1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 117 unsigned long nr_segs, loff_t pos); 118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 119 unsigned long nr_segs, loff_t pos); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static unsigned int sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_sendpage(struct file *file, struct page *page, 132 int offset, size_t size, loff_t *ppos, int more); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 137 /* 138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 139 * in the operation structures but are done directly via the socketcall() multiplexor. 140 */ 141 142 static const struct file_operations socket_file_ops = { 143 .owner = THIS_MODULE, 144 .llseek = no_llseek, 145 .aio_read = sock_aio_read, 146 .aio_write = sock_aio_write, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .open = sock_no_open, /* special open code to disallow open via /proc */ 154 .release = sock_close, 155 .fasync = sock_fasync, 156 .sendpage = sock_sendpage, 157 .splice_write = generic_splice_sendpage, 158 .splice_read = sock_splice_read, 159 }; 160 161 /* 162 * The protocol list. Each protocol is registered in here. 163 */ 164 165 static DEFINE_SPINLOCK(net_family_lock); 166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 167 168 /* 169 * Statistics counters of the socket lists 170 */ 171 172 static DEFINE_PER_CPU(int, sockets_in_use); 173 174 /* 175 * Support routines. 176 * Move socket addresses back and forth across the kernel/user 177 * divide and look after the messy bits. 178 */ 179 180 /** 181 * move_addr_to_kernel - copy a socket address into kernel space 182 * @uaddr: Address in user space 183 * @kaddr: Address in kernel space 184 * @ulen: Length in user space 185 * 186 * The address is copied into kernel space. If the provided address is 187 * too long an error code of -EINVAL is returned. If the copy gives 188 * invalid addresses -EFAULT is returned. On a success 0 is returned. 189 */ 190 191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 192 { 193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 194 return -EINVAL; 195 if (ulen == 0) 196 return 0; 197 if (copy_from_user(kaddr, uaddr, ulen)) 198 return -EFAULT; 199 return audit_sockaddr(ulen, kaddr); 200 } 201 202 /** 203 * move_addr_to_user - copy an address to user space 204 * @kaddr: kernel space address 205 * @klen: length of address in kernel 206 * @uaddr: user space address 207 * @ulen: pointer to user length field 208 * 209 * The value pointed to by ulen on entry is the buffer length available. 210 * This is overwritten with the buffer space used. -EINVAL is returned 211 * if an overlong buffer is specified or a negative buffer size. -EFAULT 212 * is returned if either the buffer or the length field are not 213 * accessible. 214 * After copying the data up to the limit the user specifies, the true 215 * length of the data is written over the length limit the user 216 * specified. Zero is returned for a success. 217 */ 218 219 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 220 void __user *uaddr, int __user *ulen) 221 { 222 int err; 223 int len; 224 225 BUG_ON(klen > sizeof(struct sockaddr_storage)); 226 err = get_user(len, ulen); 227 if (err) 228 return err; 229 if (len > klen) 230 len = klen; 231 if (len < 0) 232 return -EINVAL; 233 if (len) { 234 if (audit_sockaddr(klen, kaddr)) 235 return -ENOMEM; 236 if (copy_to_user(uaddr, kaddr, len)) 237 return -EFAULT; 238 } 239 /* 240 * "fromlen shall refer to the value before truncation.." 241 * 1003.1g 242 */ 243 return __put_user(klen, ulen); 244 } 245 246 static struct kmem_cache *sock_inode_cachep __read_mostly; 247 248 static struct inode *sock_alloc_inode(struct super_block *sb) 249 { 250 struct socket_alloc *ei; 251 struct socket_wq *wq; 252 253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 254 if (!ei) 255 return NULL; 256 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 257 if (!wq) { 258 kmem_cache_free(sock_inode_cachep, ei); 259 return NULL; 260 } 261 init_waitqueue_head(&wq->wait); 262 wq->fasync_list = NULL; 263 RCU_INIT_POINTER(ei->socket.wq, wq); 264 265 ei->socket.state = SS_UNCONNECTED; 266 ei->socket.flags = 0; 267 ei->socket.ops = NULL; 268 ei->socket.sk = NULL; 269 ei->socket.file = NULL; 270 271 return &ei->vfs_inode; 272 } 273 274 static void sock_destroy_inode(struct inode *inode) 275 { 276 struct socket_alloc *ei; 277 struct socket_wq *wq; 278 279 ei = container_of(inode, struct socket_alloc, vfs_inode); 280 wq = rcu_dereference_protected(ei->socket.wq, 1); 281 kfree_rcu(wq, rcu); 282 kmem_cache_free(sock_inode_cachep, ei); 283 } 284 285 static void init_once(void *foo) 286 { 287 struct socket_alloc *ei = (struct socket_alloc *)foo; 288 289 inode_init_once(&ei->vfs_inode); 290 } 291 292 static int init_inodecache(void) 293 { 294 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 295 sizeof(struct socket_alloc), 296 0, 297 (SLAB_HWCACHE_ALIGN | 298 SLAB_RECLAIM_ACCOUNT | 299 SLAB_MEM_SPREAD), 300 init_once); 301 if (sock_inode_cachep == NULL) 302 return -ENOMEM; 303 return 0; 304 } 305 306 static const struct super_operations sockfs_ops = { 307 .alloc_inode = sock_alloc_inode, 308 .destroy_inode = sock_destroy_inode, 309 .statfs = simple_statfs, 310 }; 311 312 /* 313 * sockfs_dname() is called from d_path(). 314 */ 315 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 316 { 317 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 318 dentry->d_inode->i_ino); 319 } 320 321 static const struct dentry_operations sockfs_dentry_operations = { 322 .d_dname = sockfs_dname, 323 }; 324 325 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 326 int flags, const char *dev_name, void *data) 327 { 328 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 329 &sockfs_dentry_operations, SOCKFS_MAGIC); 330 } 331 332 static struct vfsmount *sock_mnt __read_mostly; 333 334 static struct file_system_type sock_fs_type = { 335 .name = "sockfs", 336 .mount = sockfs_mount, 337 .kill_sb = kill_anon_super, 338 }; 339 340 /* 341 * Obtains the first available file descriptor and sets it up for use. 342 * 343 * These functions create file structures and maps them to fd space 344 * of the current process. On success it returns file descriptor 345 * and file struct implicitly stored in sock->file. 346 * Note that another thread may close file descriptor before we return 347 * from this function. We use the fact that now we do not refer 348 * to socket after mapping. If one day we will need it, this 349 * function will increment ref. count on file by 1. 350 * 351 * In any case returned fd MAY BE not valid! 352 * This race condition is unavoidable 353 * with shared fd spaces, we cannot solve it inside kernel, 354 * but we take care of internal coherence yet. 355 */ 356 357 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 358 { 359 struct qstr name = { .name = "" }; 360 struct path path; 361 struct file *file; 362 363 if (dname) { 364 name.name = dname; 365 name.len = strlen(name.name); 366 } else if (sock->sk) { 367 name.name = sock->sk->sk_prot_creator->name; 368 name.len = strlen(name.name); 369 } 370 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 371 if (unlikely(!path.dentry)) 372 return ERR_PTR(-ENOMEM); 373 path.mnt = mntget(sock_mnt); 374 375 d_instantiate(path.dentry, SOCK_INODE(sock)); 376 SOCK_INODE(sock)->i_fop = &socket_file_ops; 377 378 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 379 &socket_file_ops); 380 if (unlikely(IS_ERR(file))) { 381 /* drop dentry, keep inode */ 382 ihold(path.dentry->d_inode); 383 path_put(&path); 384 return file; 385 } 386 387 sock->file = file; 388 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 389 file->private_data = sock; 390 return file; 391 } 392 EXPORT_SYMBOL(sock_alloc_file); 393 394 static int sock_map_fd(struct socket *sock, int flags) 395 { 396 struct file *newfile; 397 int fd = get_unused_fd_flags(flags); 398 if (unlikely(fd < 0)) 399 return fd; 400 401 newfile = sock_alloc_file(sock, flags, NULL); 402 if (likely(!IS_ERR(newfile))) { 403 fd_install(fd, newfile); 404 return fd; 405 } 406 407 put_unused_fd(fd); 408 return PTR_ERR(newfile); 409 } 410 411 struct socket *sock_from_file(struct file *file, int *err) 412 { 413 if (file->f_op == &socket_file_ops) 414 return file->private_data; /* set in sock_map_fd */ 415 416 *err = -ENOTSOCK; 417 return NULL; 418 } 419 EXPORT_SYMBOL(sock_from_file); 420 421 /** 422 * sockfd_lookup - Go from a file number to its socket slot 423 * @fd: file handle 424 * @err: pointer to an error code return 425 * 426 * The file handle passed in is locked and the socket it is bound 427 * too is returned. If an error occurs the err pointer is overwritten 428 * with a negative errno code and NULL is returned. The function checks 429 * for both invalid handles and passing a handle which is not a socket. 430 * 431 * On a success the socket object pointer is returned. 432 */ 433 434 struct socket *sockfd_lookup(int fd, int *err) 435 { 436 struct file *file; 437 struct socket *sock; 438 439 file = fget(fd); 440 if (!file) { 441 *err = -EBADF; 442 return NULL; 443 } 444 445 sock = sock_from_file(file, err); 446 if (!sock) 447 fput(file); 448 return sock; 449 } 450 EXPORT_SYMBOL(sockfd_lookup); 451 452 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 453 { 454 struct fd f = fdget(fd); 455 struct socket *sock; 456 457 *err = -EBADF; 458 if (f.file) { 459 sock = sock_from_file(f.file, err); 460 if (likely(sock)) { 461 *fput_needed = f.flags; 462 return sock; 463 } 464 fdput(f); 465 } 466 return NULL; 467 } 468 469 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 470 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 471 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 472 static ssize_t sockfs_getxattr(struct dentry *dentry, 473 const char *name, void *value, size_t size) 474 { 475 const char *proto_name; 476 size_t proto_size; 477 int error; 478 479 error = -ENODATA; 480 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 481 proto_name = dentry->d_name.name; 482 proto_size = strlen(proto_name); 483 484 if (value) { 485 error = -ERANGE; 486 if (proto_size + 1 > size) 487 goto out; 488 489 strncpy(value, proto_name, proto_size + 1); 490 } 491 error = proto_size + 1; 492 } 493 494 out: 495 return error; 496 } 497 498 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 499 size_t size) 500 { 501 ssize_t len; 502 ssize_t used = 0; 503 504 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 505 if (len < 0) 506 return len; 507 used += len; 508 if (buffer) { 509 if (size < used) 510 return -ERANGE; 511 buffer += len; 512 } 513 514 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 520 buffer += len; 521 } 522 523 return used; 524 } 525 526 static const struct inode_operations sockfs_inode_ops = { 527 .getxattr = sockfs_getxattr, 528 .listxattr = sockfs_listxattr, 529 }; 530 531 /** 532 * sock_alloc - allocate a socket 533 * 534 * Allocate a new inode and socket object. The two are bound together 535 * and initialised. The socket is then returned. If we are out of inodes 536 * NULL is returned. 