1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 }; 216 217 /* 218 * The protocol list. Each protocol is registered in here. 219 */ 220 221 static DEFINE_SPINLOCK(net_family_lock); 222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 223 224 /* 225 * Support routines. 226 * Move socket addresses back and forth across the kernel/user 227 * divide and look after the messy bits. 228 */ 229 230 /** 231 * move_addr_to_kernel - copy a socket address into kernel space 232 * @uaddr: Address in user space 233 * @kaddr: Address in kernel space 234 * @ulen: Length in user space 235 * 236 * The address is copied into kernel space. If the provided address is 237 * too long an error code of -EINVAL is returned. If the copy gives 238 * invalid addresses -EFAULT is returned. On a success 0 is returned. 239 */ 240 241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 242 { 243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 244 return -EINVAL; 245 if (ulen == 0) 246 return 0; 247 if (copy_from_user(kaddr, uaddr, ulen)) 248 return -EFAULT; 249 return audit_sockaddr(ulen, kaddr); 250 } 251 252 /** 253 * move_addr_to_user - copy an address to user space 254 * @kaddr: kernel space address 255 * @klen: length of address in kernel 256 * @uaddr: user space address 257 * @ulen: pointer to user length field 258 * 259 * The value pointed to by ulen on entry is the buffer length available. 260 * This is overwritten with the buffer space used. -EINVAL is returned 261 * if an overlong buffer is specified or a negative buffer size. -EFAULT 262 * is returned if either the buffer or the length field are not 263 * accessible. 264 * After copying the data up to the limit the user specifies, the true 265 * length of the data is written over the length limit the user 266 * specified. Zero is returned for a success. 267 */ 268 269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 270 void __user *uaddr, int __user *ulen) 271 { 272 int err; 273 int len; 274 275 BUG_ON(klen > sizeof(struct sockaddr_storage)); 276 err = get_user(len, ulen); 277 if (err) 278 return err; 279 if (len > klen) 280 len = klen; 281 if (len < 0) 282 return -EINVAL; 283 if (len) { 284 if (audit_sockaddr(klen, kaddr)) 285 return -ENOMEM; 286 if (copy_to_user(uaddr, kaddr, len)) 287 return -EFAULT; 288 } 289 /* 290 * "fromlen shall refer to the value before truncation.." 291 * 1003.1g 292 */ 293 return __put_user(klen, ulen); 294 } 295 296 static struct kmem_cache *sock_inode_cachep __ro_after_init; 297 298 static struct inode *sock_alloc_inode(struct super_block *sb) 299 { 300 struct socket_alloc *ei; 301 302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 303 if (!ei) 304 return NULL; 305 init_waitqueue_head(&ei->socket.wq.wait); 306 ei->socket.wq.fasync_list = NULL; 307 ei->socket.wq.flags = 0; 308 309 ei->socket.state = SS_UNCONNECTED; 310 ei->socket.flags = 0; 311 ei->socket.ops = NULL; 312 ei->socket.sk = NULL; 313 ei->socket.file = NULL; 314 315 return &ei->vfs_inode; 316 } 317 318 static void sock_free_inode(struct inode *inode) 319 { 320 struct socket_alloc *ei; 321 322 ei = container_of(inode, struct socket_alloc, vfs_inode); 323 kmem_cache_free(sock_inode_cachep, ei); 324 } 325 326 static void init_once(void *foo) 327 { 328 struct socket_alloc *ei = (struct socket_alloc *)foo; 329 330 inode_init_once(&ei->vfs_inode); 331 } 332 333 static void init_inodecache(void) 334 { 335 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 336 sizeof(struct socket_alloc), 337 0, 338 (SLAB_HWCACHE_ALIGN | 339 SLAB_RECLAIM_ACCOUNT | 340 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 341 init_once); 342 BUG_ON(sock_inode_cachep == NULL); 343 } 344 345 static const struct super_operations sockfs_ops = { 346 .alloc_inode = sock_alloc_inode, 347 .free_inode = sock_free_inode, 348 .statfs = simple_statfs, 349 }; 350 351 /* 352 * sockfs_dname() is called from d_path(). 353 */ 354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 355 { 356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 357 d_inode(dentry)->i_ino); 358 } 359 360 static const struct dentry_operations sockfs_dentry_operations = { 361 .d_dname = sockfs_dname, 362 }; 363 364 static int sockfs_xattr_get(const struct xattr_handler *handler, 365 struct dentry *dentry, struct inode *inode, 366 const char *suffix, void *value, size_t size) 367 { 368 if (value) { 369 if (dentry->d_name.len + 1 > size) 370 return -ERANGE; 371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 372 } 373 return dentry->d_name.len + 1; 374 } 375 376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 379 380 static const struct xattr_handler sockfs_xattr_handler = { 381 .name = XATTR_NAME_SOCKPROTONAME, 382 .get = sockfs_xattr_get, 383 }; 384 385 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 386 struct user_namespace *mnt_userns, 387 struct dentry *dentry, struct inode *inode, 388 const char *suffix, const void *value, 389 size_t size, int flags) 390 { 391 /* Handled by LSM. */ 392 return -EAGAIN; 393 } 394 395 static const struct xattr_handler sockfs_security_xattr_handler = { 396 .prefix = XATTR_SECURITY_PREFIX, 397 .set = sockfs_security_xattr_set, 398 }; 399 400 static const struct xattr_handler *sockfs_xattr_handlers[] = { 401 &sockfs_xattr_handler, 402 &sockfs_security_xattr_handler, 403 NULL 404 }; 405 406 static int sockfs_init_fs_context(struct fs_context *fc) 407 { 408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 409 if (!ctx) 410 return -ENOMEM; 411 ctx->ops = &sockfs_ops; 412 ctx->dops = &sockfs_dentry_operations; 413 ctx->xattr = sockfs_xattr_handlers; 414 return 0; 415 } 416 417 static struct vfsmount *sock_mnt __read_mostly; 418 419 static struct file_system_type sock_fs_type = { 420 .name = "sockfs", 421 .init_fs_context = sockfs_init_fs_context, 422 .kill_sb = kill_anon_super, 423 }; 424 425 /* 426 * Obtains the first available file descriptor and sets it up for use. 427 * 428 * These functions create file structures and maps them to fd space 429 * of the current process. On success it returns file descriptor 430 * and file struct implicitly stored in sock->file. 431 * Note that another thread may close file descriptor before we return 432 * from this function. We use the fact that now we do not refer 433 * to socket after mapping. If one day we will need it, this 434 * function will increment ref. count on file by 1. 435 * 436 * In any case returned fd MAY BE not valid! 437 * This race condition is unavoidable 438 * with shared fd spaces, we cannot solve it inside kernel, 439 * but we take care of internal coherence yet. 440 */ 441 442 /** 443 * sock_alloc_file - Bind a &socket to a &file 444 * @sock: socket 445 * @flags: file status flags 446 * @dname: protocol name 447 * 448 * Returns the &file bound with @sock, implicitly storing it 449 * in sock->file. If dname is %NULL, sets to "". 450 * On failure the return is a ERR pointer (see linux/err.h). 451 * This function uses GFP_KERNEL internally. 452 */ 453 454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 455 { 456 struct file *file; 457 458 if (!dname) 459 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 460 461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 462 O_RDWR | (flags & O_NONBLOCK), 463 &socket_file_ops); 464 if (IS_ERR(file)) { 465 sock_release(sock); 466 return file; 467 } 468 469 sock->file = file; 470 file->private_data = sock; 471 stream_open(SOCK_INODE(sock), file); 472 return file; 473 } 474 EXPORT_SYMBOL(sock_alloc_file); 475 476 static int sock_map_fd(struct socket *sock, int flags) 477 { 478 struct file *newfile; 479 int fd = get_unused_fd_flags(flags); 480 if (unlikely(fd < 0)) { 481 sock_release(sock); 482 return fd; 483 } 484 485 newfile = sock_alloc_file(sock, flags, NULL); 486 if (!IS_ERR(newfile)) { 487 fd_install(fd, newfile); 488 return fd; 489 } 490 491 put_unused_fd(fd); 492 return PTR_ERR(newfile); 493 } 494 495 /** 496 * sock_from_file - Return the &socket bounded to @file. 497 * @file: file 498 * 499 * On failure returns %NULL. 500 */ 501 502 struct socket *sock_from_file(struct file *file) 503 { 504 if (file->f_op == &socket_file_ops) 505 return file->private_data; /* set in sock_map_fd */ 506 507 return NULL; 508 } 509 EXPORT_SYMBOL(sock_from_file); 510 511 /** 512 * sockfd_lookup - Go from a file number to its socket slot 513 * @fd: file handle 514 * @err: pointer to an error code return 515 * 516 * The file handle passed in is locked and the socket it is bound 517 * to is returned. If an error occurs the err pointer is overwritten 518 * with a negative errno code and NULL is returned. The function checks 519 * for both invalid handles and passing a handle which is not a socket. 520 * 521 * On a success the socket object pointer is returned. 