1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/sockios.h> 104 #include <net/busy_poll.h> 105 #include <linux/errqueue.h> 106 107 #ifdef CONFIG_NET_RX_BUSY_POLL 108 unsigned int sysctl_net_busy_read __read_mostly; 109 unsigned int sysctl_net_busy_poll __read_mostly; 110 #endif 111 112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 114 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116 static int sock_close(struct inode *inode, struct file *file); 117 static __poll_t sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120 #ifdef CONFIG_COMPAT 121 static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123 #endif 124 static int sock_fasync(int fd, struct file *filp, int on); 125 static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131 /* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136 static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .read_iter = sock_read_iter, 140 .write_iter = sock_write_iter, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143 #ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145 #endif 146 .mmap = sock_mmap, 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Support routines. 163 * Move socket addresses back and forth across the kernel/user 164 * divide and look after the messy bits. 165 */ 166 167 /** 168 * move_addr_to_kernel - copy a socket address into kernel space 169 * @uaddr: Address in user space 170 * @kaddr: Address in kernel space 171 * @ulen: Length in user space 172 * 173 * The address is copied into kernel space. If the provided address is 174 * too long an error code of -EINVAL is returned. If the copy gives 175 * invalid addresses -EFAULT is returned. On a success 0 is returned. 176 */ 177 178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 179 { 180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 181 return -EINVAL; 182 if (ulen == 0) 183 return 0; 184 if (copy_from_user(kaddr, uaddr, ulen)) 185 return -EFAULT; 186 return audit_sockaddr(ulen, kaddr); 187 } 188 189 /** 190 * move_addr_to_user - copy an address to user space 191 * @kaddr: kernel space address 192 * @klen: length of address in kernel 193 * @uaddr: user space address 194 * @ulen: pointer to user length field 195 * 196 * The value pointed to by ulen on entry is the buffer length available. 197 * This is overwritten with the buffer space used. -EINVAL is returned 198 * if an overlong buffer is specified or a negative buffer size. -EFAULT 199 * is returned if either the buffer or the length field are not 200 * accessible. 201 * After copying the data up to the limit the user specifies, the true 202 * length of the data is written over the length limit the user 203 * specified. Zero is returned for a success. 204 */ 205 206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 207 void __user *uaddr, int __user *ulen) 208 { 209 int err; 210 int len; 211 212 BUG_ON(klen > sizeof(struct sockaddr_storage)); 213 err = get_user(len, ulen); 214 if (err) 215 return err; 216 if (len > klen) 217 len = klen; 218 if (len < 0) 219 return -EINVAL; 220 if (len) { 221 if (audit_sockaddr(klen, kaddr)) 222 return -ENOMEM; 223 if (copy_to_user(uaddr, kaddr, len)) 224 return -EFAULT; 225 } 226 /* 227 * "fromlen shall refer to the value before truncation.." 228 * 1003.1g 229 */ 230 return __put_user(klen, ulen); 231 } 232 233 static struct kmem_cache *sock_inode_cachep __ro_after_init; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wq.wait); 243 ei->socket.wq.fasync_list = NULL; 244 ei->socket.wq.flags = 0; 245 246 ei->socket.state = SS_UNCONNECTED; 247 ei->socket.flags = 0; 248 ei->socket.ops = NULL; 249 ei->socket.sk = NULL; 250 ei->socket.file = NULL; 251 252 return &ei->vfs_inode; 253 } 254 255 static void sock_free_inode(struct inode *inode) 256 { 257 struct socket_alloc *ei; 258 259 ei = container_of(inode, struct socket_alloc, vfs_inode); 260 kmem_cache_free(sock_inode_cachep, ei); 261 } 262 263 static void init_once(void *foo) 264 { 265 struct socket_alloc *ei = (struct socket_alloc *)foo; 266 267 inode_init_once(&ei->vfs_inode); 268 } 269 270 static void init_inodecache(void) 271 { 272 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 273 sizeof(struct socket_alloc), 274 0, 275 (SLAB_HWCACHE_ALIGN | 276 SLAB_RECLAIM_ACCOUNT | 277 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 278 init_once); 279 BUG_ON(sock_inode_cachep == NULL); 280 } 281 282 static const struct super_operations sockfs_ops = { 283 .alloc_inode = sock_alloc_inode, 284 .free_inode = sock_free_inode, 285 .statfs = simple_statfs, 286 }; 287 288 /* 289 * sockfs_dname() is called from d_path(). 290 */ 291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 292 { 293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 294 d_inode(dentry)->i_ino); 295 } 296 297 static const struct dentry_operations sockfs_dentry_operations = { 298 .d_dname = sockfs_dname, 299 }; 300 301 static int sockfs_xattr_get(const struct xattr_handler *handler, 302 struct dentry *dentry, struct inode *inode, 303 const char *suffix, void *value, size_t size) 304 { 305 if (value) { 306 if (dentry->d_name.len + 1 > size) 307 return -ERANGE; 308 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 309 } 310 return dentry->d_name.len + 1; 311 } 312 313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 316 317 static const struct xattr_handler sockfs_xattr_handler = { 318 .name = XATTR_NAME_SOCKPROTONAME, 319 .get = sockfs_xattr_get, 320 }; 321 322 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 323 struct dentry *dentry, struct inode *inode, 324 const char *suffix, const void *value, 325 size_t size, int flags) 326 { 327 /* Handled by LSM. */ 328 return -EAGAIN; 329 } 330 331 static const struct xattr_handler sockfs_security_xattr_handler = { 332 .prefix = XATTR_SECURITY_PREFIX, 333 .set = sockfs_security_xattr_set, 334 }; 335 336 static const struct xattr_handler *sockfs_xattr_handlers[] = { 337 &sockfs_xattr_handler, 338 &sockfs_security_xattr_handler, 339 NULL 340 }; 341 342 static int sockfs_init_fs_context(struct fs_context *fc) 343 { 344 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 345 if (!ctx) 346 return -ENOMEM; 347 ctx->ops = &sockfs_ops; 348 ctx->dops = &sockfs_dentry_operations; 349 ctx->xattr = sockfs_xattr_handlers; 350 return 0; 351 } 352 353 static struct vfsmount *sock_mnt __read_mostly; 354 355 static struct file_system_type sock_fs_type = { 356 .name = "sockfs", 357 .init_fs_context = sockfs_init_fs_context, 358 .kill_sb = kill_anon_super, 359 }; 360 361 /* 362 * Obtains the first available file descriptor and sets it up for use. 363 * 364 * These functions create file structures and maps them to fd space 365 * of the current process. On success it returns file descriptor 366 * and file struct implicitly stored in sock->file. 367 * Note that another thread may close file descriptor before we return 368 * from this function. We use the fact that now we do not refer 369 * to socket after mapping. If one day we will need it, this 370 * function will increment ref. count on file by 1. 371 * 372 * In any case returned fd MAY BE not valid! 373 * This race condition is unavoidable 374 * with shared fd spaces, we cannot solve it inside kernel, 375 * but we take care of internal coherence yet. 376 */ 377 378 /** 379 * sock_alloc_file - Bind a &socket to a &file 380 * @sock: socket 381 * @flags: file status flags 382 * @dname: protocol name 383 * 384 * Returns the &file bound with @sock, implicitly storing it 385 * in sock->file. If dname is %NULL, sets to "". 386 * On failure the return is a ERR pointer (see linux/err.h). 387 * This function uses GFP_KERNEL internally. 388 */ 389 390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 391 { 392 struct file *file; 393 394 if (!dname) 395 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 396 397 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 398 O_RDWR | (flags & O_NONBLOCK), 399 &socket_file_ops); 400 if (IS_ERR(file)) { 401 sock_release(sock); 402 return file; 403 } 404 405 sock->file = file; 406 file->private_data = sock; 407 return file; 408 } 409 EXPORT_SYMBOL(sock_alloc_file); 410 411 static int sock_map_fd(struct socket *sock, int flags) 412 { 413 struct file *newfile; 414 int fd = get_unused_fd_flags(flags); 415 if (unlikely(fd < 0)) { 416 sock_release(sock); 417 return fd; 418 } 419 420 newfile = sock_alloc_file(sock, flags, NULL); 421 if (!IS_ERR(newfile)) { 422 fd_install(fd, newfile); 423 return fd; 424 } 425 426 put_unused_fd(fd); 427 return PTR_ERR(newfile); 428 } 429 430 /** 431 * sock_from_file - Return the &socket bounded to @file. 432 * @file: file 433 * @err: pointer to an error code return 434 * 435 * On failure returns %NULL and assigns -ENOTSOCK to @err. 436 */ 437 438 struct socket *sock_from_file(struct file *file, int *err) 439 { 440 if (file->f_op == &socket_file_ops) 441 return file->private_data; /* set in sock_map_fd */ 442 443 *err = -ENOTSOCK; 444 return NULL; 445 } 446 EXPORT_SYMBOL(sock_from_file); 447 448 /** 449 * sockfd_lookup - Go from a file number to its socket slot 450 * @fd: file handle 451 * @err: pointer to an error code return 452 * 453 * The file handle passed in is locked and the socket it is bound 454 * to is returned. If an error occurs the err pointer is overwritten 455 * with a negative errno code and NULL is returned. The function checks 456 * for both invalid handles and passing a handle which is not a socket. 457 * 458 * On a success the socket object pointer is returned. 459 */ 460 461 struct socket *sockfd_lookup(int fd, int *err) 462 { 463 struct file *file; 464 struct socket *sock; 465 466 file = fget(fd); 467 if (!file) { 468 *err = -EBADF; 469 return NULL; 470 } 471 472 sock = sock_from_file(file, err); 473 if (!sock) 474 fput(file); 475 return sock; 476 } 477 EXPORT_SYMBOL(sockfd_lookup); 478 479 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 480 { 481 struct fd f = fdget(fd); 482 struct socket *sock; 483 484 *err = -EBADF; 485 if (f.file) { 486 sock = sock_from_file(f.file, err); 487 if (likely(sock)) { 488 *fput_needed = f.flags; 489 return sock; 490 } 491 fdput(f); 492 } 493 return NULL; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 525 { 526 int err = simple_setattr(dentry, iattr); 527 528 if (!err && (iattr->ia_valid & ATTR_UID)) { 529 struct socket *sock = SOCKET_I(d_inode(dentry)); 530 531 if (sock->sk) 532 sock->sk->sk_uid = iattr->ia_uid; 533 else 534 err = -ENOENT; 535 } 536 537 return err; 538 } 539 540 static const struct inode_operations sockfs_inode_ops = { 541 .listxattr = sockfs_listxattr, 542 .setattr = sockfs_setattr, 543 }; 544 545 /** 546 * sock_alloc - allocate a socket 547 * 548 * Allocate a new inode and socket object. The two are bound together 549 * and initialised. The socket is then returned. If we are out of inodes 550 * NULL is returned. This functions uses GFP_KERNEL internally. 551 */ 552 553 struct socket *sock_alloc(void) 554 { 555 struct inode *inode; 556 struct socket *sock; 557 558 inode = new_inode_pseudo(sock_mnt->mnt_sb); 559 if (!inode) 560 return NULL; 561 562 sock = SOCKET_I(inode); 563 564 inode->i_ino = get_next_ino(); 565 inode->i_mode = S_IFSOCK | S_IRWXUGO; 566 inode->i_uid = current_fsuid(); 567 inode->i_gid = current_fsgid(); 568 inode->i_op = &sockfs_inode_ops; 569 570 return sock; 571 } 572 EXPORT_SYMBOL(sock_alloc); 573 574 /** 575 * sock_release - close a socket 576 * @sock: socket to close 577 * 578 * The socket is released from the protocol stack if it has a release 579 * callback, and the inode is then released if the socket is bound to 580 * an inode not a file. 581 */ 582 583 static void __sock_release(struct socket *sock, struct inode *inode) 584 { 585 if (sock->ops) { 586 struct module *owner = sock->ops->owner; 587 588 if (inode) 589 inode_lock(inode); 590 sock->ops->release(sock); 591 sock->sk = NULL; 592 if (inode) 593 inode_unlock(inode); 594 sock->ops = NULL; 595 module_put(owner); 596 } 597 598 if (sock->wq.fasync_list) 599 pr_err("%s: fasync list not empty!