
257 	ei->socket.ops = NULL;
258 	ei->socket.sk = NULL;
259 	ei->socket.file = NULL;
260 
261 	return &ei->vfs_inode;
262 }
263 
264 
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268 
269 	kfree(wq);
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 	kmem_cache_free(sock_inode_cachep, ei);
279 }
280 
281 static void init_once(void *foo)
282 {
283 	struct socket_alloc *ei = (struct socket_alloc *)foo;
284 
285 	inode_init_once(&ei->vfs_inode);
286 }
287 
288 static int init_inodecache(void)
289 {
290 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 					      sizeof(struct socket_alloc),
292 					      0,
293 					      (SLAB_HWCACHE_ALIGN |
294 					       SLAB_RECLAIM_ACCOUNT |
295 					       SLAB_MEM_SPREAD),
296 					      init_once);
297 	if (sock_inode_cachep == NULL)
298 		return -ENOMEM;
299 	return 0;
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
309 			 int flags, const char *dev_name, void *data)
310 {
311 	return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
312 }
313 
314 static struct vfsmount *sock_mnt __read_mostly;
315 
316 static struct file_system_type sock_fs_type = {
317 	.name =		"sockfs",
318 	.mount =	sockfs_mount,
319 	.kill_sb =	kill_anon_super,
320 };
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static const struct dentry_operations sockfs_dentry_operations = {
332 	.d_dname  = sockfs_dname,
333 };
334 
335 /*
336  *	Obtains the first available file descriptor and sets it up for use.
337  *
338  *	These functions create file structures and maps them to fd space
339  *	of the current process. On success it returns file descriptor
340  *	and file struct implicitly stored in sock->file.
341  *	Note that another thread may close file descriptor before we return
342  *	from this function. We use the fact that now we do not refer
343  *	to socket after mapping. If one day we will need it, this
344  *	function will increment ref. count on file by 1.
345  *
346  *	In any case returned fd MAY BE not valid!
347  *	This race condition is unavoidable
348  *	with shared fd spaces, we cannot solve it inside kernel,
349  *	but we take care of internal coherence yet.
350  */
351 
352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
353 {
354 	struct qstr name = { .name = "" };
355 	struct path path;
356 	struct file *file;
357 	int fd;
358 
359 	fd = get_unused_fd_flags(flags);
360 	if (unlikely(fd < 0))
361 		return fd;
362 
363 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
364 	if (unlikely(!path.dentry)) {
365 		put_unused_fd(fd);
366 		return -ENOMEM;
367 	}
368 	path.mnt = mntget(sock_mnt);
369 
370 	path.dentry->d_op = &sockfs_dentry_operations;
371 	d_instantiate(path.dentry, SOCK_INODE(sock));
372 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
373 
374 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 		  &socket_file_ops);
376 	if (unlikely(!file)) {
377 		/* drop dentry, keep inode */
378 		ihold(path.dentry->d_inode);
379 		path_put(&path);
380 		put_unused_fd(fd);
381 		return -ENFILE;
382 	}
383 
384 	sock->file = file;
385 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 	file->f_pos = 0;
387 	file->private_data = sock;
388 
389 	*f = file;
390 	return fd;
391 }
392 
393 int sock_map_fd(struct socket *sock, int flags)
394 {
395 	struct file *newfile;
396 	int fd = sock_alloc_file(sock, &newfile, flags);
397 
398 	if (likely(fd >= 0))
399 		fd_install(fd, newfile);
400 
401 	return fd;
402 }
403 EXPORT_SYMBOL(sock_map_fd);
404 
405 static struct socket *sock_from_file(struct file *file, int *err)
406 {
407 	if (file->f_op == &socket_file_ops)
408 		return file->private_data;	/* set in sock_map_fd */
409 
410 	*err = -ENOTSOCK;
411 	return NULL;
412 }
413 
414 /**
415  *	sockfd_lookup - Go from a file number to its socket slot
416  *	@fd: file handle
417  *	@err: pointer to an error code return
418  *
419  *	The file handle passed in is locked and the socket it is bound
420  *	too is returned. If an error occurs the err pointer is overwritten
421  *	with a negative errno code and NULL is returned. The function checks
422  *	for both invalid handles and passing a handle which is not a socket.
423  *
424  *	On a success the socket object pointer is returned.
425  */
426 
427 struct socket *sockfd_lookup(int fd, int *err)
428 {
429 	struct file *file;
430 	struct socket *sock;
431 
432 	file = fget(fd);
433 	if (!file) {
434 		*err = -EBADF;
435 		return NULL;
436 	}
437 
438 	sock = sock_from_file(file, err);
439 	if (!sock)
440 		fput(file);
441 	return sock;
442 }
443 EXPORT_SYMBOL(sockfd_lookup);
444 
445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446 {
447 	struct file *file;
448 	struct socket *sock;
449 
450 	*err = -EBADF;
451 	file = fget_light(fd, fput_needed);
452 	if (file) {
453 		sock = sock_from_file(file, err);
454 		if (sock)
455 			return sock;
456 		fput_light(file, *fput_needed);
457 	}
458 	return NULL;
459 }
460 
461 /**
462  *	sock_alloc	-	allocate a socket
463  *
464  *	Allocate a new inode and socket object. The two are bound together
465  *	and initialised. The socket is then returned. If we are out of inodes
466  *	NULL is returned.
467  */
468 
469 static struct socket *sock_alloc(void)
470 {
471 	struct inode *inode;
472 	struct socket *sock;
473 
474 	inode = new_inode(sock_mnt->mnt_sb);
475 	if (!inode)
476 		return NULL;
477 
478 	sock = SOCKET_I(inode);
479 
480 	kmemcheck_annotate_bitfield(sock, type);
481 	inode->i_ino = get_next_ino();
482 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 	inode->i_uid = current_fsuid();
484 	inode->i_gid = current_fsgid();
485 
486 	percpu_add(sockets_in_use, 1);
487 	return sock;
488 }
489 
490 /*
491  *	In theory you can't get an open on this inode, but /proc provides
492  *	a back door. Remember to keep it shut otherwise you'll let the
493  *	creepy crawlies in.
494  */
495 
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
497 {
498 	return -ENXIO;
499 }
500 
501 const struct file_operations bad_sock_fops = {
502 	.owner = THIS_MODULE,
503 	.open = sock_no_open,
504 	.llseek = noop_llseek,
505 };
506 
507 /**
508  *	sock_release	-	close a socket
509  *	@sock: socket to close
510  *
511  *	The socket is released from the protocol stack if it has a release
512  *	callback, and the inode is then released if the socket is bound to
513  *	an inode not a file.
514  */
515 
516 void sock_release(struct socket *sock)
517 {
518 	if (sock->ops) {
519 		struct module *owner = sock->ops->owner;
520 
521 		sock->ops->release(sock);
522 		sock->ops = NULL;
523 		module_put(owner);
524 	}
525 
526 	if (sock->wq->fasync_list)
527 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
528 
529 	percpu_sub(sockets_in_use, 1);
530 	if (!sock->file) {
531 		iput(SOCK_INODE(sock));
532 		return;
533 	}
534 	sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537 
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 	*tx_flags = 0;
541 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 		*tx_flags |= SKBTX_HW_TSTAMP;
543 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 		*tx_flags |= SKBTX_SW_TSTAMP;
545 	return 0;
546 }
547 EXPORT_SYMBOL(sock_tx_timestamp);
548 
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 				 struct msghdr *msg, size_t size)
551 {
552 	struct sock_iocb *si = kiocb_to_siocb(iocb);
553 	int err;
554 
555 	sock_update_classid(sock->sk);
556 
557 	si->sock = sock;
558 	si->scm = NULL;
559 	si->msg = msg;
560 	si->size = size;
561 
562 	err = security_socket_sendmsg(sock, msg, size);
563 	if (err)
564 		return err;
565 
566 	return sock->ops->sendmsg(iocb, sock, msg, size);
567 }
568 
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
570 {
571 	struct kiocb iocb;
572 	struct sock_iocb siocb;
573 	int ret;
574 
575 	init_sync_kiocb(&iocb, NULL);
576 	iocb.private = &siocb;
577 	ret = __sock_sendmsg(&iocb, sock, msg, size);
578 	if (-EIOCBQUEUED == ret)
579 		ret = wait_on_sync_kiocb(&iocb);
580 	return ret;
581 }
582 EXPORT_SYMBOL(sock_sendmsg);
583 
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 		   struct kvec *vec, size_t num, size_t size)
586 {
587 	mm_segment_t oldfs = get_fs();
588 	int result;
589 
590 	set_fs(KERNEL_DS);
591 	/*
592 	 * the following is safe, since for compiler definitions of kvec and
593 	 * iovec are identical, yielding the same in-core layout and alignment
594 	 */
595 	msg->msg_iov = (struct iovec *)vec;
596 	msg->msg_iovlen = num;
597 	result = sock_sendmsg(sock, msg, size);
598 	set_fs(oldfs);
599 	return result;
600 }
601 EXPORT_SYMBOL(kernel_sendmsg);
602 
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
604 {
605 	if (kt.tv64) {
606 		*ts = ktime_to_timespec(kt);
607 		return 1;
608 	} else {
609 		return 0;
610 	}
611 }
612 
613 /*
614  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
615  */
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 	struct sk_buff *skb)
618 {
619 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 	struct timespec ts[3];
621 	int empty = 1;
622 	struct skb_shared_hwtstamps *shhwtstamps =
623 		skb_hwtstamps(skb);
624 
625 	/* Race occurred between timestamp enabling and packet
626 	   receiving.  Fill in the current time for now. */
627 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 		__net_timestamp(skb);
629 
630 	if (need_software_tstamp) {
631 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 			struct timeval tv;
633 			skb_get_timestamp(skb, &tv);
634 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 				 sizeof(tv), &tv);
636 		} else {
637 			skb_get_timestampns(skb, &ts[0]);
638 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 				 sizeof(ts[0]), &ts[0]);
640 		}
641 	}
642 
643 
644 	memset(ts, 0, sizeof(ts));
645 	if (skb->tstamp.tv64 &&
646 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 		skb_get_timestampns(skb, ts + 0);
648 		empty = 0;
649 	}
650 	if (shhwtstamps) {
651 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
653 			empty = 0;
654 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 			empty = 0;
657 	}
658 	if (!empty)
659 		put_cmsg(msg, SOL_SOCKET,
660 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
661 }
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
663 
664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
665 				   struct sk_buff *skb)
666 {
667 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669 			sizeof(__u32), &skb->dropcount);
670 }
671 
672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673 	struct sk_buff *skb)
674 {
675 	sock_recv_timestamp(msg, sk, skb);
676 	sock_recv_drops(msg, sk, skb);
677 }
678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
679 
680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681 				       struct msghdr *msg, size_t size, int flags)
682 {
683 	struct sock_iocb *si = kiocb_to_siocb(iocb);
684 
685 	sock_update_classid(sock->sk);
686 
687 	si->sock = sock;
688 	si->scm = NULL;
689 	si->msg = msg;
690 	si->size = size;
691 	si->flags = flags;
692 
693 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
694 }
695 
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 				 struct msghdr *msg, size_t size, int flags)
698 {
699 	int err = security_socket_recvmsg(sock, msg, size, flags);
700 
701 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
702 }
703 
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 		 size_t size, int flags)
706 {
707 	struct kiocb iocb;
708 	struct sock_iocb siocb;
709 	int ret;
710 
711 	init_sync_kiocb(&iocb, NULL);
712 	iocb.private = &siocb;
713 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 	if (-EIOCBQUEUED == ret)
715 		ret = wait_on_sync_kiocb(&iocb);
716 	return ret;
717 }
718 EXPORT_SYMBOL(sock_recvmsg);
719 
720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 			      size_t size, int flags)
722 {
723 	struct kiocb iocb;
724 	struct sock_iocb siocb;
725 	int ret;
726 
727 	init_sync_kiocb(&iocb, NULL);
728 	iocb.private = &siocb;
729 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730 	if (-EIOCBQUEUED == ret)
731 		ret = wait_on_sync_kiocb(&iocb);
732 	return ret;
733 }
734 
735 /**
736  * kernel_recvmsg - Receive a message from a socket (kernel space)
737  * @sock:       The socket to receive the message from
738  * @msg:        Received message
739  * @vec:        Input s/g array for message data
740  * @num:        Size of input s/g array
741  * @size:       Number of bytes to read
742  * @flags:      Message flags (MSG_DONTWAIT, etc...)
