xref: /openbmc/linux/net/socket.c (revision aef2feda)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 	struct socket *sock = f->private_data;
138 
139 	if (sock->ops->show_fdinfo)
140 		sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145 
146 /*
147  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148  *	in the operation structures but are done directly via the socketcall() multiplexor.
149  */
150 
151 static const struct file_operations socket_file_ops = {
152 	.owner =	THIS_MODULE,
153 	.llseek =	no_llseek,
154 	.read_iter =	sock_read_iter,
155 	.write_iter =	sock_write_iter,
156 	.poll =		sock_poll,
157 	.unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 	.compat_ioctl = compat_sock_ioctl,
160 #endif
161 	.mmap =		sock_mmap,
162 	.release =	sock_close,
163 	.fasync =	sock_fasync,
164 	.sendpage =	sock_sendpage,
165 	.splice_write = generic_splice_sendpage,
166 	.splice_read =	sock_splice_read,
167 	.show_fdinfo =	sock_show_fdinfo,
168 };
169 
170 static const char * const pf_family_names[] = {
171 	[PF_UNSPEC]	= "PF_UNSPEC",
172 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
173 	[PF_INET]	= "PF_INET",
174 	[PF_AX25]	= "PF_AX25",
175 	[PF_IPX]	= "PF_IPX",
176 	[PF_APPLETALK]	= "PF_APPLETALK",
177 	[PF_NETROM]	= "PF_NETROM",
178 	[PF_BRIDGE]	= "PF_BRIDGE",
179 	[PF_ATMPVC]	= "PF_ATMPVC",
180 	[PF_X25]	= "PF_X25",
181 	[PF_INET6]	= "PF_INET6",
182 	[PF_ROSE]	= "PF_ROSE",
183 	[PF_DECnet]	= "PF_DECnet",
184 	[PF_NETBEUI]	= "PF_NETBEUI",
185 	[PF_SECURITY]	= "PF_SECURITY",
186 	[PF_KEY]	= "PF_KEY",
187 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
188 	[PF_PACKET]	= "PF_PACKET",
189 	[PF_ASH]	= "PF_ASH",
190 	[PF_ECONET]	= "PF_ECONET",
191 	[PF_ATMSVC]	= "PF_ATMSVC",
192 	[PF_RDS]	= "PF_RDS",
193 	[PF_SNA]	= "PF_SNA",
194 	[PF_IRDA]	= "PF_IRDA",
195 	[PF_PPPOX]	= "PF_PPPOX",
196 	[PF_WANPIPE]	= "PF_WANPIPE",
197 	[PF_LLC]	= "PF_LLC",
198 	[PF_IB]		= "PF_IB",
199 	[PF_MPLS]	= "PF_MPLS",
200 	[PF_CAN]	= "PF_CAN",
201 	[PF_TIPC]	= "PF_TIPC",
202 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
203 	[PF_IUCV]	= "PF_IUCV",
204 	[PF_RXRPC]	= "PF_RXRPC",
205 	[PF_ISDN]	= "PF_ISDN",
206 	[PF_PHONET]	= "PF_PHONET",
207 	[PF_IEEE802154]	= "PF_IEEE802154",
208 	[PF_CAIF]	= "PF_CAIF",
209 	[PF_ALG]	= "PF_ALG",
210 	[PF_NFC]	= "PF_NFC",
211 	[PF_VSOCK]	= "PF_VSOCK",
212 	[PF_KCM]	= "PF_KCM",
213 	[PF_QIPCRTR]	= "PF_QIPCRTR",
214 	[PF_SMC]	= "PF_SMC",
215 	[PF_XDP]	= "PF_XDP",
216 	[PF_MCTP]	= "PF_MCTP",
217 };
218 
219 /*
220  *	The protocol list. Each protocol is registered in here.
221  */
222 
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225 
226 /*
227  * Support routines.
228  * Move socket addresses back and forth across the kernel/user
229  * divide and look after the messy bits.
230  */
231 
232 /**
233  *	move_addr_to_kernel	-	copy a socket address into kernel space
234  *	@uaddr: Address in user space
235  *	@kaddr: Address in kernel space
236  *	@ulen: Length in user space
237  *
238  *	The address is copied into kernel space. If the provided address is
239  *	too long an error code of -EINVAL is returned. If the copy gives
240  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
241  */
242 
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 		return -EINVAL;
247 	if (ulen == 0)
248 		return 0;
249 	if (copy_from_user(kaddr, uaddr, ulen))
250 		return -EFAULT;
251 	return audit_sockaddr(ulen, kaddr);
252 }
253 
254 /**
255  *	move_addr_to_user	-	copy an address to user space
256  *	@kaddr: kernel space address
257  *	@klen: length of address in kernel
258  *	@uaddr: user space address
259  *	@ulen: pointer to user length field
260  *
261  *	The value pointed to by ulen on entry is the buffer length available.
262  *	This is overwritten with the buffer space used. -EINVAL is returned
263  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
264  *	is returned if either the buffer or the length field are not
265  *	accessible.
266  *	After copying the data up to the limit the user specifies, the true
267  *	length of the data is written over the length limit the user
268  *	specified. Zero is returned for a success.
269  */
270 
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 			     void __user *uaddr, int __user *ulen)
273 {
274 	int err;
275 	int len;
276 
277 	BUG_ON(klen > sizeof(struct sockaddr_storage));
278 	err = get_user(len, ulen);
279 	if (err)
280 		return err;
281 	if (len > klen)
282 		len = klen;
283 	if (len < 0)
284 		return -EINVAL;
285 	if (len) {
286 		if (audit_sockaddr(klen, kaddr))
287 			return -ENOMEM;
288 		if (copy_to_user(uaddr, kaddr, len))
289 			return -EFAULT;
290 	}
291 	/*
292 	 *      "fromlen shall refer to the value before truncation.."
293 	 *                      1003.1g
294 	 */
295 	return __put_user(klen, ulen);
296 }
297 
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 	struct socket_alloc *ei;
303 
304 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
305 	if (!ei)
306 		return NULL;
307 	init_waitqueue_head(&ei->socket.wq.wait);
308 	ei->socket.wq.fasync_list = NULL;
309 	ei->socket.wq.flags = 0;
310 
311 	ei->socket.state = SS_UNCONNECTED;
312 	ei->socket.flags = 0;
313 	ei->socket.ops = NULL;
314 	ei->socket.sk = NULL;
315 	ei->socket.file = NULL;
316 
317 	return &ei->vfs_inode;
318 }
319 
320 static void sock_free_inode(struct inode *inode)
321 {
322 	struct socket_alloc *ei;
323 
324 	ei = container_of(inode, struct socket_alloc, vfs_inode);
325 	kmem_cache_free(sock_inode_cachep, ei);
326 }
327 
328 static void init_once(void *foo)
329 {
330 	struct socket_alloc *ei = (struct socket_alloc *)foo;
331 
332 	inode_init_once(&ei->vfs_inode);
333 }
334 
335 static void init_inodecache(void)
336 {
337 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 					      sizeof(struct socket_alloc),
339 					      0,
340 					      (SLAB_HWCACHE_ALIGN |
341 					       SLAB_RECLAIM_ACCOUNT |
342 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 					      init_once);
344 	BUG_ON(sock_inode_cachep == NULL);
345 }
346 
347 static const struct super_operations sockfs_ops = {
348 	.alloc_inode	= sock_alloc_inode,
349 	.free_inode	= sock_free_inode,
350 	.statfs		= simple_statfs,
351 };
352 
353 /*
354  * sockfs_dname() is called from d_path().
355  */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359 				d_inode(dentry)->i_ino);
360 }
361 
362 static const struct dentry_operations sockfs_dentry_operations = {
363 	.d_dname  = sockfs_dname,
364 };
365 
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 			    struct dentry *dentry, struct inode *inode,
368 			    const char *suffix, void *value, size_t size)
369 {
370 	if (value) {
371 		if (dentry->d_name.len + 1 > size)
372 			return -ERANGE;
373 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 	}
375 	return dentry->d_name.len + 1;
376 }
377 
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 
382 static const struct xattr_handler sockfs_xattr_handler = {
383 	.name = XATTR_NAME_SOCKPROTONAME,
384 	.get = sockfs_xattr_get,
385 };
386 
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 				     struct user_namespace *mnt_userns,
389 				     struct dentry *dentry, struct inode *inode,
390 				     const char *suffix, const void *value,
391 				     size_t size, int flags)
392 {
393 	/* Handled by LSM. */
394 	return -EAGAIN;
395 }
396 
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 	.prefix = XATTR_SECURITY_PREFIX,
399 	.set = sockfs_security_xattr_set,
400 };
401 
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 	&sockfs_xattr_handler,
404 	&sockfs_security_xattr_handler,
405 	NULL
406 };
407 
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 	if (!ctx)
412 		return -ENOMEM;
413 	ctx->ops = &sockfs_ops;
414 	ctx->dops = &sockfs_dentry_operations;
415 	ctx->xattr = sockfs_xattr_handlers;
416 	return 0;
417 }
418 
419 static struct vfsmount *sock_mnt __read_mostly;
420 
421 static struct file_system_type sock_fs_type = {
422 	.name =		"sockfs",
423 	.init_fs_context = sockfs_init_fs_context,
424 	.kill_sb =	kill_anon_super,
425 };
426 
427 /*
428  *	Obtains the first available file descriptor and sets it up for use.
429  *
430  *	These functions create file structures and maps them to fd space
431  *	of the current process. On success it returns file descriptor
432  *	and file struct implicitly stored in sock->file.
433  *	Note that another thread may close file descriptor before we return
434  *	from this function. We use the fact that now we do not refer
435  *	to socket after mapping. If one day we will need it, this
436  *	function will increment ref. count on file by 1.
437  *
438  *	In any case returned fd MAY BE not valid!
439  *	This race condition is unavoidable
440  *	with shared fd spaces, we cannot solve it inside kernel,
441  *	but we take care of internal coherence yet.
442  */
443 
444 /**
445  *	sock_alloc_file - Bind a &socket to a &file
446  *	@sock: socket
447  *	@flags: file status flags
448  *	@dname: protocol name
449  *
450  *	Returns the &file bound with @sock, implicitly storing it
451  *	in sock->file. If dname is %NULL, sets to "".
452  *	On failure the return is a ERR pointer (see linux/err.h).
453  *	This function uses GFP_KERNEL internally.
454  */
455 
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 	struct file *file;
459 
460 	if (!dname)
461 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 
463 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 				O_RDWR | (flags & O_NONBLOCK),
465 				&socket_file_ops);
466 	if (IS_ERR(file)) {
467 		sock_release(sock);
468 		return file;
469 	}
470 
471 	sock->file = file;
472 	file->private_data = sock;
473 	stream_open(SOCK_INODE(sock), file);
474 	return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477 
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 	struct file *newfile;
481 	int fd = get_unused_fd_flags(flags);
482 	if (unlikely(fd < 0)) {
483 		sock_release(sock);
484 		return fd;
485 	}
486 
487 	newfile = sock_alloc_file(sock, flags, NULL);
488 	if (!IS_ERR(newfile)) {
489 		fd_install(fd, newfile);
490 		return fd;
491 	}
492 
493 	put_unused_fd(fd);
494 	return PTR_ERR(newfile);
495 }
496 
497 /**
498  *	sock_from_file - Return the &socket bounded to @file.
499  *	@file: file
500  *
501  *	On failure returns %NULL.
502  */
503 
504 struct socket *sock_from_file(struct file *file)
505 {
506 	if (file->f_op == &socket_file_ops)
507 		return file->private_data;	/* set in sock_map_fd */
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512 
513 /**
514  *	sockfd_lookup - Go from a file number to its socket slot
515  *	@fd: file handle
516  *	@err: pointer to an error code return
517  *
518  *	The file handle passed in is locked and the socket it is bound
519  *	to is returned. If an error occurs the err pointer is overwritten
520  *	with a negative errno code and NULL is returned. The function checks
521  *	for both invalid handles and passing a handle which is not a socket.
522  *
523  *	On a success the socket object pointer is returned.