537 */ 538 539 static struct socket *sock_alloc(void) 540 { 541 struct inode *inode; 542 struct socket *sock; 543 544 inode = new_inode_pseudo(sock_mnt->mnt_sb); 545 if (!inode) 546 return NULL; 547 548 sock = SOCKET_I(inode); 549 550 kmemcheck_annotate_bitfield(sock, type); 551 inode->i_ino = get_next_ino(); 552 inode->i_mode = S_IFSOCK | S_IRWXUGO; 553 inode->i_uid = current_fsuid(); 554 inode->i_gid = current_fsgid(); 555 inode->i_op = &sockfs_inode_ops; 556 557 this_cpu_add(sockets_in_use, 1); 558 return sock; 559 } 560 561 /* 562 * In theory you can't get an open on this inode, but /proc provides 563 * a back door. Remember to keep it shut otherwise you'll let the 564 * creepy crawlies in. 565 */ 566 567 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 568 { 569 return -ENXIO; 570 } 571 572 const struct file_operations bad_sock_fops = { 573 .owner = THIS_MODULE, 574 .open = sock_no_open, 575 .llseek = noop_llseek, 576 }; 577 578 /** 579 * sock_release - close a socket 580 * @sock: socket to close 581 * 582 * The socket is released from the protocol stack if it has a release 583 * callback, and the inode is then released if the socket is bound to 584 * an inode not a file. 585 */ 586 587 void sock_release(struct socket *sock) 588 { 589 if (sock->ops) { 590 struct module *owner = sock->ops->owner; 591 592 sock->ops->release(sock); 593 sock->ops = NULL; 594 module_put(owner); 595 } 596 597 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 598 pr_err("%s: fasync list not empty!\n", __func__); 599 600 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 601 return; 602 603 this_cpu_sub(sockets_in_use, 1); 604 if (!sock->file) { 605 iput(SOCK_INODE(sock)); 606 return; 607 } 608 sock->file = NULL; 609 } 610 EXPORT_SYMBOL(sock_release); 611 612 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 613 { 614 *tx_flags = 0; 615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 616 *tx_flags |= SKBTX_HW_TSTAMP; 617 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 618 *tx_flags |= SKBTX_SW_TSTAMP; 619 if (sock_flag(sk, SOCK_WIFI_STATUS)) 620 *tx_flags |= SKBTX_WIFI_STATUS; 621 } 622 EXPORT_SYMBOL(sock_tx_timestamp); 623 624 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 625 struct msghdr *msg, size_t size) 626 { 627 struct sock_iocb *si = kiocb_to_siocb(iocb); 628 629 si->sock = sock; 630 si->scm = NULL; 631 si->msg = msg; 632 si->size = size; 633 634 return sock->ops->sendmsg(iocb, sock, msg, size); 635 } 636 637 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 638 struct msghdr *msg, size_t size) 639 { 640 int err = security_socket_sendmsg(sock, msg, size); 641 642 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 643 } 644 645 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 646 { 647 struct kiocb iocb; 648 struct sock_iocb siocb; 649 int ret; 650 651 init_sync_kiocb(&iocb, NULL); 652 iocb.private = &siocb; 653 ret = __sock_sendmsg(&iocb, sock, msg, size); 654 if (-EIOCBQUEUED == ret) 655 ret = wait_on_sync_kiocb(&iocb); 656 return ret; 657 } 658 EXPORT_SYMBOL(sock_sendmsg); 659 660 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 661 { 662 struct kiocb iocb; 663 struct sock_iocb siocb; 664 int ret; 665 666 init_sync_kiocb(&iocb, NULL); 667 iocb.private = &siocb; 668 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 669 if (-EIOCBQUEUED == ret) 670 ret = wait_on_sync_kiocb(&iocb); 671 return ret; 672 } 673 674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 675 struct kvec *vec, size_t num, size_t size) 676 { 677 mm_segment_t oldfs = get_fs(); 678 int result; 679 680 set_fs(KERNEL_DS); 681 /* 682 * the following is safe, since for compiler definitions of kvec and 683 * iovec are identical, yielding the same in-core layout and alignment 684 */ 685 msg->msg_iov = (struct iovec *)vec; 686 msg->msg_iovlen = num; 687 result = sock_sendmsg(sock, msg, size); 688 set_fs(oldfs); 689 return result; 690 } 691 EXPORT_SYMBOL(kernel_sendmsg); 692 693 /* 694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 695 */ 696 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 697 struct sk_buff *skb) 698 { 699 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 700 struct timespec ts[3]; 701 int empty = 1; 702 struct skb_shared_hwtstamps *shhwtstamps = 703 skb_hwtstamps(skb); 704 705 /* Race occurred between timestamp enabling and packet 706 receiving. Fill in the current time for now. */ 707 if (need_software_tstamp && skb->tstamp.tv64 == 0) 708 __net_timestamp(skb); 709 710 if (need_software_tstamp) { 711 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 712 struct timeval tv; 713 skb_get_timestamp(skb, &tv); 714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 715 sizeof(tv), &tv); 716 } else { 717 skb_get_timestampns(skb, &ts[0]); 718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 719 sizeof(ts[0]), &ts[0]); 720 } 721 } 722 723 724 memset(ts, 0, sizeof(ts)); 725 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 726 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 727 empty = 0; 728 if (shhwtstamps) { 729 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 730 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 731 empty = 0; 732 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 733 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 734 empty = 0; 735 } 736 if (!empty) 737 put_cmsg(msg, SOL_SOCKET, 738 SCM_TIMESTAMPING, sizeof(ts), &ts); 739 } 740 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 741 742 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 743 struct sk_buff *skb) 744 { 745 int ack; 746 747 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 748 return; 749 if (!skb->wifi_acked_valid) 750 return; 751 752 ack = skb->wifi_acked; 753 754 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 755 } 756 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 757 758 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 759 struct sk_buff *skb) 760 { 761 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 762 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 763 sizeof(__u32), &skb->dropcount); 764 } 765 766 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 767 struct sk_buff *skb) 768 { 769 sock_recv_timestamp(msg, sk, skb); 770 sock_recv_drops(msg, sk, skb); 771 } 772 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 773 774 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 775 struct msghdr *msg, size_t size, int flags) 776 { 777 struct sock_iocb *si = kiocb_to_siocb(iocb); 778 779 si->sock = sock; 780 si->scm = NULL; 781 si->msg = msg; 782 si->size = size; 783 si->flags = flags; 784 785 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 786 } 787 788 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 789 struct msghdr *msg, size_t size, int flags) 790 { 791 int err = security_socket_recvmsg(sock, msg, size, flags); 792 793 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 794 } 795 796 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 797 size_t size, int flags) 798 { 799 struct kiocb iocb; 800 struct sock_iocb siocb; 801 int ret; 802 803 init_sync_kiocb(&iocb, NULL); 804 iocb.private = &siocb; 805 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 806 if (-EIOCBQUEUED == ret) 807 ret = wait_on_sync_kiocb(&iocb); 808 return ret; 809 } 810 EXPORT_SYMBOL(sock_recvmsg); 811 812 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 813 size_t size, int flags) 814 { 815 struct kiocb iocb; 816 struct sock_iocb siocb; 817 int ret; 818 819 init_sync_kiocb(&iocb, NULL); 820 iocb.private = &siocb; 821 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 822 if (-EIOCBQUEUED == ret) 823 ret = wait_on_sync_kiocb(&iocb); 824 return ret; 825 } 826 827 /** 828 * kernel_recvmsg - Receive a message from a socket (kernel space) 829 * @sock: The socket to receive the message from 830 * @msg: Received message 831 * @vec: Input s/g array for message data 832 * @num: Size of input s/g array 833 * @size: Number of bytes to read 834 * @flags: Message flags (MSG_DONTWAIT, etc...) 835 * 836 * On return the msg structure contains the scatter/gather array passed in the 837 * vec argument. The array is modified so that it consists of the unfilled 838 * portion of the original array. 839 * 840 * The returned value is the total number of bytes received, or an error. 841 */ 842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 843 struct kvec *vec, size_t num, size_t size, int flags) 844 { 845 mm_segment_t oldfs = get_fs(); 846 int result; 847 848 set_fs(KERNEL_DS); 849 /* 850 * the following is safe, since for compiler definitions of kvec and 851 * iovec are identical, yielding the same in-core layout and alignment 852 */ 853 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 854 result = sock_recvmsg(sock, msg, size, flags); 855 set_fs(oldfs); 856 return result; 857 } 858 EXPORT_SYMBOL(kernel_recvmsg); 859 860 static ssize_t sock_sendpage(struct file *file, struct page *page, 861 int offset, size_t size, loff_t *ppos, int more) 862 { 863 struct socket *sock; 864 int flags; 865 866 sock = file->private_data; 867 868 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 869 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 870 flags |= more; 871 872 return kernel_sendpage(sock, page, offset, size, flags); 873 } 874 875 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 876 struct pipe_inode_info *pipe, size_t len, 877 unsigned int flags) 878 { 879 struct socket *sock = file->private_data; 880 881 if (unlikely(!sock->ops->splice_read)) 882 return -EINVAL; 883 884 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 885 } 886 887 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 888 struct sock_iocb *siocb) 889 { 890 if (!is_sync_kiocb(iocb)) 891 BUG(); 892 893 siocb->kiocb = iocb; 894 iocb->private = siocb; 895 return siocb; 896 } 897 898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 899 struct file *file, const struct iovec *iov, 900 unsigned long nr_segs) 901 { 902 struct socket *sock = file->private_data; 903 size_t size = 0; 904 int i; 905 906 for (i = 0; i < nr_segs; i++) 907 size += iov[i].iov_len; 908 909 msg->msg_name = NULL; 910 msg->msg_namelen = 0; 911 msg->msg_control = NULL; 912 msg->msg_controllen = 0; 913 msg->msg_iov = (struct iovec *)iov; 914 msg->msg_iovlen = nr_segs; 915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 916 917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 918 } 919 920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 921 unsigned long nr_segs, loff_t pos) 922 { 923 struct sock_iocb siocb, *x; 924 925 if (pos != 0) 926 return -ESPIPE; 927 928 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 929 return 0; 930 931 932 x = alloc_sock_iocb(iocb, &siocb); 933 if (!x) 934 return -ENOMEM; 935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 936 } 937 938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 939 struct file *file, const struct iovec *iov, 940 unsigned long nr_segs) 941 { 942 struct socket *sock = file->private_data; 943 size_t size = 0; 944 int i; 945 946 for (i = 0; i < nr_segs; i++) 947 size += iov[i].iov_len; 948 949 msg->msg_name = NULL; 950 msg->msg_namelen = 0; 951 msg->msg_control = NULL; 952 msg->msg_controllen = 0; 953 msg->msg_iov = (struct iovec *)iov; 954 msg->msg_iovlen = nr_segs; 955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 956 if (sock->type == SOCK_SEQPACKET) 957 msg->msg_flags |= MSG_EOR; 958 959 return __sock_sendmsg(iocb, sock, msg, size); 960 } 961 962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 963 unsigned long nr_segs, loff_t pos) 964 { 965 struct sock_iocb siocb, *x; 966 967 if (pos != 0) 968 return -ESPIPE; 969 970 x = alloc_sock_iocb(iocb, &siocb); 971 if (!x) 972 return -ENOMEM; 973 974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 975 } 976 977 /* 978 * Atomic setting of ioctl hooks to avoid race 979 * with module unload. 