xref: /openbmc/linux/net/socket.c (revision b627b4ed)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 			 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 			  unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105 
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 			      struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 			      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 			        struct pipe_inode_info *pipe, size_t len,
119 				unsigned int flags);
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static const struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 	.compat_ioctl = compat_sock_ioctl,
135 #endif
136 	.mmap =		sock_mmap,
137 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
138 	.release =	sock_close,
139 	.fasync =	sock_fasync,
140 	.sendpage =	sock_sendpage,
141 	.splice_write = generic_splice_sendpage,
142 	.splice_read =	sock_splice_read,
143 };
144 
145 /*
146  *	The protocol list. Each protocol is registered in here.
147  */
148 
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151 
152 /*
153  *	Statistics counters of the socket lists
154  */
155 
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157 
158 /*
159  * Support routines.
160  * Move socket addresses back and forth across the kernel/user
161  * divide and look after the messy bits.
162  */
163 
164 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
165 					   16 for IP, 16 for IPX,
166 					   24 for IPv6,
167 					   about 80 for AX.25
168 					   must be at least one bigger than
169 					   the AF_UNIX size (see net/unix/af_unix.c
170 					   :unix_mkname()).
171 					 */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 		      int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 #define SOCKFS_MAGIC 0x534F434B
239 
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	init_waitqueue_head(&ei->socket.wait);
250 
251 	ei->socket.fasync_list = NULL;
252 	ei->socket.state = SS_UNCONNECTED;
253 	ei->socket.flags = 0;
254 	ei->socket.ops = NULL;
255 	ei->socket.sk = NULL;
256 	ei->socket.file = NULL;
257 
258 	return &ei->vfs_inode;
259 }
260 
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 	kmem_cache_free(sock_inode_cachep,
264 			container_of(inode, struct socket_alloc, vfs_inode));
265 }
266 
267 static void init_once(void *foo)
268 {
269 	struct socket_alloc *ei = (struct socket_alloc *)foo;
270 
271 	inode_init_once(&ei->vfs_inode);
272 }
273 
274 static int init_inodecache(void)
275 {
276 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 					      sizeof(struct socket_alloc),
278 					      0,
279 					      (SLAB_HWCACHE_ALIGN |
280 					       SLAB_RECLAIM_ACCOUNT |
281 					       SLAB_MEM_SPREAD),
282 					      init_once);
283 	if (sock_inode_cachep == NULL)
284 		return -ENOMEM;
285 	return 0;
286 }
287 
288 static struct super_operations sockfs_ops = {
289 	.alloc_inode =	sock_alloc_inode,
290 	.destroy_inode =sock_destroy_inode,
291 	.statfs =	simple_statfs,
292 };
293 
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 			 int flags, const char *dev_name, void *data,
296 			 struct vfsmount *mnt)
297 {
298 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 			     mnt);
300 }
301 
302 static struct vfsmount *sock_mnt __read_mostly;
303 
304 static struct file_system_type sock_fs_type = {
305 	.name =		"sockfs",
306 	.get_sb =	sockfs_get_sb,
307 	.kill_sb =	kill_anon_super,
308 };
309 
310 static int sockfs_delete_dentry(struct dentry *dentry)
311 {
312 	/*
313 	 * At creation time, we pretended this dentry was hashed
314 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 	 * At delete time, we restore the truth : not hashed.
316 	 * (so that dput() can proceed correctly)
317 	 */
318 	dentry->d_flags |= DCACHE_UNHASHED;
319 	return 0;
320 }
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static const struct dentry_operations sockfs_dentry_operations = {
332 	.d_delete = sockfs_delete_dentry,
333 	.d_dname  = sockfs_dname,
334 };
335 
336 /*
337  *	Obtains the first available file descriptor and sets it up for use.
338  *
339  *	These functions create file structures and maps them to fd space
340  *	of the current process. On success it returns file descriptor
341  *	and file struct implicitly stored in sock->file.
342  *	Note that another thread may close file descriptor before we return
343  *	from this function. We use the fact that now we do not refer
344  *	to socket after mapping. If one day we will need it, this
345  *	function will increment ref. count on file by 1.
346  *
347  *	In any case returned fd MAY BE not valid!
348  *	This race condition is unavoidable
349  *	with shared fd spaces, we cannot solve it inside kernel,
350  *	but we take care of internal coherence yet.
351  */
352 
353 static int sock_alloc_fd(struct file **filep, int flags)
354 {
355 	int fd;
356 
357 	fd = get_unused_fd_flags(flags);
358 	if (likely(fd >= 0)) {
359 		struct file *file = get_empty_filp();
360 
361 		*filep = file;
362 		if (unlikely(!file)) {
363 			put_unused_fd(fd);
364 			return -ENFILE;
365 		}
366 	} else
367 		*filep = NULL;
368 	return fd;
369 }
370 
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 {
373 	struct dentry *dentry;
374 	struct qstr name = { .name = "" };
375 
376 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 	if (unlikely(!dentry))
378 		return -ENOMEM;
379 
380 	dentry->d_op = &sockfs_dentry_operations;
381 	/*
382 	 * We dont want to push this dentry into global dentry hash table.
383 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 	 * This permits a working /proc/$pid/fd/XXX on sockets
385 	 */
386 	dentry->d_flags &= ~DCACHE_UNHASHED;
387 	d_instantiate(dentry, SOCK_INODE(sock));
388 
389 	sock->file = file;
390 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 		  &socket_file_ops);
392 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 	file->f_pos = 0;
395 	file->private_data = sock;
396 
397 	return 0;
398 }
399 
400 int sock_map_fd(struct socket *sock, int flags)
401 {
402 	struct file *newfile;
403 	int fd = sock_alloc_fd(&newfile, flags);
404 
405 	if (likely(fd >= 0)) {
406 		int err = sock_attach_fd(sock, newfile, flags);
407 
408 		if (unlikely(err < 0)) {
409 			put_filp(newfile);
410 			put_unused_fd(fd);
411 			return err;
412 		}
413 		fd_install(fd, newfile);
414 	}
415 	return fd;
416 }
417 
418 static struct socket *sock_from_file(struct file *file, int *err)
419 {
420 	if (file->f_op == &socket_file_ops)
421 		return file->private_data;	/* set in sock_map_fd */
422 
423 	*err = -ENOTSOCK;
424 	return NULL;
425 }
426 
427 /**
428  *	sockfd_lookup	- 	Go from a file number to its socket slot
429  *	@fd: file handle
430  *	@err: pointer to an error code return
431  *
432  *	The file handle passed in is locked and the socket it is bound
433  *	too is returned. If an error occurs the err pointer is overwritten
434  *	with a negative errno code and NULL is returned. The function checks
435  *	for both invalid handles and passing a handle which is not a socket.
436  *
437  *	On a success the socket object pointer is returned.
438  */
439 
440 struct socket *sockfd_lookup(int fd, int *err)
441 {
442 	struct file *file;
443 	struct socket *sock;
444 
445 	file = fget(fd);
446 	if (!file) {
447 		*err = -EBADF;
448 		return NULL;
449 	}
450 
451 	sock = sock_from_file(file, err);
452 	if (!sock)
453 		fput(file);
454 	return sock;
455 }
456 
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 {
459 	struct file *file;
460 	struct socket *sock;
461 
462 	*err = -EBADF;
463 	file = fget_light(fd, fput_needed);
464 	if (file) {
465 		sock = sock_from_file(file, err);
466 		if (sock)
467 			return sock;
468 		fput_light(file, *fput_needed);
469 	}
470 	return NULL;
471 }
472 
473 /**
474  *	sock_alloc	-	allocate a socket
475  *
476  *	Allocate a new inode and socket object. The two are bound together
477  *	and initialised. The socket is then returned. If we are out of inodes
478  *	NULL is returned.