524  */
525 
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 	struct file *file;
529 	struct socket *sock;
530 
531 	file = fget(fd);
532 	if (!file) {
533 		*err = -EBADF;
534 		return NULL;
535 	}
536 
537 	sock = sock_from_file(file);
538 	if (!sock) {
539 		*err = -ENOTSOCK;
540 		fput(file);
541 	}
542 	return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545 
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 	struct fd f = fdget(fd);
549 	struct socket *sock;
550 
551 	*err = -EBADF;
552 	if (f.file) {
553 		sock = sock_from_file(f.file);
554 		if (likely(sock)) {
555 			*fput_needed = f.flags & FDPUT_FPUT;
556 			return sock;
557 		}
558 		*err = -ENOTSOCK;
559 		fdput(f);
560 	}
561 	return NULL;
562 }
563 
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 				size_t size)
566 {
567 	ssize_t len;
568 	ssize_t used = 0;
569 
570 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 	if (len < 0)
572 		return len;
573 	used += len;
574 	if (buffer) {
575 		if (size < used)
576 			return -ERANGE;
577 		buffer += len;
578 	}
579 
580 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 		buffer += len;
587 	}
588 
589 	return used;
590 }
591 
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 			  struct dentry *dentry, struct iattr *iattr)
594 {
595 	int err = simple_setattr(&init_user_ns, dentry, iattr);
596 
597 	if (!err && (iattr->ia_valid & ATTR_UID)) {
598 		struct socket *sock = SOCKET_I(d_inode(dentry));
599 
600 		if (sock->sk)
601 			sock->sk->sk_uid = iattr->ia_uid;
602 		else
603 			err = -ENOENT;
604 	}
605 
606 	return err;
607 }
608 
609 static const struct inode_operations sockfs_inode_ops = {
610 	.listxattr = sockfs_listxattr,
611 	.setattr = sockfs_setattr,
612 };
613 
614 /**
615  *	sock_alloc - allocate a socket
616  *
617  *	Allocate a new inode and socket object. The two are bound together
618  *	and initialised. The socket is then returned. If we are out of inodes
619  *	NULL is returned. This functions uses GFP_KERNEL internally.
620  */
621 
622 struct socket *sock_alloc(void)
623 {
624 	struct inode *inode;
625 	struct socket *sock;
626 
627 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 	if (!inode)
629 		return NULL;
630 
631 	sock = SOCKET_I(inode);
632 
633 	inode->i_ino = get_next_ino();
634 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 	inode->i_uid = current_fsuid();
636 	inode->i_gid = current_fsgid();
637 	inode->i_op = &sockfs_inode_ops;
638 
639 	return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642 
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 	if (sock->ops) {
646 		struct module *owner = sock->ops->owner;
647 
648 		if (inode)
649 			inode_lock(inode);
650 		sock->ops->release(sock);
651 		sock->sk = NULL;
652 		if (inode)
653 			inode_unlock(inode);
654 		sock->ops = NULL;
655 		module_put(owner);
656 	}
657 
658 	if (sock->wq.fasync_list)
659 		pr_err("%s: fasync list not empty!\n", __func__);
660 
661 	if (!sock->file) {
662 		iput(SOCK_INODE(sock));
663 		return;
664 	}
665 	sock->file = NULL;
666 }
667 
668 /**
669  *	sock_release - close a socket
670  *	@sock: socket to close
671  *
672  *	The socket is released from the protocol stack if it has a release
673  *	callback, and the inode is then released if the socket is bound to
674  *	an inode not a file.
675  */
676 void sock_release(struct socket *sock)
677 {
678 	__sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681 
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 	u8 flags = *tx_flags;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
687 		flags |= SKBTX_HW_TSTAMP;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
690 		flags |= SKBTX_SW_TSTAMP;
691 
692 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
693 		flags |= SKBTX_SCHED_TSTAMP;
694 
695 	*tx_flags = flags;
696 }
697 EXPORT_SYMBOL(__sock_tx_timestamp);
698 
699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 					   size_t));
701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 					    size_t));
703 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
704 {
705 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
706 				     inet_sendmsg, sock, msg,
707 				     msg_data_left(msg));
708 	BUG_ON(ret == -EIOCBQUEUED);
709 	return ret;
710 }
711 
712 /**
713  *	sock_sendmsg - send a message through @sock
714  *	@sock: socket
715  *	@msg: message to send
716  *
717  *	Sends @msg through @sock, passing through LSM.
718  *	Returns the number of bytes sent, or an error code.
719  */
720 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
721 {
722 	int err = security_socket_sendmsg(sock, msg,
723 					  msg_data_left(msg));
724 
725 	return err ?: sock_sendmsg_nosec(sock, msg);
726 }
727 EXPORT_SYMBOL(sock_sendmsg);
728 
729 /**
730  *	kernel_sendmsg - send a message through @sock (kernel-space)
731  *	@sock: socket
732  *	@msg: message header
733  *	@vec: kernel vec
734  *	@num: vec array length
735  *	@size: total message data size
736  *
737  *	Builds the message data with @vec and sends it through @sock.
738  *	Returns the number of bytes sent, or an error code.
739  */
740 
741 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
742 		   struct kvec *vec, size_t num, size_t size)
743 {
744 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
745 	return sock_sendmsg(sock, msg);
746 }
747 EXPORT_SYMBOL(kernel_sendmsg);
748 
749 /**
750  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
751  *	@sk: sock
752  *	@msg: message header
753  *	@vec: output s/g array
754  *	@num: output s/g array length
755  *	@size: total message data size
756  *
757  *	Builds the message data with @vec and sends it through @sock.
758  *	Returns the number of bytes sent, or an error code.
759  *	Caller must hold @sk.
760  */
761 
762 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
763 			  struct kvec *vec, size_t num, size_t size)
764 {
765 	struct socket *sock = sk->sk_socket;
766 
767 	if (!sock->ops->sendmsg_locked)
768 		return sock_no_sendmsg_locked(sk, msg, size);
769 
770 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
771 
772 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
773 }
774 EXPORT_SYMBOL(kernel_sendmsg_locked);
775 
776 static bool skb_is_err_queue(const struct sk_buff *skb)
777 {
778 	/* pkt_type of skbs enqueued on the error queue are set to
779 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
780 	 * in recvmsg, since skbs received on a local socket will never
781 	 * have a pkt_type of PACKET_OUTGOING.
782 	 */
783 	return skb->pkt_type == PACKET_OUTGOING;
784 }
785 
786 /* On transmit, software and hardware timestamps are returned independently.
787  * As the two skb clones share the hardware timestamp, which may be updated
788  * before the software timestamp is received, a hardware TX timestamp may be
789  * returned only if there is no software TX timestamp. Ignore false software
790  * timestamps, which may be made in the __sock_recv_timestamp() call when the
791  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
792  * hardware timestamp.
793  */
794 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
795 {
796 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
797 }
798 
799 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
800 {
801 	struct scm_ts_pktinfo ts_pktinfo;
802 	struct net_device *orig_dev;
803 
804 	if (!skb_mac_header_was_set(skb))
805 		return;
806 
807 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
808 
809 	rcu_read_lock();
810 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
811 	if (orig_dev)
812 		ts_pktinfo.if_index = orig_dev->ifindex;
813 	rcu_read_unlock();
814 
815 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
816 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
817 		 sizeof(ts_pktinfo), &ts_pktinfo);
818 }
819 
820 /*
821  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
822  */
823 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
824 	struct sk_buff *skb)
825 {
826 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
827 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
828 	struct scm_timestamping_internal tss;
829 
830 	int empty = 1, false_tstamp = 0;
831 	struct skb_shared_hwtstamps *shhwtstamps =
832 		skb_hwtstamps(skb);
833 
834 	/* Race occurred between timestamp enabling and packet
835 	   receiving.  Fill in the current time for now. */
836 	if (need_software_tstamp && skb->tstamp == 0) {
837 		__net_timestamp(skb);
838 		false_tstamp = 1;
839 	}
840 
841 	if (need_software_tstamp) {
842 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
843 			if (new_tstamp) {
844 				struct __kernel_sock_timeval tv;
845 
846 				skb_get_new_timestamp(skb, &tv);
847 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
848 					 sizeof(tv), &tv);
849 			} else {
850 				struct __kernel_old_timeval tv;
851 
852 				skb_get_timestamp(skb, &tv);
853 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
854 					 sizeof(tv), &tv);
855 			}
856 		} else {
857 			if (new_tstamp) {
858 				struct __kernel_timespec ts;
859 
860 				skb_get_new_timestampns(skb, &ts);
861 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
862 					 sizeof(ts), &ts);
863 			} else {
864 				struct __kernel_old_timespec ts;
865 
866 				skb_get_timestampns(skb, &ts);
867 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
868 					 sizeof(ts), &ts);
869 			}
870 		}
871 	}
872 
873 	memset(&tss, 0, sizeof(tss));
874 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
875 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
876 		empty = 0;
877 	if (shhwtstamps &&
878 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
879 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
880 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
881 			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
882 
883 		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
884 					     tss.ts + 2)) {
885 			empty = 0;
886 
887 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
888 			    !skb_is_err_queue(skb))
889 				put_ts_pktinfo(msg, skb);
890 		}
891 	}
892 	if (!empty) {
893 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
894 			put_cmsg_scm_timestamping64(msg, &tss);
895 		else
896 			put_cmsg_scm_timestamping(msg, &tss);
897 
898 		if (skb_is_err_queue(skb) && skb->len &&
899 		    SKB_EXT_ERR(skb)->opt_stats)
900 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
901 				 skb->len, skb->data);
902 	}
903 }
904 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
905 
906 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
907 	struct sk_buff *skb)
908 {
909 	int ack;
910 
911 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
912 		return;
913 	if (!skb->wifi_acked_valid)
914 		return;
915 
916 	ack = skb->wifi_acked;
917 
918 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
919 }
920 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
921 
922 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
923 				   struct sk_buff *skb)
924 {
925 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
926 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
927 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
928 }
929 
930 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
931 	struct sk_buff *skb)
932 {
933 	sock_recv_timestamp(msg, sk, skb);
934 	sock_recv_drops(msg, sk, skb);
935 }
936 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
937 
938 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
939 					   size_t, int));
940 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
941 					    size_t, int));
942 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
943 				     int flags)
944 {
945 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
946 				  inet_recvmsg, sock, msg, msg_data_left(msg),
947 				  flags);
948 }
949 
950 /**
951  *	sock_recvmsg - receive a message from @sock
952  *	@sock: socket
953  *	@msg: message to receive
954  *	@flags: message flags
955  *
956  *	Receives @msg from @sock, passing through LSM. Returns the total number
957  *	of bytes received, or an error.
958  */
959 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
960 {
961 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
962 
963 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
964 }
965 EXPORT_SYMBOL(sock_recvmsg);
966 
967 /**
968  *	kernel_recvmsg - Receive a message from a socket (kernel space)
969  *	@sock: The socket to receive the message from
970  *	@msg: Received message
971  *	@vec: Input s/g array for message data
972  *	@num: Size of input s/g array
973  *	@size: Number of bytes to read
974  *	@flags: Message flags (MSG_DONTWAIT, etc...)
975  *
976  *	On return the msg structure contains the scatter/gather array passed in the
977  *	vec argument. The array is modified so that it consists of the unfilled
978  *	portion of the original array.
979  *
980  *	The returned value is the total number of bytes received, or an error.
981  */
982 
983 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
984 		   struct kvec *vec, size_t num, size_t size, int flags)
985 {
986 	msg->msg_control_is_user = false;
987 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
988 	return sock_recvmsg(sock, msg, flags);
989 }
990 EXPORT_SYMBOL(kernel_recvmsg);
991 
992 static ssize_t sock_sendpage(struct file *file, struct page *page,
993 			     int offset, size_t size, loff_t *ppos, int more)
994 {
995 	struct socket *sock;
996 	int flags;
997 
998 	sock = file->private_data;
999 
1000 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1001 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1002 	flags |= more;
1003 
1004 	return kernel_sendpage(sock, page, offset, size, flags);
1005 }
1006 
1007 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1008 				struct pipe_inode_info *pipe, size_t len,
1009 				unsigned int flags)
1010 {
1011 	struct socket *sock = file->private_data;
1012 
1013 	if (unlikely(!sock->ops->splice_read))
1014 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1015 
1016 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1017 }
1018 
1019 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1020 {
1021 	struct file *file = iocb->ki_filp;
1022 	struct socket *sock = file->private_data;
1023 	struct msghdr msg = {.msg_iter = *to,
1024 			     .msg_iocb = iocb};
1025 	ssize_t res;
1026 
1027 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1028 		msg.msg_flags = MSG_DONTWAIT;
1029 
1030 	if (iocb->ki_pos != 0)
1031 		return -ESPIPE;
1032 
1033 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1034 		return 0;
1035 
1036 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1037 	*to = msg.msg_iter;
1038 	return res;
1039 }
1040 
1041 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1042 {
1043 	struct file *file = iocb->ki_filp;
1044 	struct socket *sock = file->private_data;
1045 	struct msghdr msg = {.msg_iter = *from,
1046 			     .msg_iocb = iocb};
1047 	ssize_t res;
1048 
1049 	if (iocb->ki_pos != 0)
1050 		return -ESPIPE;
1051 
1052 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1053 		msg.msg_flags = MSG_DONTWAIT;
1054 
1055 	if (sock->type == SOCK_SEQPACKET)
1056 		msg.msg_flags |= MSG_EOR;
1057 
1058 	res = sock_sendmsg(sock, &msg);
1059 	*from = msg.msg_iter;
1060 	return res;
1061 }
1062 
1063 /*
1064  * Atomic setting of ioctl hooks to avoid race
1065  * with module unload.