980 */ 981 982 static DEFINE_MUTEX(br_ioctl_mutex); 983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 984 985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 986 { 987 mutex_lock(&br_ioctl_mutex); 988 br_ioctl_hook = hook; 989 mutex_unlock(&br_ioctl_mutex); 990 } 991 EXPORT_SYMBOL(brioctl_set); 992 993 static DEFINE_MUTEX(vlan_ioctl_mutex); 994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 995 996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 997 { 998 mutex_lock(&vlan_ioctl_mutex); 999 vlan_ioctl_hook = hook; 1000 mutex_unlock(&vlan_ioctl_mutex); 1001 } 1002 EXPORT_SYMBOL(vlan_ioctl_set); 1003 1004 static DEFINE_MUTEX(dlci_ioctl_mutex); 1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1006 1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1008 { 1009 mutex_lock(&dlci_ioctl_mutex); 1010 dlci_ioctl_hook = hook; 1011 mutex_unlock(&dlci_ioctl_mutex); 1012 } 1013 EXPORT_SYMBOL(dlci_ioctl_set); 1014 1015 static long sock_do_ioctl(struct net *net, struct socket *sock, 1016 unsigned int cmd, unsigned long arg) 1017 { 1018 int err; 1019 void __user *argp = (void __user *)arg; 1020 1021 err = sock->ops->ioctl(sock, cmd, arg); 1022 1023 /* 1024 * If this ioctl is unknown try to hand it down 1025 * to the NIC driver. 1026 */ 1027 if (err == -ENOIOCTLCMD) 1028 err = dev_ioctl(net, cmd, argp); 1029 1030 return err; 1031 } 1032 1033 /* 1034 * With an ioctl, arg may well be a user mode pointer, but we don't know 1035 * what to do with it - that's up to the protocol still. 1036 */ 1037 1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1039 { 1040 struct socket *sock; 1041 struct sock *sk; 1042 void __user *argp = (void __user *)arg; 1043 int pid, err; 1044 struct net *net; 1045 1046 sock = file->private_data; 1047 sk = sock->sk; 1048 net = sock_net(sk); 1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1050 err = dev_ioctl(net, cmd, argp); 1051 } else 1052 #ifdef CONFIG_WEXT_CORE 1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1054 err = dev_ioctl(net, cmd, argp); 1055 } else 1056 #endif 1057 switch (cmd) { 1058 case FIOSETOWN: 1059 case SIOCSPGRP: 1060 err = -EFAULT; 1061 if (get_user(pid, (int __user *)argp)) 1062 break; 1063 err = f_setown(sock->file, pid, 1); 1064 break; 1065 case FIOGETOWN: 1066 case SIOCGPGRP: 1067 err = put_user(f_getown(sock->file), 1068 (int __user *)argp); 1069 break; 1070 case SIOCGIFBR: 1071 case SIOCSIFBR: 1072 case SIOCBRADDBR: 1073 case SIOCBRDELBR: 1074 err = -ENOPKG; 1075 if (!br_ioctl_hook) 1076 request_module("bridge"); 1077 1078 mutex_lock(&br_ioctl_mutex); 1079 if (br_ioctl_hook) 1080 err = br_ioctl_hook(net, cmd, argp); 1081 mutex_unlock(&br_ioctl_mutex); 1082 break; 1083 case SIOCGIFVLAN: 1084 case SIOCSIFVLAN: 1085 err = -ENOPKG; 1086 if (!vlan_ioctl_hook) 1087 request_module("8021q"); 1088 1089 mutex_lock(&vlan_ioctl_mutex); 1090 if (vlan_ioctl_hook) 1091 err = vlan_ioctl_hook(net, argp); 1092 mutex_unlock(&vlan_ioctl_mutex); 1093 break; 1094 case SIOCADDDLCI: 1095 case SIOCDELDLCI: 1096 err = -ENOPKG; 1097 if (!dlci_ioctl_hook) 1098 request_module("dlci"); 1099 1100 mutex_lock(&dlci_ioctl_mutex); 1101 if (dlci_ioctl_hook) 1102 err = dlci_ioctl_hook(cmd, argp); 1103 mutex_unlock(&dlci_ioctl_mutex); 1104 break; 1105 default: 1106 err = sock_do_ioctl(net, sock, cmd, arg); 1107 break; 1108 } 1109 return err; 1110 } 1111 1112 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1113 { 1114 int err; 1115 struct socket *sock = NULL; 1116 1117 err = security_socket_create(family, type, protocol, 1); 1118 if (err) 1119 goto out; 1120 1121 sock = sock_alloc(); 1122 if (!sock) { 1123 err = -ENOMEM; 1124 goto out; 1125 } 1126 1127 sock->type = type; 1128 err = security_socket_post_create(sock, family, type, protocol, 1); 1129 if (err) 1130 goto out_release; 1131 1132 out: 1133 *res = sock; 1134 return err; 1135 out_release: 1136 sock_release(sock); 1137 sock = NULL; 1138 goto out; 1139 } 1140 EXPORT_SYMBOL(sock_create_lite); 1141 1142 /* No kernel lock held - perfect */ 1143 static unsigned int sock_poll(struct file *file, poll_table *wait) 1144 { 1145 unsigned int busy_flag = 0; 1146 struct socket *sock; 1147 1148 /* 1149 * We can't return errors to poll, so it's either yes or no. 1150 */ 1151 sock = file->private_data; 1152 1153 if (sk_can_busy_loop(sock->sk)) { 1154 /* this socket can poll_ll so tell the system call */ 1155 busy_flag = POLL_BUSY_LOOP; 1156 1157 /* once, only if requested by syscall */ 1158 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1159 sk_busy_loop(sock->sk, 1); 1160 } 1161 1162 return busy_flag | sock->ops->poll(file, sock, wait); 1163 } 1164 1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1166 { 1167 struct socket *sock = file->private_data; 1168 1169 return sock->ops->mmap(file, sock, vma); 1170 } 1171 1172 static int sock_close(struct inode *inode, struct file *filp) 1173 { 1174 sock_release(SOCKET_I(inode)); 1175 return 0; 1176 } 1177 1178 /* 1179 * Update the socket async list 1180 * 1181 * Fasync_list locking strategy. 1182 * 1183 * 1. fasync_list is modified only under process context socket lock 1184 * i.e. under semaphore. 1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1186 * or under socket lock 1187 */ 1188 1189 static int sock_fasync(int fd, struct file *filp, int on) 1190 { 1191 struct socket *sock = filp->private_data; 1192 struct sock *sk = sock->sk; 1193 struct socket_wq *wq; 1194 1195 if (sk == NULL) 1196 return -EINVAL; 1197 1198 lock_sock(sk); 1199 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1200 fasync_helper(fd, filp, on, &wq->fasync_list); 1201 1202 if (!wq->fasync_list) 1203 sock_reset_flag(sk, SOCK_FASYNC); 1204 else 1205 sock_set_flag(sk, SOCK_FASYNC); 1206 1207 release_sock(sk); 1208 return 0; 1209 } 1210 1211 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1212 1213 int sock_wake_async(struct socket *sock, int how, int band) 1214 { 1215 struct socket_wq *wq; 1216 1217 if (!sock) 1218 return -1; 1219 rcu_read_lock(); 1220 wq = rcu_dereference(sock->wq); 1221 if (!wq || !wq->fasync_list) { 1222 rcu_read_unlock(); 1223 return -1; 1224 } 1225 switch (how) { 1226 case SOCK_WAKE_WAITD: 1227 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1228 break; 1229 goto call_kill; 1230 case SOCK_WAKE_SPACE: 1231 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1232 break; 1233 /* fall through */ 1234 case SOCK_WAKE_IO: 1235 call_kill: 1236 kill_fasync(&wq->fasync_list, SIGIO, band); 1237 break; 1238 case SOCK_WAKE_URG: 1239 kill_fasync(&wq->fasync_list, SIGURG, band); 1240 } 1241 rcu_read_unlock(); 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(sock_wake_async); 1245 1246 int __sock_create(struct net *net, int family, int type, int protocol, 1247 struct socket **res, int kern) 1248 { 1249 int err; 1250 struct socket *sock; 1251 const struct net_proto_family *pf; 1252 1253 /* 1254 * Check protocol is in range 1255 */ 1256 if (family < 0 || family >= NPROTO) 1257 return -EAFNOSUPPORT; 1258 if (type < 0 || type >= SOCK_MAX) 1259 return -EINVAL; 1260 1261 /* Compatibility. 1262 1263 This uglymoron is moved from INET layer to here to avoid 1264 deadlock in module load. 1265 */ 1266 if (family == PF_INET && type == SOCK_PACKET) { 1267 static int warned; 1268 if (!warned) { 1269 warned = 1; 1270 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1271 current->comm); 1272 } 1273 family = PF_PACKET; 1274 } 1275 1276 err = security_socket_create(family, type, protocol, kern); 1277 if (err) 1278 return err; 1279 1280 /* 1281 * Allocate the socket and allow the family to set things up. if 1282 * the protocol is 0, the family is instructed to select an appropriate 1283 * default. 1284 */ 1285 sock = sock_alloc(); 1286 if (!sock) { 1287 net_warn_ratelimited("socket: no more sockets\n"); 1288 return -ENFILE; /* Not exactly a match, but its the 1289 closest posix thing */ 1290 } 1291 1292 sock->type = type; 1293 1294 #ifdef CONFIG_MODULES 1295 /* Attempt to load a protocol module if the find failed. 1296 * 1297 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1298 * requested real, full-featured networking support upon configuration. 1299 * Otherwise module support will break! 1300 */ 1301 if (rcu_access_pointer(net_families[family]) == NULL) 1302 request_module("net-pf-%d", family); 1303 #endif 1304 1305 rcu_read_lock(); 1306 pf = rcu_dereference(net_families[family]); 1307 err = -EAFNOSUPPORT; 1308 if (!pf) 1309 goto out_release; 1310 1311 /* 1312 * We will call the ->create function, that possibly is in a loadable 1313 * module, so we have to bump that loadable module refcnt first. 1314 */ 1315 if (!try_module_get(pf->owner)) 1316 goto out_release; 1317 1318 /* Now protected by module ref count */ 1319 rcu_read_unlock(); 1320 1321 err = pf->create(net, sock, protocol, kern); 1322 if (err < 0) 1323 goto out_module_put; 1324 1325 /* 1326 * Now to bump the refcnt of the [loadable] module that owns this 1327 * socket at sock_release time we decrement its refcnt. 1328 */ 1329 if (!try_module_get(sock->ops->owner)) 1330 goto out_module_busy; 1331 1332 /* 1333 * Now that we're done with the ->create function, the [loadable] 1334 * module can have its refcnt decremented 1335 */ 1336 module_put(pf->owner); 1337 err = security_socket_post_create(sock, family, type, protocol, kern); 1338 if (err) 1339 goto out_sock_release; 1340 *res = sock; 1341 1342 return 0; 1343 1344 out_module_busy: 1345 err = -EAFNOSUPPORT; 1346 out_module_put: 1347 sock->ops = NULL; 1348 module_put(pf->owner); 1349 out_sock_release: 1350 sock_release(sock); 1351 return err; 1352 1353 out_release: 1354 rcu_read_unlock(); 1355 goto out_sock_release; 1356 } 1357 EXPORT_SYMBOL(__sock_create); 1358 1359 int sock_create(int family, int type, int protocol, struct socket **res) 1360 { 1361 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1362 } 1363 EXPORT_SYMBOL(sock_create); 1364 1365 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1366 { 1367 return __sock_create(&init_net, family, type, protocol, res, 1); 1368 } 1369 EXPORT_SYMBOL(sock_create_kern); 1370 1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1372 { 1373 int retval; 1374 struct socket *sock; 1375 int flags; 1376 1377 /* Check the SOCK_* constants for consistency. */ 1378 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1379 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1380 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1381 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1382 1383 flags = type & ~SOCK_TYPE_MASK; 1384 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1385 return -EINVAL; 1386 type &= SOCK_TYPE_MASK; 1387 1388 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1389 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1390 1391 retval = sock_create(family, type, protocol, &sock); 1392 if (retval < 0) 1393 goto out; 1394 1395 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1396 if (retval < 0) 1397 goto out_release; 1398 1399 out: 1400 /* It may be already another descriptor 8) Not kernel problem. */ 1401 return retval; 1402 1403 out_release: 1404 sock_release(sock); 1405 return retval; 1406 } 1407 1408 /* 1409 * Create a pair of connected sockets. 