xref: /openbmc/linux/net/socket.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
589 /**
590  *	sock_release - close a socket
591  *	@sock: socket to close
592  *
593  *	The socket is released from the protocol stack if it has a release
594  *	callback, and the inode is then released if the socket is bound to
595  *	an inode not a file.
596  */
597 
598 static void __sock_release(struct socket *sock, struct inode *inode)
599 {
600 	if (sock->ops) {
601 		struct module *owner = sock->ops->owner;
602 
603 		if (inode)
604 			inode_lock(inode);
605 		sock->ops->release(sock);
606 		sock->sk = NULL;
607 		if (inode)
608 			inode_unlock(inode);
609 		sock->ops = NULL;
610 		module_put(owner);
611 	}
612 
613 	if (sock->wq.fasync_list)
614 		pr_err("%s: fasync list not empty!\n", __func__);
615 
616 	if (!sock->file) {
617 		iput(SOCK_INODE(sock));
618 		return;
619 	}
620 	sock->file = NULL;
621 }
622 
623 void sock_release(struct socket *sock)
624 {
625 	__sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628 
629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 	u8 flags = *tx_flags;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 		flags |= SKBTX_HW_TSTAMP;
635 
636 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 		flags |= SKBTX_SW_TSTAMP;
638 
639 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 		flags |= SKBTX_SCHED_TSTAMP;
641 
642 	*tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645 
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 					   size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 					    size_t));
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 				     inet_sendmsg, sock, msg,
654 				     msg_data_left(msg));
655 	BUG_ON(ret == -EIOCBQUEUED);
656 	return ret;
657 }
658 
659 /**
660  *	sock_sendmsg - send a message through @sock
661  *	@sock: socket
662  *	@msg: message to send
663  *
664  *	Sends @msg through @sock, passing through LSM.
665  *	Returns the number of bytes sent, or an error code.
666  */
667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 	int err = security_socket_sendmsg(sock, msg,
670 					  msg_data_left(msg));
671 
672 	return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675 
676 /**
677  *	kernel_sendmsg - send a message through @sock (kernel-space)
678  *	@sock: socket
679  *	@msg: message header
680  *	@vec: kernel vec
681  *	@num: vec array length
682  *	@size: total message data size
683  *
684  *	Builds the message data with @vec and sends it through @sock.
685  *	Returns the number of bytes sent, or an error code.
686  */
687 
688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 		   struct kvec *vec, size_t num, size_t size)
690 {
691 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 	return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695 
696 /**
697  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
698  *	@sk: sock
699  *	@msg: message header
700  *	@vec: output s/g array
701  *	@num: output s/g array length
702  *	@size: total message data size
703  *
704  *	Builds the message data with @vec and sends it through @sock.
705  *	Returns the number of bytes sent, or an error code.
706  *	Caller must hold @sk.
707  */
708 
709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 			  struct kvec *vec, size_t num, size_t size)
711 {
712 	struct socket *sock = sk->sk_socket;
713 
714 	if (!sock->ops->sendmsg_locked)
715 		return sock_no_sendmsg_locked(sk, msg, size);
716 
717 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718 
719 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722 
723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 	/* pkt_type of skbs enqueued on the error queue are set to
726 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 	 * in recvmsg, since skbs received on a local socket will never
728 	 * have a pkt_type of PACKET_OUTGOING.
729 	 */
730 	return skb->pkt_type == PACKET_OUTGOING;
731 }
732 
733 /* On transmit, software and hardware timestamps are returned independently.
734  * As the two skb clones share the hardware timestamp, which may be updated
735  * before the software timestamp is received, a hardware TX timestamp may be
736  * returned only if there is no software TX timestamp. Ignore false software
737  * timestamps, which may be made in the __sock_recv_timestamp() call when the
738  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739  * hardware timestamp.
740  */
741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745 
746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 	struct scm_ts_pktinfo ts_pktinfo;
749 	struct net_device *orig_dev;
750 
751 	if (!skb_mac_header_was_set(skb))
752 		return;
753 
754 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755 
756 	rcu_read_lock();
757 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 	if (orig_dev)
759 		ts_pktinfo.if_index = orig_dev->ifindex;
760 	rcu_read_unlock();
761 
762 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 		 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766 
767 /*
768  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769  */
770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 	struct scm_timestamping_internal tss;
776 
777 	int empty = 1, false_tstamp = 0;
778 	struct skb_shared_hwtstamps *shhwtstamps =
779 		skb_hwtstamps(skb);
780 
781 	/* Race occurred between timestamp enabling and packet
782 	   receiving.  Fill in the current time for now. */
783 	if (need_software_tstamp && skb->tstamp == 0) {
784 		__net_timestamp(skb);
785 		false_tstamp = 1;
786 	}
787 
788 	if (need_software_tstamp) {
789 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 			if (new_tstamp) {
791 				struct __kernel_sock_timeval tv;
792 
793 				skb_get_new_timestamp(skb, &tv);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 					 sizeof(tv), &tv);
796 			} else {
797 				struct __kernel_old_timeval tv;
798 
799 				skb_get_timestamp(skb, &tv);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 					 sizeof(tv), &tv);
802 			}
803 		} else {
804 			if (new_tstamp) {
805 				struct __kernel_timespec ts;
806 
807 				skb_get_new_timestampns(skb, &ts);
808 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 					 sizeof(ts), &ts);
810 			} else {
811 				struct __kernel_old_timespec ts;
812 
813 				skb_get_timestampns(skb, &ts);
814 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 					 sizeof(ts), &ts);
816 			}
817 		}
818 	}
819 
820 	memset(&tss, 0, sizeof(tss));
821 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 		empty = 0;
824 	if (shhwtstamps &&
825 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 		empty = 0;
829 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 		    !skb_is_err_queue(skb))
831 			put_ts_pktinfo(msg, skb);
832 	}
833 	if (!empty) {
834 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 			put_cmsg_scm_timestamping64(msg, &tss);
836 		else
837 			put_cmsg_scm_timestamping(msg, &tss);
838 
839 		if (skb_is_err_queue(skb) && skb->len &&
840 		    SKB_EXT_ERR(skb)->opt_stats)
841 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 				 skb->len, skb->data);
843 	}
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846 
847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 	struct sk_buff *skb)
849 {
850 	int ack;
851 
852 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 		return;
854 	if (!skb->wifi_acked_valid)
855 		return;
856 
857 	ack = skb->wifi_acked;
858 
859 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862 
863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 				   struct sk_buff *skb)
865 {
866 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870 
871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 	struct sk_buff *skb)
873 {
874 	sock_recv_timestamp(msg, sk, skb);
875 	sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878 
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 					   size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 					    size_t, int));
883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 				     int flags)
885 {
886 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 				  inet_recvmsg, sock, msg, msg_data_left(msg),
888 				  flags);
889 }
890 
891 /**
892  *	sock_recvmsg - receive a message from @sock
893  *	@sock: socket
894  *	@msg: message to receive
895  *	@flags: message flags
896  *
897  *	Receives @msg from @sock, passing through LSM. Returns the total number
898  *	of bytes received, or an error.
899  */
900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903 
904 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907 
908 /**
909  *	kernel_recvmsg - Receive a message from a socket (kernel space)
910  *	@sock: The socket to receive the message from
911  *	@msg: Received message
912  *	@vec: Input s/g array for message data
913  *	@num: Size of input s/g array
914  *	@size: Number of bytes to read
915  *	@flags: Message flags (MSG_DONTWAIT, etc...)
916  *
917  *	On return the msg structure contains the scatter/gather array passed in the
918  *	vec argument. The array is modified so that it consists of the unfilled
919  *	portion of the original array.
920  *
921  *	The returned value is the total number of bytes received, or an error.
922  */
923 
924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 		   struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 	mm_segment_t oldfs = get_fs();
928 	int result;
929 
930 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 	set_fs(KERNEL_DS);
932 	result = sock_recvmsg(sock, msg, flags);
933 	set_fs(oldfs);
934 	return result;
935 }
936 EXPORT_SYMBOL(kernel_recvmsg);
937 
938 static ssize_t sock_sendpage(struct file *file, struct page *page,
939 			     int offset, size_t size, loff_t *ppos, int more)
940 {
941 	struct socket *sock;
942 	int flags;
943 
944 	sock = file->private_data;
945 
946 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
947 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
948 	flags |= more;
949 
950 	return kernel_sendpage(sock, page, offset, size, flags);
951 }
952 
953 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
954 				struct pipe_inode_info *pipe, size_t len,
955 				unsigned int flags)
956 {
957 	struct socket *sock = file->private_data;
958 
959 	if (unlikely(!sock->ops->splice_read))
960 		return generic_file_splice_read(file, ppos, pipe, len, flags);
961 
962 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
963 }
964 
965 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
966 {
967 	struct file *file = iocb->ki_filp;
968 	struct socket *sock = file->private_data;
969 	struct msghdr msg = {.msg_iter = *to,
970 			     .msg_iocb = iocb};
971 	ssize_t res;
972 
973 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
974 		msg.msg_flags = MSG_DONTWAIT;
975 
976 	if (iocb->ki_pos != 0)
977 		return -ESPIPE;
978 
979 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
980 		return 0;
981 
982 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
983 	*to = msg.msg_iter;
984 	return res;
985 }
986 
987 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
988 {
989 	struct file *file = iocb->ki_filp;
990 	struct socket *sock = file->private_data;
991 	struct msghdr msg = {.msg_iter = *from,
992 			     .msg_iocb = iocb};
993 	ssize_t res;
994 
995 	if (iocb->ki_pos != 0)
996 		return -ESPIPE;
997 
998 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
999 		msg.msg_flags = MSG_DONTWAIT;
1000 
1001 	if (sock->type == SOCK_SEQPACKET)
1002 		msg.msg_flags |= MSG_EOR;
1003 
1004 	res = sock_sendmsg(sock, &msg);
1005 	*from = msg.msg_iter;
1006 	return res;
1007 }
1008 
1009 /*
1010  * Atomic setting of ioctl hooks to avoid race
1011  * with module unload.
1012  */
1013 
1014 static DEFINE_MUTEX(br_ioctl_mutex);
1015 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1016 
1017 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1018 {
1019 	mutex_lock(&br_ioctl_mutex);
1020 	br_ioctl_hook = hook;
1021 	mutex_unlock(&br_ioctl_mutex);
1022 }
1023 EXPORT_SYMBOL(brioctl_set);
1024 
1025 static DEFINE_MUTEX(vlan_ioctl_mutex);
1026 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1027 
1028 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1029 {
1030 	mutex_lock(&vlan_ioctl_mutex);
1031 	vlan_ioctl_hook = hook;
1032 	mutex_unlock(&vlan_ioctl_mutex);
1033 }
1034 EXPORT_SYMBOL(vlan_ioctl_set);
1035 
1036 static DEFINE_MUTEX(dlci_ioctl_mutex);
1037 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1038 
1039 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1040 {
1041 	mutex_lock(&dlci_ioctl_mutex);
1042 	dlci_ioctl_hook = hook;
1043 	mutex_unlock(&dlci_ioctl_mutex);
1044 }
1045 EXPORT_SYMBOL(dlci_ioctl_set);
1046 
1047 static long sock_do_ioctl(struct net *net, struct socket *sock,
1048 			  unsigned int cmd, unsigned long arg)
1049 {
1050 	int err;
1051 	void __user *argp = (void __user *)arg;
1052 
1053 	err = sock->ops->ioctl(sock, cmd, arg);
1054 
1055 	/*
1056 	 * If this ioctl is unknown try to hand it down
1057 	 * to the NIC driver.
1058 	 */
1059 	if (err != -ENOIOCTLCMD)
1060 		return err;
1061 
1062 	if (cmd == SIOCGIFCONF) {
1063 		struct ifconf ifc;
1064 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1065 			return -EFAULT;
1066 		rtnl_lock();
1067 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1068 		rtnl_unlock();
1069 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1070 			err = -EFAULT;
1071 	} else {
1072 		struct ifreq ifr;
1073 		bool need_copyout;
1074 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1075 			return -EFAULT;
1076 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1077 		if (!err && need_copyout)
1078 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1079 				return -EFAULT;
1080 	}
1081 	return err;
1082 }
1083 
1084 /*
1085  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1086  *	what to do with it - that's up to the protocol still.
