1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 324 int flags, const char *dev_name, void *data) 325 { 326 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 327 &sockfs_dentry_operations, SOCKFS_MAGIC); 328 } 329 330 static struct vfsmount *sock_mnt __read_mostly; 331 332 static struct file_system_type sock_fs_type = { 333 .name = "sockfs", 334 .mount = sockfs_mount, 335 .kill_sb = kill_anon_super, 336 }; 337 338 /* 339 * Obtains the first available file descriptor and sets it up for use. 340 * 341 * These functions create file structures and maps them to fd space 342 * of the current process. On success it returns file descriptor 343 * and file struct implicitly stored in sock->file. 344 * Note that another thread may close file descriptor before we return 345 * from this function. We use the fact that now we do not refer 346 * to socket after mapping. If one day we will need it, this 347 * function will increment ref. count on file by 1. 348 * 349 * In any case returned fd MAY BE not valid! 350 * This race condition is unavoidable 351 * with shared fd spaces, we cannot solve it inside kernel, 352 * but we take care of internal coherence yet. 353 */ 354 355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 356 { 357 struct qstr name = { .name = "" }; 358 struct path path; 359 struct file *file; 360 361 if (dname) { 362 name.name = dname; 363 name.len = strlen(name.name); 364 } else if (sock->sk) { 365 name.name = sock->sk->sk_prot_creator->name; 366 name.len = strlen(name.name); 367 } 368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 369 if (unlikely(!path.dentry)) 370 return ERR_PTR(-ENOMEM); 371 path.mnt = mntget(sock_mnt); 372 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 376 &socket_file_ops); 377 if (IS_ERR(file)) { 378 /* drop dentry, keep inode */ 379 ihold(d_inode(path.dentry)); 380 path_put(&path); 381 return file; 382 } 383 384 sock->file = file; 385 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 386 file->private_data = sock; 387 return file; 388 } 389 EXPORT_SYMBOL(sock_alloc_file); 390 391 static int sock_map_fd(struct socket *sock, int flags) 392 { 393 struct file *newfile; 394 int fd = get_unused_fd_flags(flags); 395 if (unlikely(fd < 0)) 396 return fd; 397 398 newfile = sock_alloc_file(sock, flags, NULL); 399 if (likely(!IS_ERR(newfile))) { 400 fd_install(fd, newfile); 401 return fd; 402 } 403 404 put_unused_fd(fd); 405 return PTR_ERR(newfile); 406 } 407 408 struct socket *sock_from_file(struct file *file, int *err) 409 { 410 if (file->f_op == &socket_file_ops) 411 return file->private_data; /* set in sock_map_fd */ 412 413 *err = -ENOTSOCK; 414 return NULL; 415 } 416 EXPORT_SYMBOL(sock_from_file); 417 418 /** 419 * sockfd_lookup - Go from a file number to its socket slot 420 * @fd: file handle 421 * @err: pointer to an error code return 422 * 423 * The file handle passed in is locked and the socket it is bound 424 * too is returned. If an error occurs the err pointer is overwritten 425 * with a negative errno code and NULL is returned. The function checks 426 * for both invalid handles and passing a handle which is not a socket. 427 * 428 * On a success the socket object pointer is returned. 429 */ 430 431 struct socket *sockfd_lookup(int fd, int *err) 432 { 433 struct file *file; 434 struct socket *sock; 435 436 file = fget(fd); 437 if (!file) { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 sock = sock_from_file(file, err); 443 if (!sock) 444 fput(file); 445 return sock; 446 } 447 EXPORT_SYMBOL(sockfd_lookup); 448 449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 450 { 451 struct fd f = fdget(fd); 452 struct socket *sock; 453 454 *err = -EBADF; 455 if (f.file) { 456 sock = sock_from_file(f.file, err); 457 if (likely(sock)) { 458 *fput_needed = f.flags; 459 return sock; 460 } 461 fdput(f); 462 } 463 return NULL; 464 } 465 466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 469 static ssize_t sockfs_getxattr(struct dentry *dentry, 470 const char *name, void *value, size_t size) 471 { 472 const char *proto_name; 473 size_t proto_size; 474 int error; 475 476 error = -ENODATA; 477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 478 proto_name = dentry->d_name.name; 479 proto_size = strlen(proto_name); 480 481 if (value) { 482 error = -ERANGE; 483 if (proto_size + 1 > size) 484 goto out; 485 486 strncpy(value, proto_name, proto_size + 1); 487 } 488 error = proto_size + 1; 489 } 490 491 out: 492 return error; 493 } 494 495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 496 size_t size) 497 { 498 ssize_t len; 499 ssize_t used = 0; 500 501 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 502 if (len < 0) 503 return len; 504 used += len; 505 if (buffer) { 506 if (size < used) 507 return -ERANGE; 508 buffer += len; 509 } 510 511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 512 used += len; 513 if (buffer) { 514 if (size < used) 515 return -ERANGE; 516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 517 buffer += len; 518 } 519 520 return used; 521 } 522 523 static const struct inode_operations sockfs_inode_ops = { 524 .getxattr = sockfs_getxattr, 525 .listxattr = sockfs_listxattr, 526 }; 527 528 /** 529 * sock_alloc - allocate a socket 530 * 531 * Allocate a new inode and socket object. The two are bound together 532 * and initialised. The socket is then returned. If we are out of inodes 533 * NULL is returned. 534 */ 535 536 static struct socket *sock_alloc(void) 537 { 538 struct inode *inode; 539 struct socket *sock; 540 541 inode = new_inode_pseudo(sock_mnt->mnt_sb); 542 if (!inode) 543 return NULL; 544 545 sock = SOCKET_I(inode); 546 547 kmemcheck_annotate_bitfield(sock, type); 548 inode->i_ino = get_next_ino(); 549 inode->i_mode = S_IFSOCK | S_IRWXUGO; 550 inode->i_uid = current_fsuid(); 551 inode->i_gid = current_fsgid(); 552 inode->i_op = &sockfs_inode_ops; 553 554 this_cpu_add(sockets_in_use, 1); 555 return sock; 556 } 557 558 /** 559 * sock_release - close a socket 560 * @sock: socket to close 561 * 562 * The socket is released from the protocol stack if it has a release 563 * callback, and the inode is then released if the socket is bound to 564 * an inode not a file. 565 */ 566 567 void sock_release(struct socket *sock) 568 { 569 if (sock->ops) { 570 struct module *owner = sock->ops->owner; 571 572 sock->ops->release(sock); 573 sock->ops = NULL; 574 module_put(owner); 575 } 576 577 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 578 pr_err("%s: fasync list not empty!\n", __func__); 579 580 this_cpu_sub(sockets_in_use, 1); 581 if (!sock->file) { 582 iput(SOCK_INODE(sock)); 583 return; 584 } 585 sock->file = NULL; 586 } 587 EXPORT_SYMBOL(sock_release); 588 589 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 590 { 591 u8 flags = *tx_flags; 592 593 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 594 flags |= SKBTX_HW_TSTAMP; 595 596 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 597 flags |= SKBTX_SW_TSTAMP; 598 599 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 600 flags |= SKBTX_SCHED_TSTAMP; 601 602 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 603 flags |= SKBTX_ACK_TSTAMP; 604 605 *tx_flags = flags; 606 } 607 EXPORT_SYMBOL(__sock_tx_timestamp); 608 609 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 610 { 611 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 612 BUG_ON(ret == -EIOCBQUEUED); 613 return ret; 614 } 615 616 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 617 { 618 int err = security_socket_sendmsg(sock, msg, 619 msg_data_left(msg)); 620 621 return err ?: sock_sendmsg_nosec(sock, msg); 622 } 623 EXPORT_SYMBOL(sock_sendmsg); 624 625 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 626 struct kvec *vec, size_t num, size_t size) 627 { 628 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 629 return sock_sendmsg(sock, msg); 630 } 631 EXPORT_SYMBOL(kernel_sendmsg); 632 633 /* 634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 635 */ 636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 637 struct sk_buff *skb) 638 { 639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 640 struct scm_timestamping tss; 641 int empty = 1; 642 struct skb_shared_hwtstamps *shhwtstamps = 643 skb_hwtstamps(skb); 644 645 /* Race occurred between timestamp enabling and packet 646 receiving. Fill in the current time for now. */ 647 if (need_software_tstamp && skb->tstamp.tv64 == 0) 648 __net_timestamp(skb); 649 650 if (need_software_tstamp) { 651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 652 struct timeval tv; 653 skb_get_timestamp(skb, &tv); 654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 655 sizeof(tv), &tv); 656 } else { 657 struct timespec ts; 658 skb_get_timestampns(skb, &ts); 659 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 660 sizeof(ts), &ts); 661 } 662 } 663 664 memset(&tss, 0, sizeof(tss)); 665 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 666 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 667 empty = 0; 668 if (shhwtstamps && 669 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 670 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 671 empty = 0; 672 if (!empty) 673 put_cmsg(msg, SOL_SOCKET, 674 SCM_TIMESTAMPING, sizeof(tss), &tss); 675 } 676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 677 678 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 679 struct sk_buff *skb) 680 { 681 int ack; 682 683 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 684 return; 685 if (!skb->wifi_acked_valid) 686 return; 687 688 ack = skb->wifi_acked; 689 690 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 691 } 692 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 693 694 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 695 struct sk_buff *skb) 696 { 697 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 698 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 699 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 700 } 701 702 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 sock_recv_timestamp(msg, sk, skb); 706 sock_recv_drops(msg, sk, skb); 707 } 708 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 709 710 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 711 size_t size, int flags) 712 { 713 return sock->ops->recvmsg(sock, msg, size, flags); 714 } 715 716 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 717 int flags) 718 { 719 int err = security_socket_recvmsg(sock, msg, size, flags); 720 721 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 722 } 723 EXPORT_SYMBOL(sock_recvmsg); 724 725 /** 726 * kernel_recvmsg - Receive a message from a socket (kernel space) 727 * @sock: The socket to receive the message from 728 * @msg: Received message 729 * @vec: Input s/g array for message data 730 * @num: Size of input s/g array 731 * @size: Number of bytes to read 732 * @flags: Message flags (MSG_DONTWAIT, etc...) 733 * 734 * On return the msg structure contains the scatter/gather array passed in the 735 * vec argument. The array is modified so that it consists of the unfilled 736 * portion of the original array. 