1410 */ 1411 1412 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1413 int __user *, usockvec) 1414 { 1415 struct socket *sock1, *sock2; 1416 int fd1, fd2, err; 1417 struct file *newfile1, *newfile2; 1418 int flags; 1419 1420 flags = type & ~SOCK_TYPE_MASK; 1421 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1422 return -EINVAL; 1423 type &= SOCK_TYPE_MASK; 1424 1425 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1426 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1427 1428 /* 1429 * Obtain the first socket and check if the underlying protocol 1430 * supports the socketpair call. 1431 */ 1432 1433 err = sock_create(family, type, protocol, &sock1); 1434 if (err < 0) 1435 goto out; 1436 1437 err = sock_create(family, type, protocol, &sock2); 1438 if (err < 0) 1439 goto out_release_1; 1440 1441 err = sock1->ops->socketpair(sock1, sock2); 1442 if (err < 0) 1443 goto out_release_both; 1444 1445 fd1 = get_unused_fd_flags(flags); 1446 if (unlikely(fd1 < 0)) { 1447 err = fd1; 1448 goto out_release_both; 1449 } 1450 1451 fd2 = get_unused_fd_flags(flags); 1452 if (unlikely(fd2 < 0)) { 1453 err = fd2; 1454 goto out_put_unused_1; 1455 } 1456 1457 newfile1 = sock_alloc_file(sock1, flags, NULL); 1458 if (unlikely(IS_ERR(newfile1))) { 1459 err = PTR_ERR(newfile1); 1460 goto out_put_unused_both; 1461 } 1462 1463 newfile2 = sock_alloc_file(sock2, flags, NULL); 1464 if (IS_ERR(newfile2)) { 1465 err = PTR_ERR(newfile2); 1466 goto out_fput_1; 1467 } 1468 1469 err = put_user(fd1, &usockvec[0]); 1470 if (err) 1471 goto out_fput_both; 1472 1473 err = put_user(fd2, &usockvec[1]); 1474 if (err) 1475 goto out_fput_both; 1476 1477 audit_fd_pair(fd1, fd2); 1478 1479 fd_install(fd1, newfile1); 1480 fd_install(fd2, newfile2); 1481 /* fd1 and fd2 may be already another descriptors. 1482 * Not kernel problem. 1483 */ 1484 1485 return 0; 1486 1487 out_fput_both: 1488 fput(newfile2); 1489 fput(newfile1); 1490 put_unused_fd(fd2); 1491 put_unused_fd(fd1); 1492 goto out; 1493 1494 out_fput_1: 1495 fput(newfile1); 1496 put_unused_fd(fd2); 1497 put_unused_fd(fd1); 1498 sock_release(sock2); 1499 goto out; 1500 1501 out_put_unused_both: 1502 put_unused_fd(fd2); 1503 out_put_unused_1: 1504 put_unused_fd(fd1); 1505 out_release_both: 1506 sock_release(sock2); 1507 out_release_1: 1508 sock_release(sock1); 1509 out: 1510 return err; 1511 } 1512 1513 /* 1514 * Bind a name to a socket. Nothing much to do here since it's 1515 * the protocol's responsibility to handle the local address. 1516 * 1517 * We move the socket address to kernel space before we call 1518 * the protocol layer (having also checked the address is ok). 1519 */ 1520 1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1522 { 1523 struct socket *sock; 1524 struct sockaddr_storage address; 1525 int err, fput_needed; 1526 1527 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1528 if (sock) { 1529 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1530 if (err >= 0) { 1531 err = security_socket_bind(sock, 1532 (struct sockaddr *)&address, 1533 addrlen); 1534 if (!err) 1535 err = sock->ops->bind(sock, 1536 (struct sockaddr *) 1537 &address, addrlen); 1538 } 1539 fput_light(sock->file, fput_needed); 1540 } 1541 return err; 1542 } 1543 1544 /* 1545 * Perform a listen. Basically, we allow the protocol to do anything 1546 * necessary for a listen, and if that works, we mark the socket as 1547 * ready for listening. 1548 */ 1549 1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1551 { 1552 struct socket *sock; 1553 int err, fput_needed; 1554 int somaxconn; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (sock) { 1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1559 if ((unsigned int)backlog > somaxconn) 1560 backlog = somaxconn; 1561 1562 err = security_socket_listen(sock, backlog); 1563 if (!err) 1564 err = sock->ops->listen(sock, backlog); 1565 1566 fput_light(sock->file, fput_needed); 1567 } 1568 return err; 1569 } 1570 1571 /* 1572 * For accept, we attempt to create a new socket, set up the link 1573 * with the client, wake up the client, then return the new 1574 * connected fd. We collect the address of the connector in kernel 1575 * space and move it to user at the very end. This is unclean because 1576 * we open the socket then return an error. 1577 * 1578 * 1003.1g adds the ability to recvmsg() to query connection pending 1579 * status to recvmsg. We need to add that support in a way thats 1580 * clean when we restucture accept also. 1581 */ 1582 1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1584 int __user *, upeer_addrlen, int, flags) 1585 { 1586 struct socket *sock, *newsock; 1587 struct file *newfile; 1588 int err, len, newfd, fput_needed; 1589 struct sockaddr_storage address; 1590 1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1592 return -EINVAL; 1593 1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1596 1597 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1598 if (!sock) 1599 goto out; 1600 1601 err = -ENFILE; 1602 newsock = sock_alloc(); 1603 if (!newsock) 1604 goto out_put; 1605 1606 newsock->type = sock->type; 1607 newsock->ops = sock->ops; 1608 1609 /* 1610 * We don't need try_module_get here, as the listening socket (sock) 1611 * has the protocol module (sock->ops->owner) held. 1612 */ 1613 __module_get(newsock->ops->owner); 1614 1615 newfd = get_unused_fd_flags(flags); 1616 if (unlikely(newfd < 0)) { 1617 err = newfd; 1618 sock_release(newsock); 1619 goto out_put; 1620 } 1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1622 if (unlikely(IS_ERR(newfile))) { 1623 err = PTR_ERR(newfile); 1624 put_unused_fd(newfd); 1625 sock_release(newsock); 1626 goto out_put; 1627 } 1628 1629 err = security_socket_accept(sock, newsock); 1630 if (err) 1631 goto out_fd; 1632 1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1634 if (err < 0) 1635 goto out_fd; 1636 1637 if (upeer_sockaddr) { 1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1639 &len, 2) < 0) { 1640 err = -ECONNABORTED; 1641 goto out_fd; 1642 } 1643 err = move_addr_to_user(&address, 1644 len, upeer_sockaddr, upeer_addrlen); 1645 if (err < 0) 1646 goto out_fd; 1647 } 1648 1649 /* File flags are not inherited via accept() unlike another OSes. */ 1650 1651 fd_install(newfd, newfile); 1652 err = newfd; 1653 1654 out_put: 1655 fput_light(sock->file, fput_needed); 1656 out: 1657 return err; 1658 out_fd: 1659 fput(newfile); 1660 put_unused_fd(newfd); 1661 goto out_put; 1662 } 1663 1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1665 int __user *, upeer_addrlen) 1666 { 1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1668 } 1669 1670 /* 1671 * Attempt to connect to a socket with the server address. The address 1672 * is in user space so we verify it is OK and move it to kernel space. 1673 * 1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1675 * break bindings 1676 * 1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1678 * other SEQPACKET protocols that take time to connect() as it doesn't 1679 * include the -EINPROGRESS status for such sockets. 1680 */ 1681 1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1683 int, addrlen) 1684 { 1685 struct socket *sock; 1686 struct sockaddr_storage address; 1687 int err, fput_needed; 1688 1689 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1690 if (!sock) 1691 goto out; 1692 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1693 if (err < 0) 1694 goto out_put; 1695 1696 err = 1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1698 if (err) 1699 goto out_put; 1700 1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1702 sock->file->f_flags); 1703 out_put: 1704 fput_light(sock->file, fput_needed); 1705 out: 1706 return err; 1707 } 1708 1709 /* 1710 * Get the local address ('name') of a socket object. Move the obtained 1711 * name to user space. 1712 */ 1713 1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1715 int __user *, usockaddr_len) 1716 { 1717 struct socket *sock; 1718 struct sockaddr_storage address; 1719 int len, err, fput_needed; 1720 1721 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1722 if (!sock) 1723 goto out; 1724 1725 err = security_socket_getsockname(sock); 1726 if (err) 1727 goto out_put; 1728 1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1730 if (err) 1731 goto out_put; 1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1733 1734 out_put: 1735 fput_light(sock->file, fput_needed); 1736 out: 1737 return err; 1738 } 1739 1740 /* 1741 * Get the remote address ('name') of a socket object. Move the obtained 1742 * name to user space. 1743 */ 1744 1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1746 int __user *, usockaddr_len) 1747 { 1748 struct socket *sock; 1749 struct sockaddr_storage address; 1750 int len, err, fput_needed; 1751 1752 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1753 if (sock != NULL) { 1754 err = security_socket_getpeername(sock); 1755 if (err) { 1756 fput_light(sock->file, fput_needed); 1757 return err; 1758 } 1759 1760 err = 1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1762 1); 1763 if (!err) 1764 err = move_addr_to_user(&address, len, usockaddr, 1765 usockaddr_len); 1766 fput_light(sock->file, fput_needed); 1767 } 1768 return err; 1769 } 1770 1771 /* 1772 * Send a datagram to a given address. We move the address into kernel 1773 * space and check the user space data area is readable before invoking 1774 * the protocol. 1775 */ 1776 1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1778 unsigned int, flags, struct sockaddr __user *, addr, 1779 int, addr_len) 1780 { 1781 struct socket *sock; 1782 struct sockaddr_storage address; 1783 int err; 1784 struct msghdr msg; 1785 struct iovec iov; 1786 int fput_needed; 1787 1788 if (len > INT_MAX) 1789 len = INT_MAX; 1790 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1791 if (!sock) 1792 goto out; 1793 1794 iov.iov_base = buff; 1795 iov.iov_len = len; 1796 msg.msg_name = NULL; 1797 msg.msg_iov = &iov; 1798 msg.msg_iovlen = 1; 1799 msg.msg_control = NULL; 1800 msg.msg_controllen = 0; 1801 msg.msg_namelen = 0; 1802 if (addr) { 1803 err = move_addr_to_kernel(addr, addr_len, &address); 1804 if (err < 0) 1805 goto out_put; 1806 msg.msg_name = (struct sockaddr *)&address; 1807 msg.msg_namelen = addr_len; 1808 } 1809 if (sock->file->f_flags & O_NONBLOCK) 1810 flags |= MSG_DONTWAIT; 1811 msg.msg_flags = flags; 1812 err = sock_sendmsg(sock, &msg, len); 1813 1814 out_put: 1815 fput_light(sock->file, fput_needed); 1816 out: 1817 return err; 1818 } 1819 1820 /* 1821 * Send a datagram down a socket. 