522 */ 523 524 struct socket *sockfd_lookup(int fd, int *err) 525 { 526 struct file *file; 527 struct socket *sock; 528 529 file = fget(fd); 530 if (!file) { 531 *err = -EBADF; 532 return NULL; 533 } 534 535 sock = sock_from_file(file); 536 if (!sock) { 537 *err = -ENOTSOCK; 538 fput(file); 539 } 540 return sock; 541 } 542 EXPORT_SYMBOL(sockfd_lookup); 543 544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 545 { 546 struct fd f = fdget(fd); 547 struct socket *sock; 548 549 *err = -EBADF; 550 if (f.file) { 551 sock = sock_from_file(f.file); 552 if (likely(sock)) { 553 *fput_needed = f.flags & FDPUT_FPUT; 554 return sock; 555 } 556 *err = -ENOTSOCK; 557 fdput(f); 558 } 559 return NULL; 560 } 561 562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 563 size_t size) 564 { 565 ssize_t len; 566 ssize_t used = 0; 567 568 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 569 if (len < 0) 570 return len; 571 used += len; 572 if (buffer) { 573 if (size < used) 574 return -ERANGE; 575 buffer += len; 576 } 577 578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 584 buffer += len; 585 } 586 587 return used; 588 } 589 590 static int sockfs_setattr(struct user_namespace *mnt_userns, 591 struct dentry *dentry, struct iattr *iattr) 592 { 593 int err = simple_setattr(&init_user_ns, dentry, iattr); 594 595 if (!err && (iattr->ia_valid & ATTR_UID)) { 596 struct socket *sock = SOCKET_I(d_inode(dentry)); 597 598 if (sock->sk) 599 sock->sk->sk_uid = iattr->ia_uid; 600 else 601 err = -ENOENT; 602 } 603 604 return err; 605 } 606 607 static const struct inode_operations sockfs_inode_ops = { 608 .listxattr = sockfs_listxattr, 609 .setattr = sockfs_setattr, 610 }; 611 612 /** 613 * sock_alloc - allocate a socket 614 * 615 * Allocate a new inode and socket object. The two are bound together 616 * and initialised. The socket is then returned. If we are out of inodes 617 * NULL is returned. This functions uses GFP_KERNEL internally. 618 */ 619 620 struct socket *sock_alloc(void) 621 { 622 struct inode *inode; 623 struct socket *sock; 624 625 inode = new_inode_pseudo(sock_mnt->mnt_sb); 626 if (!inode) 627 return NULL; 628 629 sock = SOCKET_I(inode); 630 631 inode->i_ino = get_next_ino(); 632 inode->i_mode = S_IFSOCK | S_IRWXUGO; 633 inode->i_uid = current_fsuid(); 634 inode->i_gid = current_fsgid(); 635 inode->i_op = &sockfs_inode_ops; 636 637 return sock; 638 } 639 EXPORT_SYMBOL(sock_alloc); 640 641 static void __sock_release(struct socket *sock, struct inode *inode) 642 { 643 if (sock->ops) { 644 struct module *owner = sock->ops->owner; 645 646 if (inode) 647 inode_lock(inode); 648 sock->ops->release(sock); 649 sock->sk = NULL; 650 if (inode) 651 inode_unlock(inode); 652 sock->ops = NULL; 653 module_put(owner); 654 } 655 656 if (sock->wq.fasync_list) 657 pr_err("%s: fasync list not empty!\n", __func__); 658 659 if (!sock->file) { 660 iput(SOCK_INODE(sock)); 661 return; 662 } 663 sock->file = NULL; 664 } 665 666 /** 667 * sock_release - close a socket 668 * @sock: socket to close 669 * 670 * The socket is released from the protocol stack if it has a release 671 * callback, and the inode is then released if the socket is bound to 672 * an inode not a file. 673 */ 674 void sock_release(struct socket *sock) 675 { 676 __sock_release(sock, NULL); 677 } 678 EXPORT_SYMBOL(sock_release); 679 680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 681 { 682 u8 flags = *tx_flags; 683 684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 685 flags |= SKBTX_HW_TSTAMP; 686 687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 688 flags |= SKBTX_SW_TSTAMP; 689 690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 691 flags |= SKBTX_SCHED_TSTAMP; 692 693 *tx_flags = flags; 694 } 695 EXPORT_SYMBOL(__sock_tx_timestamp); 696 697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 698 size_t)); 699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 700 size_t)); 701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 702 { 703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 704 inet_sendmsg, sock, msg, 705 msg_data_left(msg)); 706 BUG_ON(ret == -EIOCBQUEUED); 707 return ret; 708 } 709 710 /** 711 * sock_sendmsg - send a message through @sock 712 * @sock: socket 713 * @msg: message to send 714 * 715 * Sends @msg through @sock, passing through LSM. 716 * Returns the number of bytes sent, or an error code. 717 */ 718 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 719 { 720 int err = security_socket_sendmsg(sock, msg, 721 msg_data_left(msg)); 722 723 return err ?: sock_sendmsg_nosec(sock, msg); 724 } 725 EXPORT_SYMBOL(sock_sendmsg); 726 727 /** 728 * kernel_sendmsg - send a message through @sock (kernel-space) 729 * @sock: socket 730 * @msg: message header 731 * @vec: kernel vec 732 * @num: vec array length 733 * @size: total message data size 734 * 735 * Builds the message data with @vec and sends it through @sock. 736 * Returns the number of bytes sent, or an error code. 737 */ 738 739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size) 741 { 742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 743 return sock_sendmsg(sock, msg); 744 } 745 EXPORT_SYMBOL(kernel_sendmsg); 746 747 /** 748 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 749 * @sk: sock 750 * @msg: message header 751 * @vec: output s/g array 752 * @num: output s/g array length 753 * @size: total message data size 754 * 755 * Builds the message data with @vec and sends it through @sock. 756 * Returns the number of bytes sent, or an error code. 757 * Caller must hold @sk. 758 */ 759 760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 761 struct kvec *vec, size_t num, size_t size) 762 { 763 struct socket *sock = sk->sk_socket; 764 765 if (!sock->ops->sendmsg_locked) 766 return sock_no_sendmsg_locked(sk, msg, size); 767 768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 769 770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 771 } 772 EXPORT_SYMBOL(kernel_sendmsg_locked); 773 774 static bool skb_is_err_queue(const struct sk_buff *skb) 775 { 776 /* pkt_type of skbs enqueued on the error queue are set to 777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 778 * in recvmsg, since skbs received on a local socket will never 779 * have a pkt_type of PACKET_OUTGOING. 780 */ 781 return skb->pkt_type == PACKET_OUTGOING; 782 } 783 784 /* On transmit, software and hardware timestamps are returned independently. 785 * As the two skb clones share the hardware timestamp, which may be updated 786 * before the software timestamp is received, a hardware TX timestamp may be 787 * returned only if there is no software TX timestamp. Ignore false software 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 790 * hardware timestamp. 791 */ 792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 793 { 794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 795 } 796 797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 798 { 799 struct scm_ts_pktinfo ts_pktinfo; 800 struct net_device *orig_dev; 801 802 if (!skb_mac_header_was_set(skb)) 803 return; 804 805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 806 807 rcu_read_lock(); 808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 809 if (orig_dev) 810 ts_pktinfo.if_index = orig_dev->ifindex; 811 rcu_read_unlock(); 812 813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 815 sizeof(ts_pktinfo), &ts_pktinfo); 816 } 817 818 /* 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 820 */ 821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 822 struct sk_buff *skb) 823 { 824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 826 struct scm_timestamping_internal tss; 827 828 int empty = 1, false_tstamp = 0; 829 struct skb_shared_hwtstamps *shhwtstamps = 830 skb_hwtstamps(skb); 831 832 /* Race occurred between timestamp enabling and packet 833 receiving. Fill in the current time for now. */ 834 if (need_software_tstamp && skb->tstamp == 0) { 835 __net_timestamp(skb); 836 false_tstamp = 1; 837 } 838 839 if (need_software_tstamp) { 840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 841 if (new_tstamp) { 842 struct __kernel_sock_timeval tv; 843 844 skb_get_new_timestamp(skb, &tv); 845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 846 sizeof(tv), &tv); 847 } else { 848 struct __kernel_old_timeval tv; 849 850 skb_get_timestamp(skb, &tv); 851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 852 sizeof(tv), &tv); 853 } 854 } else { 855 if (new_tstamp) { 856 struct __kernel_timespec ts; 857 858 skb_get_new_timestampns(skb, &ts); 859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 860 sizeof(ts), &ts); 861 } else { 862 struct __kernel_old_timespec ts; 863 864 skb_get_timestampns(skb, &ts); 865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 866 sizeof(ts), &ts); 867 } 868 } 869 } 870 871 memset(&tss, 0, sizeof(tss)); 872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 874 empty = 0; 875 if (shhwtstamps && 876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 877 !skb_is_swtx_tstamp(skb, false_tstamp)) { 878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 880 881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 882 tss.ts + 2)) { 883 empty = 0; 884 885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 886 !skb_is_err_queue(skb)) 887 put_ts_pktinfo(msg, skb); 888 } 889 } 890 if (!empty) { 891 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 892 put_cmsg_scm_timestamping64(msg, &tss); 893 else 894 put_cmsg_scm_timestamping(msg, &tss); 895 896 if (skb_is_err_queue(skb) && skb->len && 897 SKB_EXT_ERR(skb)->opt_stats) 898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 899 skb->len, skb->data); 900 } 901 } 902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 903 904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 905 struct sk_buff *skb) 906 { 907 int ack; 908 909 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 910 return; 911 if (!skb->wifi_acked_valid) 912 return; 913 914 ack = skb->wifi_acked; 915 916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 917 } 918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 919 920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 921 struct sk_buff *skb) 922 { 923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 926 } 927 928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 929 struct sk_buff *skb) 930 { 931 sock_recv_timestamp(msg, sk, skb); 932 sock_recv_drops(msg, sk, skb); 933 } 934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 935 936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 937 size_t, int)); 938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 939 size_t, int)); 940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 941 int flags) 942 { 943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 944 inet_recvmsg, sock, msg, msg_data_left(msg), 945 flags); 946 } 947 948 /** 949 * sock_recvmsg - receive a message from @sock 950 * @sock: socket 951 * @msg: message to receive 952 * @flags: message flags 953 * 954 * Receives @msg from @sock, passing through LSM. Returns the total number 955 * of bytes received, or an error. 