1087  */
1088 
1089 /**
1090  *	get_net_ns - increment the refcount of the network namespace
1091  *	@ns: common namespace (net)
1092  *
1093  *	Returns the net's common namespace.
1094  */
1095 
1096 struct ns_common *get_net_ns(struct ns_common *ns)
1097 {
1098 	return &get_net(container_of(ns, struct net, ns))->ns;
1099 }
1100 EXPORT_SYMBOL_GPL(get_net_ns);
1101 
1102 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1103 {
1104 	struct socket *sock;
1105 	struct sock *sk;
1106 	void __user *argp = (void __user *)arg;
1107 	int pid, err;
1108 	struct net *net;
1109 
1110 	sock = file->private_data;
1111 	sk = sock->sk;
1112 	net = sock_net(sk);
1113 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1114 		struct ifreq ifr;
1115 		bool need_copyout;
1116 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1117 			return -EFAULT;
1118 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1119 		if (!err && need_copyout)
1120 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1121 				return -EFAULT;
1122 	} else
1123 #ifdef CONFIG_WEXT_CORE
1124 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1125 		err = wext_handle_ioctl(net, cmd, argp);
1126 	} else
1127 #endif
1128 		switch (cmd) {
1129 		case FIOSETOWN:
1130 		case SIOCSPGRP:
1131 			err = -EFAULT;
1132 			if (get_user(pid, (int __user *)argp))
1133 				break;
1134 			err = f_setown(sock->file, pid, 1);
1135 			break;
1136 		case FIOGETOWN:
1137 		case SIOCGPGRP:
1138 			err = put_user(f_getown(sock->file),
1139 				       (int __user *)argp);
1140 			break;
1141 		case SIOCGIFBR:
1142 		case SIOCSIFBR:
1143 		case SIOCBRADDBR:
1144 		case SIOCBRDELBR:
1145 			err = -ENOPKG;
1146 			if (!br_ioctl_hook)
1147 				request_module("bridge");
1148 
1149 			mutex_lock(&br_ioctl_mutex);
1150 			if (br_ioctl_hook)
1151 				err = br_ioctl_hook(net, cmd, argp);
1152 			mutex_unlock(&br_ioctl_mutex);
1153 			break;
1154 		case SIOCGIFVLAN:
1155 		case SIOCSIFVLAN:
1156 			err = -ENOPKG;
1157 			if (!vlan_ioctl_hook)
1158 				request_module("8021q");
1159 
1160 			mutex_lock(&vlan_ioctl_mutex);
1161 			if (vlan_ioctl_hook)
1162 				err = vlan_ioctl_hook(net, argp);
1163 			mutex_unlock(&vlan_ioctl_mutex);
1164 			break;
1165 		case SIOCADDDLCI:
1166 		case SIOCDELDLCI:
1167 			err = -ENOPKG;
1168 			if (!dlci_ioctl_hook)
1169 				request_module("dlci");
1170 
1171 			mutex_lock(&dlci_ioctl_mutex);
1172 			if (dlci_ioctl_hook)
1173 				err = dlci_ioctl_hook(cmd, argp);
1174 			mutex_unlock(&dlci_ioctl_mutex);
1175 			break;
1176 		case SIOCGSKNS:
1177 			err = -EPERM;
1178 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179 				break;
1180 
1181 			err = open_related_ns(&net->ns, get_net_ns);
1182 			break;
1183 		case SIOCGSTAMP_OLD:
1184 		case SIOCGSTAMPNS_OLD:
1185 			if (!sock->ops->gettstamp) {
1186 				err = -ENOIOCTLCMD;
1187 				break;
1188 			}
1189 			err = sock->ops->gettstamp(sock, argp,
1190 						   cmd == SIOCGSTAMP_OLD,
1191 						   !IS_ENABLED(CONFIG_64BIT));
1192 			break;
1193 		case SIOCGSTAMP_NEW:
1194 		case SIOCGSTAMPNS_NEW:
1195 			if (!sock->ops->gettstamp) {
1196 				err = -ENOIOCTLCMD;
1197 				break;
1198 			}
1199 			err = sock->ops->gettstamp(sock, argp,
1200 						   cmd == SIOCGSTAMP_NEW,
1201 						   false);
1202 			break;
1203 		default:
1204 			err = sock_do_ioctl(net, sock, cmd, arg);
1205 			break;
1206 		}
1207 	return err;
1208 }
1209 
1210 /**
1211  *	sock_create_lite - creates a socket
1212  *	@family: protocol family (AF_INET, ...)
1213  *	@type: communication type (SOCK_STREAM, ...)
1214  *	@protocol: protocol (0, ...)
1215  *	@res: new socket
1216  *
1217  *	Creates a new socket and assigns it to @res, passing through LSM.
1218  *	The new socket initialization is not complete, see kernel_accept().
1219  *	Returns 0 or an error. On failure @res is set to %NULL.
1220  *	This function internally uses GFP_KERNEL.
1221  */
1222 
1223 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1224 {
1225 	int err;
1226 	struct socket *sock = NULL;
1227 
1228 	err = security_socket_create(family, type, protocol, 1);
1229 	if (err)
1230 		goto out;
1231 
1232 	sock = sock_alloc();
1233 	if (!sock) {
1234 		err = -ENOMEM;
1235 		goto out;
1236 	}
1237 
1238 	sock->type = type;
1239 	err = security_socket_post_create(sock, family, type, protocol, 1);
1240 	if (err)
1241 		goto out_release;
1242 
1243 out:
1244 	*res = sock;
1245 	return err;
1246 out_release:
1247 	sock_release(sock);
1248 	sock = NULL;
1249 	goto out;
1250 }
1251 EXPORT_SYMBOL(sock_create_lite);
1252 
1253 /* No kernel lock held - perfect */
1254 static __poll_t sock_poll(struct file *file, poll_table *wait)
1255 {
1256 	struct socket *sock = file->private_data;
1257 	__poll_t events = poll_requested_events(wait), flag = 0;
1258 
1259 	if (!sock->ops->poll)
1260 		return 0;
1261 
1262 	if (sk_can_busy_loop(sock->sk)) {
1263 		/* poll once if requested by the syscall */
1264 		if (events & POLL_BUSY_LOOP)
1265 			sk_busy_loop(sock->sk, 1);
1266 
1267 		/* if this socket can poll_ll, tell the system call */
1268 		flag = POLL_BUSY_LOOP;
1269 	}
1270 
1271 	return sock->ops->poll(file, sock, wait) | flag;
1272 }
1273 
1274 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1275 {
1276 	struct socket *sock = file->private_data;
1277 
1278 	return sock->ops->mmap(file, sock, vma);
1279 }
1280 
1281 static int sock_close(struct inode *inode, struct file *filp)
1282 {
1283 	__sock_release(SOCKET_I(inode), inode);
1284 	return 0;
1285 }
1286 
1287 /*
1288  *	Update the socket async list
1289  *
1290  *	Fasync_list locking strategy.
1291  *
1292  *	1. fasync_list is modified only under process context socket lock
1293  *	   i.e. under semaphore.
1294  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1295  *	   or under socket lock
1296  */
1297 
1298 static int sock_fasync(int fd, struct file *filp, int on)
1299 {
1300 	struct socket *sock = filp->private_data;
1301 	struct sock *sk = sock->sk;
1302 	struct socket_wq *wq = &sock->wq;
1303 
1304 	if (sk == NULL)
1305 		return -EINVAL;
1306 
1307 	lock_sock(sk);
1308 	fasync_helper(fd, filp, on, &wq->fasync_list);
1309 
1310 	if (!wq->fasync_list)
1311 		sock_reset_flag(sk, SOCK_FASYNC);
1312 	else
1313 		sock_set_flag(sk, SOCK_FASYNC);
1314 
1315 	release_sock(sk);
1316 	return 0;
1317 }
1318 
1319 /* This function may be called only under rcu_lock */
1320 
1321 int sock_wake_async(struct socket_wq *wq, int how, int band)
1322 {
1323 	if (!wq || !wq->fasync_list)
1324 		return -1;
1325 
1326 	switch (how) {
1327 	case SOCK_WAKE_WAITD:
1328 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1329 			break;
1330 		goto call_kill;
1331 	case SOCK_WAKE_SPACE:
1332 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1333 			break;
1334 		/* fall through */
1335 	case SOCK_WAKE_IO:
1336 call_kill:
1337 		kill_fasync(&wq->fasync_list, SIGIO, band);
1338 		break;
1339 	case SOCK_WAKE_URG:
1340 		kill_fasync(&wq->fasync_list, SIGURG, band);
1341 	}
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(sock_wake_async);
1346 
1347 /**
1348  *	__sock_create - creates a socket
1349  *	@net: net namespace
1350  *	@family: protocol family (AF_INET, ...)
1351  *	@type: communication type (SOCK_STREAM, ...)
1352  *	@protocol: protocol (0, ...)
1353  *	@res: new socket
1354  *	@kern: boolean for kernel space sockets
1355  *
1356  *	Creates a new socket and assigns it to @res, passing through LSM.
1357  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1358  *	be set to true if the socket resides in kernel space.
1359  *	This function internally uses GFP_KERNEL.
1360  */
1361 
1362 int __sock_create(struct net *net, int family, int type, int protocol,
1363 			 struct socket **res, int kern)
1364 {
1365 	int err;
1366 	struct socket *sock;
1367 	const struct net_proto_family *pf;
1368 
1369 	/*
1370 	 *      Check protocol is in range
1371 	 */
1372 	if (family < 0 || family >= NPROTO)
1373 		return -EAFNOSUPPORT;
1374 	if (type < 0 || type >= SOCK_MAX)
1375 		return -EINVAL;
1376 
1377 	/* Compatibility.
1378 
1379 	   This uglymoron is moved from INET layer to here to avoid
1380 	   deadlock in module load.
1381 	 */
1382 	if (family == PF_INET && type == SOCK_PACKET) {
1383 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1384 			     current->comm);
1385 		family = PF_PACKET;
1386 	}
1387 
1388 	err = security_socket_create(family, type, protocol, kern);
1389 	if (err)
1390 		return err;
1391 
1392 	/*
1393 	 *	Allocate the socket and allow the family to set things up. if
1394 	 *	the protocol is 0, the family is instructed to select an appropriate
1395 	 *	default.
1396 	 */
1397 	sock = sock_alloc();
1398 	if (!sock) {
1399 		net_warn_ratelimited("socket: no more sockets\n");
1400 		return -ENFILE;	/* Not exactly a match, but its the
1401 				   closest posix thing */
1402 	}
1403 
1404 	sock->type = type;
1405 
1406 #ifdef CONFIG_MODULES
1407 	/* Attempt to load a protocol module if the find failed.
1408 	 *
1409 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1410 	 * requested real, full-featured networking support upon configuration.
1411 	 * Otherwise module support will break!
1412 	 */
1413 	if (rcu_access_pointer(net_families[family]) == NULL)
1414 		request_module("net-pf-%d", family);
1415 #endif
1416 
1417 	rcu_read_lock();
1418 	pf = rcu_dereference(net_families[family]);
1419 	err = -EAFNOSUPPORT;
1420 	if (!pf)
1421 		goto out_release;
1422 
1423 	/*
1424 	 * We will call the ->create function, that possibly is in a loadable
1425 	 * module, so we have to bump that loadable module refcnt first.
1426 	 */
1427 	if (!try_module_get(pf->owner))
1428 		goto out_release;
1429 
1430 	/* Now protected by module ref count */
1431 	rcu_read_unlock();
1432 
1433 	err = pf->create(net, sock, protocol, kern);
1434 	if (err < 0)
1435 		goto out_module_put;
1436 
1437 	/*
1438 	 * Now to bump the refcnt of the [loadable] module that owns this
1439 	 * socket at sock_release time we decrement its refcnt.