1822 */ 1823 1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1825 unsigned int, flags) 1826 { 1827 return sys_sendto(fd, buff, len, flags, NULL, 0); 1828 } 1829 1830 /* 1831 * Receive a frame from the socket and optionally record the address of the 1832 * sender. We verify the buffers are writable and if needed move the 1833 * sender address from kernel to user space. 1834 */ 1835 1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1837 unsigned int, flags, struct sockaddr __user *, addr, 1838 int __user *, addr_len) 1839 { 1840 struct socket *sock; 1841 struct iovec iov; 1842 struct msghdr msg; 1843 struct sockaddr_storage address; 1844 int err, err2; 1845 int fput_needed; 1846 1847 if (size > INT_MAX) 1848 size = INT_MAX; 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (!sock) 1851 goto out; 1852 1853 msg.msg_control = NULL; 1854 msg.msg_controllen = 0; 1855 msg.msg_iovlen = 1; 1856 msg.msg_iov = &iov; 1857 iov.iov_len = size; 1858 iov.iov_base = ubuf; 1859 /* Save some cycles and don't copy the address if not needed */ 1860 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1861 /* We assume all kernel code knows the size of sockaddr_storage */ 1862 msg.msg_namelen = 0; 1863 if (sock->file->f_flags & O_NONBLOCK) 1864 flags |= MSG_DONTWAIT; 1865 err = sock_recvmsg(sock, &msg, size, flags); 1866 1867 if (err >= 0 && addr != NULL) { 1868 err2 = move_addr_to_user(&address, 1869 msg.msg_namelen, addr, addr_len); 1870 if (err2 < 0) 1871 err = err2; 1872 } 1873 1874 fput_light(sock->file, fput_needed); 1875 out: 1876 return err; 1877 } 1878 1879 /* 1880 * Receive a datagram from a socket. 1881 */ 1882 1883 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1884 unsigned int flags) 1885 { 1886 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1887 } 1888 1889 /* 1890 * Set a socket option. Because we don't know the option lengths we have 1891 * to pass the user mode parameter for the protocols to sort out. 1892 */ 1893 1894 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1895 char __user *, optval, int, optlen) 1896 { 1897 int err, fput_needed; 1898 struct socket *sock; 1899 1900 if (optlen < 0) 1901 return -EINVAL; 1902 1903 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1904 if (sock != NULL) { 1905 err = security_socket_setsockopt(sock, level, optname); 1906 if (err) 1907 goto out_put; 1908 1909 if (level == SOL_SOCKET) 1910 err = 1911 sock_setsockopt(sock, level, optname, optval, 1912 optlen); 1913 else 1914 err = 1915 sock->ops->setsockopt(sock, level, optname, optval, 1916 optlen); 1917 out_put: 1918 fput_light(sock->file, fput_needed); 1919 } 1920 return err; 1921 } 1922 1923 /* 1924 * Get a socket option. Because we don't know the option lengths we have 1925 * to pass a user mode parameter for the protocols to sort out. 1926 */ 1927 1928 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1929 char __user *, optval, int __user *, optlen) 1930 { 1931 int err, fput_needed; 1932 struct socket *sock; 1933 1934 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1935 if (sock != NULL) { 1936 err = security_socket_getsockopt(sock, level, optname); 1937 if (err) 1938 goto out_put; 1939 1940 if (level == SOL_SOCKET) 1941 err = 1942 sock_getsockopt(sock, level, optname, optval, 1943 optlen); 1944 else 1945 err = 1946 sock->ops->getsockopt(sock, level, optname, optval, 1947 optlen); 1948 out_put: 1949 fput_light(sock->file, fput_needed); 1950 } 1951 return err; 1952 } 1953 1954 /* 1955 * Shutdown a socket. 1956 */ 1957 1958 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1959 { 1960 int err, fput_needed; 1961 struct socket *sock; 1962 1963 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1964 if (sock != NULL) { 1965 err = security_socket_shutdown(sock, how); 1966 if (!err) 1967 err = sock->ops->shutdown(sock, how); 1968 fput_light(sock->file, fput_needed); 1969 } 1970 return err; 1971 } 1972 1973 /* A couple of helpful macros for getting the address of the 32/64 bit 1974 * fields which are the same type (int / unsigned) on our platforms. 1975 */ 1976 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1977 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1978 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1979 1980 struct used_address { 1981 struct sockaddr_storage name; 1982 unsigned int name_len; 1983 }; 1984 1985 static int copy_msghdr_from_user(struct msghdr *kmsg, 1986 struct msghdr __user *umsg) 1987 { 1988 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1989 return -EFAULT; 1990 1991 if (kmsg->msg_namelen < 0) 1992 return -EINVAL; 1993 1994 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1995 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1996 return 0; 1997 } 1998 1999 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 2000 struct msghdr *msg_sys, unsigned int flags, 2001 struct used_address *used_address) 2002 { 2003 struct compat_msghdr __user *msg_compat = 2004 (struct compat_msghdr __user *)msg; 2005 struct sockaddr_storage address; 2006 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2007 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2008 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2009 /* 20 is size of ipv6_pktinfo */ 2010 unsigned char *ctl_buf = ctl; 2011 int err, ctl_len, total_len; 2012 2013 err = -EFAULT; 2014 if (MSG_CMSG_COMPAT & flags) { 2015 if (get_compat_msghdr(msg_sys, msg_compat)) 2016 return -EFAULT; 2017 } else { 2018 err = copy_msghdr_from_user(msg_sys, msg); 2019 if (err) 2020 return err; 2021 } 2022 2023 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2024 err = -EMSGSIZE; 2025 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2026 goto out; 2027 err = -ENOMEM; 2028 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2029 GFP_KERNEL); 2030 if (!iov) 2031 goto out; 2032 } 2033 2034 /* This will also move the address data into kernel space */ 2035 if (MSG_CMSG_COMPAT & flags) { 2036 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2037 } else 2038 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2039 if (err < 0) 2040 goto out_freeiov; 2041 total_len = err; 2042 2043 err = -ENOBUFS; 2044 2045 if (msg_sys->msg_controllen > INT_MAX) 2046 goto out_freeiov; 2047 ctl_len = msg_sys->msg_controllen; 2048 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2049 err = 2050 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2051 sizeof(ctl)); 2052 if (err) 2053 goto out_freeiov; 2054 ctl_buf = msg_sys->msg_control; 2055 ctl_len = msg_sys->msg_controllen; 2056 } else if (ctl_len) { 2057 if (ctl_len > sizeof(ctl)) { 2058 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2059 if (ctl_buf == NULL) 2060 goto out_freeiov; 2061 } 2062 err = -EFAULT; 2063 /* 2064 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2065 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2066 * checking falls down on this. 2067 */ 2068 if (copy_from_user(ctl_buf, 2069 (void __user __force *)msg_sys->msg_control, 2070 ctl_len)) 2071 goto out_freectl; 2072 msg_sys->msg_control = ctl_buf; 2073 } 2074 msg_sys->msg_flags = flags; 2075 2076 if (sock->file->f_flags & O_NONBLOCK) 2077 msg_sys->msg_flags |= MSG_DONTWAIT; 2078 /* 2079 * If this is sendmmsg() and current destination address is same as 2080 * previously succeeded address, omit asking LSM's decision. 2081 * used_address->name_len is initialized to UINT_MAX so that the first 2082 * destination address never matches. 2083 */ 2084 if (used_address && msg_sys->msg_name && 2085 used_address->name_len == msg_sys->msg_namelen && 2086 !memcmp(&used_address->name, msg_sys->msg_name, 2087 used_address->name_len)) { 2088 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2089 goto out_freectl; 2090 } 2091 err = sock_sendmsg(sock, msg_sys, total_len); 2092 /* 2093 * If this is sendmmsg() and sending to current destination address was 2094 * successful, remember it. 2095 */ 2096 if (used_address && err >= 0) { 2097 used_address->name_len = msg_sys->msg_namelen; 2098 if (msg_sys->msg_name) 2099 memcpy(&used_address->name, msg_sys->msg_name, 2100 used_address->name_len); 2101 } 2102 2103 out_freectl: 2104 if (ctl_buf != ctl) 2105 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2106 out_freeiov: 2107 if (iov != iovstack) 2108 kfree(iov); 2109 out: 2110 return err; 2111 } 2112 2113 /* 2114 * BSD sendmsg interface 2115 */ 2116 2117 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2118 { 2119 int fput_needed, err; 2120 struct msghdr msg_sys; 2121 struct socket *sock; 2122 2123 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2124 if (!sock) 2125 goto out; 2126 2127 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2128 2129 fput_light(sock->file, fput_needed); 2130 out: 2131 return err; 2132 } 2133 2134 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2135 { 2136 if (flags & MSG_CMSG_COMPAT) 2137 return -EINVAL; 2138 return __sys_sendmsg(fd, msg, flags); 2139 } 2140 2141 /* 2142 * Linux sendmmsg interface 2143 */ 2144 2145 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2146 unsigned int flags) 2147 { 2148 int fput_needed, err, datagrams; 2149 struct socket *sock; 2150 struct mmsghdr __user *entry; 2151 struct compat_mmsghdr __user *compat_entry; 2152 struct msghdr msg_sys; 2153 struct used_address used_address; 2154 2155 if (vlen > UIO_MAXIOV) 2156 vlen = UIO_MAXIOV; 2157 2158 datagrams = 0; 2159 2160 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2161 if (!sock) 2162 return err; 2163 2164 used_address.name_len = UINT_MAX; 2165 entry = mmsg; 2166 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2167 err = 0; 2168 2169 while (datagrams < vlen) { 2170 if (MSG_CMSG_COMPAT & flags) { 2171 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2172 &msg_sys, flags, &used_address); 2173 if (err < 0) 2174 break; 2175 err = __put_user(err, &compat_entry->msg_len); 2176 ++compat_entry; 2177 } else { 2178 err = ___sys_sendmsg(sock, 2179 (struct msghdr __user *)entry, 2180 &msg_sys, flags, &used_address); 2181 if (err < 0) 2182 break; 2183 err = put_user(err, &entry->msg_len); 2184 ++entry; 2185 } 2186 2187 if (err) 2188 break; 2189 ++datagrams; 2190 } 2191 2192 fput_light(sock->file, fput_needed); 2193 2194 /* We only return an error if no datagrams were able to be sent */ 2195 if (datagrams != 0) 2196 return datagrams; 2197 2198 return err; 2199 } 2200 2201 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2202 unsigned int, vlen, unsigned int, flags) 2203 { 2204 if (flags & MSG_CMSG_COMPAT) 2205 return -EINVAL; 2206 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2207 } 2208 2209 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2210 struct msghdr *msg_sys, unsigned int flags, int nosec) 2211 { 2212 struct compat_msghdr __user *msg_compat = 2213 (struct compat_msghdr __user *)msg; 2214 struct iovec iovstack[UIO_FASTIOV]; 2215 struct iovec *iov = iovstack; 2216 unsigned long cmsg_ptr; 2217 int err, total_len, len; 2218 2219 /* kernel mode address */ 2220 struct sockaddr_storage addr; 2221 2222 /* user mode address pointers */ 2223 struct sockaddr __user *uaddr; 2224 int __user *uaddr_len; 2225 2226 if (MSG_CMSG_COMPAT & flags) { 2227 if (get_compat_msghdr(msg_sys, msg_compat)) 2228 return -EFAULT; 2229 } else { 2230 err = copy_msghdr_from_user(msg_sys, msg); 2231 if (err) 2232 return err; 2233 } 2234 2235 