743  *
744  * On return the msg structure contains the scatter/gather array passed in the
745  * vec argument. The array is modified so that it consists of the unfilled
746  * portion of the original array.
747  *
748  * The returned value is the total number of bytes received, or an error.
749  */
750 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
751 		   struct kvec *vec, size_t num, size_t size, int flags)
752 {
753 	mm_segment_t oldfs = get_fs();
754 	int result;
755 
756 	set_fs(KERNEL_DS);
757 	/*
758 	 * the following is safe, since for compiler definitions of kvec and
759 	 * iovec are identical, yielding the same in-core layout and alignment
760 	 */
761 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
762 	result = sock_recvmsg(sock, msg, size, flags);
763 	set_fs(oldfs);
764 	return result;
765 }
766 EXPORT_SYMBOL(kernel_recvmsg);
767 
768 static void sock_aio_dtor(struct kiocb *iocb)
769 {
770 	kfree(iocb->private);
771 }
772 
773 static ssize_t sock_sendpage(struct file *file, struct page *page,
774 			     int offset, size_t size, loff_t *ppos, int more)
775 {
776 	struct socket *sock;
777 	int flags;
778 
779 	sock = file->private_data;
780 
781 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
782 	if (more)
783 		flags |= MSG_MORE;
784 
785 	return kernel_sendpage(sock, page, offset, size, flags);
786 }
787 
788 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
789 				struct pipe_inode_info *pipe, size_t len,
790 				unsigned int flags)
791 {
792 	struct socket *sock = file->private_data;
793 
794 	if (unlikely(!sock->ops->splice_read))
795 		return -EINVAL;
796 
797 	sock_update_classid(sock->sk);
798 
799 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
800 }
801 
802 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
803 					 struct sock_iocb *siocb)
804 {
805 	if (!is_sync_kiocb(iocb)) {
806 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
807 		if (!siocb)
808 			return NULL;
809 		iocb->ki_dtor = sock_aio_dtor;
810 	}
811 
812 	siocb->kiocb = iocb;
813 	iocb->private = siocb;
814 	return siocb;
815 }
816 
817 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
818 		struct file *file, const struct iovec *iov,
819 		unsigned long nr_segs)
820 {
821 	struct socket *sock = file->private_data;
822 	size_t size = 0;
823 	int i;
824 
825 	for (i = 0; i < nr_segs; i++)
826 		size += iov[i].iov_len;
827 
828 	msg->msg_name = NULL;
829 	msg->msg_namelen = 0;
830 	msg->msg_control = NULL;
831 	msg->msg_controllen = 0;
832 	msg->msg_iov = (struct iovec *)iov;
833 	msg->msg_iovlen = nr_segs;
834 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
835 
836 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
837 }
838 
839 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
840 				unsigned long nr_segs, loff_t pos)
841 {
842 	struct sock_iocb siocb, *x;
843 
844 	if (pos != 0)
845 		return -ESPIPE;
846 
847 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
848 		return 0;
849 
850 
851 	x = alloc_sock_iocb(iocb, &siocb);
852 	if (!x)
853 		return -ENOMEM;
854 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
855 }
856 
857 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
858 			struct file *file, const struct iovec *iov,
859 			unsigned long nr_segs)
860 {
861 	struct socket *sock = file->private_data;
862 	size_t size = 0;
863 	int i;
864 
865 	for (i = 0; i < nr_segs; i++)
866 		size += iov[i].iov_len;
867 
868 	msg->msg_name = NULL;
869 	msg->msg_namelen = 0;
870 	msg->msg_control = NULL;
871 	msg->msg_controllen = 0;
872 	msg->msg_iov = (struct iovec *)iov;
873 	msg->msg_iovlen = nr_segs;
874 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
875 	if (sock->type == SOCK_SEQPACKET)
876 		msg->msg_flags |= MSG_EOR;
877 
878 	return __sock_sendmsg(iocb, sock, msg, size);
879 }
880 
881 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
882 			  unsigned long nr_segs, loff_t pos)
883 {
884 	struct sock_iocb siocb, *x;
885 
886 	if (pos != 0)
887 		return -ESPIPE;
888 
889 	x = alloc_sock_iocb(iocb, &siocb);
890 	if (!x)
891 		return -ENOMEM;
892 
893 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
894 }
895 
896 /*
897  * Atomic setting of ioctl hooks to avoid race
898  * with module unload.
899  */
900 
901 static DEFINE_MUTEX(br_ioctl_mutex);
902 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
903 
904 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
905 {
906 	mutex_lock(&br_ioctl_mutex);
907 	br_ioctl_hook = hook;
908 	mutex_unlock(&br_ioctl_mutex);
909 }
910 EXPORT_SYMBOL(brioctl_set);
911 
912 static DEFINE_MUTEX(vlan_ioctl_mutex);
913 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
914 
915 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
916 {
917 	mutex_lock(&vlan_ioctl_mutex);
918 	vlan_ioctl_hook = hook;
919 	mutex_unlock(&vlan_ioctl_mutex);
920 }
921 EXPORT_SYMBOL(vlan_ioctl_set);
922 
923 static DEFINE_MUTEX(dlci_ioctl_mutex);
924 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
925 
926 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
927 {
928 	mutex_lock(&dlci_ioctl_mutex);
929 	dlci_ioctl_hook = hook;
930 	mutex_unlock(&dlci_ioctl_mutex);
931 }
932 EXPORT_SYMBOL(dlci_ioctl_set);
933 
934 static long sock_do_ioctl(struct net *net, struct socket *sock,
935 				 unsigned int cmd, unsigned long arg)
936 {
937 	int err;
938 	void __user *argp = (void __user *)arg;
939 
940 	err = sock->ops->ioctl(sock, cmd, arg);
941 
942 	/*
943 	 * If this ioctl is unknown try to hand it down
944 	 * to the NIC driver.
945 	 */
946 	if (err == -ENOIOCTLCMD)
947 		err = dev_ioctl(net, cmd, argp);
948 
949 	return err;
950 }
951 
952 /*
953  *	With an ioctl, arg may well be a user mode pointer, but we don't know
954  *	what to do with it - that's up to the protocol still.
955  */
956 
957 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
958 {
959 	struct socket *sock;
960 	struct sock *sk;
961 	void __user *argp = (void __user *)arg;
962 	int pid, err;
963 	struct net *net;
964 
965 	sock = file->private_data;
966 	sk = sock->sk;
967 	net = sock_net(sk);
968 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
969 		err = dev_ioctl(net, cmd, argp);
970 	} else
971 #ifdef CONFIG_WEXT_CORE
972 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
973 		err = dev_ioctl(net, cmd, argp);
974 	} else
975 #endif
976 		switch (cmd) {
977 		case FIOSETOWN:
978 		case SIOCSPGRP:
979 			err = -EFAULT;
980 			if (get_user(pid, (int __user *)argp))
981 				break;
982 			err = f_setown(sock->file, pid, 1);
983 			break;
984 		case FIOGETOWN:
985 		case SIOCGPGRP:
986 			err = put_user(f_getown(sock->file),
987 				       (int __user *)argp);
988 			break;
989 		case SIOCGIFBR:
990 		case SIOCSIFBR:
991 		case SIOCBRADDBR:
992 		case SIOCBRDELBR:
993 			err = -ENOPKG;
994 			if (!br_ioctl_hook)
995 				request_module("bridge");
996 
997 			mutex_lock(&br_ioctl_mutex);
998 			if (br_ioctl_hook)
999 				err = br_ioctl_hook(net, cmd, argp);
1000 			mutex_unlock(&br_ioctl_mutex);
1001 			break;
1002 		case SIOCGIFVLAN:
1003 		case SIOCSIFVLAN:
1004 			err = -ENOPKG;
1005 			if (!vlan_ioctl_hook)
1006 				request_module("8021q");
1007 
1008 			mutex_lock(&vlan_ioctl_mutex);
1009 			if (vlan_ioctl_hook)
1010 				err = vlan_ioctl_hook(net, argp);
1011 			mutex_unlock(&vlan_ioctl_mutex);
1012 			break;
1013 		case SIOCADDDLCI:
1014 		case SIOCDELDLCI:
1015 			err = -ENOPKG;
1016 			if (!dlci_ioctl_hook)
1017 				request_module("dlci");
1018 
1019 			mutex_lock(&dlci_ioctl_mutex);
1020 			if (dlci_ioctl_hook)
1021 				err = dlci_ioctl_hook(cmd, argp);
1022 			mutex_unlock(&dlci_ioctl_mutex);
1023 			break;
1024 		default:
1025 			err = sock_do_ioctl(net, sock, cmd, arg);
1026 			break;
1027 		}
1028 	return err;
1029 }
1030 
1031 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1032 {
1033 	int err;
1034 	struct socket *sock = NULL;
1035 
1036 	err = security_socket_create(family, type, protocol, 1);
1037 	if (err)
1038 		goto out;
1039 
1040 	sock = sock_alloc();
1041 	if (!sock) {
1042 		err = -ENOMEM;
1043 		goto out;
1044 	}
1045 
1046 	sock->type = type;
1047 	err = security_socket_post_create(sock, family, type, protocol, 1);
1048 	if (err)
1049 		goto out_release;
1050 
1051 out:
1052 	*res = sock;
1053 	return err;
1054 out_release:
1055 	sock_release(sock);
1056 	sock = NULL;
1057 	goto out;
1058 }
1059 EXPORT_SYMBOL(sock_create_lite);
1060 
1061 /* No kernel lock held - perfect */
1062 static unsigned int sock_poll(struct file *file, poll_table *wait)
1063 {
1064 	struct socket *sock;
1065 
1066 	/*
1067 	 *      We can't return errors to poll, so it's either yes or no.