479  */
480 
481 static struct socket *sock_alloc(void)
482 {
483 	struct inode *inode;
484 	struct socket *sock;
485 
486 	inode = new_inode(sock_mnt->mnt_sb);
487 	if (!inode)
488 		return NULL;
489 
490 	sock = SOCKET_I(inode);
491 
492 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 	inode->i_uid = current_fsuid();
494 	inode->i_gid = current_fsgid();
495 
496 	percpu_add(sockets_in_use, 1);
497 	return sock;
498 }
499 
500 /*
501  *	In theory you can't get an open on this inode, but /proc provides
502  *	a back door. Remember to keep it shut otherwise you'll let the
503  *	creepy crawlies in.
504  */
505 
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 	return -ENXIO;
509 }
510 
511 const struct file_operations bad_sock_fops = {
512 	.owner = THIS_MODULE,
513 	.open = sock_no_open,
514 };
515 
516 /**
517  *	sock_release	-	close a socket
518  *	@sock: socket to close
519  *
520  *	The socket is released from the protocol stack if it has a release
521  *	callback, and the inode is then released if the socket is bound to
522  *	an inode not a file.
523  */
524 
525 void sock_release(struct socket *sock)
526 {
527 	if (sock->ops) {
528 		struct module *owner = sock->ops->owner;
529 
530 		sock->ops->release(sock);
531 		sock->ops = NULL;
532 		module_put(owner);
533 	}
534 
535 	if (sock->fasync_list)
536 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
537 
538 	percpu_sub(sockets_in_use, 1);
539 	if (!sock->file) {
540 		iput(SOCK_INODE(sock));
541 		return;
542 	}
543 	sock->file = NULL;
544 }
545 
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 		      union skb_shared_tx *shtx)
548 {
549 	shtx->flags = 0;
550 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 		shtx->hardware = 1;
552 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 		shtx->software = 1;
554 	return 0;
555 }
556 EXPORT_SYMBOL(sock_tx_timestamp);
557 
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 				 struct msghdr *msg, size_t size)
560 {
561 	struct sock_iocb *si = kiocb_to_siocb(iocb);
562 	int err;
563 
564 	si->sock = sock;
565 	si->scm = NULL;
566 	si->msg = msg;
567 	si->size = size;
568 
569 	err = security_socket_sendmsg(sock, msg, size);
570 	if (err)
571 		return err;
572 
573 	return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575 
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 	struct kiocb iocb;
579 	struct sock_iocb siocb;
580 	int ret;
581 
582 	init_sync_kiocb(&iocb, NULL);
583 	iocb.private = &siocb;
584 	ret = __sock_sendmsg(&iocb, sock, msg, size);
585 	if (-EIOCBQUEUED == ret)
586 		ret = wait_on_sync_kiocb(&iocb);
587 	return ret;
588 }
589 
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 		   struct kvec *vec, size_t num, size_t size)
592 {
593 	mm_segment_t oldfs = get_fs();
594 	int result;
595 
596 	set_fs(KERNEL_DS);
597 	/*
598 	 * the following is safe, since for compiler definitions of kvec and
599 	 * iovec are identical, yielding the same in-core layout and alignment
600 	 */
601 	msg->msg_iov = (struct iovec *)vec;
602 	msg->msg_iovlen = num;
603 	result = sock_sendmsg(sock, msg, size);
604 	set_fs(oldfs);
605 	return result;
606 }
607 
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 	if (kt.tv64) {
611 		*ts = ktime_to_timespec(kt);
612 		return 1;
613 	} else {
614 		return 0;
615 	}
616 }
617 
618 /*
619  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620  */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 	struct sk_buff *skb)
623 {
624 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 	struct timespec ts[3];
626 	int empty = 1;
627 	struct skb_shared_hwtstamps *shhwtstamps =
628 		skb_hwtstamps(skb);
629 
630 	/* Race occurred between timestamp enabling and packet
631 	   receiving.  Fill in the current time for now. */
632 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 		__net_timestamp(skb);
634 
635 	if (need_software_tstamp) {
636 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 			struct timeval tv;
638 			skb_get_timestamp(skb, &tv);
639 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 				 sizeof(tv), &tv);
641 		} else {
642 			struct timespec ts;
643 			skb_get_timestampns(skb, &ts);
644 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 				 sizeof(ts), &ts);
646 		}
647 	}
648 
649 
650 	memset(ts, 0, sizeof(ts));
651 	if (skb->tstamp.tv64 &&
652 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 		skb_get_timestampns(skb, ts + 0);
654 		empty = 0;
655 	}
656 	if (shhwtstamps) {
657 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
659 			empty = 0;
660 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 			empty = 0;
663 	}
664 	if (!empty)
665 		put_cmsg(msg, SOL_SOCKET,
666 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
667 }
668 
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
670 
671 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
672 				 struct msghdr *msg, size_t size, int flags)
673 {
674 	int err;
675 	struct sock_iocb *si = kiocb_to_siocb(iocb);
676 
677 	si->sock = sock;
678 	si->scm = NULL;
679 	si->msg = msg;
680 	si->size = size;
681 	si->flags = flags;
682 
683 	err = security_socket_recvmsg(sock, msg, size, flags);
684 	if (err)
685 		return err;
686 
687 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
688 }
689 
690 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
691 		 size_t size, int flags)
692 {
693 	struct kiocb iocb;
694 	struct sock_iocb siocb;
695 	int ret;
696 
697 	init_sync_kiocb(&iocb, NULL);
698 	iocb.private = &siocb;
699 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
700 	if (-EIOCBQUEUED == ret)
701 		ret = wait_on_sync_kiocb(&iocb);
702 	return ret;
703 }
704 
705 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
706 		   struct kvec *vec, size_t num, size_t size, int flags)
707 {
708 	mm_segment_t oldfs = get_fs();
709 	int result;
710 
711 	set_fs(KERNEL_DS);
712 	/*
713 	 * the following is safe, since for compiler definitions of kvec and
714 	 * iovec are identical, yielding the same in-core layout and alignment
715 	 */
716 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
717 	result = sock_recvmsg(sock, msg, size, flags);
718 	set_fs(oldfs);
719 	return result;
720 }
721 
722 static void sock_aio_dtor(struct kiocb *iocb)
723 {
724 	kfree(iocb->private);
725 }
726 
727 static ssize_t sock_sendpage(struct file *file, struct page *page,
728 			     int offset, size_t size, loff_t *ppos, int more)
729 {
730 	struct socket *sock;
731 	int flags;
732 
733 	sock = file->private_data;
734 
735 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 	if (more)
737 		flags |= MSG_MORE;
738 
739 	return sock->ops->sendpage(sock, page, offset, size, flags);
740 }
741 
742 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
743 			        struct pipe_inode_info *pipe, size_t len,
744 				unsigned int flags)
745 {
746 	struct socket *sock = file->private_data;
747 
748 	if (unlikely(!sock->ops->splice_read))
749 		return -EINVAL;
750 
751 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
752 }
753 
754 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
755 					 struct sock_iocb *siocb)
756 {
757 	if (!is_sync_kiocb(iocb)) {
758 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
759 		if (!siocb)
760 			return NULL;
761 		iocb->ki_dtor = sock_aio_dtor;
762 	}
763 
764 	siocb->kiocb = iocb;
765 	iocb->private = siocb;
766 	return siocb;
767 }
768 
769 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
770 		struct file *file, const struct iovec *iov,
771 		unsigned long nr_segs)
772 {
773 	struct socket *sock = file->private_data;
774 	size_t size = 0;
775 	int i;
776 
777 	for (i = 0; i < nr_segs; i++)
778 		size += iov[i].iov_len;
779 
780 	msg->msg_name = NULL;
781 	msg->msg_namelen = 0;
782 	msg->msg_control = NULL;
783 	msg->msg_controllen = 0;
784 	msg->msg_iov = (struct iovec *)iov;
785 	msg->msg_iovlen = nr_segs;
786 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
787 
788 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
789 }
790 
791 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
792 				unsigned long nr_segs, loff_t pos)
793 {
794 	struct sock_iocb siocb, *x;
795 
796 	if (pos != 0)
797 		return -ESPIPE;
798 
799 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
800 		return 0;
801 
802 
803 	x = alloc_sock_iocb(iocb, &siocb);
804 	if (!x)
805 		return -ENOMEM;
806 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
807 }
808 
809 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
810 			struct file *file, const struct iovec *iov,
811 			unsigned long nr_segs)
812 {
813 	struct socket *sock = file->private_data;
814 	size_t size = 0;
815 	int i;
816 
817 	for (i = 0; i < nr_segs; i++)
818 		size += iov[i].iov_len;
819 
820 	msg->msg_name = NULL;
821 	msg->msg_namelen = 0;
822 	msg->msg_control = NULL;
823 	msg->msg_controllen = 0;
824 	msg->msg_iov = (struct iovec *)iov;
825 	msg->msg_iovlen = nr_segs;
826 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
827 	if (sock->type == SOCK_SEQPACKET)
828 		msg->msg_flags |= MSG_EOR;
829 
830 	return __sock_sendmsg(iocb, sock, msg, size);
831 }
832 
833 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
834 			  unsigned long nr_segs, loff_t pos)
835 {
836 	struct sock_iocb siocb, *x;
837 
838 	if (pos != 0)
839 		return -ESPIPE;
840 
841 	x = alloc_sock_iocb(iocb, &siocb);
842 	if (!x)
843 		return -ENOMEM;
844 
845 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847 
848 /*
849  * Atomic setting of ioctl hooks to avoid race
850  * with module unload.