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2236 err = -EMSGSIZE; 2237 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2238 goto out; 2239 err = -ENOMEM; 2240 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2241 GFP_KERNEL); 2242 if (!iov) 2243 goto out; 2244 } 2245 2246 /* Save the user-mode address (verify_iovec will change the 2247 * kernel msghdr to use the kernel address space) 2248 */ 2249 uaddr = (__force void __user *)msg_sys->msg_name; 2250 uaddr_len = COMPAT_NAMELEN(msg); 2251 if (MSG_CMSG_COMPAT & flags) 2252 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2253 else 2254 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2255 if (err < 0) 2256 goto out_freeiov; 2257 total_len = err; 2258 2259 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2260 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2261 2262 /* We assume all kernel code knows the size of sockaddr_storage */ 2263 msg_sys->msg_namelen = 0; 2264 2265 if (sock->file->f_flags & O_NONBLOCK) 2266 flags |= MSG_DONTWAIT; 2267 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2268 total_len, flags); 2269 if (err < 0) 2270 goto out_freeiov; 2271 len = err; 2272 2273 if (uaddr != NULL) { 2274 err = move_addr_to_user(&addr, 2275 msg_sys->msg_namelen, uaddr, 2276 uaddr_len); 2277 if (err < 0) 2278 goto out_freeiov; 2279 } 2280 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2281 COMPAT_FLAGS(msg)); 2282 if (err) 2283 goto out_freeiov; 2284 if (MSG_CMSG_COMPAT & flags) 2285 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2286 &msg_compat->msg_controllen); 2287 else 2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2289 &msg->msg_controllen); 2290 if (err) 2291 goto out_freeiov; 2292 err = len; 2293 2294 out_freeiov: 2295 if (iov != iovstack) 2296 kfree(iov); 2297 out: 2298 return err; 2299 } 2300 2301 /* 2302 * BSD recvmsg interface 2303 */ 2304 2305 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2306 { 2307 int fput_needed, err; 2308 struct msghdr msg_sys; 2309 struct socket *sock; 2310 2311 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2312 if (!sock) 2313 goto out; 2314 2315 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2316 2317 fput_light(sock->file, fput_needed); 2318 out: 2319 return err; 2320 } 2321 2322 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2323 unsigned int, flags) 2324 { 2325 if (flags & MSG_CMSG_COMPAT) 2326 return -EINVAL; 2327 return __sys_recvmsg(fd, msg, flags); 2328 } 2329 2330 /* 2331 * Linux recvmmsg interface 2332 */ 2333 2334 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2335 unsigned int flags, struct timespec *timeout) 2336 { 2337 int fput_needed, err, datagrams; 2338 struct socket *sock; 2339 struct mmsghdr __user *entry; 2340 struct compat_mmsghdr __user *compat_entry; 2341 struct msghdr msg_sys; 2342 struct timespec end_time; 2343 2344 if (timeout && 2345 poll_select_set_timeout(&end_time, timeout->tv_sec, 2346 timeout->tv_nsec)) 2347 return -EINVAL; 2348 2349 datagrams = 0; 2350 2351 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2352 if (!sock) 2353 return err; 2354 2355 err = sock_error(sock->sk); 2356 if (err) 2357 goto out_put; 2358 2359 entry = mmsg; 2360 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2361 2362 while (datagrams < vlen) { 2363 /* 2364 * No need to ask LSM for more than the first datagram. 2365 */ 2366 if (MSG_CMSG_COMPAT & flags) { 2367 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2368 &msg_sys, flags & ~MSG_WAITFORONE, 2369 datagrams); 2370 if (err < 0) 2371 break; 2372 err = __put_user(err, &compat_entry->msg_len); 2373 ++compat_entry; 2374 } else { 2375 err = ___sys_recvmsg(sock, 2376 (struct msghdr __user *)entry, 2377 &msg_sys, flags & ~MSG_WAITFORONE, 2378 datagrams); 2379 if (err < 0) 2380 break; 2381 err = put_user(err, &entry->msg_len); 2382 ++entry; 2383 } 2384 2385 if (err) 2386 break; 2387 ++datagrams; 2388 2389 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2390 if (flags & MSG_WAITFORONE) 2391 flags |= MSG_DONTWAIT; 2392 2393 if (timeout) { 2394 ktime_get_ts(timeout); 2395 *timeout = timespec_sub(end_time, *timeout); 2396 if (timeout->tv_sec < 0) { 2397 timeout->tv_sec = timeout->tv_nsec = 0; 2398 break; 2399 } 2400 2401 /* Timeout, return less than vlen datagrams */ 2402 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2403 break; 2404 } 2405 2406 /* Out of band data, return right away */ 2407 if (msg_sys.msg_flags & MSG_OOB) 2408 break; 2409 } 2410 2411 out_put: 2412 fput_light(sock->file, fput_needed); 2413 2414 if (err == 0) 2415 return datagrams; 2416 2417 if (datagrams != 0) { 2418 /* 2419 * We may return less entries than requested (vlen) if the 2420 * sock is non block and there aren't enough datagrams... 2421 */ 2422 if (err != -EAGAIN) { 2423 /* 2424 * ... or if recvmsg returns an error after we 2425 * received some datagrams, where we record the 2426 * error to return on the next call or if the 2427 * app asks about it using getsockopt(SO_ERROR). 2428 */ 2429 sock->sk->sk_err = -err; 2430 } 2431 2432 return datagrams; 2433 } 2434 2435 return err; 2436 } 2437 2438 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2439 unsigned int, vlen, unsigned int, flags, 2440 struct timespec __user *, timeout) 2441 { 2442 int datagrams; 2443 struct timespec timeout_sys; 2444 2445 if (flags & MSG_CMSG_COMPAT) 2446 return -EINVAL; 2447 2448 if (!timeout) 2449 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2450 2451 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2452 return -EFAULT; 2453 2454 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2455 2456 if (datagrams > 0 && 2457 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2458 datagrams = -EFAULT; 2459 2460 return datagrams; 2461 } 2462 2463 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2464 /* Argument list sizes for sys_socketcall */ 2465 #define AL(x) ((x) * sizeof(unsigned long)) 2466 static const unsigned char nargs[21] = { 2467 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2468 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2469 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2470 AL(4), AL(5), AL(4) 2471 }; 2472 2473 #undef AL 2474 2475 /* 2476 * System call vectors. 2477 * 2478 * Argument checking cleaned up. Saved 20% in size. 2479 * This function doesn't need to set the kernel lock because 2480 * it is set by the callees. 2481 */ 2482 2483 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2484 { 2485 unsigned long a[AUDITSC_ARGS]; 2486 unsigned long a0, a1; 2487 int err; 2488 unsigned int len; 2489 2490 if (call < 1 || call > SYS_SENDMMSG) 2491 return -EINVAL; 2492 2493 len = nargs[call]; 2494 if (len > sizeof(a)) 2495 return -EINVAL; 2496 2497 /* copy_from_user should be SMP safe. */ 2498 if (copy_from_user(a, args, len)) 2499 return -EFAULT; 2500 2501 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2502 if (err) 2503 return err; 2504 2505 a0 = a[0]; 2506 a1 = a[1]; 2507 2508 switch (call) { 2509 case SYS_SOCKET: 2510 err = sys_socket(a0, a1, a[2]); 2511 break; 2512 case SYS_BIND: 2513 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2514 break; 2515 case SYS_CONNECT: 2516 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2517 break; 2518 case SYS_LISTEN: 2519 err = sys_listen(a0, a1); 2520 break; 2521 case SYS_ACCEPT: 2522 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2523 (int __user *)a[2], 0); 2524 break; 2525 case SYS_GETSOCKNAME: 2526 err = 2527 sys_getsockname(a0, (struct sockaddr __user *)a1, 2528 (int __user *)a[2]); 2529 break; 2530 case SYS_GETPEERNAME: 2531 err = 2532 sys_getpeername(a0, (struct sockaddr __user *)a1, 2533 (int __user *)a[2]); 2534 break; 2535 case SYS_SOCKETPAIR: 2536 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2537 break; 2538 case SYS_SEND: 2539 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2540 break; 2541 case SYS_SENDTO: 2542 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2543 (struct sockaddr __user *)a[4], a[5]); 2544 break; 2545 case SYS_RECV: 2546 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2547 break; 2548 case SYS_RECVFROM: 2549 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2550 (struct sockaddr __user *)a[4], 2551 (int __user *)a[5]); 2552 break; 2553 case SYS_SHUTDOWN: 2554 err = sys_shutdown(a0, a1); 2555 break; 2556 case SYS_SETSOCKOPT: 2557 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2558 break; 2559 case SYS_GETSOCKOPT: 2560 err = 2561 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2562 (int __user *)a[4]); 2563 break; 2564 case SYS_SENDMSG: 2565 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2566 break; 2567 case SYS_SENDMMSG: 2568 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2569 break; 2570 case SYS_RECVMSG: 2571 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2572 break; 2573 case SYS_RECVMMSG: 2574 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2575 (struct timespec __user *)a[4]); 2576 break; 2577 case SYS_ACCEPT4: 2578 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2579 (int __user *)a[2], a[3]); 2580 break; 2581 default: 2582 err = -EINVAL; 2583 break; 2584 } 2585 return err; 2586 } 2587 2588 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2589 2590 /** 2591 * sock_register - add a socket protocol handler 2592 * @ops: description of protocol 2593 * 2594 * This function is called by a protocol handler that wants to 2595 * advertise its address family, and have it linked into the 2596 * socket interface. The value ops->family coresponds to the 2597 * socket system call protocol family. 2598 */ 2599 int sock_register(const struct net_proto_family *ops) 2600 { 2601 int err; 2602 2603 if (ops->family >= NPROTO) { 2604 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2605 return -ENOBUFS; 2606 } 2607 2608 spin_lock(&net_family_lock); 2609 if (rcu_dereference_protected(net_families[ops->family], 2610 lockdep_is_held(&net_family_lock))) 2611 err = -EEXIST; 2612 else { 2613 rcu_assign_pointer(net_families[ops->family], ops); 2614 err = 0; 2615 } 2616 spin_unlock(&net_family_lock); 2617 2618 pr_info("NET: Registered protocol family %d\n", ops->family); 2619 return err; 2620 } 2621 EXPORT_SYMBOL(sock_register); 2622 2623 /** 2624 * sock_unregister - remove a protocol handler 2625 * @family: protocol family to remove 2626 * 2627 * This function is called by a protocol handler that wants to 2628 * remove its address family, and have it unlinked from the 2629 * new socket creation. 2630 * 2631 * If protocol handler is a module, then it can use module reference 2632 * counts to protect against new references. If protocol handler is not 2633 * a module then it needs to provide its own protection in 2634 * the ops->create routine. 2635 */ 2636 void sock_unregister(int family) 2637 { 2638 BUG_ON(family < 0 || family >= NPROTO); 2639 2640 spin_lock(&net_family_lock); 2641 RCU_INIT_POINTER(net_families[family], NULL); 2642 spin_unlock(&net_family_lock); 2643 2644 synchronize_rcu(); 2645 2646 pr_info("NET: Unregistered protocol family %d\n", family); 2647 } 2648 EXPORT_SYMBOL(sock_unregister); 2649 2650 static int __init sock_init(void) 2651 { 2652 int err; 2653 /* 2654 * Initialize the network sysctl infrastructure. 