1068 	 */
1069 	sock = file->private_data;
1070 	return sock->ops->poll(file, sock, wait);
1071 }
1072 
1073 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1074 {
1075 	struct socket *sock = file->private_data;
1076 
1077 	return sock->ops->mmap(file, sock, vma);
1078 }
1079 
1080 static int sock_close(struct inode *inode, struct file *filp)
1081 {
1082 	/*
1083 	 *      It was possible the inode is NULL we were
1084 	 *      closing an unfinished socket.
1085 	 */
1086 
1087 	if (!inode) {
1088 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1089 		return 0;
1090 	}
1091 	sock_release(SOCKET_I(inode));
1092 	return 0;
1093 }
1094 
1095 /*
1096  *	Update the socket async list
1097  *
1098  *	Fasync_list locking strategy.
1099  *
1100  *	1. fasync_list is modified only under process context socket lock
1101  *	   i.e. under semaphore.
1102  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1103  *	   or under socket lock
1104  */
1105 
1106 static int sock_fasync(int fd, struct file *filp, int on)
1107 {
1108 	struct socket *sock = filp->private_data;
1109 	struct sock *sk = sock->sk;
1110 
1111 	if (sk == NULL)
1112 		return -EINVAL;
1113 
1114 	lock_sock(sk);
1115 
1116 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1117 
1118 	if (!sock->wq->fasync_list)
1119 		sock_reset_flag(sk, SOCK_FASYNC);
1120 	else
1121 		sock_set_flag(sk, SOCK_FASYNC);
1122 
1123 	release_sock(sk);
1124 	return 0;
1125 }
1126 
1127 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1128 
1129 int sock_wake_async(struct socket *sock, int how, int band)
1130 {
1131 	struct socket_wq *wq;
1132 
1133 	if (!sock)
1134 		return -1;
1135 	rcu_read_lock();
1136 	wq = rcu_dereference(sock->wq);
1137 	if (!wq || !wq->fasync_list) {
1138 		rcu_read_unlock();
1139 		return -1;
1140 	}
1141 	switch (how) {
1142 	case SOCK_WAKE_WAITD:
1143 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1144 			break;
1145 		goto call_kill;
1146 	case SOCK_WAKE_SPACE:
1147 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1148 			break;
1149 		/* fall through */
1150 	case SOCK_WAKE_IO:
1151 call_kill:
1152 		kill_fasync(&wq->fasync_list, SIGIO, band);
1153 		break;
1154 	case SOCK_WAKE_URG:
1155 		kill_fasync(&wq->fasync_list, SIGURG, band);
1156 	}
1157 	rcu_read_unlock();
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL(sock_wake_async);
1161 
1162 int __sock_create(struct net *net, int family, int type, int protocol,
1163 			 struct socket **res, int kern)
1164 {
1165 	int err;
1166 	struct socket *sock;
1167 	const struct net_proto_family *pf;
1168 
1169 	/*
1170 	 *      Check protocol is in range
1171 	 */
1172 	if (family < 0 || family >= NPROTO)
1173 		return -EAFNOSUPPORT;
1174 	if (type < 0 || type >= SOCK_MAX)
1175 		return -EINVAL;
1176 
1177 	/* Compatibility.
1178 
1179 	   This uglymoron is moved from INET layer to here to avoid
1180 	   deadlock in module load.
1181 	 */
1182 	if (family == PF_INET && type == SOCK_PACKET) {
1183 		static int warned;
1184 		if (!warned) {
1185 			warned = 1;
1186 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1187 			       current->comm);
1188 		}
1189 		family = PF_PACKET;
1190 	}
1191 
1192 	err = security_socket_create(family, type, protocol, kern);
1193 	if (err)
1194 		return err;
1195 
1196 	/*
1197 	 *	Allocate the socket and allow the family to set things up. if
1198 	 *	the protocol is 0, the family is instructed to select an appropriate
1199 	 *	default.
1200 	 */
1201 	sock = sock_alloc();
1202 	if (!sock) {
1203 		if (net_ratelimit())
1204 			printk(KERN_WARNING "socket: no more sockets\n");
1205 		return -ENFILE;	/* Not exactly a match, but its the
1206 				   closest posix thing */
1207 	}
1208 
1209 	sock->type = type;
1210 
1211 #ifdef CONFIG_MODULES
1212 	/* Attempt to load a protocol module if the find failed.
1213 	 *
1214 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1215 	 * requested real, full-featured networking support upon configuration.
1216 	 * Otherwise module support will break!
1217 	 */
1218 	if (rcu_access_pointer(net_families[family]) == NULL)
1219 		request_module("net-pf-%d", family);
1220 #endif
1221 
1222 	rcu_read_lock();
1223 	pf = rcu_dereference(net_families[family]);
1224 	err = -EAFNOSUPPORT;
1225 	if (!pf)
1226 		goto out_release;
1227 
1228 	/*
1229 	 * We will call the ->create function, that possibly is in a loadable
1230 	 * module, so we have to bump that loadable module refcnt first.
1231 	 */
1232 	if (!try_module_get(pf->owner))
1233 		goto out_release;
1234 
1235 	/* Now protected by module ref count */
1236 	rcu_read_unlock();
1237 
1238 	err = pf->create(net, sock, protocol, kern);
1239 	if (err < 0)
1240 		goto out_module_put;
1241 
1242 	/*
1243 	 * Now to bump the refcnt of the [loadable] module that owns this
1244 	 * socket at sock_release time we decrement its refcnt.
1245 	 */
1246 	if (!try_module_get(sock->ops->owner))
1247 		goto out_module_busy;
1248 
1249 	/*
1250 	 * Now that we're done with the ->create function, the [loadable]
1251 	 * module can have its refcnt decremented
1252 	 */
1253 	module_put(pf->owner);
1254 	err = security_socket_post_create(sock, family, type, protocol, kern);
1255 	if (err)
1256 		goto out_sock_release;
1257 	*res = sock;
1258 
1259 	return 0;
1260 
1261 out_module_busy:
1262 	err = -EAFNOSUPPORT;
1263 out_module_put:
1264 	sock->ops = NULL;
1265 	module_put(pf->owner);
1266 out_sock_release:
1267 	sock_release(sock);
1268 	return err;
1269 
1270 out_release:
1271 	rcu_read_unlock();
1272 	goto out_sock_release;
1273 }
1274 EXPORT_SYMBOL(__sock_create);
1275 
1276 int sock_create(int family, int type, int protocol, struct socket **res)
1277 {
1278 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1279 }
1280 EXPORT_SYMBOL(sock_create);
1281 
1282 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1283 {
1284 	return __sock_create(&init_net, family, type, protocol, res, 1);
1285 }
1286 EXPORT_SYMBOL(sock_create_kern);
1287 
1288 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1289 {
1290 	int retval;
1291 	struct socket *sock;
1292 	int flags;
1293 
1294 	/* Check the SOCK_* constants for consistency.  */
1295 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1296 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1297 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1298 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1299 
1300 	flags = type & ~SOCK_TYPE_MASK;
1301 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1302 		return -EINVAL;
1303 	type &= SOCK_TYPE_MASK;
1304 
1305 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1306 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1307 
1308 	retval = sock_create(family, type, protocol, &sock);
1309 	if (retval < 0)
1310 		goto out;
1311 
1312 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1313 	if (retval < 0)
1314 		goto out_release;
1315 
1316 out:
1317 	/* It may be already another descriptor 8) Not kernel problem. */
1318 	return retval;
1319 
1320 out_release:
1321 	sock_release(sock);
1322 	return retval;
1323 }
1324 
1325 /*
1326  *	Create a pair of connected sockets.
1327  */
1328 
1329 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1330 		int __user *, usockvec)
1331 {
1332 	struct socket *sock1, *sock2;
1333 	int fd1, fd2, err;
1334 	struct file *newfile1, *newfile2;
1335 	int flags;
1336 
1337 	flags = type & ~SOCK_TYPE_MASK;
1338 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1339 		return -EINVAL;
1340 	type &= SOCK_TYPE_MASK;
1341 
1342 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1343 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1344 
1345 	/*
1346 	 * Obtain the first socket and check if the underlying protocol
1347 	 * supports the socketpair call.
1348 	 */
1349 
1350 	err = sock_create(family, type, protocol, &sock1);
1351 	if (err < 0)
1352 		goto out;
1353 
1354 	err = sock_create(family, type, protocol, &sock2);
1355 	if (err < 0)
1356 		goto out_release_1;
1357 
1358 	err = sock1->ops->socketpair(sock1, sock2);
1359 	if (err < 0)
1360 		goto out_release_both;
1361 
1362 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1363 	if (unlikely(fd1 < 0)) {
1364 		err = fd1;
1365 		goto out_release_both;
1366 	}
1367 
1368 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1369 	if (unlikely(fd2 < 0)) {
1370 		err = fd2;
1371 		fput(newfile1);
1372 		put_unused_fd(fd1);
1373 		sock_release(sock2);
1374 		goto out;
1375 	}
1376 
1377 	audit_fd_pair(fd1, fd2);
1378 	fd_install(fd1, newfile1);
1379 	fd_install(fd2, newfile2);
1380 	/* fd1 and fd2 may be already another descriptors.