851  */
852 
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
855 
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 	mutex_lock(&br_ioctl_mutex);
859 	br_ioctl_hook = hook;
860 	mutex_unlock(&br_ioctl_mutex);
861 }
862 
863 EXPORT_SYMBOL(brioctl_set);
864 
865 static DEFINE_MUTEX(vlan_ioctl_mutex);
866 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
867 
868 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
869 {
870 	mutex_lock(&vlan_ioctl_mutex);
871 	vlan_ioctl_hook = hook;
872 	mutex_unlock(&vlan_ioctl_mutex);
873 }
874 
875 EXPORT_SYMBOL(vlan_ioctl_set);
876 
877 static DEFINE_MUTEX(dlci_ioctl_mutex);
878 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
879 
880 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
881 {
882 	mutex_lock(&dlci_ioctl_mutex);
883 	dlci_ioctl_hook = hook;
884 	mutex_unlock(&dlci_ioctl_mutex);
885 }
886 
887 EXPORT_SYMBOL(dlci_ioctl_set);
888 
889 /*
890  *	With an ioctl, arg may well be a user mode pointer, but we don't know
891  *	what to do with it - that's up to the protocol still.
892  */
893 
894 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
895 {
896 	struct socket *sock;
897 	struct sock *sk;
898 	void __user *argp = (void __user *)arg;
899 	int pid, err;
900 	struct net *net;
901 
902 	sock = file->private_data;
903 	sk = sock->sk;
904 	net = sock_net(sk);
905 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
906 		err = dev_ioctl(net, cmd, argp);
907 	} else
908 #ifdef CONFIG_WIRELESS_EXT
909 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
910 		err = dev_ioctl(net, cmd, argp);
911 	} else
912 #endif				/* CONFIG_WIRELESS_EXT */
913 		switch (cmd) {
914 		case FIOSETOWN:
915 		case SIOCSPGRP:
916 			err = -EFAULT;
917 			if (get_user(pid, (int __user *)argp))
918 				break;
919 			err = f_setown(sock->file, pid, 1);
920 			break;
921 		case FIOGETOWN:
922 		case SIOCGPGRP:
923 			err = put_user(f_getown(sock->file),
924 				       (int __user *)argp);
925 			break;
926 		case SIOCGIFBR:
927 		case SIOCSIFBR:
928 		case SIOCBRADDBR:
929 		case SIOCBRDELBR:
930 			err = -ENOPKG;
931 			if (!br_ioctl_hook)
932 				request_module("bridge");
933 
934 			mutex_lock(&br_ioctl_mutex);
935 			if (br_ioctl_hook)
936 				err = br_ioctl_hook(net, cmd, argp);
937 			mutex_unlock(&br_ioctl_mutex);
938 			break;
939 		case SIOCGIFVLAN:
940 		case SIOCSIFVLAN:
941 			err = -ENOPKG;
942 			if (!vlan_ioctl_hook)
943 				request_module("8021q");
944 
945 			mutex_lock(&vlan_ioctl_mutex);
946 			if (vlan_ioctl_hook)
947 				err = vlan_ioctl_hook(net, argp);
948 			mutex_unlock(&vlan_ioctl_mutex);
949 			break;
950 		case SIOCADDDLCI:
951 		case SIOCDELDLCI:
952 			err = -ENOPKG;
953 			if (!dlci_ioctl_hook)
954 				request_module("dlci");
955 
956 			mutex_lock(&dlci_ioctl_mutex);
957 			if (dlci_ioctl_hook)
958 				err = dlci_ioctl_hook(cmd, argp);
959 			mutex_unlock(&dlci_ioctl_mutex);
960 			break;
961 		default:
962 			err = sock->ops->ioctl(sock, cmd, arg);
963 
964 			/*
965 			 * If this ioctl is unknown try to hand it down
966 			 * to the NIC driver.
967 			 */
968 			if (err == -ENOIOCTLCMD)
969 				err = dev_ioctl(net, cmd, argp);
970 			break;
971 		}
972 	return err;
973 }
974 
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 	int err;
978 	struct socket *sock = NULL;
979 
980 	err = security_socket_create(family, type, protocol, 1);
981 	if (err)
982 		goto out;
983 
984 	sock = sock_alloc();
985 	if (!sock) {
986 		err = -ENOMEM;
987 		goto out;
988 	}
989 
990 	sock->type = type;
991 	err = security_socket_post_create(sock, family, type, protocol, 1);
992 	if (err)
993 		goto out_release;
994 
995 out:
996 	*res = sock;
997 	return err;
998 out_release:
999 	sock_release(sock);
1000 	sock = NULL;
1001 	goto out;
1002 }
1003 
1004 /* No kernel lock held - perfect */
1005 static unsigned int sock_poll(struct file *file, poll_table *wait)
1006 {
1007 	struct socket *sock;
1008 
1009 	/*
1010 	 *      We can't return errors to poll, so it's either yes or no.
1011 	 */
1012 	sock = file->private_data;
1013 	return sock->ops->poll(file, sock, wait);
1014 }
1015 
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 	struct socket *sock = file->private_data;
1019 
1020 	return sock->ops->mmap(file, sock, vma);
1021 }
1022 
1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 	/*
1026 	 *      It was possible the inode is NULL we were
1027 	 *      closing an unfinished socket.
1028 	 */
1029 
1030 	if (!inode) {
1031 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1032 		return 0;
1033 	}
1034 	sock_release(SOCKET_I(inode));
1035 	return 0;
1036 }
1037 
1038 /*
1039  *	Update the socket async list
1040  *
1041  *	Fasync_list locking strategy.
1042  *
1043  *	1. fasync_list is modified only under process context socket lock
1044  *	   i.e. under semaphore.
1045  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1046  *	   or under socket lock.
1047  *	3. fasync_list can be used from softirq context, so that
1048  *	   modification under socket lock have to be enhanced with
1049  *	   write_lock_bh(&sk->sk_callback_lock).