956 */ 957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 958 { 959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 960 961 return err ?: sock_recvmsg_nosec(sock, msg, flags); 962 } 963 EXPORT_SYMBOL(sock_recvmsg); 964 965 /** 966 * kernel_recvmsg - Receive a message from a socket (kernel space) 967 * @sock: The socket to receive the message from 968 * @msg: Received message 969 * @vec: Input s/g array for message data 970 * @num: Size of input s/g array 971 * @size: Number of bytes to read 972 * @flags: Message flags (MSG_DONTWAIT, etc...) 973 * 974 * On return the msg structure contains the scatter/gather array passed in the 975 * vec argument. The array is modified so that it consists of the unfilled 976 * portion of the original array. 977 * 978 * The returned value is the total number of bytes received, or an error. 979 */ 980 981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 982 struct kvec *vec, size_t num, size_t size, int flags) 983 { 984 msg->msg_control_is_user = false; 985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 986 return sock_recvmsg(sock, msg, flags); 987 } 988 EXPORT_SYMBOL(kernel_recvmsg); 989 990 static ssize_t sock_sendpage(struct file *file, struct page *page, 991 int offset, size_t size, loff_t *ppos, int more) 992 { 993 struct socket *sock; 994 int flags; 995 996 sock = file->private_data; 997 998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1000 flags |= more; 1001 1002 return kernel_sendpage(sock, page, offset, size, flags); 1003 } 1004 1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1006 struct pipe_inode_info *pipe, size_t len, 1007 unsigned int flags) 1008 { 1009 struct socket *sock = file->private_data; 1010 1011 if (unlikely(!sock->ops->splice_read)) 1012 return generic_file_splice_read(file, ppos, pipe, len, flags); 1013 1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1015 } 1016 1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1018 { 1019 struct file *file = iocb->ki_filp; 1020 struct socket *sock = file->private_data; 1021 struct msghdr msg = {.msg_iter = *to, 1022 .msg_iocb = iocb}; 1023 ssize_t res; 1024 1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1026 msg.msg_flags = MSG_DONTWAIT; 1027 1028 if (iocb->ki_pos != 0) 1029 return -ESPIPE; 1030 1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1032 return 0; 1033 1034 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1035 *to = msg.msg_iter; 1036 return res; 1037 } 1038 1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1040 { 1041 struct file *file = iocb->ki_filp; 1042 struct socket *sock = file->private_data; 1043 struct msghdr msg = {.msg_iter = *from, 1044 .msg_iocb = iocb}; 1045 ssize_t res; 1046 1047 if (iocb->ki_pos != 0) 1048 return -ESPIPE; 1049 1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1051 msg.msg_flags = MSG_DONTWAIT; 1052 1053 if (sock->type == SOCK_SEQPACKET) 1054 msg.msg_flags |= MSG_EOR; 1055 1056 res = sock_sendmsg(sock, &msg); 1057 *from = msg.msg_iter; 1058 return res; 1059 } 1060 1061 /* 1062 * Atomic setting of ioctl hooks to avoid race 1063 * with module unload. 1064 */ 1065 1066 static DEFINE_MUTEX(br_ioctl_mutex); 1067 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1068 unsigned int cmd, struct ifreq *ifr, 1069 void __user *uarg); 1070 1071 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1072 unsigned int cmd, struct ifreq *ifr, 1073 void __user *uarg)) 1074 { 1075 mutex_lock(&br_ioctl_mutex); 1076 br_ioctl_hook = hook; 1077 mutex_unlock(&br_ioctl_mutex); 1078 } 1079 EXPORT_SYMBOL(brioctl_set); 1080 1081 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1082 struct ifreq *ifr, void __user *uarg) 1083 { 1084 int err = -ENOPKG; 1085 1086 if (!br_ioctl_hook) 1087 request_module("bridge"); 1088 1089 mutex_lock(&br_ioctl_mutex); 1090 if (br_ioctl_hook) 1091 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1092 mutex_unlock(&br_ioctl_mutex); 1093 1094 return err; 1095 } 1096 1097 static DEFINE_MUTEX(vlan_ioctl_mutex); 1098 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1099 1100 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1101 { 1102 mutex_lock(&vlan_ioctl_mutex); 1103 vlan_ioctl_hook = hook; 1104 mutex_unlock(&vlan_ioctl_mutex); 1105 } 1106 EXPORT_SYMBOL(vlan_ioctl_set); 1107 1108 static long sock_do_ioctl(struct net *net, struct socket *sock, 1109 unsigned int cmd, unsigned long arg) 1110 { 1111 struct ifreq ifr; 1112 bool need_copyout; 1113 int err; 1114 void __user *argp = (void __user *)arg; 1115 void __user *data; 1116 1117 err = sock->ops->ioctl(sock, cmd, arg); 1118 1119 /* 1120 * If this ioctl is unknown try to hand it down 1121 * to the NIC driver. 1122 */ 1123 if (err != -ENOIOCTLCMD) 1124 return err; 1125 1126 if (get_user_ifreq(&ifr, &data, argp)) 1127 return -EFAULT; 1128 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1129 if (!err && need_copyout) 1130 if (put_user_ifreq(&ifr, argp)) 1131 return -EFAULT; 1132 1133 return err; 1134 } 1135 1136 /* 1137 * With an ioctl, arg may well be a user mode pointer, but we don't know 1138 * what to do with it - that's up to the protocol still. 1139 */ 1140 1141 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1142 { 1143 struct socket *sock; 1144 struct sock *sk; 1145 void __user *argp = (void __user *)arg; 1146 int pid, err; 1147 struct net *net; 1148 1149 sock = file->private_data; 1150 sk = sock->sk; 1151 net = sock_net(sk); 1152 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1153 struct ifreq ifr; 1154 void __user *data; 1155 bool need_copyout; 1156 if (get_user_ifreq(&ifr, &data, argp)) 1157 return -EFAULT; 1158 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1159 if (!err && need_copyout) 1160 if (put_user_ifreq(&ifr, argp)) 1161 return -EFAULT; 1162 } else 1163 #ifdef CONFIG_WEXT_CORE 1164 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1165 err = wext_handle_ioctl(net, cmd, argp); 1166 } else 1167 #endif 1168 switch (cmd) { 1169 case FIOSETOWN: 1170 case SIOCSPGRP: 1171 err = -EFAULT; 1172 if (get_user(pid, (int __user *)argp)) 1173 break; 1174 err = f_setown(sock->file, pid, 1); 1175 break; 1176 case FIOGETOWN: 1177 case SIOCGPGRP: 1178 err = put_user(f_getown(sock->file), 1179 (int __user *)argp); 1180 break; 1181 case SIOCGIFBR: 1182 case SIOCSIFBR: 1183 case SIOCBRADDBR: 1184 case SIOCBRDELBR: 1185 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1186 break; 1187 case SIOCGIFVLAN: 1188 case SIOCSIFVLAN: 1189 err = -ENOPKG; 1190 if (!vlan_ioctl_hook) 1191 request_module("8021q"); 1192 1193 mutex_lock(&vlan_ioctl_mutex); 1194 if (vlan_ioctl_hook) 1195 err = vlan_ioctl_hook(net, argp); 1196 mutex_unlock(&vlan_ioctl_mutex); 1197 break; 1198 case SIOCGSKNS: 1199 err = -EPERM; 1200 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1201 break; 1202 1203 err = open_related_ns(&net->ns, get_net_ns); 1204 break; 1205 case SIOCGSTAMP_OLD: 1206 case SIOCGSTAMPNS_OLD: 1207 if (!sock->ops->gettstamp) { 1208 err = -ENOIOCTLCMD; 1209 break; 1210 } 1211 err = sock->ops->gettstamp(sock, argp, 1212 cmd == SIOCGSTAMP_OLD, 1213 !IS_ENABLED(CONFIG_64BIT)); 1214 break; 1215 case SIOCGSTAMP_NEW: 1216 case SIOCGSTAMPNS_NEW: 1217 if (!sock->ops->gettstamp) { 1218 err = -ENOIOCTLCMD; 1219 break; 1220 } 1221 err = sock->ops->gettstamp(sock, argp, 1222 cmd == SIOCGSTAMP_NEW, 1223 false); 1224 break; 1225 1226 case SIOCGIFCONF: 1227 err = dev_ifconf(net, argp); 1228 break; 1229 1230 default: 1231 err = sock_do_ioctl(net, sock, cmd, arg); 1232 break; 1233 } 1234 return err; 1235 } 1236 1237 /** 1238 * sock_create_lite - creates a socket 1239 * @family: protocol family (AF_INET, ...) 1240 * @type: communication type (SOCK_STREAM, ...) 1241 * @protocol: protocol (0, ...) 1242 * @res: new socket 1243 * 1244 * Creates a new socket and assigns it to @res, passing through LSM. 1245 * The new socket initialization is not complete, see kernel_accept(). 1246 * Returns 0 or an error. On failure @res is set to %NULL. 1247 * This function internally uses GFP_KERNEL. 