\n", __func__); 600 601 if (!sock->file) { 602 iput(SOCK_INODE(sock)); 603 return; 604 } 605 sock->file = NULL; 606 } 607 608 void sock_release(struct socket *sock) 609 { 610 __sock_release(sock, NULL); 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 632 size_t)); 633 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 634 size_t)); 635 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 636 { 637 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 638 inet_sendmsg, sock, msg, 639 msg_data_left(msg)); 640 BUG_ON(ret == -EIOCBQUEUED); 641 return ret; 642 } 643 644 /** 645 * sock_sendmsg - send a message through @sock 646 * @sock: socket 647 * @msg: message to send 648 * 649 * Sends @msg through @sock, passing through LSM. 650 * Returns the number of bytes sent, or an error code. 651 */ 652 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 653 { 654 int err = security_socket_sendmsg(sock, msg, 655 msg_data_left(msg)); 656 657 return err ?: sock_sendmsg_nosec(sock, msg); 658 } 659 EXPORT_SYMBOL(sock_sendmsg); 660 661 /** 662 * kernel_sendmsg - send a message through @sock (kernel-space) 663 * @sock: socket 664 * @msg: message header 665 * @vec: kernel vec 666 * @num: vec array length 667 * @size: total message data size 668 * 669 * Builds the message data with @vec and sends it through @sock. 670 * Returns the number of bytes sent, or an error code. 671 */ 672 673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 674 struct kvec *vec, size_t num, size_t size) 675 { 676 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 677 return sock_sendmsg(sock, msg); 678 } 679 EXPORT_SYMBOL(kernel_sendmsg); 680 681 /** 682 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 683 * @sk: sock 684 * @msg: message header 685 * @vec: output s/g array 686 * @num: output s/g array length 687 * @size: total message data size 688 * 689 * Builds the message data with @vec and sends it through @sock. 690 * Returns the number of bytes sent, or an error code. 691 * Caller must hold @sk. 692 */ 693 694 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 695 struct kvec *vec, size_t num, size_t size) 696 { 697 struct socket *sock = sk->sk_socket; 698 699 if (!sock->ops->sendmsg_locked) 700 return sock_no_sendmsg_locked(sk, msg, size); 701 702 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 703 704 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 705 } 706 EXPORT_SYMBOL(kernel_sendmsg_locked); 707 708 static bool skb_is_err_queue(const struct sk_buff *skb) 709 { 710 /* pkt_type of skbs enqueued on the error queue are set to 711 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 712 * in recvmsg, since skbs received on a local socket will never 713 * have a pkt_type of PACKET_OUTGOING. 714 */ 715 return skb->pkt_type == PACKET_OUTGOING; 716 } 717 718 /* On transmit, software and hardware timestamps are returned independently. 719 * As the two skb clones share the hardware timestamp, which may be updated 720 * before the software timestamp is received, a hardware TX timestamp may be 721 * returned only if there is no software TX timestamp. Ignore false software 722 * timestamps, which may be made in the __sock_recv_timestamp() call when the 723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 724 * hardware timestamp. 725 */ 726 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 727 { 728 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 729 } 730 731 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 732 { 733 struct scm_ts_pktinfo ts_pktinfo; 734 struct net_device *orig_dev; 735 736 if (!skb_mac_header_was_set(skb)) 737 return; 738 739 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 740 741 rcu_read_lock(); 742 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 743 if (orig_dev) 744 ts_pktinfo.if_index = orig_dev->ifindex; 745 rcu_read_unlock(); 746 747 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 749 sizeof(ts_pktinfo), &ts_pktinfo); 750 } 751 752 /* 753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 754 */ 755 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 756 struct sk_buff *skb) 757 { 758 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 759 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 760 struct scm_timestamping_internal tss; 761 762 int empty = 1, false_tstamp = 0; 763 struct skb_shared_hwtstamps *shhwtstamps = 764 skb_hwtstamps(skb); 765 766 /* Race occurred between timestamp enabling and packet 767 receiving. Fill in the current time for now. */ 768 if (need_software_tstamp && skb->tstamp == 0) { 769 __net_timestamp(skb); 770 false_tstamp = 1; 771 } 772 773 if (need_software_tstamp) { 774 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 775 if (new_tstamp) { 776 struct __kernel_sock_timeval tv; 777 778 skb_get_new_timestamp(skb, &tv); 779 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 780 sizeof(tv), &tv); 781 } else { 782 struct __kernel_old_timeval tv; 783 784 skb_get_timestamp(skb, &tv); 785 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 786 sizeof(tv), &tv); 787 } 788 } else { 789 if (new_tstamp) { 790 struct __kernel_timespec ts; 791 792 skb_get_new_timestampns(skb, &ts); 793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 794 sizeof(ts), &ts); 795 } else { 796 struct timespec ts; 797 798 skb_get_timestampns(skb, &ts); 799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 800 sizeof(ts), &ts); 801 } 802 } 803 } 804 805 memset(&tss, 0, sizeof(tss)); 806 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 807 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 808 empty = 0; 809 if (shhwtstamps && 810 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 811 !skb_is_swtx_tstamp(skb, false_tstamp) && 812 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 813 empty = 0; 814 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 815 !skb_is_err_queue(skb)) 816 put_ts_pktinfo(msg, skb); 817 } 818 if (!empty) { 819 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 820 put_cmsg_scm_timestamping64(msg, &tss); 821 else 822 put_cmsg_scm_timestamping(msg, &tss); 823 824 if (skb_is_err_queue(skb) && skb->len && 825 SKB_EXT_ERR(skb)->opt_stats) 826 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 827 skb->len, skb->data); 828 } 829 } 830 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 831 832 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 833 struct sk_buff *skb) 834 { 835 int ack; 836 837 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 838 return; 839 if (!skb->wifi_acked_valid) 840 return; 841 842 ack = skb->wifi_acked; 843 844 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 845 } 846 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 847 848 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 849 struct sk_buff *skb) 850 { 851 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 852 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 853 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 854 } 855 856 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 857 struct sk_buff *skb) 858 { 859 sock_recv_timestamp(msg, sk, skb); 860 sock_recv_drops(msg, sk, skb); 861 } 862 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 863 864 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 865 size_t, int)); 866 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 867 size_t, int)); 868 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 869 int flags) 870 { 871 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 872 inet_recvmsg, sock, msg, msg_data_left(msg), 873 flags); 874 } 875 876 /** 877 * sock_recvmsg - receive a message from @sock 878 * @sock: socket 879 * @msg: message to receive 880 * @flags: message flags 881 * 882 * Receives @msg from @sock, passing through LSM. Returns the total number 883 * of bytes received, or an error. 884 */ 885 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 886 { 887 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 888 889 return err ?: sock_recvmsg_nosec(sock, msg, flags); 890 } 891 EXPORT_SYMBOL(sock_recvmsg); 892 893 /** 894 * kernel_recvmsg - Receive a message from a socket (kernel space) 895 * @sock: The socket to receive the message from 896 * @msg: Received message 897 * @vec: Input s/g array for message data 898 * @num: Size of input s/g array 899 * @size: Number of bytes to read 900 * @flags: Message flags (MSG_DONTWAIT, etc...) 901 * 902 * On return the msg structure contains the scatter/gather array passed in the 903 * vec argument. The array is modified so that it consists of the unfilled 904 * portion of the original array. 905 * 906 * The returned value is the total number of bytes received, or an error. 907 */ 908 909 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 910 struct kvec *vec, size_t num, size_t size, int flags) 911 { 912 mm_segment_t oldfs = get_fs(); 913 int result; 914 915 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 916 set_fs(KERNEL_DS); 917 result = sock_recvmsg(sock, msg, flags); 918 set_fs(oldfs); 919 return result; 920 } 921 EXPORT_SYMBOL(kernel_recvmsg); 922 923 static ssize_t sock_sendpage(struct file *file, struct page *page, 924 int offset, size_t size, loff_t *ppos, int more) 925 { 926 struct socket *sock; 927 int flags; 928 929 sock = file->private_data; 930 931 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 932 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 933 flags |= more; 934 935 return kernel_sendpage(sock, page, offset, size, flags); 936 } 937 938 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 939 struct pipe_inode_info *pipe, size_t len, 940 unsigned int flags) 941 { 942 struct socket *sock = file->private_data; 943 944 if (unlikely(!sock->ops->splice_read)) 945 return generic_file_splice_read(file, ppos, pipe, len, flags); 946 947 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 948 } 949 950 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 951 { 952 struct file *file = iocb->ki_filp; 953 struct socket *sock = file->private_data; 954 struct msghdr msg = {.msg_iter = *to, 955 .msg_iocb = iocb}; 956 ssize_t res; 957 958 if (file->f_flags & O_NONBLOCK) 959 msg.msg_flags = MSG_DONTWAIT; 960 961 if (iocb->ki_pos != 0) 962 return -ESPIPE; 963 964 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 965 return 0; 966 967 res = sock_recvmsg(sock, &msg, msg.msg_flags); 968 *to = msg.msg_iter; 969 return res; 970 } 971 972 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 973 { 974 struct file *file = iocb->ki_filp; 975 struct socket *sock = file->private_data; 976 struct msghdr msg = {.msg_iter = *from, 977 .msg_iocb = iocb}; 978 ssize_t res; 979 980 if (iocb->ki_pos != 0) 981 return -ESPIPE; 982 983 if (file->f_flags & O_NONBLOCK) 984 msg.msg_flags = MSG_DONTWAIT; 985 986 if (sock->type == SOCK_SEQPACKET) 987 msg.msg_flags |= MSG_EOR; 988 989 res = sock_sendmsg(sock, &msg); 990 *from = msg.msg_iter; 991 return res; 992 } 993 994 /* 995 * Atomic setting of ioctl hooks to avoid race 996 * with module unload. 997 */ 998 999 static DEFINE_MUTEX(br_ioctl_mutex); 1000 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1001 1002 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1003 { 1004 mutex_lock(&br_ioctl_mutex); 1005 br_ioctl_hook = hook; 1006 mutex_unlock(&br_ioctl_mutex); 1007 } 1008 EXPORT_SYMBOL(brioctl_set); 1009 1010 static DEFINE_MUTEX(vlan_ioctl_mutex); 1011 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1012 1013 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1014 { 1015 mutex_lock(&vlan_ioctl_mutex); 1016 vlan_ioctl_hook = hook; 1017 mutex_unlock(&vlan_ioctl_mutex); 1018 } 1019 EXPORT_SYMBOL(vlan_ioctl_set); 1020 1021 static DEFINE_MUTEX(dlci_ioctl_mutex); 1022 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1023 1024 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1025 { 1026 mutex_lock(&dlci_ioctl_mutex); 1027 dlci_ioctl_hook = hook; 1028 mutex_unlock(&dlci_ioctl_mutex); 1029 } 1030 EXPORT_SYMBOL(dlci_ioctl_set); 1031 1032 static long sock_do_ioctl(struct net *net, struct socket *sock, 1033 unsigned int cmd, unsigned long arg) 1034 { 1035 int err; 1036 void __user *argp = (void __user *)arg; 1037 1038 err = sock->ops->ioctl(sock, cmd, arg); 1039 1040 /* 1041 * If this ioctl is unknown try to hand it down 1042 * to the NIC driver. 1043 */ 1044 if (err != -ENOIOCTLCMD) 1045 return err; 1046 1047 if (cmd == SIOCGIFCONF) { 1048 struct ifconf ifc; 1049 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1050 return -EFAULT; 1051 rtnl_lock(); 1052 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1053 rtnl_unlock(); 1054 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1055 err = -EFAULT; 1056 } else { 1057 struct ifreq ifr; 1058 bool need_copyout; 1059 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1060 return -EFAULT; 1061 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1062 if (!err && need_copyout) 1063 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1064 return -EFAULT; 1065 } 1066 return err; 1067 } 1068 1069 /* 1070 * With an ioctl, arg may well be a user mode pointer, but we don't know 1071 * what to do with it - that's up to the protocol still. 