1050  *							--ANK (990710)
1051  */
1052 
1053 static int sock_fasync(int fd, struct file *filp, int on)
1054 {
1055 	struct fasync_struct *fa, *fna = NULL, **prev;
1056 	struct socket *sock;
1057 	struct sock *sk;
1058 
1059 	if (on) {
1060 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1061 		if (fna == NULL)
1062 			return -ENOMEM;
1063 	}
1064 
1065 	sock = filp->private_data;
1066 
1067 	sk = sock->sk;
1068 	if (sk == NULL) {
1069 		kfree(fna);
1070 		return -EINVAL;
1071 	}
1072 
1073 	lock_sock(sk);
1074 
1075 	spin_lock(&filp->f_lock);
1076 	if (on)
1077 		filp->f_flags |= FASYNC;
1078 	else
1079 		filp->f_flags &= ~FASYNC;
1080 	spin_unlock(&filp->f_lock);
1081 
1082 	prev = &(sock->fasync_list);
1083 
1084 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1085 		if (fa->fa_file == filp)
1086 			break;
1087 
1088 	if (on) {
1089 		if (fa != NULL) {
1090 			write_lock_bh(&sk->sk_callback_lock);
1091 			fa->fa_fd = fd;
1092 			write_unlock_bh(&sk->sk_callback_lock);
1093 
1094 			kfree(fna);
1095 			goto out;
1096 		}
1097 		fna->fa_file = filp;
1098 		fna->fa_fd = fd;
1099 		fna->magic = FASYNC_MAGIC;
1100 		fna->fa_next = sock->fasync_list;
1101 		write_lock_bh(&sk->sk_callback_lock);
1102 		sock->fasync_list = fna;
1103 		write_unlock_bh(&sk->sk_callback_lock);
1104 	} else {
1105 		if (fa != NULL) {
1106 			write_lock_bh(&sk->sk_callback_lock);
1107 			*prev = fa->fa_next;
1108 			write_unlock_bh(&sk->sk_callback_lock);
1109 			kfree(fa);
1110 		}
1111 	}
1112 
1113 out:
1114 	release_sock(sock->sk);
1115 	return 0;
1116 }
1117 
1118 /* This function may be called only under socket lock or callback_lock */
1119 
1120 int sock_wake_async(struct socket *sock, int how, int band)
1121 {
1122 	if (!sock || !sock->fasync_list)
1123 		return -1;
1124 	switch (how) {
1125 	case SOCK_WAKE_WAITD:
1126 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1127 			break;
1128 		goto call_kill;
1129 	case SOCK_WAKE_SPACE:
1130 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1131 			break;
1132 		/* fall through */
1133 	case SOCK_WAKE_IO:
1134 call_kill:
1135 		__kill_fasync(sock->fasync_list, SIGIO, band);
1136 		break;
1137 	case SOCK_WAKE_URG:
1138 		__kill_fasync(sock->fasync_list, SIGURG, band);
1139 	}
1140 	return 0;
1141 }
1142 
1143 static int __sock_create(struct net *net, int family, int type, int protocol,
1144 			 struct socket **res, int kern)
1145 {
1146 	int err;
1147 	struct socket *sock;
1148 	const struct net_proto_family *pf;
1149 
1150 	/*
1151 	 *      Check protocol is in range
1152 	 */
1153 	if (family < 0 || family >= NPROTO)
1154 		return -EAFNOSUPPORT;
1155 	if (type < 0 || type >= SOCK_MAX)
1156 		return -EINVAL;
1157 
1158 	/* Compatibility.
1159 
1160 	   This uglymoron is moved from INET layer to here to avoid
1161 	   deadlock in module load.
1162 	 */
1163 	if (family == PF_INET && type == SOCK_PACKET) {
1164 		static int warned;
1165 		if (!warned) {
1166 			warned = 1;
1167 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1168 			       current->comm);
1169 		}
1170 		family = PF_PACKET;
1171 	}
1172 
1173 	err = security_socket_create(family, type, protocol, kern);
1174 	if (err)
1175 		return err;
1176 
1177 	/*
1178 	 *	Allocate the socket and allow the family to set things up. if
1179 	 *	the protocol is 0, the family is instructed to select an appropriate
1180 	 *	default.
1181 	 */
1182 	sock = sock_alloc();
1183 	if (!sock) {
1184 		if (net_ratelimit())
1185 			printk(KERN_WARNING "socket: no more sockets\n");
1186 		return -ENFILE;	/* Not exactly a match, but its the
1187 				   closest posix thing */
1188 	}
1189 
1190 	sock->type = type;
1191 
1192 #ifdef CONFIG_MODULES
1193 	/* Attempt to load a protocol module if the find failed.
1194 	 *
1195 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1196 	 * requested real, full-featured networking support upon configuration.
1197 	 * Otherwise module support will break!
1198 	 */
1199 	if (net_families[family] == NULL)
1200 		request_module("net-pf-%d", family);
1201 #endif
1202 
1203 	rcu_read_lock();
1204 	pf = rcu_dereference(net_families[family]);
1205 	err = -EAFNOSUPPORT;
1206 	if (!pf)
1207 		goto out_release;
1208 
1209 	/*
1210 	 * We will call the ->create function, that possibly is in a loadable
1211 	 * module, so we have to bump that loadable module refcnt first.
1212 	 */
1213 	if (!try_module_get(pf->owner))
1214 		goto out_release;
1215 
1216 	/* Now protected by module ref count */
1217 	rcu_read_unlock();
1218 
1219 	err = pf->create(net, sock, protocol);
1220 	if (err < 0)
1221 		goto out_module_put;
1222 
1223 	/*
1224 	 * Now to bump the refcnt of the [loadable] module that owns this
1225 	 * socket at sock_release time we decrement its refcnt.
1226 	 */
1227 	if (!try_module_get(sock->ops->owner))
1228 		goto out_module_busy;
1229 
1230 	/*
1231 	 * Now that we're done with the ->create function, the [loadable]
1232 	 * module can have its refcnt decremented
1233 	 */
1234 	module_put(pf->owner);
1235 	err = security_socket_post_create(sock, family, type, protocol, kern);
1236 	if (err)
1237 		goto out_sock_release;
1238 	*res = sock;
1239 
1240 	return 0;
1241 
1242 out_module_busy:
1243 	err = -EAFNOSUPPORT;
1244 out_module_put:
1245 	sock->ops = NULL;
1246 	module_put(pf->owner);
1247 out_sock_release:
1248 	sock_release(sock);
1249 	return err;
1250 
1251 out_release:
1252 	rcu_read_unlock();
1253 	goto out_sock_release;
1254 }
1255 
1256 int sock_create(int family, int type, int protocol, struct socket **res)
1257 {
1258 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1259 }
1260 
1261 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1262 {
1263 	return __sock_create(&init_net, family, type, protocol, res, 1);
1264 }
1265 
1266 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1267 {
1268 	int retval;
1269 	struct socket *sock;
1270 	int flags;
1271 
1272 	/* Check the SOCK_* constants for consistency.  */
1273 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1274 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1275 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1276 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1277 
1278 	flags = type & ~SOCK_TYPE_MASK;
1279 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1280 		return -EINVAL;
1281 	type &= SOCK_TYPE_MASK;
1282 
1283 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1284 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1285 
1286 	retval = sock_create(family, type, protocol, &sock);
1287 	if (retval < 0)
1288 		goto out;
1289 
1290 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1291 	if (retval < 0)
1292 		goto out_release;
1293 
1294 out:
1295 	/* It may be already another descriptor 8) Not kernel problem. */
1296 	return retval;
1297 
1298 out_release:
1299 	sock_release(sock);
1300 	return retval;
1301 }
1302 
1303 /*
1304  *	Create a pair of connected sockets.
1305  */
1306 
1307 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1308 		int __user *, usockvec)
1309 {
1310 	struct socket *sock1, *sock2;
1311 	int fd1, fd2, err;
1312 	struct file *newfile1, *newfile2;
1313 	int flags;
1314 
1315 	flags = type & ~SOCK_TYPE_MASK;
1316 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1317 		return -EINVAL;
1318 	type &= SOCK_TYPE_MASK;
1319 
1320 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1321 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1322 
1323 	/*
1324 	 * Obtain the first socket and check if the underlying protocol
1325 	 * supports the socketpair call.