1381 	 * Not kernel problem.
1382 	 */
1383 
1384 	err = put_user(fd1, &usockvec[0]);
1385 	if (!err)
1386 		err = put_user(fd2, &usockvec[1]);
1387 	if (!err)
1388 		return 0;
1389 
1390 	sys_close(fd2);
1391 	sys_close(fd1);
1392 	return err;
1393 
1394 out_release_both:
1395 	sock_release(sock2);
1396 out_release_1:
1397 	sock_release(sock1);
1398 out:
1399 	return err;
1400 }
1401 
1402 /*
1403  *	Bind a name to a socket. Nothing much to do here since it's
1404  *	the protocol's responsibility to handle the local address.
1405  *
1406  *	We move the socket address to kernel space before we call
1407  *	the protocol layer (having also checked the address is ok).
1408  */
1409 
1410 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1411 {
1412 	struct socket *sock;
1413 	struct sockaddr_storage address;
1414 	int err, fput_needed;
1415 
1416 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1417 	if (sock) {
1418 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1419 		if (err >= 0) {
1420 			err = security_socket_bind(sock,
1421 						   (struct sockaddr *)&address,
1422 						   addrlen);
1423 			if (!err)
1424 				err = sock->ops->bind(sock,
1425 						      (struct sockaddr *)
1426 						      &address, addrlen);
1427 		}
1428 		fput_light(sock->file, fput_needed);
1429 	}
1430 	return err;
1431 }
1432 
1433 /*
1434  *	Perform a listen. Basically, we allow the protocol to do anything
1435  *	necessary for a listen, and if that works, we mark the socket as
1436  *	ready for listening.
1437  */
1438 
1439 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1440 {
1441 	struct socket *sock;
1442 	int err, fput_needed;
1443 	int somaxconn;
1444 
1445 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446 	if (sock) {
1447 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1448 		if ((unsigned)backlog > somaxconn)
1449 			backlog = somaxconn;
1450 
1451 		err = security_socket_listen(sock, backlog);
1452 		if (!err)
1453 			err = sock->ops->listen(sock, backlog);
1454 
1455 		fput_light(sock->file, fput_needed);
1456 	}
1457 	return err;
1458 }
1459 
1460 /*
1461  *	For accept, we attempt to create a new socket, set up the link
1462  *	with the client, wake up the client, then return the new
1463  *	connected fd. We collect the address of the connector in kernel
1464  *	space and move it to user at the very end. This is unclean because
1465  *	we open the socket then return an error.
1466  *
1467  *	1003.1g adds the ability to recvmsg() to query connection pending
1468  *	status to recvmsg. We need to add that support in a way thats
1469  *	clean when we restucture accept also.
1470  */
1471 
1472 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1473 		int __user *, upeer_addrlen, int, flags)
1474 {
1475 	struct socket *sock, *newsock;
1476 	struct file *newfile;
1477 	int err, len, newfd, fput_needed;
1478 	struct sockaddr_storage address;
1479 
1480 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1481 		return -EINVAL;
1482 
1483 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1484 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1485 
1486 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1487 	if (!sock)
1488 		goto out;
1489 
1490 	err = -ENFILE;
1491 	newsock = sock_alloc();
1492 	if (!newsock)
1493 		goto out_put;
1494 
1495 	newsock->type = sock->type;
1496 	newsock->ops = sock->ops;
1497 
1498 	/*
1499 	 * We don't need try_module_get here, as the listening socket (sock)
1500 	 * has the protocol module (sock->ops->owner) held.
1501 	 */
1502 	__module_get(newsock->ops->owner);
1503 
1504 	newfd = sock_alloc_file(newsock, &newfile, flags);
1505 	if (unlikely(newfd < 0)) {
1506 		err = newfd;
1507 		sock_release(newsock);
1508 		goto out_put;
1509 	}
1510 
1511 	err = security_socket_accept(sock, newsock);
1512 	if (err)
1513 		goto out_fd;
1514 
1515 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1516 	if (err < 0)
1517 		goto out_fd;
1518 
1519 	if (upeer_sockaddr) {
1520 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1521 					  &len, 2) < 0) {
1522 			err = -ECONNABORTED;
1523 			goto out_fd;
1524 		}
1525 		err = move_addr_to_user((struct sockaddr *)&address,
1526 					len, upeer_sockaddr, upeer_addrlen);
1527 		if (err < 0)
1528 			goto out_fd;
1529 	}
1530 
1531 	/* File flags are not inherited via accept() unlike another OSes. */
1532 
1533 	fd_install(newfd, newfile);
1534 	err = newfd;
1535 
1536 out_put:
1537 	fput_light(sock->file, fput_needed);
1538 out:
1539 	return err;
1540 out_fd:
1541 	fput(newfile);
1542 	put_unused_fd(newfd);
1543 	goto out_put;
1544 }
1545 
1546 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1547 		int __user *, upeer_addrlen)
1548 {
1549 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1550 }
1551 
1552 /*
1553  *	Attempt to connect to a socket with the server address.  The address
1554  *	is in user space so we verify it is OK and move it to kernel space.
1555  *
1556  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1557  *	break bindings
1558  *
1559  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1560  *	other SEQPACKET protocols that take time to connect() as it doesn't
1561  *	include the -EINPROGRESS status for such sockets.
1562  */
1563 
1564 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1565 		int, addrlen)
1566 {
1567 	struct socket *sock;
1568 	struct sockaddr_storage address;
1569 	int err, fput_needed;
1570 
1571 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1572 	if (!sock)
1573 		goto out;
1574 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1575 	if (err < 0)
1576 		goto out_put;
1577 
1578 	err =
1579 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1580 	if (err)
1581 		goto out_put;
1582 
1583 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1584 				 sock->file->f_flags);
1585 out_put:
1586 	fput_light(sock->file, fput_needed);
1587 out:
1588 	return err;
1589 }
1590 
1591 /*
1592  *	Get the local address ('name') of a socket object. Move the obtained
1593  *	name to user space.
1594  */
1595 
1596 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1597 		int __user *, usockaddr_len)
1598 {
1599 	struct socket *sock;
1600 	struct sockaddr_storage address;
1601 	int len, err, fput_needed;
1602 
1603 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 	if (!sock)
1605 		goto out;
1606 
1607 	err = security_socket_getsockname(sock);
1608 	if (err)
1609 		goto out_put;
1610 
1611 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1612 	if (err)
1613 		goto out_put;
1614 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1615 
1616 out_put:
1617 	fput_light(sock->file, fput_needed);
1618 out:
1619 	return err;
1620 }
1621 
1622 /*
1623  *	Get the remote address ('name') of a socket object. Move the obtained
1624  *	name to user space.
1625  */
1626 
1627 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1628 		int __user *, usockaddr_len)
1629 {
1630 	struct socket *sock;
1631 	struct sockaddr_storage address;
1632 	int len, err, fput_needed;
1633 
1634 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1635 	if (sock != NULL) {
1636 		err = security_socket_getpeername(sock);
1637 		if (err) {
1638 			fput_light(sock->file, fput_needed);
1639 			return err;
1640 		}
1641 
1642 		err =
1643 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1644 				       1);
1645 		if (!err)
1646 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1647 						usockaddr_len);
1648 		fput_light(sock->file, fput_needed);
1649 	}
1650 	return err;
1651 }
1652 
1653 /*
1654  *	Send a datagram to a given address. We move the address into kernel
1655  *	space and check the user space data area is readable before invoking
1656  *	the protocol.
1657  */
1658 
1659 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1660 		unsigned, flags, struct sockaddr __user *, addr,
1661 		int, addr_len)
1662 {
1663 	struct socket *sock;
1664 	struct sockaddr_storage address;
1665 	int err;
1666 	struct msghdr msg;
1667 	struct iovec iov;
1668 	int fput_needed;
1669 
1670 	if (len > INT_MAX)
1671 		len = INT_MAX;
1672 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 	if (!sock)
1674 		goto out;
1675 
1676 	iov.iov_base = buff;
1677 	iov.iov_len = len;
1678 	msg.msg_name = NULL;
1679 	msg.msg_iov = &iov;
1680 	msg.msg_iovlen = 1;
1681 	msg.msg_control = NULL;
1682 	msg.msg_controllen = 0;
1683 	msg.msg_namelen = 0;
1684 	if (addr) {
1685 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1686 		if (err < 0)
1687 			goto out_put;
1688 		msg.msg_name = (struct sockaddr *)&address;
1689 		msg.msg_namelen = addr_len;
1690 	}
1691 	if (sock->file->f_flags & O_NONBLOCK)
1692 		flags |= MSG_DONTWAIT;
1693 	msg.msg_flags = flags;
1694 	err = sock_sendmsg(sock, &msg, len);
1695 
1696 out_put:
1697 	fput_light(sock->file, fput_needed);
1698 out:
1699 	return err;
1700 }
1701 
1702 /*
1703  *	Send a datagram down a socket.
1704  */
1705 
1706 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1707 		unsigned, flags)
1708 {
1709 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1710 }
1711 
1712 /*
1713  *	Receive a frame from the socket and optionally record the address of the
1714  *	sender. We verify the buffers are writable and if needed move the
1715  *	sender address from kernel to user space.
1716  */
1717 
1718 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1719 		unsigned, flags, struct sockaddr __user *, addr,
1720 		int __user *, addr_len)
1721 {
1722 	struct socket *sock;
1723 	struct iovec iov;
1724 	struct msghdr msg;
1725 	struct sockaddr_storage address;
1726 	int err, err2;
1727 	int fput_needed;
1728 
1729 	if (size > INT_MAX)
1730 		size = INT_MAX;
1731 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 	if (!sock)
1733 		goto out;
1734 
1735 	msg.msg_control = NULL;
1736 	msg.msg_controllen = 0;
1737 	msg.msg_iovlen = 1;
1738 	msg.msg_iov = &iov;
1739 	iov.iov_len = size;
1740 	iov.iov_base = ubuf;
1741 	msg.msg_name = (struct sockaddr *)&address;
1742 	msg.msg_namelen = sizeof(address);
1743 	if (sock->file->f_flags & O_NONBLOCK)
1744 		flags |= MSG_DONTWAIT;
1745 	err = sock_recvmsg(sock, &msg, size, flags);
1746 
1747 	if (err >= 0 && addr != NULL) {
1748 		err2 = move_addr_to_user((struct sockaddr *)&address,
1749 					 msg.msg_namelen, addr, addr_len);
1750 		if (err2 < 0)
1751 			err = err2;
1752 	}
1753 
1754 	fput_light(sock->file, fput_needed);
1755 out:
1756 	return err;
1757 }
1758 
1759 /*
1760  *	Receive a datagram from a socket.