1440 	 */
1441 	if (!try_module_get(sock->ops->owner))
1442 		goto out_module_busy;
1443 
1444 	/*
1445 	 * Now that we're done with the ->create function, the [loadable]
1446 	 * module can have its refcnt decremented
1447 	 */
1448 	module_put(pf->owner);
1449 	err = security_socket_post_create(sock, family, type, protocol, kern);
1450 	if (err)
1451 		goto out_sock_release;
1452 	*res = sock;
1453 
1454 	return 0;
1455 
1456 out_module_busy:
1457 	err = -EAFNOSUPPORT;
1458 out_module_put:
1459 	sock->ops = NULL;
1460 	module_put(pf->owner);
1461 out_sock_release:
1462 	sock_release(sock);
1463 	return err;
1464 
1465 out_release:
1466 	rcu_read_unlock();
1467 	goto out_sock_release;
1468 }
1469 EXPORT_SYMBOL(__sock_create);
1470 
1471 /**
1472  *	sock_create - creates a socket
1473  *	@family: protocol family (AF_INET, ...)
1474  *	@type: communication type (SOCK_STREAM, ...)
1475  *	@protocol: protocol (0, ...)
1476  *	@res: new socket
1477  *
1478  *	A wrapper around __sock_create().
1479  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1480  */
1481 
1482 int sock_create(int family, int type, int protocol, struct socket **res)
1483 {
1484 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1485 }
1486 EXPORT_SYMBOL(sock_create);
1487 
1488 /**
1489  *	sock_create_kern - creates a socket (kernel space)
1490  *	@net: net namespace
1491  *	@family: protocol family (AF_INET, ...)
1492  *	@type: communication type (SOCK_STREAM, ...)
1493  *	@protocol: protocol (0, ...)
1494  *	@res: new socket
1495  *
1496  *	A wrapper around __sock_create().
1497  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1498  */
1499 
1500 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1501 {
1502 	return __sock_create(net, family, type, protocol, res, 1);
1503 }
1504 EXPORT_SYMBOL(sock_create_kern);
1505 
1506 int __sys_socket(int family, int type, int protocol)
1507 {
1508 	int retval;
1509 	struct socket *sock;
1510 	int flags;
1511 
1512 	/* Check the SOCK_* constants for consistency.  */
1513 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1514 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1515 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1516 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1517 
1518 	flags = type & ~SOCK_TYPE_MASK;
1519 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1520 		return -EINVAL;
1521 	type &= SOCK_TYPE_MASK;
1522 
1523 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1524 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1525 
1526 	retval = sock_create(family, type, protocol, &sock);
1527 	if (retval < 0)
1528 		return retval;
1529 
1530 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1531 }
1532 
1533 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1534 {
1535 	return __sys_socket(family, type, protocol);
1536 }
1537 
1538 /*
1539  *	Create a pair of connected sockets.
1540  */
1541 
1542 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1543 {
1544 	struct socket *sock1, *sock2;
1545 	int fd1, fd2, err;
1546 	struct file *newfile1, *newfile2;
1547 	int flags;
1548 
1549 	flags = type & ~SOCK_TYPE_MASK;
1550 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 		return -EINVAL;
1552 	type &= SOCK_TYPE_MASK;
1553 
1554 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1555 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1556 
1557 	/*
1558 	 * reserve descriptors and make sure we won't fail
1559 	 * to return them to userland.
1560 	 */
1561 	fd1 = get_unused_fd_flags(flags);
1562 	if (unlikely(fd1 < 0))
1563 		return fd1;
1564 
1565 	fd2 = get_unused_fd_flags(flags);
1566 	if (unlikely(fd2 < 0)) {
1567 		put_unused_fd(fd1);
1568 		return fd2;
1569 	}
1570 
1571 	err = put_user(fd1, &usockvec[0]);
1572 	if (err)
1573 		goto out;
1574 
1575 	err = put_user(fd2, &usockvec[1]);
1576 	if (err)
1577 		goto out;
1578 
1579 	/*
1580 	 * Obtain the first socket and check if the underlying protocol
1581 	 * supports the socketpair call.
1582 	 */
1583 
1584 	err = sock_create(family, type, protocol, &sock1);
1585 	if (unlikely(err < 0))
1586 		goto out;
1587 
1588 	err = sock_create(family, type, protocol, &sock2);
1589 	if (unlikely(err < 0)) {
1590 		sock_release(sock1);
1591 		goto out;
1592 	}
1593 
1594 	err = security_socket_socketpair(sock1, sock2);
1595 	if (unlikely(err)) {
1596 		sock_release(sock2);
1597 		sock_release(sock1);
1598 		goto out;
1599 	}
1600 
1601 	err = sock1->ops->socketpair(sock1, sock2);
1602 	if (unlikely(err < 0)) {
1603 		sock_release(sock2);
1604 		sock_release(sock1);
1605 		goto out;
1606 	}
1607 
1608 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1609 	if (IS_ERR(newfile1)) {
1610 		err = PTR_ERR(newfile1);
1611 		sock_release(sock2);
1612 		goto out;
1613 	}
1614 
1615 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1616 	if (IS_ERR(newfile2)) {
1617 		err = PTR_ERR(newfile2);
1618 		fput(newfile1);
1619 		goto out;
1620 	}
1621 
1622 	audit_fd_pair(fd1, fd2);
1623 
1624 	fd_install(fd1, newfile1);
1625 	fd_install(fd2, newfile2);
1626 	return 0;
1627 
1628 out:
1629 	put_unused_fd(fd2);
1630 	put_unused_fd(fd1);
1631 	return err;
1632 }
1633 
1634 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1635 		int __user *, usockvec)
1636 {
1637 	return __sys_socketpair(family, type, protocol, usockvec);
1638 }
1639 
1640 /*
1641  *	Bind a name to a socket. Nothing much to do here since it's
1642  *	the protocol's responsibility to handle the local address.
1643  *
1644  *	We move the socket address to kernel space before we call
1645  *	the protocol layer (having also checked the address is ok).
1646  */
1647 
1648 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1649 {
1650 	struct socket *sock;
1651 	struct sockaddr_storage address;
1652 	int err, fput_needed;
1653 
1654 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 	if (sock) {
1656 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1657 		if (!err) {
1658 			err = security_socket_bind(sock,
1659 						   (struct sockaddr *)&address,
1660 						   addrlen);
1661 			if (!err)
1662 				err = sock->ops->bind(sock,
1663 						      (struct sockaddr *)
1664 						      &address, addrlen);
1665 		}
1666 		fput_light(sock->file, fput_needed);
1667 	}
1668 	return err;
1669 }
1670 
1671 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1672 {
1673 	return __sys_bind(fd, umyaddr, addrlen);
1674 }
1675 
1676 /*
1677  *	Perform a listen. Basically, we allow the protocol to do anything
1678  *	necessary for a listen, and if that works, we mark the socket as
1679  *	ready for listening.
1680  */
1681 
1682 int __sys_listen(int fd, int backlog)
1683 {
1684 	struct socket *sock;
1685 	int err, fput_needed;
1686 	int somaxconn;
1687 
1688 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 	if (sock) {
1690 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1691 		if ((unsigned int)backlog > somaxconn)
1692 			backlog = somaxconn;
1693 
1694 		err = security_socket_listen(sock, backlog);
1695 		if (!err)
1696 			err = sock->ops->listen(sock, backlog);
1697 
1698 		fput_light(sock->file, fput_needed);
1699 	}
1700 	return err;
1701 }
1702 
1703 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1704 {
1705 	return __sys_listen(fd, backlog);
1706 }
1707 
1708 int __sys_accept4_file(struct file *file, unsigned file_flags,
1709 		       struct sockaddr __user *upeer_sockaddr,
1710 		       int __user *upeer_addrlen, int flags,
1711 		       unsigned long nofile)
1712 {
1713 	struct socket *sock, *newsock;
1714 	struct file *newfile;
1715 	int err, len, newfd;
1716 	struct sockaddr_storage address;
1717 
1718 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1719 		return -EINVAL;
1720 
1721 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1723 
1724 	sock = sock_from_file(file, &err);
1725 	if (!sock)
1726 		goto out;
1727 
1728 	err = -ENFILE;
1729 	newsock = sock_alloc();
1730 	if (!newsock)
1731 		goto out;
1732 
1733 	newsock->type = sock->type;
1734 	newsock->ops = sock->ops;
1735 
1736 	/*
1737 	 * We don't need try_module_get here, as the listening socket (sock)
1738 	 * has the protocol module (sock->ops->owner) held.
1739 	 */
1740 	__module_get(newsock->ops->owner);
1741 
1742 	newfd = __get_unused_fd_flags(flags, nofile);
1743 	if (unlikely(newfd < 0)) {
1744 		err = newfd;
1745 		sock_release(newsock);
1746 		goto out;
1747 	}
1748 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1749 	if (IS_ERR(newfile)) {
1750 		err = PTR_ERR(newfile);
1751 		put_unused_fd(newfd);
1752 		goto out;
1753 	}
1754 
1755 	err = security_socket_accept(sock, newsock);
1756 	if (err)
1757 		goto out_fd;
1758 
1759 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1760 					false);
1761 	if (err < 0)
1762 		goto out_fd;
1763 
1764 	if (upeer_sockaddr) {
1765 		len = newsock->ops->getname(newsock,
1766 					(struct sockaddr *)&address, 2);
1767 		if (len < 0) {
1768 			err = -ECONNABORTED;
1769 			goto out_fd;
1770 		}
1771 		err = move_addr_to_user(&address,
1772 					len, upeer_sockaddr, upeer_addrlen);
1773 		if (err < 0)
1774 			goto out_fd;
1775 	}
1776 
1777 	/* File flags are not inherited via accept() unlike another OSes. */
1778 
1779 	fd_install(newfd, newfile);
1780 	err = newfd;
1781 out:
1782 	return err;
1783 out_fd:
1784 	fput(newfile);
1785 	put_unused_fd(newfd);
1786 	goto out;
1787 
1788 }
1789 
1790 /*
1791  *	For accept, we attempt to create a new socket, set up the link
1792  *	with the client, wake up the client, then return the new
1793  *	connected fd. We collect the address of the connector in kernel
1794  *	space and move it to user at the very end. This is unclean because
1795  *	we open the socket then return an error.
1796  *
1797  *	1003.1g adds the ability to recvmsg() to query connection pending
1798  *	status to recvmsg. We need to add that support in a way thats
1799  *	clean when we restructure accept also.
1800  */
1801 
1802 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1803 		  int __user *upeer_addrlen, int flags)
1804 {
1805 	int ret = -EBADF;
1806 	struct fd f;
1807 
1808 	f = fdget(fd);
1809 	if (f.file) {
1810 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1811 						upeer_addrlen, flags,
1812 						rlimit(RLIMIT_NOFILE));
1813 		if (f.flags)
1814 			fput(f.file);
1815 	}
1816 
1817 	return ret;
1818 }
1819 
1820 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1821 		int __user *, upeer_addrlen, int, flags)
1822 {
1823 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1824 }
1825 
1826 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1827 		int __user *, upeer_addrlen)
1828 {
1829 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1830 }
1831 
1832 /*
1833  *	Attempt to connect to a socket with the server address.  The address
1834  *	is in user space so we verify it is OK and move it to kernel space.
1835  *
1836  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1837  *	break bindings
1838  *
1839  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1840  *	other SEQPACKET protocols that take time to connect() as it doesn't
1841  *	include the -EINPROGRESS status for such sockets.
1842  */
1843 
1844 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1845 		       int addrlen, int file_flags)
1846 {
1847 	struct socket *sock;
1848 	int err;
1849 
1850 	sock = sock_from_file(file, &err);
1851 	if (!sock)
1852 		goto out;
1853 
1854 	err =
1855 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1856 	if (err)
1857 		goto out;
1858 
1859 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1860 				 sock->file->f_flags | file_flags);
1861 out:
1862 	return err;
1863 }
1864 
1865 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1866 {
1867 	int ret = -EBADF;
1868 	struct fd f;
1869 
1870 	f = fdget(fd);
1871 	if (f.file) {
1872 		struct sockaddr_storage address;
1873 
1874 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1875 		if (!ret)
1876 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1877 		if (f.flags)
1878 			fput(f.file);
1879 	}
1880 
1881 	return ret;
1882 }
1883 
1884 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1885 		int, addrlen)
1886 {
1887 	return __sys_connect(fd, uservaddr, addrlen);
1888 }
1889 
1890 /*
1891  *	Get the local address ('name') of a socket object. Move the obtained
1892  *	name to user space.