1248 */ 1249 1250 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1251 { 1252 int err; 1253 struct socket *sock = NULL; 1254 1255 err = security_socket_create(family, type, protocol, 1); 1256 if (err) 1257 goto out; 1258 1259 sock = sock_alloc(); 1260 if (!sock) { 1261 err = -ENOMEM; 1262 goto out; 1263 } 1264 1265 sock->type = type; 1266 err = security_socket_post_create(sock, family, type, protocol, 1); 1267 if (err) 1268 goto out_release; 1269 1270 out: 1271 *res = sock; 1272 return err; 1273 out_release: 1274 sock_release(sock); 1275 sock = NULL; 1276 goto out; 1277 } 1278 EXPORT_SYMBOL(sock_create_lite); 1279 1280 /* No kernel lock held - perfect */ 1281 static __poll_t sock_poll(struct file *file, poll_table *wait) 1282 { 1283 struct socket *sock = file->private_data; 1284 __poll_t events = poll_requested_events(wait), flag = 0; 1285 1286 if (!sock->ops->poll) 1287 return 0; 1288 1289 if (sk_can_busy_loop(sock->sk)) { 1290 /* poll once if requested by the syscall */ 1291 if (events & POLL_BUSY_LOOP) 1292 sk_busy_loop(sock->sk, 1); 1293 1294 /* if this socket can poll_ll, tell the system call */ 1295 flag = POLL_BUSY_LOOP; 1296 } 1297 1298 return sock->ops->poll(file, sock, wait) | flag; 1299 } 1300 1301 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1302 { 1303 struct socket *sock = file->private_data; 1304 1305 return sock->ops->mmap(file, sock, vma); 1306 } 1307 1308 static int sock_close(struct inode *inode, struct file *filp) 1309 { 1310 __sock_release(SOCKET_I(inode), inode); 1311 return 0; 1312 } 1313 1314 /* 1315 * Update the socket async list 1316 * 1317 * Fasync_list locking strategy. 1318 * 1319 * 1. fasync_list is modified only under process context socket lock 1320 * i.e. under semaphore. 1321 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1322 * or under socket lock 1323 */ 1324 1325 static int sock_fasync(int fd, struct file *filp, int on) 1326 { 1327 struct socket *sock = filp->private_data; 1328 struct sock *sk = sock->sk; 1329 struct socket_wq *wq = &sock->wq; 1330 1331 if (sk == NULL) 1332 return -EINVAL; 1333 1334 lock_sock(sk); 1335 fasync_helper(fd, filp, on, &wq->fasync_list); 1336 1337 if (!wq->fasync_list) 1338 sock_reset_flag(sk, SOCK_FASYNC); 1339 else 1340 sock_set_flag(sk, SOCK_FASYNC); 1341 1342 release_sock(sk); 1343 return 0; 1344 } 1345 1346 /* This function may be called only under rcu_lock */ 1347 1348 int sock_wake_async(struct socket_wq *wq, int how, int band) 1349 { 1350 if (!wq || !wq->fasync_list) 1351 return -1; 1352 1353 switch (how) { 1354 case SOCK_WAKE_WAITD: 1355 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1356 break; 1357 goto call_kill; 1358 case SOCK_WAKE_SPACE: 1359 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1360 break; 1361 fallthrough; 1362 case SOCK_WAKE_IO: 1363 call_kill: 1364 kill_fasync(&wq->fasync_list, SIGIO, band); 1365 break; 1366 case SOCK_WAKE_URG: 1367 kill_fasync(&wq->fasync_list, SIGURG, band); 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL(sock_wake_async); 1373 1374 /** 1375 * __sock_create - creates a socket 1376 * @net: net namespace 1377 * @family: protocol family (AF_INET, ...) 1378 * @type: communication type (SOCK_STREAM, ...) 1379 * @protocol: protocol (0, ...) 1380 * @res: new socket 1381 * @kern: boolean for kernel space sockets 1382 * 1383 * Creates a new socket and assigns it to @res, passing through LSM. 1384 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1385 * be set to true if the socket resides in kernel space. 1386 * This function internally uses GFP_KERNEL. 1387 */ 1388 1389 int __sock_create(struct net *net, int family, int type, int protocol, 1390 struct socket **res, int kern) 1391 { 1392 int err; 1393 struct socket *sock; 1394 const struct net_proto_family *pf; 1395 1396 /* 1397 * Check protocol is in range 1398 */ 1399 if (family < 0 || family >= NPROTO) 1400 return -EAFNOSUPPORT; 1401 if (type < 0 || type >= SOCK_MAX) 1402 return -EINVAL; 1403 1404 /* Compatibility. 1405 1406 This uglymoron is moved from INET layer to here to avoid 1407 deadlock in module load. 1408 */ 1409 if (family == PF_INET && type == SOCK_PACKET) { 1410 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1411 current->comm); 1412 family = PF_PACKET; 1413 } 1414 1415 err = security_socket_create(family, type, protocol, kern); 1416 if (err) 1417 return err; 1418 1419 /* 1420 * Allocate the socket and allow the family to set things up. if 1421 * the protocol is 0, the family is instructed to select an appropriate 1422 * default. 1423 */ 1424 sock = sock_alloc(); 1425 if (!sock) { 1426 net_warn_ratelimited("socket: no more sockets\n"); 1427 return -ENFILE; /* Not exactly a match, but its the 1428 closest posix thing */ 1429 } 1430 1431 sock->type = type; 1432 1433 #ifdef CONFIG_MODULES 1434 /* Attempt to load a protocol module if the find failed. 1435 * 1436 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1437 * requested real, full-featured networking support upon configuration. 1438 * Otherwise module support will break! 1439 */ 1440 if (rcu_access_pointer(net_families[family]) == NULL) 1441 request_module("net-pf-%d", family); 1442 #endif 1443 1444 rcu_read_lock(); 1445 pf = rcu_dereference(net_families[family]); 1446 err = -EAFNOSUPPORT; 1447 if (!pf) 1448 goto out_release; 1449 1450 /* 1451 * We will call the ->create function, that possibly is in a loadable 1452 * module, so we have to bump that loadable module refcnt first. 1453 */ 1454 if (!try_module_get(pf->owner)) 1455 goto out_release; 1456 1457 /* Now protected by module ref count */ 1458 rcu_read_unlock(); 1459 1460 err = pf->create(net, sock, protocol, kern); 1461 if (err < 0) 1462 goto out_module_put; 1463 1464 /* 1465 * Now to bump the refcnt of the [loadable] module that owns this 1466 * socket at sock_release time we decrement its refcnt. 1467 */ 1468 if (!try_module_get(sock->ops->owner)) 1469 goto out_module_busy; 1470 1471 /* 1472 * Now that we're done with the ->create function, the [loadable] 1473 * module can have its refcnt decremented 1474 */ 1475 module_put(pf->owner); 1476 err = security_socket_post_create(sock, family, type, protocol, kern); 1477 if (err) 1478 goto out_sock_release; 1479 *res = sock; 1480 1481 return 0; 1482 1483 out_module_busy: 1484 err = -EAFNOSUPPORT; 1485 out_module_put: 1486 sock->ops = NULL; 1487 module_put(pf->owner); 1488 out_sock_release: 1489 sock_release(sock); 1490 return err; 1491 1492 out_release: 1493 rcu_read_unlock(); 1494 goto out_sock_release; 1495 } 1496 EXPORT_SYMBOL(__sock_create); 1497 1498 /** 1499 * sock_create - creates a socket 1500 * @family: protocol family (AF_INET, ...) 1501 * @type: communication type (SOCK_STREAM, ...) 1502 * @protocol: protocol (0, ...) 1503 * @res: new socket 1504 * 1505 * A wrapper around __sock_create(). 1506 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1507 */ 1508 1509 int sock_create(int family, int type, int protocol, struct socket **res) 1510 { 1511 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1512 } 1513 EXPORT_SYMBOL(sock_create); 1514 1515 /** 1516 * sock_create_kern - creates a socket (kernel space) 1517 * @net: net namespace 1518 * @family: protocol family (AF_INET, ...) 1519 * @type: communication type (SOCK_STREAM, ...) 1520 * @protocol: protocol (0, ...) 1521 * @res: new socket 1522 * 1523 * A wrapper around __sock_create(). 1524 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1525 */ 1526 1527 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1528 { 1529 return __sock_create(net, family, type, protocol, res, 1); 1530 } 1531 EXPORT_SYMBOL(sock_create_kern); 1532 1533 int __sys_socket(int family, int type, int protocol) 1534 { 1535 int retval; 1536 struct socket *sock; 1537 int flags; 1538 1539 /* Check the SOCK_* constants for consistency. */ 1540 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1541 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1542 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1543 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1544 1545 flags = type & ~SOCK_TYPE_MASK; 1546 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1547 return -EINVAL; 1548 type &= SOCK_TYPE_MASK; 1549 1550 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1551 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1552 1553 retval = sock_create(family, type, protocol, &sock); 1554 if (retval < 0) 1555 return retval; 1556 1557 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1558 } 1559 1560 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1561 { 1562 return __sys_socket(family, type, protocol); 1563 } 1564 1565 /* 1566 * Create a pair of connected sockets. 1567 */ 1568 1569 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1570 { 1571 struct socket *sock1, *sock2; 1572 int fd1, fd2, err; 1573 struct file *newfile1, *newfile2; 1574 int flags; 1575 1576 flags = type & ~SOCK_TYPE_MASK; 1577 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1578 return -EINVAL; 1579 type &= SOCK_TYPE_MASK; 1580 1581 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1582 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1583 1584 /* 1585 * reserve descriptors and make sure we won't fail 1586 * to return them to userland. 1587 */ 1588 fd1 = get_unused_fd_flags(flags); 1589 if (unlikely(fd1 < 0)) 1590 return fd1; 1591 1592 fd2 = get_unused_fd_flags(flags); 1593 if (unlikely(fd2 < 0)) { 1594 put_unused_fd(fd1); 1595 return fd2; 1596 } 1597 1598 err = put_user(fd1, &usockvec[0]); 1599 if (err) 1600 goto out; 1601 1602 err = put_user(fd2, &usockvec[1]); 1603 if (err) 1604 goto out; 1605 1606 /* 1607 * Obtain the first socket and check if the underlying protocol 1608 * supports the socketpair call. 1609 */ 1610 1611 err = sock_create(family, type, protocol, &sock1); 1612 if (unlikely(err < 0)) 1613 goto out; 1614 1615 err = sock_create(family, type, protocol, &sock2); 1616 if (unlikely(err < 0)) { 1617 sock_release(sock1); 1618 goto out; 1619 } 1620 1621 err = security_socket_socketpair(sock1, sock2); 1622 if (unlikely(err)) { 1623 sock_release(sock2); 1624 sock_release(sock1); 1625 goto out; 1626 } 1627 1628 err = sock1->ops->socketpair(sock1, sock2); 1629 if (unlikely(err < 0)) { 1630 sock_release(sock2); 1631 sock_release(sock1); 1632 goto out; 1633 } 1634 1635 newfile1 = sock_alloc_file(sock1, flags, NULL); 1636 if (IS_ERR(newfile1)) { 1637 err = PTR_ERR(newfile1); 1638 sock_release(sock2); 1639 goto out; 1640 } 1641 1642 newfile2 = sock_alloc_file(sock2, flags, NULL); 1643 if (IS_ERR(newfile2)) { 1644 err = PTR_ERR(newfile2); 1645 fput(newfile1); 1646 goto out; 1647 } 1648 1649 audit_fd_pair(fd1, fd2); 1650 1651 fd_install(fd1, newfile1); 1652 fd_install(fd2, newfile2); 1653 return 0; 1654 1655 out: 1656 put_unused_fd(fd2); 1657 put_unused_fd(fd1); 1658 return err; 1659 } 1660 1661 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1662 int __user *, usockvec) 1663 { 1664 return __sys_socketpair(family, type, protocol, usockvec); 1665 } 1666 1667 /* 1668 * Bind a name to a socket. Nothing much to do here since it's 1669 * the protocol's responsibility to handle the local address. 