1066  */
1067 
1068 static DEFINE_MUTEX(br_ioctl_mutex);
1069 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1070 			    unsigned int cmd, struct ifreq *ifr,
1071 			    void __user *uarg);
1072 
1073 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1074 			     unsigned int cmd, struct ifreq *ifr,
1075 			     void __user *uarg))
1076 {
1077 	mutex_lock(&br_ioctl_mutex);
1078 	br_ioctl_hook = hook;
1079 	mutex_unlock(&br_ioctl_mutex);
1080 }
1081 EXPORT_SYMBOL(brioctl_set);
1082 
1083 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1084 		  struct ifreq *ifr, void __user *uarg)
1085 {
1086 	int err = -ENOPKG;
1087 
1088 	if (!br_ioctl_hook)
1089 		request_module("bridge");
1090 
1091 	mutex_lock(&br_ioctl_mutex);
1092 	if (br_ioctl_hook)
1093 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1094 	mutex_unlock(&br_ioctl_mutex);
1095 
1096 	return err;
1097 }
1098 
1099 static DEFINE_MUTEX(vlan_ioctl_mutex);
1100 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1101 
1102 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1103 {
1104 	mutex_lock(&vlan_ioctl_mutex);
1105 	vlan_ioctl_hook = hook;
1106 	mutex_unlock(&vlan_ioctl_mutex);
1107 }
1108 EXPORT_SYMBOL(vlan_ioctl_set);
1109 
1110 static long sock_do_ioctl(struct net *net, struct socket *sock,
1111 			  unsigned int cmd, unsigned long arg)
1112 {
1113 	struct ifreq ifr;
1114 	bool need_copyout;
1115 	int err;
1116 	void __user *argp = (void __user *)arg;
1117 	void __user *data;
1118 
1119 	err = sock->ops->ioctl(sock, cmd, arg);
1120 
1121 	/*
1122 	 * If this ioctl is unknown try to hand it down
1123 	 * to the NIC driver.
1124 	 */
1125 	if (err != -ENOIOCTLCMD)
1126 		return err;
1127 
1128 	if (!is_socket_ioctl_cmd(cmd))
1129 		return -ENOTTY;
1130 
1131 	if (get_user_ifreq(&ifr, &data, argp))
1132 		return -EFAULT;
1133 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1134 	if (!err && need_copyout)
1135 		if (put_user_ifreq(&ifr, argp))
1136 			return -EFAULT;
1137 
1138 	return err;
1139 }
1140 
1141 /*
1142  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1143  *	what to do with it - that's up to the protocol still.
1144  */
1145 
1146 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1147 {
1148 	struct socket *sock;
1149 	struct sock *sk;
1150 	void __user *argp = (void __user *)arg;
1151 	int pid, err;
1152 	struct net *net;
1153 
1154 	sock = file->private_data;
1155 	sk = sock->sk;
1156 	net = sock_net(sk);
1157 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1158 		struct ifreq ifr;
1159 		void __user *data;
1160 		bool need_copyout;
1161 		if (get_user_ifreq(&ifr, &data, argp))
1162 			return -EFAULT;
1163 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1164 		if (!err && need_copyout)
1165 			if (put_user_ifreq(&ifr, argp))
1166 				return -EFAULT;
1167 	} else
1168 #ifdef CONFIG_WEXT_CORE
1169 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1170 		err = wext_handle_ioctl(net, cmd, argp);
1171 	} else
1172 #endif
1173 		switch (cmd) {
1174 		case FIOSETOWN:
1175 		case SIOCSPGRP:
1176 			err = -EFAULT;
1177 			if (get_user(pid, (int __user *)argp))
1178 				break;
1179 			err = f_setown(sock->file, pid, 1);
1180 			break;
1181 		case FIOGETOWN:
1182 		case SIOCGPGRP:
1183 			err = put_user(f_getown(sock->file),
1184 				       (int __user *)argp);
1185 			break;
1186 		case SIOCGIFBR:
1187 		case SIOCSIFBR:
1188 		case SIOCBRADDBR:
1189 		case SIOCBRDELBR:
1190 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1191 			break;
1192 		case SIOCGIFVLAN:
1193 		case SIOCSIFVLAN:
1194 			err = -ENOPKG;
1195 			if (!vlan_ioctl_hook)
1196 				request_module("8021q");
1197 
1198 			mutex_lock(&vlan_ioctl_mutex);
1199 			if (vlan_ioctl_hook)
1200 				err = vlan_ioctl_hook(net, argp);
1201 			mutex_unlock(&vlan_ioctl_mutex);
1202 			break;
1203 		case SIOCGSKNS:
1204 			err = -EPERM;
1205 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1206 				break;
1207 
1208 			err = open_related_ns(&net->ns, get_net_ns);
1209 			break;
1210 		case SIOCGSTAMP_OLD:
1211 		case SIOCGSTAMPNS_OLD:
1212 			if (!sock->ops->gettstamp) {
1213 				err = -ENOIOCTLCMD;
1214 				break;
1215 			}
1216 			err = sock->ops->gettstamp(sock, argp,
1217 						   cmd == SIOCGSTAMP_OLD,
1218 						   !IS_ENABLED(CONFIG_64BIT));
1219 			break;
1220 		case SIOCGSTAMP_NEW:
1221 		case SIOCGSTAMPNS_NEW:
1222 			if (!sock->ops->gettstamp) {
1223 				err = -ENOIOCTLCMD;
1224 				break;
1225 			}
1226 			err = sock->ops->gettstamp(sock, argp,
1227 						   cmd == SIOCGSTAMP_NEW,
1228 						   false);
1229 			break;
1230 
1231 		case SIOCGIFCONF:
1232 			err = dev_ifconf(net, argp);
1233 			break;
1234 
1235 		default:
1236 			err = sock_do_ioctl(net, sock, cmd, arg);
1237 			break;
1238 		}
1239 	return err;
1240 }
1241 
1242 /**
1243  *	sock_create_lite - creates a socket
1244  *	@family: protocol family (AF_INET, ...)
1245  *	@type: communication type (SOCK_STREAM, ...)
1246  *	@protocol: protocol (0, ...)
1247  *	@res: new socket
1248  *
1249  *	Creates a new socket and assigns it to @res, passing through LSM.
1250  *	The new socket initialization is not complete, see kernel_accept().
1251  *	Returns 0 or an error. On failure @res is set to %NULL.
1252  *	This function internally uses GFP_KERNEL.
1253  */
1254 
1255 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1256 {
1257 	int err;
1258 	struct socket *sock = NULL;
1259 
1260 	err = security_socket_create(family, type, protocol, 1);
1261 	if (err)
1262 		goto out;
1263 
1264 	sock = sock_alloc();
1265 	if (!sock) {
1266 		err = -ENOMEM;
1267 		goto out;
1268 	}
1269 
1270 	sock->type = type;
1271 	err = security_socket_post_create(sock, family, type, protocol, 1);
1272 	if (err)
1273 		goto out_release;
1274 
1275 out:
1276 	*res = sock;
1277 	return err;
1278 out_release:
1279 	sock_release(sock);
1280 	sock = NULL;
1281 	goto out;
1282 }
1283 EXPORT_SYMBOL(sock_create_lite);
1284 
1285 /* No kernel lock held - perfect */
1286 static __poll_t sock_poll(struct file *file, poll_table *wait)
1287 {
1288 	struct socket *sock = file->private_data;
1289 	__poll_t events = poll_requested_events(wait), flag = 0;
1290 
1291 	if (!sock->ops->poll)
1292 		return 0;
1293 
1294 	if (sk_can_busy_loop(sock->sk)) {
1295 		/* poll once if requested by the syscall */
1296 		if (events & POLL_BUSY_LOOP)
1297 			sk_busy_loop(sock->sk, 1);
1298 
1299 		/* if this socket can poll_ll, tell the system call */
1300 		flag = POLL_BUSY_LOOP;
1301 	}
1302 
1303 	return sock->ops->poll(file, sock, wait) | flag;
1304 }
1305 
1306 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1307 {
1308 	struct socket *sock = file->private_data;
1309 
1310 	return sock->ops->mmap(file, sock, vma);
1311 }
1312 
1313 static int sock_close(struct inode *inode, struct file *filp)
1314 {
1315 	__sock_release(SOCKET_I(inode), inode);
1316 	return 0;
1317 }
1318 
1319 /*
1320  *	Update the socket async list
1321  *
1322  *	Fasync_list locking strategy.
1323  *
1324  *	1. fasync_list is modified only under process context socket lock
1325  *	   i.e. under semaphore.
1326  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1327  *	   or under socket lock
1328  */
1329 
1330 static int sock_fasync(int fd, struct file *filp, int on)
1331 {
1332 	struct socket *sock = filp->private_data;
1333 	struct sock *sk = sock->sk;
1334 	struct socket_wq *wq = &sock->wq;
1335 
1336 	if (sk == NULL)
1337 		return -EINVAL;
1338 
1339 	lock_sock(sk);
1340 	fasync_helper(fd, filp, on, &wq->fasync_list);
1341 
1342 	if (!wq->fasync_list)
1343 		sock_reset_flag(sk, SOCK_FASYNC);
1344 	else
1345 		sock_set_flag(sk, SOCK_FASYNC);
1346 
1347 	release_sock(sk);
1348 	return 0;
1349 }
1350 
1351 /* This function may be called only under rcu_lock */
1352 
1353 int sock_wake_async(struct socket_wq *wq, int how, int band)
1354 {
1355 	if (!wq || !wq->fasync_list)
1356 		return -1;
1357 
1358 	switch (how) {
1359 	case SOCK_WAKE_WAITD:
1360 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1361 			break;
1362 		goto call_kill;
1363 	case SOCK_WAKE_SPACE:
1364 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1365 			break;
1366 		fallthrough;
1367 	case SOCK_WAKE_IO:
1368 call_kill:
1369 		kill_fasync(&wq->fasync_list, SIGIO, band);
1370 		break;
1371 	case SOCK_WAKE_URG:
1372 		kill_fasync(&wq->fasync_list, SIGURG, band);
1373 	}
1374 
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL(sock_wake_async);
1378 
1379 /**
1380  *	__sock_create - creates a socket
1381  *	@net: net namespace
1382  *	@family: protocol family (AF_INET, ...)
1383  *	@type: communication type (SOCK_STREAM, ...)
1384  *	@protocol: protocol (0, ...)
1385  *	@res: new socket
1386  *	@kern: boolean for kernel space sockets
1387  *
1388  *	Creates a new socket and assigns it to @res, passing through LSM.
1389  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1390  *	be set to true if the socket resides in kernel space.
1391  *	This function internally uses GFP_KERNEL.
1392  */
1393 
1394 int __sock_create(struct net *net, int family, int type, int protocol,
1395 			 struct socket **res, int kern)
1396 {
1397 	int err;
1398 	struct socket *sock;
1399 	const struct net_proto_family *pf;
1400 
1401 	/*
1402 	 *      Check protocol is in range
1403 	 */
1404 	if (family < 0 || family >= NPROTO)
1405 		return -EAFNOSUPPORT;
1406 	if (type < 0 || type >= SOCK_MAX)
1407 		return -EINVAL;
1408 
1409 	/* Compatibility.
1410 
1411 	   This uglymoron is moved from INET layer to here to avoid
1412 	   deadlock in module load.
1413 	 */
1414 	if (family == PF_INET && type == SOCK_PACKET) {
1415 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1416 			     current->comm);
1417 		family = PF_PACKET;
1418 	}
1419 
1420 	err = security_socket_create(family, type, protocol, kern);
1421 	if (err)
1422 		return err;
1423 
1424 	/*
1425 	 *	Allocate the socket and allow the family to set things up. if
1426 	 *	the protocol is 0, the family is instructed to select an appropriate
1427 	 *	default.
1428 	 */
1429 	sock = sock_alloc();
1430 	if (!sock) {
1431 		net_warn_ratelimited("socket: no more sockets\n");
1432 		return -ENFILE;	/* Not exactly a match, but its the
1433 				   closest posix thing */
1434 	}
1435 
1436 	sock->type = type;
1437 
1438 #ifdef CONFIG_MODULES
1439 	/* Attempt to load a protocol module if the find failed.