1893  */
1894 
1895 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1896 		      int __user *usockaddr_len)
1897 {
1898 	struct socket *sock;
1899 	struct sockaddr_storage address;
1900 	int err, fput_needed;
1901 
1902 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 	if (!sock)
1904 		goto out;
1905 
1906 	err = security_socket_getsockname(sock);
1907 	if (err)
1908 		goto out_put;
1909 
1910 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1911 	if (err < 0)
1912 		goto out_put;
1913         /* "err" is actually length in this case */
1914 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1915 
1916 out_put:
1917 	fput_light(sock->file, fput_needed);
1918 out:
1919 	return err;
1920 }
1921 
1922 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1923 		int __user *, usockaddr_len)
1924 {
1925 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1926 }
1927 
1928 /*
1929  *	Get the remote address ('name') of a socket object. Move the obtained
1930  *	name to user space.
1931  */
1932 
1933 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1934 		      int __user *usockaddr_len)
1935 {
1936 	struct socket *sock;
1937 	struct sockaddr_storage address;
1938 	int err, fput_needed;
1939 
1940 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941 	if (sock != NULL) {
1942 		err = security_socket_getpeername(sock);
1943 		if (err) {
1944 			fput_light(sock->file, fput_needed);
1945 			return err;
1946 		}
1947 
1948 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1949 		if (err >= 0)
1950 			/* "err" is actually length in this case */
1951 			err = move_addr_to_user(&address, err, usockaddr,
1952 						usockaddr_len);
1953 		fput_light(sock->file, fput_needed);
1954 	}
1955 	return err;
1956 }
1957 
1958 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1959 		int __user *, usockaddr_len)
1960 {
1961 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1962 }
1963 
1964 /*
1965  *	Send a datagram to a given address. We move the address into kernel
1966  *	space and check the user space data area is readable before invoking
1967  *	the protocol.
1968  */
1969 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1970 		 struct sockaddr __user *addr,  int addr_len)
1971 {
1972 	struct socket *sock;
1973 	struct sockaddr_storage address;
1974 	int err;
1975 	struct msghdr msg;
1976 	struct iovec iov;
1977 	int fput_needed;
1978 
1979 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1980 	if (unlikely(err))
1981 		return err;
1982 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983 	if (!sock)
1984 		goto out;
1985 
1986 	msg.msg_name = NULL;
1987 	msg.msg_control = NULL;
1988 	msg.msg_controllen = 0;
1989 	msg.msg_namelen = 0;
1990 	if (addr) {
1991 		err = move_addr_to_kernel(addr, addr_len, &address);
1992 		if (err < 0)
1993 			goto out_put;
1994 		msg.msg_name = (struct sockaddr *)&address;
1995 		msg.msg_namelen = addr_len;
1996 	}
1997 	if (sock->file->f_flags & O_NONBLOCK)
1998 		flags |= MSG_DONTWAIT;
1999 	msg.msg_flags = flags;
2000 	err = sock_sendmsg(sock, &msg);
2001 
2002 out_put:
2003 	fput_light(sock->file, fput_needed);
2004 out:
2005 	return err;
2006 }
2007 
2008 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2009 		unsigned int, flags, struct sockaddr __user *, addr,
2010 		int, addr_len)
2011 {
2012 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2013 }
2014 
2015 /*
2016  *	Send a datagram down a socket.
2017  */
2018 
2019 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2020 		unsigned int, flags)
2021 {
2022 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2023 }
2024 
2025 /*
2026  *	Receive a frame from the socket and optionally record the address of the
2027  *	sender. We verify the buffers are writable and if needed move the
2028  *	sender address from kernel to user space.
2029  */
2030 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2031 		   struct sockaddr __user *addr, int __user *addr_len)
2032 {
2033 	struct socket *sock;
2034 	struct iovec iov;
2035 	struct msghdr msg;
2036 	struct sockaddr_storage address;
2037 	int err, err2;
2038 	int fput_needed;
2039 
2040 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2041 	if (unlikely(err))
2042 		return err;
2043 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 	if (!sock)
2045 		goto out;
2046 
2047 	msg.msg_control = NULL;
2048 	msg.msg_controllen = 0;
2049 	/* Save some cycles and don't copy the address if not needed */
2050 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2051 	/* We assume all kernel code knows the size of sockaddr_storage */
2052 	msg.msg_namelen = 0;
2053 	msg.msg_iocb = NULL;
2054 	msg.msg_flags = 0;
2055 	if (sock->file->f_flags & O_NONBLOCK)
2056 		flags |= MSG_DONTWAIT;
2057 	err = sock_recvmsg(sock, &msg, flags);
2058 
2059 	if (err >= 0 && addr != NULL) {
2060 		err2 = move_addr_to_user(&address,
2061 					 msg.msg_namelen, addr, addr_len);
2062 		if (err2 < 0)
2063 			err = err2;
2064 	}
2065 
2066 	fput_light(sock->file, fput_needed);
2067 out:
2068 	return err;
2069 }
2070 
2071 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2072 		unsigned int, flags, struct sockaddr __user *, addr,
2073 		int __user *, addr_len)
2074 {
2075 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2076 }
2077 
2078 /*
2079  *	Receive a datagram from a socket.
2080  */
2081 
2082 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2083 		unsigned int, flags)
2084 {
2085 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2086 }
2087 
2088 /*
2089  *	Set a socket option. Because we don't know the option lengths we have
2090  *	to pass the user mode parameter for the protocols to sort out.
2091  */
2092 
2093 static int __sys_setsockopt(int fd, int level, int optname,
2094 			    char __user *optval, int optlen)
2095 {
2096 	mm_segment_t oldfs = get_fs();
2097 	char *kernel_optval = NULL;
2098 	int err, fput_needed;
2099 	struct socket *sock;
2100 
2101 	if (optlen < 0)
2102 		return -EINVAL;
2103 
2104 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2105 	if (sock != NULL) {
2106 		err = security_socket_setsockopt(sock, level, optname);
2107 		if (err)
2108 			goto out_put;
2109 
2110 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2111 						     &optname, optval, &optlen,
2112 						     &kernel_optval);
2113 
2114 		if (err < 0) {
2115 			goto out_put;
2116 		} else if (err > 0) {
2117 			err = 0;
2118 			goto out_put;
2119 		}
2120 
2121 		if (kernel_optval) {
2122 			set_fs(KERNEL_DS);
2123 			optval = (char __user __force *)kernel_optval;
2124 		}
2125 
2126 		if (level == SOL_SOCKET)
2127 			err =
2128 			    sock_setsockopt(sock, level, optname, optval,
2129 					    optlen);
2130 		else
2131 			err =
2132 			    sock->ops->setsockopt(sock, level, optname, optval,
2133 						  optlen);
2134 
2135 		if (kernel_optval) {
2136 			set_fs(oldfs);
2137 			kfree(kernel_optval);
2138 		}
2139 out_put:
2140 		fput_light(sock->file, fput_needed);
2141 	}
2142 	return err;
2143 }
2144 
2145 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2146 		char __user *, optval, int, optlen)
2147 {
2148 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2149 }
2150 
2151 /*
2152  *	Get a socket option. Because we don't know the option lengths we have
2153  *	to pass a user mode parameter for the protocols to sort out.
2154  */
2155 
2156 static int __sys_getsockopt(int fd, int level, int optname,
2157 			    char __user *optval, int __user *optlen)
2158 {
2159 	int err, fput_needed;
2160 	struct socket *sock;
2161 	int max_optlen;
2162 
2163 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164 	if (sock != NULL) {
2165 		err = security_socket_getsockopt(sock, level, optname);
2166 		if (err)
2167 			goto out_put;
2168 
2169 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2170 
2171 		if (level == SOL_SOCKET)
2172 			err =
2173 			    sock_getsockopt(sock, level, optname, optval,
2174 					    optlen);
2175 		else
2176 			err =
2177 			    sock->ops->getsockopt(sock, level, optname, optval,
2178 						  optlen);
2179 
2180 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2181 						     optval, optlen,
2182 						     max_optlen, err);
2183 out_put:
2184 		fput_light(sock->file, fput_needed);
2185 	}
2186 	return err;
2187 }
2188 
2189 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2190 		char __user *, optval, int __user *, optlen)
2191 {
2192 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2193 }
2194 
2195 /*
2196  *	Shutdown a socket.
2197  */
2198 
2199 int __sys_shutdown(int fd, int how)
2200 {
2201 	int err, fput_needed;
2202 	struct socket *sock;
2203 
2204 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2205 	if (sock != NULL) {
2206 		err = security_socket_shutdown(sock, how);
2207 		if (!err)
2208 			err = sock->ops->shutdown(sock, how);
2209 		fput_light(sock->file, fput_needed);
2210 	}
2211 	return err;
2212 }
2213 
2214 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2215 {
2216 	return __sys_shutdown(fd, how);
2217 }
2218 
2219 /* A couple of helpful macros for getting the address of the 32/64 bit
2220  * fields which are the same type (int / unsigned) on our platforms.
2221  */
2222 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2223 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2224 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2225 
2226 struct used_address {
2227 	struct sockaddr_storage name;
2228 	unsigned int name_len;
2229 };
2230 
2231 int __copy_msghdr_from_user(struct msghdr *kmsg,
2232 			    struct user_msghdr __user *umsg,
2233 			    struct sockaddr __user **save_addr,
2234 			    struct iovec __user **uiov, size_t *nsegs)
2235 {
2236 	struct user_msghdr msg;
2237 	ssize_t err;
2238 
2239 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2240 		return -EFAULT;
2241 
2242 	kmsg->msg_control = (void __force *)msg.msg_control;
2243 	kmsg->msg_controllen = msg.msg_controllen;
2244 	kmsg->msg_flags = msg.msg_flags;
2245 
2246 	kmsg->msg_namelen = msg.msg_namelen;
2247 	if (!msg.msg_name)
2248 		kmsg->msg_namelen = 0;
2249 
2250 	if (kmsg->msg_namelen < 0)
2251 		return -EINVAL;
2252 
2253 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2254 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2255 
2256 	if (save_addr)
2257 		*save_addr = msg.msg_name;
2258 
2259 	if (msg.msg_name && kmsg->msg_namelen) {
2260 		if (!save_addr) {
2261 			err = move_addr_to_kernel(msg.msg_name,
2262 						  kmsg->msg_namelen,
2263 						  kmsg->msg_name);
2264 			if (err < 0)
2265 				return err;
2266 		}
2267 	} else {
2268 		kmsg->msg_name = NULL;
2269 		kmsg->msg_namelen = 0;
2270 	}
2271 
2272 	if (msg.msg_iovlen > UIO_MAXIOV)
2273 		return -EMSGSIZE;
2274 
2275 	kmsg->msg_iocb = NULL;
2276 	*uiov = msg.msg_iov;
2277 	*nsegs = msg.msg_iovlen;
2278 	return 0;
2279 }
2280 
2281 static int copy_msghdr_from_user(struct msghdr *kmsg,
2282 				 struct user_msghdr __user *umsg,
2283 				 struct sockaddr __user **save_addr,
2284 				 struct iovec **iov)
2285 {
2286 	struct user_msghdr msg;
2287 	ssize_t err;
2288 
2289 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2290 					&msg.msg_iovlen);
2291 	if (err)
2292 		return err;
2293 
2294 	err = import_iovec(save_addr ? READ : WRITE,
2295 			    msg.msg_iov, msg.msg_iovlen,
2296 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2297 	return err < 0 ? err : 0;
2298 }
2299 
2300 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2301 			   unsigned int flags, struct used_address *used_address,
2302 			   unsigned int allowed_msghdr_flags)
2303 {
2304 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2305 				__aligned(sizeof(__kernel_size_t));
2306 	/* 20 is size of ipv6_pktinfo */
2307 	unsigned char *ctl_buf = ctl;
2308 	int ctl_len;
2309 	ssize_t err;
2310 
2311 	err = -ENOBUFS;
2312 
2313 	if (msg_sys->msg_controllen > INT_MAX)
2314 		goto out;
2315 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2316 	ctl_len = msg_sys->msg_controllen;
2317 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2318 		err =
2319 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2320 						     sizeof(ctl));
2321 		if (err)
2322 			goto out;
2323 		ctl_buf = msg_sys->msg_control;
2324 		ctl_len = msg_sys->msg_controllen;
2325 	} else if (ctl_len) {
2326 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2327 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2328 		if (ctl_len > sizeof(ctl)) {
2329 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2330 			if (ctl_buf == NULL)
2331 				goto out;
2332 		}
2333 		err = -EFAULT;
2334 		/*
2335 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2336 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2337 		 * checking falls down on this.