1761  */
1762 
1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1764 			 unsigned flags)
1765 {
1766 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1767 }
1768 
1769 /*
1770  *	Set a socket option. Because we don't know the option lengths we have
1771  *	to pass the user mode parameter for the protocols to sort out.
1772  */
1773 
1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1775 		char __user *, optval, int, optlen)
1776 {
1777 	int err, fput_needed;
1778 	struct socket *sock;
1779 
1780 	if (optlen < 0)
1781 		return -EINVAL;
1782 
1783 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 	if (sock != NULL) {
1785 		err = security_socket_setsockopt(sock, level, optname);
1786 		if (err)
1787 			goto out_put;
1788 
1789 		if (level == SOL_SOCKET)
1790 			err =
1791 			    sock_setsockopt(sock, level, optname, optval,
1792 					    optlen);
1793 		else
1794 			err =
1795 			    sock->ops->setsockopt(sock, level, optname, optval,
1796 						  optlen);
1797 out_put:
1798 		fput_light(sock->file, fput_needed);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  *	Get a socket option. Because we don't know the option lengths we have
1805  *	to pass a user mode parameter for the protocols to sort out.
1806  */
1807 
1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1809 		char __user *, optval, int __user *, optlen)
1810 {
1811 	int err, fput_needed;
1812 	struct socket *sock;
1813 
1814 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 	if (sock != NULL) {
1816 		err = security_socket_getsockopt(sock, level, optname);
1817 		if (err)
1818 			goto out_put;
1819 
1820 		if (level == SOL_SOCKET)
1821 			err =
1822 			    sock_getsockopt(sock, level, optname, optval,
1823 					    optlen);
1824 		else
1825 			err =
1826 			    sock->ops->getsockopt(sock, level, optname, optval,
1827 						  optlen);
1828 out_put:
1829 		fput_light(sock->file, fput_needed);
1830 	}
1831 	return err;
1832 }
1833 
1834 /*
1835  *	Shutdown a socket.
1836  */
1837 
1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1839 {
1840 	int err, fput_needed;
1841 	struct socket *sock;
1842 
1843 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 	if (sock != NULL) {
1845 		err = security_socket_shutdown(sock, how);
1846 		if (!err)
1847 			err = sock->ops->shutdown(sock, how);
1848 		fput_light(sock->file, fput_needed);
1849 	}
1850 	return err;
1851 }
1852 
1853 /* A couple of helpful macros for getting the address of the 32/64 bit
1854  * fields which are the same type (int / unsigned) on our platforms.
1855  */
1856 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1857 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1858 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1859 
1860 /*
1861  *	BSD sendmsg interface
1862  */
1863 
1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1865 {
1866 	struct compat_msghdr __user *msg_compat =
1867 	    (struct compat_msghdr __user *)msg;
1868 	struct socket *sock;
1869 	struct sockaddr_storage address;
1870 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1871 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1872 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1873 	/* 20 is size of ipv6_pktinfo */
1874 	unsigned char *ctl_buf = ctl;
1875 	struct msghdr msg_sys;
1876 	int err, ctl_len, iov_size, total_len;
1877 	int fput_needed;
1878 
1879 	err = -EFAULT;
1880 	if (MSG_CMSG_COMPAT & flags) {
1881 		if (get_compat_msghdr(&msg_sys, msg_compat))
1882 			return -EFAULT;
1883 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1884 		return -EFAULT;
1885 
1886 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 	if (!sock)
1888 		goto out;
1889 
1890 	/* do not move before msg_sys is valid */
1891 	err = -EMSGSIZE;
1892 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1893 		goto out_put;
1894 
1895 	/* Check whether to allocate the iovec area */
1896 	err = -ENOMEM;
1897 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1898 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1899 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1900 		if (!iov)
1901 			goto out_put;
1902 	}
1903 
1904 	/* This will also move the address data into kernel space */
1905 	if (MSG_CMSG_COMPAT & flags) {
1906 		err = verify_compat_iovec(&msg_sys, iov,
1907 					  (struct sockaddr *)&address,
1908 					  VERIFY_READ);
1909 	} else
1910 		err = verify_iovec(&msg_sys, iov,
1911 				   (struct sockaddr *)&address,
1912 				   VERIFY_READ);
1913 	if (err < 0)
1914 		goto out_freeiov;
1915 	total_len = err;
1916 
1917 	err = -ENOBUFS;
1918 
1919 	if (msg_sys.msg_controllen > INT_MAX)
1920 		goto out_freeiov;
1921 	ctl_len = msg_sys.msg_controllen;
1922 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1923 		err =
1924 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1925 						     sizeof(ctl));
1926 		if (err)
1927 			goto out_freeiov;
1928 		ctl_buf = msg_sys.msg_control;
1929 		ctl_len = msg_sys.msg_controllen;
1930 	} else if (ctl_len) {
1931 		if (ctl_len > sizeof(ctl)) {
1932 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1933 			if (ctl_buf == NULL)
1934 				goto out_freeiov;
1935 		}
1936 		err = -EFAULT;
1937 		/*
1938 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1939 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1940 		 * checking falls down on this.
1941 		 */
1942 		if (copy_from_user(ctl_buf,
1943 				   (void __user __force *)msg_sys.msg_control,
1944 				   ctl_len))
1945 			goto out_freectl;
1946 		msg_sys.msg_control = ctl_buf;
1947 	}
1948 	msg_sys.msg_flags = flags;
1949 
1950 	if (sock->file->f_flags & O_NONBLOCK)
1951 		msg_sys.msg_flags |= MSG_DONTWAIT;
1952 	err = sock_sendmsg(sock, &msg_sys, total_len);
1953 
1954 out_freectl:
1955 	if (ctl_buf != ctl)
1956 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 	if (iov != iovstack)
1959 		sock_kfree_s(sock->sk, iov, iov_size);
1960 out_put:
1961 	fput_light(sock->file, fput_needed);
1962 out:
1963 	return err;
1964 }
1965 
1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1967 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1968 {
1969 	struct compat_msghdr __user *msg_compat =
1970 	    (struct compat_msghdr __user *)msg;
1971 	struct iovec iovstack[UIO_FASTIOV];
1972 	struct iovec *iov = iovstack;
1973 	unsigned long cmsg_ptr;
1974 	int err, iov_size, total_len, len;
1975 
1976 	/* kernel mode address */
1977 	struct sockaddr_storage addr;
1978 
1979 	/* user mode address pointers */
1980 	struct sockaddr __user *uaddr;
1981 	int __user *uaddr_len;
1982 
1983 	if (MSG_CMSG_COMPAT & flags) {
1984 		if (get_compat_msghdr(msg_sys, msg_compat))
1985 			return -EFAULT;
1986 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1987 		return -EFAULT;
1988 
1989 	err = -EMSGSIZE;
1990 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1991 		goto out;
1992 
1993 	/* Check whether to allocate the iovec area */
1994 	err = -ENOMEM;
1995 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1996 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1997 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1998 		if (!iov)
1999 			goto out;
2000 	}
2001 
2002 	/*
2003 	 *      Save the user-mode address (verify_iovec will change the
2004 	 *      kernel msghdr to use the kernel address space)
2005 	 */
2006 
2007 	uaddr = (__force void __user *)msg_sys->msg_name;
2008 	uaddr_len = COMPAT_NAMELEN(msg);
2009 	if (MSG_CMSG_COMPAT & flags) {
2010 		err = verify_compat_iovec(msg_sys, iov,
2011 					  (struct sockaddr *)&addr,
2012 					  VERIFY_WRITE);
2013 	} else
2014 		err = verify_iovec(msg_sys, iov,
2015 				   (struct sockaddr *)&addr,
2016 				   VERIFY_WRITE);
2017 	if (err < 0)
2018 		goto out_freeiov;
2019 	total_len = err;
2020 
2021 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2022 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2023 
2024 	if (sock->file->f_flags & O_NONBLOCK)
2025 		flags |= MSG_DONTWAIT;
2026 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2027 							  total_len, flags);
2028 	if (err < 0)
2029 		goto out_freeiov;
2030 	len = err;
2031 
2032 	if (uaddr != NULL) {
2033 		err = move_addr_to_user((struct sockaddr *)&addr,
2034 					msg_sys->msg_namelen, uaddr,
2035 					uaddr_len);
2036 		if (err < 0)
2037 			goto out_freeiov;
2038 	}
2039 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2040 			 COMPAT_FLAGS(msg));
2041 	if (err)
2042 		goto out_freeiov;
2043 	if (MSG_CMSG_COMPAT & flags)
2044 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2045 				 &msg_compat->msg_controllen);
2046 	else
2047 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2048 				 &msg->msg_controllen);
2049 	if (err)
2050 		goto out_freeiov;
2051 	err = len;
2052 
2053 out_freeiov:
2054 	if (iov != iovstack)
2055 		sock_kfree_s(sock->sk, iov, iov_size);
2056 out:
2057 	return err;
2058 }
2059 
2060 /*
2061  *	BSD recvmsg interface
2062  */
2063 
2064 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2065 		unsigned int, flags)
2066 {
2067 	int fput_needed, err;
2068 	struct msghdr msg_sys;
2069 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2070 
2071 	if (!sock)
2072 		goto out;
2073 
2074 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2075 
2076 	fput_light(sock->file, fput_needed);
2077 out:
2078 	return err;
2079 }
2080 
2081 /*
2082  *     Linux recvmmsg interface
2083  */
2084 
2085 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2086 		   unsigned int flags, struct timespec *timeout)
2087 {
2088 	int fput_needed, err, datagrams;
2089 	struct socket *sock;
2090 	struct mmsghdr __user *entry;
2091 	struct compat_mmsghdr __user *compat_entry;
2092 	struct msghdr msg_sys;
2093 	struct timespec end_time;
2094 
2095 	if (timeout &&
2096 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2097 				    timeout->tv_nsec))
2098 		return -EINVAL;
2099 
2100 	datagrams = 0;
2101 
2102 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 	if (!sock)
2104 		return err;
2105 
2106 	err = sock_error(sock->sk);
2107 	if (err)
2108 		goto out_put;
2109 
2110 	entry = mmsg;
2111 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2112 
2113 	while (datagrams < vlen) {
2114 		/*
2115 		 * No need to ask LSM for more than the first datagram.
