1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 static void wq_free_rcu(struct rcu_head *head) 266 { 267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 268 269 kfree(wq); 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 278 kmem_cache_free(sock_inode_cachep, ei); 279 } 280 281 static void init_once(void *foo) 282 { 283 struct socket_alloc *ei = (struct socket_alloc *)foo; 284 285 inode_init_once(&ei->vfs_inode); 286 } 287 288 static int init_inodecache(void) 289 { 290 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 291 sizeof(struct socket_alloc), 292 0, 293 (SLAB_HWCACHE_ALIGN | 294 SLAB_RECLAIM_ACCOUNT | 295 SLAB_MEM_SPREAD), 296 init_once); 297 if (sock_inode_cachep == NULL) 298 return -ENOMEM; 299 return 0; 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 309 int flags, const char *dev_name, void *data) 310 { 311 return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 312 } 313 314 static struct vfsmount *sock_mnt __read_mostly; 315 316 static struct file_system_type sock_fs_type = { 317 .name = "sockfs", 318 .mount = sockfs_mount, 319 .kill_sb = kill_anon_super, 320 }; 321 322 /* 323 * sockfs_dname() is called from d_path(). 324 */ 325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 326 { 327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 328 dentry->d_inode->i_ino); 329 } 330 331 static const struct dentry_operations sockfs_dentry_operations = { 332 .d_dname = sockfs_dname, 333 }; 334 335 /* 336 * Obtains the first available file descriptor and sets it up for use. 337 * 338 * These functions create file structures and maps them to fd space 339 * of the current process. On success it returns file descriptor 340 * and file struct implicitly stored in sock->file. 341 * Note that another thread may close file descriptor before we return 342 * from this function. We use the fact that now we do not refer 343 * to socket after mapping. If one day we will need it, this 344 * function will increment ref. count on file by 1. 345 * 346 * In any case returned fd MAY BE not valid! 347 * This race condition is unavoidable 348 * with shared fd spaces, we cannot solve it inside kernel, 349 * but we take care of internal coherence yet. 350 */ 351 352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 353 { 354 struct qstr name = { .name = "" }; 355 struct path path; 356 struct file *file; 357 int fd; 358 359 fd = get_unused_fd_flags(flags); 360 if (unlikely(fd < 0)) 361 return fd; 362 363 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 364 if (unlikely(!path.dentry)) { 365 put_unused_fd(fd); 366 return -ENOMEM; 367 } 368 path.mnt = mntget(sock_mnt); 369 370 path.dentry->d_op = &sockfs_dentry_operations; 371 d_instantiate(path.dentry, SOCK_INODE(sock)); 372 SOCK_INODE(sock)->i_fop = &socket_file_ops; 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (unlikely(!file)) { 377 /* drop dentry, keep inode */ 378 ihold(path.dentry->d_inode); 379 path_put(&path); 380 put_unused_fd(fd); 381 return -ENFILE; 382 } 383 384 sock->file = file; 385 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 386 file->f_pos = 0; 387 file->private_data = sock; 388 389 *f = file; 390 return fd; 391 } 392 393 int sock_map_fd(struct socket *sock, int flags) 394 { 395 struct file *newfile; 396 int fd = sock_alloc_file(sock, &newfile, flags); 397 398 if (likely(fd >= 0)) 399 fd_install(fd, newfile); 400 401 return fd; 402 } 403 EXPORT_SYMBOL(sock_map_fd); 404 405 static struct socket *sock_from_file(struct file *file, int *err) 406 { 407 if (file->f_op == &socket_file_ops) 408 return file->private_data; /* set in sock_map_fd */ 409 410 *err = -ENOTSOCK; 411 return NULL; 412 } 413 414 /** 415 * sockfd_lookup - Go from a file number to its socket slot 416 * @fd: file handle 417 * @err: pointer to an error code return 418 * 419 * The file handle passed in is locked and the socket it is bound 420 * too is returned. If an error occurs the err pointer is overwritten 421 * with a negative errno code and NULL is returned. The function checks 422 * for both invalid handles and passing a handle which is not a socket. 423 * 424 * On a success the socket object pointer is returned. 425 */ 426 427 struct socket *sockfd_lookup(int fd, int *err) 428 { 429 struct file *file; 430 struct socket *sock; 431 432 file = fget(fd); 433 if (!file) { 434 *err = -EBADF; 435 return NULL; 436 } 437 438 sock = sock_from_file(file, err); 439 if (!sock) 440 fput(file); 441 return sock; 442 } 443 EXPORT_SYMBOL(sockfd_lookup); 444 445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 446 { 447 struct file *file; 448 struct socket *sock; 449 450 *err = -EBADF; 451 file = fget_light(fd, fput_needed); 452 if (file) { 453 sock = sock_from_file(file, err); 454 if (sock) 455 return sock; 456 fput_light(file, *fput_needed); 457 } 458 return NULL; 459 } 460 461 /** 462 * sock_alloc - allocate a socket 463 * 464 * Allocate a new inode and socket object. The two are bound together 465 * and initialised. The socket is then returned. If we are out of inodes 466 * NULL is returned. 467 */ 468 469 static struct socket *sock_alloc(void) 470 { 471 struct inode *inode; 472 struct socket *sock; 473 474 inode = new_inode(sock_mnt->mnt_sb); 475 if (!inode) 476 return NULL; 477 478 sock = SOCKET_I(inode); 479 480 kmemcheck_annotate_bitfield(sock, type); 481 inode->i_ino = get_next_ino(); 482 inode->i_mode = S_IFSOCK | S_IRWXUGO; 483 inode->i_uid = current_fsuid(); 484 inode->i_gid = current_fsgid(); 485 486 percpu_add(sockets_in_use, 1); 487 return sock; 488 } 489 490 /* 491 * In theory you can't get an open on this inode, but /proc provides 492 * a back door. Remember to keep it shut otherwise you'll let the 493 * creepy crawlies in. 494 */ 495 496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 497 { 498 return -ENXIO; 499 } 500 501 const struct file_operations bad_sock_fops = { 502 .owner = THIS_MODULE, 503 .open = sock_no_open, 504 .llseek = noop_llseek, 505 }; 506 507 /** 508 * sock_release - close a socket 509 * @sock: socket to close 510 * 511 * The socket is released from the protocol stack if it has a release 512 * callback, and the inode is then released if the socket is bound to 513 * an inode not a file. 514 */ 515 516 void sock_release(struct socket *sock) 517 { 518 if (sock->ops) { 519 struct module *owner = sock->ops->owner; 520 521 sock->ops->release(sock); 522 sock->ops = NULL; 523 module_put(owner); 524 } 525 526 if (sock->wq->fasync_list) 527 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 528 529 percpu_sub(sockets_in_use, 1); 530 if (!sock->file) { 531 iput(SOCK_INODE(sock)); 532 return; 533 } 534 sock->file = NULL; 535 } 536 EXPORT_SYMBOL(sock_release); 537 538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 539 { 540 *tx_flags = 0; 541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 542 *tx_flags |= SKBTX_HW_TSTAMP; 543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 544 *tx_flags |= SKBTX_SW_TSTAMP; 545 return 0; 546 } 547 EXPORT_SYMBOL(sock_tx_timestamp); 548 549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 550 struct msghdr *msg, size_t size) 551 { 552 struct sock_iocb *si = kiocb_to_siocb(iocb); 553 int err; 554 555 sock_update_classid(sock->sk); 556 557 si->sock = sock; 558 si->scm = NULL; 559 si->msg = msg; 560 si->size = size; 561 562 err = security_socket_sendmsg(sock, msg, size); 563 if (err) 564 return err; 565 566 return sock->ops->sendmsg(iocb, sock, msg, size); 567 } 568 569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 570 { 571 struct kiocb iocb; 572 struct sock_iocb siocb; 573 int ret; 574 575 init_sync_kiocb(&iocb, NULL); 576 iocb.private = &siocb; 577 ret = __sock_sendmsg(&iocb, sock, msg, size); 578 if (-EIOCBQUEUED == ret) 579 ret = wait_on_sync_kiocb(&iocb); 580 return ret; 581 } 582 EXPORT_SYMBOL(sock_sendmsg); 583 584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 585 struct kvec *vec, size_t num, size_t size) 586 { 587 mm_segment_t oldfs = get_fs(); 588 int result; 589 590 set_fs(KERNEL_DS); 591 /* 592 * the following is safe, since for compiler definitions of kvec and 593 * iovec are identical, yielding the same in-core layout and alignment 594 */ 595 msg->msg_iov = (struct iovec *)vec; 596 msg->msg_iovlen = num; 597 result = sock_sendmsg(sock, msg, size); 598 set_fs(oldfs); 599 return result; 600 } 601 EXPORT_SYMBOL(kernel_sendmsg); 602 603 static int ktime2ts(ktime_t kt, struct timespec *ts) 604 { 605 if (kt.tv64) { 606 *ts = ktime_to_timespec(kt); 607 return 1; 608 } else { 609 return 0; 610 } 611 } 612 613 /* 614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 615 */ 616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 617 struct sk_buff *skb) 618 { 619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 620 struct timespec ts[3]; 621 int empty = 1; 622 struct skb_shared_hwtstamps *shhwtstamps = 623 skb_hwtstamps(skb); 624 625 /* Race occurred between timestamp enabling and packet 626 receiving. Fill in the current time for now. */ 627 if (need_software_tstamp && skb->tstamp.tv64 == 0) 628 __net_timestamp(skb); 629 630 if (need_software_tstamp) { 631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 632 struct timeval tv; 633 skb_get_timestamp(skb, &tv); 634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 635 sizeof(tv), &tv); 636 } else { 637 skb_get_timestampns(skb, &ts[0]); 638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 639 sizeof(ts[0]), &ts[0]); 640 } 641 } 642 643 644 memset(ts, 0, sizeof(ts)); 645 if (skb->tstamp.tv64 && 646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 