737 * 738 * The returned value is the total number of bytes received, or an error. 739 */ 740 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 741 struct kvec *vec, size_t num, size_t size, int flags) 742 { 743 mm_segment_t oldfs = get_fs(); 744 int result; 745 746 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 747 set_fs(KERNEL_DS); 748 result = sock_recvmsg(sock, msg, size, flags); 749 set_fs(oldfs); 750 return result; 751 } 752 EXPORT_SYMBOL(kernel_recvmsg); 753 754 static ssize_t sock_sendpage(struct file *file, struct page *page, 755 int offset, size_t size, loff_t *ppos, int more) 756 { 757 struct socket *sock; 758 int flags; 759 760 sock = file->private_data; 761 762 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 763 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 764 flags |= more; 765 766 return kernel_sendpage(sock, page, offset, size, flags); 767 } 768 769 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 770 struct pipe_inode_info *pipe, size_t len, 771 unsigned int flags) 772 { 773 struct socket *sock = file->private_data; 774 775 if (unlikely(!sock->ops->splice_read)) 776 return -EINVAL; 777 778 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 779 } 780 781 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 782 { 783 struct file *file = iocb->ki_filp; 784 struct socket *sock = file->private_data; 785 struct msghdr msg = {.msg_iter = *to, 786 .msg_iocb = iocb}; 787 ssize_t res; 788 789 if (file->f_flags & O_NONBLOCK) 790 msg.msg_flags = MSG_DONTWAIT; 791 792 if (iocb->ki_pos != 0) 793 return -ESPIPE; 794 795 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 796 return 0; 797 798 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 799 *to = msg.msg_iter; 800 return res; 801 } 802 803 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 804 { 805 struct file *file = iocb->ki_filp; 806 struct socket *sock = file->private_data; 807 struct msghdr msg = {.msg_iter = *from, 808 .msg_iocb = iocb}; 809 ssize_t res; 810 811 if (iocb->ki_pos != 0) 812 return -ESPIPE; 813 814 if (file->f_flags & O_NONBLOCK) 815 msg.msg_flags = MSG_DONTWAIT; 816 817 if (sock->type == SOCK_SEQPACKET) 818 msg.msg_flags |= MSG_EOR; 819 820 res = sock_sendmsg(sock, &msg); 821 *from = msg.msg_iter; 822 return res; 823 } 824 825 /* 826 * Atomic setting of ioctl hooks to avoid race 827 * with module unload. 828 */ 829 830 static DEFINE_MUTEX(br_ioctl_mutex); 831 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 832 833 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 834 { 835 mutex_lock(&br_ioctl_mutex); 836 br_ioctl_hook = hook; 837 mutex_unlock(&br_ioctl_mutex); 838 } 839 EXPORT_SYMBOL(brioctl_set); 840 841 static DEFINE_MUTEX(vlan_ioctl_mutex); 842 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 843 844 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 845 { 846 mutex_lock(&vlan_ioctl_mutex); 847 vlan_ioctl_hook = hook; 848 mutex_unlock(&vlan_ioctl_mutex); 849 } 850 EXPORT_SYMBOL(vlan_ioctl_set); 851 852 static DEFINE_MUTEX(dlci_ioctl_mutex); 853 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 854 855 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 856 { 857 mutex_lock(&dlci_ioctl_mutex); 858 dlci_ioctl_hook = hook; 859 mutex_unlock(&dlci_ioctl_mutex); 860 } 861 EXPORT_SYMBOL(dlci_ioctl_set); 862 863 static long sock_do_ioctl(struct net *net, struct socket *sock, 864 unsigned int cmd, unsigned long arg) 865 { 866 int err; 867 void __user *argp = (void __user *)arg; 868 869 err = sock->ops->ioctl(sock, cmd, arg); 870 871 /* 872 * If this ioctl is unknown try to hand it down 873 * to the NIC driver. 874 */ 875 if (err == -ENOIOCTLCMD) 876 err = dev_ioctl(net, cmd, argp); 877 878 return err; 879 } 880 881 /* 882 * With an ioctl, arg may well be a user mode pointer, but we don't know 883 * what to do with it - that's up to the protocol still. 884 */ 885 886 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 887 { 888 struct socket *sock; 889 struct sock *sk; 890 void __user *argp = (void __user *)arg; 891 int pid, err; 892 struct net *net; 893 894 sock = file->private_data; 895 sk = sock->sk; 896 net = sock_net(sk); 897 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 898 err = dev_ioctl(net, cmd, argp); 899 } else 900 #ifdef CONFIG_WEXT_CORE 901 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 902 err = dev_ioctl(net, cmd, argp); 903 } else 904 #endif 905 switch (cmd) { 906 case FIOSETOWN: 907 case SIOCSPGRP: 908 err = -EFAULT; 909 if (get_user(pid, (int __user *)argp)) 910 break; 911 f_setown(sock->file, pid, 1); 912 err = 0; 913 break; 914 case FIOGETOWN: 915 case SIOCGPGRP: 916 err = put_user(f_getown(sock->file), 917 (int __user *)argp); 918 break; 919 case SIOCGIFBR: 920 case SIOCSIFBR: 921 case SIOCBRADDBR: 922 case SIOCBRDELBR: 923 err = -ENOPKG; 924 if (!br_ioctl_hook) 925 request_module("bridge"); 926 927 mutex_lock(&br_ioctl_mutex); 928 if (br_ioctl_hook) 929 err = br_ioctl_hook(net, cmd, argp); 930 mutex_unlock(&br_ioctl_mutex); 931 break; 932 case SIOCGIFVLAN: 933 case SIOCSIFVLAN: 934 err = -ENOPKG; 935 if (!vlan_ioctl_hook) 936 request_module("8021q"); 937 938 mutex_lock(&vlan_ioctl_mutex); 939 if (vlan_ioctl_hook) 940 err = vlan_ioctl_hook(net, argp); 941 mutex_unlock(&vlan_ioctl_mutex); 942 break; 943 case SIOCADDDLCI: 944 case SIOCDELDLCI: 945 err = -ENOPKG; 946 if (!dlci_ioctl_hook) 947 request_module("dlci"); 948 949 mutex_lock(&dlci_ioctl_mutex); 950 if (dlci_ioctl_hook) 951 err = dlci_ioctl_hook(cmd, argp); 952 mutex_unlock(&dlci_ioctl_mutex); 953 break; 954 default: 955 err = sock_do_ioctl(net, sock, cmd, arg); 956 break; 957 } 958 return err; 959 } 960 961 int sock_create_lite(int family, int type, int protocol, struct socket **res) 962 { 963 int err; 964 struct socket *sock = NULL; 965 966 err = security_socket_create(family, type, protocol, 1); 967 if (err) 968 goto out; 969 970 sock = sock_alloc(); 971 if (!sock) { 972 err = -ENOMEM; 973 goto out; 974 } 975 976 sock->type = type; 977 err = security_socket_post_create(sock, family, type, protocol, 1); 978 if (err) 979 goto out_release; 980 981 out: 982 *res = sock; 983 return err; 984 out_release: 985 sock_release(sock); 986 sock = NULL; 987 goto out; 988 } 989 EXPORT_SYMBOL(sock_create_lite); 990 991 /* No kernel lock held - perfect */ 992 static unsigned int sock_poll(struct file *file, poll_table *wait) 993 { 994 unsigned int busy_flag = 0; 995 struct socket *sock; 996 997 /* 998 * We can't return errors to poll, so it's either yes or no. 999 */ 1000 sock = file->private_data; 1001 1002 if (sk_can_busy_loop(sock->sk)) { 1003 /* this socket can poll_ll so tell the system call */ 1004 busy_flag = POLL_BUSY_LOOP; 1005 1006 /* once, only if requested by syscall */ 1007 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1008 sk_busy_loop(sock->sk, 1); 1009 } 1010 1011 return busy_flag | sock->ops->poll(file, sock, wait); 1012 } 1013 1014 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1015 { 1016 struct socket *sock = file->private_data; 1017 1018 return sock->ops->mmap(file, sock, vma); 1019 } 1020 1021 static int sock_close(struct inode *inode, struct file *filp) 1022 { 1023 sock_release(SOCKET_I(inode)); 1024 return 0; 1025 } 1026 1027 /* 1028 * Update the socket async list 1029 * 1030 * Fasync_list locking strategy. 1031 * 1032 * 1. fasync_list is modified only under process context socket lock 1033 * i.e. under semaphore. 1034 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1035 * or under socket lock 1036 */ 1037 1038 static int sock_fasync(int fd, struct file *filp, int on) 1039 { 1040 struct socket *sock = filp->private_data; 1041 struct sock *sk = sock->sk; 1042 struct socket_wq *wq; 1043 1044 if (sk == NULL) 1045 return -EINVAL; 1046 1047 lock_sock(sk); 1048 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1049 fasync_helper(fd, filp, on, &wq->fasync_list); 1050 1051 if (!wq->fasync_list) 1052 sock_reset_flag(sk, SOCK_FASYNC); 1053 else 1054 sock_set_flag(sk, SOCK_FASYNC); 1055 1056 release_sock(sk); 1057 return 0; 1058 } 1059 1060 /* This function may be called only under rcu_lock */ 1061 1062 int sock_wake_async(struct socket_wq *wq, int how, int band) 1063 { 1064 if (!wq || !wq->fasync_list) 1065 return -1; 1066 1067 switch (how) { 1068 case SOCK_WAKE_WAITD: 1069 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1070 break; 1071 goto call_kill; 1072 case SOCK_WAKE_SPACE: 1073 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1074 break; 1075 /* fall through */ 1076 case SOCK_WAKE_IO: 1077 call_kill: 1078 kill_fasync(&wq->fasync_list, SIGIO, band); 1079 break; 1080 case SOCK_WAKE_URG: 1081 kill_fasync(&wq->fasync_list, SIGURG, band); 1082 } 1083 1084 return 0; 1085 } 1086 EXPORT_SYMBOL(sock_wake_async); 1087 1088 int __sock_create(struct net *net, int family, int type, int protocol, 1089 struct socket **res, int kern) 1090 { 1091 int err; 1092 struct socket *sock; 1093 const struct net_proto_family *pf; 1094 1095 /* 1096 * Check protocol is in range 1097 */ 1098 if (family < 0 || family >= NPROTO) 1099 return -EAFNOSUPPORT; 1100 if (type < 0 || type >= SOCK_MAX) 1101 return -EINVAL; 1102 1103 /* Compatibility. 