xref: /openbmc/linux/net/socket.c (revision ad2f99ae)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117 
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 			      struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 			      unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 			     int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 				struct pipe_inode_info *pipe, size_t len,
131 				unsigned int flags);
132 
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 	struct socket *sock = f->private_data;
137 
138 	if (sock->ops->show_fdinfo)
139 		sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144 
145 /*
146  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147  *	in the operation structures but are done directly via the socketcall() multiplexor.
148  */
149 
150 static const struct file_operations socket_file_ops = {
151 	.owner =	THIS_MODULE,
152 	.llseek =	no_llseek,
153 	.read_iter =	sock_read_iter,
154 	.write_iter =	sock_write_iter,
155 	.poll =		sock_poll,
156 	.unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 	.compat_ioctl = compat_sock_ioctl,
159 #endif
160 	.mmap =		sock_mmap,
161 	.release =	sock_close,
162 	.fasync =	sock_fasync,
163 	.sendpage =	sock_sendpage,
164 	.splice_write = generic_splice_sendpage,
165 	.splice_read =	sock_splice_read,
166 	.show_fdinfo =	sock_show_fdinfo,
167 };
168 
169 static const char * const pf_family_names[] = {
170 	[PF_UNSPEC]	= "PF_UNSPEC",
171 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
172 	[PF_INET]	= "PF_INET",
173 	[PF_AX25]	= "PF_AX25",
174 	[PF_IPX]	= "PF_IPX",
175 	[PF_APPLETALK]	= "PF_APPLETALK",
176 	[PF_NETROM]	= "PF_NETROM",
177 	[PF_BRIDGE]	= "PF_BRIDGE",
178 	[PF_ATMPVC]	= "PF_ATMPVC",
179 	[PF_X25]	= "PF_X25",
180 	[PF_INET6]	= "PF_INET6",
181 	[PF_ROSE]	= "PF_ROSE",
182 	[PF_DECnet]	= "PF_DECnet",
183 	[PF_NETBEUI]	= "PF_NETBEUI",
184 	[PF_SECURITY]	= "PF_SECURITY",
185 	[PF_KEY]	= "PF_KEY",
186 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
187 	[PF_PACKET]	= "PF_PACKET",
188 	[PF_ASH]	= "PF_ASH",
189 	[PF_ECONET]	= "PF_ECONET",
190 	[PF_ATMSVC]	= "PF_ATMSVC",
191 	[PF_RDS]	= "PF_RDS",
192 	[PF_SNA]	= "PF_SNA",
193 	[PF_IRDA]	= "PF_IRDA",
194 	[PF_PPPOX]	= "PF_PPPOX",
195 	[PF_WANPIPE]	= "PF_WANPIPE",
196 	[PF_LLC]	= "PF_LLC",
197 	[PF_IB]		= "PF_IB",
198 	[PF_MPLS]	= "PF_MPLS",
199 	[PF_CAN]	= "PF_CAN",
200 	[PF_TIPC]	= "PF_TIPC",
201 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
202 	[PF_IUCV]	= "PF_IUCV",
203 	[PF_RXRPC]	= "PF_RXRPC",
204 	[PF_ISDN]	= "PF_ISDN",
205 	[PF_PHONET]	= "PF_PHONET",
206 	[PF_IEEE802154]	= "PF_IEEE802154",
207 	[PF_CAIF]	= "PF_CAIF",
208 	[PF_ALG]	= "PF_ALG",
209 	[PF_NFC]	= "PF_NFC",
210 	[PF_VSOCK]	= "PF_VSOCK",
211 	[PF_KCM]	= "PF_KCM",
212 	[PF_QIPCRTR]	= "PF_QIPCRTR",
213 	[PF_SMC]	= "PF_SMC",
214 	[PF_XDP]	= "PF_XDP",
215 };
216 
217 /*
218  *	The protocol list. Each protocol is registered in here.
219  */
220 
221 static DEFINE_SPINLOCK(net_family_lock);
222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223 
224 /*
225  * Support routines.
226  * Move socket addresses back and forth across the kernel/user
227  * divide and look after the messy bits.
228  */
229 
230 /**
231  *	move_addr_to_kernel	-	copy a socket address into kernel space
232  *	@uaddr: Address in user space
233  *	@kaddr: Address in kernel space
234  *	@ulen: Length in user space
235  *
236  *	The address is copied into kernel space. If the provided address is
237  *	too long an error code of -EINVAL is returned. If the copy gives
238  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
239  */
240 
241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242 {
243 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 		return -EINVAL;
245 	if (ulen == 0)
246 		return 0;
247 	if (copy_from_user(kaddr, uaddr, ulen))
248 		return -EFAULT;
249 	return audit_sockaddr(ulen, kaddr);
250 }
251 
252 /**
253  *	move_addr_to_user	-	copy an address to user space
254  *	@kaddr: kernel space address
255  *	@klen: length of address in kernel
256  *	@uaddr: user space address
257  *	@ulen: pointer to user length field
258  *
259  *	The value pointed to by ulen on entry is the buffer length available.
260  *	This is overwritten with the buffer space used. -EINVAL is returned
261  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
262  *	is returned if either the buffer or the length field are not
263  *	accessible.
264  *	After copying the data up to the limit the user specifies, the true
265  *	length of the data is written over the length limit the user
266  *	specified. Zero is returned for a success.
267  */
268 
269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 			     void __user *uaddr, int __user *ulen)
271 {
272 	int err;
273 	int len;
274 
275 	BUG_ON(klen > sizeof(struct sockaddr_storage));
276 	err = get_user(len, ulen);
277 	if (err)
278 		return err;
279 	if (len > klen)
280 		len = klen;
281 	if (len < 0)
282 		return -EINVAL;
283 	if (len) {
284 		if (audit_sockaddr(klen, kaddr))
285 			return -ENOMEM;
286 		if (copy_to_user(uaddr, kaddr, len))
287 			return -EFAULT;
288 	}
289 	/*
290 	 *      "fromlen shall refer to the value before truncation.."
291 	 *                      1003.1g
292 	 */
293 	return __put_user(klen, ulen);
294 }
295 
296 static struct kmem_cache *sock_inode_cachep __ro_after_init;
297 
298 static struct inode *sock_alloc_inode(struct super_block *sb)
299 {
300 	struct socket_alloc *ei;
301 
302 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 	if (!ei)
304 		return NULL;
305 	init_waitqueue_head(&ei->socket.wq.wait);
306 	ei->socket.wq.fasync_list = NULL;
307 	ei->socket.wq.flags = 0;
308 
309 	ei->socket.state = SS_UNCONNECTED;
310 	ei->socket.flags = 0;
311 	ei->socket.ops = NULL;
312 	ei->socket.sk = NULL;
313 	ei->socket.file = NULL;
314 
315 	return &ei->vfs_inode;
316 }
317 
318 static void sock_free_inode(struct inode *inode)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = container_of(inode, struct socket_alloc, vfs_inode);
323 	kmem_cache_free(sock_inode_cachep, ei);
324 }
325 
326 static void init_once(void *foo)
327 {
328 	struct socket_alloc *ei = (struct socket_alloc *)foo;
329 
330 	inode_init_once(&ei->vfs_inode);
331 }
332 
333 static void init_inodecache(void)
334 {
335 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 					      sizeof(struct socket_alloc),
337 					      0,
338 					      (SLAB_HWCACHE_ALIGN |
339 					       SLAB_RECLAIM_ACCOUNT |
340 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 					      init_once);
342 	BUG_ON(sock_inode_cachep == NULL);
343 }
344 
345 static const struct super_operations sockfs_ops = {
346 	.alloc_inode	= sock_alloc_inode,
347 	.free_inode	= sock_free_inode,
348 	.statfs		= simple_statfs,
349 };
350 
351 /*
352  * sockfs_dname() is called from d_path().
353  */
354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355 {
356 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 				d_inode(dentry)->i_ino);
358 }
359 
360 static const struct dentry_operations sockfs_dentry_operations = {
361 	.d_dname  = sockfs_dname,
362 };
363 
364 static int sockfs_xattr_get(const struct xattr_handler *handler,
365 			    struct dentry *dentry, struct inode *inode,
366 			    const char *suffix, void *value, size_t size)
367 {
368 	if (value) {
369 		if (dentry->d_name.len + 1 > size)
370 			return -ERANGE;
371 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 	}
373 	return dentry->d_name.len + 1;
374 }
375 
376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379 
380 static const struct xattr_handler sockfs_xattr_handler = {
381 	.name = XATTR_NAME_SOCKPROTONAME,
382 	.get = sockfs_xattr_get,
383 };
384 
385 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 				     struct user_namespace *mnt_userns,
387 				     struct dentry *dentry, struct inode *inode,
388 				     const char *suffix, const void *value,
389 				     size_t size, int flags)
390 {
391 	/* Handled by LSM. */
392 	return -EAGAIN;
393 }
394 
395 static const struct xattr_handler sockfs_security_xattr_handler = {
396 	.prefix = XATTR_SECURITY_PREFIX,
397 	.set = sockfs_security_xattr_set,
398 };
399 
400 static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 	&sockfs_xattr_handler,
402 	&sockfs_security_xattr_handler,
403 	NULL
404 };
405 
406 static int sockfs_init_fs_context(struct fs_context *fc)
407 {
408 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 	if (!ctx)
410 		return -ENOMEM;
411 	ctx->ops = &sockfs_ops;
412 	ctx->dops = &sockfs_dentry_operations;
413 	ctx->xattr = sockfs_xattr_handlers;
414 	return 0;
415 }
416 
417 static struct vfsmount *sock_mnt __read_mostly;
418 
419 static struct file_system_type sock_fs_type = {
420 	.name =		"sockfs",
421 	.init_fs_context = sockfs_init_fs_context,
422 	.kill_sb =	kill_anon_super,
423 };
424 
425 /*
426  *	Obtains the first available file descriptor and sets it up for use.
427  *
428  *	These functions create file structures and maps them to fd space
429  *	of the current process. On success it returns file descriptor
430  *	and file struct implicitly stored in sock->file.
431  *	Note that another thread may close file descriptor before we return
432  *	from this function. We use the fact that now we do not refer
433  *	to socket after mapping. If one day we will need it, this
434  *	function will increment ref. count on file by 1.
435  *
436  *	In any case returned fd MAY BE not valid!
437  *	This race condition is unavoidable
438  *	with shared fd spaces, we cannot solve it inside kernel,
439  *	but we take care of internal coherence yet.
440  */
441 
442 /**
443  *	sock_alloc_file - Bind a &socket to a &file
444  *	@sock: socket
445  *	@flags: file status flags
446  *	@dname: protocol name
447  *
448  *	Returns the &file bound with @sock, implicitly storing it
449  *	in sock->file. If dname is %NULL, sets to "".
450  *	On failure the return is a ERR pointer (see linux/err.h).
451  *	This function uses GFP_KERNEL internally.
452  */
453 
454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455 {
456 	struct file *file;
457 
458 	if (!dname)
459 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460 
461 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 				O_RDWR | (flags & O_NONBLOCK),
463 				&socket_file_ops);
464 	if (IS_ERR(file)) {
465 		sock_release(sock);
466 		return file;
467 	}
468 
469 	sock->file = file;
470 	file->private_data = sock;
471 	stream_open(SOCK_INODE(sock), file);
472 	return file;
473 }
474 EXPORT_SYMBOL(sock_alloc_file);
475 
476 static int sock_map_fd(struct socket *sock, int flags)
477 {
478 	struct file *newfile;
479 	int fd = get_unused_fd_flags(flags);
480 	if (unlikely(fd < 0)) {
481 		sock_release(sock);
482 		return fd;
483 	}
484 
485 	newfile = sock_alloc_file(sock, flags, NULL);
486 	if (!IS_ERR(newfile)) {
487 		fd_install(fd, newfile);
488 		return fd;
489 	}
490 
491 	put_unused_fd(fd);
492 	return PTR_ERR(newfile);
493 }
494 
495 /**
496  *	sock_from_file - Return the &socket bounded to @file.
497  *	@file: file
498  *
499  *	On failure returns %NULL.
500  */
501 
502 struct socket *sock_from_file(struct file *file)
503 {
504 	if (file->f_op == &socket_file_ops)
505 		return file->private_data;	/* set in sock_map_fd */
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL(sock_from_file);
510 
511 /**
512  *	sockfd_lookup - Go from a file number to its socket slot
513  *	@fd: file handle
514  *	@err: pointer to an error code return
515  *
516  *	The file handle passed in is locked and the socket it is bound
517  *	to is returned. If an error occurs the err pointer is overwritten
518  *	with a negative errno code and NULL is returned. The function checks
519  *	for both invalid handles and passing a handle which is not a socket.