1440 	 *
1441 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1442 	 * requested real, full-featured networking support upon configuration.
1443 	 * Otherwise module support will break!
1444 	 */
1445 	if (rcu_access_pointer(net_families[family]) == NULL)
1446 		request_module("net-pf-%d", family);
1447 #endif
1448 
1449 	rcu_read_lock();
1450 	pf = rcu_dereference(net_families[family]);
1451 	err = -EAFNOSUPPORT;
1452 	if (!pf)
1453 		goto out_release;
1454 
1455 	/*
1456 	 * We will call the ->create function, that possibly is in a loadable
1457 	 * module, so we have to bump that loadable module refcnt first.
1458 	 */
1459 	if (!try_module_get(pf->owner))
1460 		goto out_release;
1461 
1462 	/* Now protected by module ref count */
1463 	rcu_read_unlock();
1464 
1465 	err = pf->create(net, sock, protocol, kern);
1466 	if (err < 0)
1467 		goto out_module_put;
1468 
1469 	/*
1470 	 * Now to bump the refcnt of the [loadable] module that owns this
1471 	 * socket at sock_release time we decrement its refcnt.
1472 	 */
1473 	if (!try_module_get(sock->ops->owner))
1474 		goto out_module_busy;
1475 
1476 	/*
1477 	 * Now that we're done with the ->create function, the [loadable]
1478 	 * module can have its refcnt decremented
1479 	 */
1480 	module_put(pf->owner);
1481 	err = security_socket_post_create(sock, family, type, protocol, kern);
1482 	if (err)
1483 		goto out_sock_release;
1484 	*res = sock;
1485 
1486 	return 0;
1487 
1488 out_module_busy:
1489 	err = -EAFNOSUPPORT;
1490 out_module_put:
1491 	sock->ops = NULL;
1492 	module_put(pf->owner);
1493 out_sock_release:
1494 	sock_release(sock);
1495 	return err;
1496 
1497 out_release:
1498 	rcu_read_unlock();
1499 	goto out_sock_release;
1500 }
1501 EXPORT_SYMBOL(__sock_create);
1502 
1503 /**
1504  *	sock_create - creates a socket
1505  *	@family: protocol family (AF_INET, ...)
1506  *	@type: communication type (SOCK_STREAM, ...)
1507  *	@protocol: protocol (0, ...)
1508  *	@res: new socket
1509  *
1510  *	A wrapper around __sock_create().
1511  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1512  */
1513 
1514 int sock_create(int family, int type, int protocol, struct socket **res)
1515 {
1516 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1517 }
1518 EXPORT_SYMBOL(sock_create);
1519 
1520 /**
1521  *	sock_create_kern - creates a socket (kernel space)
1522  *	@net: net namespace
1523  *	@family: protocol family (AF_INET, ...)
1524  *	@type: communication type (SOCK_STREAM, ...)
1525  *	@protocol: protocol (0, ...)
1526  *	@res: new socket
1527  *
1528  *	A wrapper around __sock_create().
1529  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1530  */
1531 
1532 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1533 {
1534 	return __sock_create(net, family, type, protocol, res, 1);
1535 }
1536 EXPORT_SYMBOL(sock_create_kern);
1537 
1538 int __sys_socket(int family, int type, int protocol)
1539 {
1540 	int retval;
1541 	struct socket *sock;
1542 	int flags;
1543 
1544 	/* Check the SOCK_* constants for consistency.  */
1545 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1546 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1547 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1548 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1549 
1550 	flags = type & ~SOCK_TYPE_MASK;
1551 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1552 		return -EINVAL;
1553 	type &= SOCK_TYPE_MASK;
1554 
1555 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1556 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1557 
1558 	retval = sock_create(family, type, protocol, &sock);
1559 	if (retval < 0)
1560 		return retval;
1561 
1562 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1563 }
1564 
1565 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1566 {
1567 	return __sys_socket(family, type, protocol);
1568 }
1569 
1570 /*
1571  *	Create a pair of connected sockets.
1572  */
1573 
1574 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1575 {
1576 	struct socket *sock1, *sock2;
1577 	int fd1, fd2, err;
1578 	struct file *newfile1, *newfile2;
1579 	int flags;
1580 
1581 	flags = type & ~SOCK_TYPE_MASK;
1582 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1583 		return -EINVAL;
1584 	type &= SOCK_TYPE_MASK;
1585 
1586 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1587 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1588 
1589 	/*
1590 	 * reserve descriptors and make sure we won't fail
1591 	 * to return them to userland.
1592 	 */
1593 	fd1 = get_unused_fd_flags(flags);
1594 	if (unlikely(fd1 < 0))
1595 		return fd1;
1596 
1597 	fd2 = get_unused_fd_flags(flags);
1598 	if (unlikely(fd2 < 0)) {
1599 		put_unused_fd(fd1);
1600 		return fd2;
1601 	}
1602 
1603 	err = put_user(fd1, &usockvec[0]);
1604 	if (err)
1605 		goto out;
1606 
1607 	err = put_user(fd2, &usockvec[1]);
1608 	if (err)
1609 		goto out;
1610 
1611 	/*
1612 	 * Obtain the first socket and check if the underlying protocol
1613 	 * supports the socketpair call.
1614 	 */
1615 
1616 	err = sock_create(family, type, protocol, &sock1);
1617 	if (unlikely(err < 0))
1618 		goto out;
1619 
1620 	err = sock_create(family, type, protocol, &sock2);
1621 	if (unlikely(err < 0)) {
1622 		sock_release(sock1);
1623 		goto out;
1624 	}
1625 
1626 	err = security_socket_socketpair(sock1, sock2);
1627 	if (unlikely(err)) {
1628 		sock_release(sock2);
1629 		sock_release(sock1);
1630 		goto out;
1631 	}
1632 
1633 	err = sock1->ops->socketpair(sock1, sock2);
1634 	if (unlikely(err < 0)) {
1635 		sock_release(sock2);
1636 		sock_release(sock1);
1637 		goto out;
1638 	}
1639 
1640 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1641 	if (IS_ERR(newfile1)) {
1642 		err = PTR_ERR(newfile1);
1643 		sock_release(sock2);
1644 		goto out;
1645 	}
1646 
1647 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1648 	if (IS_ERR(newfile2)) {
1649 		err = PTR_ERR(newfile2);
1650 		fput(newfile1);
1651 		goto out;
1652 	}
1653 
1654 	audit_fd_pair(fd1, fd2);
1655 
1656 	fd_install(fd1, newfile1);
1657 	fd_install(fd2, newfile2);
1658 	return 0;
1659 
1660 out:
1661 	put_unused_fd(fd2);
1662 	put_unused_fd(fd1);
1663 	return err;
1664 }
1665 
1666 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1667 		int __user *, usockvec)
1668 {
1669 	return __sys_socketpair(family, type, protocol, usockvec);
1670 }
1671 
1672 /*
1673  *	Bind a name to a socket. Nothing much to do here since it's
1674  *	the protocol's responsibility to handle the local address.
1675  *
1676  *	We move the socket address to kernel space before we call
1677  *	the protocol layer (having also checked the address is ok).
1678  */
1679 
1680 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1681 {
1682 	struct socket *sock;
1683 	struct sockaddr_storage address;
1684 	int err, fput_needed;
1685 
1686 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 	if (sock) {
1688 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1689 		if (!err) {
1690 			err = security_socket_bind(sock,
1691 						   (struct sockaddr *)&address,
1692 						   addrlen);
1693 			if (!err)
1694 				err = sock->ops->bind(sock,
1695 						      (struct sockaddr *)
1696 						      &address, addrlen);
1697 		}
1698 		fput_light(sock->file, fput_needed);
1699 	}
1700 	return err;
1701 }
1702 
1703 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1704 {
1705 	return __sys_bind(fd, umyaddr, addrlen);
1706 }
1707 
1708 /*
1709  *	Perform a listen. Basically, we allow the protocol to do anything
1710  *	necessary for a listen, and if that works, we mark the socket as
1711  *	ready for listening.
1712  */
1713 
1714 int __sys_listen(int fd, int backlog)
1715 {
1716 	struct socket *sock;
1717 	int err, fput_needed;
1718 	int somaxconn;
1719 
1720 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 	if (sock) {
1722 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1723 		if ((unsigned int)backlog > somaxconn)
1724 			backlog = somaxconn;
1725 
1726 		err = security_socket_listen(sock, backlog);
1727 		if (!err)
1728 			err = sock->ops->listen(sock, backlog);
1729 
1730 		fput_light(sock->file, fput_needed);
1731 	}
1732 	return err;
1733 }
1734 
1735 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1736 {
1737 	return __sys_listen(fd, backlog);
1738 }
1739 
1740 struct file *do_accept(struct file *file, unsigned file_flags,
1741 		       struct sockaddr __user *upeer_sockaddr,
1742 		       int __user *upeer_addrlen, int flags)
1743 {
1744 	struct socket *sock, *newsock;
1745 	struct file *newfile;
1746 	int err, len;
1747 	struct sockaddr_storage address;
1748 
1749 	sock = sock_from_file(file);
1750 	if (!sock)
1751 		return ERR_PTR(-ENOTSOCK);
1752 
1753 	newsock = sock_alloc();
1754 	if (!newsock)
1755 		return ERR_PTR(-ENFILE);
1756 
1757 	newsock->type = sock->type;
1758 	newsock->ops = sock->ops;
1759 
1760 	/*
1761 	 * We don't need try_module_get here, as the listening socket (sock)
1762 	 * has the protocol module (sock->ops->owner) held.
1763 	 */
1764 	__module_get(newsock->ops->owner);
1765 
1766 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1767 	if (IS_ERR(newfile))
1768 		return newfile;
1769 
1770 	err = security_socket_accept(sock, newsock);
1771 	if (err)
1772 		goto out_fd;
1773 
1774 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1775 					false);
1776 	if (err < 0)
1777 		goto out_fd;
1778 
1779 	if (upeer_sockaddr) {
1780 		len = newsock->ops->getname(newsock,
1781 					(struct sockaddr *)&address, 2);
1782 		if (len < 0) {
1783 			err = -ECONNABORTED;
1784 			goto out_fd;
1785 		}
1786 		err = move_addr_to_user(&address,
1787 					len, upeer_sockaddr, upeer_addrlen);
1788 		if (err < 0)
1789 			goto out_fd;
1790 	}
1791 
1792 	/* File flags are not inherited via accept() unlike another OSes. */
1793 	return newfile;
1794 out_fd:
1795 	fput(newfile);
1796 	return ERR_PTR(err);
1797 }
1798 
1799 int __sys_accept4_file(struct file *file, unsigned file_flags,
1800 		       struct sockaddr __user *upeer_sockaddr,
1801 		       int __user *upeer_addrlen, int flags,
1802 		       unsigned long nofile)
1803 {
1804 	struct file *newfile;
1805 	int newfd;
1806 
1807 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1808 		return -EINVAL;
1809 
1810 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1811 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1812 
1813 	newfd = __get_unused_fd_flags(flags, nofile);
1814 	if (unlikely(newfd < 0))
1815 		return newfd;
1816 
1817 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1818 			    flags);
1819 	if (IS_ERR(newfile)) {
1820 		put_unused_fd(newfd);
1821 		return PTR_ERR(newfile);
1822 	}
1823 	fd_install(newfd, newfile);
1824 	return newfd;
1825 }
1826 
1827 /*
1828  *	For accept, we attempt to create a new socket, set up the link
1829  *	with the client, wake up the client, then return the new
1830  *	connected fd. We collect the address of the connector in kernel
1831  *	space and move it to user at the very end. This is unclean because
1832  *	we open the socket then return an error.
1833  *
1834  *	1003.1g adds the ability to recvmsg() to query connection pending
1835  *	status to recvmsg. We need to add that support in a way thats
1836  *	clean when we restructure accept also.
1837  */
1838 
1839 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1840 		  int __user *upeer_addrlen, int flags)
1841 {
1842 	int ret = -EBADF;
1843 	struct fd f;
1844 
1845 	f = fdget(fd);
1846 	if (f.file) {
1847 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1848 						upeer_addrlen, flags,
1849 						rlimit(RLIMIT_NOFILE));
1850 		fdput(f);
1851 	}
1852 
1853 	return ret;
1854 }
1855 
1856 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1857 		int __user *, upeer_addrlen, int, flags)
1858 {
1859 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1860 }
1861 
1862 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1863 		int __user *, upeer_addrlen)
1864 {
1865 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1866 }
1867 
1868 /*
1869  *	Attempt to connect to a socket with the server address.  The address
1870  *	is in user space so we verify it is OK and move it to kernel space.