1326 	 */
1327 
1328 	err = sock_create(family, type, protocol, &sock1);
1329 	if (err < 0)
1330 		goto out;
1331 
1332 	err = sock_create(family, type, protocol, &sock2);
1333 	if (err < 0)
1334 		goto out_release_1;
1335 
1336 	err = sock1->ops->socketpair(sock1, sock2);
1337 	if (err < 0)
1338 		goto out_release_both;
1339 
1340 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1341 	if (unlikely(fd1 < 0)) {
1342 		err = fd1;
1343 		goto out_release_both;
1344 	}
1345 
1346 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1347 	if (unlikely(fd2 < 0)) {
1348 		err = fd2;
1349 		put_filp(newfile1);
1350 		put_unused_fd(fd1);
1351 		goto out_release_both;
1352 	}
1353 
1354 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1355 	if (unlikely(err < 0)) {
1356 		goto out_fd2;
1357 	}
1358 
1359 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1360 	if (unlikely(err < 0)) {
1361 		fput(newfile1);
1362 		goto out_fd1;
1363 	}
1364 
1365 	audit_fd_pair(fd1, fd2);
1366 	fd_install(fd1, newfile1);
1367 	fd_install(fd2, newfile2);
1368 	/* fd1 and fd2 may be already another descriptors.
1369 	 * Not kernel problem.
1370 	 */
1371 
1372 	err = put_user(fd1, &usockvec[0]);
1373 	if (!err)
1374 		err = put_user(fd2, &usockvec[1]);
1375 	if (!err)
1376 		return 0;
1377 
1378 	sys_close(fd2);
1379 	sys_close(fd1);
1380 	return err;
1381 
1382 out_release_both:
1383 	sock_release(sock2);
1384 out_release_1:
1385 	sock_release(sock1);
1386 out:
1387 	return err;
1388 
1389 out_fd2:
1390 	put_filp(newfile1);
1391 	sock_release(sock1);
1392 out_fd1:
1393 	put_filp(newfile2);
1394 	sock_release(sock2);
1395 	put_unused_fd(fd1);
1396 	put_unused_fd(fd2);
1397 	goto out;
1398 }
1399 
1400 /*
1401  *	Bind a name to a socket. Nothing much to do here since it's
1402  *	the protocol's responsibility to handle the local address.
1403  *
1404  *	We move the socket address to kernel space before we call
1405  *	the protocol layer (having also checked the address is ok).
1406  */
1407 
1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 {
1410 	struct socket *sock;
1411 	struct sockaddr_storage address;
1412 	int err, fput_needed;
1413 
1414 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 	if (sock) {
1416 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1417 		if (err >= 0) {
1418 			err = security_socket_bind(sock,
1419 						   (struct sockaddr *)&address,
1420 						   addrlen);
1421 			if (!err)
1422 				err = sock->ops->bind(sock,
1423 						      (struct sockaddr *)
1424 						      &address, addrlen);
1425 		}
1426 		fput_light(sock->file, fput_needed);
1427 	}
1428 	return err;
1429 }
1430 
1431 /*
1432  *	Perform a listen. Basically, we allow the protocol to do anything
1433  *	necessary for a listen, and if that works, we mark the socket as
1434  *	ready for listening.
1435  */
1436 
1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 {
1439 	struct socket *sock;
1440 	int err, fput_needed;
1441 	int somaxconn;
1442 
1443 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 	if (sock) {
1445 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1446 		if ((unsigned)backlog > somaxconn)
1447 			backlog = somaxconn;
1448 
1449 		err = security_socket_listen(sock, backlog);
1450 		if (!err)
1451 			err = sock->ops->listen(sock, backlog);
1452 
1453 		fput_light(sock->file, fput_needed);
1454 	}
1455 	return err;
1456 }
1457 
1458 /*
1459  *	For accept, we attempt to create a new socket, set up the link
1460  *	with the client, wake up the client, then return the new
1461  *	connected fd. We collect the address of the connector in kernel
1462  *	space and move it to user at the very end. This is unclean because
1463  *	we open the socket then return an error.
1464  *
1465  *	1003.1g adds the ability to recvmsg() to query connection pending
1466  *	status to recvmsg. We need to add that support in a way thats
1467  *	clean when we restucture accept also.
1468  */
1469 
1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1471 		int __user *, upeer_addrlen, int, flags)
1472 {
1473 	struct socket *sock, *newsock;
1474 	struct file *newfile;
1475 	int err, len, newfd, fput_needed;
1476 	struct sockaddr_storage address;
1477 
1478 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1479 		return -EINVAL;
1480 
1481 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1482 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483 
1484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 	if (!sock)
1486 		goto out;
1487 
1488 	err = -ENFILE;
1489 	if (!(newsock = sock_alloc()))
1490 		goto out_put;
1491 
1492 	newsock->type = sock->type;
1493 	newsock->ops = sock->ops;
1494 
1495 	/*
1496 	 * We don't need try_module_get here, as the listening socket (sock)
1497 	 * has the protocol module (sock->ops->owner) held.
1498 	 */
1499 	__module_get(newsock->ops->owner);
1500 
1501 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1502 	if (unlikely(newfd < 0)) {
1503 		err = newfd;
1504 		sock_release(newsock);
1505 		goto out_put;
1506 	}
1507 
1508 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1509 	if (err < 0)
1510 		goto out_fd_simple;
1511 
1512 	err = security_socket_accept(sock, newsock);
1513 	if (err)
1514 		goto out_fd;
1515 
1516 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1517 	if (err < 0)
1518 		goto out_fd;
1519 
1520 	if (upeer_sockaddr) {
1521 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1522 					  &len, 2) < 0) {
1523 			err = -ECONNABORTED;
1524 			goto out_fd;
1525 		}
1526 		err = move_addr_to_user((struct sockaddr *)&address,
1527 					len, upeer_sockaddr, upeer_addrlen);
1528 		if (err < 0)
1529 			goto out_fd;
1530 	}
1531 
1532 	/* File flags are not inherited via accept() unlike another OSes. */
1533 
1534 	fd_install(newfd, newfile);
1535 	err = newfd;
1536 
1537 out_put:
1538 	fput_light(sock->file, fput_needed);
1539 out:
1540 	return err;
1541 out_fd_simple:
1542 	sock_release(newsock);
1543 	put_filp(newfile);
1544 	put_unused_fd(newfd);
1545 	goto out_put;
1546 out_fd:
1547 	fput(newfile);
1548 	put_unused_fd(newfd);
1549 	goto out_put;
1550 }
1551 
1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1553 		int __user *, upeer_addrlen)
1554 {
1555 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1556 }
1557 
1558 /*
1559  *	Attempt to connect to a socket with the server address.  The address
1560  *	is in user space so we verify it is OK and move it to kernel space.
1561  *
1562  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1563  *	break bindings
1564  *
1565  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566  *	other SEQPACKET protocols that take time to connect() as it doesn't
1567  *	include the -EINPROGRESS status for such sockets.
1568  */
1569 
1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1571 		int, addrlen)
1572 {
1573 	struct socket *sock;
1574 	struct sockaddr_storage address;
1575 	int err, fput_needed;
1576 
1577 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 	if (!sock)
1579 		goto out;
1580 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1581 	if (err < 0)
1582 		goto out_put;
1583 
1584 	err =
1585 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1586 	if (err)
1587 		goto out_put;
1588 
1589 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1590 				 sock->file->f_flags);
1591 out_put:
1592 	fput_light(sock->file, fput_needed);
1593 out:
1594 	return err;
1595 }
1596 
1597 /*
1598  *	Get the local address ('name') of a socket object. Move the obtained
1599  *	name to user space.
1600  */
1601 
1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1603 		int __user *, usockaddr_len)
1604 {
1605 	struct socket *sock;
1606 	struct sockaddr_storage address;
1607 	int len, err, fput_needed;
1608 
1609 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 	if (!sock)
1611 		goto out;
1612 
1613 	err = security_socket_getsockname(sock);
1614 	if (err)
1615 		goto out_put;
1616 
1617 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1618 	if (err)
1619 		goto out_put;
1620 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1621 
1622 out_put:
1623 	fput_light(sock->file, fput_needed);
1624 out:
1625 	return err;
1626 }
1627 
1628 /*
1629  *	Get the remote address ('name') of a socket object. Move the obtained
1630  *	name to user space.