2338 		 */
2339 		if (copy_from_user(ctl_buf,
2340 				   (void __user __force *)msg_sys->msg_control,
2341 				   ctl_len))
2342 			goto out_freectl;
2343 		msg_sys->msg_control = ctl_buf;
2344 	}
2345 	msg_sys->msg_flags = flags;
2346 
2347 	if (sock->file->f_flags & O_NONBLOCK)
2348 		msg_sys->msg_flags |= MSG_DONTWAIT;
2349 	/*
2350 	 * If this is sendmmsg() and current destination address is same as
2351 	 * previously succeeded address, omit asking LSM's decision.
2352 	 * used_address->name_len is initialized to UINT_MAX so that the first
2353 	 * destination address never matches.
2354 	 */
2355 	if (used_address && msg_sys->msg_name &&
2356 	    used_address->name_len == msg_sys->msg_namelen &&
2357 	    !memcmp(&used_address->name, msg_sys->msg_name,
2358 		    used_address->name_len)) {
2359 		err = sock_sendmsg_nosec(sock, msg_sys);
2360 		goto out_freectl;
2361 	}
2362 	err = sock_sendmsg(sock, msg_sys);
2363 	/*
2364 	 * If this is sendmmsg() and sending to current destination address was
2365 	 * successful, remember it.
2366 	 */
2367 	if (used_address && err >= 0) {
2368 		used_address->name_len = msg_sys->msg_namelen;
2369 		if (msg_sys->msg_name)
2370 			memcpy(&used_address->name, msg_sys->msg_name,
2371 			       used_address->name_len);
2372 	}
2373 
2374 out_freectl:
2375 	if (ctl_buf != ctl)
2376 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2377 out:
2378 	return err;
2379 }
2380 
2381 int sendmsg_copy_msghdr(struct msghdr *msg,
2382 			struct user_msghdr __user *umsg, unsigned flags,
2383 			struct iovec **iov)
2384 {
2385 	int err;
2386 
2387 	if (flags & MSG_CMSG_COMPAT) {
2388 		struct compat_msghdr __user *msg_compat;
2389 
2390 		msg_compat = (struct compat_msghdr __user *) umsg;
2391 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2392 	} else {
2393 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2394 	}
2395 	if (err < 0)
2396 		return err;
2397 
2398 	return 0;
2399 }
2400 
2401 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2402 			 struct msghdr *msg_sys, unsigned int flags,
2403 			 struct used_address *used_address,
2404 			 unsigned int allowed_msghdr_flags)
2405 {
2406 	struct sockaddr_storage address;
2407 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2408 	ssize_t err;
2409 
2410 	msg_sys->msg_name = &address;
2411 
2412 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2413 	if (err < 0)
2414 		return err;
2415 
2416 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2417 				allowed_msghdr_flags);
2418 	kfree(iov);
2419 	return err;
2420 }
2421 
2422 /*
2423  *	BSD sendmsg interface
2424  */
2425 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2426 			unsigned int flags)
2427 {
2428 	/* disallow ancillary data requests from this path */
2429 	if (msg->msg_control || msg->msg_controllen)
2430 		return -EINVAL;
2431 
2432 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2433 }
2434 
2435 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2436 		   bool forbid_cmsg_compat)
2437 {
2438 	int fput_needed, err;
2439 	struct msghdr msg_sys;
2440 	struct socket *sock;
2441 
2442 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2443 		return -EINVAL;
2444 
2445 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2446 	if (!sock)
2447 		goto out;
2448 
2449 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2450 
2451 	fput_light(sock->file, fput_needed);
2452 out:
2453 	return err;
2454 }
2455 
2456 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2457 {
2458 	return __sys_sendmsg(fd, msg, flags, true);
2459 }
2460 
2461 /*
2462  *	Linux sendmmsg interface
2463  */
2464 
2465 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2466 		   unsigned int flags, bool forbid_cmsg_compat)
2467 {
2468 	int fput_needed, err, datagrams;
2469 	struct socket *sock;
2470 	struct mmsghdr __user *entry;
2471 	struct compat_mmsghdr __user *compat_entry;
2472 	struct msghdr msg_sys;
2473 	struct used_address used_address;
2474 	unsigned int oflags = flags;
2475 
2476 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2477 		return -EINVAL;
2478 
2479 	if (vlen > UIO_MAXIOV)
2480 		vlen = UIO_MAXIOV;
2481 
2482 	datagrams = 0;
2483 
2484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2485 	if (!sock)
2486 		return err;
2487 
2488 	used_address.name_len = UINT_MAX;
2489 	entry = mmsg;
2490 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2491 	err = 0;
2492 	flags |= MSG_BATCH;
2493 
2494 	while (datagrams < vlen) {
2495 		if (datagrams == vlen - 1)
2496 			flags = oflags;
2497 
2498 		if (MSG_CMSG_COMPAT & flags) {
2499 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2500 					     &msg_sys, flags, &used_address, MSG_EOR);
2501 			if (err < 0)
2502 				break;
2503 			err = __put_user(err, &compat_entry->msg_len);
2504 			++compat_entry;
2505 		} else {
2506 			err = ___sys_sendmsg(sock,
2507 					     (struct user_msghdr __user *)entry,
2508 					     &msg_sys, flags, &used_address, MSG_EOR);
2509 			if (err < 0)
2510 				break;
2511 			err = put_user(err, &entry->msg_len);
2512 			++entry;
2513 		}
2514 
2515 		if (err)
2516 			break;
2517 		++datagrams;
2518 		if (msg_data_left(&msg_sys))
2519 			break;
2520 		cond_resched();
2521 	}
2522 
2523 	fput_light(sock->file, fput_needed);
2524 
2525 	/* We only return an error if no datagrams were able to be sent */
2526 	if (datagrams != 0)
2527 		return datagrams;
2528 
2529 	return err;
2530 }
2531 
2532 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2533 		unsigned int, vlen, unsigned int, flags)
2534 {
2535 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2536 }
2537 
2538 int recvmsg_copy_msghdr(struct msghdr *msg,
2539 			struct user_msghdr __user *umsg, unsigned flags,
2540 			struct sockaddr __user **uaddr,
2541 			struct iovec **iov)
2542 {
2543 	ssize_t err;
2544 
2545 	if (MSG_CMSG_COMPAT & flags) {
2546 		struct compat_msghdr __user *msg_compat;
2547 
2548 		msg_compat = (struct compat_msghdr __user *) umsg;
2549 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2550 	} else {
2551 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2552 	}
2553 	if (err < 0)
2554 		return err;
2555 
2556 	return 0;
2557 }
2558 
2559 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2560 			   struct user_msghdr __user *msg,
2561 			   struct sockaddr __user *uaddr,
2562 			   unsigned int flags, int nosec)
2563 {
2564 	struct compat_msghdr __user *msg_compat =
2565 					(struct compat_msghdr __user *) msg;
2566 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2567 	struct sockaddr_storage addr;
2568 	unsigned long cmsg_ptr;
2569 	int len;
2570 	ssize_t err;
2571 
2572 	msg_sys->msg_name = &addr;
2573 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2574 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2575 
2576 	/* We assume all kernel code knows the size of sockaddr_storage */
2577 	msg_sys->msg_namelen = 0;
2578 
2579 	if (sock->file->f_flags & O_NONBLOCK)
2580 		flags |= MSG_DONTWAIT;
2581 
2582 	if (unlikely(nosec))
2583 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2584 	else
2585 		err = sock_recvmsg(sock, msg_sys, flags);
2586 
2587 	if (err < 0)
2588 		goto out;
2589 	len = err;
2590 
2591 	if (uaddr != NULL) {
2592 		err = move_addr_to_user(&addr,
2593 					msg_sys->msg_namelen, uaddr,
2594 					uaddr_len);
2595 		if (err < 0)
2596 			goto out;
2597 	}
2598 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2599 			 COMPAT_FLAGS(msg));
2600 	if (err)
2601 		goto out;
2602 	if (MSG_CMSG_COMPAT & flags)
2603 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2604 				 &msg_compat->msg_controllen);
2605 	else
2606 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2607 				 &msg->msg_controllen);
2608 	if (err)
2609 		goto out;
2610 	err = len;
2611 out:
2612 	return err;
2613 }
2614 
2615 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2616 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2617 {
2618 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2619 	/* user mode address pointers */
2620 	struct sockaddr __user *uaddr;
2621 	ssize_t err;
2622 
2623 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2624 	if (err < 0)
2625 		return err;
2626 
2627 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2628 	kfree(iov);
2629 	return err;
2630 }
2631 
2632 /*
2633  *	BSD recvmsg interface
2634  */
2635 
2636 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2637 			struct user_msghdr __user *umsg,
2638 			struct sockaddr __user *uaddr, unsigned int flags)
2639 {
2640 	/* disallow ancillary data requests from this path */
2641 	if (msg->msg_control || msg->msg_controllen)
2642 		return -EINVAL;
2643 
2644 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2645 }
2646 
2647 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2648 		   bool forbid_cmsg_compat)
2649 {
2650 	int fput_needed, err;
2651 	struct msghdr msg_sys;
2652 	struct socket *sock;
2653 
2654 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2655 		return -EINVAL;
2656 
2657 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2658 	if (!sock)
2659 		goto out;
2660 
2661 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2662 
2663 	fput_light(sock->file, fput_needed);
2664 out:
2665 	return err;
2666 }
2667 
2668 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2669 		unsigned int, flags)
2670 {
2671 	return __sys_recvmsg(fd, msg, flags, true);
2672 }
2673 
2674 /*
2675  *     Linux recvmmsg interface
2676  */
2677 
2678 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2679 			  unsigned int vlen, unsigned int flags,
2680 			  struct timespec64 *timeout)
2681 {
2682 	int fput_needed, err, datagrams;
2683 	struct socket *sock;
2684 	struct mmsghdr __user *entry;
2685 	struct compat_mmsghdr __user *compat_entry;
2686 	struct msghdr msg_sys;
2687 	struct timespec64 end_time;
2688 	struct timespec64 timeout64;
2689 
2690 	if (timeout &&
2691 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2692 				    timeout->tv_nsec))
2693 		return -EINVAL;
2694 
2695 	datagrams = 0;
2696 
2697 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2698 	if (!sock)
2699 		return err;
2700 
2701 	if (likely(!(flags & MSG_ERRQUEUE))) {
2702 		err = sock_error(sock->sk);
2703 		if (err) {
2704 			datagrams = err;
2705 			goto out_put;
2706 		}
2707 	}
2708 
2709 	entry = mmsg;
2710 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 
2712 	while (datagrams < vlen) {
2713 		/*
2714 		 * No need to ask LSM for more than the first datagram.