1072 */ 1073 1074 /** 1075 * get_net_ns - increment the refcount of the network namespace 1076 * @ns: common namespace (net) 1077 * 1078 * Returns the net's common namespace. 1079 */ 1080 1081 struct ns_common *get_net_ns(struct ns_common *ns) 1082 { 1083 return &get_net(container_of(ns, struct net, ns))->ns; 1084 } 1085 EXPORT_SYMBOL_GPL(get_net_ns); 1086 1087 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1088 { 1089 struct socket *sock; 1090 struct sock *sk; 1091 void __user *argp = (void __user *)arg; 1092 int pid, err; 1093 struct net *net; 1094 1095 sock = file->private_data; 1096 sk = sock->sk; 1097 net = sock_net(sk); 1098 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1099 struct ifreq ifr; 1100 bool need_copyout; 1101 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1102 return -EFAULT; 1103 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1104 if (!err && need_copyout) 1105 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1106 return -EFAULT; 1107 } else 1108 #ifdef CONFIG_WEXT_CORE 1109 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1110 err = wext_handle_ioctl(net, cmd, argp); 1111 } else 1112 #endif 1113 switch (cmd) { 1114 case FIOSETOWN: 1115 case SIOCSPGRP: 1116 err = -EFAULT; 1117 if (get_user(pid, (int __user *)argp)) 1118 break; 1119 err = f_setown(sock->file, pid, 1); 1120 break; 1121 case FIOGETOWN: 1122 case SIOCGPGRP: 1123 err = put_user(f_getown(sock->file), 1124 (int __user *)argp); 1125 break; 1126 case SIOCGIFBR: 1127 case SIOCSIFBR: 1128 case SIOCBRADDBR: 1129 case SIOCBRDELBR: 1130 err = -ENOPKG; 1131 if (!br_ioctl_hook) 1132 request_module("bridge"); 1133 1134 mutex_lock(&br_ioctl_mutex); 1135 if (br_ioctl_hook) 1136 err = br_ioctl_hook(net, cmd, argp); 1137 mutex_unlock(&br_ioctl_mutex); 1138 break; 1139 case SIOCGIFVLAN: 1140 case SIOCSIFVLAN: 1141 err = -ENOPKG; 1142 if (!vlan_ioctl_hook) 1143 request_module("8021q"); 1144 1145 mutex_lock(&vlan_ioctl_mutex); 1146 if (vlan_ioctl_hook) 1147 err = vlan_ioctl_hook(net, argp); 1148 mutex_unlock(&vlan_ioctl_mutex); 1149 break; 1150 case SIOCADDDLCI: 1151 case SIOCDELDLCI: 1152 err = -ENOPKG; 1153 if (!dlci_ioctl_hook) 1154 request_module("dlci"); 1155 1156 mutex_lock(&dlci_ioctl_mutex); 1157 if (dlci_ioctl_hook) 1158 err = dlci_ioctl_hook(cmd, argp); 1159 mutex_unlock(&dlci_ioctl_mutex); 1160 break; 1161 case SIOCGSKNS: 1162 err = -EPERM; 1163 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1164 break; 1165 1166 err = open_related_ns(&net->ns, get_net_ns); 1167 break; 1168 case SIOCGSTAMP_OLD: 1169 case SIOCGSTAMPNS_OLD: 1170 if (!sock->ops->gettstamp) { 1171 err = -ENOIOCTLCMD; 1172 break; 1173 } 1174 err = sock->ops->gettstamp(sock, argp, 1175 cmd == SIOCGSTAMP_OLD, 1176 !IS_ENABLED(CONFIG_64BIT)); 1177 break; 1178 case SIOCGSTAMP_NEW: 1179 case SIOCGSTAMPNS_NEW: 1180 if (!sock->ops->gettstamp) { 1181 err = -ENOIOCTLCMD; 1182 break; 1183 } 1184 err = sock->ops->gettstamp(sock, argp, 1185 cmd == SIOCGSTAMP_NEW, 1186 false); 1187 break; 1188 default: 1189 err = sock_do_ioctl(net, sock, cmd, arg); 1190 break; 1191 } 1192 return err; 1193 } 1194 1195 /** 1196 * sock_create_lite - creates a socket 1197 * @family: protocol family (AF_INET, ...) 1198 * @type: communication type (SOCK_STREAM, ...) 1199 * @protocol: protocol (0, ...) 1200 * @res: new socket 1201 * 1202 * Creates a new socket and assigns it to @res, passing through LSM. 1203 * The new socket initialization is not complete, see kernel_accept(). 1204 * Returns 0 or an error. On failure @res is set to %NULL. 1205 * This function internally uses GFP_KERNEL. 1206 */ 1207 1208 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1209 { 1210 int err; 1211 struct socket *sock = NULL; 1212 1213 err = security_socket_create(family, type, protocol, 1); 1214 if (err) 1215 goto out; 1216 1217 sock = sock_alloc(); 1218 if (!sock) { 1219 err = -ENOMEM; 1220 goto out; 1221 } 1222 1223 sock->type = type; 1224 err = security_socket_post_create(sock, family, type, protocol, 1); 1225 if (err) 1226 goto out_release; 1227 1228 out: 1229 *res = sock; 1230 return err; 1231 out_release: 1232 sock_release(sock); 1233 sock = NULL; 1234 goto out; 1235 } 1236 EXPORT_SYMBOL(sock_create_lite); 1237 1238 /* No kernel lock held - perfect */ 1239 static __poll_t sock_poll(struct file *file, poll_table *wait) 1240 { 1241 struct socket *sock = file->private_data; 1242 __poll_t events = poll_requested_events(wait), flag = 0; 1243 1244 if (!sock->ops->poll) 1245 return 0; 1246 1247 if (sk_can_busy_loop(sock->sk)) { 1248 /* poll once if requested by the syscall */ 1249 if (events & POLL_BUSY_LOOP) 1250 sk_busy_loop(sock->sk, 1); 1251 1252 /* if this socket can poll_ll, tell the system call */ 1253 flag = POLL_BUSY_LOOP; 1254 } 1255 1256 return sock->ops->poll(file, sock, wait) | flag; 1257 } 1258 1259 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1260 { 1261 struct socket *sock = file->private_data; 1262 1263 return sock->ops->mmap(file, sock, vma); 1264 } 1265 1266 static int sock_close(struct inode *inode, struct file *filp) 1267 { 1268 __sock_release(SOCKET_I(inode), inode); 1269 return 0; 1270 } 1271 1272 /* 1273 * Update the socket async list 1274 * 1275 * Fasync_list locking strategy. 1276 * 1277 * 1. fasync_list is modified only under process context socket lock 1278 * i.e. under semaphore. 1279 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1280 * or under socket lock 1281 */ 1282 1283 static int sock_fasync(int fd, struct file *filp, int on) 1284 { 1285 struct socket *sock = filp->private_data; 1286 struct sock *sk = sock->sk; 1287 struct socket_wq *wq = &sock->wq; 1288 1289 if (sk == NULL) 1290 return -EINVAL; 1291 1292 lock_sock(sk); 1293 fasync_helper(fd, filp, on, &wq->fasync_list); 1294 1295 if (!wq->fasync_list) 1296 sock_reset_flag(sk, SOCK_FASYNC); 1297 else 1298 sock_set_flag(sk, SOCK_FASYNC); 1299 1300 release_sock(sk); 1301 return 0; 1302 } 1303 1304 /* This function may be called only under rcu_lock */ 1305 1306 int sock_wake_async(struct socket_wq *wq, int how, int band) 1307 { 1308 if (!wq || !wq->fasync_list) 1309 return -1; 1310 1311 switch (how) { 1312 case SOCK_WAKE_WAITD: 1313 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1314 break; 1315 goto call_kill; 1316 case SOCK_WAKE_SPACE: 1317 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1318 break; 1319 /* fall through */ 1320 case SOCK_WAKE_IO: 1321 call_kill: 1322 kill_fasync(&wq->fasync_list, SIGIO, band); 1323 break; 1324 case SOCK_WAKE_URG: 1325 kill_fasync(&wq->fasync_list, SIGURG, band); 1326 } 1327 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(sock_wake_async); 1331 1332 /** 1333 * __sock_create - creates a socket 1334 * @net: net namespace 1335 * @family: protocol family (AF_INET, ...) 1336 * @type: communication type (SOCK_STREAM, ...) 1337 * @protocol: protocol (0, ...) 1338 * @res: new socket 1339 * @kern: boolean for kernel space sockets 1340 * 1341 * Creates a new socket and assigns it to @res, passing through LSM. 1342 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1343 * be set to true if the socket resides in kernel space. 1344 * This function internally uses GFP_KERNEL. 1345 */ 1346 1347 int __sock_create(struct net *net, int family, int type, int protocol, 1348 struct socket **res, int kern) 1349 { 1350 int err; 1351 struct socket *sock; 1352 const struct net_proto_family *pf; 1353 1354 /* 1355 * Check protocol is in range 1356 */ 1357 if (family < 0 || family >= NPROTO) 1358 return -EAFNOSUPPORT; 1359 if (type < 0 || type >= SOCK_MAX) 1360 return -EINVAL; 1361 1362 /* Compatibility. 1363 1364 This uglymoron is moved from INET layer to here to avoid 1365 deadlock in module load. 1366 */ 1367 if (family == PF_INET && type == SOCK_PACKET) { 1368 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1369 current->comm); 1370 family = PF_PACKET; 1371 } 1372 1373 err = security_socket_create(family, type, protocol, kern); 1374 if (err) 1375 return err; 1376 1377 /* 1378 * Allocate the socket and allow the family to set things up. if 1379 * the protocol is 0, the family is instructed to select an appropriate 1380 * default. 1381 */ 1382 sock = sock_alloc(); 1383 if (!sock) { 1384 net_warn_ratelimited("socket: no more sockets\n"); 1385 return -ENFILE; /* Not exactly a match, but its the 1386 closest posix thing */ 1387 } 1388 1389 sock->type = type; 1390 1391 #ifdef CONFIG_MODULES 1392 /* Attempt to load a protocol module if the find failed. 1393 * 1394 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1395 * requested real, full-featured networking support upon configuration. 1396 * Otherwise module support will break! 1397 */ 1398 if (rcu_access_pointer(net_families[family]) == NULL) 1399 request_module("net-pf-%d", family); 1400 #endif 1401 1402 rcu_read_lock(); 1403 pf = rcu_dereference(net_families[family]); 1404 err = -EAFNOSUPPORT; 1405 if (!pf) 1406 goto out_release; 1407 1408 /* 1409 * We will call the ->create function, that possibly is in a loadable 1410 * module, so we have to bump that loadable module refcnt first. 1411 */ 1412 if (!try_module_get(pf->owner)) 1413 goto out_release; 1414 1415 /* Now protected by module ref count */ 1416 rcu_read_unlock(); 1417 1418 err = pf->create(net, sock, protocol, kern); 1419 if (err < 0) 1420 goto out_module_put; 1421 1422 /* 1423 * Now to bump the refcnt of the [loadable] module that owns this 1424 * socket at sock_release time we decrement its refcnt. 1425 */ 1426 if (!try_module_get(sock->ops->owner)) 1427 goto out_module_busy; 1428 1429 /* 1430 * Now that we're done with the ->create function, the [loadable] 1431 * module can have its refcnt decremented 1432 */ 1433 module_put(pf->owner); 1434 err = security_socket_post_create(sock, family, type, protocol, kern); 1435 if (err) 1436 goto out_sock_release; 1437 *res = sock; 1438 1439 return 0; 1440 1441 out_module_busy: 1442 err = -EAFNOSUPPORT; 1443 out_module_put: 1444 sock->ops = NULL; 1445 module_put(pf->owner); 1446 out_sock_release: 1447 sock_release(sock); 1448 return err; 1449 1450 out_release: 1451 rcu_read_unlock(); 1452 goto out_sock_release; 1453 } 1454 EXPORT_SYMBOL(__sock_create); 1455 1456 /** 1457 * sock_create - creates a socket 1458 * @family: protocol family (AF_INET, ...) 1459 * @type: communication type (SOCK_STREAM, ...) 1460 * @protocol: protocol (0, ...) 1461 * @res: new socket 1462 * 1463 * A wrapper around __sock_create(). 1464 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1465 */ 1466 1467 int sock_create(int family, int type, int protocol, struct socket **res) 1468 { 1469 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1470 } 1471 EXPORT_SYMBOL(sock_create); 1472 1473 /** 1474 * sock_create_kern - creates a socket (kernel space) 1475 * @net: net namespace 1476 * @family: protocol family (AF_INET, ...) 1477 * @type: communication type (SOCK_STREAM, ...) 1478 * @protocol: protocol (0, ...) 1479 * @res: new socket 1480 * 1481 * A wrapper around __sock_create(). 1482 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1483 */ 1484 1485 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1486 { 1487 return __sock_create(net, family, type, protocol, res, 1); 1488 } 1489 EXPORT_SYMBOL(sock_create_kern); 1490 1491 int __sys_socket(int family, int type, int protocol) 1492 { 1493 int retval; 1494 struct socket *sock; 1495 int flags; 1496 1497 /* Check the SOCK_* constants for consistency. */ 1498 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1499 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1500 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1501 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1502 1503 flags = type & ~SOCK_TYPE_MASK; 1504 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1505 return -EINVAL; 1506 type &= SOCK_TYPE_MASK; 1507 1508 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1509 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1510 1511 retval = sock_create(family, type, protocol, &sock); 1512 if (retval < 0) 1513 return retval; 1514 1515 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1516 } 1517 1518 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1519 { 1520 return __sys_socket(family, type, protocol); 1521 } 1522 1523 /* 1524 * Create a pair of connected sockets. 