647 skb_get_timestampns(skb, ts + 0); 648 empty = 0; 649 } 650 if (shhwtstamps) { 651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 652 ktime2ts(shhwtstamps->syststamp, ts + 1)) 653 empty = 0; 654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 655 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 656 empty = 0; 657 } 658 if (!empty) 659 put_cmsg(msg, SOL_SOCKET, 660 SCM_TIMESTAMPING, sizeof(ts), &ts); 661 } 662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 663 664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 665 struct sk_buff *skb) 666 { 667 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 668 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 669 sizeof(__u32), &skb->dropcount); 670 } 671 672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 673 struct sk_buff *skb) 674 { 675 sock_recv_timestamp(msg, sk, skb); 676 sock_recv_drops(msg, sk, skb); 677 } 678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 679 680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 681 struct msghdr *msg, size_t size, int flags) 682 { 683 struct sock_iocb *si = kiocb_to_siocb(iocb); 684 685 sock_update_classid(sock->sk); 686 687 si->sock = sock; 688 si->scm = NULL; 689 si->msg = msg; 690 si->size = size; 691 si->flags = flags; 692 693 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 694 } 695 696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 697 struct msghdr *msg, size_t size, int flags) 698 { 699 int err = security_socket_recvmsg(sock, msg, size, flags); 700 701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 702 } 703 704 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 705 size_t size, int flags) 706 { 707 struct kiocb iocb; 708 struct sock_iocb siocb; 709 int ret; 710 711 init_sync_kiocb(&iocb, NULL); 712 iocb.private = &siocb; 713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 714 if (-EIOCBQUEUED == ret) 715 ret = wait_on_sync_kiocb(&iocb); 716 return ret; 717 } 718 EXPORT_SYMBOL(sock_recvmsg); 719 720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 721 size_t size, int flags) 722 { 723 struct kiocb iocb; 724 struct sock_iocb siocb; 725 int ret; 726 727 init_sync_kiocb(&iocb, NULL); 728 iocb.private = &siocb; 729 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 730 if (-EIOCBQUEUED == ret) 731 ret = wait_on_sync_kiocb(&iocb); 732 return ret; 733 } 734 735 /** 736 * kernel_recvmsg - Receive a message from a socket (kernel space) 737 * @sock: The socket to receive the message from 738 * @msg: Received message 739 * @vec: Input s/g array for message data 740 * @num: Size of input s/g array 741 * @size: Number of bytes to read 742 * @flags: Message flags (MSG_DONTWAIT, etc...) 743 * 744 * On return the msg structure contains the scatter/gather array passed in the 745 * vec argument. The array is modified so that it consists of the unfilled 746 * portion of the original array. 747 * 748 * The returned value is the total number of bytes received, or an error. 749 */ 750 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 751 struct kvec *vec, size_t num, size_t size, int flags) 752 { 753 mm_segment_t oldfs = get_fs(); 754 int result; 755 756 set_fs(KERNEL_DS); 757 /* 758 * the following is safe, since for compiler definitions of kvec and 759 * iovec are identical, yielding the same in-core layout and alignment 760 */ 761 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 762 result = sock_recvmsg(sock, msg, size, flags); 763 set_fs(oldfs); 764 return result; 765 } 766 EXPORT_SYMBOL(kernel_recvmsg); 767 768 static void sock_aio_dtor(struct kiocb *iocb) 769 { 770 kfree(iocb->private); 771 } 772 773 static ssize_t sock_sendpage(struct file *file, struct page *page, 774 int offset, size_t size, loff_t *ppos, int more) 775 { 776 struct socket *sock; 777 int flags; 778 779 sock = file->private_data; 780 781 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 782 if (more) 783 flags |= MSG_MORE; 784 785 return kernel_sendpage(sock, page, offset, size, flags); 786 } 787 788 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 789 struct pipe_inode_info *pipe, size_t len, 790 unsigned int flags) 791 { 792 struct socket *sock = file->private_data; 793 794 if (unlikely(!sock->ops->splice_read)) 795 return -EINVAL; 796 797 sock_update_classid(sock->sk); 798 799 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 800 } 801 802 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 803 struct sock_iocb *siocb) 804 { 805 if (!is_sync_kiocb(iocb)) { 806 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 807 if (!siocb) 808 return NULL; 809 iocb->ki_dtor = sock_aio_dtor; 810 } 811 812 siocb->kiocb = iocb; 813 iocb->private = siocb; 814 return siocb; 815 } 816 817 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 818 struct file *file, const struct iovec *iov, 819 unsigned long nr_segs) 820 { 821 struct socket *sock = file->private_data; 822 size_t size = 0; 823 int i; 824 825 for (i = 0; i < nr_segs; i++) 826 size += iov[i].iov_len; 827 828 msg->msg_name = NULL; 829 msg->msg_namelen = 0; 830 msg->msg_control = NULL; 831 msg->msg_controllen = 0; 832 msg->msg_iov = (struct iovec *)iov; 833 msg->msg_iovlen = nr_segs; 834 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 835 836 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 837 } 838 839 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 840 unsigned long nr_segs, loff_t pos) 841 { 842 struct sock_iocb siocb, *x; 843 844 if (pos != 0) 845 return -ESPIPE; 846 847 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 848 return 0; 849 850 851 x = alloc_sock_iocb(iocb, &siocb); 852 if (!x) 853 return -ENOMEM; 854 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 855 } 856 857 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 858 struct file *file, const struct iovec *iov, 859 unsigned long nr_segs) 860 { 861 struct socket *sock = file->private_data; 862 size_t size = 0; 863 int i; 864 865 for (i = 0; i < nr_segs; i++) 866 size += iov[i].iov_len; 867 868 msg->msg_name = NULL; 869 msg->msg_namelen = 0; 870 msg->msg_control = NULL; 871 msg->msg_controllen = 0; 872 msg->msg_iov = (struct iovec *)iov; 873 msg->msg_iovlen = nr_segs; 874 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 875 if (sock->type == SOCK_SEQPACKET) 876 msg->msg_flags |= MSG_EOR; 877 878 return __sock_sendmsg(iocb, sock, msg, size); 879 } 880 881 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 882 unsigned long nr_segs, loff_t pos) 883 { 884 struct sock_iocb siocb, *x; 885 886 if (pos != 0) 887 return -ESPIPE; 888 889 x = alloc_sock_iocb(iocb, &siocb); 890 if (!x) 891 return -ENOMEM; 892 893 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 894 } 895 896 /* 897 * Atomic setting of ioctl hooks to avoid race 898 * with module unload. 899 */ 900 901 static DEFINE_MUTEX(br_ioctl_mutex); 902 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 903 904 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 905 { 906 mutex_lock(&br_ioctl_mutex); 907 br_ioctl_hook = hook; 908 mutex_unlock(&br_ioctl_mutex); 909 } 910 EXPORT_SYMBOL(brioctl_set); 911 912 static DEFINE_MUTEX(vlan_ioctl_mutex); 913 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 914 915 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 916 { 917 mutex_lock(&vlan_ioctl_mutex); 918 vlan_ioctl_hook = hook; 919 mutex_unlock(&vlan_ioctl_mutex); 920 } 921 EXPORT_SYMBOL(vlan_ioctl_set); 922 923 static DEFINE_MUTEX(dlci_ioctl_mutex); 924 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 925 926 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 927 { 928 mutex_lock(&dlci_ioctl_mutex); 929 dlci_ioctl_hook = hook; 930 mutex_unlock(&dlci_ioctl_mutex); 931 } 932 EXPORT_SYMBOL(dlci_ioctl_set); 933 934 static long sock_do_ioctl(struct net *net, struct socket *sock, 935 unsigned int cmd, unsigned long arg) 936 { 937 int err; 938 void __user *argp = (void __user *)arg; 939 940 err = sock->ops->ioctl(sock, cmd, arg); 941 942 /* 943 * If this ioctl is unknown try to hand it down 944 * to the NIC driver. 945 */ 946 if (err == -ENOIOCTLCMD) 947 err = dev_ioctl(net, cmd, argp); 948 949 return err; 950 } 951 952 /* 953 * With an ioctl, arg may well be a user mode pointer, but we don't know 954 * what to do with it - that's up to the protocol still. 