1670 * 1671 * We move the socket address to kernel space before we call 1672 * the protocol layer (having also checked the address is ok). 1673 */ 1674 1675 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1676 { 1677 struct socket *sock; 1678 struct sockaddr_storage address; 1679 int err, fput_needed; 1680 1681 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1682 if (sock) { 1683 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1684 if (!err) { 1685 err = security_socket_bind(sock, 1686 (struct sockaddr *)&address, 1687 addrlen); 1688 if (!err) 1689 err = sock->ops->bind(sock, 1690 (struct sockaddr *) 1691 &address, addrlen); 1692 } 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696 } 1697 1698 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1699 { 1700 return __sys_bind(fd, umyaddr, addrlen); 1701 } 1702 1703 /* 1704 * Perform a listen. Basically, we allow the protocol to do anything 1705 * necessary for a listen, and if that works, we mark the socket as 1706 * ready for listening. 1707 */ 1708 1709 int __sys_listen(int fd, int backlog) 1710 { 1711 struct socket *sock; 1712 int err, fput_needed; 1713 int somaxconn; 1714 1715 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1716 if (sock) { 1717 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1718 if ((unsigned int)backlog > somaxconn) 1719 backlog = somaxconn; 1720 1721 err = security_socket_listen(sock, backlog); 1722 if (!err) 1723 err = sock->ops->listen(sock, backlog); 1724 1725 fput_light(sock->file, fput_needed); 1726 } 1727 return err; 1728 } 1729 1730 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1731 { 1732 return __sys_listen(fd, backlog); 1733 } 1734 1735 int __sys_accept4_file(struct file *file, unsigned file_flags, 1736 struct sockaddr __user *upeer_sockaddr, 1737 int __user *upeer_addrlen, int flags, 1738 unsigned long nofile) 1739 { 1740 struct socket *sock, *newsock; 1741 struct file *newfile; 1742 int err, len, newfd; 1743 struct sockaddr_storage address; 1744 1745 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1746 return -EINVAL; 1747 1748 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1749 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1750 1751 sock = sock_from_file(file); 1752 if (!sock) { 1753 err = -ENOTSOCK; 1754 goto out; 1755 } 1756 1757 err = -ENFILE; 1758 newsock = sock_alloc(); 1759 if (!newsock) 1760 goto out; 1761 1762 newsock->type = sock->type; 1763 newsock->ops = sock->ops; 1764 1765 /* 1766 * We don't need try_module_get here, as the listening socket (sock) 1767 * has the protocol module (sock->ops->owner) held. 1768 */ 1769 __module_get(newsock->ops->owner); 1770 1771 newfd = __get_unused_fd_flags(flags, nofile); 1772 if (unlikely(newfd < 0)) { 1773 err = newfd; 1774 sock_release(newsock); 1775 goto out; 1776 } 1777 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1778 if (IS_ERR(newfile)) { 1779 err = PTR_ERR(newfile); 1780 put_unused_fd(newfd); 1781 goto out; 1782 } 1783 1784 err = security_socket_accept(sock, newsock); 1785 if (err) 1786 goto out_fd; 1787 1788 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1789 false); 1790 if (err < 0) 1791 goto out_fd; 1792 1793 if (upeer_sockaddr) { 1794 len = newsock->ops->getname(newsock, 1795 (struct sockaddr *)&address, 2); 1796 if (len < 0) { 1797 err = -ECONNABORTED; 1798 goto out_fd; 1799 } 1800 err = move_addr_to_user(&address, 1801 len, upeer_sockaddr, upeer_addrlen); 1802 if (err < 0) 1803 goto out_fd; 1804 } 1805 1806 /* File flags are not inherited via accept() unlike another OSes. */ 1807 1808 fd_install(newfd, newfile); 1809 err = newfd; 1810 out: 1811 return err; 1812 out_fd: 1813 fput(newfile); 1814 put_unused_fd(newfd); 1815 goto out; 1816 1817 } 1818 1819 /* 1820 * For accept, we attempt to create a new socket, set up the link 1821 * with the client, wake up the client, then return the new 1822 * connected fd. We collect the address of the connector in kernel 1823 * space and move it to user at the very end. This is unclean because 1824 * we open the socket then return an error. 1825 * 1826 * 1003.1g adds the ability to recvmsg() to query connection pending 1827 * status to recvmsg. We need to add that support in a way thats 1828 * clean when we restructure accept also. 1829 */ 1830 1831 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1832 int __user *upeer_addrlen, int flags) 1833 { 1834 int ret = -EBADF; 1835 struct fd f; 1836 1837 f = fdget(fd); 1838 if (f.file) { 1839 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1840 upeer_addrlen, flags, 1841 rlimit(RLIMIT_NOFILE)); 1842 fdput(f); 1843 } 1844 1845 return ret; 1846 } 1847 1848 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1849 int __user *, upeer_addrlen, int, flags) 1850 { 1851 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1852 } 1853 1854 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1855 int __user *, upeer_addrlen) 1856 { 1857 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1858 } 1859 1860 /* 1861 * Attempt to connect to a socket with the server address. The address 1862 * is in user space so we verify it is OK and move it to kernel space. 1863 * 1864 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1865 * break bindings 1866 * 1867 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1868 * other SEQPACKET protocols that take time to connect() as it doesn't 1869 * include the -EINPROGRESS status for such sockets. 1870 */ 1871 1872 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1873 int addrlen, int file_flags) 1874 { 1875 struct socket *sock; 1876 int err; 1877 1878 sock = sock_from_file(file); 1879 if (!sock) { 1880 err = -ENOTSOCK; 1881 goto out; 1882 } 1883 1884 err = 1885 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1886 if (err) 1887 goto out; 1888 1889 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1890 sock->file->f_flags | file_flags); 1891 out: 1892 return err; 1893 } 1894 1895 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1896 { 1897 int ret = -EBADF; 1898 struct fd f; 1899 1900 f = fdget(fd); 1901 if (f.file) { 1902 struct sockaddr_storage address; 1903 1904 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1905 if (!ret) 1906 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1907 fdput(f); 1908 } 1909 1910 return ret; 1911 } 1912 1913 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1914 int, addrlen) 1915 { 1916 return __sys_connect(fd, uservaddr, addrlen); 1917 } 1918 1919 /* 1920 * Get the local address ('name') of a socket object. Move the obtained 1921 * name to user space. 1922 */ 1923 1924 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1925 int __user *usockaddr_len) 1926 { 1927 struct socket *sock; 1928 struct sockaddr_storage address; 1929 int err, fput_needed; 1930 1931 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1932 if (!sock) 1933 goto out; 1934 1935 err = security_socket_getsockname(sock); 1936 if (err) 1937 goto out_put; 1938 1939 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1940 if (err < 0) 1941 goto out_put; 1942 /* "err" is actually length in this case */ 1943 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1944 1945 out_put: 1946 fput_light(sock->file, fput_needed); 1947 out: 1948 return err; 1949 } 1950 1951 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1952 int __user *, usockaddr_len) 1953 { 1954 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1955 } 1956 1957 /* 1958 * Get the remote address ('name') of a socket object. Move the obtained 1959 * name to user space. 1960 */ 1961 1962 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1963 int __user *usockaddr_len) 1964 { 1965 struct socket *sock; 1966 struct sockaddr_storage address; 1967 int err, fput_needed; 1968 1969 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1970 if (sock != NULL) { 1971 err = security_socket_getpeername(sock); 1972 if (err) { 1973 fput_light(sock->file, fput_needed); 1974 return err; 1975 } 1976 1977 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1978 if (err >= 0) 1979 /* "err" is actually length in this case */ 1980 err = move_addr_to_user(&address, err, usockaddr, 1981 usockaddr_len); 1982 fput_light(sock->file, fput_needed); 1983 } 1984 return err; 1985 } 1986 1987 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1988 int __user *, usockaddr_len) 1989 { 1990 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1991 } 1992 1993 /* 1994 * Send a datagram to a given address. We move the address into kernel 1995 * space and check the user space data area is readable before invoking 1996 * the protocol. 