1525 */ 1526 1527 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1528 { 1529 struct socket *sock1, *sock2; 1530 int fd1, fd2, err; 1531 struct file *newfile1, *newfile2; 1532 int flags; 1533 1534 flags = type & ~SOCK_TYPE_MASK; 1535 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1536 return -EINVAL; 1537 type &= SOCK_TYPE_MASK; 1538 1539 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1540 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1541 1542 /* 1543 * reserve descriptors and make sure we won't fail 1544 * to return them to userland. 1545 */ 1546 fd1 = get_unused_fd_flags(flags); 1547 if (unlikely(fd1 < 0)) 1548 return fd1; 1549 1550 fd2 = get_unused_fd_flags(flags); 1551 if (unlikely(fd2 < 0)) { 1552 put_unused_fd(fd1); 1553 return fd2; 1554 } 1555 1556 err = put_user(fd1, &usockvec[0]); 1557 if (err) 1558 goto out; 1559 1560 err = put_user(fd2, &usockvec[1]); 1561 if (err) 1562 goto out; 1563 1564 /* 1565 * Obtain the first socket and check if the underlying protocol 1566 * supports the socketpair call. 1567 */ 1568 1569 err = sock_create(family, type, protocol, &sock1); 1570 if (unlikely(err < 0)) 1571 goto out; 1572 1573 err = sock_create(family, type, protocol, &sock2); 1574 if (unlikely(err < 0)) { 1575 sock_release(sock1); 1576 goto out; 1577 } 1578 1579 err = security_socket_socketpair(sock1, sock2); 1580 if (unlikely(err)) { 1581 sock_release(sock2); 1582 sock_release(sock1); 1583 goto out; 1584 } 1585 1586 err = sock1->ops->socketpair(sock1, sock2); 1587 if (unlikely(err < 0)) { 1588 sock_release(sock2); 1589 sock_release(sock1); 1590 goto out; 1591 } 1592 1593 newfile1 = sock_alloc_file(sock1, flags, NULL); 1594 if (IS_ERR(newfile1)) { 1595 err = PTR_ERR(newfile1); 1596 sock_release(sock2); 1597 goto out; 1598 } 1599 1600 newfile2 = sock_alloc_file(sock2, flags, NULL); 1601 if (IS_ERR(newfile2)) { 1602 err = PTR_ERR(newfile2); 1603 fput(newfile1); 1604 goto out; 1605 } 1606 1607 audit_fd_pair(fd1, fd2); 1608 1609 fd_install(fd1, newfile1); 1610 fd_install(fd2, newfile2); 1611 return 0; 1612 1613 out: 1614 put_unused_fd(fd2); 1615 put_unused_fd(fd1); 1616 return err; 1617 } 1618 1619 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1620 int __user *, usockvec) 1621 { 1622 return __sys_socketpair(family, type, protocol, usockvec); 1623 } 1624 1625 /* 1626 * Bind a name to a socket. Nothing much to do here since it's 1627 * the protocol's responsibility to handle the local address. 1628 * 1629 * We move the socket address to kernel space before we call 1630 * the protocol layer (having also checked the address is ok). 1631 */ 1632 1633 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1634 { 1635 struct socket *sock; 1636 struct sockaddr_storage address; 1637 int err, fput_needed; 1638 1639 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1640 if (sock) { 1641 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1642 if (!err) { 1643 err = security_socket_bind(sock, 1644 (struct sockaddr *)&address, 1645 addrlen); 1646 if (!err) 1647 err = sock->ops->bind(sock, 1648 (struct sockaddr *) 1649 &address, addrlen); 1650 } 1651 fput_light(sock->file, fput_needed); 1652 } 1653 return err; 1654 } 1655 1656 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1657 { 1658 return __sys_bind(fd, umyaddr, addrlen); 1659 } 1660 1661 /* 1662 * Perform a listen. Basically, we allow the protocol to do anything 1663 * necessary for a listen, and if that works, we mark the socket as 1664 * ready for listening. 1665 */ 1666 1667 int __sys_listen(int fd, int backlog) 1668 { 1669 struct socket *sock; 1670 int err, fput_needed; 1671 int somaxconn; 1672 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (sock) { 1675 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1676 if ((unsigned int)backlog > somaxconn) 1677 backlog = somaxconn; 1678 1679 err = security_socket_listen(sock, backlog); 1680 if (!err) 1681 err = sock->ops->listen(sock, backlog); 1682 1683 fput_light(sock->file, fput_needed); 1684 } 1685 return err; 1686 } 1687 1688 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1689 { 1690 return __sys_listen(fd, backlog); 1691 } 1692 1693 /* 1694 * For accept, we attempt to create a new socket, set up the link 1695 * with the client, wake up the client, then return the new 1696 * connected fd. We collect the address of the connector in kernel 1697 * space and move it to user at the very end. This is unclean because 1698 * we open the socket then return an error. 1699 * 1700 * 1003.1g adds the ability to recvmsg() to query connection pending 1701 * status to recvmsg. We need to add that support in a way thats 1702 * clean when we restructure accept also. 1703 */ 1704 1705 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1706 int __user *upeer_addrlen, int flags) 1707 { 1708 struct socket *sock, *newsock; 1709 struct file *newfile; 1710 int err, len, newfd, fput_needed; 1711 struct sockaddr_storage address; 1712 1713 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1714 return -EINVAL; 1715 1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1718 1719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1720 if (!sock) 1721 goto out; 1722 1723 err = -ENFILE; 1724 newsock = sock_alloc(); 1725 if (!newsock) 1726 goto out_put; 1727 1728 newsock->type = sock->type; 1729 newsock->ops = sock->ops; 1730 1731 /* 1732 * We don't need try_module_get here, as the listening socket (sock) 1733 * has the protocol module (sock->ops->owner) held. 1734 */ 1735 __module_get(newsock->ops->owner); 1736 1737 newfd = get_unused_fd_flags(flags); 1738 if (unlikely(newfd < 0)) { 1739 err = newfd; 1740 sock_release(newsock); 1741 goto out_put; 1742 } 1743 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1744 if (IS_ERR(newfile)) { 1745 err = PTR_ERR(newfile); 1746 put_unused_fd(newfd); 1747 goto out_put; 1748 } 1749 1750 err = security_socket_accept(sock, newsock); 1751 if (err) 1752 goto out_fd; 1753 1754 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1755 if (err < 0) 1756 goto out_fd; 1757 1758 if (upeer_sockaddr) { 1759 len = newsock->ops->getname(newsock, 1760 (struct sockaddr *)&address, 2); 1761 if (len < 0) { 1762 err = -ECONNABORTED; 1763 goto out_fd; 1764 } 1765 err = move_addr_to_user(&address, 1766 len, upeer_sockaddr, upeer_addrlen); 1767 if (err < 0) 1768 goto out_fd; 1769 } 1770 1771 /* File flags are not inherited via accept() unlike another OSes. */ 1772 1773 fd_install(newfd, newfile); 1774 err = newfd; 1775 1776 out_put: 1777 fput_light(sock->file, fput_needed); 1778 out: 1779 return err; 1780 out_fd: 1781 fput(newfile); 1782 put_unused_fd(newfd); 1783 goto out_put; 1784 } 1785 1786 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1787 int __user *, upeer_addrlen, int, flags) 1788 { 1789 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1790 } 1791 1792 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1793 int __user *, upeer_addrlen) 1794 { 1795 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1796 } 1797 1798 /* 1799 * Attempt to connect to a socket with the server address. The address 1800 * is in user space so we verify it is OK and move it to kernel space. 1801 * 1802 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1803 * break bindings 1804 * 1805 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1806 * other SEQPACKET protocols that take time to connect() as it doesn't 1807 * include the -EINPROGRESS status for such sockets. 1808 */ 1809 1810 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1811 { 1812 struct socket *sock; 1813 struct sockaddr_storage address; 1814 int err, fput_needed; 1815 1816 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1817 if (!sock) 1818 goto out; 1819 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1820 if (err < 0) 1821 goto out_put; 1822 1823 err = 1824 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1825 if (err) 1826 goto out_put; 1827 1828 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1829 sock->file->f_flags); 1830 out_put: 1831 fput_light(sock->file, fput_needed); 1832 out: 1833 return err; 1834 } 1835 1836 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1837 int, addrlen) 1838 { 1839 return __sys_connect(fd, uservaddr, addrlen); 1840 } 1841 1842 /* 1843 * Get the local address ('name') of a socket object. Move the obtained 1844 * name to user space. 1845 */ 1846 1847 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1848 int __user *usockaddr_len) 1849 { 1850 struct socket *sock; 1851 struct sockaddr_storage address; 1852 int err, fput_needed; 1853 1854 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1855 if (!sock) 1856 goto out; 1857 1858 err = security_socket_getsockname(sock); 1859 if (err) 1860 goto out_put; 1861 1862 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1863 if (err < 0) 1864 goto out_put; 1865 /* "err" is actually length in this case */ 1866 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1867 1868 out_put: 1869 fput_light(sock->file, fput_needed); 1870 out: 1871 return err; 1872 } 1873 1874 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1875 int __user *, usockaddr_len) 1876 { 1877 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1878 } 1879 1880 /* 1881 * Get the remote address ('name') of a socket object. Move the obtained 1882 * name to user space. 1883 */ 1884 1885 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1886 int __user *usockaddr_len) 1887 { 1888 struct socket *sock; 1889 struct sockaddr_storage address; 1890 int err, fput_needed; 1891 1892 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1893 if (sock != NULL) { 1894 err = security_socket_getpeername(sock); 1895 if (err) { 1896 fput_light(sock->file, fput_needed); 1897 return err; 1898 } 1899 1900 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1901 if (err >= 0) 1902 /* "err" is actually length in this case */ 1903 err = move_addr_to_user(&address, err, usockaddr, 1904 usockaddr_len); 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1911 int __user *, usockaddr_len) 1912 { 1913 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1914 } 1915 1916 /* 1917 * Send a datagram to a given address. We move the address into kernel 1918 * space and check the user space data area is readable before invoking 1919 * the protocol. 1920 */ 1921 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1922 struct sockaddr __user *addr, int addr_len) 1923 { 1924 struct socket *sock; 1925 struct sockaddr_storage address; 1926 int err; 1927 struct msghdr msg; 1928 struct iovec iov; 1929 int fput_needed; 1930 1931 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1932 if (unlikely(err)) 1933 return err; 1934 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1935 if (!sock) 1936 goto out; 1937 1938 msg.msg_name = NULL; 1939 msg.msg_control = NULL; 1940 msg.msg_controllen = 0; 1941 msg.msg_namelen = 0; 1942 if (addr) { 1943 err = move_addr_to_kernel(addr, addr_len, &address); 1944 if (err < 0) 1945 goto out_put; 1946 msg.msg_name = (struct sockaddr *)&address; 1947 msg.msg_namelen = addr_len; 1948 } 1949 if (sock->file->f_flags & O_NONBLOCK) 1950 flags |= MSG_DONTWAIT; 1951 msg.msg_flags = flags; 1952 err = sock_sendmsg(sock, &msg); 1953 1954 out_put: 1955 fput_light(sock->file, fput_needed); 1956 out: 1957 return err; 1958 } 1959 1960 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1961 unsigned int, flags, struct sockaddr __user *, addr, 1962 int, addr_len) 1963 { 1964 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1965 } 1966 1967 /* 1968 * Send a datagram down a socket. 1969 */ 1970 1971 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1972 unsigned int, flags) 1973 { 1974 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1975 } 1976 1977 /* 1978 * Receive a frame from the socket and optionally record the address of the 1979 * sender. We verify the buffers are writable and if needed move the 1980 * sender address from kernel to user space. 