1104 1105 This uglymoron is moved from INET layer to here to avoid 1106 deadlock in module load. 1107 */ 1108 if (family == PF_INET && type == SOCK_PACKET) { 1109 static int warned; 1110 if (!warned) { 1111 warned = 1; 1112 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1113 current->comm); 1114 } 1115 family = PF_PACKET; 1116 } 1117 1118 err = security_socket_create(family, type, protocol, kern); 1119 if (err) 1120 return err; 1121 1122 /* 1123 * Allocate the socket and allow the family to set things up. if 1124 * the protocol is 0, the family is instructed to select an appropriate 1125 * default. 1126 */ 1127 sock = sock_alloc(); 1128 if (!sock) { 1129 net_warn_ratelimited("socket: no more sockets\n"); 1130 return -ENFILE; /* Not exactly a match, but its the 1131 closest posix thing */ 1132 } 1133 1134 sock->type = type; 1135 1136 #ifdef CONFIG_MODULES 1137 /* Attempt to load a protocol module if the find failed. 1138 * 1139 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1140 * requested real, full-featured networking support upon configuration. 1141 * Otherwise module support will break! 1142 */ 1143 if (rcu_access_pointer(net_families[family]) == NULL) 1144 request_module("net-pf-%d", family); 1145 #endif 1146 1147 rcu_read_lock(); 1148 pf = rcu_dereference(net_families[family]); 1149 err = -EAFNOSUPPORT; 1150 if (!pf) 1151 goto out_release; 1152 1153 /* 1154 * We will call the ->create function, that possibly is in a loadable 1155 * module, so we have to bump that loadable module refcnt first. 1156 */ 1157 if (!try_module_get(pf->owner)) 1158 goto out_release; 1159 1160 /* Now protected by module ref count */ 1161 rcu_read_unlock(); 1162 1163 err = pf->create(net, sock, protocol, kern); 1164 if (err < 0) 1165 goto out_module_put; 1166 1167 /* 1168 * Now to bump the refcnt of the [loadable] module that owns this 1169 * socket at sock_release time we decrement its refcnt. 1170 */ 1171 if (!try_module_get(sock->ops->owner)) 1172 goto out_module_busy; 1173 1174 /* 1175 * Now that we're done with the ->create function, the [loadable] 1176 * module can have its refcnt decremented 1177 */ 1178 module_put(pf->owner); 1179 err = security_socket_post_create(sock, family, type, protocol, kern); 1180 if (err) 1181 goto out_sock_release; 1182 *res = sock; 1183 1184 return 0; 1185 1186 out_module_busy: 1187 err = -EAFNOSUPPORT; 1188 out_module_put: 1189 sock->ops = NULL; 1190 module_put(pf->owner); 1191 out_sock_release: 1192 sock_release(sock); 1193 return err; 1194 1195 out_release: 1196 rcu_read_unlock(); 1197 goto out_sock_release; 1198 } 1199 EXPORT_SYMBOL(__sock_create); 1200 1201 int sock_create(int family, int type, int protocol, struct socket **res) 1202 { 1203 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1204 } 1205 EXPORT_SYMBOL(sock_create); 1206 1207 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1208 { 1209 return __sock_create(net, family, type, protocol, res, 1); 1210 } 1211 EXPORT_SYMBOL(sock_create_kern); 1212 1213 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1214 { 1215 int retval; 1216 struct socket *sock; 1217 int flags; 1218 1219 /* Check the SOCK_* constants for consistency. */ 1220 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1221 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1222 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1223 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1224 1225 flags = type & ~SOCK_TYPE_MASK; 1226 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1227 return -EINVAL; 1228 type &= SOCK_TYPE_MASK; 1229 1230 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1231 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1232 1233 retval = sock_create(family, type, protocol, &sock); 1234 if (retval < 0) 1235 goto out; 1236 1237 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1238 if (retval < 0) 1239 goto out_release; 1240 1241 out: 1242 /* It may be already another descriptor 8) Not kernel problem. */ 1243 return retval; 1244 1245 out_release: 1246 sock_release(sock); 1247 return retval; 1248 } 1249 1250 /* 1251 * Create a pair of connected sockets. 1252 */ 1253 1254 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1255 int __user *, usockvec) 1256 { 1257 struct socket *sock1, *sock2; 1258 int fd1, fd2, err; 1259 struct file *newfile1, *newfile2; 1260 int flags; 1261 1262 flags = type & ~SOCK_TYPE_MASK; 1263 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1264 return -EINVAL; 1265 type &= SOCK_TYPE_MASK; 1266 1267 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1268 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1269 1270 /* 1271 * Obtain the first socket and check if the underlying protocol 1272 * supports the socketpair call. 1273 */ 1274 1275 err = sock_create(family, type, protocol, &sock1); 1276 if (err < 0) 1277 goto out; 1278 1279 err = sock_create(family, type, protocol, &sock2); 1280 if (err < 0) 1281 goto out_release_1; 1282 1283 err = sock1->ops->socketpair(sock1, sock2); 1284 if (err < 0) 1285 goto out_release_both; 1286 1287 fd1 = get_unused_fd_flags(flags); 1288 if (unlikely(fd1 < 0)) { 1289 err = fd1; 1290 goto out_release_both; 1291 } 1292 1293 fd2 = get_unused_fd_flags(flags); 1294 if (unlikely(fd2 < 0)) { 1295 err = fd2; 1296 goto out_put_unused_1; 1297 } 1298 1299 newfile1 = sock_alloc_file(sock1, flags, NULL); 1300 if (IS_ERR(newfile1)) { 1301 err = PTR_ERR(newfile1); 1302 goto out_put_unused_both; 1303 } 1304 1305 newfile2 = sock_alloc_file(sock2, flags, NULL); 1306 if (IS_ERR(newfile2)) { 1307 err = PTR_ERR(newfile2); 1308 goto out_fput_1; 1309 } 1310 1311 err = put_user(fd1, &usockvec[0]); 1312 if (err) 1313 goto out_fput_both; 1314 1315 err = put_user(fd2, &usockvec[1]); 1316 if (err) 1317 goto out_fput_both; 1318 1319 audit_fd_pair(fd1, fd2); 1320 1321 fd_install(fd1, newfile1); 1322 fd_install(fd2, newfile2); 1323 /* fd1 and fd2 may be already another descriptors. 1324 * Not kernel problem. 1325 */ 1326 1327 return 0; 1328 1329 out_fput_both: 1330 fput(newfile2); 1331 fput(newfile1); 1332 put_unused_fd(fd2); 1333 put_unused_fd(fd1); 1334 goto out; 1335 1336 out_fput_1: 1337 fput(newfile1); 1338 put_unused_fd(fd2); 1339 put_unused_fd(fd1); 1340 sock_release(sock2); 1341 goto out; 1342 1343 out_put_unused_both: 1344 put_unused_fd(fd2); 1345 out_put_unused_1: 1346 put_unused_fd(fd1); 1347 out_release_both: 1348 sock_release(sock2); 1349 out_release_1: 1350 sock_release(sock1); 1351 out: 1352 return err; 1353 } 1354 1355 /* 1356 * Bind a name to a socket. Nothing much to do here since it's 1357 * the protocol's responsibility to handle the local address. 1358 * 1359 * We move the socket address to kernel space before we call 1360 * the protocol layer (having also checked the address is ok). 1361 */ 1362 1363 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1364 { 1365 struct socket *sock; 1366 struct sockaddr_storage address; 1367 int err, fput_needed; 1368 1369 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1370 if (sock) { 1371 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1372 if (err >= 0) { 1373 err = security_socket_bind(sock, 1374 (struct sockaddr *)&address, 1375 addrlen); 1376 if (!err) 1377 err = sock->ops->bind(sock, 1378 (struct sockaddr *) 1379 &address, addrlen); 1380 } 1381 fput_light(sock->file, fput_needed); 1382 } 1383 return err; 1384 } 1385 1386 /* 1387 * Perform a listen. Basically, we allow the protocol to do anything 1388 * necessary for a listen, and if that works, we mark the socket as 1389 * ready for listening. 1390 */ 1391 1392 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1393 { 1394 struct socket *sock; 1395 int err, fput_needed; 1396 int somaxconn; 1397 1398 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1399 if (sock) { 1400 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1401 if ((unsigned int)backlog > somaxconn) 1402 backlog = somaxconn; 1403 1404 err = security_socket_listen(sock, backlog); 1405 if (!err) 1406 err = sock->ops->listen(sock, backlog); 1407 1408 fput_light(sock->file, fput_needed); 1409 } 1410 return err; 1411 } 1412 1413 /* 1414 * For accept, we attempt to create a new socket, set up the link 1415 * with the client, wake up the client, then return the new 1416 * connected fd. We collect the address of the connector in kernel 1417 * space and move it to user at the very end. This is unclean because 1418 * we open the socket then return an error. 