955 */ 956 957 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 958 { 959 struct socket *sock; 960 struct sock *sk; 961 void __user *argp = (void __user *)arg; 962 int pid, err; 963 struct net *net; 964 965 sock = file->private_data; 966 sk = sock->sk; 967 net = sock_net(sk); 968 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 969 err = dev_ioctl(net, cmd, argp); 970 } else 971 #ifdef CONFIG_WEXT_CORE 972 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 973 err = dev_ioctl(net, cmd, argp); 974 } else 975 #endif 976 switch (cmd) { 977 case FIOSETOWN: 978 case SIOCSPGRP: 979 err = -EFAULT; 980 if (get_user(pid, (int __user *)argp)) 981 break; 982 err = f_setown(sock->file, pid, 1); 983 break; 984 case FIOGETOWN: 985 case SIOCGPGRP: 986 err = put_user(f_getown(sock->file), 987 (int __user *)argp); 988 break; 989 case SIOCGIFBR: 990 case SIOCSIFBR: 991 case SIOCBRADDBR: 992 case SIOCBRDELBR: 993 err = -ENOPKG; 994 if (!br_ioctl_hook) 995 request_module("bridge"); 996 997 mutex_lock(&br_ioctl_mutex); 998 if (br_ioctl_hook) 999 err = br_ioctl_hook(net, cmd, argp); 1000 mutex_unlock(&br_ioctl_mutex); 1001 break; 1002 case SIOCGIFVLAN: 1003 case SIOCSIFVLAN: 1004 err = -ENOPKG; 1005 if (!vlan_ioctl_hook) 1006 request_module("8021q"); 1007 1008 mutex_lock(&vlan_ioctl_mutex); 1009 if (vlan_ioctl_hook) 1010 err = vlan_ioctl_hook(net, argp); 1011 mutex_unlock(&vlan_ioctl_mutex); 1012 break; 1013 case SIOCADDDLCI: 1014 case SIOCDELDLCI: 1015 err = -ENOPKG; 1016 if (!dlci_ioctl_hook) 1017 request_module("dlci"); 1018 1019 mutex_lock(&dlci_ioctl_mutex); 1020 if (dlci_ioctl_hook) 1021 err = dlci_ioctl_hook(cmd, argp); 1022 mutex_unlock(&dlci_ioctl_mutex); 1023 break; 1024 default: 1025 err = sock_do_ioctl(net, sock, cmd, arg); 1026 break; 1027 } 1028 return err; 1029 } 1030 1031 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1032 { 1033 int err; 1034 struct socket *sock = NULL; 1035 1036 err = security_socket_create(family, type, protocol, 1); 1037 if (err) 1038 goto out; 1039 1040 sock = sock_alloc(); 1041 if (!sock) { 1042 err = -ENOMEM; 1043 goto out; 1044 } 1045 1046 sock->type = type; 1047 err = security_socket_post_create(sock, family, type, protocol, 1); 1048 if (err) 1049 goto out_release; 1050 1051 out: 1052 *res = sock; 1053 return err; 1054 out_release: 1055 sock_release(sock); 1056 sock = NULL; 1057 goto out; 1058 } 1059 EXPORT_SYMBOL(sock_create_lite); 1060 1061 /* No kernel lock held - perfect */ 1062 static unsigned int sock_poll(struct file *file, poll_table *wait) 1063 { 1064 struct socket *sock; 1065 1066 /* 1067 * We can't return errors to poll, so it's either yes or no. 1068 */ 1069 sock = file->private_data; 1070 return sock->ops->poll(file, sock, wait); 1071 } 1072 1073 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1074 { 1075 struct socket *sock = file->private_data; 1076 1077 return sock->ops->mmap(file, sock, vma); 1078 } 1079 1080 static int sock_close(struct inode *inode, struct file *filp) 1081 { 1082 /* 1083 * It was possible the inode is NULL we were 1084 * closing an unfinished socket. 1085 */ 1086 1087 if (!inode) { 1088 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1089 return 0; 1090 } 1091 sock_release(SOCKET_I(inode)); 1092 return 0; 1093 } 1094 1095 /* 1096 * Update the socket async list 1097 * 1098 * Fasync_list locking strategy. 1099 * 1100 * 1. fasync_list is modified only under process context socket lock 1101 * i.e. under semaphore. 1102 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1103 * or under socket lock 1104 */ 1105 1106 static int sock_fasync(int fd, struct file *filp, int on) 1107 { 1108 struct socket *sock = filp->private_data; 1109 struct sock *sk = sock->sk; 1110 1111 if (sk == NULL) 1112 return -EINVAL; 1113 1114 lock_sock(sk); 1115 1116 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1117 1118 if (!sock->wq->fasync_list) 1119 sock_reset_flag(sk, SOCK_FASYNC); 1120 else 1121 sock_set_flag(sk, SOCK_FASYNC); 1122 1123 release_sock(sk); 1124 return 0; 1125 } 1126 1127 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1128 1129 int sock_wake_async(struct socket *sock, int how, int band) 1130 { 1131 struct socket_wq *wq; 1132 1133 if (!sock) 1134 return -1; 1135 rcu_read_lock(); 1136 wq = rcu_dereference(sock->wq); 1137 if (!wq || !wq->fasync_list) { 1138 rcu_read_unlock(); 1139 return -1; 1140 } 1141 switch (how) { 1142 case SOCK_WAKE_WAITD: 1143 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1144 break; 1145 goto call_kill; 1146 case SOCK_WAKE_SPACE: 1147 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1148 break; 1149 /* fall through */ 1150 case SOCK_WAKE_IO: 1151 call_kill: 1152 kill_fasync(&wq->fasync_list, SIGIO, band); 1153 break; 1154 case SOCK_WAKE_URG: 1155 kill_fasync(&wq->fasync_list, SIGURG, band); 1156 } 1157 rcu_read_unlock(); 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(sock_wake_async); 1161 1162 int __sock_create(struct net *net, int family, int type, int protocol, 1163 struct socket **res, int kern) 1164 { 1165 int err; 1166 struct socket *sock; 1167 const struct net_proto_family *pf; 1168 1169 /* 1170 * Check protocol is in range 1171 */ 1172 if (family < 0 || family >= NPROTO) 1173 return -EAFNOSUPPORT; 1174 if (type < 0 || type >= SOCK_MAX) 1175 return -EINVAL; 1176 1177 /* Compatibility. 1178 1179 This uglymoron is moved from INET layer to here to avoid 1180 deadlock in module load. 1181 */ 1182 if (family == PF_INET && type == SOCK_PACKET) { 1183 static int warned; 1184 if (!warned) { 1185 warned = 1; 1186 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1187 current->comm); 1188 } 1189 family = PF_PACKET; 1190 } 1191 1192 err = security_socket_create(family, type, protocol, kern); 1193 if (err) 1194 return err; 1195 1196 /* 1197 * Allocate the socket and allow the family to set things up. if 1198 * the protocol is 0, the family is instructed to select an appropriate 1199 * default. 1200 */ 1201 sock = sock_alloc(); 1202 if (!sock) { 1203 if (net_ratelimit()) 1204 printk(KERN_WARNING "socket: no more sockets\n"); 1205 return -ENFILE; /* Not exactly a match, but its the 1206 closest posix thing */ 1207 } 1208 1209 sock->type = type; 1210 1211 #ifdef CONFIG_MODULES 1212 /* Attempt to load a protocol module if the find failed. 1213 * 1214 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1215 * requested real, full-featured networking support upon configuration. 1216 * Otherwise module support will break! 1217 */ 1218 if (rcu_access_pointer(net_families[family]) == NULL) 1219 request_module("net-pf-%d", family); 1220 #endif 1221 1222 rcu_read_lock(); 1223 pf = rcu_dereference(net_families[family]); 1224 err = -EAFNOSUPPORT; 1225 if (!pf) 1226 goto out_release; 1227 1228 /* 1229 * We will call the ->create function, that possibly is in a loadable 1230 * module, so we have to bump that loadable module refcnt first. 1231 */ 1232 if (!try_module_get(pf->owner)) 1233 goto out_release; 1234 1235 /* Now protected by module ref count */ 1236 rcu_read_unlock(); 1237 1238 err = pf->create(net, sock, protocol, kern); 1239 if (err < 0) 1240 goto out_module_put; 1241 1242 /* 1243 * Now to bump the refcnt of the [loadable] module that owns this 1244 * socket at sock_release time we decrement its refcnt. 1245 */ 1246 if (!try_module_get(sock->ops->owner)) 1247 goto out_module_busy; 1248 1249 /* 1250 * Now that we're done with the ->create function, the [loadable] 1251 * module can have its refcnt decremented 1252 */ 1253 module_put(pf->owner); 1254 err = security_socket_post_create(sock, family, type, protocol, kern); 1255 if (err) 1256 goto out_sock_release; 1257 *res = sock; 1258 1259 return 0; 1260 1261 out_module_busy: 1262 err = -EAFNOSUPPORT; 1263 out_module_put: 1264 sock->ops = NULL; 1265 module_put(pf->owner); 1266 out_sock_release: 1267 sock_release(sock); 1268 return err; 1269 1270 out_release: 1271 rcu_read_unlock(); 1272 goto out_sock_release; 1273 } 1274 EXPORT_SYMBOL(__sock_create); 1275 1276 int sock_create(int family, int type, int protocol, struct socket **res) 1277 { 1278 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1279 } 1280 EXPORT_SYMBOL(sock_create); 1281 1282 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1283 { 1284 return __sock_create(&init_net, family, type, protocol, res, 1); 1285 } 1286 EXPORT_SYMBOL(sock_create_kern); 1287 1288 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1289 { 1290 int retval; 1291 struct socket *sock; 1292 int flags; 1293 1294 /* Check the SOCK_* constants for consistency. */ 1295 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1296 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1297 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1298 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1299 1300 flags = type & ~SOCK_TYPE_MASK; 1301 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1302 return -EINVAL; 1303 type &= SOCK_TYPE_MASK; 1304 1305 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1306 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1307 1308 retval = sock_create(family, type, protocol, &sock); 1309 if (retval < 0) 1310 goto out; 1311 1312 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1313 if (retval < 0) 1314 goto out_release; 1315 1316 out: 1317 /* It may be already another descriptor 8) Not kernel problem. */ 1318 return retval; 1319 1320 out_release: 1321 sock_release(sock); 1322 return retval; 1323 } 1324 1325 /* 1326 * Create a pair of connected sockets. 1327 */ 1328 1329 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1330 int __user *, usockvec) 1331 { 1332 struct socket *sock1, *sock2; 1333 int fd1, fd2, err; 1334 struct file *newfile1, *newfile2; 1335 int flags; 1336 1337 flags = type & ~SOCK_TYPE_MASK; 1338 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1339 return -EINVAL; 1340 type &= SOCK_TYPE_MASK; 1341 1342 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1343 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1344 1345 /* 1346 * Obtain the first socket and check if the underlying protocol 1347 * supports the socketpair call. 1348 */ 1349 1350 err = sock_create(family, type, protocol, &sock1); 1351 if (err < 0) 1352 goto out; 1353 1354 err = sock_create(family, type, protocol, &sock2); 1355 if (err < 0) 1356 goto out_release_1; 1357 1358 err = sock1->ops->socketpair(sock1, sock2); 1359 if (err < 0) 1360 goto out_release_both; 1361 1362 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1363 if (unlikely(fd1 < 0)) { 1364 err = fd1; 1365 goto out_release_both; 1366 } 1367 1368 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1369 if (unlikely(fd2 < 0)) { 1370 err = fd2; 1371 fput(newfile1); 1372 put_unused_fd(fd1); 1373 sock_release(sock2); 1374 goto out; 1375 } 1376 1377 audit_fd_pair(fd1, fd2); 1378 fd_install(fd1, newfile1); 1379 fd_install(fd2, newfile2); 1380 /* fd1 and fd2 may be already another descriptors. 