1631  */
1632 
1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1634 		int __user *, usockaddr_len)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int len, err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock != NULL) {
1642 		err = security_socket_getpeername(sock);
1643 		if (err) {
1644 			fput_light(sock->file, fput_needed);
1645 			return err;
1646 		}
1647 
1648 		err =
1649 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1650 				       1);
1651 		if (!err)
1652 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1653 						usockaddr_len);
1654 		fput_light(sock->file, fput_needed);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Send a datagram to a given address. We move the address into kernel
1661  *	space and check the user space data area is readable before invoking
1662  *	the protocol.
1663  */
1664 
1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1666 		unsigned, flags, struct sockaddr __user *, addr,
1667 		int, addr_len)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err;
1672 	struct msghdr msg;
1673 	struct iovec iov;
1674 	int fput_needed;
1675 
1676 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1677 	if (!sock)
1678 		goto out;
1679 
1680 	iov.iov_base = buff;
1681 	iov.iov_len = len;
1682 	msg.msg_name = NULL;
1683 	msg.msg_iov = &iov;
1684 	msg.msg_iovlen = 1;
1685 	msg.msg_control = NULL;
1686 	msg.msg_controllen = 0;
1687 	msg.msg_namelen = 0;
1688 	if (addr) {
1689 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1690 		if (err < 0)
1691 			goto out_put;
1692 		msg.msg_name = (struct sockaddr *)&address;
1693 		msg.msg_namelen = addr_len;
1694 	}
1695 	if (sock->file->f_flags & O_NONBLOCK)
1696 		flags |= MSG_DONTWAIT;
1697 	msg.msg_flags = flags;
1698 	err = sock_sendmsg(sock, &msg, len);
1699 
1700 out_put:
1701 	fput_light(sock->file, fput_needed);
1702 out:
1703 	return err;
1704 }
1705 
1706 /*
1707  *	Send a datagram down a socket.
1708  */
1709 
1710 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1711 		unsigned, flags)
1712 {
1713 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1714 }
1715 
1716 /*
1717  *	Receive a frame from the socket and optionally record the address of the
1718  *	sender. We verify the buffers are writable and if needed move the
1719  *	sender address from kernel to user space.
1720  */
1721 
1722 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1723 		unsigned, flags, struct sockaddr __user *, addr,
1724 		int __user *, addr_len)
1725 {
1726 	struct socket *sock;
1727 	struct iovec iov;
1728 	struct msghdr msg;
1729 	struct sockaddr_storage address;
1730 	int err, err2;
1731 	int fput_needed;
1732 
1733 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 	if (!sock)
1735 		goto out;
1736 
1737 	msg.msg_control = NULL;
1738 	msg.msg_controllen = 0;
1739 	msg.msg_iovlen = 1;
1740 	msg.msg_iov = &iov;
1741 	iov.iov_len = size;
1742 	iov.iov_base = ubuf;
1743 	msg.msg_name = (struct sockaddr *)&address;
1744 	msg.msg_namelen = sizeof(address);
1745 	if (sock->file->f_flags & O_NONBLOCK)
1746 		flags |= MSG_DONTWAIT;
1747 	err = sock_recvmsg(sock, &msg, size, flags);
1748 
1749 	if (err >= 0 && addr != NULL) {
1750 		err2 = move_addr_to_user((struct sockaddr *)&address,
1751 					 msg.msg_namelen, addr, addr_len);
1752 		if (err2 < 0)
1753 			err = err2;
1754 	}
1755 
1756 	fput_light(sock->file, fput_needed);
1757 out:
1758 	return err;
1759 }
1760 
1761 /*
1762  *	Receive a datagram from a socket.
1763  */
1764 
1765 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1766 			 unsigned flags)
1767 {
1768 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1769 }
1770 
1771 /*
1772  *	Set a socket option. Because we don't know the option lengths we have
1773  *	to pass the user mode parameter for the protocols to sort out.
1774  */
1775 
1776 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1777 		char __user *, optval, int, optlen)
1778 {
1779 	int err, fput_needed;
1780 	struct socket *sock;
1781 
1782 	if (optlen < 0)
1783 		return -EINVAL;
1784 
1785 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1786 	if (sock != NULL) {
1787 		err = security_socket_setsockopt(sock, level, optname);
1788 		if (err)
1789 			goto out_put;
1790 
1791 		if (level == SOL_SOCKET)
1792 			err =
1793 			    sock_setsockopt(sock, level, optname, optval,
1794 					    optlen);
1795 		else
1796 			err =
1797 			    sock->ops->setsockopt(sock, level, optname, optval,
1798 						  optlen);
1799 out_put:
1800 		fput_light(sock->file, fput_needed);
1801 	}
1802 	return err;
1803 }
1804 
1805 /*
1806  *	Get a socket option. Because we don't know the option lengths we have
1807  *	to pass a user mode parameter for the protocols to sort out.
1808  */
1809 
1810 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1811 		char __user *, optval, int __user *, optlen)
1812 {
1813 	int err, fput_needed;
1814 	struct socket *sock;
1815 
1816 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 	if (sock != NULL) {
1818 		err = security_socket_getsockopt(sock, level, optname);
1819 		if (err)
1820 			goto out_put;
1821 
1822 		if (level == SOL_SOCKET)
1823 			err =
1824 			    sock_getsockopt(sock, level, optname, optval,
1825 					    optlen);
1826 		else
1827 			err =
1828 			    sock->ops->getsockopt(sock, level, optname, optval,
1829 						  optlen);
1830 out_put:
1831 		fput_light(sock->file, fput_needed);
1832 	}
1833 	return err;
1834 }
1835 
1836 /*
1837  *	Shutdown a socket.
1838  */
1839 
1840 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1841 {
1842 	int err, fput_needed;
1843 	struct socket *sock;
1844 
1845 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1846 	if (sock != NULL) {
1847 		err = security_socket_shutdown(sock, how);
1848 		if (!err)
1849 			err = sock->ops->shutdown(sock, how);
1850 		fput_light(sock->file, fput_needed);
1851 	}
1852 	return err;
1853 }
1854 
1855 /* A couple of helpful macros for getting the address of the 32/64 bit
1856  * fields which are the same type (int / unsigned) on our platforms.
1857  */
1858 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1859 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1860 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1861 
1862 /*
1863  *	BSD sendmsg interface
1864  */
1865 
1866 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1867 {
1868 	struct compat_msghdr __user *msg_compat =
1869 	    (struct compat_msghdr __user *)msg;
1870 	struct socket *sock;
1871 	struct sockaddr_storage address;
1872 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1873 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1874 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1875 	/* 20 is size of ipv6_pktinfo */
1876 	unsigned char *ctl_buf = ctl;
1877 	struct msghdr msg_sys;
1878 	int err, ctl_len, iov_size, total_len;
1879 	int fput_needed;
1880 
1881 	err = -EFAULT;
1882 	if (MSG_CMSG_COMPAT & flags) {
1883 		if (get_compat_msghdr(&msg_sys, msg_compat))
1884 			return -EFAULT;
1885 	}
1886 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1887 		return -EFAULT;
1888 
1889 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 	if (!sock)
1891 		goto out;
1892 
1893 	/* do not move before msg_sys is valid */
1894 	err = -EMSGSIZE;
1895 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1896 		goto out_put;
1897 
1898 	/* Check whether to allocate the iovec area */
1899 	err = -ENOMEM;
1900 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1901 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1902 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1903 		if (!iov)
1904 			goto out_put;
1905 	}
1906 
1907 	/* This will also move the address data into kernel space */
1908 	if (MSG_CMSG_COMPAT & flags) {
1909 		err = verify_compat_iovec(&msg_sys, iov,
1910 					  (struct sockaddr *)&address,
1911 					  VERIFY_READ);
1912 	} else
1913 		err = verify_iovec(&msg_sys, iov,
1914 				   (struct sockaddr *)&address,
1915 				   VERIFY_READ);
1916 	if (err < 0)
1917 		goto out_freeiov;
1918 	total_len = err;
1919 
1920 	err = -ENOBUFS;
1921 
1922 	if (msg_sys.msg_controllen > INT_MAX)
1923 		goto out_freeiov;
1924 	ctl_len = msg_sys.msg_controllen;
1925 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1926 		err =
1927 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1928 						     sizeof(ctl));
1929 		if (err)
1930 			goto out_freeiov;
1931 		ctl_buf = msg_sys.msg_control;
1932 		ctl_len = msg_sys.msg_controllen;
1933 	} else if (ctl_len) {
1934 		if (ctl_len > sizeof(ctl)) {
1935 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1936 			if (ctl_buf == NULL)
1937 				goto out_freeiov;
1938 		}
1939 		err = -EFAULT;
1940 		/*
1941 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1942 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1943 		 * checking falls down on this.