1419 * 1420 * 1003.1g adds the ability to recvmsg() to query connection pending 1421 * status to recvmsg. We need to add that support in a way thats 1422 * clean when we restucture accept also. 1423 */ 1424 1425 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1426 int __user *, upeer_addrlen, int, flags) 1427 { 1428 struct socket *sock, *newsock; 1429 struct file *newfile; 1430 int err, len, newfd, fput_needed; 1431 struct sockaddr_storage address; 1432 1433 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1434 return -EINVAL; 1435 1436 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1437 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1438 1439 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1440 if (!sock) 1441 goto out; 1442 1443 err = -ENFILE; 1444 newsock = sock_alloc(); 1445 if (!newsock) 1446 goto out_put; 1447 1448 newsock->type = sock->type; 1449 newsock->ops = sock->ops; 1450 1451 /* 1452 * We don't need try_module_get here, as the listening socket (sock) 1453 * has the protocol module (sock->ops->owner) held. 1454 */ 1455 __module_get(newsock->ops->owner); 1456 1457 newfd = get_unused_fd_flags(flags); 1458 if (unlikely(newfd < 0)) { 1459 err = newfd; 1460 sock_release(newsock); 1461 goto out_put; 1462 } 1463 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1464 if (IS_ERR(newfile)) { 1465 err = PTR_ERR(newfile); 1466 put_unused_fd(newfd); 1467 sock_release(newsock); 1468 goto out_put; 1469 } 1470 1471 err = security_socket_accept(sock, newsock); 1472 if (err) 1473 goto out_fd; 1474 1475 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1476 if (err < 0) 1477 goto out_fd; 1478 1479 if (upeer_sockaddr) { 1480 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1481 &len, 2) < 0) { 1482 err = -ECONNABORTED; 1483 goto out_fd; 1484 } 1485 err = move_addr_to_user(&address, 1486 len, upeer_sockaddr, upeer_addrlen); 1487 if (err < 0) 1488 goto out_fd; 1489 } 1490 1491 /* File flags are not inherited via accept() unlike another OSes. */ 1492 1493 fd_install(newfd, newfile); 1494 err = newfd; 1495 1496 out_put: 1497 fput_light(sock->file, fput_needed); 1498 out: 1499 return err; 1500 out_fd: 1501 fput(newfile); 1502 put_unused_fd(newfd); 1503 goto out_put; 1504 } 1505 1506 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1507 int __user *, upeer_addrlen) 1508 { 1509 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1510 } 1511 1512 /* 1513 * Attempt to connect to a socket with the server address. The address 1514 * is in user space so we verify it is OK and move it to kernel space. 1515 * 1516 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1517 * break bindings 1518 * 1519 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1520 * other SEQPACKET protocols that take time to connect() as it doesn't 1521 * include the -EINPROGRESS status for such sockets. 1522 */ 1523 1524 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1525 int, addrlen) 1526 { 1527 struct socket *sock; 1528 struct sockaddr_storage address; 1529 int err, fput_needed; 1530 1531 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1532 if (!sock) 1533 goto out; 1534 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1535 if (err < 0) 1536 goto out_put; 1537 1538 err = 1539 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1540 if (err) 1541 goto out_put; 1542 1543 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1544 sock->file->f_flags); 1545 out_put: 1546 fput_light(sock->file, fput_needed); 1547 out: 1548 return err; 1549 } 1550 1551 /* 1552 * Get the local address ('name') of a socket object. Move the obtained 1553 * name to user space. 1554 */ 1555 1556 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1557 int __user *, usockaddr_len) 1558 { 1559 struct socket *sock; 1560 struct sockaddr_storage address; 1561 int len, err, fput_needed; 1562 1563 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1564 if (!sock) 1565 goto out; 1566 1567 err = security_socket_getsockname(sock); 1568 if (err) 1569 goto out_put; 1570 1571 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1572 if (err) 1573 goto out_put; 1574 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1575 1576 out_put: 1577 fput_light(sock->file, fput_needed); 1578 out: 1579 return err; 1580 } 1581 1582 /* 1583 * Get the remote address ('name') of a socket object. Move the obtained 1584 * name to user space. 1585 */ 1586 1587 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1588 int __user *, usockaddr_len) 1589 { 1590 struct socket *sock; 1591 struct sockaddr_storage address; 1592 int len, err, fput_needed; 1593 1594 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1595 if (sock != NULL) { 1596 err = security_socket_getpeername(sock); 1597 if (err) { 1598 fput_light(sock->file, fput_needed); 1599 return err; 1600 } 1601 1602 err = 1603 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1604 1); 1605 if (!err) 1606 err = move_addr_to_user(&address, len, usockaddr, 1607 usockaddr_len); 1608 fput_light(sock->file, fput_needed); 1609 } 1610 return err; 1611 } 1612 1613 /* 1614 * Send a datagram to a given address. We move the address into kernel 1615 * space and check the user space data area is readable before invoking 1616 * the protocol. 1617 */ 1618 1619 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1620 unsigned int, flags, struct sockaddr __user *, addr, 1621 int, addr_len) 1622 { 1623 struct socket *sock; 1624 struct sockaddr_storage address; 1625 int err; 1626 struct msghdr msg; 1627 struct iovec iov; 1628 int fput_needed; 1629 1630 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1631 if (unlikely(err)) 1632 return err; 1633 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1634 if (!sock) 1635 goto out; 1636 1637 msg.msg_name = NULL; 1638 msg.msg_control = NULL; 1639 msg.msg_controllen = 0; 1640 msg.msg_namelen = 0; 1641 if (addr) { 1642 err = move_addr_to_kernel(addr, addr_len, &address); 1643 if (err < 0) 1644 goto out_put; 1645 msg.msg_name = (struct sockaddr *)&address; 1646 msg.msg_namelen = addr_len; 1647 } 1648 if (sock->file->f_flags & O_NONBLOCK) 1649 flags |= MSG_DONTWAIT; 1650 msg.msg_flags = flags; 1651 err = sock_sendmsg(sock, &msg); 1652 1653 out_put: 1654 fput_light(sock->file, fput_needed); 1655 out: 1656 return err; 1657 } 1658 1659 /* 1660 * Send a datagram down a socket. 1661 */ 1662 1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1664 unsigned int, flags) 1665 { 1666 return sys_sendto(fd, buff, len, flags, NULL, 0); 1667 } 1668 1669 /* 1670 * Receive a frame from the socket and optionally record the address of the 1671 * sender. We verify the buffers are writable and if needed move the 1672 * sender address from kernel to user space. 1673 */ 1674 1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1676 unsigned int, flags, struct sockaddr __user *, addr, 1677 int __user *, addr_len) 1678 { 1679 struct socket *sock; 1680 struct iovec iov; 1681 struct msghdr msg; 1682 struct sockaddr_storage address; 1683 int err, err2; 1684 int fput_needed; 1685 1686 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1687 if (unlikely(err)) 1688 return err; 1689 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1690 if (!sock) 1691 goto out; 1692 1693 msg.msg_control = NULL; 1694 msg.msg_controllen = 0; 1695 /* Save some cycles and don't copy the address if not needed */ 1696 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1697 /* We assume all kernel code knows the size of sockaddr_storage */ 1698 msg.msg_namelen = 0; 1699 msg.msg_iocb = NULL; 1700 if (sock->file->f_flags & O_NONBLOCK) 1701 flags |= MSG_DONTWAIT; 1702 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1703 1704 if (err >= 0 && addr != NULL) { 1705 err2 = move_addr_to_user(&address, 1706 msg.msg_namelen, addr, addr_len); 1707 if (err2 < 0) 1708 err = err2; 1709 } 1710 1711 fput_light(sock->file, fput_needed); 1712 out: 1713 return err; 1714 } 1715 1716 /* 1717 * Receive a datagram from a socket. 1718 */ 1719 1720 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1721 unsigned int, flags) 1722 { 1723 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1724 } 1725 1726 /* 1727 * Set a socket option. Because we don't know the option lengths we have 1728 * to pass the user mode parameter for the protocols to sort out. 1729 */ 1730 1731 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1732 char __user *, optval, int, optlen) 1733 { 1734 int err, fput_needed; 1735 struct socket *sock; 1736 1737 if (optlen < 0) 1738 return -EINVAL; 1739 1740 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1741 if (sock != NULL) { 1742 err = security_socket_setsockopt(sock, level, optname); 1743 if (err) 1744 goto out_put; 1745 1746 if (level == SOL_SOCKET) 1747 err = 1748 sock_setsockopt(sock, level, optname, optval, 1749 optlen); 1750 else 1751 err = 1752 sock->ops->setsockopt(sock, level, optname, optval, 1753 optlen); 1754 out_put: 1755 fput_light(sock->file, fput_needed); 1756 } 1757 return err; 1758 } 1759 1760 /* 1761 * Get a socket option. Because we don't know the option lengths we have 1762 * to pass a user mode parameter for the protocols to sort out. 1763 */ 1764 1765 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1766 char __user *, optval, int __user *, optlen) 1767 { 1768 int err, fput_needed; 1769 struct socket *sock; 1770 1771 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1772 if (sock != NULL) { 1773 err = security_socket_getsockopt(sock, level, optname); 1774 if (err) 1775 goto out_put; 1776 1777 if (level == SOL_SOCKET) 1778 err = 1779 sock_getsockopt(sock, level, optname, optval, 1780 optlen); 1781 else 1782 err = 1783 sock->ops->getsockopt(sock, level, optname, optval, 1784 optlen); 1785 out_put: 1786 fput_light(sock->file, fput_needed); 1787 } 1788 return err; 1789 } 1790 1791 /* 1792 * Shutdown a socket. 1793 */ 1794 1795 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1796 { 1797 int err, fput_needed; 1798 struct socket *sock; 1799 1800 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1801 if (sock != NULL) { 1802 err = security_socket_shutdown(sock, how); 1803 if (!err) 1804 err = sock->ops->shutdown(sock, how); 1805 fput_light(sock->file, fput_needed); 1806 } 1807 return err; 1808 } 1809 1810 /* A couple of helpful macros for getting the address of the 32/64 bit 1811 * fields which are the same type (int / unsigned) on our platforms. 