520  *
521  *	On a success the socket object pointer is returned.
522  */
523 
524 struct socket *sockfd_lookup(int fd, int *err)
525 {
526 	struct file *file;
527 	struct socket *sock;
528 
529 	file = fget(fd);
530 	if (!file) {
531 		*err = -EBADF;
532 		return NULL;
533 	}
534 
535 	sock = sock_from_file(file);
536 	if (!sock) {
537 		*err = -ENOTSOCK;
538 		fput(file);
539 	}
540 	return sock;
541 }
542 EXPORT_SYMBOL(sockfd_lookup);
543 
544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545 {
546 	struct fd f = fdget(fd);
547 	struct socket *sock;
548 
549 	*err = -EBADF;
550 	if (f.file) {
551 		sock = sock_from_file(f.file);
552 		if (likely(sock)) {
553 			*fput_needed = f.flags & FDPUT_FPUT;
554 			return sock;
555 		}
556 		*err = -ENOTSOCK;
557 		fdput(f);
558 	}
559 	return NULL;
560 }
561 
562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 				size_t size)
564 {
565 	ssize_t len;
566 	ssize_t used = 0;
567 
568 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 	if (len < 0)
570 		return len;
571 	used += len;
572 	if (buffer) {
573 		if (size < used)
574 			return -ERANGE;
575 		buffer += len;
576 	}
577 
578 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 	used += len;
580 	if (buffer) {
581 		if (size < used)
582 			return -ERANGE;
583 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 		buffer += len;
585 	}
586 
587 	return used;
588 }
589 
590 static int sockfs_setattr(struct user_namespace *mnt_userns,
591 			  struct dentry *dentry, struct iattr *iattr)
592 {
593 	int err = simple_setattr(&init_user_ns, dentry, iattr);
594 
595 	if (!err && (iattr->ia_valid & ATTR_UID)) {
596 		struct socket *sock = SOCKET_I(d_inode(dentry));
597 
598 		if (sock->sk)
599 			sock->sk->sk_uid = iattr->ia_uid;
600 		else
601 			err = -ENOENT;
602 	}
603 
604 	return err;
605 }
606 
607 static const struct inode_operations sockfs_inode_ops = {
608 	.listxattr = sockfs_listxattr,
609 	.setattr = sockfs_setattr,
610 };
611 
612 /**
613  *	sock_alloc - allocate a socket
614  *
615  *	Allocate a new inode and socket object. The two are bound together
616  *	and initialised. The socket is then returned. If we are out of inodes
617  *	NULL is returned. This functions uses GFP_KERNEL internally.
618  */
619 
620 struct socket *sock_alloc(void)
621 {
622 	struct inode *inode;
623 	struct socket *sock;
624 
625 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 	if (!inode)
627 		return NULL;
628 
629 	sock = SOCKET_I(inode);
630 
631 	inode->i_ino = get_next_ino();
632 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 	inode->i_uid = current_fsuid();
634 	inode->i_gid = current_fsgid();
635 	inode->i_op = &sockfs_inode_ops;
636 
637 	return sock;
638 }
639 EXPORT_SYMBOL(sock_alloc);
640 
641 static void __sock_release(struct socket *sock, struct inode *inode)
642 {
643 	if (sock->ops) {
644 		struct module *owner = sock->ops->owner;
645 
646 		if (inode)
647 			inode_lock(inode);
648 		sock->ops->release(sock);
649 		sock->sk = NULL;
650 		if (inode)
651 			inode_unlock(inode);
652 		sock->ops = NULL;
653 		module_put(owner);
654 	}
655 
656 	if (sock->wq.fasync_list)
657 		pr_err("%s: fasync list not empty!\n", __func__);
658 
659 	if (!sock->file) {
660 		iput(SOCK_INODE(sock));
661 		return;
662 	}
663 	sock->file = NULL;
664 }
665 
666 /**
667  *	sock_release - close a socket
668  *	@sock: socket to close
669  *
670  *	The socket is released from the protocol stack if it has a release
671  *	callback, and the inode is then released if the socket is bound to
672  *	an inode not a file.
673  */
674 void sock_release(struct socket *sock)
675 {
676 	__sock_release(sock, NULL);
677 }
678 EXPORT_SYMBOL(sock_release);
679 
680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681 {
682 	u8 flags = *tx_flags;
683 
684 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 		flags |= SKBTX_HW_TSTAMP;
686 
687 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 		flags |= SKBTX_SW_TSTAMP;
689 
690 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 		flags |= SKBTX_SCHED_TSTAMP;
692 
693 	*tx_flags = flags;
694 }
695 EXPORT_SYMBOL(__sock_tx_timestamp);
696 
697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 					   size_t));
699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 					    size_t));
701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702 {
703 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 				     inet_sendmsg, sock, msg,
705 				     msg_data_left(msg));
706 	BUG_ON(ret == -EIOCBQUEUED);
707 	return ret;
708 }
709 
710 /**
711  *	sock_sendmsg - send a message through @sock
712  *	@sock: socket
713  *	@msg: message to send
714  *
715  *	Sends @msg through @sock, passing through LSM.
716  *	Returns the number of bytes sent, or an error code.
717  */
718 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719 {
720 	int err = security_socket_sendmsg(sock, msg,
721 					  msg_data_left(msg));
722 
723 	return err ?: sock_sendmsg_nosec(sock, msg);
724 }
725 EXPORT_SYMBOL(sock_sendmsg);
726 
727 /**
728  *	kernel_sendmsg - send a message through @sock (kernel-space)
729  *	@sock: socket
730  *	@msg: message header
731  *	@vec: kernel vec
732  *	@num: vec array length
733  *	@size: total message data size
734  *
735  *	Builds the message data with @vec and sends it through @sock.
736  *	Returns the number of bytes sent, or an error code.
737  */
738 
739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size)
741 {
742 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 	return sock_sendmsg(sock, msg);
744 }
745 EXPORT_SYMBOL(kernel_sendmsg);
746 
747 /**
748  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
749  *	@sk: sock
750  *	@msg: message header
751  *	@vec: output s/g array
752  *	@num: output s/g array length
753  *	@size: total message data size
754  *
755  *	Builds the message data with @vec and sends it through @sock.
756  *	Returns the number of bytes sent, or an error code.
757  *	Caller must hold @sk.
758  */
759 
760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 			  struct kvec *vec, size_t num, size_t size)
762 {
763 	struct socket *sock = sk->sk_socket;
764 
765 	if (!sock->ops->sendmsg_locked)
766 		return sock_no_sendmsg_locked(sk, msg, size);
767 
768 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769 
770 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771 }
772 EXPORT_SYMBOL(kernel_sendmsg_locked);
773 
774 static bool skb_is_err_queue(const struct sk_buff *skb)
775 {
776 	/* pkt_type of skbs enqueued on the error queue are set to
777 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 	 * in recvmsg, since skbs received on a local socket will never
779 	 * have a pkt_type of PACKET_OUTGOING.
780 	 */
781 	return skb->pkt_type == PACKET_OUTGOING;
782 }
783 
784 /* On transmit, software and hardware timestamps are returned independently.
785  * As the two skb clones share the hardware timestamp, which may be updated
786  * before the software timestamp is received, a hardware TX timestamp may be
787  * returned only if there is no software TX timestamp. Ignore false software
788  * timestamps, which may be made in the __sock_recv_timestamp() call when the
789  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790  * hardware timestamp.
791  */
792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793 {
794 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795 }
796 
797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798 {
799 	struct scm_ts_pktinfo ts_pktinfo;
800 	struct net_device *orig_dev;
801 
802 	if (!skb_mac_header_was_set(skb))
803 		return;
804 
805 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806 
807 	rcu_read_lock();
808 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 	if (orig_dev)
810 		ts_pktinfo.if_index = orig_dev->ifindex;
811 	rcu_read_unlock();
812 
813 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 		 sizeof(ts_pktinfo), &ts_pktinfo);
816 }
817 
818 /*
819  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820  */
821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 	struct sk_buff *skb)
823 {
824 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 	struct scm_timestamping_internal tss;
827 
828 	int empty = 1, false_tstamp = 0;
829 	struct skb_shared_hwtstamps *shhwtstamps =
830 		skb_hwtstamps(skb);
831 
832 	/* Race occurred between timestamp enabling and packet
833 	   receiving.  Fill in the current time for now. */
834 	if (need_software_tstamp && skb->tstamp == 0) {
835 		__net_timestamp(skb);
836 		false_tstamp = 1;
837 	}
838 
839 	if (need_software_tstamp) {
840 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 			if (new_tstamp) {
842 				struct __kernel_sock_timeval tv;
843 
844 				skb_get_new_timestamp(skb, &tv);
845 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 					 sizeof(tv), &tv);
847 			} else {
848 				struct __kernel_old_timeval tv;
849 
850 				skb_get_timestamp(skb, &tv);
851 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 					 sizeof(tv), &tv);
853 			}
854 		} else {
855 			if (new_tstamp) {
856 				struct __kernel_timespec ts;
857 
858 				skb_get_new_timestampns(skb, &ts);
859 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 					 sizeof(ts), &ts);
861 			} else {
862 				struct __kernel_old_timespec ts;
863 
864 				skb_get_timestampns(skb, &ts);
865 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 					 sizeof(ts), &ts);
867 			}
868 		}
869 	}
870 
871 	memset(&tss, 0, sizeof(tss));
872 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 		empty = 0;
875 	if (shhwtstamps &&
876 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880 
881 		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 					     tss.ts + 2)) {
883 			empty = 0;
884 
885 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 			    !skb_is_err_queue(skb))
887 				put_ts_pktinfo(msg, skb);
888 		}
889 	}
890 	if (!empty) {
891 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 			put_cmsg_scm_timestamping64(msg, &tss);
893 		else
894 			put_cmsg_scm_timestamping(msg, &tss);
895 
896 		if (skb_is_err_queue(skb) && skb->len &&
897 		    SKB_EXT_ERR(skb)->opt_stats)
898 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 				 skb->len, skb->data);
900 	}
901 }
902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903 
904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 	struct sk_buff *skb)
906 {
907 	int ack;
908 
909 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 		return;
911 	if (!skb->wifi_acked_valid)
912 		return;
913 
914 	ack = skb->wifi_acked;
915 
916 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917 }
918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919 
920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 				   struct sk_buff *skb)
922 {
923 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926 }
927 
928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 	struct sk_buff *skb)
930 {
931 	sock_recv_timestamp(msg, sk, skb);
932 	sock_recv_drops(msg, sk, skb);
933 }
934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935 
936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 					   size_t, int));
938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 					    size_t, int));
940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 				     int flags)
942 {
943 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 				  inet_recvmsg, sock, msg, msg_data_left(msg),
945 				  flags);
946 }
947 
948 /**
949  *	sock_recvmsg - receive a message from @sock
950  *	@sock: socket
951  *	@msg: message to receive
952  *	@flags: message flags
953  *
954  *	Receives @msg from @sock, passing through LSM. Returns the total number
955  *	of bytes received, or an error.
956  */
957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958 {
959 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960 
961 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
962 }
963 EXPORT_SYMBOL(sock_recvmsg);
964 
965 /**
966  *	kernel_recvmsg - Receive a message from a socket (kernel space)
967  *	@sock: The socket to receive the message from
968  *	@msg: Received message
969  *	@vec: Input s/g array for message data
970  *	@num: Size of input s/g array
971  *	@size: Number of bytes to read
972  *	@flags: Message flags (MSG_DONTWAIT, etc...)
973  *
974  *	On return the msg structure contains the scatter/gather array passed in the
975  *	vec argument. The array is modified so that it consists of the unfilled
976  *	portion of the original array.
977  *
978  *	The returned value is the total number of bytes received, or an error.