2116 		 */
2117 		if (MSG_CMSG_COMPAT & flags) {
2118 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2119 					    &msg_sys, flags, datagrams);
2120 			if (err < 0)
2121 				break;
2122 			err = __put_user(err, &compat_entry->msg_len);
2123 			++compat_entry;
2124 		} else {
2125 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2126 					    &msg_sys, flags, datagrams);
2127 			if (err < 0)
2128 				break;
2129 			err = put_user(err, &entry->msg_len);
2130 			++entry;
2131 		}
2132 
2133 		if (err)
2134 			break;
2135 		++datagrams;
2136 
2137 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2138 		if (flags & MSG_WAITFORONE)
2139 			flags |= MSG_DONTWAIT;
2140 
2141 		if (timeout) {
2142 			ktime_get_ts(timeout);
2143 			*timeout = timespec_sub(end_time, *timeout);
2144 			if (timeout->tv_sec < 0) {
2145 				timeout->tv_sec = timeout->tv_nsec = 0;
2146 				break;
2147 			}
2148 
2149 			/* Timeout, return less than vlen datagrams */
2150 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2151 				break;
2152 		}
2153 
2154 		/* Out of band data, return right away */
2155 		if (msg_sys.msg_flags & MSG_OOB)
2156 			break;
2157 	}
2158 
2159 out_put:
2160 	fput_light(sock->file, fput_needed);
2161 
2162 	if (err == 0)
2163 		return datagrams;
2164 
2165 	if (datagrams != 0) {
2166 		/*
2167 		 * We may return less entries than requested (vlen) if the
2168 		 * sock is non block and there aren't enough datagrams...
2169 		 */
2170 		if (err != -EAGAIN) {
2171 			/*
2172 			 * ... or  if recvmsg returns an error after we
2173 			 * received some datagrams, where we record the
2174 			 * error to return on the next call or if the
2175 			 * app asks about it using getsockopt(SO_ERROR).
2176 			 */
2177 			sock->sk->sk_err = -err;
2178 		}
2179 
2180 		return datagrams;
2181 	}
2182 
2183 	return err;
2184 }
2185 
2186 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2187 		unsigned int, vlen, unsigned int, flags,
2188 		struct timespec __user *, timeout)
2189 {
2190 	int datagrams;
2191 	struct timespec timeout_sys;
2192 
2193 	if (!timeout)
2194 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2195 
2196 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2197 		return -EFAULT;
2198 
2199 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2200 
2201 	if (datagrams > 0 &&
2202 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2203 		datagrams = -EFAULT;
2204 
2205 	return datagrams;
2206 }
2207 
2208 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2209 /* Argument list sizes for sys_socketcall */
2210 #define AL(x) ((x) * sizeof(unsigned long))
2211 static const unsigned char nargs[20] = {
2212 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2213 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2214 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2215 	AL(4), AL(5)
2216 };
2217 
2218 #undef AL
2219 
2220 /*
2221  *	System call vectors.
2222  *
2223  *	Argument checking cleaned up. Saved 20% in size.
2224  *  This function doesn't need to set the kernel lock because
2225  *  it is set by the callees.
2226  */
2227 
2228 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2229 {
2230 	unsigned long a[6];
2231 	unsigned long a0, a1;
2232 	int err;
2233 	unsigned int len;
2234 
2235 	if (call < 1 || call > SYS_RECVMMSG)
2236 		return -EINVAL;
2237 
2238 	len = nargs[call];
2239 	if (len > sizeof(a))
2240 		return -EINVAL;
2241 
2242 	/* copy_from_user should be SMP safe. */
2243 	if (copy_from_user(a, args, len))
2244 		return -EFAULT;
2245 
2246 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2247 
2248 	a0 = a[0];
2249 	a1 = a[1];
2250 
2251 	switch (call) {
2252 	case SYS_SOCKET:
2253 		err = sys_socket(a0, a1, a[2]);
2254 		break;
2255 	case SYS_BIND:
2256 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2257 		break;
2258 	case SYS_CONNECT:
2259 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2260 		break;
2261 	case SYS_LISTEN:
2262 		err = sys_listen(a0, a1);
2263 		break;
2264 	case SYS_ACCEPT:
2265 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2266 				  (int __user *)a[2], 0);
2267 		break;
2268 	case SYS_GETSOCKNAME:
2269 		err =
2270 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2271 				    (int __user *)a[2]);
2272 		break;
2273 	case SYS_GETPEERNAME:
2274 		err =
2275 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2276 				    (int __user *)a[2]);
2277 		break;
2278 	case SYS_SOCKETPAIR:
2279 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2280 		break;
2281 	case SYS_SEND:
2282 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2283 		break;
2284 	case SYS_SENDTO:
2285 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2286 				 (struct sockaddr __user *)a[4], a[5]);
2287 		break;
2288 	case SYS_RECV:
2289 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2290 		break;
2291 	case SYS_RECVFROM:
2292 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2293 				   (struct sockaddr __user *)a[4],
2294 				   (int __user *)a[5]);
2295 		break;
2296 	case SYS_SHUTDOWN:
2297 		err = sys_shutdown(a0, a1);
2298 		break;
2299 	case SYS_SETSOCKOPT:
2300 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2301 		break;
2302 	case SYS_GETSOCKOPT:
2303 		err =
2304 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2305 				   (int __user *)a[4]);
2306 		break;
2307 	case SYS_SENDMSG:
2308 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2309 		break;
2310 	case SYS_RECVMSG:
2311 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2312 		break;
2313 	case SYS_RECVMMSG:
2314 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2315 				   (struct timespec __user *)a[4]);
2316 		break;
2317 	case SYS_ACCEPT4:
2318 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2319 				  (int __user *)a[2], a[3]);
2320 		break;
2321 	default:
2322 		err = -EINVAL;
2323 		break;
2324 	}
2325 	return err;
2326 }
2327 
2328 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2329 
2330 /**
2331  *	sock_register - add a socket protocol handler
2332  *	@ops: description of protocol
2333  *
2334  *	This function is called by a protocol handler that wants to
2335  *	advertise its address family, and have it linked into the
2336  *	socket interface. The value ops->family coresponds to the
2337  *	socket system call protocol family.
2338  */
2339 int sock_register(const struct net_proto_family *ops)
2340 {
2341 	int err;
2342 
2343 	if (ops->family >= NPROTO) {
2344 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2345 		       NPROTO);
2346 		return -ENOBUFS;
2347 	}
2348 
2349 	spin_lock(&net_family_lock);
2350 	if (rcu_dereference_protected(net_families[ops->family],
2351 				      lockdep_is_held(&net_family_lock)))
2352 		err = -EEXIST;
2353 	else {
2354 		rcu_assign_pointer(net_families[ops->family], ops);
2355 		err = 0;
2356 	}
2357 	spin_unlock(&net_family_lock);
2358 
2359 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2360 	return err;
2361 }
2362 EXPORT_SYMBOL(sock_register);
2363 
2364 /**
2365  *	sock_unregister - remove a protocol handler
2366  *	@family: protocol family to remove
2367  *
2368  *	This function is called by a protocol handler that wants to
2369  *	remove its address family, and have it unlinked from the
2370  *	new socket creation.
2371  *
2372  *	If protocol handler is a module, then it can use module reference
2373  *	counts to protect against new references. If protocol handler is not
2374  *	a module then it needs to provide its own protection in
2375  *	the ops->create routine.
2376  */
2377 void sock_unregister(int family)
2378 {
2379 	BUG_ON(family < 0 || family >= NPROTO);
2380 
2381 	spin_lock(&net_family_lock);
2382 	rcu_assign_pointer(net_families[family], NULL);
2383 	spin_unlock(&net_family_lock);
2384 
2385 	synchronize_rcu();
2386 
2387 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2388 }
2389 EXPORT_SYMBOL(sock_unregister);
2390 
2391 static int __init sock_init(void)
2392 {
2393 	/*
2394 	 *      Initialize sock SLAB cache.
2395 	 */
2396 
2397 	sk_init();
2398 
2399 	/*
2400 	 *      Initialize skbuff SLAB cache
2401 	 */
2402 	skb_init();
2403 
2404 	/*
2405 	 *      Initialize the protocols module.
2406 	 */
2407 
2408 	init_inodecache();
2409 	register_filesystem(&sock_fs_type);
2410 	sock_mnt = kern_mount(&sock_fs_type);
2411 
2412 	/* The real protocol initialization is performed in later initcalls.