2655 */ 2656 err = net_sysctl_init(); 2657 if (err) 2658 goto out; 2659 2660 /* 2661 * Initialize skbuff SLAB cache 2662 */ 2663 skb_init(); 2664 2665 /* 2666 * Initialize the protocols module. 2667 */ 2668 2669 init_inodecache(); 2670 2671 err = register_filesystem(&sock_fs_type); 2672 if (err) 2673 goto out_fs; 2674 sock_mnt = kern_mount(&sock_fs_type); 2675 if (IS_ERR(sock_mnt)) { 2676 err = PTR_ERR(sock_mnt); 2677 goto out_mount; 2678 } 2679 2680 /* The real protocol initialization is performed in later initcalls. 2681 */ 2682 2683 #ifdef CONFIG_NETFILTER 2684 err = netfilter_init(); 2685 if (err) 2686 goto out; 2687 #endif 2688 2689 ptp_classifier_init(); 2690 2691 out: 2692 return err; 2693 2694 out_mount: 2695 unregister_filesystem(&sock_fs_type); 2696 out_fs: 2697 goto out; 2698 } 2699 2700 core_initcall(sock_init); /* early initcall */ 2701 2702 #ifdef CONFIG_PROC_FS 2703 void socket_seq_show(struct seq_file *seq) 2704 { 2705 int cpu; 2706 int counter = 0; 2707 2708 for_each_possible_cpu(cpu) 2709 counter += per_cpu(sockets_in_use, cpu); 2710 2711 /* It can be negative, by the way. 8) */ 2712 if (counter < 0) 2713 counter = 0; 2714 2715 seq_printf(seq, "sockets: used %d\n", counter); 2716 } 2717 #endif /* CONFIG_PROC_FS */ 2718 2719 #ifdef CONFIG_COMPAT 2720 static int do_siocgstamp(struct net *net, struct socket *sock, 2721 unsigned int cmd, void __user *up) 2722 { 2723 mm_segment_t old_fs = get_fs(); 2724 struct timeval ktv; 2725 int err; 2726 2727 set_fs(KERNEL_DS); 2728 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2729 set_fs(old_fs); 2730 if (!err) 2731 err = compat_put_timeval(&ktv, up); 2732 2733 return err; 2734 } 2735 2736 static int do_siocgstampns(struct net *net, struct socket *sock, 2737 unsigned int cmd, void __user *up) 2738 { 2739 mm_segment_t old_fs = get_fs(); 2740 struct timespec kts; 2741 int err; 2742 2743 set_fs(KERNEL_DS); 2744 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2745 set_fs(old_fs); 2746 if (!err) 2747 err = compat_put_timespec(&kts, up); 2748 2749 return err; 2750 } 2751 2752 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2753 { 2754 struct ifreq __user *uifr; 2755 int err; 2756 2757 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2758 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2759 return -EFAULT; 2760 2761 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2762 if (err) 2763 return err; 2764 2765 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2766 return -EFAULT; 2767 2768 return 0; 2769 } 2770 2771 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2772 { 2773 struct compat_ifconf ifc32; 2774 struct ifconf ifc; 2775 struct ifconf __user *uifc; 2776 struct compat_ifreq __user *ifr32; 2777 struct ifreq __user *ifr; 2778 unsigned int i, j; 2779 int err; 2780 2781 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2782 return -EFAULT; 2783 2784 memset(&ifc, 0, sizeof(ifc)); 2785 if (ifc32.ifcbuf == 0) { 2786 ifc32.ifc_len = 0; 2787 ifc.ifc_len = 0; 2788 ifc.ifc_req = NULL; 2789 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2790 } else { 2791 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2792 sizeof(struct ifreq); 2793 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2794 ifc.ifc_len = len; 2795 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2796 ifr32 = compat_ptr(ifc32.ifcbuf); 2797 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2798 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2799 return -EFAULT; 2800 ifr++; 2801 ifr32++; 2802 } 2803 } 2804 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2805 return -EFAULT; 2806 2807 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2808 if (err) 2809 return err; 2810 2811 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2812 return -EFAULT; 2813 2814 ifr = ifc.ifc_req; 2815 ifr32 = compat_ptr(ifc32.ifcbuf); 2816 for (i = 0, j = 0; 2817 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2818 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2819 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2820 return -EFAULT; 2821 ifr32++; 2822 ifr++; 2823 } 2824 2825 if (ifc32.ifcbuf == 0) { 2826 /* Translate from 64-bit structure multiple to 2827 * a 32-bit one. 2828 */ 2829 i = ifc.ifc_len; 2830 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2831 ifc32.ifc_len = i; 2832 } else { 2833 ifc32.ifc_len = i; 2834 } 2835 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2836 return -EFAULT; 2837 2838 return 0; 2839 } 2840 2841 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2842 { 2843 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2844 bool convert_in = false, convert_out = false; 2845 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2846 struct ethtool_rxnfc __user *rxnfc; 2847 struct ifreq __user *ifr; 2848 u32 rule_cnt = 0, actual_rule_cnt; 2849 u32 ethcmd; 2850 u32 data; 2851 int ret; 2852 2853 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2854 return -EFAULT; 2855 2856 compat_rxnfc = compat_ptr(data); 2857 2858 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2859 return -EFAULT; 2860 2861 /* Most ethtool structures are defined without padding. 2862 * Unfortunately struct ethtool_rxnfc is an exception. 2863 */ 2864 switch (ethcmd) { 2865 default: 2866 break; 2867 case ETHTOOL_GRXCLSRLALL: 2868 /* Buffer size is variable */ 2869 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2870 return -EFAULT; 2871 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2872 return -ENOMEM; 2873 buf_size += rule_cnt * sizeof(u32); 2874 /* fall through */ 2875 case ETHTOOL_GRXRINGS: 2876 case ETHTOOL_GRXCLSRLCNT: 2877 case ETHTOOL_GRXCLSRULE: 2878 case ETHTOOL_SRXCLSRLINS: 2879 convert_out = true; 2880 /* fall through */ 2881 case ETHTOOL_SRXCLSRLDEL: 2882 buf_size += sizeof(struct ethtool_rxnfc); 2883 convert_in = true; 2884 break; 2885 } 2886 2887 ifr = compat_alloc_user_space(buf_size); 2888 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2889 2890 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2891 return -EFAULT; 2892 2893 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2894 &ifr->ifr_ifru.ifru_data)) 2895 return -EFAULT; 2896 2897 if (convert_in) { 2898 /* We expect there to be holes between fs.m_ext and 2899 * fs.ring_cookie and at the end of fs, but nowhere else. 2900 */ 2901 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2902 sizeof(compat_rxnfc->fs.m_ext) != 2903 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2904 sizeof(rxnfc->fs.m_ext)); 2905 BUILD_BUG_ON( 2906 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2907 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2908 offsetof(struct ethtool_rxnfc, fs.location) - 2909 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2910 2911 if (copy_in_user(rxnfc, compat_rxnfc, 2912 (void __user *)(&rxnfc->fs.m_ext + 1) - 2913 (void __user *)rxnfc) || 2914 copy_in_user(&rxnfc->fs.ring_cookie, 2915 &compat_rxnfc->fs.ring_cookie, 2916 (void __user *)(&rxnfc->fs.location + 1) - 2917 (void __user *)&rxnfc->fs.ring_cookie) || 2918 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2919 sizeof(rxnfc->rule_cnt))) 2920 return -EFAULT; 2921 } 2922 2923 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2924 if (ret) 2925 return ret; 2926 2927 if (convert_out) { 2928 if (copy_in_user(compat_rxnfc, rxnfc, 2929 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2930 (const void __user *)rxnfc) || 2931 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2932 &rxnfc->fs.ring_cookie, 2933 (const void __user *)(&rxnfc->fs.location + 1) - 2934 (const void __user *)&rxnfc->fs.ring_cookie) || 2935 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2936 sizeof(rxnfc->rule_cnt))) 2937 return -EFAULT; 2938 2939 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2940 /* As an optimisation, we only copy the actual 2941 * number of rules that the underlying 2942 * function returned. Since Mallory might 2943 * change the rule count in user memory, we 2944 * check that it is less than the rule count 2945 * originally given (as the user buffer size), 2946 * which has been range-checked. 2947 */ 2948 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2949 return -EFAULT; 2950 if (actual_rule_cnt < rule_cnt) 2951 rule_cnt = actual_rule_cnt; 2952 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2953 &rxnfc->rule_locs[0], 2954 rule_cnt * sizeof(u32))) 2955 return -EFAULT; 2956 } 2957 } 2958 2959 return 0; 2960 } 2961 2962 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2963 { 2964 void __user *uptr; 2965 compat_uptr_t uptr32; 2966 struct ifreq __user *uifr; 2967 2968 uifr = compat_alloc_user_space(sizeof(*uifr)); 2969 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2970 return -EFAULT; 2971 2972 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2973 return -EFAULT; 2974 2975 uptr = compat_ptr(uptr32); 2976 2977 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2978 return -EFAULT; 2979 2980 return dev_ioctl(net, SIOCWANDEV, uifr); 2981 } 2982 2983 static int bond_ioctl(struct net *net, unsigned int cmd, 2984 struct compat_ifreq __user *ifr32) 2985 { 2986 struct ifreq kifr; 2987 mm_segment_t old_fs; 2988 int err; 2989 2990 switch (cmd) { 2991 case SIOCBONDENSLAVE: 2992 case SIOCBONDRELEASE: 2993 case SIOCBONDSETHWADDR: 2994 case SIOCBONDCHANGEACTIVE: 2995 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2996 return -EFAULT; 2997 2998 old_fs = get_fs(); 2999 set_fs(KERNEL_DS); 3000 err = dev_ioctl(net, cmd, 3001 (struct ifreq __user __force *) &kifr); 3002 set_fs(old_fs); 3003 3004 return err; 3005 default: 3006 return -ENOIOCTLCMD; 3007 } 3008 } 3009 3010 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3011 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3012 struct compat_ifreq __user *u_ifreq32) 3013 { 3014 struct ifreq __user *u_ifreq64; 3015 char tmp_buf[IFNAMSIZ]; 3016 void __user *data64; 3017 u32 data32; 3018 3019 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3020 IFNAMSIZ)) 3021 return -EFAULT; 3022 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3023 return -EFAULT; 3024 data64 = compat_ptr(data32); 3025 3026 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3027 3028 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3029 IFNAMSIZ)) 3030 return -EFAULT; 3031 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3032 return -EFAULT; 3033 3034 return dev_ioctl(net, cmd, u_ifreq64); 3035 } 3036 3037 static int dev_ifsioc(struct net *net, struct socket *sock, 3038 unsigned int cmd, struct compat_ifreq __user *uifr32) 3039 { 3040 struct ifreq __user *uifr; 3041 int err; 3042 3043 uifr = compat_alloc_user_space(sizeof(*uifr)); 3044 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3045 return -EFAULT; 3046 3047 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3048 3049 if (!err) { 3050 switch (cmd) { 3051 case SIOCGIFFLAGS: 3052 case SIOCGIFMETRIC: 3053 case SIOCGIFMTU: 3054 case SIOCGIFMEM: 3055 case SIOCGIFHWADDR: 3056 case SIOCGIFINDEX: 3057 case SIOCGIFADDR: 3058 case SIOCGIFBRDADDR: 3059 case SIOCGIFDSTADDR: 3060 case SIOCGIFNETMASK: 3061 case SIOCGIFPFLAGS: 3062 case SIOCGIFTXQLEN: 3063 case SIOCGMIIPHY: 3064 case SIOCGMIIREG: 3065 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3066 