1871  *
1872  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1873  *	break bindings
1874  *
1875  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1876  *	other SEQPACKET protocols that take time to connect() as it doesn't
1877  *	include the -EINPROGRESS status for such sockets.
1878  */
1879 
1880 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1881 		       int addrlen, int file_flags)
1882 {
1883 	struct socket *sock;
1884 	int err;
1885 
1886 	sock = sock_from_file(file);
1887 	if (!sock) {
1888 		err = -ENOTSOCK;
1889 		goto out;
1890 	}
1891 
1892 	err =
1893 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1894 	if (err)
1895 		goto out;
1896 
1897 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1898 				 sock->file->f_flags | file_flags);
1899 out:
1900 	return err;
1901 }
1902 
1903 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1904 {
1905 	int ret = -EBADF;
1906 	struct fd f;
1907 
1908 	f = fdget(fd);
1909 	if (f.file) {
1910 		struct sockaddr_storage address;
1911 
1912 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1913 		if (!ret)
1914 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1915 		fdput(f);
1916 	}
1917 
1918 	return ret;
1919 }
1920 
1921 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1922 		int, addrlen)
1923 {
1924 	return __sys_connect(fd, uservaddr, addrlen);
1925 }
1926 
1927 /*
1928  *	Get the local address ('name') of a socket object. Move the obtained
1929  *	name to user space.
1930  */
1931 
1932 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1933 		      int __user *usockaddr_len)
1934 {
1935 	struct socket *sock;
1936 	struct sockaddr_storage address;
1937 	int err, fput_needed;
1938 
1939 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1940 	if (!sock)
1941 		goto out;
1942 
1943 	err = security_socket_getsockname(sock);
1944 	if (err)
1945 		goto out_put;
1946 
1947 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1948 	if (err < 0)
1949 		goto out_put;
1950         /* "err" is actually length in this case */
1951 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1952 
1953 out_put:
1954 	fput_light(sock->file, fput_needed);
1955 out:
1956 	return err;
1957 }
1958 
1959 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1960 		int __user *, usockaddr_len)
1961 {
1962 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1963 }
1964 
1965 /*
1966  *	Get the remote address ('name') of a socket object. Move the obtained
1967  *	name to user space.
1968  */
1969 
1970 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1971 		      int __user *usockaddr_len)
1972 {
1973 	struct socket *sock;
1974 	struct sockaddr_storage address;
1975 	int err, fput_needed;
1976 
1977 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1978 	if (sock != NULL) {
1979 		err = security_socket_getpeername(sock);
1980 		if (err) {
1981 			fput_light(sock->file, fput_needed);
1982 			return err;
1983 		}
1984 
1985 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1986 		if (err >= 0)
1987 			/* "err" is actually length in this case */
1988 			err = move_addr_to_user(&address, err, usockaddr,
1989 						usockaddr_len);
1990 		fput_light(sock->file, fput_needed);
1991 	}
1992 	return err;
1993 }
1994 
1995 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1996 		int __user *, usockaddr_len)
1997 {
1998 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1999 }
2000 
2001 /*
2002  *	Send a datagram to a given address. We move the address into kernel
2003  *	space and check the user space data area is readable before invoking
2004  *	the protocol.
2005  */
2006 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2007 		 struct sockaddr __user *addr,  int addr_len)
2008 {
2009 	struct socket *sock;
2010 	struct sockaddr_storage address;
2011 	int err;
2012 	struct msghdr msg;
2013 	struct iovec iov;
2014 	int fput_needed;
2015 
2016 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2017 	if (unlikely(err))
2018 		return err;
2019 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020 	if (!sock)
2021 		goto out;
2022 
2023 	msg.msg_name = NULL;
2024 	msg.msg_control = NULL;
2025 	msg.msg_controllen = 0;
2026 	msg.msg_namelen = 0;
2027 	if (addr) {
2028 		err = move_addr_to_kernel(addr, addr_len, &address);
2029 		if (err < 0)
2030 			goto out_put;
2031 		msg.msg_name = (struct sockaddr *)&address;
2032 		msg.msg_namelen = addr_len;
2033 	}
2034 	if (sock->file->f_flags & O_NONBLOCK)
2035 		flags |= MSG_DONTWAIT;
2036 	msg.msg_flags = flags;
2037 	err = sock_sendmsg(sock, &msg);
2038 
2039 out_put:
2040 	fput_light(sock->file, fput_needed);
2041 out:
2042 	return err;
2043 }
2044 
2045 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2046 		unsigned int, flags, struct sockaddr __user *, addr,
2047 		int, addr_len)
2048 {
2049 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2050 }
2051 
2052 /*
2053  *	Send a datagram down a socket.
2054  */
2055 
2056 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2057 		unsigned int, flags)
2058 {
2059 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2060 }
2061 
2062 /*
2063  *	Receive a frame from the socket and optionally record the address of the
2064  *	sender. We verify the buffers are writable and if needed move the
2065  *	sender address from kernel to user space.
2066  */
2067 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2068 		   struct sockaddr __user *addr, int __user *addr_len)
2069 {
2070 	struct socket *sock;
2071 	struct iovec iov;
2072 	struct msghdr msg;
2073 	struct sockaddr_storage address;
2074 	int err, err2;
2075 	int fput_needed;
2076 
2077 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2078 	if (unlikely(err))
2079 		return err;
2080 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2081 	if (!sock)
2082 		goto out;
2083 
2084 	msg.msg_control = NULL;
2085 	msg.msg_controllen = 0;
2086 	/* Save some cycles and don't copy the address if not needed */
2087 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2088 	/* We assume all kernel code knows the size of sockaddr_storage */
2089 	msg.msg_namelen = 0;
2090 	msg.msg_iocb = NULL;
2091 	msg.msg_flags = 0;
2092 	if (sock->file->f_flags & O_NONBLOCK)
2093 		flags |= MSG_DONTWAIT;
2094 	err = sock_recvmsg(sock, &msg, flags);
2095 
2096 	if (err >= 0 && addr != NULL) {
2097 		err2 = move_addr_to_user(&address,
2098 					 msg.msg_namelen, addr, addr_len);
2099 		if (err2 < 0)
2100 			err = err2;
2101 	}
2102 
2103 	fput_light(sock->file, fput_needed);
2104 out:
2105 	return err;
2106 }
2107 
2108 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2109 		unsigned int, flags, struct sockaddr __user *, addr,
2110 		int __user *, addr_len)
2111 {
2112 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2113 }
2114 
2115 /*
2116  *	Receive a datagram from a socket.
2117  */
2118 
2119 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2120 		unsigned int, flags)
2121 {
2122 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2123 }
2124 
2125 static bool sock_use_custom_sol_socket(const struct socket *sock)
2126 {
2127 	const struct sock *sk = sock->sk;
2128 
2129 	/* Use sock->ops->setsockopt() for MPTCP */
2130 	return IS_ENABLED(CONFIG_MPTCP) &&
2131 	       sk->sk_protocol == IPPROTO_MPTCP &&
2132 	       sk->sk_type == SOCK_STREAM &&
2133 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2134 }
2135 
2136 /*
2137  *	Set a socket option. Because we don't know the option lengths we have
2138  *	to pass the user mode parameter for the protocols to sort out.
2139  */
2140 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2141 		int optlen)
2142 {
2143 	sockptr_t optval = USER_SOCKPTR(user_optval);
2144 	char *kernel_optval = NULL;
2145 	int err, fput_needed;
2146 	struct socket *sock;
2147 
2148 	if (optlen < 0)
2149 		return -EINVAL;
2150 
2151 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 	if (!sock)
2153 		return err;
2154 
2155 	err = security_socket_setsockopt(sock, level, optname);
2156 	if (err)
2157 		goto out_put;
2158 
2159 	if (!in_compat_syscall())
2160 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2161 						     user_optval, &optlen,
2162 						     &kernel_optval);
2163 	if (err < 0)
2164 		goto out_put;
2165 	if (err > 0) {
2166 		err = 0;
2167 		goto out_put;
2168 	}
2169 
2170 	if (kernel_optval)
2171 		optval = KERNEL_SOCKPTR(kernel_optval);
2172 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2173 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2174 	else if (unlikely(!sock->ops->setsockopt))
2175 		err = -EOPNOTSUPP;
2176 	else
2177 		err = sock->ops->setsockopt(sock, level, optname, optval,
2178 					    optlen);
2179 	kfree(kernel_optval);
2180 out_put:
2181 	fput_light(sock->file, fput_needed);
2182 	return err;
2183 }
2184 
2185 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2186 		char __user *, optval, int, optlen)
2187 {
2188 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2189 }
2190 
2191 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2192 							 int optname));
2193 
2194 /*
2195  *	Get a socket option. Because we don't know the option lengths we have
2196  *	to pass a user mode parameter for the protocols to sort out.
2197  */
2198 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2199 		int __user *optlen)
2200 {
2201 	int err, fput_needed;
2202 	struct socket *sock;
2203 	int max_optlen;
2204 
2205 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2206 	if (!sock)
2207 		return err;
2208 
2209 	err = security_socket_getsockopt(sock, level, optname);
2210 	if (err)
2211 		goto out_put;
2212 
2213 	if (!in_compat_syscall())
2214 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2215 
2216 	if (level == SOL_SOCKET)
2217 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2218 	else if (unlikely(!sock->ops->getsockopt))
2219 		err = -EOPNOTSUPP;
2220 	else
2221 		err = sock->ops->getsockopt(sock, level, optname, optval,
2222 					    optlen);
2223 
2224 	if (!in_compat_syscall())
2225 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2226 						     optval, optlen, max_optlen,
2227 						     err);
2228 out_put:
2229 	fput_light(sock->file, fput_needed);
2230 	return err;
2231 }
2232 
2233 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2234 		char __user *, optval, int __user *, optlen)
2235 {
2236 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2237 }
2238 
2239 /*
2240  *	Shutdown a socket.
2241  */
2242 
2243 int __sys_shutdown_sock(struct socket *sock, int how)
2244 {
2245 	int err;
2246 
2247 	err = security_socket_shutdown(sock, how);
2248 	if (!err)
2249 		err = sock->ops->shutdown(sock, how);
2250 
2251 	return err;
2252 }
2253 
2254 int __sys_shutdown(int fd, int how)
2255 {
2256 	int err, fput_needed;
2257 	struct socket *sock;
2258 
2259 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2260 	if (sock != NULL) {
2261 		err = __sys_shutdown_sock(sock, how);
2262 		fput_light(sock->file, fput_needed);
2263 	}
2264 	return err;
2265 }
2266 
2267 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2268 {
2269 	return __sys_shutdown(fd, how);
2270 }
2271 
2272 /* A couple of helpful macros for getting the address of the 32/64 bit
2273  * fields which are the same type (int / unsigned) on our platforms.