1812 */ 1813 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1814 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1815 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1816 1817 struct used_address { 1818 struct sockaddr_storage name; 1819 unsigned int name_len; 1820 }; 1821 1822 static int copy_msghdr_from_user(struct msghdr *kmsg, 1823 struct user_msghdr __user *umsg, 1824 struct sockaddr __user **save_addr, 1825 struct iovec **iov) 1826 { 1827 struct sockaddr __user *uaddr; 1828 struct iovec __user *uiov; 1829 size_t nr_segs; 1830 ssize_t err; 1831 1832 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1833 __get_user(uaddr, &umsg->msg_name) || 1834 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1835 __get_user(uiov, &umsg->msg_iov) || 1836 __get_user(nr_segs, &umsg->msg_iovlen) || 1837 __get_user(kmsg->msg_control, &umsg->msg_control) || 1838 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1839 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1840 return -EFAULT; 1841 1842 if (!uaddr) 1843 kmsg->msg_namelen = 0; 1844 1845 if (kmsg->msg_namelen < 0) 1846 return -EINVAL; 1847 1848 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1849 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1850 1851 if (save_addr) 1852 *save_addr = uaddr; 1853 1854 if (uaddr && kmsg->msg_namelen) { 1855 if (!save_addr) { 1856 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1857 kmsg->msg_name); 1858 if (err < 0) 1859 return err; 1860 } 1861 } else { 1862 kmsg->msg_name = NULL; 1863 kmsg->msg_namelen = 0; 1864 } 1865 1866 if (nr_segs > UIO_MAXIOV) 1867 return -EMSGSIZE; 1868 1869 kmsg->msg_iocb = NULL; 1870 1871 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1872 UIO_FASTIOV, iov, &kmsg->msg_iter); 1873 } 1874 1875 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1876 struct msghdr *msg_sys, unsigned int flags, 1877 struct used_address *used_address) 1878 { 1879 struct compat_msghdr __user *msg_compat = 1880 (struct compat_msghdr __user *)msg; 1881 struct sockaddr_storage address; 1882 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1883 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1884 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1885 /* 20 is size of ipv6_pktinfo */ 1886 unsigned char *ctl_buf = ctl; 1887 int ctl_len; 1888 ssize_t err; 1889 1890 msg_sys->msg_name = &address; 1891 1892 if (MSG_CMSG_COMPAT & flags) 1893 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1894 else 1895 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1896 if (err < 0) 1897 return err; 1898 1899 err = -ENOBUFS; 1900 1901 if (msg_sys->msg_controllen > INT_MAX) 1902 goto out_freeiov; 1903 ctl_len = msg_sys->msg_controllen; 1904 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1905 err = 1906 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1907 sizeof(ctl)); 1908 if (err) 1909 goto out_freeiov; 1910 ctl_buf = msg_sys->msg_control; 1911 ctl_len = msg_sys->msg_controllen; 1912 } else if (ctl_len) { 1913 if (ctl_len > sizeof(ctl)) { 1914 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1915 if (ctl_buf == NULL) 1916 goto out_freeiov; 1917 } 1918 err = -EFAULT; 1919 /* 1920 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1921 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1922 * checking falls down on this. 1923 */ 1924 if (copy_from_user(ctl_buf, 1925 (void __user __force *)msg_sys->msg_control, 1926 ctl_len)) 1927 goto out_freectl; 1928 msg_sys->msg_control = ctl_buf; 1929 } 1930 msg_sys->msg_flags = flags; 1931 1932 if (sock->file->f_flags & O_NONBLOCK) 1933 msg_sys->msg_flags |= MSG_DONTWAIT; 1934 /* 1935 * If this is sendmmsg() and current destination address is same as 1936 * previously succeeded address, omit asking LSM's decision. 1937 * used_address->name_len is initialized to UINT_MAX so that the first 1938 * destination address never matches. 1939 */ 1940 if (used_address && msg_sys->msg_name && 1941 used_address->name_len == msg_sys->msg_namelen && 1942 !memcmp(&used_address->name, msg_sys->msg_name, 1943 used_address->name_len)) { 1944 err = sock_sendmsg_nosec(sock, msg_sys); 1945 goto out_freectl; 1946 } 1947 err = sock_sendmsg(sock, msg_sys); 1948 /* 1949 * If this is sendmmsg() and sending to current destination address was 1950 * successful, remember it. 1951 */ 1952 if (used_address && err >= 0) { 1953 used_address->name_len = msg_sys->msg_namelen; 1954 if (msg_sys->msg_name) 1955 memcpy(&used_address->name, msg_sys->msg_name, 1956 used_address->name_len); 1957 } 1958 1959 out_freectl: 1960 if (ctl_buf != ctl) 1961 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1962 out_freeiov: 1963 kfree(iov); 1964 return err; 1965 } 1966 1967 /* 1968 * BSD sendmsg interface 1969 */ 1970 1971 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1972 { 1973 int fput_needed, err; 1974 struct msghdr msg_sys; 1975 struct socket *sock; 1976 1977 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1978 if (!sock) 1979 goto out; 1980 1981 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1982 1983 fput_light(sock->file, fput_needed); 1984 out: 1985 return err; 1986 } 1987 1988 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1989 { 1990 if (flags & MSG_CMSG_COMPAT) 1991 return -EINVAL; 1992 return __sys_sendmsg(fd, msg, flags); 1993 } 1994 1995 /* 1996 * Linux sendmmsg interface 1997 */ 1998 1999 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2000 unsigned int flags) 2001 { 2002 int fput_needed, err, datagrams; 2003 struct socket *sock; 2004 struct mmsghdr __user *entry; 2005 struct compat_mmsghdr __user *compat_entry; 2006 struct msghdr msg_sys; 2007 struct used_address used_address; 2008 2009 if (vlen > UIO_MAXIOV) 2010 vlen = UIO_MAXIOV; 2011 2012 datagrams = 0; 2013 2014 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2015 if (!sock) 2016 return err; 2017 2018 used_address.name_len = UINT_MAX; 2019 entry = mmsg; 2020 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2021 err = 0; 2022 2023 while (datagrams < vlen) { 2024 if (MSG_CMSG_COMPAT & flags) { 2025 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2026 &msg_sys, flags, &used_address); 2027 if (err < 0) 2028 break; 2029 err = __put_user(err, &compat_entry->msg_len); 2030 ++compat_entry; 2031 } else { 2032 err = ___sys_sendmsg(sock, 2033 (struct user_msghdr __user *)entry, 2034 &msg_sys, flags, &used_address); 2035 if (err < 0) 2036 break; 2037 err = put_user(err, &entry->msg_len); 2038 ++entry; 2039 } 2040 2041 if (err) 2042 break; 2043 ++datagrams; 2044 cond_resched(); 2045 } 2046 2047 fput_light(sock->file, fput_needed); 2048 2049 /* We only return an error if no datagrams were able to be sent */ 2050 if (datagrams != 0) 2051 return datagrams; 2052 2053 return err; 2054 } 2055 2056 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2057 unsigned int, vlen, unsigned int, flags) 2058 { 2059 if (flags & MSG_CMSG_COMPAT) 2060 return -EINVAL; 2061 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2062 } 2063 2064 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2065 struct msghdr *msg_sys, unsigned int flags, int nosec) 2066 { 2067 struct compat_msghdr __user *msg_compat = 2068 (struct compat_msghdr __user *)msg; 2069 struct iovec iovstack[UIO_FASTIOV]; 2070 struct iovec *iov = iovstack; 2071 unsigned long cmsg_ptr; 2072 int total_len, len; 2073 ssize_t err; 2074 2075 /* kernel mode address */ 2076 struct sockaddr_storage addr; 2077 2078 /* user mode address pointers */ 2079 struct sockaddr __user *uaddr; 2080 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2081 2082 msg_sys->msg_name = &addr; 2083 2084 if (MSG_CMSG_COMPAT & flags) 2085 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2086 else 2087 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2088 if (err < 0) 2089 return err; 2090 total_len = iov_iter_count(&msg_sys->msg_iter); 2091 2092 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2093 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2094 2095 /* We assume all kernel code knows the size of sockaddr_storage */ 2096 msg_sys->msg_namelen = 0; 2097 2098 if (sock->file->f_flags & O_NONBLOCK) 2099 flags |= MSG_DONTWAIT; 2100 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2101 total_len, flags); 2102 if (err < 0) 2103 goto out_freeiov; 2104 len = err; 2105 2106 if (uaddr != NULL) { 2107 err = move_addr_to_user(&addr, 2108 msg_sys->msg_namelen, uaddr, 2109 uaddr_len); 2110 if (err < 0) 2111 goto out_freeiov; 2112 } 2113 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2114 COMPAT_FLAGS(msg)); 2115 if (err) 2116 goto out_freeiov; 2117 if (MSG_CMSG_COMPAT & flags) 2118 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2119 &msg_compat->msg_controllen); 2120 else 2121 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2122 &msg->msg_controllen); 2123 if (err) 2124 goto out_freeiov; 2125 err = len; 2126 2127 out_freeiov: 2128 kfree(iov); 2129 return err; 2130 } 2131 2132 /* 2133 * BSD recvmsg interface 2134 */ 2135 2136 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2137 { 2138 int fput_needed, err; 2139 struct msghdr msg_sys; 2140 struct socket *sock; 2141 2142 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2143 if (!sock) 2144 goto out; 2145 2146 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2147 2148 fput_light(sock->file, fput_needed); 2149 out: 2150 return err; 2151 } 2152 2153 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2154 unsigned int, flags) 2155 { 2156 if (flags & MSG_CMSG_COMPAT) 2157 return -EINVAL; 2158 return __sys_recvmsg(fd, msg, flags); 2159 } 2160 2161 /* 2162 * Linux recvmmsg interface 2163 */ 2164 2165 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2166 unsigned int flags, struct timespec *timeout) 2167 { 2168 int fput_needed, err, datagrams; 2169 struct socket *sock; 2170 struct mmsghdr __user *entry; 2171 struct compat_mmsghdr __user *compat_entry; 2172 struct msghdr msg_sys; 2173 struct timespec end_time; 2174 2175 if (timeout && 2176 poll_select_set_timeout(&end_time, timeout->tv_sec, 2177 timeout->tv_nsec)) 2178 return -EINVAL; 2179 2180 datagrams = 0; 2181 2182 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2183 if (!sock) 2184 return err; 2185 2186 err = sock_error(sock->sk); 2187 if (err) 2188 goto out_put; 2189 2190 entry = mmsg; 2191 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2192 2193 while (datagrams < vlen) { 2194 /* 2195 * No need to ask LSM for more than the first datagram. 