1381 * Not kernel problem. 1382 */ 1383 1384 err = put_user(fd1, &usockvec[0]); 1385 if (!err) 1386 err = put_user(fd2, &usockvec[1]); 1387 if (!err) 1388 return 0; 1389 1390 sys_close(fd2); 1391 sys_close(fd1); 1392 return err; 1393 1394 out_release_both: 1395 sock_release(sock2); 1396 out_release_1: 1397 sock_release(sock1); 1398 out: 1399 return err; 1400 } 1401 1402 /* 1403 * Bind a name to a socket. Nothing much to do here since it's 1404 * the protocol's responsibility to handle the local address. 1405 * 1406 * We move the socket address to kernel space before we call 1407 * the protocol layer (having also checked the address is ok). 1408 */ 1409 1410 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1411 { 1412 struct socket *sock; 1413 struct sockaddr_storage address; 1414 int err, fput_needed; 1415 1416 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1417 if (sock) { 1418 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1419 if (err >= 0) { 1420 err = security_socket_bind(sock, 1421 (struct sockaddr *)&address, 1422 addrlen); 1423 if (!err) 1424 err = sock->ops->bind(sock, 1425 (struct sockaddr *) 1426 &address, addrlen); 1427 } 1428 fput_light(sock->file, fput_needed); 1429 } 1430 return err; 1431 } 1432 1433 /* 1434 * Perform a listen. Basically, we allow the protocol to do anything 1435 * necessary for a listen, and if that works, we mark the socket as 1436 * ready for listening. 1437 */ 1438 1439 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1440 { 1441 struct socket *sock; 1442 int err, fput_needed; 1443 int somaxconn; 1444 1445 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1446 if (sock) { 1447 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1448 if ((unsigned)backlog > somaxconn) 1449 backlog = somaxconn; 1450 1451 err = security_socket_listen(sock, backlog); 1452 if (!err) 1453 err = sock->ops->listen(sock, backlog); 1454 1455 fput_light(sock->file, fput_needed); 1456 } 1457 return err; 1458 } 1459 1460 /* 1461 * For accept, we attempt to create a new socket, set up the link 1462 * with the client, wake up the client, then return the new 1463 * connected fd. We collect the address of the connector in kernel 1464 * space and move it to user at the very end. This is unclean because 1465 * we open the socket then return an error. 1466 * 1467 * 1003.1g adds the ability to recvmsg() to query connection pending 1468 * status to recvmsg. We need to add that support in a way thats 1469 * clean when we restucture accept also. 1470 */ 1471 1472 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1473 int __user *, upeer_addrlen, int, flags) 1474 { 1475 struct socket *sock, *newsock; 1476 struct file *newfile; 1477 int err, len, newfd, fput_needed; 1478 struct sockaddr_storage address; 1479 1480 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1481 return -EINVAL; 1482 1483 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1484 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1485 1486 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1487 if (!sock) 1488 goto out; 1489 1490 err = -ENFILE; 1491 newsock = sock_alloc(); 1492 if (!newsock) 1493 goto out_put; 1494 1495 newsock->type = sock->type; 1496 newsock->ops = sock->ops; 1497 1498 /* 1499 * We don't need try_module_get here, as the listening socket (sock) 1500 * has the protocol module (sock->ops->owner) held. 1501 */ 1502 __module_get(newsock->ops->owner); 1503 1504 newfd = sock_alloc_file(newsock, &newfile, flags); 1505 if (unlikely(newfd < 0)) { 1506 err = newfd; 1507 sock_release(newsock); 1508 goto out_put; 1509 } 1510 1511 err = security_socket_accept(sock, newsock); 1512 if (err) 1513 goto out_fd; 1514 1515 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1516 if (err < 0) 1517 goto out_fd; 1518 1519 if (upeer_sockaddr) { 1520 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1521 &len, 2) < 0) { 1522 err = -ECONNABORTED; 1523 goto out_fd; 1524 } 1525 err = move_addr_to_user((struct sockaddr *)&address, 1526 len, upeer_sockaddr, upeer_addrlen); 1527 if (err < 0) 1528 goto out_fd; 1529 } 1530 1531 /* File flags are not inherited via accept() unlike another OSes. */ 1532 1533 fd_install(newfd, newfile); 1534 err = newfd; 1535 1536 out_put: 1537 fput_light(sock->file, fput_needed); 1538 out: 1539 return err; 1540 out_fd: 1541 fput(newfile); 1542 put_unused_fd(newfd); 1543 goto out_put; 1544 } 1545 1546 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1547 int __user *, upeer_addrlen) 1548 { 1549 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1550 } 1551 1552 /* 1553 * Attempt to connect to a socket with the server address. The address 1554 * is in user space so we verify it is OK and move it to kernel space. 1555 * 1556 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1557 * break bindings 1558 * 1559 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1560 * other SEQPACKET protocols that take time to connect() as it doesn't 1561 * include the -EINPROGRESS status for such sockets. 1562 */ 1563 1564 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1565 int, addrlen) 1566 { 1567 struct socket *sock; 1568 struct sockaddr_storage address; 1569 int err, fput_needed; 1570 1571 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1572 if (!sock) 1573 goto out; 1574 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1575 if (err < 0) 1576 goto out_put; 1577 1578 err = 1579 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1580 if (err) 1581 goto out_put; 1582 1583 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1584 sock->file->f_flags); 1585 out_put: 1586 fput_light(sock->file, fput_needed); 1587 out: 1588 return err; 1589 } 1590 1591 /* 1592 * Get the local address ('name') of a socket object. Move the obtained 1593 * name to user space. 1594 */ 1595 1596 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1597 int __user *, usockaddr_len) 1598 { 1599 struct socket *sock; 1600 struct sockaddr_storage address; 1601 int len, err, fput_needed; 1602 1603 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1604 if (!sock) 1605 goto out; 1606 1607 err = security_socket_getsockname(sock); 1608 if (err) 1609 goto out_put; 1610 1611 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1612 if (err) 1613 goto out_put; 1614 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1615 1616 out_put: 1617 fput_light(sock->file, fput_needed); 1618 out: 1619 return err; 1620 } 1621 1622 /* 1623 * Get the remote address ('name') of a socket object. Move the obtained 1624 * name to user space. 1625 */ 1626 1627 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1628 int __user *, usockaddr_len) 1629 { 1630 struct socket *sock; 1631 struct sockaddr_storage address; 1632 int len, err, fput_needed; 1633 1634 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1635 if (sock != NULL) { 1636 err = security_socket_getpeername(sock); 1637 if (err) { 1638 fput_light(sock->file, fput_needed); 1639 return err; 1640 } 1641 1642 err = 1643 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1644 1); 1645 if (!err) 1646 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1647 usockaddr_len); 1648 fput_light(sock->file, fput_needed); 1649 } 1650 return err; 1651 } 1652 1653 /* 1654 * Send a datagram to a given address. We move the address into kernel 1655 * space and check the user space data area is readable before invoking 1656 * the protocol. 1657 */ 1658 1659 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1660 unsigned, flags, struct sockaddr __user *, addr, 1661 int, addr_len) 1662 { 1663 struct socket *sock; 1664 struct sockaddr_storage address; 1665 int err; 1666 struct msghdr msg; 1667 struct iovec iov; 1668 int fput_needed; 1669 1670 if (len > INT_MAX) 1671 len = INT_MAX; 1672 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1673 if (!sock) 1674 goto out; 1675 1676 iov.iov_base = buff; 1677 iov.iov_len = len; 1678 msg.msg_name = NULL; 1679 msg.msg_iov = &iov; 1680 msg.msg_iovlen = 1; 1681 msg.msg_control = NULL; 1682 msg.msg_controllen = 0; 1683 msg.msg_namelen = 0; 1684 if (addr) { 1685 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1686 if (err < 0) 1687 goto out_put; 1688 msg.msg_name = (struct sockaddr *)&address; 1689 msg.msg_namelen = addr_len; 1690 } 1691 if (sock->file->f_flags & O_NONBLOCK) 1692 flags |= MSG_DONTWAIT; 1693 msg.msg_flags = flags; 1694 err = sock_sendmsg(sock, &msg, len); 1695 1696 out_put: 1697 fput_light(sock->file, fput_needed); 1698 out: 1699 return err; 1700 } 1701 1702 /* 1703 * Send a datagram down a socket. 1704 */ 1705 1706 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1707 unsigned, flags) 1708 { 1709 return sys_sendto(fd, buff, len, flags, NULL, 0); 1710 } 1711 1712 /* 1713 * Receive a frame from the socket and optionally record the address of the 1714 * sender. We verify the buffers are writable and if needed move the 1715 * sender address from kernel to user space. 