979  */
980 
981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 		   struct kvec *vec, size_t num, size_t size, int flags)
983 {
984 	msg->msg_control_is_user = false;
985 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 	return sock_recvmsg(sock, msg, flags);
987 }
988 EXPORT_SYMBOL(kernel_recvmsg);
989 
990 static ssize_t sock_sendpage(struct file *file, struct page *page,
991 			     int offset, size_t size, loff_t *ppos, int more)
992 {
993 	struct socket *sock;
994 	int flags;
995 
996 	sock = file->private_data;
997 
998 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 	flags |= more;
1001 
1002 	return kernel_sendpage(sock, page, offset, size, flags);
1003 }
1004 
1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 				struct pipe_inode_info *pipe, size_t len,
1007 				unsigned int flags)
1008 {
1009 	struct socket *sock = file->private_data;
1010 
1011 	if (unlikely(!sock->ops->splice_read))
1012 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013 
1014 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015 }
1016 
1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018 {
1019 	struct file *file = iocb->ki_filp;
1020 	struct socket *sock = file->private_data;
1021 	struct msghdr msg = {.msg_iter = *to,
1022 			     .msg_iocb = iocb};
1023 	ssize_t res;
1024 
1025 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 		msg.msg_flags = MSG_DONTWAIT;
1027 
1028 	if (iocb->ki_pos != 0)
1029 		return -ESPIPE;
1030 
1031 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032 		return 0;
1033 
1034 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 	*to = msg.msg_iter;
1036 	return res;
1037 }
1038 
1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040 {
1041 	struct file *file = iocb->ki_filp;
1042 	struct socket *sock = file->private_data;
1043 	struct msghdr msg = {.msg_iter = *from,
1044 			     .msg_iocb = iocb};
1045 	ssize_t res;
1046 
1047 	if (iocb->ki_pos != 0)
1048 		return -ESPIPE;
1049 
1050 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 		msg.msg_flags = MSG_DONTWAIT;
1052 
1053 	if (sock->type == SOCK_SEQPACKET)
1054 		msg.msg_flags |= MSG_EOR;
1055 
1056 	res = sock_sendmsg(sock, &msg);
1057 	*from = msg.msg_iter;
1058 	return res;
1059 }
1060 
1061 /*
1062  * Atomic setting of ioctl hooks to avoid race
1063  * with module unload.
1064  */
1065 
1066 static DEFINE_MUTEX(br_ioctl_mutex);
1067 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1068 			    unsigned int cmd, struct ifreq *ifr,
1069 			    void __user *uarg);
1070 
1071 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1072 			     unsigned int cmd, struct ifreq *ifr,
1073 			     void __user *uarg))
1074 {
1075 	mutex_lock(&br_ioctl_mutex);
1076 	br_ioctl_hook = hook;
1077 	mutex_unlock(&br_ioctl_mutex);
1078 }
1079 EXPORT_SYMBOL(brioctl_set);
1080 
1081 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1082 		  struct ifreq *ifr, void __user *uarg)
1083 {
1084 	int err = -ENOPKG;
1085 
1086 	if (!br_ioctl_hook)
1087 		request_module("bridge");
1088 
1089 	mutex_lock(&br_ioctl_mutex);
1090 	if (br_ioctl_hook)
1091 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1092 	mutex_unlock(&br_ioctl_mutex);
1093 
1094 	return err;
1095 }
1096 
1097 static DEFINE_MUTEX(vlan_ioctl_mutex);
1098 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1099 
1100 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1101 {
1102 	mutex_lock(&vlan_ioctl_mutex);
1103 	vlan_ioctl_hook = hook;
1104 	mutex_unlock(&vlan_ioctl_mutex);
1105 }
1106 EXPORT_SYMBOL(vlan_ioctl_set);
1107 
1108 static long sock_do_ioctl(struct net *net, struct socket *sock,
1109 			  unsigned int cmd, unsigned long arg)
1110 {
1111 	struct ifreq ifr;
1112 	bool need_copyout;
1113 	int err;
1114 	void __user *argp = (void __user *)arg;
1115 	void __user *data;
1116 
1117 	err = sock->ops->ioctl(sock, cmd, arg);
1118 
1119 	/*
1120 	 * If this ioctl is unknown try to hand it down
1121 	 * to the NIC driver.
1122 	 */
1123 	if (err != -ENOIOCTLCMD)
1124 		return err;
1125 
1126 	if (get_user_ifreq(&ifr, &data, argp))
1127 		return -EFAULT;
1128 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1129 	if (!err && need_copyout)
1130 		if (put_user_ifreq(&ifr, argp))
1131 			return -EFAULT;
1132 
1133 	return err;
1134 }
1135 
1136 /*
1137  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1138  *	what to do with it - that's up to the protocol still.
1139  */
1140 
1141 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1142 {
1143 	struct socket *sock;
1144 	struct sock *sk;
1145 	void __user *argp = (void __user *)arg;
1146 	int pid, err;
1147 	struct net *net;
1148 
1149 	sock = file->private_data;
1150 	sk = sock->sk;
1151 	net = sock_net(sk);
1152 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1153 		struct ifreq ifr;
1154 		void __user *data;
1155 		bool need_copyout;
1156 		if (get_user_ifreq(&ifr, &data, argp))
1157 			return -EFAULT;
1158 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1159 		if (!err && need_copyout)
1160 			if (put_user_ifreq(&ifr, argp))
1161 				return -EFAULT;
1162 	} else
1163 #ifdef CONFIG_WEXT_CORE
1164 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1165 		err = wext_handle_ioctl(net, cmd, argp);
1166 	} else
1167 #endif
1168 		switch (cmd) {
1169 		case FIOSETOWN:
1170 		case SIOCSPGRP:
1171 			err = -EFAULT;
1172 			if (get_user(pid, (int __user *)argp))
1173 				break;
1174 			err = f_setown(sock->file, pid, 1);
1175 			break;
1176 		case FIOGETOWN:
1177 		case SIOCGPGRP:
1178 			err = put_user(f_getown(sock->file),
1179 				       (int __user *)argp);
1180 			break;
1181 		case SIOCGIFBR:
1182 		case SIOCSIFBR:
1183 		case SIOCBRADDBR:
1184 		case SIOCBRDELBR:
1185 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1186 			break;
1187 		case SIOCGIFVLAN:
1188 		case SIOCSIFVLAN:
1189 			err = -ENOPKG;
1190 			if (!vlan_ioctl_hook)
1191 				request_module("8021q");
1192 
1193 			mutex_lock(&vlan_ioctl_mutex);
1194 			if (vlan_ioctl_hook)
1195 				err = vlan_ioctl_hook(net, argp);
1196 			mutex_unlock(&vlan_ioctl_mutex);
1197 			break;
1198 		case SIOCGSKNS:
1199 			err = -EPERM;
1200 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1201 				break;
1202 
1203 			err = open_related_ns(&net->ns, get_net_ns);
1204 			break;
1205 		case SIOCGSTAMP_OLD:
1206 		case SIOCGSTAMPNS_OLD:
1207 			if (!sock->ops->gettstamp) {
1208 				err = -ENOIOCTLCMD;
1209 				break;
1210 			}
1211 			err = sock->ops->gettstamp(sock, argp,
1212 						   cmd == SIOCGSTAMP_OLD,
1213 						   !IS_ENABLED(CONFIG_64BIT));
1214 			break;
1215 		case SIOCGSTAMP_NEW:
1216 		case SIOCGSTAMPNS_NEW:
1217 			if (!sock->ops->gettstamp) {
1218 				err = -ENOIOCTLCMD;
1219 				break;
1220 			}
1221 			err = sock->ops->gettstamp(sock, argp,
1222 						   cmd == SIOCGSTAMP_NEW,
1223 						   false);
1224 			break;
1225 
1226 		case SIOCGIFCONF:
1227 			err = dev_ifconf(net, argp);
1228 			break;
1229 
1230 		default:
1231 			err = sock_do_ioctl(net, sock, cmd, arg);
1232 			break;
1233 		}
1234 	return err;
1235 }
1236 
1237 /**
1238  *	sock_create_lite - creates a socket
1239  *	@family: protocol family (AF_INET, ...)
1240  *	@type: communication type (SOCK_STREAM, ...)
1241  *	@protocol: protocol (0, ...)
1242  *	@res: new socket
1243  *
1244  *	Creates a new socket and assigns it to @res, passing through LSM.
1245  *	The new socket initialization is not complete, see kernel_accept().
1246  *	Returns 0 or an error. On failure @res is set to %NULL.
1247  *	This function internally uses GFP_KERNEL.
1248  */
1249 
1250 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1251 {
1252 	int err;
1253 	struct socket *sock = NULL;
1254 
1255 	err = security_socket_create(family, type, protocol, 1);
1256 	if (err)
1257 		goto out;
1258 
1259 	sock = sock_alloc();
1260 	if (!sock) {
1261 		err = -ENOMEM;
1262 		goto out;
1263 	}
1264 
1265 	sock->type = type;
1266 	err = security_socket_post_create(sock, family, type, protocol, 1);
1267 	if (err)
1268 		goto out_release;
1269 
1270 out:
1271 	*res = sock;
1272 	return err;
1273 out_release:
1274 	sock_release(sock);
1275 	sock = NULL;
1276 	goto out;
1277 }
1278 EXPORT_SYMBOL(sock_create_lite);
1279 
1280 /* No kernel lock held - perfect */
1281 static __poll_t sock_poll(struct file *file, poll_table *wait)
1282 {
1283 	struct socket *sock = file->private_data;
1284 	__poll_t events = poll_requested_events(wait), flag = 0;
1285 
1286 	if (!sock->ops->poll)
1287 		return 0;
1288 
1289 	if (sk_can_busy_loop(sock->sk)) {
1290 		/* poll once if requested by the syscall */
1291 		if (events & POLL_BUSY_LOOP)
1292 			sk_busy_loop(sock->sk, 1);
1293 
1294 		/* if this socket can poll_ll, tell the system call */
1295 		flag = POLL_BUSY_LOOP;
1296 	}
1297 
1298 	return sock->ops->poll(file, sock, wait) | flag;
1299 }
1300 
1301 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1302 {
1303 	struct socket *sock = file->private_data;
1304 
1305 	return sock->ops->mmap(file, sock, vma);
1306 }
1307 
1308 static int sock_close(struct inode *inode, struct file *filp)
1309 {
1310 	__sock_release(SOCKET_I(inode), inode);
1311 	return 0;
1312 }
1313 
1314 /*
1315  *	Update the socket async list
1316  *
1317  *	Fasync_list locking strategy.
1318  *
1319  *	1. fasync_list is modified only under process context socket lock
1320  *	   i.e. under semaphore.
1321  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1322  *	   or under socket lock
1323  */
1324 
1325 static int sock_fasync(int fd, struct file *filp, int on)
1326 {
1327 	struct socket *sock = filp->private_data;
1328 	struct sock *sk = sock->sk;
1329 	struct socket_wq *wq = &sock->wq;
1330 
1331 	if (sk == NULL)
1332 		return -EINVAL;
1333 
1334 	lock_sock(sk);
1335 	fasync_helper(fd, filp, on, &wq->fasync_list);
1336 
1337 	if (!wq->fasync_list)
1338 		sock_reset_flag(sk, SOCK_FASYNC);
1339 	else
1340 		sock_set_flag(sk, SOCK_FASYNC);
1341 
1342 	release_sock(sk);
1343 	return 0;
1344 }
1345 
1346 /* This function may be called only under rcu_lock */
1347 
1348 int sock_wake_async(struct socket_wq *wq, int how, int band)
1349 {
1350 	if (!wq || !wq->fasync_list)
1351 		return -1;
1352 
1353 	switch (how) {
1354 	case SOCK_WAKE_WAITD:
1355 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1356 			break;
1357 		goto call_kill;
1358 	case SOCK_WAKE_SPACE:
1359 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1360 			break;
1361 		fallthrough;
1362 	case SOCK_WAKE_IO:
1363 call_kill:
1364 		kill_fasync(&wq->fasync_list, SIGIO, band);
1365 		break;
1366 	case SOCK_WAKE_URG:
1367 		kill_fasync(&wq->fasync_list, SIGURG, band);
1368 	}
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL(sock_wake_async);
1373 
1374 /**
1375  *	__sock_create - creates a socket
1376  *	@net: net namespace
1377  *	@family: protocol family (AF_INET, ...)
1378  *	@type: communication type (SOCK_STREAM, ...)
1379  *	@protocol: protocol (0, ...)
1380  *	@res: new socket
1381  *	@kern: boolean for kernel space sockets
1382  *
1383  *	Creates a new socket and assigns it to @res, passing through LSM.
1384  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1385  *	be set to true if the socket resides in kernel space.
1386  *	This function internally uses GFP_KERNEL.
1387  */
1388 
1389 int __sock_create(struct net *net, int family, int type, int protocol,
1390 			 struct socket **res, int kern)
1391 {
1392 	int err;
1393 	struct socket *sock;
1394 	const struct net_proto_family *pf;
1395 
1396 	/*
1397 	 *      Check protocol is in range
1398 	 */
1399 	if (family < 0 || family >= NPROTO)
1400 		return -EAFNOSUPPORT;
1401 	if (type < 0 || type >= SOCK_MAX)
1402 		return -EINVAL;
1403 
1404 	/* Compatibility.
1405 
1406 	   This uglymoron is moved from INET layer to here to avoid
1407 	   deadlock in module load.