2196 */ 2197 if (MSG_CMSG_COMPAT & flags) { 2198 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2199 &msg_sys, flags & ~MSG_WAITFORONE, 2200 datagrams); 2201 if (err < 0) 2202 break; 2203 err = __put_user(err, &compat_entry->msg_len); 2204 ++compat_entry; 2205 } else { 2206 err = ___sys_recvmsg(sock, 2207 (struct user_msghdr __user *)entry, 2208 &msg_sys, flags & ~MSG_WAITFORONE, 2209 datagrams); 2210 if (err < 0) 2211 break; 2212 err = put_user(err, &entry->msg_len); 2213 ++entry; 2214 } 2215 2216 if (err) 2217 break; 2218 ++datagrams; 2219 2220 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2221 if (flags & MSG_WAITFORONE) 2222 flags |= MSG_DONTWAIT; 2223 2224 if (timeout) { 2225 ktime_get_ts(timeout); 2226 *timeout = timespec_sub(end_time, *timeout); 2227 if (timeout->tv_sec < 0) { 2228 timeout->tv_sec = timeout->tv_nsec = 0; 2229 break; 2230 } 2231 2232 /* Timeout, return less than vlen datagrams */ 2233 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2234 break; 2235 } 2236 2237 /* Out of band data, return right away */ 2238 if (msg_sys.msg_flags & MSG_OOB) 2239 break; 2240 cond_resched(); 2241 } 2242 2243 out_put: 2244 fput_light(sock->file, fput_needed); 2245 2246 if (err == 0) 2247 return datagrams; 2248 2249 if (datagrams != 0) { 2250 /* 2251 * We may return less entries than requested (vlen) if the 2252 * sock is non block and there aren't enough datagrams... 2253 */ 2254 if (err != -EAGAIN) { 2255 /* 2256 * ... or if recvmsg returns an error after we 2257 * received some datagrams, where we record the 2258 * error to return on the next call or if the 2259 * app asks about it using getsockopt(SO_ERROR). 2260 */ 2261 sock->sk->sk_err = -err; 2262 } 2263 2264 return datagrams; 2265 } 2266 2267 return err; 2268 } 2269 2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2271 unsigned int, vlen, unsigned int, flags, 2272 struct timespec __user *, timeout) 2273 { 2274 int datagrams; 2275 struct timespec timeout_sys; 2276 2277 if (flags & MSG_CMSG_COMPAT) 2278 return -EINVAL; 2279 2280 if (!timeout) 2281 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2282 2283 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2284 return -EFAULT; 2285 2286 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2287 2288 if (datagrams > 0 && 2289 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2290 datagrams = -EFAULT; 2291 2292 return datagrams; 2293 } 2294 2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2296 /* Argument list sizes for sys_socketcall */ 2297 #define AL(x) ((x) * sizeof(unsigned long)) 2298 static const unsigned char nargs[21] = { 2299 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2300 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2301 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2302 AL(4), AL(5), AL(4) 2303 }; 2304 2305 #undef AL 2306 2307 /* 2308 * System call vectors. 2309 * 2310 * Argument checking cleaned up. Saved 20% in size. 2311 * This function doesn't need to set the kernel lock because 2312 * it is set by the callees. 2313 */ 2314 2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2316 { 2317 unsigned long a[AUDITSC_ARGS]; 2318 unsigned long a0, a1; 2319 int err; 2320 unsigned int len; 2321 2322 if (call < 1 || call > SYS_SENDMMSG) 2323 return -EINVAL; 2324 2325 len = nargs[call]; 2326 if (len > sizeof(a)) 2327 return -EINVAL; 2328 2329 /* copy_from_user should be SMP safe. */ 2330 if (copy_from_user(a, args, len)) 2331 return -EFAULT; 2332 2333 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2334 if (err) 2335 return err; 2336 2337 a0 = a[0]; 2338 a1 = a[1]; 2339 2340 switch (call) { 2341 case SYS_SOCKET: 2342 err = sys_socket(a0, a1, a[2]); 2343 break; 2344 case SYS_BIND: 2345 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2346 break; 2347 case SYS_CONNECT: 2348 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2349 break; 2350 case SYS_LISTEN: 2351 err = sys_listen(a0, a1); 2352 break; 2353 case SYS_ACCEPT: 2354 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2355 (int __user *)a[2], 0); 2356 break; 2357 case SYS_GETSOCKNAME: 2358 err = 2359 sys_getsockname(a0, (struct sockaddr __user *)a1, 2360 (int __user *)a[2]); 2361 break; 2362 case SYS_GETPEERNAME: 2363 err = 2364 sys_getpeername(a0, (struct sockaddr __user *)a1, 2365 (int __user *)a[2]); 2366 break; 2367 case SYS_SOCKETPAIR: 2368 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2369 break; 2370 case SYS_SEND: 2371 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2372 break; 2373 case SYS_SENDTO: 2374 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2375 (struct sockaddr __user *)a[4], a[5]); 2376 break; 2377 case SYS_RECV: 2378 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2379 break; 2380 case SYS_RECVFROM: 2381 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2382 (struct sockaddr __user *)a[4], 2383 (int __user *)a[5]); 2384 break; 2385 case SYS_SHUTDOWN: 2386 err = sys_shutdown(a0, a1); 2387 break; 2388 case SYS_SETSOCKOPT: 2389 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2390 break; 2391 case SYS_GETSOCKOPT: 2392 err = 2393 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2394 (int __user *)a[4]); 2395 break; 2396 case SYS_SENDMSG: 2397 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2398 break; 2399 case SYS_SENDMMSG: 2400 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2401 break; 2402 case SYS_RECVMSG: 2403 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2404 break; 2405 case SYS_RECVMMSG: 2406 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2407 (struct timespec __user *)a[4]); 2408 break; 2409 case SYS_ACCEPT4: 2410 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2411 (int __user *)a[2], a[3]); 2412 break; 2413 default: 2414 err = -EINVAL; 2415 break; 2416 } 2417 return err; 2418 } 2419 2420 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2421 2422 /** 2423 * sock_register - add a socket protocol handler 2424 * @ops: description of protocol 2425 * 2426 * This function is called by a protocol handler that wants to 2427 * advertise its address family, and have it linked into the 2428 * socket interface. The value ops->family corresponds to the 2429 * socket system call protocol family. 2430 */ 2431 int sock_register(const struct net_proto_family *ops) 2432 { 2433 int err; 2434 2435 if (ops->family >= NPROTO) { 2436 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2437 return -ENOBUFS; 2438 } 2439 2440 spin_lock(&net_family_lock); 2441 if (rcu_dereference_protected(net_families[ops->family], 2442 lockdep_is_held(&net_family_lock))) 2443 err = -EEXIST; 2444 else { 2445 rcu_assign_pointer(net_families[ops->family], ops); 2446 err = 0; 2447 } 2448 spin_unlock(&net_family_lock); 2449 2450 pr_info("NET: Registered protocol family %d\n", ops->family); 2451 return err; 2452 } 2453 EXPORT_SYMBOL(sock_register); 2454 2455 /** 2456 * sock_unregister - remove a protocol handler 2457 * @family: protocol family to remove 2458 * 2459 * This function is called by a protocol handler that wants to 2460 * remove its address family, and have it unlinked from the 2461 * new socket creation. 2462 * 2463 * If protocol handler is a module, then it can use module reference 2464 * counts to protect against new references. If protocol handler is not 2465 * a module then it needs to provide its own protection in 2466 * the ops->create routine. 2467 */ 2468 void sock_unregister(int family) 2469 { 2470 BUG_ON(family < 0 || family >= NPROTO); 2471 2472 spin_lock(&net_family_lock); 2473 RCU_INIT_POINTER(net_families[family], NULL); 2474 spin_unlock(&net_family_lock); 2475 2476 synchronize_rcu(); 2477 2478 pr_info("NET: Unregistered protocol family %d\n", family); 2479 } 2480 EXPORT_SYMBOL(sock_unregister); 2481 2482 static int __init sock_init(void) 2483 { 2484 int err; 2485 /* 2486 * Initialize the network sysctl infrastructure. 2487 */ 2488 err = net_sysctl_init(); 2489 if (err) 2490 goto out; 2491 2492 /* 2493 * Initialize skbuff SLAB cache 2494 */ 2495 skb_init(); 2496 2497 /* 2498 * Initialize the protocols module. 2499 */ 2500 2501 init_inodecache(); 2502 2503 err = register_filesystem(&sock_fs_type); 2504 if (err) 2505 goto out_fs; 2506 sock_mnt = kern_mount(&sock_fs_type); 2507 if (IS_ERR(sock_mnt)) { 2508 err = PTR_ERR(sock_mnt); 2509 goto out_mount; 2510 } 2511 2512 /* The real protocol initialization is performed in later initcalls. 2513 */ 2514 2515 #ifdef CONFIG_NETFILTER 2516 err = netfilter_init(); 2517 if (err) 2518 goto out; 2519 #endif 2520 2521 ptp_classifier_init(); 2522 2523 out: 2524 return err; 2525 2526 out_mount: 2527 unregister_filesystem(&sock_fs_type); 2528 out_fs: 2529 goto out; 2530 } 2531 2532 core_initcall(sock_init); /* early initcall */ 2533 2534 #ifdef CONFIG_PROC_FS 2535 void socket_seq_show(struct seq_file *seq) 2536 { 2537 int cpu; 2538 int counter = 0; 2539 2540 for_each_possible_cpu(cpu) 2541 counter += per_cpu(sockets_in_use, cpu); 2542 2543 /* It can be negative, by the way. 8) */ 2544 if (counter < 0) 2545 counter = 0; 2546 2547 seq_printf(seq, "sockets: used %d\n", counter); 2548 } 2549 #endif /* CONFIG_PROC_FS */ 2550 2551 #ifdef CONFIG_COMPAT 2552 static int do_siocgstamp(struct net *net, struct socket *sock, 2553 unsigned int cmd, void __user *up) 2554 { 2555 mm_segment_t old_fs = get_fs(); 2556 struct timeval ktv; 2557 int err; 2558 2559 set_fs(KERNEL_DS); 2560 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2561 set_fs(old_fs); 2562 if (!err) 2563 err = compat_put_timeval(&ktv, up); 2564 2565 return err; 2566 } 2567 2568 static int do_siocgstampns(struct net *net, struct socket *sock, 2569 unsigned int cmd, void __user *up) 2570 { 2571 mm_segment_t old_fs = get_fs(); 2572 struct timespec kts; 2573 int err; 2574 2575 set_fs(KERNEL_DS); 2576 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2577 set_fs(old_fs); 2578 if (!err) 2579 err = compat_put_timespec(&kts, up); 2580 2581 return err; 2582 } 2583 2584 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2585 { 2586 struct ifreq __user *uifr; 2587 int err; 2588 2589 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2590 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2591 return -EFAULT; 2592 2593 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2594 if (err) 2595 return err; 2596 2597 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2598 