2413 	 */
2414 
2415 #ifdef CONFIG_NETFILTER
2416 	netfilter_init();
2417 #endif
2418 
2419 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2420 	skb_timestamping_init();
2421 #endif
2422 
2423 	return 0;
2424 }
2425 
2426 core_initcall(sock_init);	/* early initcall */
2427 
2428 #ifdef CONFIG_PROC_FS
2429 void socket_seq_show(struct seq_file *seq)
2430 {
2431 	int cpu;
2432 	int counter = 0;
2433 
2434 	for_each_possible_cpu(cpu)
2435 	    counter += per_cpu(sockets_in_use, cpu);
2436 
2437 	/* It can be negative, by the way. 8) */
2438 	if (counter < 0)
2439 		counter = 0;
2440 
2441 	seq_printf(seq, "sockets: used %d\n", counter);
2442 }
2443 #endif				/* CONFIG_PROC_FS */
2444 
2445 #ifdef CONFIG_COMPAT
2446 static int do_siocgstamp(struct net *net, struct socket *sock,
2447 			 unsigned int cmd, struct compat_timeval __user *up)
2448 {
2449 	mm_segment_t old_fs = get_fs();
2450 	struct timeval ktv;
2451 	int err;
2452 
2453 	set_fs(KERNEL_DS);
2454 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2455 	set_fs(old_fs);
2456 	if (!err) {
2457 		err = put_user(ktv.tv_sec, &up->tv_sec);
2458 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2459 	}
2460 	return err;
2461 }
2462 
2463 static int do_siocgstampns(struct net *net, struct socket *sock,
2464 			 unsigned int cmd, struct compat_timespec __user *up)
2465 {
2466 	mm_segment_t old_fs = get_fs();
2467 	struct timespec kts;
2468 	int err;
2469 
2470 	set_fs(KERNEL_DS);
2471 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2472 	set_fs(old_fs);
2473 	if (!err) {
2474 		err = put_user(kts.tv_sec, &up->tv_sec);
2475 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2476 	}
2477 	return err;
2478 }
2479 
2480 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2481 {
2482 	struct ifreq __user *uifr;
2483 	int err;
2484 
2485 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2486 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2487 		return -EFAULT;
2488 
2489 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2490 	if (err)
2491 		return err;
2492 
2493 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2494 		return -EFAULT;
2495 
2496 	return 0;
2497 }
2498 
2499 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2500 {
2501 	struct compat_ifconf ifc32;
2502 	struct ifconf ifc;
2503 	struct ifconf __user *uifc;
2504 	struct compat_ifreq __user *ifr32;
2505 	struct ifreq __user *ifr;
2506 	unsigned int i, j;
2507 	int err;
2508 
2509 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2510 		return -EFAULT;
2511 
2512 	if (ifc32.ifcbuf == 0) {
2513 		ifc32.ifc_len = 0;
2514 		ifc.ifc_len = 0;
2515 		ifc.ifc_req = NULL;
2516 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2517 	} else {
2518 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2519 			sizeof(struct ifreq);
2520 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2521 		ifc.ifc_len = len;
2522 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2523 		ifr32 = compat_ptr(ifc32.ifcbuf);
2524 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2525 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2526 				return -EFAULT;
2527 			ifr++;
2528 			ifr32++;
2529 		}
2530 	}
2531 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2532 		return -EFAULT;
2533 
2534 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2535 	if (err)
2536 		return err;
2537 
2538 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2539 		return -EFAULT;
2540 
2541 	ifr = ifc.ifc_req;
2542 	ifr32 = compat_ptr(ifc32.ifcbuf);
2543 	for (i = 0, j = 0;
2544 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2545 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2546 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2547 			return -EFAULT;
2548 		ifr32++;
2549 		ifr++;
2550 	}
2551 
2552 	if (ifc32.ifcbuf == 0) {
2553 		/* Translate from 64-bit structure multiple to
2554 		 * a 32-bit one.
2555 		 */
2556 		i = ifc.ifc_len;
2557 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2558 		ifc32.ifc_len = i;
2559 	} else {
2560 		ifc32.ifc_len = i;
2561 	}
2562 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2563 		return -EFAULT;
2564 
2565 	return 0;
2566 }
2567 
2568 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2569 {
2570 	struct ifreq __user *ifr;
2571 	u32 data;
2572 	void __user *datap;
2573 
2574 	ifr = compat_alloc_user_space(sizeof(*ifr));
2575 
2576 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2577 		return -EFAULT;
2578 
2579 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2580 		return -EFAULT;
2581 
2582 	datap = compat_ptr(data);
2583 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2584 		return -EFAULT;
2585 
2586 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2587 }
2588 
2589 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2590 {
2591 	void __user *uptr;
2592 	compat_uptr_t uptr32;
2593 	struct ifreq __user *uifr;
2594 
2595 	uifr = compat_alloc_user_space(sizeof(*uifr));
2596 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2597 		return -EFAULT;
2598 
2599 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2600 		return -EFAULT;
2601 
2602 	uptr = compat_ptr(uptr32);
2603 
2604 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2605 		return -EFAULT;
2606 
2607 	return dev_ioctl(net, SIOCWANDEV, uifr);
2608 }
2609 
2610 static int bond_ioctl(struct net *net, unsigned int cmd,
2611 			 struct compat_ifreq __user *ifr32)
2612 {
2613 	struct ifreq kifr;
2614 	struct ifreq __user *uifr;
2615 	mm_segment_t old_fs;
2616 	int err;
2617 	u32 data;
2618 	void __user *datap;
2619 
2620 	switch (cmd) {
2621 	case SIOCBONDENSLAVE:
2622 	case SIOCBONDRELEASE:
2623 	case SIOCBONDSETHWADDR:
2624 	case SIOCBONDCHANGEACTIVE:
2625 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2626 			return -EFAULT;
2627 
2628 		old_fs = get_fs();
2629 		set_fs(KERNEL_DS);
2630 		err = dev_ioctl(net, cmd, &kifr);
2631 		set_fs(old_fs);
2632 
2633 		return err;
2634 	case SIOCBONDSLAVEINFOQUERY:
2635 	case SIOCBONDINFOQUERY:
2636 		uifr = compat_alloc_user_space(sizeof(*uifr));
2637 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2638 			return -EFAULT;
2639 
2640 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2641 			return -EFAULT;
2642 
2643 		datap = compat_ptr(data);
2644 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2645 			return -EFAULT;
2646 
2647 		return dev_ioctl(net, cmd, uifr);
2648 	default:
2649 		return -EINVAL;
2650 	}
2651 }
2652 
2653 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2654 				 struct compat_ifreq __user *u_ifreq32)
2655 {
2656 	struct ifreq __user *u_ifreq64;
2657 	char tmp_buf[IFNAMSIZ];
2658 	void __user *data64;
2659 	u32 data32;
2660 
2661 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2662 			   IFNAMSIZ))
2663 		return -EFAULT;
2664 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2665 		return -EFAULT;
2666 	data64 = compat_ptr(data32);
2667 
2668 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2669 
2670 	/* Don't check these user accesses, just let that get trapped
2671 	 * in the ioctl handler instead.
2672 	 */
2673 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2674 			 IFNAMSIZ))
2675 		return -EFAULT;
2676 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2677 		return -EFAULT;
2678 
2679 	return dev_ioctl(net, cmd, u_ifreq64);
2680 }
2681 
2682 static int dev_ifsioc(struct net *net, struct socket *sock,
2683 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2684 {
2685 	struct ifreq __user *uifr;
2686 	int err;
2687 
2688 	uifr = compat_alloc_user_space(sizeof(*uifr));
2689 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2690 		return -EFAULT;
2691 
2692 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2693 
2694 	if (!err) {
2695 		switch (cmd) {
2696 		case SIOCGIFFLAGS:
2697 		case SIOCGIFMETRIC:
2698 		case SIOCGIFMTU:
2699 		case SIOCGIFMEM:
2700 		case SIOCGIFHWADDR:
2701 		case SIOCGIFINDEX:
2702 		case SIOCGIFADDR:
2703 		case SIOCGIFBRDADDR:
2704 		case SIOCGIFDSTADDR:
2705 		case SIOCGIFNETMASK:
2706 		case SIOCGIFPFLAGS:
2707 		case SIOCGIFTXQLEN:
2708 		case SIOCGMIIPHY:
2709 		case SIOCGMIIREG:
2710 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2711 				err = -EFAULT;
2712 			break;
2713 		}
2714 	}
2715 	return err;
2716 }
2717 
2718 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2719 			struct compat_ifreq __user *uifr32)
2720 {
2721 	struct ifreq ifr;
2722 	struct compat_ifmap __user *uifmap32;
2723 	mm_segment_t old_fs;
2724 	int err;
2725 
2726 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2727 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2728 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2729 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2730 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2731 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2732 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2733 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2734 	if (err)
2735 		return -EFAULT;
2736 
2737 	old_fs = get_fs();
2738 	set_fs(KERNEL_DS);
2739 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2740 	set_fs(old_fs);
2741 
2742 	if (cmd == SIOCGIFMAP && !err) {
2743 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2744 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2745 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2746 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2747 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2748 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2749 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2750 		if (err)
2751 			err = -EFAULT;
2752 	}
2753 	return err;
2754 }
2755 
2756 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2757 {
2758 	void __user *uptr;
2759 	compat_uptr_t uptr32;
2760 	struct ifreq __user *uifr;
2761 
2762 	uifr = compat_alloc_user_space(sizeof(*uifr));
2763 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2764 		return -EFAULT;
2765 
2766 	if (get_user(uptr32, &uifr32->ifr_data))
2767 		return -EFAULT;
2768 
2769 	uptr = compat_ptr(uptr32);
2770 
2771 	if (put_user(uptr, &uifr->ifr_data))
2772 		return -EFAULT;
2773 
2774 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2775 }
2776 
2777 struct rtentry32 {
2778 	u32		rt_pad1;
2779 	struct sockaddr rt_dst;         /* target address               */