2715 		 */
2716 		if (MSG_CMSG_COMPAT & flags) {
2717 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2718 					     &msg_sys, flags & ~MSG_WAITFORONE,
2719 					     datagrams);
2720 			if (err < 0)
2721 				break;
2722 			err = __put_user(err, &compat_entry->msg_len);
2723 			++compat_entry;
2724 		} else {
2725 			err = ___sys_recvmsg(sock,
2726 					     (struct user_msghdr __user *)entry,
2727 					     &msg_sys, flags & ~MSG_WAITFORONE,
2728 					     datagrams);
2729 			if (err < 0)
2730 				break;
2731 			err = put_user(err, &entry->msg_len);
2732 			++entry;
2733 		}
2734 
2735 		if (err)
2736 			break;
2737 		++datagrams;
2738 
2739 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2740 		if (flags & MSG_WAITFORONE)
2741 			flags |= MSG_DONTWAIT;
2742 
2743 		if (timeout) {
2744 			ktime_get_ts64(&timeout64);
2745 			*timeout = timespec64_sub(end_time, timeout64);
2746 			if (timeout->tv_sec < 0) {
2747 				timeout->tv_sec = timeout->tv_nsec = 0;
2748 				break;
2749 			}
2750 
2751 			/* Timeout, return less than vlen datagrams */
2752 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2753 				break;
2754 		}
2755 
2756 		/* Out of band data, return right away */
2757 		if (msg_sys.msg_flags & MSG_OOB)
2758 			break;
2759 		cond_resched();
2760 	}
2761 
2762 	if (err == 0)
2763 		goto out_put;
2764 
2765 	if (datagrams == 0) {
2766 		datagrams = err;
2767 		goto out_put;
2768 	}
2769 
2770 	/*
2771 	 * We may return less entries than requested (vlen) if the
2772 	 * sock is non block and there aren't enough datagrams...
2773 	 */
2774 	if (err != -EAGAIN) {
2775 		/*
2776 		 * ... or  if recvmsg returns an error after we
2777 		 * received some datagrams, where we record the
2778 		 * error to return on the next call or if the
2779 		 * app asks about it using getsockopt(SO_ERROR).
2780 		 */
2781 		sock->sk->sk_err = -err;
2782 	}
2783 out_put:
2784 	fput_light(sock->file, fput_needed);
2785 
2786 	return datagrams;
2787 }
2788 
2789 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2790 		   unsigned int vlen, unsigned int flags,
2791 		   struct __kernel_timespec __user *timeout,
2792 		   struct old_timespec32 __user *timeout32)
2793 {
2794 	int datagrams;
2795 	struct timespec64 timeout_sys;
2796 
2797 	if (timeout && get_timespec64(&timeout_sys, timeout))
2798 		return -EFAULT;
2799 
2800 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2801 		return -EFAULT;
2802 
2803 	if (!timeout && !timeout32)
2804 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2805 
2806 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2807 
2808 	if (datagrams <= 0)
2809 		return datagrams;
2810 
2811 	if (timeout && put_timespec64(&timeout_sys, timeout))
2812 		datagrams = -EFAULT;
2813 
2814 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2815 		datagrams = -EFAULT;
2816 
2817 	return datagrams;
2818 }
2819 
2820 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2821 		unsigned int, vlen, unsigned int, flags,
2822 		struct __kernel_timespec __user *, timeout)
2823 {
2824 	if (flags & MSG_CMSG_COMPAT)
2825 		return -EINVAL;
2826 
2827 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2828 }
2829 
2830 #ifdef CONFIG_COMPAT_32BIT_TIME
2831 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2832 		unsigned int, vlen, unsigned int, flags,
2833 		struct old_timespec32 __user *, timeout)
2834 {
2835 	if (flags & MSG_CMSG_COMPAT)
2836 		return -EINVAL;
2837 
2838 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2839 }
2840 #endif
2841 
2842 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2843 /* Argument list sizes for sys_socketcall */
2844 #define AL(x) ((x) * sizeof(unsigned long))
2845 static const unsigned char nargs[21] = {
2846 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2847 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2848 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2849 	AL(4), AL(5), AL(4)
2850 };
2851 
2852 #undef AL
2853 
2854 /*
2855  *	System call vectors.
2856  *
2857  *	Argument checking cleaned up. Saved 20% in size.
2858  *  This function doesn't need to set the kernel lock because
2859  *  it is set by the callees.
2860  */
2861 
2862 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2863 {
2864 	unsigned long a[AUDITSC_ARGS];
2865 	unsigned long a0, a1;
2866 	int err;
2867 	unsigned int len;
2868 
2869 	if (call < 1 || call > SYS_SENDMMSG)
2870 		return -EINVAL;
2871 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2872 
2873 	len = nargs[call];
2874 	if (len > sizeof(a))
2875 		return -EINVAL;
2876 
2877 	/* copy_from_user should be SMP safe. */
2878 	if (copy_from_user(a, args, len))
2879 		return -EFAULT;
2880 
2881 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2882 	if (err)
2883 		return err;
2884 
2885 	a0 = a[0];
2886 	a1 = a[1];
2887 
2888 	switch (call) {
2889 	case SYS_SOCKET:
2890 		err = __sys_socket(a0, a1, a[2]);
2891 		break;
2892 	case SYS_BIND:
2893 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2894 		break;
2895 	case SYS_CONNECT:
2896 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2897 		break;
2898 	case SYS_LISTEN:
2899 		err = __sys_listen(a0, a1);
2900 		break;
2901 	case SYS_ACCEPT:
2902 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2903 				    (int __user *)a[2], 0);
2904 		break;
2905 	case SYS_GETSOCKNAME:
2906 		err =
2907 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2908 				      (int __user *)a[2]);
2909 		break;
2910 	case SYS_GETPEERNAME:
2911 		err =
2912 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2913 				      (int __user *)a[2]);
2914 		break;
2915 	case SYS_SOCKETPAIR:
2916 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2917 		break;
2918 	case SYS_SEND:
2919 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2920 				   NULL, 0);
2921 		break;
2922 	case SYS_SENDTO:
2923 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2924 				   (struct sockaddr __user *)a[4], a[5]);
2925 		break;
2926 	case SYS_RECV:
2927 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2928 				     NULL, NULL);
2929 		break;
2930 	case SYS_RECVFROM:
2931 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2932 				     (struct sockaddr __user *)a[4],
2933 				     (int __user *)a[5]);
2934 		break;
2935 	case SYS_SHUTDOWN:
2936 		err = __sys_shutdown(a0, a1);
2937 		break;
2938 	case SYS_SETSOCKOPT:
2939 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2940 				       a[4]);
2941 		break;
2942 	case SYS_GETSOCKOPT:
2943 		err =
2944 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2945 				     (int __user *)a[4]);
2946 		break;
2947 	case SYS_SENDMSG:
2948 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2949 				    a[2], true);
2950 		break;
2951 	case SYS_SENDMMSG:
2952 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2953 				     a[3], true);
2954 		break;
2955 	case SYS_RECVMSG:
2956 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2957 				    a[2], true);
2958 		break;
2959 	case SYS_RECVMMSG:
2960 		if (IS_ENABLED(CONFIG_64BIT))
2961 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2962 					     a[2], a[3],
2963 					     (struct __kernel_timespec __user *)a[4],
2964 					     NULL);
2965 		else
2966 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2967 					     a[2], a[3], NULL,
2968 					     (struct old_timespec32 __user *)a[4]);
2969 		break;
2970 	case SYS_ACCEPT4:
2971 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2972 				    (int __user *)a[2], a[3]);
2973 		break;
2974 	default:
2975 		err = -EINVAL;
2976 		break;
2977 	}
2978 	return err;
2979 }
2980 
2981 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2982 
2983 /**
2984  *	sock_register - add a socket protocol handler
2985  *	@ops: description of protocol
2986  *
2987  *	This function is called by a protocol handler that wants to
2988  *	advertise its address family, and have it linked into the
2989  *	socket interface. The value ops->family corresponds to the
2990  *	socket system call protocol family.
2991  */
2992 int sock_register(const struct net_proto_family *ops)
2993 {
2994 	int err;
2995 
2996 	if (ops->family >= NPROTO) {
2997 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2998 		return -ENOBUFS;
2999 	}
3000 
3001 	spin_lock(&net_family_lock);
3002 	if (rcu_dereference_protected(net_families[ops->family],
3003 				      lockdep_is_held(&net_family_lock)))
3004 		err = -EEXIST;
3005 	else {
3006 		rcu_assign_pointer(net_families[ops->family], ops);
3007 		err = 0;
3008 	}
3009 	spin_unlock(&net_family_lock);
3010 
3011 	pr_info("NET: Registered protocol family %d\n", ops->family);
3012 	return err;
3013 }
3014 EXPORT_SYMBOL(sock_register);
3015 
3016 /**
3017  *	sock_unregister - remove a protocol handler
3018  *	@family: protocol family to remove
3019  *
3020  *	This function is called by a protocol handler that wants to
3021  *	remove its address family, and have it unlinked from the
3022  *	new socket creation.
3023  *
3024  *	If protocol handler is a module, then it can use module reference
3025  *	counts to protect against new references. If protocol handler is not
3026  *	a module then it needs to provide its own protection in
3027  *	the ops->create routine.
3028  */
3029 void sock_unregister(int family)
3030 {
3031 	BUG_ON(family < 0 || family >= NPROTO);
3032 
3033 	spin_lock(&net_family_lock);
3034 	RCU_INIT_POINTER(net_families[family], NULL);
3035 	spin_unlock(&net_family_lock);
3036 
3037 	synchronize_rcu();
3038 
3039 	pr_info("NET: Unregistered protocol family %d\n", family);
3040 }
3041 EXPORT_SYMBOL(sock_unregister);
3042 
3043 bool sock_is_registered(int family)
3044 {
3045 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3046 }
3047 
3048 static int __init sock_init(void)
3049 {
3050 	int err;
3051 	/*
3052 	 *      Initialize the network sysctl infrastructure.
3053 	 */
3054 	err = net_sysctl_init();
3055 	if (err)
3056 		goto out;
3057 
3058 	/*
3059 	 *      Initialize skbuff SLAB cache
3060 	 */
3061 	skb_init();
3062 
3063 	/*
3064 	 *      Initialize the protocols module.
3065 	 */
3066 
3067 	init_inodecache();
3068 
3069 	err = register_filesystem(&sock_fs_type);
3070 	if (err)
3071 		goto out_fs;
3072 	sock_mnt = kern_mount(&sock_fs_type);
3073 	if (IS_ERR(sock_mnt)) {
3074 		err = PTR_ERR(sock_mnt);
3075 		goto out_mount;
3076 	}
3077 
3078 	/* The real protocol initialization is performed in later initcalls.
3079 	 */
3080 
3081 #ifdef CONFIG_NETFILTER
3082 	err = netfilter_init();
3083 	if (err)
3084 		goto out;
3085 #endif
3086 
3087 	ptp_classifier_init();
3088 
3089 out:
3090 	return err;
3091 
3092 out_mount:
3093 	unregister_filesystem(&sock_fs_type);
3094 out_fs:
3095 	goto out;
3096 }
3097 
3098 core_initcall(sock_init);	/* early initcall */
3099 
3100 #ifdef CONFIG_PROC_FS
3101 void socket_seq_show(struct seq_file *seq)
3102 {
3103 	seq_printf(seq, "sockets: used %d\n",
3104 		   sock_inuse_get(seq->private));
3105 }
3106 #endif				/* CONFIG_PROC_FS */
3107 
3108 #ifdef CONFIG_COMPAT
3109 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3110 {
3111 	struct compat_ifconf ifc32;
3112 	struct ifconf ifc;
3113 	int err;
3114 
3115 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3116 		return -EFAULT;
3117 
3118 	ifc.ifc_len = ifc32.ifc_len;
3119 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3120 
3121 	rtnl_lock();
3122 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3123 	rtnl_unlock();
3124 	if (err)
3125 		return err;
3126 
3127 	ifc32.ifc_len = ifc.ifc_len;
3128 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3129 		return -EFAULT;
3130 
3131 	return 0;
3132 }
3133 
3134 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3135 {
3136 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3137 	bool convert_in = false, convert_out = false;
3138 	size_t buf_size = 0;
3139 	struct ethtool_rxnfc __user *rxnfc = NULL;
3140 	struct ifreq ifr;
3141 	u32 rule_cnt = 0, actual_rule_cnt;
3142 	u32 ethcmd;
3143 	u32 data;
3144 	int ret;
3145 
3146 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3147 		return -EFAULT;
3148 
3149 	compat_rxnfc = compat_ptr(data);
3150 
3151 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3152 		return -EFAULT;
3153 
3154 	/* Most ethtool structures are defined without padding.