1997 */ 1998 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1999 struct sockaddr __user *addr, int addr_len) 2000 { 2001 struct socket *sock; 2002 struct sockaddr_storage address; 2003 int err; 2004 struct msghdr msg; 2005 struct iovec iov; 2006 int fput_needed; 2007 2008 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 2009 if (unlikely(err)) 2010 return err; 2011 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2012 if (!sock) 2013 goto out; 2014 2015 msg.msg_name = NULL; 2016 msg.msg_control = NULL; 2017 msg.msg_controllen = 0; 2018 msg.msg_namelen = 0; 2019 if (addr) { 2020 err = move_addr_to_kernel(addr, addr_len, &address); 2021 if (err < 0) 2022 goto out_put; 2023 msg.msg_name = (struct sockaddr *)&address; 2024 msg.msg_namelen = addr_len; 2025 } 2026 if (sock->file->f_flags & O_NONBLOCK) 2027 flags |= MSG_DONTWAIT; 2028 msg.msg_flags = flags; 2029 err = sock_sendmsg(sock, &msg); 2030 2031 out_put: 2032 fput_light(sock->file, fput_needed); 2033 out: 2034 return err; 2035 } 2036 2037 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2038 unsigned int, flags, struct sockaddr __user *, addr, 2039 int, addr_len) 2040 { 2041 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2042 } 2043 2044 /* 2045 * Send a datagram down a socket. 2046 */ 2047 2048 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2049 unsigned int, flags) 2050 { 2051 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2052 } 2053 2054 /* 2055 * Receive a frame from the socket and optionally record the address of the 2056 * sender. We verify the buffers are writable and if needed move the 2057 * sender address from kernel to user space. 2058 */ 2059 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2060 struct sockaddr __user *addr, int __user *addr_len) 2061 { 2062 struct socket *sock; 2063 struct iovec iov; 2064 struct msghdr msg; 2065 struct sockaddr_storage address; 2066 int err, err2; 2067 int fput_needed; 2068 2069 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2070 if (unlikely(err)) 2071 return err; 2072 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2073 if (!sock) 2074 goto out; 2075 2076 msg.msg_control = NULL; 2077 msg.msg_controllen = 0; 2078 /* Save some cycles and don't copy the address if not needed */ 2079 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2080 /* We assume all kernel code knows the size of sockaddr_storage */ 2081 msg.msg_namelen = 0; 2082 msg.msg_iocb = NULL; 2083 msg.msg_flags = 0; 2084 if (sock->file->f_flags & O_NONBLOCK) 2085 flags |= MSG_DONTWAIT; 2086 err = sock_recvmsg(sock, &msg, flags); 2087 2088 if (err >= 0 && addr != NULL) { 2089 err2 = move_addr_to_user(&address, 2090 msg.msg_namelen, addr, addr_len); 2091 if (err2 < 0) 2092 err = err2; 2093 } 2094 2095 fput_light(sock->file, fput_needed); 2096 out: 2097 return err; 2098 } 2099 2100 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2101 unsigned int, flags, struct sockaddr __user *, addr, 2102 int __user *, addr_len) 2103 { 2104 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2105 } 2106 2107 /* 2108 * Receive a datagram from a socket. 2109 */ 2110 2111 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2112 unsigned int, flags) 2113 { 2114 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2115 } 2116 2117 static bool sock_use_custom_sol_socket(const struct socket *sock) 2118 { 2119 const struct sock *sk = sock->sk; 2120 2121 /* Use sock->ops->setsockopt() for MPTCP */ 2122 return IS_ENABLED(CONFIG_MPTCP) && 2123 sk->sk_protocol == IPPROTO_MPTCP && 2124 sk->sk_type == SOCK_STREAM && 2125 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2126 } 2127 2128 /* 2129 * Set a socket option. Because we don't know the option lengths we have 2130 * to pass the user mode parameter for the protocols to sort out. 2131 */ 2132 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2133 int optlen) 2134 { 2135 sockptr_t optval = USER_SOCKPTR(user_optval); 2136 char *kernel_optval = NULL; 2137 int err, fput_needed; 2138 struct socket *sock; 2139 2140 if (optlen < 0) 2141 return -EINVAL; 2142 2143 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2144 if (!sock) 2145 return err; 2146 2147 err = security_socket_setsockopt(sock, level, optname); 2148 if (err) 2149 goto out_put; 2150 2151 if (!in_compat_syscall()) 2152 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2153 user_optval, &optlen, 2154 &kernel_optval); 2155 if (err < 0) 2156 goto out_put; 2157 if (err > 0) { 2158 err = 0; 2159 goto out_put; 2160 } 2161 2162 if (kernel_optval) 2163 optval = KERNEL_SOCKPTR(kernel_optval); 2164 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2165 err = sock_setsockopt(sock, level, optname, optval, optlen); 2166 else if (unlikely(!sock->ops->setsockopt)) 2167 err = -EOPNOTSUPP; 2168 else 2169 err = sock->ops->setsockopt(sock, level, optname, optval, 2170 optlen); 2171 kfree(kernel_optval); 2172 out_put: 2173 fput_light(sock->file, fput_needed); 2174 return err; 2175 } 2176 2177 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2178 char __user *, optval, int, optlen) 2179 { 2180 return __sys_setsockopt(fd, level, optname, optval, optlen); 2181 } 2182 2183 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2184 int optname)); 2185 2186 /* 2187 * Get a socket option. Because we don't know the option lengths we have 2188 * to pass a user mode parameter for the protocols to sort out. 2189 */ 2190 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2191 int __user *optlen) 2192 { 2193 int err, fput_needed; 2194 struct socket *sock; 2195 int max_optlen; 2196 2197 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2198 if (!sock) 2199 return err; 2200 2201 err = security_socket_getsockopt(sock, level, optname); 2202 if (err) 2203 goto out_put; 2204 2205 if (!in_compat_syscall()) 2206 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2207 2208 if (level == SOL_SOCKET) 2209 err = sock_getsockopt(sock, level, optname, optval, optlen); 2210 else if (unlikely(!sock->ops->getsockopt)) 2211 err = -EOPNOTSUPP; 2212 else 2213 err = sock->ops->getsockopt(sock, level, optname, optval, 2214 optlen); 2215 2216 if (!in_compat_syscall()) 2217 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2218 optval, optlen, max_optlen, 2219 err); 2220 out_put: 2221 fput_light(sock->file, fput_needed); 2222 return err; 2223 } 2224 2225 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2226 char __user *, optval, int __user *, optlen) 2227 { 2228 return __sys_getsockopt(fd, level, optname, optval, optlen); 2229 } 2230 2231 /* 2232 * Shutdown a socket. 2233 */ 2234 2235 int __sys_shutdown_sock(struct socket *sock, int how) 2236 { 2237 int err; 2238 2239 err = security_socket_shutdown(sock, how); 2240 if (!err) 2241 err = sock->ops->shutdown(sock, how); 2242 2243 return err; 2244 } 2245 2246 int __sys_shutdown(int fd, int how) 2247 { 2248 int err, fput_needed; 2249 struct socket *sock; 2250 2251 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2252 if (sock != NULL) { 2253 err = __sys_shutdown_sock(sock, how); 2254 fput_light(sock->file, fput_needed); 2255 } 2256 return err; 2257 } 2258 2259 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2260 { 2261 return __sys_shutdown(fd, how); 2262 } 2263 2264 /* A couple of helpful macros for getting the address of the 32/64 bit 2265 * fields which are the same type (int / unsigned) on our platforms. 2266 */ 2267 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2268 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2269 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2270 2271 struct used_address { 2272 struct sockaddr_storage name; 2273 unsigned int name_len; 2274 }; 2275 2276 int __copy_msghdr_from_user(struct msghdr *kmsg, 2277 struct user_msghdr __user *umsg, 2278 struct sockaddr __user **save_addr, 2279 struct iovec __user **uiov, size_t *nsegs) 2280 { 2281 struct user_msghdr msg; 2282 ssize_t err; 2283 2284 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2285 return -EFAULT; 2286 2287 kmsg->msg_control_is_user = true; 2288 kmsg->msg_control_user = msg.msg_control; 2289 kmsg->msg_controllen = msg.msg_controllen; 2290 kmsg->msg_flags = msg.msg_flags; 2291 2292 kmsg->msg_namelen = msg.msg_namelen; 2293 if (!msg.msg_name) 2294 kmsg->msg_namelen = 0; 2295 2296 if (kmsg->msg_namelen < 0) 2297 return -EINVAL; 2298 2299 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2300 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2301 2302 if (save_addr) 2303 *save_addr = msg.msg_name; 2304 2305 if (msg.msg_name && kmsg->msg_namelen) { 2306 if (!save_addr) { 2307 err = move_addr_to_kernel(msg.msg_name, 2308 kmsg->msg_namelen, 2309 kmsg->msg_name); 2310 if (err < 0) 2311 return err; 2312 } 2313 } else { 2314 kmsg->msg_name = NULL; 2315 kmsg->msg_namelen = 0; 2316 } 2317 2318 if (msg.msg_iovlen > UIO_MAXIOV) 2319 return -EMSGSIZE; 2320 2321 kmsg->msg_iocb = NULL; 2322 *uiov = msg.msg_iov; 2323 *nsegs = msg.msg_iovlen; 2324 return 0; 2325 } 2326 2327 static int copy_msghdr_from_user(struct msghdr *kmsg, 2328 struct user_msghdr __user *umsg, 2329 struct sockaddr __user **save_addr, 2330 struct iovec **iov) 2331 { 2332 struct user_msghdr msg; 2333 ssize_t err; 2334 2335 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2336 &msg.msg_iovlen); 2337 if (err) 2338 return err; 2339 2340 err = import_iovec(save_addr ? READ : WRITE, 2341 msg.msg_iov, msg.msg_iovlen, 2342 UIO_FASTIOV, iov, &kmsg->msg_iter); 2343 return err < 0 ? err : 0; 2344 } 2345 2346 