2274  */
2275 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2276 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2277 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2278 
2279 struct used_address {
2280 	struct sockaddr_storage name;
2281 	unsigned int name_len;
2282 };
2283 
2284 int __copy_msghdr_from_user(struct msghdr *kmsg,
2285 			    struct user_msghdr __user *umsg,
2286 			    struct sockaddr __user **save_addr,
2287 			    struct iovec __user **uiov, size_t *nsegs)
2288 {
2289 	struct user_msghdr msg;
2290 	ssize_t err;
2291 
2292 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2293 		return -EFAULT;
2294 
2295 	kmsg->msg_control_is_user = true;
2296 	kmsg->msg_control_user = msg.msg_control;
2297 	kmsg->msg_controllen = msg.msg_controllen;
2298 	kmsg->msg_flags = msg.msg_flags;
2299 
2300 	kmsg->msg_namelen = msg.msg_namelen;
2301 	if (!msg.msg_name)
2302 		kmsg->msg_namelen = 0;
2303 
2304 	if (kmsg->msg_namelen < 0)
2305 		return -EINVAL;
2306 
2307 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2308 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2309 
2310 	if (save_addr)
2311 		*save_addr = msg.msg_name;
2312 
2313 	if (msg.msg_name && kmsg->msg_namelen) {
2314 		if (!save_addr) {
2315 			err = move_addr_to_kernel(msg.msg_name,
2316 						  kmsg->msg_namelen,
2317 						  kmsg->msg_name);
2318 			if (err < 0)
2319 				return err;
2320 		}
2321 	} else {
2322 		kmsg->msg_name = NULL;
2323 		kmsg->msg_namelen = 0;
2324 	}
2325 
2326 	if (msg.msg_iovlen > UIO_MAXIOV)
2327 		return -EMSGSIZE;
2328 
2329 	kmsg->msg_iocb = NULL;
2330 	*uiov = msg.msg_iov;
2331 	*nsegs = msg.msg_iovlen;
2332 	return 0;
2333 }
2334 
2335 static int copy_msghdr_from_user(struct msghdr *kmsg,
2336 				 struct user_msghdr __user *umsg,
2337 				 struct sockaddr __user **save_addr,
2338 				 struct iovec **iov)
2339 {
2340 	struct user_msghdr msg;
2341 	ssize_t err;
2342 
2343 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2344 					&msg.msg_iovlen);
2345 	if (err)
2346 		return err;
2347 
2348 	err = import_iovec(save_addr ? READ : WRITE,
2349 			    msg.msg_iov, msg.msg_iovlen,
2350 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2351 	return err < 0 ? err : 0;
2352 }
2353 
2354 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2355 			   unsigned int flags, struct used_address *used_address,
2356 			   unsigned int allowed_msghdr_flags)
2357 {
2358 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2359 				__aligned(sizeof(__kernel_size_t));
2360 	/* 20 is size of ipv6_pktinfo */
2361 	unsigned char *ctl_buf = ctl;
2362 	int ctl_len;
2363 	ssize_t err;
2364 
2365 	err = -ENOBUFS;
2366 
2367 	if (msg_sys->msg_controllen > INT_MAX)
2368 		goto out;
2369 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2370 	ctl_len = msg_sys->msg_controllen;
2371 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2372 		err =
2373 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2374 						     sizeof(ctl));
2375 		if (err)
2376 			goto out;
2377 		ctl_buf = msg_sys->msg_control;
2378 		ctl_len = msg_sys->msg_controllen;
2379 	} else if (ctl_len) {
2380 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2381 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2382 		if (ctl_len > sizeof(ctl)) {
2383 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2384 			if (ctl_buf == NULL)
2385 				goto out;
2386 		}
2387 		err = -EFAULT;
2388 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2389 			goto out_freectl;
2390 		msg_sys->msg_control = ctl_buf;
2391 		msg_sys->msg_control_is_user = false;
2392 	}
2393 	msg_sys->msg_flags = flags;
2394 
2395 	if (sock->file->f_flags & O_NONBLOCK)
2396 		msg_sys->msg_flags |= MSG_DONTWAIT;
2397 	/*
2398 	 * If this is sendmmsg() and current destination address is same as
2399 	 * previously succeeded address, omit asking LSM's decision.
2400 	 * used_address->name_len is initialized to UINT_MAX so that the first
2401 	 * destination address never matches.
2402 	 */
2403 	if (used_address && msg_sys->msg_name &&
2404 	    used_address->name_len == msg_sys->msg_namelen &&
2405 	    !memcmp(&used_address->name, msg_sys->msg_name,
2406 		    used_address->name_len)) {
2407 		err = sock_sendmsg_nosec(sock, msg_sys);
2408 		goto out_freectl;
2409 	}
2410 	err = sock_sendmsg(sock, msg_sys);
2411 	/*
2412 	 * If this is sendmmsg() and sending to current destination address was
2413 	 * successful, remember it.
2414 	 */
2415 	if (used_address && err >= 0) {
2416 		used_address->name_len = msg_sys->msg_namelen;
2417 		if (msg_sys->msg_name)
2418 			memcpy(&used_address->name, msg_sys->msg_name,
2419 			       used_address->name_len);
2420 	}
2421 
2422 out_freectl:
2423 	if (ctl_buf != ctl)
2424 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2425 out:
2426 	return err;
2427 }
2428 
2429 int sendmsg_copy_msghdr(struct msghdr *msg,
2430 			struct user_msghdr __user *umsg, unsigned flags,
2431 			struct iovec **iov)
2432 {
2433 	int err;
2434 
2435 	if (flags & MSG_CMSG_COMPAT) {
2436 		struct compat_msghdr __user *msg_compat;
2437 
2438 		msg_compat = (struct compat_msghdr __user *) umsg;
2439 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2440 	} else {
2441 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2442 	}
2443 	if (err < 0)
2444 		return err;
2445 
2446 	return 0;
2447 }
2448 
2449 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2450 			 struct msghdr *msg_sys, unsigned int flags,
2451 			 struct used_address *used_address,
2452 			 unsigned int allowed_msghdr_flags)
2453 {
2454 	struct sockaddr_storage address;
2455 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2456 	ssize_t err;
2457 
2458 	msg_sys->msg_name = &address;
2459 
2460 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2461 	if (err < 0)
2462 		return err;
2463 
2464 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2465 				allowed_msghdr_flags);
2466 	kfree(iov);
2467 	return err;
2468 }
2469 
2470 /*
2471  *	BSD sendmsg interface
2472  */
2473 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2474 			unsigned int flags)
2475 {
2476 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2477 }
2478 
2479 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2480 		   bool forbid_cmsg_compat)
2481 {
2482 	int fput_needed, err;
2483 	struct msghdr msg_sys;
2484 	struct socket *sock;
2485 
2486 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2487 		return -EINVAL;
2488 
2489 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2490 	if (!sock)
2491 		goto out;
2492 
2493 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2494 
2495 	fput_light(sock->file, fput_needed);
2496 out:
2497 	return err;
2498 }
2499 
2500 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2501 {
2502 	return __sys_sendmsg(fd, msg, flags, true);
2503 }
2504 
2505 /*
2506  *	Linux sendmmsg interface
2507  */
2508 
2509 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2510 		   unsigned int flags, bool forbid_cmsg_compat)
2511 {
2512 	int fput_needed, err, datagrams;
2513 	struct socket *sock;
2514 	struct mmsghdr __user *entry;
2515 	struct compat_mmsghdr __user *compat_entry;
2516 	struct msghdr msg_sys;
2517 	struct used_address used_address;
2518 	unsigned int oflags = flags;
2519 
2520 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2521 		return -EINVAL;
2522 
2523 	if (vlen > UIO_MAXIOV)
2524 		vlen = UIO_MAXIOV;
2525 
2526 	datagrams = 0;
2527 
2528 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2529 	if (!sock)
2530 		return err;
2531 
2532 	used_address.name_len = UINT_MAX;
2533 	entry = mmsg;
2534 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2535 	err = 0;
2536 	flags |= MSG_BATCH;
2537 
2538 	while (datagrams < vlen) {
2539 		if (datagrams == vlen - 1)
2540 			flags = oflags;
2541 
2542 		if (MSG_CMSG_COMPAT & flags) {
2543 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2544 					     &msg_sys, flags, &used_address, MSG_EOR);
2545 			if (err < 0)
2546 				break;
2547 			err = __put_user(err, &compat_entry->msg_len);
2548 			++compat_entry;
2549 		} else {
2550 			err = ___sys_sendmsg(sock,
2551 					     (struct user_msghdr __user *)entry,
2552 					     &msg_sys, flags, &used_address, MSG_EOR);
2553 			if (err < 0)
2554 				break;
2555 			err = put_user(err, &entry->msg_len);
2556 			++entry;
2557 		}
2558 
2559 		if (err)
2560 			break;
2561 		++datagrams;
2562 		if (msg_data_left(&msg_sys))
2563 			break;
2564 		cond_resched();
2565 	}
2566 
2567 	fput_light(sock->file, fput_needed);
2568 
2569 	/* We only return an error if no datagrams were able to be sent */
2570 	if (datagrams != 0)
2571 		return datagrams;
2572 
2573 	return err;
2574 }
2575 
2576 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2577 		unsigned int, vlen, unsigned int, flags)
2578 {
2579 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2580 }
2581 
2582 int recvmsg_copy_msghdr(struct msghdr *msg,
2583 			struct user_msghdr __user *umsg, unsigned flags,
2584 			struct sockaddr __user **uaddr,
2585 			struct iovec **iov)
2586 {
2587 	ssize_t err;
2588 
2589 	if (MSG_CMSG_COMPAT & flags) {
2590 		struct compat_msghdr __user *msg_compat;
2591 
2592 		msg_compat = (struct compat_msghdr __user *) umsg;
2593 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2594 	} else {
2595 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2596 	}
2597 	if (err < 0)
2598 		return err;
2599 
2600 	return 0;
2601 }
2602 
2603 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2604 			   struct user_msghdr __user *msg,
2605 			   struct sockaddr __user *uaddr,
2606 			   unsigned int flags, int nosec)
2607 {
2608 	struct compat_msghdr __user *msg_compat =
2609 					(struct compat_msghdr __user *) msg;
2610 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2611 	struct sockaddr_storage addr;
2612 	unsigned long cmsg_ptr;
2613 	int len;
2614 	ssize_t err;
2615 
2616 	msg_sys->msg_name = &addr;
2617 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2618 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2619 
2620 	/* We assume all kernel code knows the size of sockaddr_storage */
2621 	msg_sys->msg_namelen = 0;
2622 
2623 	if (sock->file->f_flags & O_NONBLOCK)
2624 		flags |= MSG_DONTWAIT;
2625 
2626 	if (unlikely(nosec))
2627 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2628 	else
2629 		err = sock_recvmsg(sock, msg_sys, flags);
2630 
2631 	if (err < 0)
2632 		goto out;
2633 	len = err;
2634 
2635 	if (uaddr != NULL) {
2636 		err = move_addr_to_user(&addr,
2637 					msg_sys->msg_namelen, uaddr,
2638 					uaddr_len);
2639 		if (err < 0)
2640 			goto out;
2641 	}
2642 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2643 			 COMPAT_FLAGS(msg));
2644 	if (err)
2645 		goto out;
2646 	if (MSG_CMSG_COMPAT & flags)
2647 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2648 				 &msg_compat->msg_controllen);
2649 	else
2650 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2651 				 &msg->msg_controllen);
2652 	if (err)
2653 		goto out;
2654 	err = len;
2655 out:
2656 	return err;
2657 }
2658 
2659 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2660 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2661 {
2662 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2663 	/* user mode address pointers */
2664 	struct sockaddr __user *uaddr;
2665 	ssize_t err;
2666 
2667 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2668 	if (err < 0)
2669 		return err;
2670 
2671 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2672 	kfree(iov);
2673 	return err;
2674 }
2675 
2676 /*
2677  *	BSD recvmsg interface
2678  */
2679 
2680 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2681 			struct user_msghdr __user *umsg,
2682 			struct sockaddr __user *uaddr, unsigned int flags)
2683 {
2684 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2685 }
2686 
2687 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2688 		   bool forbid_cmsg_compat)
2689 {
2690 	int fput_needed, err;
2691 	struct msghdr msg_sys;
2692 	struct socket *sock;
2693 
2694 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2695 		return -EINVAL;
2696 
2697 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2698 	if (!sock)
2699 		goto out;
2700 
2701 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2702 
2703 	fput_light(sock->file, fput_needed);
2704 out:
2705 	return err;
2706 }
2707 
2708 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2709 		unsigned int, flags)
2710 {
2711 	return __sys_recvmsg(fd, msg, flags, true);
2712 }
2713 
2714 /*
2715  *     Linux recvmmsg interface
2716  */
2717 
2718 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2719 			  unsigned int vlen, unsigned int flags,
2720 			  struct timespec64 *timeout)
2721 {
2722 	int fput_needed, err, datagrams;
2723 	struct socket *sock;
2724 	struct mmsghdr __user *entry;
2725 	struct compat_mmsghdr __user *compat_entry;
2726 	struct msghdr msg_sys;
2727 	struct timespec64 end_time;
2728 	struct timespec64 timeout64;
2729 
2730 	if (timeout &&
2731 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2732 				    timeout->tv_nsec))
2733 		return -EINVAL;
2734 
2735 	datagrams = 0;
2736 
2737 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2738 	if (!sock)
2739 		return err;
2740 
2741 	if (likely(!(flags & MSG_ERRQUEUE))) {
2742 		err = sock_error(sock->sk);
2743 		if (err) {
2744 			datagrams = err;
2745 			goto out_put;
2746 		}
2747 	}
2748 
2749 	entry = mmsg;
2750 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2751 
2752 	while (datagrams < vlen) {
2753 		/*
2754 		 * No need to ask LSM for more than the first datagram.