3155 	 * Unfortunately struct ethtool_rxnfc is an exception.
3156 	 */
3157 	switch (ethcmd) {
3158 	default:
3159 		break;
3160 	case ETHTOOL_GRXCLSRLALL:
3161 		/* Buffer size is variable */
3162 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3163 			return -EFAULT;
3164 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3165 			return -ENOMEM;
3166 		buf_size += rule_cnt * sizeof(u32);
3167 		/* fall through */
3168 	case ETHTOOL_GRXRINGS:
3169 	case ETHTOOL_GRXCLSRLCNT:
3170 	case ETHTOOL_GRXCLSRULE:
3171 	case ETHTOOL_SRXCLSRLINS:
3172 		convert_out = true;
3173 		/* fall through */
3174 	case ETHTOOL_SRXCLSRLDEL:
3175 		buf_size += sizeof(struct ethtool_rxnfc);
3176 		convert_in = true;
3177 		rxnfc = compat_alloc_user_space(buf_size);
3178 		break;
3179 	}
3180 
3181 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3182 		return -EFAULT;
3183 
3184 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3185 
3186 	if (convert_in) {
3187 		/* We expect there to be holes between fs.m_ext and
3188 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3189 		 */
3190 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3191 			     sizeof(compat_rxnfc->fs.m_ext) !=
3192 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3193 			     sizeof(rxnfc->fs.m_ext));
3194 		BUILD_BUG_ON(
3195 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3196 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3197 			offsetof(struct ethtool_rxnfc, fs.location) -
3198 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3199 
3200 		if (copy_in_user(rxnfc, compat_rxnfc,
3201 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3202 				 (void __user *)rxnfc) ||
3203 		    copy_in_user(&rxnfc->fs.ring_cookie,
3204 				 &compat_rxnfc->fs.ring_cookie,
3205 				 (void __user *)(&rxnfc->fs.location + 1) -
3206 				 (void __user *)&rxnfc->fs.ring_cookie))
3207 			return -EFAULT;
3208 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3209 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3210 				return -EFAULT;
3211 		} else if (copy_in_user(&rxnfc->rule_cnt,
3212 					&compat_rxnfc->rule_cnt,
3213 					sizeof(rxnfc->rule_cnt)))
3214 			return -EFAULT;
3215 	}
3216 
3217 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3218 	if (ret)
3219 		return ret;
3220 
3221 	if (convert_out) {
3222 		if (copy_in_user(compat_rxnfc, rxnfc,
3223 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3224 				 (const void __user *)rxnfc) ||
3225 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3226 				 &rxnfc->fs.ring_cookie,
3227 				 (const void __user *)(&rxnfc->fs.location + 1) -
3228 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3229 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3230 				 sizeof(rxnfc->rule_cnt)))
3231 			return -EFAULT;
3232 
3233 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3234 			/* As an optimisation, we only copy the actual
3235 			 * number of rules that the underlying
3236 			 * function returned.  Since Mallory might
3237 			 * change the rule count in user memory, we
3238 			 * check that it is less than the rule count
3239 			 * originally given (as the user buffer size),
3240 			 * which has been range-checked.
3241 			 */
3242 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3243 				return -EFAULT;
3244 			if (actual_rule_cnt < rule_cnt)
3245 				rule_cnt = actual_rule_cnt;
3246 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3247 					 &rxnfc->rule_locs[0],
3248 					 rule_cnt * sizeof(u32)))
3249 				return -EFAULT;
3250 		}
3251 	}
3252 
3253 	return 0;
3254 }
3255 
3256 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3257 {
3258 	compat_uptr_t uptr32;
3259 	struct ifreq ifr;
3260 	void __user *saved;
3261 	int err;
3262 
3263 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3264 		return -EFAULT;
3265 
3266 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3267 		return -EFAULT;
3268 
3269 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3270 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3271 
3272 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3273 	if (!err) {
3274 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3275 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3276 			err = -EFAULT;
3277 	}
3278 	return err;
3279 }
3280 
3281 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3282 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3283 				 struct compat_ifreq __user *u_ifreq32)
3284 {
3285 	struct ifreq ifreq;
3286 	u32 data32;
3287 
3288 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3289 		return -EFAULT;
3290 	if (get_user(data32, &u_ifreq32->ifr_data))
3291 		return -EFAULT;
3292 	ifreq.ifr_data = compat_ptr(data32);
3293 
3294 	return dev_ioctl(net, cmd, &ifreq, NULL);
3295 }
3296 
3297 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3298 			      unsigned int cmd,
3299 			      struct compat_ifreq __user *uifr32)
3300 {
3301 	struct ifreq __user *uifr;
3302 	int err;
3303 
3304 	/* Handle the fact that while struct ifreq has the same *layout* on
3305 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3306 	 * which are handled elsewhere, it still has different *size* due to
3307 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3308 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3309 	 * As a result, if the struct happens to be at the end of a page and
3310 	 * the next page isn't readable/writable, we get a fault. To prevent
3311 	 * that, copy back and forth to the full size.
3312 	 */
3313 
3314 	uifr = compat_alloc_user_space(sizeof(*uifr));
3315 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3316 		return -EFAULT;
3317 
3318 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3319 
3320 	if (!err) {
3321 		switch (cmd) {
3322 		case SIOCGIFFLAGS:
3323 		case SIOCGIFMETRIC:
3324 		case SIOCGIFMTU:
3325 		case SIOCGIFMEM:
3326 		case SIOCGIFHWADDR:
3327 		case SIOCGIFINDEX:
3328 		case SIOCGIFADDR:
3329 		case SIOCGIFBRDADDR:
3330 		case SIOCGIFDSTADDR:
3331 		case SIOCGIFNETMASK:
3332 		case SIOCGIFPFLAGS:
3333 		case SIOCGIFTXQLEN:
3334 		case SIOCGMIIPHY:
3335 		case SIOCGMIIREG:
3336 		case SIOCGIFNAME:
3337 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3338 				err = -EFAULT;
3339 			break;
3340 		}
3341 	}
3342 	return err;
3343 }
3344 
3345 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3346 			struct compat_ifreq __user *uifr32)
3347 {
3348 	struct ifreq ifr;
3349 	struct compat_ifmap __user *uifmap32;
3350 	int err;
3351 
3352 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3353 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3354 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3355 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3356 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3357 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3358 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3359 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3360 	if (err)
3361 		return -EFAULT;
3362 
3363 	err = dev_ioctl(net, cmd, &ifr, NULL);
3364 
3365 	if (cmd == SIOCGIFMAP && !err) {
3366 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3367 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3368 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3369 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3370 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3371 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3372 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3373 		if (err)
3374 			err = -EFAULT;
3375 	}
3376 	return err;
3377 }
3378 
3379 struct rtentry32 {
3380 	u32		rt_pad1;
3381 	struct sockaddr rt_dst;         /* target address               */
3382 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3383 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3384 	unsigned short	rt_flags;
3385 	short		rt_pad2;
3386 	u32		rt_pad3;
3387 	unsigned char	rt_tos;
3388 	unsigned char	rt_class;
3389 	short		rt_pad4;
3390 	short		rt_metric;      /* +1 for binary compatibility! */
3391 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3392 	u32		rt_mtu;         /* per route MTU/Window         */
3393 	u32		rt_window;      /* Window clamping              */
3394 	unsigned short  rt_irtt;        /* Initial RTT                  */
3395 };
3396 
3397 struct in6_rtmsg32 {
3398 	struct in6_addr		rtmsg_dst;
3399 	struct in6_addr		rtmsg_src;
3400 	struct in6_addr		rtmsg_gateway;
3401 	u32			rtmsg_type;
3402 	u16			rtmsg_dst_len;
3403 	u16			rtmsg_src_len;
3404 	u32			rtmsg_metric;
3405 	u32			rtmsg_info;
3406 	u32			rtmsg_flags;
3407 	s32			rtmsg_ifindex;
3408 };
3409 
3410 static int routing_ioctl(struct net *net, struct socket *sock,
3411 			 unsigned int cmd, void __user *argp)
3412 {
3413 	int ret;
3414 	void *r = NULL;
3415 	struct in6_rtmsg r6;
3416 	struct rtentry r4;
3417 	char devname[16];
3418 	u32 rtdev;
3419 	mm_segment_t old_fs = get_fs();
3420 
3421 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3422 		struct in6_rtmsg32 __user *ur6 = argp;
3423 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3424 			3 * sizeof(struct in6_addr));
3425 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3426 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3427 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3428 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3429 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3430 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3431 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3432 
3433 		r = (void *) &r6;
3434 	} else { /* ipv4 */
3435 		struct rtentry32 __user *ur4 = argp;
3436 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3437 					3 * sizeof(struct sockaddr));
3438 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3439 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3440 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3441 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3442 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3443 		ret |= get_user(rtdev, &(ur4->rt_dev));
3444 		if (rtdev) {
3445 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3446 			r4.rt_dev = (char __user __force *)devname;
3447 			devname[15] = 0;
3448 		} else
3449 			r4.rt_dev = NULL;
3450 
3451 		r = (void *) &r4;
3452 	}
3453 
3454 	if (ret) {
3455 		ret = -EFAULT;
3456 		goto out;
3457 	}
3458 
3459 	set_fs(KERNEL_DS);
3460 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3461 	set_fs(old_fs);
3462 
3463 out:
3464 	return ret;
3465 }
3466 
3467 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3468  * for some operations; this forces use of the newer bridge-utils that
3469  * use compatible ioctls
3470  */
3471 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3472 {
3473 	compat_ulong_t tmp;
3474 
3475 	if (get_user(tmp, argp))
3476 		return -EFAULT;
3477 	if (tmp == BRCTL_GET_VERSION)
3478 		return BRCTL_VERSION + 1;
3479 	return -EINVAL;
3480 }
3481 
3482 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3483 			 unsigned int cmd, unsigned long arg)
3484 {
3485 	void __user *argp = compat_ptr(arg);
3486 	struct sock *sk = sock->sk;
3487 	struct net *net = sock_net(sk);
3488 
3489 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3490 		return compat_ifr_data_ioctl(net, cmd, argp);
3491 
3492 	switch (cmd) {
3493 	case SIOCSIFBR:
3494 	case SIOCGIFBR:
3495 		return old_bridge_ioctl(argp);
3496 	case SIOCGIFCONF:
3497 		return compat_dev_ifconf(net, argp);
3498 	case SIOCETHTOOL:
3499 		return ethtool_ioctl(net, argp);
3500 	case SIOCWANDEV:
3501 		return compat_siocwandev(net, argp);
3502 	case SIOCGIFMAP:
3503 	case SIOCSIFMAP:
3504 		return compat_sioc_ifmap(net, cmd, argp);
3505 	case SIOCADDRT:
3506 	case SIOCDELRT:
3507 		return routing_ioctl(net, sock, cmd, argp);
3508 	case SIOCGSTAMP_OLD:
3509 	case SIOCGSTAMPNS_OLD:
3510 		if (!sock->ops->gettstamp)
3511 			return -ENOIOCTLCMD;
3512 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3513 					    !COMPAT_USE_64BIT_TIME);
3514 
3515 	case SIOCBONDSLAVEINFOQUERY:
3516 	case SIOCBONDINFOQUERY:
3517 	case SIOCSHWTSTAMP:
3518 	case SIOCGHWTSTAMP:
3519 		return compat_ifr_data_ioctl(net, cmd, argp);
3520 
3521 	case FIOSETOWN:
3522 	case SIOCSPGRP:
3523 	case FIOGETOWN:
3524 	case SIOCGPGRP:
3525 	case SIOCBRADDBR:
3526 	case SIOCBRDELBR:
3527 	case SIOCGIFVLAN:
3528 	case SIOCSIFVLAN:
3529 	case SIOCADDDLCI:
3530 	case SIOCDELDLCI:
3531 	case SIOCGSKNS:
3532 	case SIOCGSTAMP_NEW:
3533 	case SIOCGSTAMPNS_NEW:
3534 		return sock_ioctl(file, cmd, arg);
3535 
3536 	case SIOCGIFFLAGS:
3537 	case SIOCSIFFLAGS:
3538 	case SIOCGIFMETRIC:
3539 	case SIOCSIFMETRIC:
3540 	case SIOCGIFMTU:
3541 	case SIOCSIFMTU:
3542 	case SIOCGIFMEM:
3543 	case SIOCSIFMEM:
3544 	case SIOCGIFHWADDR:
3545 	case SIOCSIFHWADDR:
3546 	case SIOCADDMULTI:
3547 	case SIOCDELMULTI:
3548 	case SIOCGIFINDEX:
3549 	case SIOCGIFADDR:
3550 	case SIOCSIFADDR:
3551 	case SIOCSIFHWBROADCAST:
3552 	case SIOCDIFADDR:
3553 	case SIOCGIFBRDADDR:
3554 	case SIOCSIFBRDADDR:
3555 	case SIOCGIFDSTADDR:
3556 	case SIOCSIFDSTADDR:
3557 	case SIOCGIFNETMASK:
3558 	case SIOCSIFNETMASK:
3559 	case SIOCSIFPFLAGS:
3560 	case SIOCGIFPFLAGS:
3561 	case SIOCGIFTXQLEN:
3562 	case SIOCSIFTXQLEN:
3563 	case SIOCBRADDIF:
3564 	case SIOCBRDELIF:
3565 	case SIOCGIFNAME:
3566 	case SIOCSIFNAME:
3567 	case SIOCGMIIPHY:
3568 	case SIOCGMIIREG:
3569 	case SIOCSMIIREG:
3570 	case SIOCBONDENSLAVE:
3571 	case SIOCBONDRELEASE:
3572 	case SIOCBONDSETHWADDR:
3573 	case SIOCBONDCHANGEACTIVE:
3574 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3575 
3576 	case SIOCSARP:
3577 	case SIOCGARP:
3578 	case SIOCDARP:
3579 	case SIOCOUTQ:
3580 	case SIOCOUTQNSD:
3581 	case SIOCATMARK:
3582 		return sock_do_ioctl(net, sock, cmd, arg);
3583 	}
3584 
3585 	return -ENOIOCTLCMD;
3586 }
3587 
3588 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3589 			      unsigned long arg)
3590 {
3591 	struct socket *sock = file->private_data;
3592 	int ret = -ENOIOCTLCMD;
3593 	struct sock *sk;
3594 	struct net *net;
3595 
3596 	sk = sock->sk;
3597 	net = sock_net(sk);
3598 
3599 	if (sock->ops->compat_ioctl)
3600 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3601 
3602 	if (ret == -ENOIOCTLCMD &&
3603 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3604 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3605 
3606 	if (ret == -ENOIOCTLCMD)
3607 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3608 
3609 	return ret;
3610 }
3611 #endif
3612 
3613 /**
3614  *	kernel_bind - bind an address to a socket (kernel space)
3615  *	@sock: socket
3616  *	@addr: address
3617  *	@addrlen: length of address
3618  *
3619  *	Returns 0 or an error.