1408 	 */
1409 	if (family == PF_INET && type == SOCK_PACKET) {
1410 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1411 			     current->comm);
1412 		family = PF_PACKET;
1413 	}
1414 
1415 	err = security_socket_create(family, type, protocol, kern);
1416 	if (err)
1417 		return err;
1418 
1419 	/*
1420 	 *	Allocate the socket and allow the family to set things up. if
1421 	 *	the protocol is 0, the family is instructed to select an appropriate
1422 	 *	default.
1423 	 */
1424 	sock = sock_alloc();
1425 	if (!sock) {
1426 		net_warn_ratelimited("socket: no more sockets\n");
1427 		return -ENFILE;	/* Not exactly a match, but its the
1428 				   closest posix thing */
1429 	}
1430 
1431 	sock->type = type;
1432 
1433 #ifdef CONFIG_MODULES
1434 	/* Attempt to load a protocol module if the find failed.
1435 	 *
1436 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1437 	 * requested real, full-featured networking support upon configuration.
1438 	 * Otherwise module support will break!
1439 	 */
1440 	if (rcu_access_pointer(net_families[family]) == NULL)
1441 		request_module("net-pf-%d", family);
1442 #endif
1443 
1444 	rcu_read_lock();
1445 	pf = rcu_dereference(net_families[family]);
1446 	err = -EAFNOSUPPORT;
1447 	if (!pf)
1448 		goto out_release;
1449 
1450 	/*
1451 	 * We will call the ->create function, that possibly is in a loadable
1452 	 * module, so we have to bump that loadable module refcnt first.
1453 	 */
1454 	if (!try_module_get(pf->owner))
1455 		goto out_release;
1456 
1457 	/* Now protected by module ref count */
1458 	rcu_read_unlock();
1459 
1460 	err = pf->create(net, sock, protocol, kern);
1461 	if (err < 0)
1462 		goto out_module_put;
1463 
1464 	/*
1465 	 * Now to bump the refcnt of the [loadable] module that owns this
1466 	 * socket at sock_release time we decrement its refcnt.
1467 	 */
1468 	if (!try_module_get(sock->ops->owner))
1469 		goto out_module_busy;
1470 
1471 	/*
1472 	 * Now that we're done with the ->create function, the [loadable]
1473 	 * module can have its refcnt decremented
1474 	 */
1475 	module_put(pf->owner);
1476 	err = security_socket_post_create(sock, family, type, protocol, kern);
1477 	if (err)
1478 		goto out_sock_release;
1479 	*res = sock;
1480 
1481 	return 0;
1482 
1483 out_module_busy:
1484 	err = -EAFNOSUPPORT;
1485 out_module_put:
1486 	sock->ops = NULL;
1487 	module_put(pf->owner);
1488 out_sock_release:
1489 	sock_release(sock);
1490 	return err;
1491 
1492 out_release:
1493 	rcu_read_unlock();
1494 	goto out_sock_release;
1495 }
1496 EXPORT_SYMBOL(__sock_create);
1497 
1498 /**
1499  *	sock_create - creates a socket
1500  *	@family: protocol family (AF_INET, ...)
1501  *	@type: communication type (SOCK_STREAM, ...)
1502  *	@protocol: protocol (0, ...)
1503  *	@res: new socket
1504  *
1505  *	A wrapper around __sock_create().
1506  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1507  */
1508 
1509 int sock_create(int family, int type, int protocol, struct socket **res)
1510 {
1511 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1512 }
1513 EXPORT_SYMBOL(sock_create);
1514 
1515 /**
1516  *	sock_create_kern - creates a socket (kernel space)
1517  *	@net: net namespace
1518  *	@family: protocol family (AF_INET, ...)
1519  *	@type: communication type (SOCK_STREAM, ...)
1520  *	@protocol: protocol (0, ...)
1521  *	@res: new socket
1522  *
1523  *	A wrapper around __sock_create().
1524  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1525  */
1526 
1527 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1528 {
1529 	return __sock_create(net, family, type, protocol, res, 1);
1530 }
1531 EXPORT_SYMBOL(sock_create_kern);
1532 
1533 int __sys_socket(int family, int type, int protocol)
1534 {
1535 	int retval;
1536 	struct socket *sock;
1537 	int flags;
1538 
1539 	/* Check the SOCK_* constants for consistency.  */
1540 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1541 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1542 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1543 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1544 
1545 	flags = type & ~SOCK_TYPE_MASK;
1546 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1547 		return -EINVAL;
1548 	type &= SOCK_TYPE_MASK;
1549 
1550 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1551 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1552 
1553 	retval = sock_create(family, type, protocol, &sock);
1554 	if (retval < 0)
1555 		return retval;
1556 
1557 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1558 }
1559 
1560 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1561 {
1562 	return __sys_socket(family, type, protocol);
1563 }
1564 
1565 /*
1566  *	Create a pair of connected sockets.
1567  */
1568 
1569 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1570 {
1571 	struct socket *sock1, *sock2;
1572 	int fd1, fd2, err;
1573 	struct file *newfile1, *newfile2;
1574 	int flags;
1575 
1576 	flags = type & ~SOCK_TYPE_MASK;
1577 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1578 		return -EINVAL;
1579 	type &= SOCK_TYPE_MASK;
1580 
1581 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1582 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1583 
1584 	/*
1585 	 * reserve descriptors and make sure we won't fail
1586 	 * to return them to userland.
1587 	 */
1588 	fd1 = get_unused_fd_flags(flags);
1589 	if (unlikely(fd1 < 0))
1590 		return fd1;
1591 
1592 	fd2 = get_unused_fd_flags(flags);
1593 	if (unlikely(fd2 < 0)) {
1594 		put_unused_fd(fd1);
1595 		return fd2;
1596 	}
1597 
1598 	err = put_user(fd1, &usockvec[0]);
1599 	if (err)
1600 		goto out;
1601 
1602 	err = put_user(fd2, &usockvec[1]);
1603 	if (err)
1604 		goto out;
1605 
1606 	/*
1607 	 * Obtain the first socket and check if the underlying protocol
1608 	 * supports the socketpair call.
1609 	 */
1610 
1611 	err = sock_create(family, type, protocol, &sock1);
1612 	if (unlikely(err < 0))
1613 		goto out;
1614 
1615 	err = sock_create(family, type, protocol, &sock2);
1616 	if (unlikely(err < 0)) {
1617 		sock_release(sock1);
1618 		goto out;
1619 	}
1620 
1621 	err = security_socket_socketpair(sock1, sock2);
1622 	if (unlikely(err)) {
1623 		sock_release(sock2);
1624 		sock_release(sock1);
1625 		goto out;
1626 	}
1627 
1628 	err = sock1->ops->socketpair(sock1, sock2);
1629 	if (unlikely(err < 0)) {
1630 		sock_release(sock2);
1631 		sock_release(sock1);
1632 		goto out;
1633 	}
1634 
1635 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1636 	if (IS_ERR(newfile1)) {
1637 		err = PTR_ERR(newfile1);
1638 		sock_release(sock2);
1639 		goto out;
1640 	}
1641 
1642 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1643 	if (IS_ERR(newfile2)) {
1644 		err = PTR_ERR(newfile2);
1645 		fput(newfile1);
1646 		goto out;
1647 	}
1648 
1649 	audit_fd_pair(fd1, fd2);
1650 
1651 	fd_install(fd1, newfile1);
1652 	fd_install(fd2, newfile2);
1653 	return 0;
1654 
1655 out:
1656 	put_unused_fd(fd2);
1657 	put_unused_fd(fd1);
1658 	return err;
1659 }
1660 
1661 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1662 		int __user *, usockvec)
1663 {
1664 	return __sys_socketpair(family, type, protocol, usockvec);
1665 }
1666 
1667 /*
1668  *	Bind a name to a socket. Nothing much to do here since it's
1669  *	the protocol's responsibility to handle the local address.
1670  *
1671  *	We move the socket address to kernel space before we call
1672  *	the protocol layer (having also checked the address is ok).
1673  */
1674 
1675 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1676 {
1677 	struct socket *sock;
1678 	struct sockaddr_storage address;
1679 	int err, fput_needed;
1680 
1681 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1682 	if (sock) {
1683 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1684 		if (!err) {
1685 			err = security_socket_bind(sock,
1686 						   (struct sockaddr *)&address,
1687 						   addrlen);
1688 			if (!err)
1689 				err = sock->ops->bind(sock,
1690 						      (struct sockaddr *)
1691 						      &address, addrlen);
1692 		}
1693 		fput_light(sock->file, fput_needed);
1694 	}
1695 	return err;
1696 }
1697 
1698 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1699 {
1700 	return __sys_bind(fd, umyaddr, addrlen);
1701 }
1702 
1703 /*
1704  *	Perform a listen. Basically, we allow the protocol to do anything
1705  *	necessary for a listen, and if that works, we mark the socket as
1706  *	ready for listening.
1707  */
1708 
1709 int __sys_listen(int fd, int backlog)
1710 {
1711 	struct socket *sock;
1712 	int err, fput_needed;
1713 	int somaxconn;
1714 
1715 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1716 	if (sock) {
1717 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1718 		if ((unsigned int)backlog > somaxconn)
1719 			backlog = somaxconn;
1720 
1721 		err = security_socket_listen(sock, backlog);
1722 		if (!err)
1723 			err = sock->ops->listen(sock, backlog);
1724 
1725 		fput_light(sock->file, fput_needed);
1726 	}
1727 	return err;
1728 }
1729 
1730 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1731 {
1732 	return __sys_listen(fd, backlog);
1733 }
1734 
1735 int __sys_accept4_file(struct file *file, unsigned file_flags,
1736 		       struct sockaddr __user *upeer_sockaddr,
1737 		       int __user *upeer_addrlen, int flags,
1738 		       unsigned long nofile)
1739 {
1740 	struct socket *sock, *newsock;
1741 	struct file *newfile;
1742 	int err, len, newfd;
1743 	struct sockaddr_storage address;
1744 
1745 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1746 		return -EINVAL;
1747 
1748 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1749 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1750 
1751 	sock = sock_from_file(file);
1752 	if (!sock) {
1753 		err = -ENOTSOCK;
1754 		goto out;
1755 	}
1756 
1757 	err = -ENFILE;
1758 	newsock = sock_alloc();
1759 	if (!newsock)
1760 		goto out;
1761 
1762 	newsock->type = sock->type;
1763 	newsock->ops = sock->ops;
1764 
1765 	/*
1766 	 * We don't need try_module_get here, as the listening socket (sock)
1767 	 * has the protocol module (sock->ops->owner) held.
1768 	 */
1769 	__module_get(newsock->ops->owner);
1770 
1771 	newfd = __get_unused_fd_flags(flags, nofile);
1772 	if (unlikely(newfd < 0)) {
1773 		err = newfd;
1774 		sock_release(newsock);
1775 		goto out;
1776 	}
1777 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1778 	if (IS_ERR(newfile)) {
1779 		err = PTR_ERR(newfile);
1780 		put_unused_fd(newfd);
1781 		goto out;
1782 	}
1783 
1784 	err = security_socket_accept(sock, newsock);
1785 	if (err)
1786 		goto out_fd;
1787 
1788 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1789 					false);
1790 	if (err < 0)
1791 		goto out_fd;
1792 
1793 	if (upeer_sockaddr) {
1794 		len = newsock->ops->getname(newsock,
1795 					(struct sockaddr *)&address, 2);
1796 		if (len < 0) {
1797 			err = -ECONNABORTED;
1798 			goto out_fd;
1799 		}
1800 		err = move_addr_to_user(&address,
1801 					len, upeer_sockaddr, upeer_addrlen);
1802 		if (err < 0)
1803 			goto out_fd;
1804 	}
1805 
1806 	/* File flags are not inherited via accept() unlike another OSes. */
1807 
1808 	fd_install(newfd, newfile);
1809 	err = newfd;
1810 out:
1811 	return err;
1812 out_fd:
1813 	fput(newfile);
1814 	put_unused_fd(newfd);
1815 	goto out;
1816 
1817 }
1818 
1819 /*
1820  *	For accept, we attempt to create a new socket, set up the link
1821  *	with the client, wake up the client, then return the new
1822  *	connected fd. We collect the address of the connector in kernel
1823  *	space and move it to user at the very end. This is unclean because
1824  *	we open the socket then return an error.
1825  *
1826  *	1003.1g adds the ability to recvmsg() to query connection pending
1827  *	status to recvmsg. We need to add that support in a way thats
1828  *	clean when we restructure accept also.