1981 */ 1982 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1983 struct sockaddr __user *addr, int __user *addr_len) 1984 { 1985 struct socket *sock; 1986 struct iovec iov; 1987 struct msghdr msg; 1988 struct sockaddr_storage address; 1989 int err, err2; 1990 int fput_needed; 1991 1992 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1993 if (unlikely(err)) 1994 return err; 1995 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1996 if (!sock) 1997 goto out; 1998 1999 msg.msg_control = NULL; 2000 msg.msg_controllen = 0; 2001 /* Save some cycles and don't copy the address if not needed */ 2002 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2003 /* We assume all kernel code knows the size of sockaddr_storage */ 2004 msg.msg_namelen = 0; 2005 msg.msg_iocb = NULL; 2006 msg.msg_flags = 0; 2007 if (sock->file->f_flags & O_NONBLOCK) 2008 flags |= MSG_DONTWAIT; 2009 err = sock_recvmsg(sock, &msg, flags); 2010 2011 if (err >= 0 && addr != NULL) { 2012 err2 = move_addr_to_user(&address, 2013 msg.msg_namelen, addr, addr_len); 2014 if (err2 < 0) 2015 err = err2; 2016 } 2017 2018 fput_light(sock->file, fput_needed); 2019 out: 2020 return err; 2021 } 2022 2023 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2024 unsigned int, flags, struct sockaddr __user *, addr, 2025 int __user *, addr_len) 2026 { 2027 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2028 } 2029 2030 /* 2031 * Receive a datagram from a socket. 2032 */ 2033 2034 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2035 unsigned int, flags) 2036 { 2037 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2038 } 2039 2040 /* 2041 * Set a socket option. Because we don't know the option lengths we have 2042 * to pass the user mode parameter for the protocols to sort out. 2043 */ 2044 2045 static int __sys_setsockopt(int fd, int level, int optname, 2046 char __user *optval, int optlen) 2047 { 2048 mm_segment_t oldfs = get_fs(); 2049 char *kernel_optval = NULL; 2050 int err, fput_needed; 2051 struct socket *sock; 2052 2053 if (optlen < 0) 2054 return -EINVAL; 2055 2056 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2057 if (sock != NULL) { 2058 err = security_socket_setsockopt(sock, level, optname); 2059 if (err) 2060 goto out_put; 2061 2062 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2063 &optname, optval, &optlen, 2064 &kernel_optval); 2065 2066 if (err < 0) { 2067 goto out_put; 2068 } else if (err > 0) { 2069 err = 0; 2070 goto out_put; 2071 } 2072 2073 if (kernel_optval) { 2074 set_fs(KERNEL_DS); 2075 optval = (char __user __force *)kernel_optval; 2076 } 2077 2078 if (level == SOL_SOCKET) 2079 err = 2080 sock_setsockopt(sock, level, optname, optval, 2081 optlen); 2082 else 2083 err = 2084 sock->ops->setsockopt(sock, level, optname, optval, 2085 optlen); 2086 2087 if (kernel_optval) { 2088 set_fs(oldfs); 2089 kfree(kernel_optval); 2090 } 2091 out_put: 2092 fput_light(sock->file, fput_needed); 2093 } 2094 return err; 2095 } 2096 2097 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2098 char __user *, optval, int, optlen) 2099 { 2100 return __sys_setsockopt(fd, level, optname, optval, optlen); 2101 } 2102 2103 /* 2104 * Get a socket option. Because we don't know the option lengths we have 2105 * to pass a user mode parameter for the protocols to sort out. 2106 */ 2107 2108 static int __sys_getsockopt(int fd, int level, int optname, 2109 char __user *optval, int __user *optlen) 2110 { 2111 int err, fput_needed; 2112 struct socket *sock; 2113 int max_optlen; 2114 2115 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2116 if (sock != NULL) { 2117 err = security_socket_getsockopt(sock, level, optname); 2118 if (err) 2119 goto out_put; 2120 2121 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2122 2123 if (level == SOL_SOCKET) 2124 err = 2125 sock_getsockopt(sock, level, optname, optval, 2126 optlen); 2127 else 2128 err = 2129 sock->ops->getsockopt(sock, level, optname, optval, 2130 optlen); 2131 2132 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2133 optval, optlen, 2134 max_optlen, err); 2135 out_put: 2136 fput_light(sock->file, fput_needed); 2137 } 2138 return err; 2139 } 2140 2141 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2142 char __user *, optval, int __user *, optlen) 2143 { 2144 return __sys_getsockopt(fd, level, optname, optval, optlen); 2145 } 2146 2147 /* 2148 * Shutdown a socket. 2149 */ 2150 2151 int __sys_shutdown(int fd, int how) 2152 { 2153 int err, fput_needed; 2154 struct socket *sock; 2155 2156 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2157 if (sock != NULL) { 2158 err = security_socket_shutdown(sock, how); 2159 if (!err) 2160 err = sock->ops->shutdown(sock, how); 2161 fput_light(sock->file, fput_needed); 2162 } 2163 return err; 2164 } 2165 2166 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2167 { 2168 return __sys_shutdown(fd, how); 2169 } 2170 2171 /* A couple of helpful macros for getting the address of the 32/64 bit 2172 * fields which are the same type (int / unsigned) on our platforms. 2173 */ 2174 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2175 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2176 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2177 2178 struct used_address { 2179 struct sockaddr_storage name; 2180 unsigned int name_len; 2181 }; 2182 2183 static int copy_msghdr_from_user(struct msghdr *kmsg, 2184 struct user_msghdr __user *umsg, 2185 struct sockaddr __user **save_addr, 2186 struct iovec **iov) 2187 { 2188 struct user_msghdr msg; 2189 ssize_t err; 2190 2191 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2192 return -EFAULT; 2193 2194 kmsg->msg_control = (void __force *)msg.msg_control; 2195 kmsg->msg_controllen = msg.msg_controllen; 2196 kmsg->msg_flags = msg.msg_flags; 2197 2198 kmsg->msg_namelen = msg.msg_namelen; 2199 if (!msg.msg_name) 2200 kmsg->msg_namelen = 0; 2201 2202 if (kmsg->msg_namelen < 0) 2203 return -EINVAL; 2204 2205 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2206 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2207 2208 if (save_addr) 2209 *save_addr = msg.msg_name; 2210 2211 if (msg.msg_name && kmsg->msg_namelen) { 2212 if (!save_addr) { 2213 err = move_addr_to_kernel(msg.msg_name, 2214 kmsg->msg_namelen, 2215 kmsg->msg_name); 2216 if (err < 0) 2217 return err; 2218 } 2219 } else { 2220 kmsg->msg_name = NULL; 2221 kmsg->msg_namelen = 0; 2222 } 2223 2224 if (msg.msg_iovlen > UIO_MAXIOV) 2225 return -EMSGSIZE; 2226 2227 kmsg->msg_iocb = NULL; 2228 2229 err = import_iovec(save_addr ? READ : WRITE, 2230 msg.msg_iov, msg.msg_iovlen, 2231 UIO_FASTIOV, iov, &kmsg->msg_iter); 2232 return err < 0 ? err : 0; 2233 } 2234 2235 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2236 struct msghdr *msg_sys, unsigned int flags, 2237 struct used_address *used_address, 2238 unsigned int allowed_msghdr_flags) 2239 { 2240 struct compat_msghdr __user *msg_compat = 2241 (struct compat_msghdr __user *)msg; 2242 struct sockaddr_storage address; 2243 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2244 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2245 __aligned(sizeof(__kernel_size_t)); 2246 /* 20 is size of ipv6_pktinfo */ 2247 unsigned char *ctl_buf = ctl; 2248 int ctl_len; 2249 ssize_t err; 2250 2251 msg_sys->msg_name = &address; 2252 2253 if (MSG_CMSG_COMPAT & flags) 2254 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2255 else 2256 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2257 if (err < 0) 2258 return err; 2259 2260 err = -ENOBUFS; 2261 2262 if (msg_sys->msg_controllen > INT_MAX) 2263 goto out_freeiov; 2264 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2265 ctl_len = msg_sys->msg_controllen; 2266 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2267 err = 2268 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2269 sizeof(ctl)); 2270 if (err) 2271 goto out_freeiov; 2272 ctl_buf = msg_sys->msg_control; 2273 ctl_len = msg_sys->msg_controllen; 2274 } else if (ctl_len) { 2275 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2276 CMSG_ALIGN(sizeof(struct cmsghdr))); 2277 if (ctl_len > sizeof(ctl)) { 2278 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2279 if (ctl_buf == NULL) 2280 goto out_freeiov; 2281 } 2282 err = -EFAULT; 2283 /* 2284 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2285 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2286 * checking falls down on this. 2287 */ 2288 if (copy_from_user(ctl_buf, 2289 (void __user __force *)msg_sys->msg_control, 2290 ctl_len)) 2291 goto out_freectl; 2292 msg_sys->msg_control = ctl_buf; 2293 } 2294 msg_sys->msg_flags = flags; 2295 2296 if (sock->file->f_flags & O_NONBLOCK) 2297 msg_sys->msg_flags |= MSG_DONTWAIT; 2298 /* 2299 * If this is sendmmsg() and current destination address is same as 2300 * previously succeeded address, omit asking LSM's decision. 2301 * used_address->name_len is initialized to UINT_MAX so that the first 2302 * destination address never matches. 2303 */ 2304 if (used_address && msg_sys->msg_name && 2305 used_address->name_len == msg_sys->msg_namelen && 2306 !memcmp(&used_address->name, msg_sys->msg_name, 2307 used_address->name_len)) { 2308 err = sock_sendmsg_nosec(sock, msg_sys); 2309 goto out_freectl; 2310 } 2311 err = sock_sendmsg(sock, msg_sys); 2312 /* 2313 * If this is sendmmsg() and sending to current destination address was 2314 * successful, remember it. 2315 */ 2316 if (used_address && err >= 0) { 2317 used_address->name_len = msg_sys->msg_namelen; 2318 if (msg_sys->msg_name) 2319 memcpy(&used_address->name, msg_sys->msg_name, 2320 used_address->name_len); 2321 } 2322 2323 out_freectl: 2324 if (ctl_buf != ctl) 2325 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2326 out_freeiov: 2327 kfree(iov); 2328 return err; 2329 } 2330 2331 /* 2332 * BSD sendmsg interface 2333 */ 2334 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg, 2335 unsigned int flags) 2336 { 2337 struct msghdr msg_sys; 2338 2339 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2340 } 2341 2342 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2343 bool forbid_cmsg_compat) 2344 { 2345 int fput_needed, err; 2346 struct msghdr msg_sys; 2347 struct socket *sock; 2348 2349 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2350 return -EINVAL; 2351 2352 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2353 if (!sock) 2354 goto out; 2355 2356 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2357 2358 fput_light(sock->file, fput_needed); 2359 out: 2360 return err; 2361 } 2362 2363 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2364 { 2365 return __sys_sendmsg(fd, msg, flags, true); 2366 } 2367 2368 /* 2369 * Linux sendmmsg interface 2370 */ 2371 2372 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2373 unsigned int flags, bool forbid_cmsg_compat) 2374 { 2375 int fput_needed, err, datagrams; 2376 struct socket *sock; 2377 struct mmsghdr __user *entry; 2378 struct compat_mmsghdr __user *compat_entry; 2379 struct msghdr msg_sys; 2380 struct used_address used_address; 2381 unsigned int oflags = flags; 2382 2383 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2384 return -EINVAL; 2385 2386 if (vlen > UIO_MAXIOV) 2387 vlen = UIO_MAXIOV; 2388 2389 datagrams = 0; 2390 2391 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2392 if (!sock) 2393 return err; 2394 2395 used_address.name_len = UINT_MAX; 2396 entry = mmsg; 2397 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2398 err = 0; 2399 flags |= MSG_BATCH; 2400 2401 while (datagrams < vlen) { 2402 if (datagrams == vlen - 1) 2403 flags = oflags; 2404 2405 if (MSG_CMSG_COMPAT & flags) { 2406 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2407 &msg_sys, flags, &used_address, MSG_EOR); 2408 if (err < 0) 2409 break; 2410 err = __put_user(err, &compat_entry->msg_len); 2411 ++compat_entry; 2412 } else { 2413 err = ___sys_sendmsg(sock, 2414 (struct user_msghdr __user *)entry, 2415 &msg_sys, flags, &used_address, MSG_EOR); 2416 if (err < 0) 2417 break; 2418 err = put_user(err, &entry->msg_len); 2419 ++entry; 2420 } 2421 2422 if (err) 2423 break; 2424 ++datagrams; 2425 if (msg_data_left(&msg_sys)) 2426 break; 2427 cond_resched(); 2428 } 2429 2430 fput_light(sock->file, fput_needed); 2431 2432 /* We only return an error if no datagrams were able to be sent */ 2433 if (datagrams != 0) 2434 return datagrams; 2435 2436 return err; 2437 } 2438 2439 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2440 unsigned int, vlen, unsigned int, flags) 2441 { 2442 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2443 } 2444 2445 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2446 struct msghdr *msg_sys, unsigned int flags, int nosec) 2447 { 2448 struct compat_msghdr __user *msg_compat = 2449 (struct compat_msghdr __user *)msg; 2450 struct iovec iovstack[UIO_FASTIOV]; 2451 struct iovec *iov = iovstack; 2452 unsigned long cmsg_ptr; 2453 int len; 2454 ssize_t err; 2455 2456 /* kernel mode address */ 2457 struct sockaddr_storage addr; 2458 2459 /* user mode address pointers */ 2460 struct sockaddr __user *uaddr; 2461 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2462 2463 msg_sys->msg_name = &addr; 2464 2465 if (MSG_CMSG_COMPAT & flags) 2466 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2467 else 2468 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2469 if (err < 0) 2470 return err; 2471 2472 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2473 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2474 2475 /* We assume all kernel code knows the size of sockaddr_storage */ 2476 msg_sys->msg_namelen = 0; 2477 2478 if (sock->file->f_flags & O_NONBLOCK) 2479 flags |= MSG_DONTWAIT; 2480 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2481 if (err < 0) 2482 goto out_freeiov; 2483 len = err; 2484 2485 if (uaddr != NULL) { 2486 err = move_addr_to_user(&addr, 2487 msg_sys->msg_namelen, uaddr, 2488 uaddr_len); 2489 if (err < 0) 2490 goto out_freeiov; 2491 } 2492 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2493 COMPAT_FLAGS(msg)); 2494 if (err) 2495 goto out_freeiov; 2496 if (MSG_CMSG_COMPAT & flags) 2497 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2498 &msg_compat->msg_controllen); 2499 else 2500 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2501 &msg->msg_controllen); 2502 if (err) 2503 goto out_freeiov; 2504 err = len; 2505 2506 out_freeiov: 2507 kfree(iov); 2508 return err; 2509 } 2510 2511 /* 2512 * BSD recvmsg interface 2513 */ 2514 2515 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg, 2516 unsigned int flags) 2517 { 2518 struct msghdr msg_sys; 2519 2520 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2521 } 2522 2523 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2524 bool forbid_cmsg_compat) 2525 { 2526 int fput_needed, err; 2527 struct msghdr msg_sys; 2528 struct socket *sock; 2529 2530 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2531 return -EINVAL; 2532 2533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2534 if (!sock) 2535 goto out; 2536 2537 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2538 2539 fput_light(sock->file, fput_needed); 2540 out: 2541 return err; 2542 } 2543 2544 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2545 unsigned int, flags) 2546 { 2547 return __sys_recvmsg(fd, msg, flags, true); 2548 } 2549 2550 /* 2551 * Linux recvmmsg interface 2552 */ 2553 2554 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2555 unsigned int vlen, unsigned int flags, 2556 struct timespec64 *timeout) 2557 { 2558 int fput_needed, err, datagrams; 2559 struct socket *sock; 2560 struct mmsghdr __user *entry; 2561 struct compat_mmsghdr __user *compat_entry; 2562 struct msghdr msg_sys; 2563 struct timespec64 end_time; 2564 struct timespec64 timeout64; 2565 2566 if (timeout && 2567 poll_select_set_timeout(&end_time, timeout->tv_sec, 2568 timeout->tv_nsec)) 2569 return -EINVAL; 2570 2571 datagrams = 0; 2572 2573 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2574 if (!sock) 2575 return err; 2576 2577 if (likely(!(flags & MSG_ERRQUEUE))) { 2578 err = sock_error(sock->sk); 2579 if (err) { 2580 datagrams = err; 2581 goto out_put; 2582 } 2583 } 2584 2585 entry = mmsg; 2586 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2587 2588 while (datagrams < vlen) { 2589 /* 2590 * No need to ask LSM for more than the first datagram. 2591 */ 2592 if (MSG_CMSG_COMPAT & flags) { 2593 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2594 &msg_sys, flags & ~MSG_WAITFORONE, 2595 datagrams); 2596 if (err < 0) 2597 break; 2598 err = __put_user(err, &compat_entry->msg_len); 2599 ++compat_entry; 2600 } else { 2601 err = ___sys_recvmsg(sock, 2602 (struct user_msghdr __user *)entry, 2603 &msg_sys, flags & ~MSG_WAITFORONE, 2604 datagrams); 2605 if (err < 0) 2606 break; 2607 err = put_user(err, &entry->msg_len); 2608 ++entry; 2609 } 2610 2611 if (err) 2612 break; 2613 ++datagrams; 2614 2615 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2616 if (flags & MSG_WAITFORONE) 2617 flags |= MSG_DONTWAIT; 2618 2619 if (timeout) { 2620 ktime_get_ts64(&timeout64); 2621 *timeout = timespec64_sub(end_time, timeout64); 2622 if (timeout->tv_sec < 0) { 2623 timeout->tv_sec = timeout->tv_nsec = 0; 2624 break; 2625 } 2626 2627 /* Timeout, return less than vlen datagrams */ 2628 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2629 break; 2630 } 2631 2632 /* Out of band data, return right away */ 2633 if (msg_sys.msg_flags & MSG_OOB) 2634 break; 2635 cond_resched(); 2636 } 2637 2638 if (err == 0) 2639 goto out_put; 2640 2641 if (datagrams == 0) { 2642 datagrams = err; 2643 goto out_put; 2644 } 2645 2646 /* 2647 * We may return less entries than requested (vlen) if the 2648 * sock is non block and there aren't enough datagrams... 2649 */ 2650 if (err != -EAGAIN) { 2651 /* 2652 * ... or if recvmsg returns an error after we 2653 * received some datagrams, where we record the 2654 * error to return on the next call or if the 2655 * app asks about it using getsockopt(SO_ERROR). 2656 */ 2657 sock->sk->sk_err = -err; 2658 } 2659 out_put: 2660 fput_light(sock->file, fput_needed); 2661 2662 return datagrams; 2663 } 2664 2665 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2666 unsigned int vlen, unsigned int flags, 2667 struct __kernel_timespec __user *timeout, 2668 struct old_timespec32 __user *timeout32) 2669 { 2670 int datagrams; 2671 struct timespec64 timeout_sys; 2672 2673 if (timeout && get_timespec64(&timeout_sys, timeout)) 2674 return -EFAULT; 2675 2676 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2677 return -EFAULT; 2678 2679 if (!timeout && !timeout32) 2680 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2681 2682 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2683 2684 if (datagrams <= 0) 2685 return datagrams; 2686 2687 if (timeout && put_timespec64(&timeout_sys, timeout)) 2688 datagrams = -EFAULT; 2689 2690 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2691 datagrams = -EFAULT; 2692 2693 return datagrams; 2694 } 2695 2696 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2697 unsigned int, vlen, unsigned int, flags, 2698 struct __kernel_timespec __user *, timeout) 2699 { 2700 if (flags & MSG_CMSG_COMPAT) 2701 return -EINVAL; 2702 2703 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2704 } 2705 2706 #ifdef CONFIG_COMPAT_32BIT_TIME 2707 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2708 unsigned int, vlen, unsigned int, flags, 2709 struct old_timespec32 __user *, timeout) 2710 { 2711 if (flags & MSG_CMSG_COMPAT) 2712 return -EINVAL; 2713 2714 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2715 } 2716 #endif 2717 2718 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2719 /* Argument list sizes for sys_socketcall */ 2720 #define AL(x) ((x) * sizeof(unsigned long)) 2721 static const unsigned char nargs[21] = { 2722 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2723 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2724 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2725 AL(4), AL(5), AL(4) 2726 }; 2727 2728 #undef AL 2729 2730 /* 2731 * System call vectors. 2732 * 2733 * Argument checking cleaned up. Saved 20% in size. 2734 * This function doesn't need to set the kernel lock because 2735 * it is set by the callees. 2736 */ 2737 2738 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2739 { 2740 unsigned long a[AUDITSC_ARGS]; 2741 unsigned long a0, a1; 2742 int err; 2743 unsigned int len; 2744 2745 if (call < 1 || call > SYS_SENDMMSG) 2746 return -EINVAL; 2747 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2748 2749 len = nargs[call]; 2750 if (len > sizeof(a)) 2751 return -EINVAL; 2752 2753 /* copy_from_user should be SMP safe. */ 2754 if (copy_from_user(a, args, len)) 2755 return -EFAULT; 2756 2757 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2758 if (err) 2759 return err; 2760 2761 a0 = a[0]; 2762 a1 = a[1]; 2763 2764 switch (call) { 2765 case SYS_SOCKET: 2766 err = __sys_socket(a0, a1, a[2]); 2767 break; 2768 case SYS_BIND: 2769 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2770 break; 2771 case SYS_CONNECT: 2772 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2773 break; 2774 case SYS_LISTEN: 2775 err = __sys_listen(a0, a1); 2776 break; 2777 case SYS_ACCEPT: 2778 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2779 (int __user *)a[2], 0); 2780 break; 2781 case SYS_GETSOCKNAME: 2782 err = 2783 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2784 (int __user *)a[2]); 2785 break; 2786 case SYS_GETPEERNAME: 2787 err = 2788 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2789 (int __user *)a[2]); 2790 break; 2791 case SYS_SOCKETPAIR: 2792 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2793 break; 2794 case SYS_SEND: 2795 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2796 NULL, 0); 2797 break; 2798 case SYS_SENDTO: 2799 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2800 (struct sockaddr __user *)a[4], a[5]); 2801 break; 2802 case SYS_RECV: 2803 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2804 NULL, NULL); 2805 break; 2806 case SYS_RECVFROM: 2807 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2808 (struct sockaddr __user *)a[4], 2809 (int __user *)a[5]); 2810 break; 2811 case SYS_SHUTDOWN: 2812 err = __sys_shutdown(a0, a1); 2813 break; 2814 case SYS_SETSOCKOPT: 2815 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2816 a[4]); 2817 break; 2818 case SYS_GETSOCKOPT: 2819 err = 2820 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2821 (int __user *)a[4]); 2822 break; 2823 case SYS_SENDMSG: 2824 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2825 a[2], true); 2826 break; 2827 case SYS_SENDMMSG: 2828 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2829 a[3], true); 2830 break; 2831 case SYS_RECVMSG: 2832 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2833 a[2], true); 2834 break; 2835 case SYS_RECVMMSG: 2836 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2837 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2838 a[2], a[3], 2839 (struct __kernel_timespec __user *)a[4], 2840 NULL); 2841 else 2842 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2843 a[2], a[3], NULL, 2844 (struct old_timespec32 __user *)a[4]); 2845 break; 2846 case SYS_ACCEPT4: 2847 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2848 (int __user *)a[2], a[3]); 2849 break; 2850 default: 2851 err = -EINVAL; 2852 break; 2853 } 2854 return err; 2855 } 2856 2857 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2858 2859 /** 2860 * sock_register - add a socket protocol handler 2861 * @ops: description of protocol 2862 * 2863 * This function is called by a protocol handler that wants to 2864 * advertise its address family, and have it linked into the 2865 * socket interface. The value ops->family corresponds to the 2866 * socket system call protocol family. 2867 */ 2868 int sock_register(const struct net_proto_family *ops) 2869 { 2870 int err; 2871 2872 if (ops->family >= NPROTO) { 2873 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2874 return -ENOBUFS; 2875 } 2876 2877 spin_lock(&net_family_lock); 2878 if (rcu_dereference_protected(net_families[ops->family], 2879 lockdep_is_held(&net_family_lock))) 2880 err = -EEXIST; 2881 else { 2882 rcu_assign_pointer(net_families[ops->family], ops); 2883 err = 0; 2884 } 2885 spin_unlock(&net_family_lock); 2886 2887 pr_info("NET: Registered protocol family %d\n", ops->family); 2888 return err; 2889 } 2890 EXPORT_SYMBOL(sock_register); 2891 2892 /** 2893 * sock_unregister - remove a protocol handler 2894 * @family: protocol family to remove 2895 * 2896 * This function is called by a protocol handler that wants to 2897 * remove its address family, and have it unlinked from the 2898 * new socket creation. 2899 * 2900 * If protocol handler is a module, then it can use module reference 2901 * counts to protect against new references. If protocol handler is not 2902 * a module then it needs to provide its own protection in 2903 * the ops->create routine. 