2755 		 */
2756 		if (MSG_CMSG_COMPAT & flags) {
2757 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2758 					     &msg_sys, flags & ~MSG_WAITFORONE,
2759 					     datagrams);
2760 			if (err < 0)
2761 				break;
2762 			err = __put_user(err, &compat_entry->msg_len);
2763 			++compat_entry;
2764 		} else {
2765 			err = ___sys_recvmsg(sock,
2766 					     (struct user_msghdr __user *)entry,
2767 					     &msg_sys, flags & ~MSG_WAITFORONE,
2768 					     datagrams);
2769 			if (err < 0)
2770 				break;
2771 			err = put_user(err, &entry->msg_len);
2772 			++entry;
2773 		}
2774 
2775 		if (err)
2776 			break;
2777 		++datagrams;
2778 
2779 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2780 		if (flags & MSG_WAITFORONE)
2781 			flags |= MSG_DONTWAIT;
2782 
2783 		if (timeout) {
2784 			ktime_get_ts64(&timeout64);
2785 			*timeout = timespec64_sub(end_time, timeout64);
2786 			if (timeout->tv_sec < 0) {
2787 				timeout->tv_sec = timeout->tv_nsec = 0;
2788 				break;
2789 			}
2790 
2791 			/* Timeout, return less than vlen datagrams */
2792 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2793 				break;
2794 		}
2795 
2796 		/* Out of band data, return right away */
2797 		if (msg_sys.msg_flags & MSG_OOB)
2798 			break;
2799 		cond_resched();
2800 	}
2801 
2802 	if (err == 0)
2803 		goto out_put;
2804 
2805 	if (datagrams == 0) {
2806 		datagrams = err;
2807 		goto out_put;
2808 	}
2809 
2810 	/*
2811 	 * We may return less entries than requested (vlen) if the
2812 	 * sock is non block and there aren't enough datagrams...
2813 	 */
2814 	if (err != -EAGAIN) {
2815 		/*
2816 		 * ... or  if recvmsg returns an error after we
2817 		 * received some datagrams, where we record the
2818 		 * error to return on the next call or if the
2819 		 * app asks about it using getsockopt(SO_ERROR).
2820 		 */
2821 		sock->sk->sk_err = -err;
2822 	}
2823 out_put:
2824 	fput_light(sock->file, fput_needed);
2825 
2826 	return datagrams;
2827 }
2828 
2829 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2830 		   unsigned int vlen, unsigned int flags,
2831 		   struct __kernel_timespec __user *timeout,
2832 		   struct old_timespec32 __user *timeout32)
2833 {
2834 	int datagrams;
2835 	struct timespec64 timeout_sys;
2836 
2837 	if (timeout && get_timespec64(&timeout_sys, timeout))
2838 		return -EFAULT;
2839 
2840 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2841 		return -EFAULT;
2842 
2843 	if (!timeout && !timeout32)
2844 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2845 
2846 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2847 
2848 	if (datagrams <= 0)
2849 		return datagrams;
2850 
2851 	if (timeout && put_timespec64(&timeout_sys, timeout))
2852 		datagrams = -EFAULT;
2853 
2854 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2855 		datagrams = -EFAULT;
2856 
2857 	return datagrams;
2858 }
2859 
2860 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2861 		unsigned int, vlen, unsigned int, flags,
2862 		struct __kernel_timespec __user *, timeout)
2863 {
2864 	if (flags & MSG_CMSG_COMPAT)
2865 		return -EINVAL;
2866 
2867 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2868 }
2869 
2870 #ifdef CONFIG_COMPAT_32BIT_TIME
2871 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2872 		unsigned int, vlen, unsigned int, flags,
2873 		struct old_timespec32 __user *, timeout)
2874 {
2875 	if (flags & MSG_CMSG_COMPAT)
2876 		return -EINVAL;
2877 
2878 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2879 }
2880 #endif
2881 
2882 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2883 /* Argument list sizes for sys_socketcall */
2884 #define AL(x) ((x) * sizeof(unsigned long))
2885 static const unsigned char nargs[21] = {
2886 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2887 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2888 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2889 	AL(4), AL(5), AL(4)
2890 };
2891 
2892 #undef AL
2893 
2894 /*
2895  *	System call vectors.
2896  *
2897  *	Argument checking cleaned up. Saved 20% in size.
2898  *  This function doesn't need to set the kernel lock because
2899  *  it is set by the callees.
2900  */
2901 
2902 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2903 {
2904 	unsigned long a[AUDITSC_ARGS];
2905 	unsigned long a0, a1;
2906 	int err;
2907 	unsigned int len;
2908 
2909 	if (call < 1 || call > SYS_SENDMMSG)
2910 		return -EINVAL;
2911 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2912 
2913 	len = nargs[call];
2914 	if (len > sizeof(a))
2915 		return -EINVAL;
2916 
2917 	/* copy_from_user should be SMP safe. */
2918 	if (copy_from_user(a, args, len))
2919 		return -EFAULT;
2920 
2921 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2922 	if (err)
2923 		return err;
2924 
2925 	a0 = a[0];
2926 	a1 = a[1];
2927 
2928 	switch (call) {
2929 	case SYS_SOCKET:
2930 		err = __sys_socket(a0, a1, a[2]);
2931 		break;
2932 	case SYS_BIND:
2933 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2934 		break;
2935 	case SYS_CONNECT:
2936 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2937 		break;
2938 	case SYS_LISTEN:
2939 		err = __sys_listen(a0, a1);
2940 		break;
2941 	case SYS_ACCEPT:
2942 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2943 				    (int __user *)a[2], 0);
2944 		break;
2945 	case SYS_GETSOCKNAME:
2946 		err =
2947 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2948 				      (int __user *)a[2]);
2949 		break;
2950 	case SYS_GETPEERNAME:
2951 		err =
2952 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2953 				      (int __user *)a[2]);
2954 		break;
2955 	case SYS_SOCKETPAIR:
2956 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2957 		break;
2958 	case SYS_SEND:
2959 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2960 				   NULL, 0);
2961 		break;
2962 	case SYS_SENDTO:
2963 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2964 				   (struct sockaddr __user *)a[4], a[5]);
2965 		break;
2966 	case SYS_RECV:
2967 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2968 				     NULL, NULL);
2969 		break;
2970 	case SYS_RECVFROM:
2971 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2972 				     (struct sockaddr __user *)a[4],
2973 				     (int __user *)a[5]);
2974 		break;
2975 	case SYS_SHUTDOWN:
2976 		err = __sys_shutdown(a0, a1);
2977 		break;
2978 	case SYS_SETSOCKOPT:
2979 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2980 				       a[4]);
2981 		break;
2982 	case SYS_GETSOCKOPT:
2983 		err =
2984 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2985 				     (int __user *)a[4]);
2986 		break;
2987 	case SYS_SENDMSG:
2988 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2989 				    a[2], true);
2990 		break;
2991 	case SYS_SENDMMSG:
2992 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2993 				     a[3], true);
2994 		break;
2995 	case SYS_RECVMSG:
2996 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2997 				    a[2], true);
2998 		break;
2999 	case SYS_RECVMMSG:
3000 		if (IS_ENABLED(CONFIG_64BIT))
3001 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3002 					     a[2], a[3],
3003 					     (struct __kernel_timespec __user *)a[4],
3004 					     NULL);
3005 		else
3006 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3007 					     a[2], a[3], NULL,
3008 					     (struct old_timespec32 __user *)a[4]);
3009 		break;
3010 	case SYS_ACCEPT4:
3011 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3012 				    (int __user *)a[2], a[3]);
3013 		break;
3014 	default:
3015 		err = -EINVAL;
3016 		break;
3017 	}
3018 	return err;
3019 }
3020 
3021 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3022 
3023 /**
3024  *	sock_register - add a socket protocol handler
3025  *	@ops: description of protocol
3026  *
3027  *	This function is called by a protocol handler that wants to
3028  *	advertise its address family, and have it linked into the
3029  *	socket interface. The value ops->family corresponds to the
3030  *	socket system call protocol family.
3031  */
3032 int sock_register(const struct net_proto_family *ops)
3033 {
3034 	int err;
3035 
3036 	if (ops->family >= NPROTO) {
3037 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3038 		return -ENOBUFS;
3039 	}
3040 
3041 	spin_lock(&net_family_lock);
3042 	if (rcu_dereference_protected(net_families[ops->family],
3043 				      lockdep_is_held(&net_family_lock)))
3044 		err = -EEXIST;
3045 	else {
3046 		rcu_assign_pointer(net_families[ops->family], ops);
3047 		err = 0;
3048 	}
3049 	spin_unlock(&net_family_lock);
3050 
3051 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3052 	return err;
3053 }
3054 EXPORT_SYMBOL(sock_register);
3055 
3056 /**
3057  *	sock_unregister - remove a protocol handler
3058  *	@family: protocol family to remove
3059  *
3060  *	This function is called by a protocol handler that wants to
3061  *	remove its address family, and have it unlinked from the
3062  *	new socket creation.
3063  *
3064  *	If protocol handler is a module, then it can use module reference
3065  *	counts to protect against new references. If protocol handler is not
3066  *	a module then it needs to provide its own protection in
3067  *	the ops->create routine.
3068  */
3069 void sock_unregister(int family)
3070 {
3071 	BUG_ON(family < 0 || family >= NPROTO);
3072 
3073 	spin_lock(&net_family_lock);
3074 	RCU_INIT_POINTER(net_families[family], NULL);
3075 	spin_unlock(&net_family_lock);
3076 
3077 	synchronize_rcu();
3078 
3079 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3080 }
3081 EXPORT_SYMBOL(sock_unregister);
3082 
3083 bool sock_is_registered(int family)
3084 {
3085 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3086 }
3087 
3088 static int __init sock_init(void)
3089 {
3090 	int err;
3091 	/*
3092 	 *      Initialize the network sysctl infrastructure.
3093 	 */
3094 	err = net_sysctl_init();
3095 	if (err)
3096 		goto out;
3097 
3098 	/*
3099 	 *      Initialize skbuff SLAB cache
3100 	 */
3101 	skb_init();
3102 
3103 	/*
3104 	 *      Initialize the protocols module.
3105 	 */
3106 
3107 	init_inodecache();
3108 
3109 	err = register_filesystem(&sock_fs_type);
3110 	if (err)
3111 		goto out;
3112 	sock_mnt = kern_mount(&sock_fs_type);
3113 	if (IS_ERR(sock_mnt)) {
3114 		err = PTR_ERR(sock_mnt);
3115 		goto out_mount;
3116 	}
3117 
3118 	/* The real protocol initialization is performed in later initcalls.
3119 	 */
3120 
3121 #ifdef CONFIG_NETFILTER
3122 	err = netfilter_init();
3123 	if (err)
3124 		goto out;
3125 #endif
3126 
3127 	ptp_classifier_init();
3128 
3129 out:
3130 	return err;
3131 
3132 out_mount:
3133 	unregister_filesystem(&sock_fs_type);
3134 	goto out;
3135 }
3136 
3137 core_initcall(sock_init);	/* early initcall */
3138 
3139 #ifdef CONFIG_PROC_FS
3140 void socket_seq_show(struct seq_file *seq)
3141 {
3142 	seq_printf(seq, "sockets: used %d\n",
3143 		   sock_inuse_get(seq->private));
3144 }
3145 #endif				/* CONFIG_PROC_FS */
3146 
3147 /* Handle the fact that while struct ifreq has the same *layout* on
3148  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3149  * which are handled elsewhere, it still has different *size* due to
3150  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3151  * resulting in struct ifreq being 32 and 40 bytes respectively).
3152  * As a result, if the struct happens to be at the end of a page and
3153  * the next page isn't readable/writable, we get a fault. To prevent
3154  * that, copy back and forth to the full size.