return -EFAULT; 2599 2600 return 0; 2601 } 2602 2603 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2604 { 2605 struct compat_ifconf ifc32; 2606 struct ifconf ifc; 2607 struct ifconf __user *uifc; 2608 struct compat_ifreq __user *ifr32; 2609 struct ifreq __user *ifr; 2610 unsigned int i, j; 2611 int err; 2612 2613 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2614 return -EFAULT; 2615 2616 memset(&ifc, 0, sizeof(ifc)); 2617 if (ifc32.ifcbuf == 0) { 2618 ifc32.ifc_len = 0; 2619 ifc.ifc_len = 0; 2620 ifc.ifc_req = NULL; 2621 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2622 } else { 2623 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2624 sizeof(struct ifreq); 2625 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2626 ifc.ifc_len = len; 2627 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2628 ifr32 = compat_ptr(ifc32.ifcbuf); 2629 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2630 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2631 return -EFAULT; 2632 ifr++; 2633 ifr32++; 2634 } 2635 } 2636 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2637 return -EFAULT; 2638 2639 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2640 if (err) 2641 return err; 2642 2643 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2644 return -EFAULT; 2645 2646 ifr = ifc.ifc_req; 2647 ifr32 = compat_ptr(ifc32.ifcbuf); 2648 for (i = 0, j = 0; 2649 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2650 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2651 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2652 return -EFAULT; 2653 ifr32++; 2654 ifr++; 2655 } 2656 2657 if (ifc32.ifcbuf == 0) { 2658 /* Translate from 64-bit structure multiple to 2659 * a 32-bit one. 2660 */ 2661 i = ifc.ifc_len; 2662 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2663 ifc32.ifc_len = i; 2664 } else { 2665 ifc32.ifc_len = i; 2666 } 2667 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2668 return -EFAULT; 2669 2670 return 0; 2671 } 2672 2673 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2674 { 2675 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2676 bool convert_in = false, convert_out = false; 2677 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2678 struct ethtool_rxnfc __user *rxnfc; 2679 struct ifreq __user *ifr; 2680 u32 rule_cnt = 0, actual_rule_cnt; 2681 u32 ethcmd; 2682 u32 data; 2683 int ret; 2684 2685 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2686 return -EFAULT; 2687 2688 compat_rxnfc = compat_ptr(data); 2689 2690 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2691 return -EFAULT; 2692 2693 /* Most ethtool structures are defined without padding. 2694 * Unfortunately struct ethtool_rxnfc is an exception. 2695 */ 2696 switch (ethcmd) { 2697 default: 2698 break; 2699 case ETHTOOL_GRXCLSRLALL: 2700 /* Buffer size is variable */ 2701 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2702 return -EFAULT; 2703 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2704 return -ENOMEM; 2705 buf_size += rule_cnt * sizeof(u32); 2706 /* fall through */ 2707 case ETHTOOL_GRXRINGS: 2708 case ETHTOOL_GRXCLSRLCNT: 2709 case ETHTOOL_GRXCLSRULE: 2710 case ETHTOOL_SRXCLSRLINS: 2711 convert_out = true; 2712 /* fall through */ 2713 case ETHTOOL_SRXCLSRLDEL: 2714 buf_size += sizeof(struct ethtool_rxnfc); 2715 convert_in = true; 2716 break; 2717 } 2718 2719 ifr = compat_alloc_user_space(buf_size); 2720 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2721 2722 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2723 return -EFAULT; 2724 2725 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2726 &ifr->ifr_ifru.ifru_data)) 2727 return -EFAULT; 2728 2729 if (convert_in) { 2730 /* We expect there to be holes between fs.m_ext and 2731 * fs.ring_cookie and at the end of fs, but nowhere else. 2732 */ 2733 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2734 sizeof(compat_rxnfc->fs.m_ext) != 2735 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2736 sizeof(rxnfc->fs.m_ext)); 2737 BUILD_BUG_ON( 2738 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2739 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2740 offsetof(struct ethtool_rxnfc, fs.location) - 2741 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2742 2743 if (copy_in_user(rxnfc, compat_rxnfc, 2744 (void __user *)(&rxnfc->fs.m_ext + 1) - 2745 (void __user *)rxnfc) || 2746 copy_in_user(&rxnfc->fs.ring_cookie, 2747 &compat_rxnfc->fs.ring_cookie, 2748 (void __user *)(&rxnfc->fs.location + 1) - 2749 (void __user *)&rxnfc->fs.ring_cookie) || 2750 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2751 sizeof(rxnfc->rule_cnt))) 2752 return -EFAULT; 2753 } 2754 2755 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2756 if (ret) 2757 return ret; 2758 2759 if (convert_out) { 2760 if (copy_in_user(compat_rxnfc, rxnfc, 2761 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2762 (const void __user *)rxnfc) || 2763 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2764 &rxnfc->fs.ring_cookie, 2765 (const void __user *)(&rxnfc->fs.location + 1) - 2766 (const void __user *)&rxnfc->fs.ring_cookie) || 2767 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2768 sizeof(rxnfc->rule_cnt))) 2769 return -EFAULT; 2770 2771 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2772 /* As an optimisation, we only copy the actual 2773 * number of rules that the underlying 2774 * function returned. Since Mallory might 2775 * change the rule count in user memory, we 2776 * check that it is less than the rule count 2777 * originally given (as the user buffer size), 2778 * which has been range-checked. 2779 */ 2780 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2781 return -EFAULT; 2782 if (actual_rule_cnt < rule_cnt) 2783 rule_cnt = actual_rule_cnt; 2784 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2785 &rxnfc->rule_locs[0], 2786 rule_cnt * sizeof(u32))) 2787 return -EFAULT; 2788 } 2789 } 2790 2791 return 0; 2792 } 2793 2794 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2795 { 2796 void __user *uptr; 2797 compat_uptr_t uptr32; 2798 struct ifreq __user *uifr; 2799 2800 uifr = compat_alloc_user_space(sizeof(*uifr)); 2801 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2802 return -EFAULT; 2803 2804 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2805 return -EFAULT; 2806 2807 uptr = compat_ptr(uptr32); 2808 2809 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2810 return -EFAULT; 2811 2812 return dev_ioctl(net, SIOCWANDEV, uifr); 2813 } 2814 2815 static int bond_ioctl(struct net *net, unsigned int cmd, 2816 struct compat_ifreq __user *ifr32) 2817 { 2818 struct ifreq kifr; 2819 mm_segment_t old_fs; 2820 int err; 2821 2822 switch (cmd) { 2823 case SIOCBONDENSLAVE: 2824 case SIOCBONDRELEASE: 2825 case SIOCBONDSETHWADDR: 2826 case SIOCBONDCHANGEACTIVE: 2827 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2828 return -EFAULT; 2829 2830 old_fs = get_fs(); 2831 set_fs(KERNEL_DS); 2832 err = dev_ioctl(net, cmd, 2833 (struct ifreq __user __force *) &kifr); 2834 set_fs(old_fs); 2835 2836 return err; 2837 default: 2838 return -ENOIOCTLCMD; 2839 } 2840 } 2841 2842 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2843 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2844 struct compat_ifreq __user *u_ifreq32) 2845 { 2846 struct ifreq __user *u_ifreq64; 2847 char tmp_buf[IFNAMSIZ]; 2848 void __user *data64; 2849 u32 data32; 2850 2851 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2852 IFNAMSIZ)) 2853 return -EFAULT; 2854 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2855 return -EFAULT; 2856 data64 = compat_ptr(data32); 2857 2858 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2859 2860 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2861 IFNAMSIZ)) 2862 return -EFAULT; 2863 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2864 return -EFAULT; 2865 2866 return dev_ioctl(net, cmd, u_ifreq64); 2867 } 2868 2869 static int dev_ifsioc(struct net *net, struct socket *sock, 2870 unsigned int cmd, struct compat_ifreq __user *uifr32) 2871 { 2872 struct ifreq __user *uifr; 2873 int err; 2874 2875 uifr = compat_alloc_user_space(sizeof(*uifr)); 2876 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2877 return -EFAULT; 2878 2879 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2880 2881 if (!err) { 2882 switch (cmd) { 2883 case SIOCGIFFLAGS: 2884 case SIOCGIFMETRIC: 2885 case SIOCGIFMTU: 2886 case SIOCGIFMEM: 2887 case SIOCGIFHWADDR: 2888 case SIOCGIFINDEX: 2889 case SIOCGIFADDR: 2890 case SIOCGIFBRDADDR: 2891 case SIOCGIFDSTADDR: 2892 case SIOCGIFNETMASK: 2893 case SIOCGIFPFLAGS: 2894 case SIOCGIFTXQLEN: 2895 case SIOCGMIIPHY: 2896 case SIOCGMIIREG: 2897 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2898 err = -EFAULT; 2899 break; 2900 } 2901 } 2902 return err; 2903 } 2904 2905 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2906 struct compat_ifreq __user *uifr32) 2907 { 2908 struct ifreq ifr; 2909 struct compat_ifmap __user *uifmap32; 2910 mm_segment_t old_fs; 2911 int err; 2912 2913 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2914 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2915 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2916 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2917 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2918 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2919 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2920 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2921 if (err) 2922 return -EFAULT; 2923 2924 old_fs = get_fs(); 2925 set_fs(KERNEL_DS); 2926 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2927 set_fs(old_fs); 2928 2929 if (cmd == SIOCGIFMAP && !err) { 2930 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2931 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2932 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2933 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2934 