2904 */ 2905 void sock_unregister(int family) 2906 { 2907 BUG_ON(family < 0 || family >= NPROTO); 2908 2909 spin_lock(&net_family_lock); 2910 RCU_INIT_POINTER(net_families[family], NULL); 2911 spin_unlock(&net_family_lock); 2912 2913 synchronize_rcu(); 2914 2915 pr_info("NET: Unregistered protocol family %d\n", family); 2916 } 2917 EXPORT_SYMBOL(sock_unregister); 2918 2919 bool sock_is_registered(int family) 2920 { 2921 return family < NPROTO && rcu_access_pointer(net_families[family]); 2922 } 2923 2924 static int __init sock_init(void) 2925 { 2926 int err; 2927 /* 2928 * Initialize the network sysctl infrastructure. 2929 */ 2930 err = net_sysctl_init(); 2931 if (err) 2932 goto out; 2933 2934 /* 2935 * Initialize skbuff SLAB cache 2936 */ 2937 skb_init(); 2938 2939 /* 2940 * Initialize the protocols module. 2941 */ 2942 2943 init_inodecache(); 2944 2945 err = register_filesystem(&sock_fs_type); 2946 if (err) 2947 goto out_fs; 2948 sock_mnt = kern_mount(&sock_fs_type); 2949 if (IS_ERR(sock_mnt)) { 2950 err = PTR_ERR(sock_mnt); 2951 goto out_mount; 2952 } 2953 2954 /* The real protocol initialization is performed in later initcalls. 2955 */ 2956 2957 #ifdef CONFIG_NETFILTER 2958 err = netfilter_init(); 2959 if (err) 2960 goto out; 2961 #endif 2962 2963 ptp_classifier_init(); 2964 2965 out: 2966 return err; 2967 2968 out_mount: 2969 unregister_filesystem(&sock_fs_type); 2970 out_fs: 2971 goto out; 2972 } 2973 2974 core_initcall(sock_init); /* early initcall */ 2975 2976 #ifdef CONFIG_PROC_FS 2977 void socket_seq_show(struct seq_file *seq) 2978 { 2979 seq_printf(seq, "sockets: used %d\n", 2980 sock_inuse_get(seq->private)); 2981 } 2982 #endif /* CONFIG_PROC_FS */ 2983 2984 #ifdef CONFIG_COMPAT 2985 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2986 { 2987 struct compat_ifconf ifc32; 2988 struct ifconf ifc; 2989 int err; 2990 2991 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2992 return -EFAULT; 2993 2994 ifc.ifc_len = ifc32.ifc_len; 2995 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2996 2997 rtnl_lock(); 2998 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2999 rtnl_unlock(); 3000 if (err) 3001 return err; 3002 3003 ifc32.ifc_len = ifc.ifc_len; 3004 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3005 return -EFAULT; 3006 3007 return 0; 3008 } 3009 3010 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3011 { 3012 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3013 bool convert_in = false, convert_out = false; 3014 size_t buf_size = 0; 3015 struct ethtool_rxnfc __user *rxnfc = NULL; 3016 struct ifreq ifr; 3017 u32 rule_cnt = 0, actual_rule_cnt; 3018 u32 ethcmd; 3019 u32 data; 3020 int ret; 3021 3022 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3023 return -EFAULT; 3024 3025 compat_rxnfc = compat_ptr(data); 3026 3027 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3028 return -EFAULT; 3029 3030 /* Most ethtool structures are defined without padding. 3031 * Unfortunately struct ethtool_rxnfc is an exception. 3032 */ 3033 switch (ethcmd) { 3034 default: 3035 break; 3036 case ETHTOOL_GRXCLSRLALL: 3037 /* Buffer size is variable */ 3038 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3039 return -EFAULT; 3040 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3041 return -ENOMEM; 3042 buf_size += rule_cnt * sizeof(u32); 3043 /* fall through */ 3044 case ETHTOOL_GRXRINGS: 3045 case ETHTOOL_GRXCLSRLCNT: 3046 case ETHTOOL_GRXCLSRULE: 3047 case ETHTOOL_SRXCLSRLINS: 3048 convert_out = true; 3049 /* fall through */ 3050 case ETHTOOL_SRXCLSRLDEL: 3051 buf_size += sizeof(struct ethtool_rxnfc); 3052 convert_in = true; 3053 rxnfc = compat_alloc_user_space(buf_size); 3054 break; 3055 } 3056 3057 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3058 return -EFAULT; 3059 3060 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3061 3062 if (convert_in) { 3063 /* We expect there to be holes between fs.m_ext and 3064 * fs.ring_cookie and at the end of fs, but nowhere else. 3065 */ 3066 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3067 sizeof(compat_rxnfc->fs.m_ext) != 3068 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3069 sizeof(rxnfc->fs.m_ext)); 3070 BUILD_BUG_ON( 3071 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3072 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3073 offsetof(struct ethtool_rxnfc, fs.location) - 3074 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3075 3076 if (copy_in_user(rxnfc, compat_rxnfc, 3077 (void __user *)(&rxnfc->fs.m_ext + 1) - 3078 (void __user *)rxnfc) || 3079 copy_in_user(&rxnfc->fs.ring_cookie, 3080 &compat_rxnfc->fs.ring_cookie, 3081 (void __user *)(&rxnfc->fs.location + 1) - 3082 (void __user *)&rxnfc->fs.ring_cookie)) 3083 return -EFAULT; 3084 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3085 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3086 return -EFAULT; 3087 } else if (copy_in_user(&rxnfc->rule_cnt, 3088 &compat_rxnfc->rule_cnt, 3089 sizeof(rxnfc->rule_cnt))) 3090 return -EFAULT; 3091 } 3092 3093 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3094 if (ret) 3095 return ret; 3096 3097 if (convert_out) { 3098 if (copy_in_user(compat_rxnfc, rxnfc, 3099 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3100 (const void __user *)rxnfc) || 3101 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3102 &rxnfc->fs.ring_cookie, 3103 (const void __user *)(&rxnfc->fs.location + 1) - 3104 (const void __user *)&rxnfc->fs.ring_cookie) || 3105 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3106 sizeof(rxnfc->rule_cnt))) 3107 return -EFAULT; 3108 3109 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3110 /* As an optimisation, we only copy the actual 3111 * number of rules that the underlying 3112 * function returned. Since Mallory might 3113 * change the rule count in user memory, we 3114 * check that it is less than the rule count 3115 * originally given (as the user buffer size), 3116 * which has been range-checked. 3117 */ 3118 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3119 return -EFAULT; 3120 if (actual_rule_cnt < rule_cnt) 3121 rule_cnt = actual_rule_cnt; 3122 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3123 &rxnfc->rule_locs[0], 3124 rule_cnt * sizeof(u32))) 3125 return -EFAULT; 3126 } 3127 } 3128 3129 return 0; 3130 } 3131 3132 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3133 { 3134 compat_uptr_t uptr32; 3135 struct ifreq ifr; 3136 void __user *saved; 3137 int err; 3138 3139 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3140 return -EFAULT; 3141 3142 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3143 return -EFAULT; 3144 3145 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3146 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3147 3148 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3149 if (!err) { 3150 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3151 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3152 err = -EFAULT; 3153 } 3154 return err; 3155 } 3156 3157 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3158 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3159 struct compat_ifreq __user *u_ifreq32) 3160 { 3161 struct ifreq ifreq; 3162 u32 data32; 3163 3164 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3165 return -EFAULT; 3166 if (get_user(data32, &u_ifreq32->ifr_data)) 3167 return -EFAULT; 3168 ifreq.ifr_data = compat_ptr(data32); 3169 3170 return dev_ioctl(net, cmd, &ifreq, NULL); 3171 } 3172 3173 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3174 unsigned int cmd, 3175 struct compat_ifreq __user *uifr32) 3176 { 3177 struct ifreq __user *uifr; 3178 int err; 3179 3180 /* Handle the fact that while struct ifreq has the same *layout* on 3181 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3182 * which are handled elsewhere, it still has different *size* due to 3183 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3184 * resulting in struct ifreq being 32 and 40 bytes respectively). 3185 * As a result, if the struct happens to be at the end of a page and 3186 * the next page isn't readable/writable, we get a fault. To prevent 3187 * that, copy back and forth to the full size. 3188 */ 3189 3190 uifr = compat_alloc_user_space(sizeof(*uifr)); 3191 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3192 return -EFAULT; 3193 3194 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3195 3196 if (!err) { 3197 switch (cmd) { 3198 case SIOCGIFFLAGS: 3199 case SIOCGIFMETRIC: 3200 case SIOCGIFMTU: 3201 case SIOCGIFMEM: 3202 case SIOCGIFHWADDR: 3203 case SIOCGIFINDEX: 3204 case SIOCGIFADDR: 3205 case SIOCGIFBRDADDR: 3206 case SIOCGIFDSTADDR: 3207 case SIOCGIFNETMASK: 3208 case SIOCGIFPFLAGS: 3209 case SIOCGIFTXQLEN: 3210 case SIOCGMIIPHY: 3211 case SIOCGMIIREG: 3212 case SIOCGIFNAME: 3213 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3214 err = -EFAULT; 3215 break; 3216 } 3217 } 3218 return err; 3219 } 3220 3221 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3222 struct compat_ifreq __user *uifr32) 3223 { 3224 struct ifreq ifr; 3225 struct compat_ifmap __user *uifmap32; 3226 int err; 3227 3228 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3229 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3230 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3231 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3232 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3233 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3234 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3235 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3236 if (err) 3237 return -EFAULT; 3238 3239 err = dev_ioctl(net, cmd, &ifr, NULL); 3240 3241 if (cmd == SIOCGIFMAP && !err) { 3242 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3243 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3244 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3245 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3246 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3247 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3248 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3249 if (err) 3250 err = -EFAULT; 3251 } 3252 return err; 3253 } 3254 3255 struct rtentry32 { 3256 u32 rt_pad1; 3257 struct sockaddr rt_dst; /* target address */ 3258 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3259 struct sockaddr rt_genmask; /* target network mask (IP) */ 3260 unsigned short rt_flags; 3261 short rt_pad2; 3262 u32 rt_pad3; 3263 unsigned char rt_tos; 3264 unsigned char rt_class; 3265 short rt_pad4; 3266 short rt_metric; /* +1 for binary compatibility! */ 3267 /* char * */ u32 rt_dev; /* forcing the device at add */ 3268 u32 rt_mtu; /* per route MTU/Window */ 3269 u32 rt_window; /* Window clamping */ 3270 unsigned short rt_irtt; /* Initial RTT */ 3271 }; 3272 3273 struct in6_rtmsg32 { 3274 struct in6_addr rtmsg_dst; 3275 struct in6_addr rtmsg_src; 3276 struct in6_addr rtmsg_gateway; 3277 u32 rtmsg_type; 3278 u16 rtmsg_dst_len; 3279 u16 rtmsg_src_len; 3280 u32 rtmsg_metric; 3281 u32 rtmsg_info; 3282 u32 rtmsg_flags; 3283 s32 rtmsg_ifindex; 3284 }; 3285 3286 static int routing_ioctl(struct net *net, struct socket *sock, 3287 unsigned int cmd, void __user *argp) 3288 { 3289 int ret; 3290 void *r = NULL; 3291 struct in6_rtmsg r6; 3292 struct rtentry r4; 3293 char devname[16]; 3294 u32 rtdev; 3295 mm_segment_t old_fs = get_fs(); 3296 3297 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3298 struct in6_rtmsg32 __user *ur6 = argp; 3299 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3300 3 * sizeof(struct in6_addr)); 3301 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3302 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3303 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3304 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3305 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3306 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3307 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3308 3309 r = (void *) &r6; 3310 } else { /* ipv4 */ 3311 struct rtentry32 __user *ur4 = argp; 3312 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3313 3 * sizeof(struct sockaddr)); 3314 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3315 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3316 