3620  */
3621 
3622 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3623 {
3624 	return sock->ops->bind(sock, addr, addrlen);
3625 }
3626 EXPORT_SYMBOL(kernel_bind);
3627 
3628 /**
3629  *	kernel_listen - move socket to listening state (kernel space)
3630  *	@sock: socket
3631  *	@backlog: pending connections queue size
3632  *
3633  *	Returns 0 or an error.
3634  */
3635 
3636 int kernel_listen(struct socket *sock, int backlog)
3637 {
3638 	return sock->ops->listen(sock, backlog);
3639 }
3640 EXPORT_SYMBOL(kernel_listen);
3641 
3642 /**
3643  *	kernel_accept - accept a connection (kernel space)
3644  *	@sock: listening socket
3645  *	@newsock: new connected socket
3646  *	@flags: flags
3647  *
3648  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3649  *	If it fails, @newsock is guaranteed to be %NULL.
3650  *	Returns 0 or an error.
3651  */
3652 
3653 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3654 {
3655 	struct sock *sk = sock->sk;
3656 	int err;
3657 
3658 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3659 			       newsock);
3660 	if (err < 0)
3661 		goto done;
3662 
3663 	err = sock->ops->accept(sock, *newsock, flags, true);
3664 	if (err < 0) {
3665 		sock_release(*newsock);
3666 		*newsock = NULL;
3667 		goto done;
3668 	}
3669 
3670 	(*newsock)->ops = sock->ops;
3671 	__module_get((*newsock)->ops->owner);
3672 
3673 done:
3674 	return err;
3675 }
3676 EXPORT_SYMBOL(kernel_accept);
3677 
3678 /**
3679  *	kernel_connect - connect a socket (kernel space)
3680  *	@sock: socket
3681  *	@addr: address
3682  *	@addrlen: address length
3683  *	@flags: flags (O_NONBLOCK, ...)
3684  *
3685  *	For datagram sockets, @addr is the addres to which datagrams are sent
3686  *	by default, and the only address from which datagrams are received.
3687  *	For stream sockets, attempts to connect to @addr.
3688  *	Returns 0 or an error code.
3689  */
3690 
3691 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3692 		   int flags)
3693 {
3694 	return sock->ops->connect(sock, addr, addrlen, flags);
3695 }
3696 EXPORT_SYMBOL(kernel_connect);
3697 
3698 /**
3699  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3700  *	@sock: socket
3701  *	@addr: address holder
3702  *
3703  * 	Fills the @addr pointer with the address which the socket is bound.
3704  *	Returns 0 or an error code.
3705  */
3706 
3707 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3708 {
3709 	return sock->ops->getname(sock, addr, 0);
3710 }
3711 EXPORT_SYMBOL(kernel_getsockname);
3712 
3713 /**
3714  *	kernel_peername - get the address which the socket is connected (kernel space)
3715  *	@sock: socket
3716  *	@addr: address holder
3717  *
3718  * 	Fills the @addr pointer with the address which the socket is connected.
3719  *	Returns 0 or an error code.
3720  */
3721 
3722 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3723 {
3724 	return sock->ops->getname(sock, addr, 1);
3725 }
3726 EXPORT_SYMBOL(kernel_getpeername);
3727 
3728 /**
3729  *	kernel_getsockopt - get a socket option (kernel space)
3730  *	@sock: socket
3731  *	@level: API level (SOL_SOCKET, ...)
3732  *	@optname: option tag
3733  *	@optval: option value
3734  *	@optlen: option length
3735  *
3736  *	Assigns the option length to @optlen.
3737  *	Returns 0 or an error.
3738  */
3739 
3740 int kernel_getsockopt(struct socket *sock, int level, int optname,
3741 			char *optval, int *optlen)
3742 {
3743 	mm_segment_t oldfs = get_fs();
3744 	char __user *uoptval;
3745 	int __user *uoptlen;
3746 	int err;
3747 
3748 	uoptval = (char __user __force *) optval;
3749 	uoptlen = (int __user __force *) optlen;
3750 
3751 	set_fs(KERNEL_DS);
3752 	if (level == SOL_SOCKET)
3753 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3754 	else
3755 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3756 					    uoptlen);
3757 	set_fs(oldfs);
3758 	return err;
3759 }
3760 EXPORT_SYMBOL(kernel_getsockopt);
3761 
3762 /**
3763  *	kernel_setsockopt - set a socket option (kernel space)
3764  *	@sock: socket
3765  *	@level: API level (SOL_SOCKET, ...)
3766  *	@optname: option tag
3767  *	@optval: option value
3768  *	@optlen: option length
3769  *
3770  *	Returns 0 or an error.
3771  */
3772 
3773 int kernel_setsockopt(struct socket *sock, int level, int optname,
3774 			char *optval, unsigned int optlen)
3775 {
3776 	mm_segment_t oldfs = get_fs();
3777 	char __user *uoptval;
3778 	int err;
3779 
3780 	uoptval = (char __user __force *) optval;
3781 
3782 	set_fs(KERNEL_DS);
3783 	if (level == SOL_SOCKET)
3784 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3785 	else
3786 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3787 					    optlen);
3788 	set_fs(oldfs);
3789 	return err;
3790 }
3791 EXPORT_SYMBOL(kernel_setsockopt);
3792 
3793 /**
3794  *	kernel_sendpage - send a &page through a socket (kernel space)
3795  *	@sock: socket
3796  *	@page: page
3797  *	@offset: page offset
3798  *	@size: total size in bytes
3799  *	@flags: flags (MSG_DONTWAIT, ...)
3800  *
3801  *	Returns the total amount sent in bytes or an error.
3802  */
3803 
3804 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3805 		    size_t size, int flags)
3806 {
3807 	if (sock->ops->sendpage)
3808 		return sock->ops->sendpage(sock, page, offset, size, flags);
3809 
3810 	return sock_no_sendpage(sock, page, offset, size, flags);
3811 }
3812 EXPORT_SYMBOL(kernel_sendpage);
3813 
3814 /**
3815  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3816  *	@sk: sock
3817  *	@page: page
3818  *	@offset: page offset
3819  *	@size: total size in bytes
3820  *	@flags: flags (MSG_DONTWAIT, ...)
3821  *
3822  *	Returns the total amount sent in bytes or an error.
3823  *	Caller must hold @sk.
3824  */
3825 
3826 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3827 			   size_t size, int flags)
3828 {
3829 	struct socket *sock = sk->sk_socket;
3830 
3831 	if (sock->ops->sendpage_locked)
3832 		return sock->ops->sendpage_locked(sk, page, offset, size,
3833 						  flags);
3834 
3835 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3836 }
3837 EXPORT_SYMBOL(kernel_sendpage_locked);
3838 
3839 /**
3840  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3841  *	@sock: socket
3842  *	@how: connection part
3843  *
3844  *	Returns 0 or an error.
3845  */
3846 
3847 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3848 {
3849 	return sock->ops->shutdown(sock, how);
3850 }
3851 EXPORT_SYMBOL(kernel_sock_shutdown);
3852 
3853 /**
3854  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3855  *	@sk: socket
3856  *
3857  *	This routine returns the IP overhead imposed by a socket i.e.
3858  *	the length of the underlying IP header, depending on whether
3859  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3860  *	on at the socket. Assumes that the caller has a lock on the socket.
3861  */
3862 
3863 u32 kernel_sock_ip_overhead(struct sock *sk)
3864 {
3865 	struct inet_sock *inet;
3866 	struct ip_options_rcu *opt;
3867 	u32 overhead = 0;
3868 #if IS_ENABLED(CONFIG_IPV6)
3869 	struct ipv6_pinfo *np;
3870 	struct ipv6_txoptions *optv6 = NULL;
3871 #endif /* IS_ENABLED(CONFIG_IPV6) */
3872 
3873 	if (!sk)
3874 		return overhead;
3875 
3876 	switch (sk->sk_family) {
3877 	case AF_INET:
3878 		inet = inet_sk(sk);
3879 		overhead += sizeof(struct iphdr);
3880 		opt = rcu_dereference_protected(inet->inet_opt,
3881 						sock_owned_by_user(sk));
3882 		if (opt)
3883 			overhead += opt->opt.optlen;
3884 		return overhead;
3885 #if IS_ENABLED(CONFIG_IPV6)
3886 	case AF_INET6:
3887 		np = inet6_sk(sk);
3888 		overhead += sizeof(struct ipv6hdr);
3889 		if (np)
3890 			optv6 = rcu_dereference_protected(np->opt,
3891 							  sock_owned_by_user(sk));
3892 		if (optv6)
3893 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3894 		return overhead;
3895 #endif /* IS_ENABLED(CONFIG_IPV6) */
3896 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3897 		return overhead;
3898 	}
3899 }
3900 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3901