1716 */ 1717 1718 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1719 unsigned, flags, struct sockaddr __user *, addr, 1720 int __user *, addr_len) 1721 { 1722 struct socket *sock; 1723 struct iovec iov; 1724 struct msghdr msg; 1725 struct sockaddr_storage address; 1726 int err, err2; 1727 int fput_needed; 1728 1729 if (size > INT_MAX) 1730 size = INT_MAX; 1731 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1732 if (!sock) 1733 goto out; 1734 1735 msg.msg_control = NULL; 1736 msg.msg_controllen = 0; 1737 msg.msg_iovlen = 1; 1738 msg.msg_iov = &iov; 1739 iov.iov_len = size; 1740 iov.iov_base = ubuf; 1741 msg.msg_name = (struct sockaddr *)&address; 1742 msg.msg_namelen = sizeof(address); 1743 if (sock->file->f_flags & O_NONBLOCK) 1744 flags |= MSG_DONTWAIT; 1745 err = sock_recvmsg(sock, &msg, size, flags); 1746 1747 if (err >= 0 && addr != NULL) { 1748 err2 = move_addr_to_user((struct sockaddr *)&address, 1749 msg.msg_namelen, addr, addr_len); 1750 if (err2 < 0) 1751 err = err2; 1752 } 1753 1754 fput_light(sock->file, fput_needed); 1755 out: 1756 return err; 1757 } 1758 1759 /* 1760 * Receive a datagram from a socket. 1761 */ 1762 1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1764 unsigned flags) 1765 { 1766 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1767 } 1768 1769 /* 1770 * Set a socket option. Because we don't know the option lengths we have 1771 * to pass the user mode parameter for the protocols to sort out. 1772 */ 1773 1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1775 char __user *, optval, int, optlen) 1776 { 1777 int err, fput_needed; 1778 struct socket *sock; 1779 1780 if (optlen < 0) 1781 return -EINVAL; 1782 1783 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1784 if (sock != NULL) { 1785 err = security_socket_setsockopt(sock, level, optname); 1786 if (err) 1787 goto out_put; 1788 1789 if (level == SOL_SOCKET) 1790 err = 1791 sock_setsockopt(sock, level, optname, optval, 1792 optlen); 1793 else 1794 err = 1795 sock->ops->setsockopt(sock, level, optname, optval, 1796 optlen); 1797 out_put: 1798 fput_light(sock->file, fput_needed); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * Get a socket option. Because we don't know the option lengths we have 1805 * to pass a user mode parameter for the protocols to sort out. 1806 */ 1807 1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1809 char __user *, optval, int __user *, optlen) 1810 { 1811 int err, fput_needed; 1812 struct socket *sock; 1813 1814 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1815 if (sock != NULL) { 1816 err = security_socket_getsockopt(sock, level, optname); 1817 if (err) 1818 goto out_put; 1819 1820 if (level == SOL_SOCKET) 1821 err = 1822 sock_getsockopt(sock, level, optname, optval, 1823 optlen); 1824 else 1825 err = 1826 sock->ops->getsockopt(sock, level, optname, optval, 1827 optlen); 1828 out_put: 1829 fput_light(sock->file, fput_needed); 1830 } 1831 return err; 1832 } 1833 1834 /* 1835 * Shutdown a socket. 1836 */ 1837 1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1839 { 1840 int err, fput_needed; 1841 struct socket *sock; 1842 1843 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1844 if (sock != NULL) { 1845 err = security_socket_shutdown(sock, how); 1846 if (!err) 1847 err = sock->ops->shutdown(sock, how); 1848 fput_light(sock->file, fput_needed); 1849 } 1850 return err; 1851 } 1852 1853 /* A couple of helpful macros for getting the address of the 32/64 bit 1854 * fields which are the same type (int / unsigned) on our platforms. 1855 */ 1856 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1857 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1858 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1859 1860 /* 1861 * BSD sendmsg interface 1862 */ 1863 1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1865 { 1866 struct compat_msghdr __user *msg_compat = 1867 (struct compat_msghdr __user *)msg; 1868 struct socket *sock; 1869 struct sockaddr_storage address; 1870 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1871 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1872 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1873 /* 20 is size of ipv6_pktinfo */ 1874 unsigned char *ctl_buf = ctl; 1875 struct msghdr msg_sys; 1876 int err, ctl_len, iov_size, total_len; 1877 int fput_needed; 1878 1879 err = -EFAULT; 1880 if (MSG_CMSG_COMPAT & flags) { 1881 if (get_compat_msghdr(&msg_sys, msg_compat)) 1882 return -EFAULT; 1883 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1884 return -EFAULT; 1885 1886 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1887 if (!sock) 1888 goto out; 1889 1890 /* do not move before msg_sys is valid */ 1891 err = -EMSGSIZE; 1892 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1893 goto out_put; 1894 1895 /* Check whether to allocate the iovec area */ 1896 err = -ENOMEM; 1897 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1898 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1899 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1900 if (!iov) 1901 goto out_put; 1902 } 1903 1904 /* This will also move the address data into kernel space */ 1905 if (MSG_CMSG_COMPAT & flags) { 1906 err = verify_compat_iovec(&msg_sys, iov, 1907 (struct sockaddr *)&address, 1908 VERIFY_READ); 1909 } else 1910 err = verify_iovec(&msg_sys, iov, 1911 (struct sockaddr *)&address, 1912 VERIFY_READ); 1913 if (err < 0) 1914 goto out_freeiov; 1915 total_len = err; 1916 1917 err = -ENOBUFS; 1918 1919 if (msg_sys.msg_controllen > INT_MAX) 1920 goto out_freeiov; 1921 ctl_len = msg_sys.msg_controllen; 1922 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1923 err = 1924 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1925 sizeof(ctl)); 1926 if (err) 1927 goto out_freeiov; 1928 ctl_buf = msg_sys.msg_control; 1929 ctl_len = msg_sys.msg_controllen; 1930 } else if (ctl_len) { 1931 if (ctl_len > sizeof(ctl)) { 1932 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1933 if (ctl_buf == NULL) 1934 goto out_freeiov; 1935 } 1936 err = -EFAULT; 1937 /* 1938 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1939 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1940 * checking falls down on this. 1941 */ 1942 if (copy_from_user(ctl_buf, 1943 (void __user __force *)msg_sys.msg_control, 1944 ctl_len)) 1945 goto out_freectl; 1946 msg_sys.msg_control = ctl_buf; 1947 } 1948 msg_sys.msg_flags = flags; 1949 1950 if (sock->file->f_flags & O_NONBLOCK) 1951 msg_sys.msg_flags |= MSG_DONTWAIT; 1952 err = sock_sendmsg(sock, &msg_sys, total_len); 1953 1954 out_freectl: 1955 if (ctl_buf != ctl) 1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1957 out_freeiov: 1958 if (iov != iovstack) 1959 sock_kfree_s(sock->sk, iov, iov_size); 1960 out_put: 1961 fput_light(sock->file, fput_needed); 1962 out: 1963 return err; 1964 } 1965 1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1967 struct msghdr *msg_sys, unsigned flags, int nosec) 1968 { 1969 struct compat_msghdr __user *msg_compat = 1970 (struct compat_msghdr __user *)msg; 1971 struct iovec iovstack[UIO_FASTIOV]; 1972 struct iovec *iov = iovstack; 1973 unsigned long cmsg_ptr; 1974 int err, iov_size, total_len, len; 1975 1976 /* kernel mode address */ 1977 struct sockaddr_storage addr; 1978 1979 /* user mode address pointers */ 1980 struct sockaddr __user *uaddr; 1981 int __user *uaddr_len; 1982 1983 if (MSG_CMSG_COMPAT & flags) { 1984 if (get_compat_msghdr(msg_sys, msg_compat)) 1985 return -EFAULT; 1986 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1987 return -EFAULT; 1988 1989 err = -EMSGSIZE; 1990 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1991 goto out; 1992 1993 /* Check whether to allocate the iovec area */ 1994 err = -ENOMEM; 1995 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1996 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1997 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1998 if (!iov) 1999 goto out; 2000 } 2001 2002 /* 2003 * Save the user-mode address (verify_iovec will change the 2004 * kernel msghdr to use the kernel address space) 2005 */ 2006 2007 uaddr = (__force void __user *)msg_sys->msg_name; 2008 uaddr_len = COMPAT_NAMELEN(msg); 2009 if (MSG_CMSG_COMPAT & flags) { 2010 err = verify_compat_iovec(msg_sys, iov, 2011 (struct sockaddr *)&addr, 2012 VERIFY_WRITE); 2013 } else 2014 err = verify_iovec(msg_sys, iov, 2015 (struct sockaddr *)&addr, 2016 VERIFY_WRITE); 2017 if (err < 0) 2018 goto out_freeiov; 2019 total_len = err; 2020 2021 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2022 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2023 2024 if (sock->file->f_flags & O_NONBLOCK) 2025 flags |= MSG_DONTWAIT; 2026 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2027 total_len, flags); 2028 if (err < 0) 2029 goto out_freeiov; 2030 len = err; 2031 2032 if (uaddr != NULL) { 2033 err = move_addr_to_user((struct sockaddr *)&addr, 2034 msg_sys->msg_namelen, uaddr, 2035 uaddr_len); 2036 if (err < 0) 2037 goto out_freeiov; 2038 } 2039 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2040 COMPAT_FLAGS(msg)); 2041 if (err) 2042 goto out_freeiov; 2043 if (MSG_CMSG_COMPAT & flags) 2044 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2045 &msg_compat->msg_controllen); 2046 else 2047 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2048 &msg->msg_controllen); 2049 if (err) 2050 goto out_freeiov; 2051 err = len; 2052 2053 out_freeiov: 2054 if (iov != iovstack) 2055 sock_kfree_s(sock->sk, iov, iov_size); 2056 out: 2057 return err; 2058 } 2059 2060 /* 2061 * BSD recvmsg interface 2062 */ 2063 2064 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2065 unsigned int, flags) 2066 { 2067 int fput_needed, err; 2068 struct msghdr msg_sys; 2069 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2070 2071 if (!sock) 2072 goto out; 2073 2074 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2075 2076 fput_light(sock->file, fput_needed); 2077 out: 2078 return err; 2079 } 2080 2081 /* 2082 * Linux recvmmsg interface 2083 */ 2084 2085 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2086 unsigned int flags, struct timespec *timeout) 2087 { 2088 int fput_needed, err, datagrams; 2089 struct socket *sock; 2090 struct mmsghdr __user *entry; 2091 struct compat_mmsghdr __user *compat_entry; 2092 struct msghdr msg_sys; 2093 struct timespec end_time; 2094 2095 if (timeout && 2096 poll_select_set_timeout(&end_time, timeout->tv_sec, 2097 timeout->tv_nsec)) 2098 return -EINVAL; 2099 2100 datagrams = 0; 2101 2102 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2103 if (!sock) 2104 return err; 2105 2106 err = sock_error(sock->sk); 2107 if (err) 2108 goto out_put; 2109 2110 entry = mmsg; 2111 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2112 2113 while (datagrams < vlen) { 2114 /* 2115 * No need to ask LSM for more than the first datagram. 