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3317 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3318 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3319 ret |= get_user(rtdev, &(ur4->rt_dev)); 3320 if (rtdev) { 3321 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3322 r4.rt_dev = (char __user __force *)devname; 3323 devname[15] = 0; 3324 } else 3325 r4.rt_dev = NULL; 3326 3327 r = (void *) &r4; 3328 } 3329 3330 if (ret) { 3331 ret = -EFAULT; 3332 goto out; 3333 } 3334 3335 set_fs(KERNEL_DS); 3336 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3337 set_fs(old_fs); 3338 3339 out: 3340 return ret; 3341 } 3342 3343 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3344 * for some operations; this forces use of the newer bridge-utils that 3345 * use compatible ioctls 3346 */ 3347 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3348 { 3349 compat_ulong_t tmp; 3350 3351 if (get_user(tmp, argp)) 3352 return -EFAULT; 3353 if (tmp == BRCTL_GET_VERSION) 3354 return BRCTL_VERSION + 1; 3355 return -EINVAL; 3356 } 3357 3358 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3359 unsigned int cmd, unsigned long arg) 3360 { 3361 void __user *argp = compat_ptr(arg); 3362 struct sock *sk = sock->sk; 3363 struct net *net = sock_net(sk); 3364 3365 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3366 return compat_ifr_data_ioctl(net, cmd, argp); 3367 3368 switch (cmd) { 3369 case SIOCSIFBR: 3370 case SIOCGIFBR: 3371 return old_bridge_ioctl(argp); 3372 case SIOCGIFCONF: 3373 return compat_dev_ifconf(net, argp); 3374 case SIOCETHTOOL: 3375 return ethtool_ioctl(net, argp); 3376 case SIOCWANDEV: 3377 return compat_siocwandev(net, argp); 3378 case SIOCGIFMAP: 3379 case SIOCSIFMAP: 3380 return compat_sioc_ifmap(net, cmd, argp); 3381 case SIOCADDRT: 3382 case SIOCDELRT: 3383 return routing_ioctl(net, sock, cmd, argp); 3384 case SIOCGSTAMP_OLD: 3385 case SIOCGSTAMPNS_OLD: 3386 if (!sock->ops->gettstamp) 3387 return -ENOIOCTLCMD; 3388 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3389 !COMPAT_USE_64BIT_TIME); 3390 3391 case SIOCBONDSLAVEINFOQUERY: 3392 case SIOCBONDINFOQUERY: 3393 case SIOCSHWTSTAMP: 3394 case SIOCGHWTSTAMP: 3395 return compat_ifr_data_ioctl(net, cmd, argp); 3396 3397 case FIOSETOWN: 3398 case SIOCSPGRP: 3399 case FIOGETOWN: 3400 case SIOCGPGRP: 3401 case SIOCBRADDBR: 3402 case SIOCBRDELBR: 3403 case SIOCGIFVLAN: 3404 case SIOCSIFVLAN: 3405 case SIOCADDDLCI: 3406 case SIOCDELDLCI: 3407 case SIOCGSKNS: 3408 case SIOCGSTAMP_NEW: 3409 case SIOCGSTAMPNS_NEW: 3410 return sock_ioctl(file, cmd, arg); 3411 3412 case SIOCGIFFLAGS: 3413 case SIOCSIFFLAGS: 3414 case SIOCGIFMETRIC: 3415 case SIOCSIFMETRIC: 3416 case SIOCGIFMTU: 3417 case SIOCSIFMTU: 3418 case SIOCGIFMEM: 3419 case SIOCSIFMEM: 3420 case SIOCGIFHWADDR: 3421 case SIOCSIFHWADDR: 3422 case SIOCADDMULTI: 3423 case SIOCDELMULTI: 3424 case SIOCGIFINDEX: 3425 case SIOCGIFADDR: 3426 case SIOCSIFADDR: 3427 case SIOCSIFHWBROADCAST: 3428 case SIOCDIFADDR: 3429 case SIOCGIFBRDADDR: 3430 case SIOCSIFBRDADDR: 3431 case SIOCGIFDSTADDR: 3432 case SIOCSIFDSTADDR: 3433 case SIOCGIFNETMASK: 3434 case SIOCSIFNETMASK: 3435 case SIOCSIFPFLAGS: 3436 case SIOCGIFPFLAGS: 3437 case SIOCGIFTXQLEN: 3438 case SIOCSIFTXQLEN: 3439 case SIOCBRADDIF: 3440 case SIOCBRDELIF: 3441 case SIOCGIFNAME: 3442 case SIOCSIFNAME: 3443 case SIOCGMIIPHY: 3444 case SIOCGMIIREG: 3445 case SIOCSMIIREG: 3446 case SIOCBONDENSLAVE: 3447 case SIOCBONDRELEASE: 3448 case SIOCBONDSETHWADDR: 3449 case SIOCBONDCHANGEACTIVE: 3450 return compat_ifreq_ioctl(net, sock, cmd, argp); 3451 3452 case SIOCSARP: 3453 case SIOCGARP: 3454 case SIOCDARP: 3455 case SIOCATMARK: 3456 return sock_do_ioctl(net, sock, cmd, arg); 3457 } 3458 3459 return -ENOIOCTLCMD; 3460 } 3461 3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3463 unsigned long arg) 3464 { 3465 struct socket *sock = file->private_data; 3466 int ret = -ENOIOCTLCMD; 3467 struct sock *sk; 3468 struct net *net; 3469 3470 sk = sock->sk; 3471 net = sock_net(sk); 3472 3473 if (sock->ops->compat_ioctl) 3474 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3475 3476 if (ret == -ENOIOCTLCMD && 3477 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3478 ret = compat_wext_handle_ioctl(net, cmd, arg); 3479 3480 if (ret == -ENOIOCTLCMD) 3481 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3482 3483 return ret; 3484 } 3485 #endif 3486 3487 /** 3488 * kernel_bind - bind an address to a socket (kernel space) 3489 * @sock: socket 3490 * @addr: address 3491 * @addrlen: length of address 3492 * 3493 * Returns 0 or an error. 3494 */ 3495 3496 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3497 { 3498 return sock->ops->bind(sock, addr, addrlen); 3499 } 3500 EXPORT_SYMBOL(kernel_bind); 3501 3502 /** 3503 * kernel_listen - move socket to listening state (kernel space) 3504 * @sock: socket 3505 * @backlog: pending connections queue size 3506 * 3507 * Returns 0 or an error. 3508 */ 3509 3510 int kernel_listen(struct socket *sock, int backlog) 3511 { 3512 return sock->ops->listen(sock, backlog); 3513 } 3514 EXPORT_SYMBOL(kernel_listen); 3515 3516 /** 3517 * kernel_accept - accept a connection (kernel space) 3518 * @sock: listening socket 3519 * @newsock: new connected socket 3520 * @flags: flags 3521 * 3522 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3523 * If it fails, @newsock is guaranteed to be %NULL. 3524 * Returns 0 or an error. 3525 */ 3526 3527 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3528 { 3529 struct sock *sk = sock->sk; 3530 int err; 3531 3532 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3533 newsock); 3534 if (err < 0) 3535 goto done; 3536 3537 err = sock->ops->accept(sock, *newsock, flags, true); 3538 if (err < 0) { 3539 sock_release(*newsock); 3540 *newsock = NULL; 3541 goto done; 3542 } 3543 3544 (*newsock)->ops = sock->ops; 3545 __module_get((*newsock)->ops->owner); 3546 3547 done: 3548 return err; 3549 } 3550 EXPORT_SYMBOL(kernel_accept); 3551 3552 /** 3553 * kernel_connect - connect a socket (kernel space) 3554 * @sock: socket 3555 * @addr: address 3556 * @addrlen: address length 3557 * @flags: flags (O_NONBLOCK, ...) 3558 * 3559 * For datagram sockets, @addr is the addres to which datagrams are sent 3560 * by default, and the only address from which datagrams are received. 3561 * For stream sockets, attempts to connect to @addr. 3562 * Returns 0 or an error code. 3563 */ 3564 3565 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3566 int flags) 3567 { 3568 return sock->ops->connect(sock, addr, addrlen, flags); 3569 } 3570 EXPORT_SYMBOL(kernel_connect); 3571 3572 /** 3573 * kernel_getsockname - get the address which the socket is bound (kernel space) 3574 * @sock: socket 3575 * @addr: address holder 3576 * 3577 * Fills the @addr pointer with the address which the socket is bound. 3578 * Returns 0 or an error code. 3579 */ 3580 3581 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3582 { 3583 return sock->ops->getname(sock, addr, 0); 3584 } 3585 EXPORT_SYMBOL(kernel_getsockname); 3586 3587 /** 3588 * kernel_peername - get the address which the socket is connected (kernel space) 3589 * @sock: socket 3590 * @addr: address holder 3591 * 3592 * Fills the @addr pointer with the address which the socket is connected. 3593 * Returns 0 or an error code. 3594 */ 3595 3596 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3597 { 3598 return sock->ops->getname(sock, addr, 1); 3599 } 3600 EXPORT_SYMBOL(kernel_getpeername); 3601 3602 /** 3603 * kernel_getsockopt - get a socket option (kernel space) 3604 * @sock: socket 3605 * @level: API level (SOL_SOCKET, ...) 3606 * @optname: option tag 3607 * @optval: option value 3608 * @optlen: option length 3609 * 3610 * Assigns the option length to @optlen. 3611 * Returns 0 or an error. 3612 */ 3613 3614 int kernel_getsockopt(struct socket *sock, int level, int optname, 3615 char *optval, int *optlen) 3616 { 3617 mm_segment_t oldfs = get_fs(); 3618 char __user *uoptval; 3619 int __user *uoptlen; 3620 int err; 3621 3622 uoptval = (char __user __force *) optval; 3623 uoptlen = (int __user __force *) optlen; 3624 3625 set_fs(KERNEL_DS); 3626 if (level == SOL_SOCKET) 3627 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3628 else 3629 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3630 uoptlen); 3631 set_fs(oldfs); 3632 return err; 3633 } 3634 EXPORT_SYMBOL(kernel_getsockopt); 3635 3636 /** 3637 * kernel_setsockopt - set a socket option (kernel space) 3638 * @sock: socket 3639 * @level: API level (SOL_SOCKET, ...) 3640 * @optname: option tag 3641 * @optval: option value 3642 * @optlen: option length 3643 * 3644 * Returns 0 or an error. 3645 */ 3646 3647 int kernel_setsockopt(struct socket *sock, int level, int optname, 3648 char *optval, unsigned int optlen) 3649 { 3650 mm_segment_t oldfs = get_fs(); 3651 char __user *uoptval; 3652 int err; 3653 3654 uoptval = (char __user __force *) optval; 3655 3656 set_fs(KERNEL_DS); 3657 if (level == SOL_SOCKET) 3658 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3659 else 3660 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3661 optlen); 3662 set_fs(oldfs); 3663 return err; 3664 } 3665 EXPORT_SYMBOL(kernel_setsockopt); 3666 3667 /** 3668 * kernel_sendpage - send a &page through a socket (kernel space) 3669 * @sock: socket 3670 * @page: page 3671 * @offset: page offset 3672 * @size: total size in bytes 3673 * @flags: flags (MSG_DONTWAIT, ...) 3674 * 3675 * Returns the total amount sent in bytes or an error. 3676 */ 3677 3678 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3679 size_t size, int flags) 3680 { 3681 if (sock->ops->sendpage) 3682 return sock->ops->sendpage(sock, page, offset, size, flags); 3683 3684 return sock_no_sendpage(sock, page, offset, size, flags); 3685 } 3686 EXPORT_SYMBOL(kernel_sendpage); 3687 3688 /** 3689 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3690 * @sk: sock 3691 * @page: page 3692 * @offset: page offset 3693 * @size: total size in bytes 3694 * @flags: flags (MSG_DONTWAIT, ...) 3695 * 3696 * Returns the total amount sent in bytes or an error. 3697 * Caller must hold @sk. 3698 */ 3699 3700 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3701 size_t size, int flags) 3702 { 3703 struct socket *sock = sk->sk_socket; 3704 3705 if (sock->ops->sendpage_locked) 3706 return sock->ops->sendpage_locked(sk, page, offset, size, 3707 flags); 3708 3709 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3710 } 3711 EXPORT_SYMBOL(kernel_sendpage_locked); 3712 3713 /** 3714 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3715 * @sock: socket 3716 * @how: connection part 3717 * 3718 * Returns 0 or an error. 3719 */ 3720 3721 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3722 { 3723 return sock->ops->shutdown(sock, how); 3724 } 3725 EXPORT_SYMBOL(kernel_sock_shutdown); 3726 3727 /** 3728 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3729 * @sk: socket 3730 * 3731 * This routine returns the IP overhead imposed by a socket i.e. 3732 * the length of the underlying IP header, depending on whether 3733 * this is an IPv4 or IPv6 socket and the length from IP options turned 3734 * on at the socket. Assumes that the caller has a lock on the socket. 3735 */ 3736 3737 u32 kernel_sock_ip_overhead(struct sock *sk) 3738 { 3739 struct inet_sock *inet; 3740 struct ip_options_rcu *opt; 3741 u32 overhead = 0; 3742 #if IS_ENABLED(CONFIG_IPV6) 3743 struct ipv6_pinfo *np; 3744 struct ipv6_txoptions *optv6 = NULL; 3745 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3746 3747 if (!sk) 3748 return overhead; 3749 3750 switch (sk->sk_family) { 3751 case AF_INET: 3752 inet = inet_sk(sk); 3753 overhead += sizeof(struct iphdr); 3754 opt = rcu_dereference_protected(inet->inet_opt, 3755 sock_owned_by_user(sk)); 3756 if (opt) 3757 overhead += opt->opt.optlen; 3758 return overhead; 3759 #if IS_ENABLED(CONFIG_IPV6) 3760 case AF_INET6: 3761 np = inet6_sk(sk); 3762 overhead += sizeof(struct ipv6hdr); 3763 if (np) 3764 optv6 = rcu_dereference_protected(np->opt, 3765 sock_owned_by_user(sk)); 3766 if (optv6) 3767 overhead += (optv6->opt_flen + optv6->opt_nflen); 3768 return overhead; 3769 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3770 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3771 return overhead; 3772 } 3773 } 3774 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3775