1944 		 */
1945 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1946 				   ctl_len))
1947 			goto out_freectl;
1948 		msg_sys.msg_control = ctl_buf;
1949 	}
1950 	msg_sys.msg_flags = flags;
1951 
1952 	if (sock->file->f_flags & O_NONBLOCK)
1953 		msg_sys.msg_flags |= MSG_DONTWAIT;
1954 	err = sock_sendmsg(sock, &msg_sys, total_len);
1955 
1956 out_freectl:
1957 	if (ctl_buf != ctl)
1958 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1959 out_freeiov:
1960 	if (iov != iovstack)
1961 		sock_kfree_s(sock->sk, iov, iov_size);
1962 out_put:
1963 	fput_light(sock->file, fput_needed);
1964 out:
1965 	return err;
1966 }
1967 
1968 /*
1969  *	BSD recvmsg interface
1970  */
1971 
1972 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1973 		unsigned int, flags)
1974 {
1975 	struct compat_msghdr __user *msg_compat =
1976 	    (struct compat_msghdr __user *)msg;
1977 	struct socket *sock;
1978 	struct iovec iovstack[UIO_FASTIOV];
1979 	struct iovec *iov = iovstack;
1980 	struct msghdr msg_sys;
1981 	unsigned long cmsg_ptr;
1982 	int err, iov_size, total_len, len;
1983 	int fput_needed;
1984 
1985 	/* kernel mode address */
1986 	struct sockaddr_storage addr;
1987 
1988 	/* user mode address pointers */
1989 	struct sockaddr __user *uaddr;
1990 	int __user *uaddr_len;
1991 
1992 	if (MSG_CMSG_COMPAT & flags) {
1993 		if (get_compat_msghdr(&msg_sys, msg_compat))
1994 			return -EFAULT;
1995 	}
1996 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1997 		return -EFAULT;
1998 
1999 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2000 	if (!sock)
2001 		goto out;
2002 
2003 	err = -EMSGSIZE;
2004 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
2005 		goto out_put;
2006 
2007 	/* Check whether to allocate the iovec area */
2008 	err = -ENOMEM;
2009 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2010 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2011 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2012 		if (!iov)
2013 			goto out_put;
2014 	}
2015 
2016 	/*
2017 	 *      Save the user-mode address (verify_iovec will change the
2018 	 *      kernel msghdr to use the kernel address space)
2019 	 */
2020 
2021 	uaddr = (__force void __user *)msg_sys.msg_name;
2022 	uaddr_len = COMPAT_NAMELEN(msg);
2023 	if (MSG_CMSG_COMPAT & flags) {
2024 		err = verify_compat_iovec(&msg_sys, iov,
2025 					  (struct sockaddr *)&addr,
2026 					  VERIFY_WRITE);
2027 	} else
2028 		err = verify_iovec(&msg_sys, iov,
2029 				   (struct sockaddr *)&addr,
2030 				   VERIFY_WRITE);
2031 	if (err < 0)
2032 		goto out_freeiov;
2033 	total_len = err;
2034 
2035 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
2036 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2037 
2038 	if (sock->file->f_flags & O_NONBLOCK)
2039 		flags |= MSG_DONTWAIT;
2040 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2041 	if (err < 0)
2042 		goto out_freeiov;
2043 	len = err;
2044 
2045 	if (uaddr != NULL) {
2046 		err = move_addr_to_user((struct sockaddr *)&addr,
2047 					msg_sys.msg_namelen, uaddr,
2048 					uaddr_len);
2049 		if (err < 0)
2050 			goto out_freeiov;
2051 	}
2052 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2053 			 COMPAT_FLAGS(msg));
2054 	if (err)
2055 		goto out_freeiov;
2056 	if (MSG_CMSG_COMPAT & flags)
2057 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2058 				 &msg_compat->msg_controllen);
2059 	else
2060 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2061 				 &msg->msg_controllen);
2062 	if (err)
2063 		goto out_freeiov;
2064 	err = len;
2065 
2066 out_freeiov:
2067 	if (iov != iovstack)
2068 		sock_kfree_s(sock->sk, iov, iov_size);
2069 out_put:
2070 	fput_light(sock->file, fput_needed);
2071 out:
2072 	return err;
2073 }
2074 
2075 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2076 
2077 /* Argument list sizes for sys_socketcall */
2078 #define AL(x) ((x) * sizeof(unsigned long))
2079 static const unsigned char nargs[19]={
2080 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2081 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2082 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2083 	AL(4)
2084 };
2085 
2086 #undef AL
2087 
2088 /*
2089  *	System call vectors.
2090  *
2091  *	Argument checking cleaned up. Saved 20% in size.
2092  *  This function doesn't need to set the kernel lock because
2093  *  it is set by the callees.
2094  */
2095 
2096 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2097 {
2098 	unsigned long a[6];
2099 	unsigned long a0, a1;
2100 	int err;
2101 
2102 	if (call < 1 || call > SYS_ACCEPT4)
2103 		return -EINVAL;
2104 
2105 	/* copy_from_user should be SMP safe. */
2106 	if (copy_from_user(a, args, nargs[call]))
2107 		return -EFAULT;
2108 
2109 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2110 
2111 	a0 = a[0];
2112 	a1 = a[1];
2113 
2114 	switch (call) {
2115 	case SYS_SOCKET:
2116 		err = sys_socket(a0, a1, a[2]);
2117 		break;
2118 	case SYS_BIND:
2119 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2120 		break;
2121 	case SYS_CONNECT:
2122 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2123 		break;
2124 	case SYS_LISTEN:
2125 		err = sys_listen(a0, a1);
2126 		break;
2127 	case SYS_ACCEPT:
2128 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2129 				  (int __user *)a[2], 0);
2130 		break;
2131 	case SYS_GETSOCKNAME:
2132 		err =
2133 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2134 				    (int __user *)a[2]);
2135 		break;
2136 	case SYS_GETPEERNAME:
2137 		err =
2138 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2139 				    (int __user *)a[2]);
2140 		break;
2141 	case SYS_SOCKETPAIR:
2142 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2143 		break;
2144 	case SYS_SEND:
2145 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2146 		break;
2147 	case SYS_SENDTO:
2148 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2149 				 (struct sockaddr __user *)a[4], a[5]);
2150 		break;
2151 	case SYS_RECV:
2152 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2153 		break;
2154 	case SYS_RECVFROM:
2155 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2156 				   (struct sockaddr __user *)a[4],
2157 				   (int __user *)a[5]);
2158 		break;
2159 	case SYS_SHUTDOWN:
2160 		err = sys_shutdown(a0, a1);
2161 		break;
2162 	case SYS_SETSOCKOPT:
2163 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2164 		break;
2165 	case SYS_GETSOCKOPT:
2166 		err =
2167 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2168 				   (int __user *)a[4]);
2169 		break;
2170 	case SYS_SENDMSG:
2171 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2172 		break;
2173 	case SYS_RECVMSG:
2174 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2175 		break;
2176 	case SYS_ACCEPT4:
2177 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2178 				  (int __user *)a[2], a[3]);
2179 		break;
2180 	default:
2181 		err = -EINVAL;
2182 		break;
2183 	}
2184 	return err;
2185 }
2186 
2187 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2188 
2189 /**
2190  *	sock_register - add a socket protocol handler
2191  *	@ops: description of protocol
2192  *
2193  *	This function is called by a protocol handler that wants to
2194  *	advertise its address family, and have it linked into the
2195  *	socket interface. The value ops->family coresponds to the
2196  *	socket system call protocol family.