3155  */
3156 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3157 {
3158 	if (in_compat_syscall()) {
3159 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3160 
3161 		memset(ifr, 0, sizeof(*ifr));
3162 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3163 			return -EFAULT;
3164 
3165 		if (ifrdata)
3166 			*ifrdata = compat_ptr(ifr32->ifr_data);
3167 
3168 		return 0;
3169 	}
3170 
3171 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3172 		return -EFAULT;
3173 
3174 	if (ifrdata)
3175 		*ifrdata = ifr->ifr_data;
3176 
3177 	return 0;
3178 }
3179 EXPORT_SYMBOL(get_user_ifreq);
3180 
3181 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3182 {
3183 	size_t size = sizeof(*ifr);
3184 
3185 	if (in_compat_syscall())
3186 		size = sizeof(struct compat_ifreq);
3187 
3188 	if (copy_to_user(arg, ifr, size))
3189 		return -EFAULT;
3190 
3191 	return 0;
3192 }
3193 EXPORT_SYMBOL(put_user_ifreq);
3194 
3195 #ifdef CONFIG_COMPAT
3196 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3197 {
3198 	compat_uptr_t uptr32;
3199 	struct ifreq ifr;
3200 	void __user *saved;
3201 	int err;
3202 
3203 	if (get_user_ifreq(&ifr, NULL, uifr32))
3204 		return -EFAULT;
3205 
3206 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3207 		return -EFAULT;
3208 
3209 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3210 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3211 
3212 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3213 	if (!err) {
3214 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3215 		if (put_user_ifreq(&ifr, uifr32))
3216 			err = -EFAULT;
3217 	}
3218 	return err;
3219 }
3220 
3221 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3222 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3223 				 struct compat_ifreq __user *u_ifreq32)
3224 {
3225 	struct ifreq ifreq;
3226 	void __user *data;
3227 
3228 	if (!is_socket_ioctl_cmd(cmd))
3229 		return -ENOTTY;
3230 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3231 		return -EFAULT;
3232 	ifreq.ifr_data = data;
3233 
3234 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3235 }
3236 
3237 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3238  * for some operations; this forces use of the newer bridge-utils that
3239  * use compatible ioctls
3240  */
3241 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3242 {
3243 	compat_ulong_t tmp;
3244 
3245 	if (get_user(tmp, argp))
3246 		return -EFAULT;
3247 	if (tmp == BRCTL_GET_VERSION)
3248 		return BRCTL_VERSION + 1;
3249 	return -EINVAL;
3250 }
3251 
3252 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3253 			 unsigned int cmd, unsigned long arg)
3254 {
3255 	void __user *argp = compat_ptr(arg);
3256 	struct sock *sk = sock->sk;
3257 	struct net *net = sock_net(sk);
3258 
3259 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3260 		return sock_ioctl(file, cmd, (unsigned long)argp);
3261 
3262 	switch (cmd) {
3263 	case SIOCSIFBR:
3264 	case SIOCGIFBR:
3265 		return old_bridge_ioctl(argp);
3266 	case SIOCWANDEV:
3267 		return compat_siocwandev(net, argp);
3268 	case SIOCGSTAMP_OLD:
3269 	case SIOCGSTAMPNS_OLD:
3270 		if (!sock->ops->gettstamp)
3271 			return -ENOIOCTLCMD;
3272 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3273 					    !COMPAT_USE_64BIT_TIME);
3274 
3275 	case SIOCETHTOOL:
3276 	case SIOCBONDSLAVEINFOQUERY:
3277 	case SIOCBONDINFOQUERY:
3278 	case SIOCSHWTSTAMP:
3279 	case SIOCGHWTSTAMP:
3280 		return compat_ifr_data_ioctl(net, cmd, argp);
3281 
3282 	case FIOSETOWN:
3283 	case SIOCSPGRP:
3284 	case FIOGETOWN:
3285 	case SIOCGPGRP:
3286 	case SIOCBRADDBR:
3287 	case SIOCBRDELBR:
3288 	case SIOCGIFVLAN:
3289 	case SIOCSIFVLAN:
3290 	case SIOCGSKNS:
3291 	case SIOCGSTAMP_NEW:
3292 	case SIOCGSTAMPNS_NEW:
3293 	case SIOCGIFCONF:
3294 		return sock_ioctl(file, cmd, arg);
3295 
3296 	case SIOCGIFFLAGS:
3297 	case SIOCSIFFLAGS:
3298 	case SIOCGIFMAP:
3299 	case SIOCSIFMAP:
3300 	case SIOCGIFMETRIC:
3301 	case SIOCSIFMETRIC:
3302 	case SIOCGIFMTU:
3303 	case SIOCSIFMTU:
3304 	case SIOCGIFMEM:
3305 	case SIOCSIFMEM:
3306 	case SIOCGIFHWADDR:
3307 	case SIOCSIFHWADDR:
3308 	case SIOCADDMULTI:
3309 	case SIOCDELMULTI:
3310 	case SIOCGIFINDEX:
3311 	case SIOCGIFADDR:
3312 	case SIOCSIFADDR:
3313 	case SIOCSIFHWBROADCAST:
3314 	case SIOCDIFADDR:
3315 	case SIOCGIFBRDADDR:
3316 	case SIOCSIFBRDADDR:
3317 	case SIOCGIFDSTADDR:
3318 	case SIOCSIFDSTADDR:
3319 	case SIOCGIFNETMASK:
3320 	case SIOCSIFNETMASK:
3321 	case SIOCSIFPFLAGS:
3322 	case SIOCGIFPFLAGS:
3323 	case SIOCGIFTXQLEN:
3324 	case SIOCSIFTXQLEN:
3325 	case SIOCBRADDIF:
3326 	case SIOCBRDELIF:
3327 	case SIOCGIFNAME:
3328 	case SIOCSIFNAME:
3329 	case SIOCGMIIPHY:
3330 	case SIOCGMIIREG:
3331 	case SIOCSMIIREG:
3332 	case SIOCBONDENSLAVE:
3333 	case SIOCBONDRELEASE:
3334 	case SIOCBONDSETHWADDR:
3335 	case SIOCBONDCHANGEACTIVE:
3336 	case SIOCSARP:
3337 	case SIOCGARP:
3338 	case SIOCDARP:
3339 	case SIOCOUTQ:
3340 	case SIOCOUTQNSD:
3341 	case SIOCATMARK:
3342 		return sock_do_ioctl(net, sock, cmd, arg);
3343 	}
3344 
3345 	return -ENOIOCTLCMD;
3346 }
3347 
3348 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3349 			      unsigned long arg)
3350 {
3351 	struct socket *sock = file->private_data;
3352 	int ret = -ENOIOCTLCMD;
3353 	struct sock *sk;
3354 	struct net *net;
3355 
3356 	sk = sock->sk;
3357 	net = sock_net(sk);
3358 
3359 	if (sock->ops->compat_ioctl)
3360 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3361 
3362 	if (ret == -ENOIOCTLCMD &&
3363 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3364 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3365 
3366 	if (ret == -ENOIOCTLCMD)
3367 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3368 
3369 	return ret;
3370 }
3371 #endif
3372 
3373 /**
3374  *	kernel_bind - bind an address to a socket (kernel space)
3375  *	@sock: socket
3376  *	@addr: address
3377  *	@addrlen: length of address
3378  *
3379  *	Returns 0 or an error.
3380  */
3381 
3382 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3383 {
3384 	return sock->ops->bind(sock, addr, addrlen);
3385 }
3386 EXPORT_SYMBOL(kernel_bind);
3387 
3388 /**
3389  *	kernel_listen - move socket to listening state (kernel space)
3390  *	@sock: socket
3391  *	@backlog: pending connections queue size
3392  *
3393  *	Returns 0 or an error.
3394  */
3395 
3396 int kernel_listen(struct socket *sock, int backlog)
3397 {
3398 	return sock->ops->listen(sock, backlog);
3399 }
3400 EXPORT_SYMBOL(kernel_listen);
3401 
3402 /**
3403  *	kernel_accept - accept a connection (kernel space)
3404  *	@sock: listening socket
3405  *	@newsock: new connected socket
3406  *	@flags: flags
3407  *
3408  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3409  *	If it fails, @newsock is guaranteed to be %NULL.
3410  *	Returns 0 or an error.
3411  */
3412 
3413 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3414 {
3415 	struct sock *sk = sock->sk;
3416 	int err;
3417 
3418 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3419 			       newsock);
3420 	if (err < 0)
3421 		goto done;
3422 
3423 	err = sock->ops->accept(sock, *newsock, flags, true);
3424 	if (err < 0) {
3425 		sock_release(*newsock);
3426 		*newsock = NULL;
3427 		goto done;
3428 	}
3429 
3430 	(*newsock)->ops = sock->ops;
3431 	__module_get((*newsock)->ops->owner);
3432 
3433 done:
3434 	return err;
3435 }
3436 EXPORT_SYMBOL(kernel_accept);
3437 
3438 /**
3439  *	kernel_connect - connect a socket (kernel space)
3440  *	@sock: socket
3441  *	@addr: address
3442  *	@addrlen: address length
3443  *	@flags: flags (O_NONBLOCK, ...)
3444  *
3445  *	For datagram sockets, @addr is the address to which datagrams are sent
3446  *	by default, and the only address from which datagrams are received.
3447  *	For stream sockets, attempts to connect to @addr.
3448  *	Returns 0 or an error code.
3449  */
3450 
3451 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3452 		   int flags)
3453 {
3454 	return sock->ops->connect(sock, addr, addrlen, flags);
3455 }
3456 EXPORT_SYMBOL(kernel_connect);
3457 
3458 /**
3459  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3460  *	@sock: socket
3461  *	@addr: address holder
3462  *
3463  * 	Fills the @addr pointer with the address which the socket is bound.
3464  *	Returns 0 or an error code.
3465  */
3466 
3467 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3468 {
3469 	return sock->ops->getname(sock, addr, 0);
3470 }
3471 EXPORT_SYMBOL(kernel_getsockname);
3472 
3473 /**
3474  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3475  *	@sock: socket
3476  *	@addr: address holder
3477  *
3478  * 	Fills the @addr pointer with the address which the socket is connected.
3479  *	Returns 0 or an error code.
3480  */
3481 
3482 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3483 {
3484 	return sock->ops->getname(sock, addr, 1);
3485 }
3486 EXPORT_SYMBOL(kernel_getpeername);
3487 
3488 /**
3489  *	kernel_sendpage - send a &page through a socket (kernel space)
3490  *	@sock: socket
3491  *	@page: page
3492  *	@offset: page offset
3493  *	@size: total size in bytes
3494  *	@flags: flags (MSG_DONTWAIT, ...)
3495  *
3496  *	Returns the total amount sent in bytes or an error.
3497  */
3498 
3499 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3500 		    size_t size, int flags)
3501 {
3502 	if (sock->ops->sendpage) {
3503 		/* Warn in case the improper page to zero-copy send */
3504 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3505 		return sock->ops->sendpage(sock, page, offset, size, flags);
3506 	}
3507 	return sock_no_sendpage(sock, page, offset, size, flags);
3508 }
3509 EXPORT_SYMBOL(kernel_sendpage);
3510 
3511 /**
3512  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3513  *	@sk: sock
3514  *	@page: page
3515  *	@offset: page offset
3516  *	@size: total size in bytes
3517  *	@flags: flags (MSG_DONTWAIT, ...)
3518  *
3519  *	Returns the total amount sent in bytes or an error.
3520  *	Caller must hold @sk.
3521  */
3522 
3523 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3524 			   size_t size, int flags)
3525 {
3526 	struct socket *sock = sk->sk_socket;
3527 
3528 	if (sock->ops->sendpage_locked)
3529 		return sock->ops->sendpage_locked(sk, page, offset, size,
3530 						  flags);
3531 
3532 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3533 }
3534 EXPORT_SYMBOL(kernel_sendpage_locked);
3535 
3536 /**
3537  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3538  *	@sock: socket
3539  *	@how: connection part
3540  *
3541  *	Returns 0 or an error.
3542  */
3543 
3544 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3545 {
3546 	return sock->ops->shutdown(sock, how);
3547 }
3548 EXPORT_SYMBOL(kernel_sock_shutdown);
3549 
3550 /**
3551  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3552  *	@sk: socket
3553  *
3554  *	This routine returns the IP overhead imposed by a socket i.e.
3555  *	the length of the underlying IP header, depending on whether
3556  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3557  *	on at the socket. Assumes that the caller has a lock on the socket.
3558  */
3559 
3560 u32 kernel_sock_ip_overhead(struct sock *sk)
3561 {
3562 	struct inet_sock *inet;
3563 	struct ip_options_rcu *opt;
3564 	u32 overhead = 0;
3565 #if IS_ENABLED(CONFIG_IPV6)
3566 	struct ipv6_pinfo *np;
3567 	struct ipv6_txoptions *optv6 = NULL;
3568 #endif /* IS_ENABLED(CONFIG_IPV6) */
3569 
3570 	if (!sk)
3571 		return overhead;
3572 
3573 	switch (sk->sk_family) {
3574 	case AF_INET:
3575 		inet = inet_sk(sk);
3576 		overhead += sizeof(struct iphdr);
3577 		opt = rcu_dereference_protected(inet->inet_opt,
3578 						sock_owned_by_user(sk));
3579 		if (opt)
3580 			overhead += opt->opt.optlen;
3581 		return overhead;
3582 #if IS_ENABLED(CONFIG_IPV6)
3583 	case AF_INET6:
3584 		np = inet6_sk(sk);
3585 		overhead += sizeof(struct ipv6hdr);
3586 		if (np)
3587 			optv6 = rcu_dereference_protected(np->opt,
3588 							  sock_owned_by_user(sk));
3589 		if (optv6)
3590 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3591 		return overhead;
3592 #endif /* IS_ENABLED(CONFIG_IPV6) */
3593 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3594 		return overhead;
3595 	}
3596 }
3597 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3598