err = -EFAULT; 3067 break; 3068 } 3069 } 3070 return err; 3071 } 3072 3073 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3074 struct compat_ifreq __user *uifr32) 3075 { 3076 struct ifreq ifr; 3077 struct compat_ifmap __user *uifmap32; 3078 mm_segment_t old_fs; 3079 int err; 3080 3081 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3082 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3083 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3084 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3085 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3086 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3087 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3088 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3089 if (err) 3090 return -EFAULT; 3091 3092 old_fs = get_fs(); 3093 set_fs(KERNEL_DS); 3094 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3095 set_fs(old_fs); 3096 3097 if (cmd == SIOCGIFMAP && !err) { 3098 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3099 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3100 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3101 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3102 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3103 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3104 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3105 if (err) 3106 err = -EFAULT; 3107 } 3108 return err; 3109 } 3110 3111 struct rtentry32 { 3112 u32 rt_pad1; 3113 struct sockaddr rt_dst; /* target address */ 3114 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3115 struct sockaddr rt_genmask; /* target network mask (IP) */ 3116 unsigned short rt_flags; 3117 short rt_pad2; 3118 u32 rt_pad3; 3119 unsigned char rt_tos; 3120 unsigned char rt_class; 3121 short rt_pad4; 3122 short rt_metric; /* +1 for binary compatibility! */ 3123 /* char * */ u32 rt_dev; /* forcing the device at add */ 3124 u32 rt_mtu; /* per route MTU/Window */ 3125 u32 rt_window; /* Window clamping */ 3126 unsigned short rt_irtt; /* Initial RTT */ 3127 }; 3128 3129 struct in6_rtmsg32 { 3130 struct in6_addr rtmsg_dst; 3131 struct in6_addr rtmsg_src; 3132 struct in6_addr rtmsg_gateway; 3133 u32 rtmsg_type; 3134 u16 rtmsg_dst_len; 3135 u16 rtmsg_src_len; 3136 u32 rtmsg_metric; 3137 u32 rtmsg_info; 3138 u32 rtmsg_flags; 3139 s32 rtmsg_ifindex; 3140 }; 3141 3142 static int routing_ioctl(struct net *net, struct socket *sock, 3143 unsigned int cmd, void __user *argp) 3144 { 3145 int ret; 3146 void *r = NULL; 3147 struct in6_rtmsg r6; 3148 struct rtentry r4; 3149 char devname[16]; 3150 u32 rtdev; 3151 mm_segment_t old_fs = get_fs(); 3152 3153 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3154 struct in6_rtmsg32 __user *ur6 = argp; 3155 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3156 3 * sizeof(struct in6_addr)); 3157 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3158 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3159 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3160 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3161 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3162 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3163 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3164 3165 r = (void *) &r6; 3166 } else { /* ipv4 */ 3167 struct rtentry32 __user *ur4 = argp; 3168 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3169 3 * sizeof(struct sockaddr)); 3170 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3171 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3172 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3173 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3174 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3175 ret |= get_user(rtdev, &(ur4->rt_dev)); 3176 if (rtdev) { 3177 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3178 r4.rt_dev = (char __user __force *)devname; 3179 devname[15] = 0; 3180 } else 3181 r4.rt_dev = NULL; 3182 3183 r = (void *) &r4; 3184 } 3185 3186 if (ret) { 3187 ret = -EFAULT; 3188 goto out; 3189 } 3190 3191 set_fs(KERNEL_DS); 3192 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3193 set_fs(old_fs); 3194 3195 out: 3196 return ret; 3197 } 3198 3199 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3200 * for some operations; this forces use of the newer bridge-utils that 3201 * use compatible ioctls 3202 */ 3203 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3204 { 3205 compat_ulong_t tmp; 3206 3207 if (get_user(tmp, argp)) 3208 return -EFAULT; 3209 if (tmp == BRCTL_GET_VERSION) 3210 return BRCTL_VERSION + 1; 3211 return -EINVAL; 3212 } 3213 3214 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3215 unsigned int cmd, unsigned long arg) 3216 { 3217 void __user *argp = compat_ptr(arg); 3218 struct sock *sk = sock->sk; 3219 struct net *net = sock_net(sk); 3220 3221 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3222 return compat_ifr_data_ioctl(net, cmd, argp); 3223 3224 switch (cmd) { 3225 case SIOCSIFBR: 3226 case SIOCGIFBR: 3227 return old_bridge_ioctl(argp); 3228 case SIOCGIFNAME: 3229 return dev_ifname32(net, argp); 3230 case SIOCGIFCONF: 3231 return dev_ifconf(net, argp); 3232 case SIOCETHTOOL: 3233 return ethtool_ioctl(net, argp); 3234 case SIOCWANDEV: 3235 return compat_siocwandev(net, argp); 3236 case SIOCGIFMAP: 3237 case SIOCSIFMAP: 3238 return compat_sioc_ifmap(net, cmd, argp); 3239 case SIOCBONDENSLAVE: 3240 case SIOCBONDRELEASE: 3241 case SIOCBONDSETHWADDR: 3242 case SIOCBONDCHANGEACTIVE: 3243 return bond_ioctl(net, cmd, argp); 3244 case SIOCADDRT: 3245 case SIOCDELRT: 3246 return routing_ioctl(net, sock, cmd, argp); 3247 case SIOCGSTAMP: 3248 return do_siocgstamp(net, sock, cmd, argp); 3249 case SIOCGSTAMPNS: 3250 return do_siocgstampns(net, sock, cmd, argp); 3251 case SIOCBONDSLAVEINFOQUERY: 3252 case SIOCBONDINFOQUERY: 3253 case SIOCSHWTSTAMP: 3254 case SIOCGHWTSTAMP: 3255 return compat_ifr_data_ioctl(net, cmd, argp); 3256 3257 case FIOSETOWN: 3258 case SIOCSPGRP: 3259 case FIOGETOWN: 3260 case SIOCGPGRP: 3261 case SIOCBRADDBR: 3262 case SIOCBRDELBR: 3263 case SIOCGIFVLAN: 3264 case SIOCSIFVLAN: 3265 case SIOCADDDLCI: 3266 case SIOCDELDLCI: 3267 return sock_ioctl(file, cmd, arg); 3268 3269 case SIOCGIFFLAGS: 3270 case SIOCSIFFLAGS: 3271 case SIOCGIFMETRIC: 3272 case SIOCSIFMETRIC: 3273 case SIOCGIFMTU: 3274 case SIOCSIFMTU: 3275 case SIOCGIFMEM: 3276 case SIOCSIFMEM: 3277 case SIOCGIFHWADDR: 3278 case SIOCSIFHWADDR: 3279 case SIOCADDMULTI: 3280 case SIOCDELMULTI: 3281 case SIOCGIFINDEX: 3282 case SIOCGIFADDR: 3283 case SIOCSIFADDR: 3284 case SIOCSIFHWBROADCAST: 3285 case SIOCDIFADDR: 3286 case SIOCGIFBRDADDR: 3287 case SIOCSIFBRDADDR: 3288 case SIOCGIFDSTADDR: 3289 case SIOCSIFDSTADDR: 3290 case SIOCGIFNETMASK: 3291 case SIOCSIFNETMASK: 3292 case SIOCSIFPFLAGS: 3293 case SIOCGIFPFLAGS: 3294 case SIOCGIFTXQLEN: 3295 case SIOCSIFTXQLEN: 3296 case SIOCBRADDIF: 3297 case SIOCBRDELIF: 3298 case SIOCSIFNAME: 3299 case SIOCGMIIPHY: 3300 case SIOCGMIIREG: 3301 case SIOCSMIIREG: 3302 return dev_ifsioc(net, sock, cmd, argp); 3303 3304 case SIOCSARP: 3305 case SIOCGARP: 3306 case SIOCDARP: 3307 case SIOCATMARK: 3308 return sock_do_ioctl(net, sock, cmd, arg); 3309 } 3310 3311 return -ENOIOCTLCMD; 3312 } 3313 3314 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3315 unsigned long arg) 3316 { 3317 struct socket *sock = file->private_data; 3318 int ret = -ENOIOCTLCMD; 3319 struct sock *sk; 3320 struct net *net; 3321 3322 sk = sock->sk; 3323 net = sock_net(sk); 3324 3325 if (sock->ops->compat_ioctl) 3326 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3327 3328 if (ret == -ENOIOCTLCMD && 3329 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3330 ret = compat_wext_handle_ioctl(net, cmd, arg); 3331 3332 if (ret == -ENOIOCTLCMD) 3333 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3334 3335 return ret; 3336 } 3337 #endif 3338 3339 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3340 { 3341 return sock->ops->bind(sock, addr, addrlen); 3342 } 3343 EXPORT_SYMBOL(kernel_bind); 3344 3345 int kernel_listen(struct socket *sock, int backlog) 3346 { 3347 return sock->ops->listen(sock, backlog); 3348 } 3349 EXPORT_SYMBOL(kernel_listen); 3350 3351 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3352 { 3353 struct sock *sk = sock->sk; 3354 int err; 3355 3356 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3357 newsock); 3358 if (err < 0) 3359 goto done; 3360 3361 err = sock->ops->accept(sock, *newsock, flags); 3362 if (err < 0) { 3363 sock_release(*newsock); 3364 *newsock = NULL; 3365 goto done; 3366 } 3367 3368 (*newsock)->ops = sock->ops; 3369 __module_get((*newsock)->ops->owner); 3370 3371 done: 3372 return err; 3373 } 3374 EXPORT_SYMBOL(kernel_accept); 3375 3376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3377 int flags) 3378 { 3379 return sock->ops->connect(sock, addr, addrlen, flags); 3380 } 3381 EXPORT_SYMBOL(kernel_connect); 3382 3383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3384 int *addrlen) 3385 { 3386 return sock->ops->getname(sock, addr, addrlen, 0); 3387 } 3388 EXPORT_SYMBOL(kernel_getsockname); 3389 3390 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3391 int *addrlen) 3392 { 3393 return sock->ops->getname(sock, addr, addrlen, 1); 3394 } 3395 EXPORT_SYMBOL(kernel_getpeername); 3396 3397 int kernel_getsockopt(struct socket *sock, int level, int optname, 3398 char *optval, int *optlen) 3399 { 3400 mm_segment_t oldfs = get_fs(); 3401 char __user *uoptval; 3402 int __user *uoptlen; 3403 int err; 3404 3405 uoptval = (char __user __force *) optval; 3406 uoptlen = (int __user __force *) optlen; 3407 3408 set_fs(KERNEL_DS); 3409 if (level == SOL_SOCKET) 3410 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3411 else 3412 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3413 uoptlen); 3414 set_fs(oldfs); 3415 return err; 3416 } 3417 EXPORT_SYMBOL(kernel_getsockopt); 3418 3419 int kernel_setsockopt(struct socket *sock, int level, int optname, 3420 char *optval, unsigned int optlen) 3421 { 3422 mm_segment_t oldfs = get_fs(); 3423 char __user *uoptval; 3424 int err; 3425 3426 uoptval = (char __user __force *) optval; 3427 3428 set_fs(KERNEL_DS); 3429 if (level == SOL_SOCKET) 3430 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3431 else 3432 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3433 optlen); 3434 set_fs(oldfs); 3435 return err; 3436 } 3437 EXPORT_SYMBOL(kernel_setsockopt); 3438 3439 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3440 size_t size, int flags) 3441 { 3442 if (sock->ops->sendpage) 3443 return sock->ops->sendpage(sock, page, offset, size, flags); 3444 3445 return sock_no_sendpage(sock, page, offset, size, flags); 3446 } 3447 EXPORT_SYMBOL(kernel_sendpage); 3448 3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3450 { 3451 mm_segment_t oldfs = get_fs(); 3452 int err; 3453 3454 set_fs(KERNEL_DS); 3455 err = sock->ops->ioctl(sock, cmd, arg); 3456 set_fs(oldfs); 3457 3458 return err; 3459 } 3460 EXPORT_SYMBOL(kernel_sock_ioctl); 3461 3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3463 { 3464 return sock->ops->shutdown(sock, how); 3465 } 3466 EXPORT_SYMBOL(kernel_sock_shutdown); 3467