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2347 unsigned int flags, struct used_address *used_address, 2348 unsigned int allowed_msghdr_flags) 2349 { 2350 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2351 __aligned(sizeof(__kernel_size_t)); 2352 /* 20 is size of ipv6_pktinfo */ 2353 unsigned char *ctl_buf = ctl; 2354 int ctl_len; 2355 ssize_t err; 2356 2357 err = -ENOBUFS; 2358 2359 if (msg_sys->msg_controllen > INT_MAX) 2360 goto out; 2361 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2362 ctl_len = msg_sys->msg_controllen; 2363 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2364 err = 2365 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2366 sizeof(ctl)); 2367 if (err) 2368 goto out; 2369 ctl_buf = msg_sys->msg_control; 2370 ctl_len = msg_sys->msg_controllen; 2371 } else if (ctl_len) { 2372 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2373 CMSG_ALIGN(sizeof(struct cmsghdr))); 2374 if (ctl_len > sizeof(ctl)) { 2375 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2376 if (ctl_buf == NULL) 2377 goto out; 2378 } 2379 err = -EFAULT; 2380 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2381 goto out_freectl; 2382 msg_sys->msg_control = ctl_buf; 2383 msg_sys->msg_control_is_user = false; 2384 } 2385 msg_sys->msg_flags = flags; 2386 2387 if (sock->file->f_flags & O_NONBLOCK) 2388 msg_sys->msg_flags |= MSG_DONTWAIT; 2389 /* 2390 * If this is sendmmsg() and current destination address is same as 2391 * previously succeeded address, omit asking LSM's decision. 2392 * used_address->name_len is initialized to UINT_MAX so that the first 2393 * destination address never matches. 2394 */ 2395 if (used_address && msg_sys->msg_name && 2396 used_address->name_len == msg_sys->msg_namelen && 2397 !memcmp(&used_address->name, msg_sys->msg_name, 2398 used_address->name_len)) { 2399 err = sock_sendmsg_nosec(sock, msg_sys); 2400 goto out_freectl; 2401 } 2402 err = sock_sendmsg(sock, msg_sys); 2403 /* 2404 * If this is sendmmsg() and sending to current destination address was 2405 * successful, remember it. 2406 */ 2407 if (used_address && err >= 0) { 2408 used_address->name_len = msg_sys->msg_namelen; 2409 if (msg_sys->msg_name) 2410 memcpy(&used_address->name, msg_sys->msg_name, 2411 used_address->name_len); 2412 } 2413 2414 out_freectl: 2415 if (ctl_buf != ctl) 2416 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2417 out: 2418 return err; 2419 } 2420 2421 int sendmsg_copy_msghdr(struct msghdr *msg, 2422 struct user_msghdr __user *umsg, unsigned flags, 2423 struct iovec **iov) 2424 { 2425 int err; 2426 2427 if (flags & MSG_CMSG_COMPAT) { 2428 struct compat_msghdr __user *msg_compat; 2429 2430 msg_compat = (struct compat_msghdr __user *) umsg; 2431 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2432 } else { 2433 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2434 } 2435 if (err < 0) 2436 return err; 2437 2438 return 0; 2439 } 2440 2441 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2442 struct msghdr *msg_sys, unsigned int flags, 2443 struct used_address *used_address, 2444 unsigned int allowed_msghdr_flags) 2445 { 2446 struct sockaddr_storage address; 2447 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2448 ssize_t err; 2449 2450 msg_sys->msg_name = &address; 2451 2452 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2453 if (err < 0) 2454 return err; 2455 2456 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2457 allowed_msghdr_flags); 2458 kfree(iov); 2459 return err; 2460 } 2461 2462 /* 2463 * BSD sendmsg interface 2464 */ 2465 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2466 unsigned int flags) 2467 { 2468 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2469 } 2470 2471 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2472 bool forbid_cmsg_compat) 2473 { 2474 int fput_needed, err; 2475 struct msghdr msg_sys; 2476 struct socket *sock; 2477 2478 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2479 return -EINVAL; 2480 2481 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2482 if (!sock) 2483 goto out; 2484 2485 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2486 2487 fput_light(sock->file, fput_needed); 2488 out: 2489 return err; 2490 } 2491 2492 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2493 { 2494 return __sys_sendmsg(fd, msg, flags, true); 2495 } 2496 2497 /* 2498 * Linux sendmmsg interface 2499 */ 2500 2501 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2502 unsigned int flags, bool forbid_cmsg_compat) 2503 { 2504 int fput_needed, err, datagrams; 2505 struct socket *sock; 2506 struct mmsghdr __user *entry; 2507 struct compat_mmsghdr __user *compat_entry; 2508 struct msghdr msg_sys; 2509 struct used_address used_address; 2510 unsigned int oflags = flags; 2511 2512 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2513 return -EINVAL; 2514 2515 if (vlen > UIO_MAXIOV) 2516 vlen = UIO_MAXIOV; 2517 2518 datagrams = 0; 2519 2520 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2521 if (!sock) 2522 return err; 2523 2524 used_address.name_len = UINT_MAX; 2525 entry = mmsg; 2526 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2527 err = 0; 2528 flags |= MSG_BATCH; 2529 2530 while (datagrams < vlen) { 2531 if (datagrams == vlen - 1) 2532 flags = oflags; 2533 2534 if (MSG_CMSG_COMPAT & flags) { 2535 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2536 &msg_sys, flags, &used_address, MSG_EOR); 2537 if (err < 0) 2538 break; 2539 err = __put_user(err, &compat_entry->msg_len); 2540 ++compat_entry; 2541 } else { 2542 err = ___sys_sendmsg(sock, 2543 (struct user_msghdr __user *)entry, 2544 &msg_sys, flags, &used_address, MSG_EOR); 2545 if (err < 0) 2546 break; 2547 err = put_user(err, &entry->msg_len); 2548 ++entry; 2549 } 2550 2551 if (err) 2552 break; 2553 ++datagrams; 2554 if (msg_data_left(&msg_sys)) 2555 break; 2556 cond_resched(); 2557 } 2558 2559 fput_light(sock->file, fput_needed); 2560 2561 /* We only return an error if no datagrams were able to be sent */ 2562 if (datagrams != 0) 2563 return datagrams; 2564 2565 return err; 2566 } 2567 2568 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2569 unsigned int, vlen, unsigned int, flags) 2570 { 2571 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2572 } 2573 2574 int recvmsg_copy_msghdr(struct msghdr *msg, 2575 struct user_msghdr __user *umsg, unsigned flags, 2576 struct sockaddr __user **uaddr, 2577 struct iovec **iov) 2578 { 2579 ssize_t err; 2580 2581 if (MSG_CMSG_COMPAT & flags) { 2582 struct compat_msghdr __user *msg_compat; 2583 2584 msg_compat = (struct compat_msghdr __user *) umsg; 2585 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2586 } else { 2587 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2588 } 2589 if (err < 0) 2590 return err; 2591 2592 return 0; 2593 } 2594 2595 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2596 struct user_msghdr __user *msg, 2597 struct sockaddr __user *uaddr, 2598 unsigned int flags, int nosec) 2599 { 2600 struct compat_msghdr __user *msg_compat = 2601 (struct compat_msghdr __user *) msg; 2602 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2603 struct sockaddr_storage addr; 2604 unsigned long cmsg_ptr; 2605 int len; 2606 ssize_t err; 2607 2608 msg_sys->msg_name = &addr; 2609 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2610 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2611 2612 /* We assume all kernel code knows the size of sockaddr_storage */ 2613 msg_sys->msg_namelen = 0; 2614 2615 if (sock->file->f_flags & O_NONBLOCK) 2616 flags |= MSG_DONTWAIT; 2617 2618 if (unlikely(nosec)) 2619 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2620 else 2621 err = sock_recvmsg(sock, msg_sys, flags); 2622 2623 if (err < 0) 2624 goto out; 2625 len = err; 2626 2627 if (uaddr != NULL) { 2628 err = move_addr_to_user(&addr, 2629 msg_sys->msg_namelen, uaddr, 2630 uaddr_len); 2631 if (err < 0) 2632 goto out; 2633 } 2634 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2635 COMPAT_FLAGS(msg)); 2636 if (err) 2637 goto out; 2638 if (MSG_CMSG_COMPAT & flags) 2639 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2640 &msg_compat->msg_controllen); 2641 else 2642 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2643 &msg->msg_controllen); 2644 if (err) 2645 goto out; 2646 err = len; 2647 out: 2648 return err; 2649 } 2650 2651 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2652 struct msghdr *msg_sys, unsigned int flags, int nosec) 2653 { 2654 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2655 /* user mode address pointers */ 2656 struct sockaddr __user *uaddr; 2657 ssize_t err; 2658 2659 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2660 if (err < 0) 2661 return err; 2662 2663 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2664 kfree(iov); 2665 return err; 2666 } 2667 2668 /* 2669 * BSD recvmsg interface 2670 */ 2671 2672 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2673 struct user_msghdr __user *umsg, 2674 struct sockaddr __user *uaddr, unsigned int flags) 2675 { 2676 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2677 } 2678 2679 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2680 bool forbid_cmsg_compat) 2681 { 2682 int fput_needed, err; 2683 struct msghdr msg_sys; 2684 struct socket *sock; 2685 2686 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2687 return -EINVAL; 2688 2689 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2690 if (!sock) 2691 goto out; 2692 2693 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2694 2695 fput_light(sock->file, fput_needed); 2696 out: 2697 return err; 2698 } 2699 2700 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2701 unsigned int, flags) 2702 { 2703 return __sys_recvmsg(fd, msg, flags, true); 2704 } 2705 2706 /* 2707 * Linux recvmmsg interface 2708 */ 2709 2710 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2711 unsigned int vlen, unsigned int flags, 2712 struct timespec64 *timeout) 2713 { 2714 int fput_needed, err, datagrams; 2715 struct socket *sock; 2716 struct mmsghdr __user *entry; 2717 struct compat_mmsghdr __user *compat_entry; 2718 struct msghdr msg_sys; 2719 struct timespec64 end_time; 2720 struct timespec64 timeout64; 2721 2722 if (timeout && 2723 poll_select_set_timeout(&end_time, timeout->tv_sec, 2724 timeout->tv_nsec)) 2725 return -EINVAL; 2726 2727 datagrams = 0; 2728 2729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2730 if (!sock) 2731 return err; 2732 2733 if (likely(!