2780 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2781 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2782 	unsigned short	rt_flags;
2783 	short		rt_pad2;
2784 	u32		rt_pad3;
2785 	unsigned char	rt_tos;
2786 	unsigned char	rt_class;
2787 	short		rt_pad4;
2788 	short		rt_metric;      /* +1 for binary compatibility! */
2789 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2790 	u32		rt_mtu;         /* per route MTU/Window         */
2791 	u32		rt_window;      /* Window clamping              */
2792 	unsigned short  rt_irtt;        /* Initial RTT                  */
2793 };
2794 
2795 struct in6_rtmsg32 {
2796 	struct in6_addr		rtmsg_dst;
2797 	struct in6_addr		rtmsg_src;
2798 	struct in6_addr		rtmsg_gateway;
2799 	u32			rtmsg_type;
2800 	u16			rtmsg_dst_len;
2801 	u16			rtmsg_src_len;
2802 	u32			rtmsg_metric;
2803 	u32			rtmsg_info;
2804 	u32			rtmsg_flags;
2805 	s32			rtmsg_ifindex;
2806 };
2807 
2808 static int routing_ioctl(struct net *net, struct socket *sock,
2809 			 unsigned int cmd, void __user *argp)
2810 {
2811 	int ret;
2812 	void *r = NULL;
2813 	struct in6_rtmsg r6;
2814 	struct rtentry r4;
2815 	char devname[16];
2816 	u32 rtdev;
2817 	mm_segment_t old_fs = get_fs();
2818 
2819 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2820 		struct in6_rtmsg32 __user *ur6 = argp;
2821 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2822 			3 * sizeof(struct in6_addr));
2823 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2824 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2825 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2826 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2827 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2828 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2829 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2830 
2831 		r = (void *) &r6;
2832 	} else { /* ipv4 */
2833 		struct rtentry32 __user *ur4 = argp;
2834 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2835 					3 * sizeof(struct sockaddr));
2836 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2837 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2838 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2839 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2840 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2841 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2842 		if (rtdev) {
2843 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2844 			r4.rt_dev = devname; devname[15] = 0;
2845 		} else
2846 			r4.rt_dev = NULL;
2847 
2848 		r = (void *) &r4;
2849 	}
2850 
2851 	if (ret) {
2852 		ret = -EFAULT;
2853 		goto out;
2854 	}
2855 
2856 	set_fs(KERNEL_DS);
2857 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2858 	set_fs(old_fs);
2859 
2860 out:
2861 	return ret;
2862 }
2863 
2864 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2865  * for some operations; this forces use of the newer bridge-utils that
2866  * use compatiable ioctls
2867  */
2868 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2869 {
2870 	compat_ulong_t tmp;
2871 
2872 	if (get_user(tmp, argp))
2873 		return -EFAULT;
2874 	if (tmp == BRCTL_GET_VERSION)
2875 		return BRCTL_VERSION + 1;
2876 	return -EINVAL;
2877 }
2878 
2879 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2880 			 unsigned int cmd, unsigned long arg)
2881 {
2882 	void __user *argp = compat_ptr(arg);
2883 	struct sock *sk = sock->sk;
2884 	struct net *net = sock_net(sk);
2885 
2886 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2887 		return siocdevprivate_ioctl(net, cmd, argp);
2888 
2889 	switch (cmd) {
2890 	case SIOCSIFBR:
2891 	case SIOCGIFBR:
2892 		return old_bridge_ioctl(argp);
2893 	case SIOCGIFNAME:
2894 		return dev_ifname32(net, argp);
2895 	case SIOCGIFCONF:
2896 		return dev_ifconf(net, argp);
2897 	case SIOCETHTOOL:
2898 		return ethtool_ioctl(net, argp);
2899 	case SIOCWANDEV:
2900 		return compat_siocwandev(net, argp);
2901 	case SIOCGIFMAP:
2902 	case SIOCSIFMAP:
2903 		return compat_sioc_ifmap(net, cmd, argp);
2904 	case SIOCBONDENSLAVE:
2905 	case SIOCBONDRELEASE:
2906 	case SIOCBONDSETHWADDR:
2907 	case SIOCBONDSLAVEINFOQUERY:
2908 	case SIOCBONDINFOQUERY:
2909 	case SIOCBONDCHANGEACTIVE:
2910 		return bond_ioctl(net, cmd, argp);
2911 	case SIOCADDRT:
2912 	case SIOCDELRT:
2913 		return routing_ioctl(net, sock, cmd, argp);
2914 	case SIOCGSTAMP:
2915 		return do_siocgstamp(net, sock, cmd, argp);
2916 	case SIOCGSTAMPNS:
2917 		return do_siocgstampns(net, sock, cmd, argp);
2918 	case SIOCSHWTSTAMP:
2919 		return compat_siocshwtstamp(net, argp);
2920 
2921 	case FIOSETOWN:
2922 	case SIOCSPGRP:
2923 	case FIOGETOWN:
2924 	case SIOCGPGRP:
2925 	case SIOCBRADDBR:
2926 	case SIOCBRDELBR:
2927 	case SIOCGIFVLAN:
2928 	case SIOCSIFVLAN:
2929 	case SIOCADDDLCI:
2930 	case SIOCDELDLCI:
2931 		return sock_ioctl(file, cmd, arg);
2932 
2933 	case SIOCGIFFLAGS:
2934 	case SIOCSIFFLAGS:
2935 	case SIOCGIFMETRIC:
2936 	case SIOCSIFMETRIC:
2937 	case SIOCGIFMTU:
2938 	case SIOCSIFMTU:
2939 	case SIOCGIFMEM:
2940 	case SIOCSIFMEM:
2941 	case SIOCGIFHWADDR:
2942 	case SIOCSIFHWADDR:
2943 	case SIOCADDMULTI:
2944 	case SIOCDELMULTI:
2945 	case SIOCGIFINDEX:
2946 	case SIOCGIFADDR:
2947 	case SIOCSIFADDR:
2948 	case SIOCSIFHWBROADCAST:
2949 	case SIOCDIFADDR:
2950 	case SIOCGIFBRDADDR:
2951 	case SIOCSIFBRDADDR:
2952 	case SIOCGIFDSTADDR:
2953 	case SIOCSIFDSTADDR:
2954 	case SIOCGIFNETMASK:
2955 	case SIOCSIFNETMASK:
2956 	case SIOCSIFPFLAGS:
2957 	case SIOCGIFPFLAGS:
2958 	case SIOCGIFTXQLEN:
2959 	case SIOCSIFTXQLEN:
2960 	case SIOCBRADDIF:
2961 	case SIOCBRDELIF:
2962 	case SIOCSIFNAME:
2963 	case SIOCGMIIPHY:
2964 	case SIOCGMIIREG:
2965 	case SIOCSMIIREG:
2966 		return dev_ifsioc(net, sock, cmd, argp);
2967 
2968 	case SIOCSARP:
2969 	case SIOCGARP:
2970 	case SIOCDARP:
2971 	case SIOCATMARK:
2972 		return sock_do_ioctl(net, sock, cmd, arg);
2973 	}
2974 
2975 	/* Prevent warning from compat_sys_ioctl, these always
2976 	 * result in -EINVAL in the native case anyway. */
2977 	switch (cmd) {
2978 	case SIOCRTMSG:
2979 	case SIOCGIFCOUNT:
2980 	case SIOCSRARP:
2981 	case SIOCGRARP:
2982 	case SIOCDRARP:
2983 	case SIOCSIFLINK:
2984 	case SIOCGIFSLAVE:
2985 	case SIOCSIFSLAVE:
2986 		return -EINVAL;
2987 	}
2988 
2989 	return -ENOIOCTLCMD;
2990 }
2991 
2992 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2993 			      unsigned long arg)
2994 {
2995 	struct socket *sock = file->private_data;
2996 	int ret = -ENOIOCTLCMD;
2997 	struct sock *sk;
2998 	struct net *net;
2999 
3000 	sk = sock->sk;
3001 	net = sock_net(sk);
3002 
3003 	if (sock->ops->compat_ioctl)
3004 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3005 
3006 	if (ret == -ENOIOCTLCMD &&
3007 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3008 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3009 
3010 	if (ret == -ENOIOCTLCMD)
3011 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3012 
3013 	return ret;
3014 }
3015 #endif
3016 
3017 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3018 {
3019 	return sock->ops->bind(sock, addr, addrlen);
3020 }
3021 EXPORT_SYMBOL(kernel_bind);
3022 
3023 int kernel_listen(struct socket *sock, int backlog)
3024 {
3025 	return sock->ops->listen(sock, backlog);
3026 }
3027 EXPORT_SYMBOL(kernel_listen);
3028 
3029 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3030 {
3031 	struct sock *sk = sock->sk;
3032 	int err;
3033 
3034 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3035 			       newsock);
3036 	if (err < 0)
3037 		goto done;
3038 
3039 	err = sock->ops->accept(sock, *newsock, flags);
3040 	if (err < 0) {
3041 		sock_release(*newsock);
3042 		*newsock = NULL;
3043 		goto done;
3044 	}
3045 
3046 	(*newsock)->ops = sock->ops;
3047 	__module_get((*newsock)->ops->owner);
3048 
3049 done:
3050 	return err;
3051 }
3052 EXPORT_SYMBOL(kernel_accept);
3053 
3054 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3055 		   int flags)
3056 {
3057 	return sock->ops->connect(sock, addr, addrlen, flags);
3058 }
3059 EXPORT_SYMBOL(kernel_connect);
3060 
3061 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3062 			 int *addrlen)
3063 {
3064 	return sock->ops->getname(sock, addr, addrlen, 0);
3065 }
3066 EXPORT_SYMBOL(kernel_getsockname);
3067 
3068 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3069 			 int *addrlen)
3070 {
3071 	return sock->ops->getname(sock, addr, addrlen, 1);
3072 }
3073 EXPORT_SYMBOL(kernel_getpeername);
3074 
3075 int kernel_getsockopt(struct socket *sock, int level, int optname,
3076 			char *optval, int *optlen)
3077 {
3078 	mm_segment_t oldfs = get_fs();
3079 	char __user *uoptval;
3080 	int __user *uoptlen;
3081 	int err;
3082 
3083 	uoptval = (char __user __force *) optval;
3084 	uoptlen = (int __user __force *) optlen;
3085 
3086 	set_fs(KERNEL_DS);
3087 	if (level == SOL_SOCKET)
3088 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3089 	else
3090 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3091 					    uoptlen);
3092 	set_fs(oldfs);
3093 	return err;
3094 }
3095 EXPORT_SYMBOL(kernel_getsockopt);
3096 
3097 int kernel_setsockopt(struct socket *sock, int level, int optname,
3098 			char *optval, unsigned int optlen)
3099 {
3100 	mm_segment_t oldfs = get_fs();
3101 	char __user *uoptval;
3102 	int err;
3103 
3104 	uoptval = (char __user __force *) optval;
3105 
3106 	set_fs(KERNEL_DS);
3107 	if (level == SOL_SOCKET)
3108 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3109 	else
3110 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3111 					    optlen);
3112 	set_fs(oldfs);
3113 	return err;
3114 }
3115 EXPORT_SYMBOL(kernel_setsockopt);
3116 
3117 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3118 		    size_t size, int flags)
3119 {
3120 	sock_update_classid(sock->sk);
3121 
3122 	if (sock->ops->sendpage)
3123 		return sock->ops->sendpage(sock, page, offset, size, flags);
3124 
3125 	return sock_no_sendpage(sock, page, offset, size, flags);
3126 }
3127 EXPORT_SYMBOL(kernel_sendpage);
3128 
3129 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3130 {
3131 	mm_segment_t oldfs = get_fs();
3132 	int err;
3133 
3134 	set_fs(KERNEL_DS);
3135 	err = sock->ops->ioctl(sock, cmd, arg);
3136 	set_fs(oldfs);
3137 
3138 	return err;
3139 }
3140 EXPORT_SYMBOL(kernel_sock_ioctl);
3141 
3142 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3143 {
3144 	return sock->ops->shutdown(sock, how);
3145 }
3146 EXPORT_SYMBOL(kernel_sock_shutdown);
3147