1829  */
1830 
1831 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1832 		  int __user *upeer_addrlen, int flags)
1833 {
1834 	int ret = -EBADF;
1835 	struct fd f;
1836 
1837 	f = fdget(fd);
1838 	if (f.file) {
1839 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1840 						upeer_addrlen, flags,
1841 						rlimit(RLIMIT_NOFILE));
1842 		fdput(f);
1843 	}
1844 
1845 	return ret;
1846 }
1847 
1848 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1849 		int __user *, upeer_addrlen, int, flags)
1850 {
1851 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1852 }
1853 
1854 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1855 		int __user *, upeer_addrlen)
1856 {
1857 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1858 }
1859 
1860 /*
1861  *	Attempt to connect to a socket with the server address.  The address
1862  *	is in user space so we verify it is OK and move it to kernel space.
1863  *
1864  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1865  *	break bindings
1866  *
1867  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1868  *	other SEQPACKET protocols that take time to connect() as it doesn't
1869  *	include the -EINPROGRESS status for such sockets.
1870  */
1871 
1872 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1873 		       int addrlen, int file_flags)
1874 {
1875 	struct socket *sock;
1876 	int err;
1877 
1878 	sock = sock_from_file(file);
1879 	if (!sock) {
1880 		err = -ENOTSOCK;
1881 		goto out;
1882 	}
1883 
1884 	err =
1885 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1886 	if (err)
1887 		goto out;
1888 
1889 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1890 				 sock->file->f_flags | file_flags);
1891 out:
1892 	return err;
1893 }
1894 
1895 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1896 {
1897 	int ret = -EBADF;
1898 	struct fd f;
1899 
1900 	f = fdget(fd);
1901 	if (f.file) {
1902 		struct sockaddr_storage address;
1903 
1904 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1905 		if (!ret)
1906 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1907 		fdput(f);
1908 	}
1909 
1910 	return ret;
1911 }
1912 
1913 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1914 		int, addrlen)
1915 {
1916 	return __sys_connect(fd, uservaddr, addrlen);
1917 }
1918 
1919 /*
1920  *	Get the local address ('name') of a socket object. Move the obtained
1921  *	name to user space.
1922  */
1923 
1924 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1925 		      int __user *usockaddr_len)
1926 {
1927 	struct socket *sock;
1928 	struct sockaddr_storage address;
1929 	int err, fput_needed;
1930 
1931 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1932 	if (!sock)
1933 		goto out;
1934 
1935 	err = security_socket_getsockname(sock);
1936 	if (err)
1937 		goto out_put;
1938 
1939 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1940 	if (err < 0)
1941 		goto out_put;
1942         /* "err" is actually length in this case */
1943 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1944 
1945 out_put:
1946 	fput_light(sock->file, fput_needed);
1947 out:
1948 	return err;
1949 }
1950 
1951 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1952 		int __user *, usockaddr_len)
1953 {
1954 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1955 }
1956 
1957 /*
1958  *	Get the remote address ('name') of a socket object. Move the obtained
1959  *	name to user space.
1960  */
1961 
1962 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1963 		      int __user *usockaddr_len)
1964 {
1965 	struct socket *sock;
1966 	struct sockaddr_storage address;
1967 	int err, fput_needed;
1968 
1969 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 	if (sock != NULL) {
1971 		err = security_socket_getpeername(sock);
1972 		if (err) {
1973 			fput_light(sock->file, fput_needed);
1974 			return err;
1975 		}
1976 
1977 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1978 		if (err >= 0)
1979 			/* "err" is actually length in this case */
1980 			err = move_addr_to_user(&address, err, usockaddr,
1981 						usockaddr_len);
1982 		fput_light(sock->file, fput_needed);
1983 	}
1984 	return err;
1985 }
1986 
1987 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1988 		int __user *, usockaddr_len)
1989 {
1990 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1991 }
1992 
1993 /*
1994  *	Send a datagram to a given address. We move the address into kernel
1995  *	space and check the user space data area is readable before invoking
1996  *	the protocol.
1997  */
1998 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1999 		 struct sockaddr __user *addr,  int addr_len)
2000 {
2001 	struct socket *sock;
2002 	struct sockaddr_storage address;
2003 	int err;
2004 	struct msghdr msg;
2005 	struct iovec iov;
2006 	int fput_needed;
2007 
2008 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2009 	if (unlikely(err))
2010 		return err;
2011 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2012 	if (!sock)
2013 		goto out;
2014 
2015 	msg.msg_name = NULL;
2016 	msg.msg_control = NULL;
2017 	msg.msg_controllen = 0;
2018 	msg.msg_namelen = 0;
2019 	if (addr) {
2020 		err = move_addr_to_kernel(addr, addr_len, &address);
2021 		if (err < 0)
2022 			goto out_put;
2023 		msg.msg_name = (struct sockaddr *)&address;
2024 		msg.msg_namelen = addr_len;
2025 	}
2026 	if (sock->file->f_flags & O_NONBLOCK)
2027 		flags |= MSG_DONTWAIT;
2028 	msg.msg_flags = flags;
2029 	err = sock_sendmsg(sock, &msg);
2030 
2031 out_put:
2032 	fput_light(sock->file, fput_needed);
2033 out:
2034 	return err;
2035 }
2036 
2037 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2038 		unsigned int, flags, struct sockaddr __user *, addr,
2039 		int, addr_len)
2040 {
2041 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2042 }
2043 
2044 /*
2045  *	Send a datagram down a socket.
2046  */
2047 
2048 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2049 		unsigned int, flags)
2050 {
2051 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2052 }
2053 
2054 /*
2055  *	Receive a frame from the socket and optionally record the address of the
2056  *	sender. We verify the buffers are writable and if needed move the
2057  *	sender address from kernel to user space.
2058  */
2059 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2060 		   struct sockaddr __user *addr, int __user *addr_len)
2061 {
2062 	struct socket *sock;
2063 	struct iovec iov;
2064 	struct msghdr msg;
2065 	struct sockaddr_storage address;
2066 	int err, err2;
2067 	int fput_needed;
2068 
2069 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2070 	if (unlikely(err))
2071 		return err;
2072 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2073 	if (!sock)
2074 		goto out;
2075 
2076 	msg.msg_control = NULL;
2077 	msg.msg_controllen = 0;
2078 	/* Save some cycles and don't copy the address if not needed */
2079 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2080 	/* We assume all kernel code knows the size of sockaddr_storage */
2081 	msg.msg_namelen = 0;
2082 	msg.msg_iocb = NULL;
2083 	msg.msg_flags = 0;
2084 	if (sock->file->f_flags & O_NONBLOCK)
2085 		flags |= MSG_DONTWAIT;
2086 	err = sock_recvmsg(sock, &msg, flags);
2087 
2088 	if (err >= 0 && addr != NULL) {
2089 		err2 = move_addr_to_user(&address,
2090 					 msg.msg_namelen, addr, addr_len);
2091 		if (err2 < 0)
2092 			err = err2;
2093 	}
2094 
2095 	fput_light(sock->file, fput_needed);
2096 out:
2097 	return err;
2098 }
2099 
2100 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2101 		unsigned int, flags, struct sockaddr __user *, addr,
2102 		int __user *, addr_len)
2103 {
2104 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2105 }
2106 
2107 /*
2108  *	Receive a datagram from a socket.
2109  */
2110 
2111 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2112 		unsigned int, flags)
2113 {
2114 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2115 }
2116 
2117 static bool sock_use_custom_sol_socket(const struct socket *sock)
2118 {
2119 	const struct sock *sk = sock->sk;
2120 
2121 	/* Use sock->ops->setsockopt() for MPTCP */
2122 	return IS_ENABLED(CONFIG_MPTCP) &&
2123 	       sk->sk_protocol == IPPROTO_MPTCP &&
2124 	       sk->sk_type == SOCK_STREAM &&
2125 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2126 }
2127 
2128 /*
2129  *	Set a socket option. Because we don't know the option lengths we have
2130  *	to pass the user mode parameter for the protocols to sort out.
2131  */
2132 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2133 		int optlen)
2134 {
2135 	sockptr_t optval = USER_SOCKPTR(user_optval);
2136 	char *kernel_optval = NULL;
2137 	int err, fput_needed;
2138 	struct socket *sock;
2139 
2140 	if (optlen < 0)
2141 		return -EINVAL;
2142 
2143 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2144 	if (!sock)
2145 		return err;
2146 
2147 	err = security_socket_setsockopt(sock, level, optname);
2148 	if (err)
2149 		goto out_put;
2150 
2151 	if (!in_compat_syscall())
2152 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2153 						     user_optval, &optlen,
2154 						     &kernel_optval);
2155 	if (err < 0)
2156 		goto out_put;
2157 	if (err > 0) {
2158 		err = 0;
2159 		goto out_put;
2160 	}
2161 
2162 	if (kernel_optval)
2163 		optval = KERNEL_SOCKPTR(kernel_optval);
2164 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2165 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2166 	else if (unlikely(!sock->ops->setsockopt))
2167 		err = -EOPNOTSUPP;
2168 	else
2169 		err = sock->ops->setsockopt(sock, level, optname, optval,
2170 					    optlen);
2171 	kfree(kernel_optval);
2172 out_put:
2173 	fput_light(sock->file, fput_needed);
2174 	return err;
2175 }
2176 
2177 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2178 		char __user *, optval, int, optlen)
2179 {
2180 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2181 }
2182 
2183 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2184 							 int optname));
2185 
2186 /*
2187  *	Get a socket option. Because we don't know the option lengths we have
2188  *	to pass a user mode parameter for the protocols to sort out.
2189  */
2190 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2191 		int __user *optlen)
2192 {
2193 	int err, fput_needed;
2194 	struct socket *sock;
2195 	int max_optlen;
2196 
2197 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 	if (!sock)
2199 		return err;
2200 
2201 	err = security_socket_getsockopt(sock, level, optname);
2202 	if (err)
2203 		goto out_put;
2204 
2205 	if (!in_compat_syscall())
2206 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2207 
2208 	if (level == SOL_SOCKET)
2209 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2210 	else if (unlikely(!sock->ops->getsockopt))
2211 		err = -EOPNOTSUPP;
2212 	else
2213 		err = sock->ops->getsockopt(sock, level, optname, optval,
2214 					    optlen);
2215 
2216 	if (!in_compat_syscall())
2217 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2218 						     optval, optlen, max_optlen,
2219 						     err);
2220 out_put:
2221 	fput_light(sock->file, fput_needed);
2222 	return err;
2223 }
2224 
2225 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2226 		char __user *, optval, int __user *, optlen)
2227 {
2228 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2229 }
2230 
2231 /*
2232  *	Shutdown a socket.
2233  */
2234 
2235 int __sys_shutdown_sock(struct socket *sock, int how)
2236 {
2237 	int err;
2238 
2239 	err = security_socket_shutdown(sock, how);
2240 	if (!err)
2241 		err = sock->ops->shutdown(sock, how);
2242 
2243 	return err;
2244 }
2245 
2246 int __sys_shutdown(int fd, int how)
2247 {
2248 	int err, fput_needed;
2249 	struct socket *sock;
2250 
2251 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2252 	if (sock != NULL) {
2253 		err = __sys_shutdown_sock(sock, how);
2254 		fput_light(sock->file, fput_needed);
2255 	}
2256 	return err;
2257 }
2258 
2259 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2260 {
2261 	return __sys_shutdown(fd, how);
2262 }
2263 
2264 /* A couple of helpful macros for getting the address of the 32/64 bit
2265  * fields which are the same type (int / unsigned) on our platforms.