2197  */
2198 int sock_register(const struct net_proto_family *ops)
2199 {
2200 	int err;
2201 
2202 	if (ops->family >= NPROTO) {
2203 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2204 		       NPROTO);
2205 		return -ENOBUFS;
2206 	}
2207 
2208 	spin_lock(&net_family_lock);
2209 	if (net_families[ops->family])
2210 		err = -EEXIST;
2211 	else {
2212 		net_families[ops->family] = ops;
2213 		err = 0;
2214 	}
2215 	spin_unlock(&net_family_lock);
2216 
2217 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2218 	return err;
2219 }
2220 
2221 /**
2222  *	sock_unregister - remove a protocol handler
2223  *	@family: protocol family to remove
2224  *
2225  *	This function is called by a protocol handler that wants to
2226  *	remove its address family, and have it unlinked from the
2227  *	new socket creation.
2228  *
2229  *	If protocol handler is a module, then it can use module reference
2230  *	counts to protect against new references. If protocol handler is not
2231  *	a module then it needs to provide its own protection in
2232  *	the ops->create routine.
2233  */
2234 void sock_unregister(int family)
2235 {
2236 	BUG_ON(family < 0 || family >= NPROTO);
2237 
2238 	spin_lock(&net_family_lock);
2239 	net_families[family] = NULL;
2240 	spin_unlock(&net_family_lock);
2241 
2242 	synchronize_rcu();
2243 
2244 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2245 }
2246 
2247 static int __init sock_init(void)
2248 {
2249 	/*
2250 	 *      Initialize sock SLAB cache.
2251 	 */
2252 
2253 	sk_init();
2254 
2255 	/*
2256 	 *      Initialize skbuff SLAB cache
2257 	 */
2258 	skb_init();
2259 
2260 	/*
2261 	 *      Initialize the protocols module.
2262 	 */
2263 
2264 	init_inodecache();
2265 	register_filesystem(&sock_fs_type);
2266 	sock_mnt = kern_mount(&sock_fs_type);
2267 
2268 	/* The real protocol initialization is performed in later initcalls.
2269 	 */
2270 
2271 #ifdef CONFIG_NETFILTER
2272 	netfilter_init();
2273 #endif
2274 
2275 	return 0;
2276 }
2277 
2278 core_initcall(sock_init);	/* early initcall */
2279 
2280 #ifdef CONFIG_PROC_FS
2281 void socket_seq_show(struct seq_file *seq)
2282 {
2283 	int cpu;
2284 	int counter = 0;
2285 
2286 	for_each_possible_cpu(cpu)
2287 	    counter += per_cpu(sockets_in_use, cpu);
2288 
2289 	/* It can be negative, by the way. 8) */
2290 	if (counter < 0)
2291 		counter = 0;
2292 
2293 	seq_printf(seq, "sockets: used %d\n", counter);
2294 }
2295 #endif				/* CONFIG_PROC_FS */
2296 
2297 #ifdef CONFIG_COMPAT
2298 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2299 			      unsigned long arg)
2300 {
2301 	struct socket *sock = file->private_data;
2302 	int ret = -ENOIOCTLCMD;
2303 	struct sock *sk;
2304 	struct net *net;
2305 
2306 	sk = sock->sk;
2307 	net = sock_net(sk);
2308 
2309 	if (sock->ops->compat_ioctl)
2310 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2311 
2312 	if (ret == -ENOIOCTLCMD &&
2313 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2314 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2315 
2316 	return ret;
2317 }
2318 #endif
2319 
2320 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2321 {
2322 	return sock->ops->bind(sock, addr, addrlen);
2323 }
2324 
2325 int kernel_listen(struct socket *sock, int backlog)
2326 {
2327 	return sock->ops->listen(sock, backlog);
2328 }
2329 
2330 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2331 {
2332 	struct sock *sk = sock->sk;
2333 	int err;
2334 
2335 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2336 			       newsock);
2337 	if (err < 0)
2338 		goto done;
2339 
2340 	err = sock->ops->accept(sock, *newsock, flags);
2341 	if (err < 0) {
2342 		sock_release(*newsock);
2343 		*newsock = NULL;
2344 		goto done;
2345 	}
2346 
2347 	(*newsock)->ops = sock->ops;
2348 	__module_get((*newsock)->ops->owner);
2349 
2350 done:
2351 	return err;
2352 }
2353 
2354 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2355 		   int flags)
2356 {
2357 	return sock->ops->connect(sock, addr, addrlen, flags);
2358 }
2359 
2360 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2361 			 int *addrlen)
2362 {
2363 	return sock->ops->getname(sock, addr, addrlen, 0);
2364 }
2365 
2366 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2367 			 int *addrlen)
2368 {
2369 	return sock->ops->getname(sock, addr, addrlen, 1);
2370 }
2371 
2372 int kernel_getsockopt(struct socket *sock, int level, int optname,
2373 			char *optval, int *optlen)
2374 {
2375 	mm_segment_t oldfs = get_fs();
2376 	int err;
2377 
2378 	set_fs(KERNEL_DS);
2379 	if (level == SOL_SOCKET)
2380 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2381 	else
2382 		err = sock->ops->getsockopt(sock, level, optname, optval,
2383 					    optlen);
2384 	set_fs(oldfs);
2385 	return err;
2386 }
2387 
2388 int kernel_setsockopt(struct socket *sock, int level, int optname,
2389 			char *optval, int optlen)
2390 {
2391 	mm_segment_t oldfs = get_fs();
2392 	int err;
2393 
2394 	set_fs(KERNEL_DS);
2395 	if (level == SOL_SOCKET)
2396 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2397 	else
2398 		err = sock->ops->setsockopt(sock, level, optname, optval,
2399 					    optlen);
2400 	set_fs(oldfs);
2401 	return err;
2402 }
2403 
2404 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2405 		    size_t size, int flags)
2406 {
2407 	if (sock->ops->sendpage)
2408 		return sock->ops->sendpage(sock, page, offset, size, flags);
2409 
2410 	return sock_no_sendpage(sock, page, offset, size, flags);
2411 }
2412 
2413 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2414 {
2415 	mm_segment_t oldfs = get_fs();
2416 	int err;
2417 
2418 	set_fs(KERNEL_DS);
2419 	err = sock->ops->ioctl(sock, cmd, arg);
2420 	set_fs(oldfs);
2421 
2422 	return err;
2423 }
2424 
2425 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2426 {
2427 	return sock->ops->shutdown(sock, how);
2428 }
2429 
2430 EXPORT_SYMBOL(sock_create);
2431 EXPORT_SYMBOL(sock_create_kern);
2432 EXPORT_SYMBOL(sock_create_lite);
2433 EXPORT_SYMBOL(sock_map_fd);
2434 EXPORT_SYMBOL(sock_recvmsg);
2435 EXPORT_SYMBOL(sock_register);
2436 EXPORT_SYMBOL(sock_release);
2437 EXPORT_SYMBOL(sock_sendmsg);
2438 EXPORT_SYMBOL(sock_unregister);
2439 EXPORT_SYMBOL(sock_wake_async);
2440 EXPORT_SYMBOL(sockfd_lookup);
2441 EXPORT_SYMBOL(kernel_sendmsg);
2442 EXPORT_SYMBOL(kernel_recvmsg);
2443 EXPORT_SYMBOL(kernel_bind);
2444 EXPORT_SYMBOL(kernel_listen);
2445 EXPORT_SYMBOL(kernel_accept);
2446 EXPORT_SYMBOL(kernel_connect);
2447 EXPORT_SYMBOL(kernel_getsockname);
2448 EXPORT_SYMBOL(kernel_getpeername);
2449 EXPORT_SYMBOL(kernel_getsockopt);
2450 EXPORT_SYMBOL(kernel_setsockopt);
2451 EXPORT_SYMBOL(kernel_sendpage);
2452 EXPORT_SYMBOL(kernel_sock_ioctl);
2453 EXPORT_SYMBOL(kernel_sock_shutdown);
2454