2116 */ 2117 if (MSG_CMSG_COMPAT & flags) { 2118 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2119 &msg_sys, flags, datagrams); 2120 if (err < 0) 2121 break; 2122 err = __put_user(err, &compat_entry->msg_len); 2123 ++compat_entry; 2124 } else { 2125 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2126 &msg_sys, flags, datagrams); 2127 if (err < 0) 2128 break; 2129 err = put_user(err, &entry->msg_len); 2130 ++entry; 2131 } 2132 2133 if (err) 2134 break; 2135 ++datagrams; 2136 2137 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2138 if (flags & MSG_WAITFORONE) 2139 flags |= MSG_DONTWAIT; 2140 2141 if (timeout) { 2142 ktime_get_ts(timeout); 2143 *timeout = timespec_sub(end_time, *timeout); 2144 if (timeout->tv_sec < 0) { 2145 timeout->tv_sec = timeout->tv_nsec = 0; 2146 break; 2147 } 2148 2149 /* Timeout, return less than vlen datagrams */ 2150 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2151 break; 2152 } 2153 2154 /* Out of band data, return right away */ 2155 if (msg_sys.msg_flags & MSG_OOB) 2156 break; 2157 } 2158 2159 out_put: 2160 fput_light(sock->file, fput_needed); 2161 2162 if (err == 0) 2163 return datagrams; 2164 2165 if (datagrams != 0) { 2166 /* 2167 * We may return less entries than requested (vlen) if the 2168 * sock is non block and there aren't enough datagrams... 2169 */ 2170 if (err != -EAGAIN) { 2171 /* 2172 * ... or if recvmsg returns an error after we 2173 * received some datagrams, where we record the 2174 * error to return on the next call or if the 2175 * app asks about it using getsockopt(SO_ERROR). 2176 */ 2177 sock->sk->sk_err = -err; 2178 } 2179 2180 return datagrams; 2181 } 2182 2183 return err; 2184 } 2185 2186 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2187 unsigned int, vlen, unsigned int, flags, 2188 struct timespec __user *, timeout) 2189 { 2190 int datagrams; 2191 struct timespec timeout_sys; 2192 2193 if (!timeout) 2194 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2195 2196 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2197 return -EFAULT; 2198 2199 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2200 2201 if (datagrams > 0 && 2202 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2203 datagrams = -EFAULT; 2204 2205 return datagrams; 2206 } 2207 2208 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2209 /* Argument list sizes for sys_socketcall */ 2210 #define AL(x) ((x) * sizeof(unsigned long)) 2211 static const unsigned char nargs[20] = { 2212 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2213 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2214 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2215 AL(4), AL(5) 2216 }; 2217 2218 #undef AL 2219 2220 /* 2221 * System call vectors. 2222 * 2223 * Argument checking cleaned up. Saved 20% in size. 2224 * This function doesn't need to set the kernel lock because 2225 * it is set by the callees. 2226 */ 2227 2228 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2229 { 2230 unsigned long a[6]; 2231 unsigned long a0, a1; 2232 int err; 2233 unsigned int len; 2234 2235 if (call < 1 || call > SYS_RECVMMSG) 2236 return -EINVAL; 2237 2238 len = nargs[call]; 2239 if (len > sizeof(a)) 2240 return -EINVAL; 2241 2242 /* copy_from_user should be SMP safe. */ 2243 if (copy_from_user(a, args, len)) 2244 return -EFAULT; 2245 2246 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2247 2248 a0 = a[0]; 2249 a1 = a[1]; 2250 2251 switch (call) { 2252 case SYS_SOCKET: 2253 err = sys_socket(a0, a1, a[2]); 2254 break; 2255 case SYS_BIND: 2256 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2257 break; 2258 case SYS_CONNECT: 2259 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2260 break; 2261 case SYS_LISTEN: 2262 err = sys_listen(a0, a1); 2263 break; 2264 case SYS_ACCEPT: 2265 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2266 (int __user *)a[2], 0); 2267 break; 2268 case SYS_GETSOCKNAME: 2269 err = 2270 sys_getsockname(a0, (struct sockaddr __user *)a1, 2271 (int __user *)a[2]); 2272 break; 2273 case SYS_GETPEERNAME: 2274 err = 2275 sys_getpeername(a0, (struct sockaddr __user *)a1, 2276 (int __user *)a[2]); 2277 break; 2278 case SYS_SOCKETPAIR: 2279 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2280 break; 2281 case SYS_SEND: 2282 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2283 break; 2284 case SYS_SENDTO: 2285 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2286 (struct sockaddr __user *)a[4], a[5]); 2287 break; 2288 case SYS_RECV: 2289 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2290 break; 2291 case SYS_RECVFROM: 2292 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2293 (struct sockaddr __user *)a[4], 2294 (int __user *)a[5]); 2295 break; 2296 case SYS_SHUTDOWN: 2297 err = sys_shutdown(a0, a1); 2298 break; 2299 case SYS_SETSOCKOPT: 2300 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2301 break; 2302 case SYS_GETSOCKOPT: 2303 err = 2304 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2305 (int __user *)a[4]); 2306 break; 2307 case SYS_SENDMSG: 2308 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2309 break; 2310 case SYS_RECVMSG: 2311 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2312 break; 2313 case SYS_RECVMMSG: 2314 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2315 (struct timespec __user *)a[4]); 2316 break; 2317 case SYS_ACCEPT4: 2318 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2319 (int __user *)a[2], a[3]); 2320 break; 2321 default: 2322 err = -EINVAL; 2323 break; 2324 } 2325 return err; 2326 } 2327 2328 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2329 2330 /** 2331 * sock_register - add a socket protocol handler 2332 * @ops: description of protocol 2333 * 2334 * This function is called by a protocol handler that wants to 2335 * advertise its address family, and have it linked into the 2336 * socket interface. The value ops->family coresponds to the 2337 * socket system call protocol family. 2338 */ 2339 int sock_register(const struct net_proto_family *ops) 2340 { 2341 int err; 2342 2343 if (ops->family >= NPROTO) { 2344 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2345 NPROTO); 2346 return -ENOBUFS; 2347 } 2348 2349 spin_lock(&net_family_lock); 2350 if (rcu_dereference_protected(net_families[ops->family], 2351 lockdep_is_held(&net_family_lock))) 2352 err = -EEXIST; 2353 else { 2354 rcu_assign_pointer(net_families[ops->family], ops); 2355 err = 0; 2356 } 2357 spin_unlock(&net_family_lock); 2358 2359 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2360 return err; 2361 } 2362 EXPORT_SYMBOL(sock_register); 2363 2364 /** 2365 * sock_unregister - remove a protocol handler 2366 * @family: protocol family to remove 2367 * 2368 * This function is called by a protocol handler that wants to 2369 * remove its address family, and have it unlinked from the 2370 * new socket creation. 2371 * 2372 * If protocol handler is a module, then it can use module reference 2373 * counts to protect against new references. If protocol handler is not 2374 * a module then it needs to provide its own protection in 2375 * the ops->create routine. 2376 */ 2377 void sock_unregister(int family) 2378 { 2379 BUG_ON(family < 0 || family >= NPROTO); 2380 2381 spin_lock(&net_family_lock); 2382 rcu_assign_pointer(net_families[family], NULL); 2383 spin_unlock(&net_family_lock); 2384 2385 synchronize_rcu(); 2386 2387 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2388 } 2389 EXPORT_SYMBOL(sock_unregister); 2390 2391 static int __init sock_init(void) 2392 { 2393 /* 2394 * Initialize sock SLAB cache. 2395 */ 2396 2397 sk_init(); 2398 2399 /* 2400 * Initialize skbuff SLAB cache 2401 */ 2402 skb_init(); 2403 2404 /* 2405 * Initialize the protocols module. 2406 */ 2407 2408 init_inodecache(); 2409 register_filesystem(&sock_fs_type); 2410 sock_mnt = kern_mount(&sock_fs_type); 2411 2412 /* The real protocol initialization is performed in later initcalls. 