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2935 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2936 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2937 if (err) 2938 err = -EFAULT; 2939 } 2940 return err; 2941 } 2942 2943 struct rtentry32 { 2944 u32 rt_pad1; 2945 struct sockaddr rt_dst; /* target address */ 2946 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2947 struct sockaddr rt_genmask; /* target network mask (IP) */ 2948 unsigned short rt_flags; 2949 short rt_pad2; 2950 u32 rt_pad3; 2951 unsigned char rt_tos; 2952 unsigned char rt_class; 2953 short rt_pad4; 2954 short rt_metric; /* +1 for binary compatibility! */ 2955 /* char * */ u32 rt_dev; /* forcing the device at add */ 2956 u32 rt_mtu; /* per route MTU/Window */ 2957 u32 rt_window; /* Window clamping */ 2958 unsigned short rt_irtt; /* Initial RTT */ 2959 }; 2960 2961 struct in6_rtmsg32 { 2962 struct in6_addr rtmsg_dst; 2963 struct in6_addr rtmsg_src; 2964 struct in6_addr rtmsg_gateway; 2965 u32 rtmsg_type; 2966 u16 rtmsg_dst_len; 2967 u16 rtmsg_src_len; 2968 u32 rtmsg_metric; 2969 u32 rtmsg_info; 2970 u32 rtmsg_flags; 2971 s32 rtmsg_ifindex; 2972 }; 2973 2974 static int routing_ioctl(struct net *net, struct socket *sock, 2975 unsigned int cmd, void __user *argp) 2976 { 2977 int ret; 2978 void *r = NULL; 2979 struct in6_rtmsg r6; 2980 struct rtentry r4; 2981 char devname[16]; 2982 u32 rtdev; 2983 mm_segment_t old_fs = get_fs(); 2984 2985 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2986 struct in6_rtmsg32 __user *ur6 = argp; 2987 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2988 3 * sizeof(struct in6_addr)); 2989 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2990 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2991 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2992 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2993 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2994 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2995 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2996 2997 r = (void *) &r6; 2998 } else { /* ipv4 */ 2999 struct rtentry32 __user *ur4 = argp; 3000 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3001 3 * sizeof(struct sockaddr)); 3002 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3003 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3004 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3005 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3006 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3007 ret |= get_user(rtdev, &(ur4->rt_dev)); 3008 if (rtdev) { 3009 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3010 r4.rt_dev = (char __user __force *)devname; 3011 devname[15] = 0; 3012 } else 3013 r4.rt_dev = NULL; 3014 3015 r = (void *) &r4; 3016 } 3017 3018 if (ret) { 3019 ret = -EFAULT; 3020 goto out; 3021 } 3022 3023 set_fs(KERNEL_DS); 3024 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3025 set_fs(old_fs); 3026 3027 out: 3028 return ret; 3029 } 3030 3031 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3032 * for some operations; this forces use of the newer bridge-utils that 3033 * use compatible ioctls 3034 */ 3035 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3036 { 3037 compat_ulong_t tmp; 3038 3039 if (get_user(tmp, argp)) 3040 return -EFAULT; 3041 if (tmp == BRCTL_GET_VERSION) 3042 return BRCTL_VERSION + 1; 3043 return -EINVAL; 3044 } 3045 3046 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3047 unsigned int cmd, unsigned long arg) 3048 { 3049 void __user *argp = compat_ptr(arg); 3050 struct sock *sk = sock->sk; 3051 struct net *net = sock_net(sk); 3052 3053 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3054 return compat_ifr_data_ioctl(net, cmd, argp); 3055 3056 switch (cmd) { 3057 case SIOCSIFBR: 3058 case SIOCGIFBR: 3059 return old_bridge_ioctl(argp); 3060 case SIOCGIFNAME: 3061 return dev_ifname32(net, argp); 3062 case SIOCGIFCONF: 3063 return dev_ifconf(net, argp); 3064 case SIOCETHTOOL: 3065 return ethtool_ioctl(net, argp); 3066 case SIOCWANDEV: 3067 return compat_siocwandev(net, argp); 3068 case SIOCGIFMAP: 3069 case SIOCSIFMAP: 3070 return compat_sioc_ifmap(net, cmd, argp); 3071 case SIOCBONDENSLAVE: 3072 case SIOCBONDRELEASE: 3073 case SIOCBONDSETHWADDR: 3074 case SIOCBONDCHANGEACTIVE: 3075 return bond_ioctl(net, cmd, argp); 3076 case SIOCADDRT: 3077 case SIOCDELRT: 3078 return routing_ioctl(net, sock, cmd, argp); 3079 case SIOCGSTAMP: 3080 return do_siocgstamp(net, sock, cmd, argp); 3081 case SIOCGSTAMPNS: 3082 return do_siocgstampns(net, sock, cmd, argp); 3083 case SIOCBONDSLAVEINFOQUERY: 3084 case SIOCBONDINFOQUERY: 3085 case SIOCSHWTSTAMP: 3086 case SIOCGHWTSTAMP: 3087 return compat_ifr_data_ioctl(net, cmd, argp); 3088 3089 case FIOSETOWN: 3090 case SIOCSPGRP: 3091 case FIOGETOWN: 3092 case SIOCGPGRP: 3093 case SIOCBRADDBR: 3094 case SIOCBRDELBR: 3095 case SIOCGIFVLAN: 3096 case SIOCSIFVLAN: 3097 case SIOCADDDLCI: 3098 case SIOCDELDLCI: 3099 return sock_ioctl(file, cmd, arg); 3100 3101 case SIOCGIFFLAGS: 3102 case SIOCSIFFLAGS: 3103 case SIOCGIFMETRIC: 3104 case SIOCSIFMETRIC: 3105 case SIOCGIFMTU: 3106 case SIOCSIFMTU: 3107 case SIOCGIFMEM: 3108 case SIOCSIFMEM: 3109 case SIOCGIFHWADDR: 3110 case SIOCSIFHWADDR: 3111 case SIOCADDMULTI: 3112 case SIOCDELMULTI: 3113 case SIOCGIFINDEX: 3114 case SIOCGIFADDR: 3115 case SIOCSIFADDR: 3116 case SIOCSIFHWBROADCAST: 3117 case SIOCDIFADDR: 3118 case SIOCGIFBRDADDR: 3119 case SIOCSIFBRDADDR: 3120 case SIOCGIFDSTADDR: 3121 case SIOCSIFDSTADDR: 3122 case SIOCGIFNETMASK: 3123 case SIOCSIFNETMASK: 3124 case SIOCSIFPFLAGS: 3125 case SIOCGIFPFLAGS: 3126 case SIOCGIFTXQLEN: 3127 case SIOCSIFTXQLEN: 3128 case SIOCBRADDIF: 3129 case SIOCBRDELIF: 3130 case SIOCSIFNAME: 3131 case SIOCGMIIPHY: 3132 case SIOCGMIIREG: 3133 case SIOCSMIIREG: 3134 return dev_ifsioc(net, sock, cmd, argp); 3135 3136 case SIOCSARP: 3137 case SIOCGARP: 3138 case SIOCDARP: 3139 case SIOCATMARK: 3140 return sock_do_ioctl(net, sock, cmd, arg); 3141 } 3142 3143 return -ENOIOCTLCMD; 3144 } 3145 3146 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3147 unsigned long arg) 3148 { 3149 struct socket *sock = file->private_data; 3150 int ret = -ENOIOCTLCMD; 3151 struct sock *sk; 3152 struct net *net; 3153 3154 sk = sock->sk; 3155 net = sock_net(sk); 3156 3157 if (sock->ops->compat_ioctl) 3158 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3159 3160 if (ret == -ENOIOCTLCMD && 3161 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3162 ret = compat_wext_handle_ioctl(net, cmd, arg); 3163 3164 if (ret == -ENOIOCTLCMD) 3165 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3166 3167 return ret; 3168 } 3169 #endif 3170 3171 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3172 { 3173 return sock->ops->bind(sock, addr, addrlen); 3174 } 3175 EXPORT_SYMBOL(kernel_bind); 3176 3177 int kernel_listen(struct socket *sock, int backlog) 3178 { 3179 return sock->ops->listen(sock, backlog); 3180 } 3181 EXPORT_SYMBOL(kernel_listen); 3182 3183 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3184 { 3185 struct sock *sk = sock->sk; 3186 int err; 3187 3188 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3189 newsock); 3190 if (err < 0) 3191 goto done; 3192 3193 err = sock->ops->accept(sock, *newsock, flags); 3194 if (err < 0) { 3195 sock_release(*newsock); 3196 *newsock = NULL; 3197 goto done; 3198 } 3199 3200 (*newsock)->ops = sock->ops; 3201 __module_get((*newsock)->ops->owner); 3202 3203 done: 3204 return err; 3205 } 3206 EXPORT_SYMBOL(kernel_accept); 3207 3208 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3209 int flags) 3210 { 3211 return sock->ops->connect(sock, addr, addrlen, flags); 3212 } 3213 EXPORT_SYMBOL(kernel_connect); 3214 3215 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3216 int *addrlen) 3217 { 3218 return sock->ops->getname(sock, addr, addrlen, 0); 3219 } 3220 EXPORT_SYMBOL(kernel_getsockname); 3221 3222 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3223 int *addrlen) 3224 { 3225 return sock->ops->getname(sock, addr, addrlen, 1); 3226 } 3227 EXPORT_SYMBOL(kernel_getpeername); 3228 3229 int kernel_getsockopt(struct socket *sock, int level, int optname, 3230 char *optval, int *optlen) 3231 { 3232 mm_segment_t oldfs = get_fs(); 3233 char __user *uoptval; 3234 int __user *uoptlen; 3235 int err; 3236 3237 uoptval = (char __user __force *) optval; 3238 uoptlen = (int __user __force *) optlen; 3239 3240 set_fs(KERNEL_DS); 3241 if (level == SOL_SOCKET) 3242 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3243 else 3244 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3245 uoptlen); 3246 set_fs(oldfs); 3247 return err; 3248 } 3249 EXPORT_SYMBOL(kernel_getsockopt); 3250 3251 int kernel_setsockopt(struct socket *sock, int level, int optname, 3252 char *optval, unsigned int optlen) 3253 { 3254 mm_segment_t oldfs = get_fs(); 3255 char __user *uoptval; 3256 int err; 3257 3258 uoptval = (char __user __force *) optval; 3259 3260 set_fs(KERNEL_DS); 3261 if (level == SOL_SOCKET) 3262 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3263 else 3264 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3265 optlen); 3266 set_fs(oldfs); 3267 return err; 3268 } 3269 EXPORT_SYMBOL(kernel_setsockopt); 3270 3271 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3272 size_t size, int flags) 3273 { 3274 if (sock->ops->sendpage) 3275 return sock->ops->sendpage(sock, page, offset, size, flags); 3276 3277 return sock_no_sendpage(sock, page, offset, size, flags); 3278 } 3279 EXPORT_SYMBOL(kernel_sendpage); 3280 3281 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3282 { 3283 mm_segment_t oldfs = get_fs(); 3284 int err; 3285 3286 set_fs(KERNEL_DS); 3287 err = sock->ops->ioctl(sock, cmd, arg); 3288 set_fs(oldfs); 3289 3290 return err; 3291 } 3292 EXPORT_SYMBOL(kernel_sock_ioctl); 3293 3294 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3295 { 3296 return sock->ops->shutdown(sock, how); 3297 } 3298 EXPORT_SYMBOL(kernel_sock_shutdown); 3299