2266  */
2267 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2268 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2269 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2270 
2271 struct used_address {
2272 	struct sockaddr_storage name;
2273 	unsigned int name_len;
2274 };
2275 
2276 int __copy_msghdr_from_user(struct msghdr *kmsg,
2277 			    struct user_msghdr __user *umsg,
2278 			    struct sockaddr __user **save_addr,
2279 			    struct iovec __user **uiov, size_t *nsegs)
2280 {
2281 	struct user_msghdr msg;
2282 	ssize_t err;
2283 
2284 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2285 		return -EFAULT;
2286 
2287 	kmsg->msg_control_is_user = true;
2288 	kmsg->msg_control_user = msg.msg_control;
2289 	kmsg->msg_controllen = msg.msg_controllen;
2290 	kmsg->msg_flags = msg.msg_flags;
2291 
2292 	kmsg->msg_namelen = msg.msg_namelen;
2293 	if (!msg.msg_name)
2294 		kmsg->msg_namelen = 0;
2295 
2296 	if (kmsg->msg_namelen < 0)
2297 		return -EINVAL;
2298 
2299 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2300 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2301 
2302 	if (save_addr)
2303 		*save_addr = msg.msg_name;
2304 
2305 	if (msg.msg_name && kmsg->msg_namelen) {
2306 		if (!save_addr) {
2307 			err = move_addr_to_kernel(msg.msg_name,
2308 						  kmsg->msg_namelen,
2309 						  kmsg->msg_name);
2310 			if (err < 0)
2311 				return err;
2312 		}
2313 	} else {
2314 		kmsg->msg_name = NULL;
2315 		kmsg->msg_namelen = 0;
2316 	}
2317 
2318 	if (msg.msg_iovlen > UIO_MAXIOV)
2319 		return -EMSGSIZE;
2320 
2321 	kmsg->msg_iocb = NULL;
2322 	*uiov = msg.msg_iov;
2323 	*nsegs = msg.msg_iovlen;
2324 	return 0;
2325 }
2326 
2327 static int copy_msghdr_from_user(struct msghdr *kmsg,
2328 				 struct user_msghdr __user *umsg,
2329 				 struct sockaddr __user **save_addr,
2330 				 struct iovec **iov)
2331 {
2332 	struct user_msghdr msg;
2333 	ssize_t err;
2334 
2335 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2336 					&msg.msg_iovlen);
2337 	if (err)
2338 		return err;
2339 
2340 	err = import_iovec(save_addr ? READ : WRITE,
2341 			    msg.msg_iov, msg.msg_iovlen,
2342 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2343 	return err < 0 ? err : 0;
2344 }
2345 
2346 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2347 			   unsigned int flags, struct used_address *used_address,
2348 			   unsigned int allowed_msghdr_flags)
2349 {
2350 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2351 				__aligned(sizeof(__kernel_size_t));
2352 	/* 20 is size of ipv6_pktinfo */
2353 	unsigned char *ctl_buf = ctl;
2354 	int ctl_len;
2355 	ssize_t err;
2356 
2357 	err = -ENOBUFS;
2358 
2359 	if (msg_sys->msg_controllen > INT_MAX)
2360 		goto out;
2361 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2362 	ctl_len = msg_sys->msg_controllen;
2363 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2364 		err =
2365 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2366 						     sizeof(ctl));
2367 		if (err)
2368 			goto out;
2369 		ctl_buf = msg_sys->msg_control;
2370 		ctl_len = msg_sys->msg_controllen;
2371 	} else if (ctl_len) {
2372 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2373 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2374 		if (ctl_len > sizeof(ctl)) {
2375 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2376 			if (ctl_buf == NULL)
2377 				goto out;
2378 		}
2379 		err = -EFAULT;
2380 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2381 			goto out_freectl;
2382 		msg_sys->msg_control = ctl_buf;
2383 		msg_sys->msg_control_is_user = false;
2384 	}
2385 	msg_sys->msg_flags = flags;
2386 
2387 	if (sock->file->f_flags & O_NONBLOCK)
2388 		msg_sys->msg_flags |= MSG_DONTWAIT;
2389 	/*
2390 	 * If this is sendmmsg() and current destination address is same as
2391 	 * previously succeeded address, omit asking LSM's decision.
2392 	 * used_address->name_len is initialized to UINT_MAX so that the first
2393 	 * destination address never matches.
2394 	 */
2395 	if (used_address && msg_sys->msg_name &&
2396 	    used_address->name_len == msg_sys->msg_namelen &&
2397 	    !memcmp(&used_address->name, msg_sys->msg_name,
2398 		    used_address->name_len)) {
2399 		err = sock_sendmsg_nosec(sock, msg_sys);
2400 		goto out_freectl;
2401 	}
2402 	err = sock_sendmsg(sock, msg_sys);
2403 	/*
2404 	 * If this is sendmmsg() and sending to current destination address was
2405 	 * successful, remember it.
2406 	 */
2407 	if (used_address && err >= 0) {
2408 		used_address->name_len = msg_sys->msg_namelen;
2409 		if (msg_sys->msg_name)
2410 			memcpy(&used_address->name, msg_sys->msg_name,
2411 			       used_address->name_len);
2412 	}
2413 
2414 out_freectl:
2415 	if (ctl_buf != ctl)
2416 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2417 out:
2418 	return err;
2419 }
2420 
2421 int sendmsg_copy_msghdr(struct msghdr *msg,
2422 			struct user_msghdr __user *umsg, unsigned flags,
2423 			struct iovec **iov)
2424 {
2425 	int err;
2426 
2427 	if (flags & MSG_CMSG_COMPAT) {
2428 		struct compat_msghdr __user *msg_compat;
2429 
2430 		msg_compat = (struct compat_msghdr __user *) umsg;
2431 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2432 	} else {
2433 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2434 	}
2435 	if (err < 0)
2436 		return err;
2437 
2438 	return 0;
2439 }
2440 
2441 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2442 			 struct msghdr *msg_sys, unsigned int flags,
2443 			 struct used_address *used_address,
2444 			 unsigned int allowed_msghdr_flags)
2445 {
2446 	struct sockaddr_storage address;
2447 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2448 	ssize_t err;
2449 
2450 	msg_sys->msg_name = &address;
2451 
2452 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2453 	if (err < 0)
2454 		return err;
2455 
2456 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2457 				allowed_msghdr_flags);
2458 	kfree(iov);
2459 	return err;
2460 }
2461 
2462 /*
2463  *	BSD sendmsg interface
2464  */
2465 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2466 			unsigned int flags)
2467 {
2468 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2469 }
2470 
2471 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2472 		   bool forbid_cmsg_compat)
2473 {
2474 	int fput_needed, err;
2475 	struct msghdr msg_sys;
2476 	struct socket *sock;
2477 
2478 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2479 		return -EINVAL;
2480 
2481 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2482 	if (!sock)
2483 		goto out;
2484 
2485 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2486 
2487 	fput_light(sock->file, fput_needed);
2488 out:
2489 	return err;
2490 }
2491 
2492 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2493 {
2494 	return __sys_sendmsg(fd, msg, flags, true);
2495 }
2496 
2497 /*
2498  *	Linux sendmmsg interface
2499  */
2500 
2501 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2502 		   unsigned int flags, bool forbid_cmsg_compat)
2503 {
2504 	int fput_needed, err, datagrams;
2505 	struct socket *sock;
2506 	struct mmsghdr __user *entry;
2507 	struct compat_mmsghdr __user *compat_entry;
2508 	struct msghdr msg_sys;
2509 	struct used_address used_address;
2510 	unsigned int oflags = flags;
2511 
2512 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2513 		return -EINVAL;
2514 
2515 	if (vlen > UIO_MAXIOV)
2516 		vlen = UIO_MAXIOV;
2517 
2518 	datagrams = 0;
2519 
2520 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2521 	if (!sock)
2522 		return err;
2523 
2524 	used_address.name_len = UINT_MAX;
2525 	entry = mmsg;
2526 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2527 	err = 0;
2528 	flags |= MSG_BATCH;
2529 
2530 	while (datagrams < vlen) {
2531 		if (datagrams == vlen - 1)
2532 			flags = oflags;
2533 
2534 		if (MSG_CMSG_COMPAT & flags) {
2535 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2536 					     &msg_sys, flags, &used_address, MSG_EOR);
2537 			if (err < 0)
2538 				break;
2539 			err = __put_user(err, &compat_entry->msg_len);
2540 			++compat_entry;
2541 		} else {
2542 			err = ___sys_sendmsg(sock,
2543 					     (struct user_msghdr __user *)entry,
2544 					     &msg_sys, flags, &used_address, MSG_EOR);
2545 			if (err < 0)
2546 				break;
2547 			err = put_user(err, &entry->msg_len);
2548 			++entry;
2549 		}
2550 
2551 		if (err)
2552 			break;
2553 		++datagrams;
2554 		if (msg_data_left(&msg_sys))
2555 			break;
2556 		cond_resched();
2557 	}
2558 
2559 	fput_light(sock->file, fput_needed);
2560 
2561 	/* We only return an error if no datagrams were able to be sent */
2562 	if (datagrams != 0)
2563 		return datagrams;
2564 
2565 	return err;
2566 }
2567 
2568 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2569 		unsigned int, vlen, unsigned int, flags)
2570 {
2571 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2572 }
2573 
2574 int recvmsg_copy_msghdr(struct msghdr *msg,
2575 			struct user_msghdr __user *umsg, unsigned flags,
2576 			struct sockaddr __user **uaddr,
2577 			struct iovec **iov)
2578 {
2579 	ssize_t err;
2580 
2581 	if (MSG_CMSG_COMPAT & flags) {
2582 		struct compat_msghdr __user *msg_compat;
2583 
2584 		msg_compat = (struct compat_msghdr __user *) umsg;
2585 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2586 	} else {
2587 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2588 	}
2589 	if (err < 0)
2590 		return err;
2591 
2592 	return 0;
2593 }
2594 
2595 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2596 			   struct user_msghdr __user *msg,
2597 			   struct sockaddr __user *uaddr,
2598 			   unsigned int flags, int nosec)
2599 {
2600 	struct compat_msghdr __user *msg_compat =
2601 					(struct compat_msghdr __user *) msg;
2602 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2603 	struct sockaddr_storage addr;
2604 	unsigned long cmsg_ptr;
2605 	int len;
2606 	ssize_t err;
2607 
2608 	msg_sys->msg_name = &addr;
2609 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2610 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2611 
2612 	/* We assume all kernel code knows the size of sockaddr_storage */
2613 	msg_sys->msg_namelen = 0;
2614 
2615 	if (sock->file->f_flags & O_NONBLOCK)
2616 		flags |= MSG_DONTWAIT;
2617 
2618 	if (unlikely(nosec))
2619 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2620 	else
2621 		err = sock_recvmsg(sock, msg_sys, flags);
2622 
2623 	if (err < 0)
2624 		goto out;
2625 	len = err;
2626 
2627 	if (uaddr != NULL) {
2628 		err = move_addr_to_user(&addr,
2629 					msg_sys->msg_namelen, uaddr,
2630 					uaddr_len);
2631 		if (err < 0)
2632 			goto out;
2633 	}
2634 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2635 			 COMPAT_FLAGS(msg));
2636 	if (err)
2637 		goto out;
2638 	if (MSG_CMSG_COMPAT & flags)
2639 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2640 				 &msg_compat->msg_controllen);
2641 	else
2642 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2643 				 &msg->msg_controllen);
2644 	if (err)
2645 		goto out;
2646 	err = len;
2647 out:
2648 	return err;
2649 }
2650 
2651 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2652 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2653 {
2654 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2655 	/* user mode address pointers */
2656 	struct sockaddr __user *uaddr;
2657 	ssize_t err;
2658 
2659 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2660 	if (err < 0)
2661 		return err;
2662 
2663 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2664 	kfree(iov);
2665 	return err;
2666 }
2667 
2668 /*
2669  *	BSD recvmsg interface
2670  */
2671 
2672 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2673 			struct user_msghdr __user *umsg,
2674 			struct sockaddr __user *uaddr, unsigned int flags)
2675 {
2676 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2677 }
2678 
2679 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2680 		   bool forbid_cmsg_compat)
2681 {
2682 	int fput_needed, err;
2683 	struct msghdr msg_sys;
2684 	struct socket *sock;
2685 
2686 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2687 		return -EINVAL;
2688 
2689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2690 	if (!sock)
2691 		goto out;
2692 
2693 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2694 
2695 	fput_light(sock->file, fput_needed);
2696 out:
2697 	return err;
2698 }
2699 
2700 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2701 		unsigned int, flags)
2702 {
2703 	return __sys_recvmsg(fd, msg, flags, true);
2704 }
2705 
2706 /*
2707  *     Linux recvmmsg interface
2708  */
2709 
2710 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2711 			  unsigned int vlen, unsigned int flags,
2712 			  struct timespec64 *timeout)
2713 {
2714 	int fput_needed, err, datagrams;
2715 	struct socket *sock;
2716 	struct mmsghdr __user *entry;
2717 	struct compat_mmsghdr __user *compat_entry;
2718 	struct msghdr msg_sys;
2719 	struct timespec64 end_time;
2720 	struct timespec64 timeout64;
2721 
2722 	if (timeout &&
2723 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2724 				    timeout->tv_nsec))
2725 		return -EINVAL;
2726 
2727 	datagrams = 0;
2728 
2729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2730 	if (!sock)
2731 		return err;
2732 
2733 	if (likely(!(flags & MSG_ERRQUEUE))) {
2734 		err = sock_error(sock->sk);
2735 		if (err) {
2736 			datagrams = err;
2737 			goto out_put;
2738 		}
2739 	}
2740 
2741 	entry = mmsg;
2742 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2743 
2744 	while (datagrams < vlen) {
2745 		/*
2746 		 * No need to ask LSM for more than the first datagram.