2413 */ 2414 2415 #ifdef CONFIG_NETFILTER 2416 netfilter_init(); 2417 #endif 2418 2419 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2420 skb_timestamping_init(); 2421 #endif 2422 2423 return 0; 2424 } 2425 2426 core_initcall(sock_init); /* early initcall */ 2427 2428 #ifdef CONFIG_PROC_FS 2429 void socket_seq_show(struct seq_file *seq) 2430 { 2431 int cpu; 2432 int counter = 0; 2433 2434 for_each_possible_cpu(cpu) 2435 counter += per_cpu(sockets_in_use, cpu); 2436 2437 /* It can be negative, by the way. 8) */ 2438 if (counter < 0) 2439 counter = 0; 2440 2441 seq_printf(seq, "sockets: used %d\n", counter); 2442 } 2443 #endif /* CONFIG_PROC_FS */ 2444 2445 #ifdef CONFIG_COMPAT 2446 static int do_siocgstamp(struct net *net, struct socket *sock, 2447 unsigned int cmd, struct compat_timeval __user *up) 2448 { 2449 mm_segment_t old_fs = get_fs(); 2450 struct timeval ktv; 2451 int err; 2452 2453 set_fs(KERNEL_DS); 2454 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2455 set_fs(old_fs); 2456 if (!err) { 2457 err = put_user(ktv.tv_sec, &up->tv_sec); 2458 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2459 } 2460 return err; 2461 } 2462 2463 static int do_siocgstampns(struct net *net, struct socket *sock, 2464 unsigned int cmd, struct compat_timespec __user *up) 2465 { 2466 mm_segment_t old_fs = get_fs(); 2467 struct timespec kts; 2468 int err; 2469 2470 set_fs(KERNEL_DS); 2471 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2472 set_fs(old_fs); 2473 if (!err) { 2474 err = put_user(kts.tv_sec, &up->tv_sec); 2475 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2476 } 2477 return err; 2478 } 2479 2480 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2481 { 2482 struct ifreq __user *uifr; 2483 int err; 2484 2485 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2486 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2487 return -EFAULT; 2488 2489 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2490 if (err) 2491 return err; 2492 2493 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2494 return -EFAULT; 2495 2496 return 0; 2497 } 2498 2499 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2500 { 2501 struct compat_ifconf ifc32; 2502 struct ifconf ifc; 2503 struct ifconf __user *uifc; 2504 struct compat_ifreq __user *ifr32; 2505 struct ifreq __user *ifr; 2506 unsigned int i, j; 2507 int err; 2508 2509 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2510 return -EFAULT; 2511 2512 if (ifc32.ifcbuf == 0) { 2513 ifc32.ifc_len = 0; 2514 ifc.ifc_len = 0; 2515 ifc.ifc_req = NULL; 2516 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2517 } else { 2518 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2519 sizeof(struct ifreq); 2520 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2521 ifc.ifc_len = len; 2522 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2523 ifr32 = compat_ptr(ifc32.ifcbuf); 2524 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2525 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2526 return -EFAULT; 2527 ifr++; 2528 ifr32++; 2529 } 2530 } 2531 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2532 return -EFAULT; 2533 2534 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2535 if (err) 2536 return err; 2537 2538 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2539 return -EFAULT; 2540 2541 ifr = ifc.ifc_req; 2542 ifr32 = compat_ptr(ifc32.ifcbuf); 2543 for (i = 0, j = 0; 2544 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2545 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2546 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2547 return -EFAULT; 2548 ifr32++; 2549 ifr++; 2550 } 2551 2552 if (ifc32.ifcbuf == 0) { 2553 /* Translate from 64-bit structure multiple to 2554 * a 32-bit one. 2555 */ 2556 i = ifc.ifc_len; 2557 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2558 ifc32.ifc_len = i; 2559 } else { 2560 ifc32.ifc_len = i; 2561 } 2562 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2563 return -EFAULT; 2564 2565 return 0; 2566 } 2567 2568 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2569 { 2570 struct ifreq __user *ifr; 2571 u32 data; 2572 void __user *datap; 2573 2574 ifr = compat_alloc_user_space(sizeof(*ifr)); 2575 2576 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2577 return -EFAULT; 2578 2579 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2580 return -EFAULT; 2581 2582 datap = compat_ptr(data); 2583 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2584 return -EFAULT; 2585 2586 return dev_ioctl(net, SIOCETHTOOL, ifr); 2587 } 2588 2589 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2590 { 2591 void __user *uptr; 2592 compat_uptr_t uptr32; 2593 struct ifreq __user *uifr; 2594 2595 uifr = compat_alloc_user_space(sizeof(*uifr)); 2596 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2597 return -EFAULT; 2598 2599 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2600 return -EFAULT; 2601 2602 uptr = compat_ptr(uptr32); 2603 2604 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2605 return -EFAULT; 2606 2607 return dev_ioctl(net, SIOCWANDEV, uifr); 2608 } 2609 2610 static int bond_ioctl(struct net *net, unsigned int cmd, 2611 struct compat_ifreq __user *ifr32) 2612 { 2613 struct ifreq kifr; 2614 struct ifreq __user *uifr; 2615 mm_segment_t old_fs; 2616 int err; 2617 u32 data; 2618 void __user *datap; 2619 2620 switch (cmd) { 2621 case SIOCBONDENSLAVE: 2622 case SIOCBONDRELEASE: 2623 case SIOCBONDSETHWADDR: 2624 case SIOCBONDCHANGEACTIVE: 2625 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2626 return -EFAULT; 2627 2628 old_fs = get_fs(); 2629 set_fs(KERNEL_DS); 2630 err = dev_ioctl(net, cmd, &kifr); 2631 set_fs(old_fs); 2632 2633 return err; 2634 case SIOCBONDSLAVEINFOQUERY: 2635 case SIOCBONDINFOQUERY: 2636 uifr = compat_alloc_user_space(sizeof(*uifr)); 2637 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2638 return -EFAULT; 2639 2640 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2641 return -EFAULT; 2642 2643 datap = compat_ptr(data); 2644 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2645 return -EFAULT; 2646 2647 return dev_ioctl(net, cmd, uifr); 2648 default: 2649 return -EINVAL; 2650 } 2651 } 2652 2653 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2654 struct compat_ifreq __user *u_ifreq32) 2655 { 2656 struct ifreq __user *u_ifreq64; 2657 char tmp_buf[IFNAMSIZ]; 2658 void __user *data64; 2659 u32 data32; 2660 2661 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2662 IFNAMSIZ)) 2663 return -EFAULT; 2664 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2665 return -EFAULT; 2666 data64 = compat_ptr(data32); 2667 2668 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2669 2670 /* Don't check these user accesses, just let that get trapped 2671 * in the ioctl handler instead. 2672 */ 2673 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2674 IFNAMSIZ)) 2675 return -EFAULT; 2676 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2677 return -EFAULT; 2678 2679 return dev_ioctl(net, cmd, u_ifreq64); 2680 } 2681 2682 static int dev_ifsioc(struct net *net, struct socket *sock, 2683 unsigned int cmd, struct compat_ifreq __user *uifr32) 2684 { 2685 struct ifreq __user *uifr; 2686 int err; 2687 2688 uifr = compat_alloc_user_space(sizeof(*uifr)); 2689 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2690 return -EFAULT; 2691 2692 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2693 2694 if (!err) { 2695 switch (cmd) { 2696 case SIOCGIFFLAGS: 2697 case SIOCGIFMETRIC: 2698 case SIOCGIFMTU: 2699 case SIOCGIFMEM: 2700 case SIOCGIFHWADDR: 2701 case SIOCGIFINDEX: 2702 case SIOCGIFADDR: 2703 case SIOCGIFBRDADDR: 2704 case SIOCGIFDSTADDR: 2705 case SIOCGIFNETMASK: 2706 case SIOCGIFPFLAGS: 2707 case SIOCGIFTXQLEN: 2708 case SIOCGMIIPHY: 2709 case SIOCGMIIREG: 2710 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2711 err = -EFAULT; 2712 break; 2713 } 2714 } 2715 return err; 2716 } 2717 2718 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2719 struct compat_ifreq __user *uifr32) 2720 { 2721 struct ifreq ifr; 2722 struct compat_ifmap __user *uifmap32; 2723 mm_segment_t old_fs; 2724 int err; 2725 2726 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2727 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2728 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2729 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2730 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2731 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2732 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2733 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2734 if (err) 2735 return -EFAULT; 2736 2737 old_fs = get_fs(); 2738 set_fs(KERNEL_DS); 2739 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2740 set_fs(old_fs); 2741 2742 if (cmd == SIOCGIFMAP && !err) { 2743 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2744 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2745 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2746 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2747 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2748 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2749 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2750 if (err) 2751 err = -EFAULT; 2752 } 2753 return err; 2754 } 2755 2756 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2757 { 2758 void __user *uptr; 2759 compat_uptr_t uptr32; 2760 struct ifreq __user *uifr; 2761 2762 uifr = compat_alloc_user_space(sizeof(*uifr)); 2763 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2764 return -EFAULT; 2765 2766 if (get_user(uptr32, &uifr32->ifr_data)) 2767 return -EFAULT; 2768 2769 uptr = compat_ptr(uptr32); 2770 2771 if (put_user(uptr, &uifr->ifr_data)) 2772 return -EFAULT; 2773 2774 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2775 } 2776 2777 struct rtentry32 { 2778 u32 rt_pad1; 2779 struct sockaddr rt_dst; /* target address */ 2780 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2781 struct sockaddr rt_genmask; /* target network mask (IP) */ 2782 unsigned short rt_flags; 2783 short rt_pad2; 2784 u32 rt_pad3; 2785 unsigned char rt_tos; 2786 unsigned char rt_class; 2787 short rt_pad4; 2788 short rt_metric; /* +1 for binary compatibility! */ 2789 /* char * */ u32 rt_dev; /* forcing the device at add */ 2790 u32 rt_mtu; /* per route MTU/Window */ 2791 u32 rt_window; /* Window clamping */ 2792 unsigned short rt_irtt; /* Initial RTT */ 2793 }; 2794 2795 struct in6_rtmsg32 { 2796 struct in6_addr rtmsg_dst; 2797 struct in6_addr rtmsg_src; 2798 struct in6_addr rtmsg_gateway; 2799 u32 rtmsg_type; 2800 u16 rtmsg_dst_len; 2801 u16 rtmsg_src_len; 2802 u32 rtmsg_metric; 2803 u32 rtmsg_info; 2804 u32 rtmsg_flags; 2805 s32 rtmsg_ifindex; 2806 }; 2807 2808 static int routing_ioctl(struct net *net, struct socket *sock, 2809 unsigned int cmd, void __user *argp) 2810 { 2811 int ret; 2812 void *r = NULL; 2813 struct in6_rtmsg r6; 2814 struct rtentry r4; 2815 char devname[16]; 2816 u32 rtdev; 2817 mm_segment_t old_fs = get_fs(); 2818 2819 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2820 struct in6_rtmsg32 __user *ur6 = argp; 2821 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2822 3 * sizeof(struct in6_addr)); 2823 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2824 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2825 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2826 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2827 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2828 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2829 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2830 2831 r = (void *) &r6; 2832 } else { /* ipv4 */ 2833 struct rtentry32 __user *ur4 = argp; 2834 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2835 3 * sizeof(struct sockaddr)); 2836 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2837 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2838 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2839 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2840 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2841 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2842 if (rtdev) { 2843 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2844 r4.rt_dev = devname; devname[15] = 0; 2845 } else 2846 r4.rt_dev = NULL; 2847 2848 r = (void *) &r4; 2849 } 2850 2851 if (ret) { 2852 ret = -EFAULT; 2853 goto out; 2854 } 2855 2856 set_fs(KERNEL_DS); 2857 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2858 set_fs(old_fs); 2859 2860 out: 2861 return ret; 2862 } 2863 2864 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2865 * for some operations; this forces use of the newer bridge-utils that 2866 * use compatiable ioctls 2867 */ 2868 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2869 { 2870 compat_ulong_t tmp; 2871 2872 if (get_user(tmp, argp)) 2873 return -EFAULT; 2874 if (tmp == BRCTL_GET_VERSION) 2875 return BRCTL_VERSION + 1; 2876 return -EINVAL; 2877 } 2878 2879 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2880 unsigned int cmd, unsigned long arg) 2881 { 2882 void __user *argp = compat_ptr(arg); 2883 struct sock *sk = sock->sk; 2884 struct net *net = sock_net(sk); 2885 2886 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2887 return siocdevprivate_ioctl(net, cmd, argp); 2888 2889 switch (cmd) { 2890 case SIOCSIFBR: 2891 case SIOCGIFBR: 2892 return old_bridge_ioctl(argp); 2893 case SIOCGIFNAME: 2894 return dev_ifname32(net, argp); 2895 case SIOCGIFCONF: 2896 return dev_ifconf(net, argp); 2897 case SIOCETHTOOL: 2898 return ethtool_ioctl(net, argp); 2899 case SIOCWANDEV: 2900 return compat_siocwandev(net, argp); 2901 case SIOCGIFMAP: 2902 case SIOCSIFMAP: 2903 return compat_sioc_ifmap(net, cmd, argp); 2904 case SIOCBONDENSLAVE: 2905 case SIOCBONDRELEASE: 2906 case SIOCBONDSETHWADDR: 2907 case SIOCBONDSLAVEINFOQUERY: 2908 case SIOCBONDINFOQUERY: 2909 case SIOCBONDCHANGEACTIVE: 2910 return bond_ioctl(net, cmd, argp); 2911 case SIOCADDRT: 2912 case SIOCDELRT: 2913 return routing_ioctl(net, sock, cmd, argp); 2914 case SIOCGSTAMP: 2915 return do_siocgstamp(net, sock, cmd, argp); 2916 case SIOCGSTAMPNS: 2917 return do_siocgstampns(net, sock, cmd, argp); 2918 case SIOCSHWTSTAMP: 2919 return compat_siocshwtstamp(net, argp); 2920 2921 case FIOSETOWN: 2922 case SIOCSPGRP: 2923 case FIOGETOWN: 2924 case SIOCGPGRP: 2925 case SIOCBRADDBR: 2926 case SIOCBRDELBR: 2927 case SIOCGIFVLAN: 2928 case SIOCSIFVLAN: 2929 case SIOCADDDLCI: 2930 case SIOCDELDLCI: 2931 return sock_ioctl(file, cmd, arg); 2932 2933 case SIOCGIFFLAGS: 2934 case SIOCSIFFLAGS: 2935 case SIOCGIFMETRIC: 2936 case SIOCSIFMETRIC: 2937 case SIOCGIFMTU: 2938 case SIOCSIFMTU: 2939 case SIOCGIFMEM: 2940 case SIOCSIFMEM: 2941 case SIOCGIFHWADDR: 2942 case SIOCSIFHWADDR: 2943 case SIOCADDMULTI: 2944 case SIOCDELMULTI: 2945 case SIOCGIFINDEX: 2946 case SIOCGIFADDR: 2947 case SIOCSIFADDR: 2948 case SIOCSIFHWBROADCAST: 2949 case SIOCDIFADDR: 2950 case SIOCGIFBRDADDR: 2951 case SIOCSIFBRDADDR: 2952 case SIOCGIFDSTADDR: 2953 case SIOCSIFDSTADDR: 2954 case SIOCGIFNETMASK: 2955 case SIOCSIFNETMASK: 2956 case SIOCSIFPFLAGS: 2957 case SIOCGIFPFLAGS: 2958 case SIOCGIFTXQLEN: 2959 case SIOCSIFTXQLEN: 2960 case SIOCBRADDIF: 2961 case SIOCBRDELIF: 2962 case SIOCSIFNAME: 2963 case SIOCGMIIPHY: 2964 case SIOCGMIIREG: 2965 case SIOCSMIIREG: 2966 return dev_ifsioc(net, sock, cmd, argp); 2967 2968 case SIOCSARP: 2969 case SIOCGARP: 2970 case SIOCDARP: 2971 case SIOCATMARK: 2972 return sock_do_ioctl(net, sock, cmd, arg); 2973 } 2974 2975 /* Prevent warning from compat_sys_ioctl, these always 2976 * result in -EINVAL in the native case anyway. */ 2977 switch (cmd) { 2978 case SIOCRTMSG: 2979 case SIOCGIFCOUNT: 2980 case SIOCSRARP: 2981 case SIOCGRARP: 2982 case SIOCDRARP: 2983 case SIOCSIFLINK: 2984 case SIOCGIFSLAVE: 2985 case SIOCSIFSLAVE: 2986 return -EINVAL; 2987 } 2988 2989 return -ENOIOCTLCMD; 2990 } 2991 2992 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2993 unsigned long arg) 2994 { 2995 struct socket *sock = file->private_data; 2996 int ret = -ENOIOCTLCMD; 2997 struct sock *sk; 2998 struct net *net; 2999 3000 sk = sock->sk; 3001 net = sock_net(sk); 3002 3003 if (sock->ops->compat_ioctl) 3004 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3005 3006 if (ret == -ENOIOCTLCMD && 3007 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3008 ret = compat_wext_handle_ioctl(net, cmd, arg); 3009 3010 if (ret == -ENOIOCTLCMD) 3011 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3012 3013 return ret; 3014 } 3015 #endif 3016 3017 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3018 { 3019 return sock->ops->bind(sock, addr, addrlen); 3020 } 3021 EXPORT_SYMBOL(kernel_bind); 3022 3023 int kernel_listen(struct socket *sock, int backlog) 3024 { 3025 return sock->ops->listen(sock, backlog); 3026 } 3027 EXPORT_SYMBOL(kernel_listen); 3028 3029 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3030 { 3031 struct sock *sk = sock->sk; 3032 int err; 3033 3034 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3035 newsock); 3036 if (err < 0) 3037 goto done; 3038 3039 err = sock->ops->accept(sock, *newsock, flags); 3040 if (err < 0) { 3041 sock_release(*newsock); 3042 *newsock = NULL; 3043 goto done; 3044 } 3045 3046 (*newsock)->ops = sock->ops; 3047 __module_get((*newsock)->ops->owner); 3048 3049 done: 3050 return err; 3051 } 3052 EXPORT_SYMBOL(kernel_accept); 3053 3054 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3055 int flags) 3056 { 3057 return sock->ops->connect(sock, addr, addrlen, flags); 3058 } 3059 EXPORT_SYMBOL(kernel_connect); 3060 3061 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3062 int *addrlen) 3063 { 3064 return sock->ops->getname(sock, addr, addrlen, 0); 3065 } 3066 EXPORT_SYMBOL(kernel_getsockname); 3067 3068 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3069 int *addrlen) 3070 { 3071 return sock->ops->getname(sock, addr, addrlen, 1); 3072 } 3073 EXPORT_SYMBOL(kernel_getpeername); 3074 3075 int kernel_getsockopt(struct socket *sock, int level, int optname, 3076 char *optval, int *optlen) 3077 { 3078 mm_segment_t oldfs = get_fs(); 3079 char __user *uoptval; 3080 int __user *uoptlen; 3081 int err; 3082 3083 uoptval = (char __user __force *) optval; 3084 uoptlen = (int __user __force *) optlen; 3085 3086 set_fs(KERNEL_DS); 3087 if (level == SOL_SOCKET) 3088 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3089 else 3090 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3091 uoptlen); 3092 set_fs(oldfs); 3093 return err; 3094 } 3095 EXPORT_SYMBOL(kernel_getsockopt); 3096 3097 int kernel_setsockopt(struct socket *sock, int level, int optname, 3098 char *optval, unsigned int optlen) 3099 { 3100 mm_segment_t oldfs = get_fs(); 3101 char __user *uoptval; 3102 int err; 3103 3104 uoptval = (char __user __force *) optval; 3105 3106 set_fs(KERNEL_DS); 3107 if (level == SOL_SOCKET) 3108 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3109 else 3110 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3111 optlen); 3112 set_fs(oldfs); 3113 return err; 3114 } 3115 EXPORT_SYMBOL(kernel_setsockopt); 3116 3117 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3118 size_t size, int flags) 3119 { 3120 sock_update_classid(sock->sk); 3121 3122 if (sock->ops->sendpage) 3123 return sock->ops->sendpage(sock, page, offset, size, flags); 3124 3125 return sock_no_sendpage(sock, page, offset, size, flags); 3126 } 3127 EXPORT_SYMBOL(kernel_sendpage); 3128 3129 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3130 { 3131 mm_segment_t oldfs = get_fs(); 3132 int err; 3133 3134 set_fs(KERNEL_DS); 3135 err = sock->ops->ioctl(sock, cmd, arg); 3136 set_fs(oldfs); 3137 3138 return err; 3139 } 3140 EXPORT_SYMBOL(kernel_sock_ioctl); 3141 3142 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3143 { 3144 return sock->ops->shutdown(sock, how); 3145 } 3146 EXPORT_SYMBOL(kernel_sock_shutdown); 3147