2747 		 */
2748 		if (MSG_CMSG_COMPAT & flags) {
2749 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2750 					     &msg_sys, flags & ~MSG_WAITFORONE,
2751 					     datagrams);
2752 			if (err < 0)
2753 				break;
2754 			err = __put_user(err, &compat_entry->msg_len);
2755 			++compat_entry;
2756 		} else {
2757 			err = ___sys_recvmsg(sock,
2758 					     (struct user_msghdr __user *)entry,
2759 					     &msg_sys, flags & ~MSG_WAITFORONE,
2760 					     datagrams);
2761 			if (err < 0)
2762 				break;
2763 			err = put_user(err, &entry->msg_len);
2764 			++entry;
2765 		}
2766 
2767 		if (err)
2768 			break;
2769 		++datagrams;
2770 
2771 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2772 		if (flags & MSG_WAITFORONE)
2773 			flags |= MSG_DONTWAIT;
2774 
2775 		if (timeout) {
2776 			ktime_get_ts64(&timeout64);
2777 			*timeout = timespec64_sub(end_time, timeout64);
2778 			if (timeout->tv_sec < 0) {
2779 				timeout->tv_sec = timeout->tv_nsec = 0;
2780 				break;
2781 			}
2782 
2783 			/* Timeout, return less than vlen datagrams */
2784 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2785 				break;
2786 		}
2787 
2788 		/* Out of band data, return right away */
2789 		if (msg_sys.msg_flags & MSG_OOB)
2790 			break;
2791 		cond_resched();
2792 	}
2793 
2794 	if (err == 0)
2795 		goto out_put;
2796 
2797 	if (datagrams == 0) {
2798 		datagrams = err;
2799 		goto out_put;
2800 	}
2801 
2802 	/*
2803 	 * We may return less entries than requested (vlen) if the
2804 	 * sock is non block and there aren't enough datagrams...
2805 	 */
2806 	if (err != -EAGAIN) {
2807 		/*
2808 		 * ... or  if recvmsg returns an error after we
2809 		 * received some datagrams, where we record the
2810 		 * error to return on the next call or if the
2811 		 * app asks about it using getsockopt(SO_ERROR).
2812 		 */
2813 		sock->sk->sk_err = -err;
2814 	}
2815 out_put:
2816 	fput_light(sock->file, fput_needed);
2817 
2818 	return datagrams;
2819 }
2820 
2821 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2822 		   unsigned int vlen, unsigned int flags,
2823 		   struct __kernel_timespec __user *timeout,
2824 		   struct old_timespec32 __user *timeout32)
2825 {
2826 	int datagrams;
2827 	struct timespec64 timeout_sys;
2828 
2829 	if (timeout && get_timespec64(&timeout_sys, timeout))
2830 		return -EFAULT;
2831 
2832 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2833 		return -EFAULT;
2834 
2835 	if (!timeout && !timeout32)
2836 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2837 
2838 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2839 
2840 	if (datagrams <= 0)
2841 		return datagrams;
2842 
2843 	if (timeout && put_timespec64(&timeout_sys, timeout))
2844 		datagrams = -EFAULT;
2845 
2846 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2847 		datagrams = -EFAULT;
2848 
2849 	return datagrams;
2850 }
2851 
2852 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2853 		unsigned int, vlen, unsigned int, flags,
2854 		struct __kernel_timespec __user *, timeout)
2855 {
2856 	if (flags & MSG_CMSG_COMPAT)
2857 		return -EINVAL;
2858 
2859 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2860 }
2861 
2862 #ifdef CONFIG_COMPAT_32BIT_TIME
2863 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2864 		unsigned int, vlen, unsigned int, flags,
2865 		struct old_timespec32 __user *, timeout)
2866 {
2867 	if (flags & MSG_CMSG_COMPAT)
2868 		return -EINVAL;
2869 
2870 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2871 }
2872 #endif
2873 
2874 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2875 /* Argument list sizes for sys_socketcall */
2876 #define AL(x) ((x) * sizeof(unsigned long))
2877 static const unsigned char nargs[21] = {
2878 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2879 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2880 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2881 	AL(4), AL(5), AL(4)
2882 };
2883 
2884 #undef AL
2885 
2886 /*
2887  *	System call vectors.
2888  *
2889  *	Argument checking cleaned up. Saved 20% in size.
2890  *  This function doesn't need to set the kernel lock because
2891  *  it is set by the callees.
2892  */
2893 
2894 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2895 {
2896 	unsigned long a[AUDITSC_ARGS];
2897 	unsigned long a0, a1;
2898 	int err;
2899 	unsigned int len;
2900 
2901 	if (call < 1 || call > SYS_SENDMMSG)
2902 		return -EINVAL;
2903 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2904 
2905 	len = nargs[call];
2906 	if (len > sizeof(a))
2907 		return -EINVAL;
2908 
2909 	/* copy_from_user should be SMP safe. */
2910 	if (copy_from_user(a, args, len))
2911 		return -EFAULT;
2912 
2913 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2914 	if (err)
2915 		return err;
2916 
2917 	a0 = a[0];
2918 	a1 = a[1];
2919 
2920 	switch (call) {
2921 	case SYS_SOCKET:
2922 		err = __sys_socket(a0, a1, a[2]);
2923 		break;
2924 	case SYS_BIND:
2925 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2926 		break;
2927 	case SYS_CONNECT:
2928 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2929 		break;
2930 	case SYS_LISTEN:
2931 		err = __sys_listen(a0, a1);
2932 		break;
2933 	case SYS_ACCEPT:
2934 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2935 				    (int __user *)a[2], 0);
2936 		break;
2937 	case SYS_GETSOCKNAME:
2938 		err =
2939 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2940 				      (int __user *)a[2]);
2941 		break;
2942 	case SYS_GETPEERNAME:
2943 		err =
2944 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2945 				      (int __user *)a[2]);
2946 		break;
2947 	case SYS_SOCKETPAIR:
2948 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2949 		break;
2950 	case SYS_SEND:
2951 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2952 				   NULL, 0);
2953 		break;
2954 	case SYS_SENDTO:
2955 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2956 				   (struct sockaddr __user *)a[4], a[5]);
2957 		break;
2958 	case SYS_RECV:
2959 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2960 				     NULL, NULL);
2961 		break;
2962 	case SYS_RECVFROM:
2963 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2964 				     (struct sockaddr __user *)a[4],
2965 				     (int __user *)a[5]);
2966 		break;
2967 	case SYS_SHUTDOWN:
2968 		err = __sys_shutdown(a0, a1);
2969 		break;
2970 	case SYS_SETSOCKOPT:
2971 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2972 				       a[4]);
2973 		break;
2974 	case SYS_GETSOCKOPT:
2975 		err =
2976 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2977 				     (int __user *)a[4]);
2978 		break;
2979 	case SYS_SENDMSG:
2980 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2981 				    a[2], true);
2982 		break;
2983 	case SYS_SENDMMSG:
2984 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2985 				     a[3], true);
2986 		break;
2987 	case SYS_RECVMSG:
2988 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2989 				    a[2], true);
2990 		break;
2991 	case SYS_RECVMMSG:
2992 		if (IS_ENABLED(CONFIG_64BIT))
2993 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2994 					     a[2], a[3],
2995 					     (struct __kernel_timespec __user *)a[4],
2996 					     NULL);
2997 		else
2998 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2999 					     a[2], a[3], NULL,
3000 					     (struct old_timespec32 __user *)a[4]);
3001 		break;
3002 	case SYS_ACCEPT4:
3003 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3004 				    (int __user *)a[2], a[3]);
3005 		break;
3006 	default:
3007 		err = -EINVAL;
3008 		break;
3009 	}
3010 	return err;
3011 }
3012 
3013 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3014 
3015 /**
3016  *	sock_register - add a socket protocol handler
3017  *	@ops: description of protocol
3018  *
3019  *	This function is called by a protocol handler that wants to
3020  *	advertise its address family, and have it linked into the
3021  *	socket interface. The value ops->family corresponds to the
3022  *	socket system call protocol family.
3023  */
3024 int sock_register(const struct net_proto_family *ops)
3025 {
3026 	int err;
3027 
3028 	if (ops->family >= NPROTO) {
3029 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3030 		return -ENOBUFS;
3031 	}
3032 
3033 	spin_lock(&net_family_lock);
3034 	if (rcu_dereference_protected(net_families[ops->family],
3035 				      lockdep_is_held(&net_family_lock)))
3036 		err = -EEXIST;
3037 	else {
3038 		rcu_assign_pointer(net_families[ops->family], ops);
3039 		err = 0;
3040 	}
3041 	spin_unlock(&net_family_lock);
3042 
3043 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3044 	return err;
3045 }
3046 EXPORT_SYMBOL(sock_register);
3047 
3048 /**
3049  *	sock_unregister - remove a protocol handler
3050  *	@family: protocol family to remove
3051  *
3052  *	This function is called by a protocol handler that wants to
3053  *	remove its address family, and have it unlinked from the
3054  *	new socket creation.
3055  *
3056  *	If protocol handler is a module, then it can use module reference
3057  *	counts to protect against new references. If protocol handler is not
3058  *	a module then it needs to provide its own protection in
3059  *	the ops->create routine.
3060  */
3061 void sock_unregister(int family)
3062 {
3063 	BUG_ON(family < 0 || family >= NPROTO);
3064 
3065 	spin_lock(&net_family_lock);
3066 	RCU_INIT_POINTER(net_families[family], NULL);
3067 	spin_unlock(&net_family_lock);
3068 
3069 	synchronize_rcu();
3070 
3071 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3072 }
3073 EXPORT_SYMBOL(sock_unregister);
3074 
3075 bool sock_is_registered(int family)
3076 {
3077 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3078 }
3079 
3080 static int __init sock_init(void)
3081 {
3082 	int err;
3083 	/*
3084 	 *      Initialize the network sysctl infrastructure.
3085 	 */
3086 	err = net_sysctl_init();
3087 	if (err)
3088 		goto out;
3089 
3090 	/*
3091 	 *      Initialize skbuff SLAB cache
3092 	 */
3093 	skb_init();
3094 
3095 	/*
3096 	 *      Initialize the protocols module.
3097 	 */
3098 
3099 	init_inodecache();
3100 
3101 	err = register_filesystem(&sock_fs_type);
3102 	if (err)
3103 		goto out;
3104 	sock_mnt = kern_mount(&sock_fs_type);
3105 	if (IS_ERR(sock_mnt)) {
3106 		err = PTR_ERR(sock_mnt);
3107 		goto out_mount;
3108 	}
3109 
3110 	/* The real protocol initialization is performed in later initcalls.
3111 	 */
3112 
3113 #ifdef CONFIG_NETFILTER
3114 	err = netfilter_init();
3115 	if (err)
3116 		goto out;
3117 #endif
3118 
3119 	ptp_classifier_init();
3120 
3121 out:
3122 	return err;
3123 
3124 out_mount:
3125 	unregister_filesystem(&sock_fs_type);
3126 	goto out;
3127 }
3128 
3129 core_initcall(sock_init);	/* early initcall */
3130 
3131 #ifdef CONFIG_PROC_FS
3132 void socket_seq_show(struct seq_file *seq)
3133 {
3134 	seq_printf(seq, "sockets: used %d\n",
3135 		   sock_inuse_get(seq->private));
3136 }
3137 #endif				/* CONFIG_PROC_FS */
3138 
3139 /* Handle the fact that while struct ifreq has the same *layout* on
3140  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3141  * which are handled elsewhere, it still has different *size* due to
3142  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3143  * resulting in struct ifreq being 32 and 40 bytes respectively).
3144  * As a result, if the struct happens to be at the end of a page and
3145  * the next page isn't readable/writable, we get a fault. To prevent
3146  * that, copy back and forth to the full size.
3147  */
3148 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3149 {
3150 	if (in_compat_syscall()) {
3151 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3152 
3153 		memset(ifr, 0, sizeof(*ifr));
3154 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3155 			return -EFAULT;
3156 
3157 		if (ifrdata)
3158 			*ifrdata = compat_ptr(ifr32->ifr_data);
3159 
3160 		return 0;
3161 	}
3162 
3163 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3164 		return -EFAULT;
3165 
3166 	if (ifrdata)
3167 		*ifrdata = ifr->ifr_data;
3168 
3169 	return 0;
3170 }
3171 EXPORT_SYMBOL(get_user_ifreq);
3172 
3173 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3174 {
3175 	size_t size = sizeof(*ifr);
3176 
3177 	if (in_compat_syscall())
3178 		size = sizeof(struct compat_ifreq);
3179 
3180 	if (copy_to_user(arg, ifr, size))
3181 		return -EFAULT;
3182 
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL(put_user_ifreq);
3186 
3187 #ifdef CONFIG_COMPAT
3188 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3189 {
3190 	compat_uptr_t uptr32;
3191 	struct ifreq ifr;
3192 	void __user *saved;
3193 	int err;
3194 
3195 	if (get_user_ifreq(&ifr, NULL, uifr32))
3196 		return -EFAULT;
3197 
3198 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3199 		return -EFAULT;
3200 
3201 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3202 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3203 
3204 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3205 	if (!err) {
3206 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3207 		if (put_user_ifreq(&ifr, uifr32))
3208 			err = -EFAULT;
3209 	}
3210 	return err;
3211 }
3212 
3213 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3214 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3215 				 struct compat_ifreq __user *u_ifreq32)
3216 {
3217 	struct ifreq ifreq;
3218 	void __user *data;
3219 
3220 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3221 		return -EFAULT;
3222 	ifreq.ifr_data = data;
3223 
3224 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3225 }
3226 
3227 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3228  * for some operations; this forces use of the newer bridge-utils that
3229  * use compatible ioctls
3230  */
3231 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3232 {
3233 	compat_ulong_t tmp;
3234 
3235 	if (get_user(tmp, argp))
3236 		return -EFAULT;
3237 	if (tmp == BRCTL_GET_VERSION)
3238 		return BRCTL_VERSION + 1;
3239 	return -EINVAL;
3240 }
3241 
3242 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3243 			 unsigned int cmd, unsigned long arg)
3244 {
3245 	void __user *argp = compat_ptr(arg);
3246 	struct sock *sk = sock->sk;
3247 	struct net *net = sock_net(sk);
3248 
3249 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3250 		return sock_ioctl(file, cmd, (unsigned long)argp);
3251 
3252 	switch (cmd) {
3253 	case SIOCSIFBR:
3254 	case SIOCGIFBR:
3255 		return old_bridge_ioctl(argp);
3256 	case SIOCWANDEV:
3257 		return compat_siocwandev(net, argp);
3258 	case SIOCGSTAMP_OLD:
3259 	case SIOCGSTAMPNS_OLD:
3260 		if (!sock->ops->gettstamp)
3261 			return -ENOIOCTLCMD;
3262 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3263 					    !COMPAT_USE_64BIT_TIME);
3264 
3265 	case SIOCETHTOOL:
3266 	case SIOCBONDSLAVEINFOQUERY:
3267 	case SIOCBONDINFOQUERY:
3268 	case SIOCSHWTSTAMP:
3269 	case SIOCGHWTSTAMP:
3270 		return compat_ifr_data_ioctl(net, cmd, argp);
3271 
3272 	case FIOSETOWN:
3273 	case SIOCSPGRP:
3274 	case FIOGETOWN:
3275 	case SIOCGPGRP:
3276 	case SIOCBRADDBR:
3277 	case SIOCBRDELBR:
3278 	case SIOCGIFVLAN:
3279 	case SIOCSIFVLAN:
3280 	case SIOCGSKNS:
3281 	case SIOCGSTAMP_NEW:
3282 	case SIOCGSTAMPNS_NEW:
3283 	case SIOCGIFCONF:
3284 		return sock_ioctl(file, cmd, arg);
3285 
3286 	case SIOCGIFFLAGS:
3287 	case SIOCSIFFLAGS:
3288 	case SIOCGIFMAP:
3289 	case SIOCSIFMAP:
3290 	case SIOCGIFMETRIC:
3291 	case SIOCSIFMETRIC:
3292 	case SIOCGIFMTU:
3293 	case SIOCSIFMTU:
3294 	case SIOCGIFMEM:
3295 	case SIOCSIFMEM:
3296 	case SIOCGIFHWADDR:
3297 	case SIOCSIFHWADDR:
3298 	case SIOCADDMULTI:
3299 	case SIOCDELMULTI:
3300 	case SIOCGIFINDEX:
3301 	case SIOCGIFADDR:
3302 	case SIOCSIFADDR:
3303 	case SIOCSIFHWBROADCAST:
3304 	case SIOCDIFADDR:
3305 	case SIOCGIFBRDADDR:
3306 	case SIOCSIFBRDADDR:
3307 	case SIOCGIFDSTADDR:
3308 	case SIOCSIFDSTADDR:
3309 	case SIOCGIFNETMASK:
3310 	case SIOCSIFNETMASK:
3311 	case SIOCSIFPFLAGS:
3312 	case SIOCGIFPFLAGS:
3313 	case SIOCGIFTXQLEN:
3314 	case SIOCSIFTXQLEN:
3315 	case SIOCBRADDIF:
3316 	case SIOCBRDELIF:
3317 	case SIOCGIFNAME:
3318 	case SIOCSIFNAME:
3319 	case SIOCGMIIPHY:
3320 	case SIOCGMIIREG:
3321 	case SIOCSMIIREG:
3322 	case SIOCBONDENSLAVE:
3323 	case SIOCBONDRELEASE:
3324 	case SIOCBONDSETHWADDR:
3325 	case SIOCBONDCHANGEACTIVE:
3326 	case SIOCSARP:
3327 	case SIOCGARP:
3328 	case SIOCDARP:
3329 	case SIOCOUTQ:
3330 	case SIOCOUTQNSD:
3331 	case SIOCATMARK:
3332 		return sock_do_ioctl(net, sock, cmd, arg);
3333 	}
3334 
3335 	return -ENOIOCTLCMD;
3336 }
3337 
3338 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3339 			      unsigned long arg)
3340 {
3341 	struct socket *sock = file->private_data;
3342 	int ret = -ENOIOCTLCMD;
3343 	struct sock *sk;
3344 	struct net *net;
3345 
3346 	sk = sock->sk;
3347 	net = sock_net(sk);
3348 
3349 	if (sock->ops->compat_ioctl)
3350 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3351 
3352 	if (ret == -ENOIOCTLCMD &&
3353 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3354 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3355 
3356 	if (ret == -ENOIOCTLCMD)
3357 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3358 
3359 	return ret;
3360 }
3361 #endif
3362 
3363 /**
3364  *	kernel_bind - bind an address to a socket (kernel space)
3365  *	@sock: socket
3366  *	@addr: address
3367  *	@addrlen: length of address
3368  *
3369  *	Returns 0 or an error.
3370  */
3371 
3372 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3373 {
3374 	return sock->ops->bind(sock, addr, addrlen);
3375 }
3376 EXPORT_SYMBOL(kernel_bind);
3377 
3378 /**
3379  *	kernel_listen - move socket to listening state (kernel space)
3380  *	@sock: socket
3381  *	@backlog: pending connections queue size
3382  *
3383  *	Returns 0 or an error.
3384  */
3385 
3386 int kernel_listen(struct socket *sock, int backlog)
3387 {
3388 	return sock->ops->listen(sock, backlog);
3389 }
3390 EXPORT_SYMBOL(kernel_listen);
3391 
3392 /**
3393  *	kernel_accept - accept a connection (kernel space)
3394  *	@sock: listening socket
3395  *	@newsock: new connected socket
3396  *	@flags: flags
3397  *
3398  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3399  *	If it fails, @newsock is guaranteed to be %NULL.
3400  *	Returns 0 or an error.
3401  */
3402 
3403 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3404 {
3405 	struct sock *sk = sock->sk;
3406 	int err;
3407 
3408 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3409 			       newsock);
3410 	if (err < 0)
3411 		goto done;
3412 
3413 	err = sock->ops->accept(sock, *newsock, flags, true);
3414 	if (err < 0) {
3415 		sock_release(*newsock);
3416 		*newsock = NULL;
3417 		goto done;
3418 	}
3419 
3420 	(*newsock)->ops = sock->ops;
3421 	__module_get((*newsock)->ops->owner);
3422 
3423 done:
3424 	return err;
3425 }
3426 EXPORT_SYMBOL(kernel_accept);
3427 
3428 /**
3429  *	kernel_connect - connect a socket (kernel space)
3430  *	@sock: socket
3431  *	@addr: address
3432  *	@addrlen: address length
3433  *	@flags: flags (O_NONBLOCK, ...)
3434  *
3435  *	For datagram sockets, @addr is the address to which datagrams are sent
3436  *	by default, and the only address from which datagrams are received.
3437  *	For stream sockets, attempts to connect to @addr.
3438  *	Returns 0 or an error code.
3439  */
3440 
3441 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3442 		   int flags)
3443 {
3444 	return sock->ops->connect(sock, addr, addrlen, flags);
3445 }
3446 EXPORT_SYMBOL(kernel_connect);
3447 
3448 /**
3449  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3450  *	@sock: socket
3451  *	@addr: address holder
3452  *
3453  * 	Fills the @addr pointer with the address which the socket is bound.
3454  *	Returns 0 or an error code.
3455  */
3456 
3457 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3458 {
3459 	return sock->ops->getname(sock, addr, 0);
3460 }
3461 EXPORT_SYMBOL(kernel_getsockname);
3462 
3463 /**
3464  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3465  *	@sock: socket
3466  *	@addr: address holder
3467  *
3468  * 	Fills the @addr pointer with the address which the socket is connected.
3469  *	Returns 0 or an error code.
3470  */
3471 
3472 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3473 {
3474 	return sock->ops->getname(sock, addr, 1);
3475 }
3476 EXPORT_SYMBOL(kernel_getpeername);
3477 
3478 /**
3479  *	kernel_sendpage - send a &page through a socket (kernel space)
3480  *	@sock: socket
3481  *	@page: page
3482  *	@offset: page offset
3483  *	@size: total size in bytes
3484  *	@flags: flags (MSG_DONTWAIT, ...)
3485  *
3486  *	Returns the total amount sent in bytes or an error.
3487  */
3488 
3489 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3490 		    size_t size, int flags)
3491 {
3492 	if (sock->ops->sendpage) {
3493 		/* Warn in case the improper page to zero-copy send */
3494 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3495 		return sock->ops->sendpage(sock, page, offset, size, flags);
3496 	}
3497 	return sock_no_sendpage(sock, page, offset, size, flags);
3498 }
3499 EXPORT_SYMBOL(kernel_sendpage);
3500 
3501 /**
3502  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3503  *	@sk: sock
3504  *	@page: page
3505  *	@offset: page offset
3506  *	@size: total size in bytes
3507  *	@flags: flags (MSG_DONTWAIT, ...)
3508  *
3509  *	Returns the total amount sent in bytes or an error.
3510  *	Caller must hold @sk.
3511  */
3512 
3513 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3514 			   size_t size, int flags)
3515 {
3516 	struct socket *sock = sk->sk_socket;
3517 
3518 	if (sock->ops->sendpage_locked)
3519 		return sock->ops->sendpage_locked(sk, page, offset, size,
3520 						  flags);
3521 
3522 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3523 }
3524 EXPORT_SYMBOL(kernel_sendpage_locked);
3525 
3526 /**
3527  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3528  *	@sock: socket
3529  *	@how: connection part
3530  *
3531  *	Returns 0 or an error.
3532  */
3533 
3534 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3535 {
3536 	return sock->ops->shutdown(sock, how);
3537 }
3538 EXPORT_SYMBOL(kernel_sock_shutdown);
3539 
3540 /**
3541  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3542  *	@sk: socket
3543  *
3544  *	This routine returns the IP overhead imposed by a socket i.e.
3545  *	the length of the underlying IP header, depending on whether
3546  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3547  *	on at the socket. Assumes that the caller has a lock on the socket.
3548  */
3549 
3550 u32 kernel_sock_ip_overhead(struct sock *sk)
3551 {
3552 	struct inet_sock *inet;
3553 	struct ip_options_rcu *opt;
3554 	u32 overhead = 0;
3555 #if IS_ENABLED(CONFIG_IPV6)
3556 	struct ipv6_pinfo *np;
3557 	struct ipv6_txoptions *optv6 = NULL;
3558 #endif /* IS_ENABLED(CONFIG_IPV6) */
3559 
3560 	if (!sk)
3561 		return overhead;
3562 
3563 	switch (sk->sk_family) {
3564 	case AF_INET:
3565 		inet = inet_sk(sk);
3566 		overhead += sizeof(struct iphdr);
3567 		opt = rcu_dereference_protected(inet->inet_opt,
3568 						sock_owned_by_user(sk));
3569 		if (opt)
3570 			overhead += opt->opt.optlen;
3571 		return overhead;
3572 #if IS_ENABLED(CONFIG_IPV6)
3573 	case AF_INET6:
3574 		np = inet6_sk(sk);
3575 		overhead += sizeof(struct ipv6hdr);
3576 		if (np)
3577 			optv6 = rcu_dereference_protected(np->opt,
3578 							  sock_owned_by_user(sk));
3579 		if (optv6)
3580 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3581 		return overhead;
3582 #endif /* IS_ENABLED(CONFIG_IPV6) */
3583 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3584 		return overhead;
3585 	}
3586 }
3587 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3588