(flags & MSG_ERRQUEUE))) { 2734 err = sock_error(sock->sk); 2735 if (err) { 2736 datagrams = err; 2737 goto out_put; 2738 } 2739 } 2740 2741 entry = mmsg; 2742 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2743 2744 while (datagrams < vlen) { 2745 /* 2746 * No need to ask LSM for more than the first datagram. 2747 */ 2748 if (MSG_CMSG_COMPAT & flags) { 2749 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2750 &msg_sys, flags & ~MSG_WAITFORONE, 2751 datagrams); 2752 if (err < 0) 2753 break; 2754 err = __put_user(err, &compat_entry->msg_len); 2755 ++compat_entry; 2756 } else { 2757 err = ___sys_recvmsg(sock, 2758 (struct user_msghdr __user *)entry, 2759 &msg_sys, flags & ~MSG_WAITFORONE, 2760 datagrams); 2761 if (err < 0) 2762 break; 2763 err = put_user(err, &entry->msg_len); 2764 ++entry; 2765 } 2766 2767 if (err) 2768 break; 2769 ++datagrams; 2770 2771 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2772 if (flags & MSG_WAITFORONE) 2773 flags |= MSG_DONTWAIT; 2774 2775 if (timeout) { 2776 ktime_get_ts64(&timeout64); 2777 *timeout = timespec64_sub(end_time, timeout64); 2778 if (timeout->tv_sec < 0) { 2779 timeout->tv_sec = timeout->tv_nsec = 0; 2780 break; 2781 } 2782 2783 /* Timeout, return less than vlen datagrams */ 2784 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2785 break; 2786 } 2787 2788 /* Out of band data, return right away */ 2789 if (msg_sys.msg_flags & MSG_OOB) 2790 break; 2791 cond_resched(); 2792 } 2793 2794 if (err == 0) 2795 goto out_put; 2796 2797 if (datagrams == 0) { 2798 datagrams = err; 2799 goto out_put; 2800 } 2801 2802 /* 2803 * We may return less entries than requested (vlen) if the 2804 * sock is non block and there aren't enough datagrams... 2805 */ 2806 if (err != -EAGAIN) { 2807 /* 2808 * ... or if recvmsg returns an error after we 2809 * received some datagrams, where we record the 2810 * error to return on the next call or if the 2811 * app asks about it using getsockopt(SO_ERROR). 2812 */ 2813 sock->sk->sk_err = -err; 2814 } 2815 out_put: 2816 fput_light(sock->file, fput_needed); 2817 2818 return datagrams; 2819 } 2820 2821 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2822 unsigned int vlen, unsigned int flags, 2823 struct __kernel_timespec __user *timeout, 2824 struct old_timespec32 __user *timeout32) 2825 { 2826 int datagrams; 2827 struct timespec64 timeout_sys; 2828 2829 if (timeout && get_timespec64(&timeout_sys, timeout)) 2830 return -EFAULT; 2831 2832 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2833 return -EFAULT; 2834 2835 if (!timeout && !timeout32) 2836 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2837 2838 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2839 2840 if (datagrams <= 0) 2841 return datagrams; 2842 2843 if (timeout && put_timespec64(&timeout_sys, timeout)) 2844 datagrams = -EFAULT; 2845 2846 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2847 datagrams = -EFAULT; 2848 2849 return datagrams; 2850 } 2851 2852 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2853 unsigned int, vlen, unsigned int, flags, 2854 struct __kernel_timespec __user *, timeout) 2855 { 2856 if (flags & MSG_CMSG_COMPAT) 2857 return -EINVAL; 2858 2859 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2860 } 2861 2862 #ifdef CONFIG_COMPAT_32BIT_TIME 2863 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2864 unsigned int, vlen, unsigned int, flags, 2865 struct old_timespec32 __user *, timeout) 2866 { 2867 if (flags & MSG_CMSG_COMPAT) 2868 return -EINVAL; 2869 2870 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2871 } 2872 #endif 2873 2874 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2875 /* Argument list sizes for sys_socketcall */ 2876 #define AL(x) ((x) * sizeof(unsigned long)) 2877 static const unsigned char nargs[21] = { 2878 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2879 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2880 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2881 AL(4), AL(5), AL(4) 2882 }; 2883 2884 #undef AL 2885 2886 /* 2887 * System call vectors. 2888 * 2889 * Argument checking cleaned up. Saved 20% in size. 2890 * This function doesn't need to set the kernel lock because 2891 * it is set by the callees. 2892 */ 2893 2894 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2895 { 2896 unsigned long a[AUDITSC_ARGS]; 2897 unsigned long a0, a1; 2898 int err; 2899 unsigned int len; 2900 2901 if (call < 1 || call > SYS_SENDMMSG) 2902 return -EINVAL; 2903 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2904 2905 len = nargs[call]; 2906 if (len > sizeof(a)) 2907 return -EINVAL; 2908 2909 /* copy_from_user should be SMP safe. */ 2910 if (copy_from_user(a, args, len)) 2911 return -EFAULT; 2912 2913 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2914 if (err) 2915 return err; 2916 2917 a0 = a[0]; 2918 a1 = a[1]; 2919 2920 switch (call) { 2921 case SYS_SOCKET: 2922 err = __sys_socket(a0, a1, a[2]); 2923 break; 2924 case SYS_BIND: 2925 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2926 break; 2927 case SYS_CONNECT: 2928 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2929 break; 2930 case SYS_LISTEN: 2931 err = __sys_listen(a0, a1); 2932 break; 2933 case SYS_ACCEPT: 2934 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2935 (int __user *)a[2], 0); 2936 break; 2937 case SYS_GETSOCKNAME: 2938 err = 2939 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2940 (int __user *)a[2]); 2941 break; 2942 case SYS_GETPEERNAME: 2943 err = 2944 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2945 (int __user *)a[2]); 2946 break; 2947 case SYS_SOCKETPAIR: 2948 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2949 break; 2950 case SYS_SEND: 2951 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2952 NULL, 0); 2953 break; 2954 case SYS_SENDTO: 2955 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2956 (struct sockaddr __user *)a[4], a[5]); 2957 break; 2958 case SYS_RECV: 2959 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2960 NULL, NULL); 2961 break; 2962 case SYS_RECVFROM: 2963 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2964 (struct sockaddr __user *)a[4], 2965 (int __user *)a[5]); 2966 break; 2967 case SYS_SHUTDOWN: 2968 err = __sys_shutdown(a0, a1); 2969 break; 2970 case SYS_SETSOCKOPT: 2971 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2972 a[4]); 2973 break; 2974 case SYS_GETSOCKOPT: 2975 err = 2976 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2977 (int __user *)a[4]); 2978 break; 2979 case SYS_SENDMSG: 2980 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2981 a[2], true); 2982 break; 2983 case SYS_SENDMMSG: 2984 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2985 a[3], true); 2986 break; 2987 case SYS_RECVMSG: 2988 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2989 a[2], true); 2990 break; 2991 case SYS_RECVMMSG: 2992 if (IS_ENABLED(CONFIG_64BIT)) 2993 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2994 a[2], a[3], 2995 (struct __kernel_timespec __user *)a[4], 2996 NULL); 2997 else 2998 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2999 a[2], a[3], NULL, 3000 (struct old_timespec32 __user *)a[4]); 3001 break; 3002 case SYS_ACCEPT4: 3003 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3004 (int __user *)a[2], a[3]); 3005 break; 3006 default: 3007 err = -EINVAL; 3008 break; 3009 } 3010 return err; 3011 } 3012 3013 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3014 3015 /** 3016 * sock_register - add a socket protocol handler 3017 * @ops: description of protocol 3018 * 3019 * This function is called by a protocol handler that wants to 3020 * advertise its address family, and have it linked into the 3021 * socket interface. The value ops->family corresponds to the 3022 * socket system call protocol family. 3023 */ 3024 int sock_register(const struct net_proto_family *ops) 3025 { 3026 int err; 3027 3028 if (ops->family >= NPROTO) { 3029 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3030 return -ENOBUFS; 3031 } 3032 3033 spin_lock(&net_family_lock); 3034 if (rcu_dereference_protected(net_families[ops->family], 3035 lockdep_is_held(&net_family_lock))) 3036 err = -EEXIST; 3037 else { 3038 rcu_assign_pointer(net_families[ops->family], ops); 3039 err = 0; 3040 } 3041 spin_unlock(&net_family_lock); 3042 3043 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3044 return err; 3045 } 3046 EXPORT_SYMBOL(sock_register); 3047 3048 /** 3049 * sock_unregister - remove a protocol handler 3050 * @family: protocol family to remove 3051 * 3052 * This function is called by a protocol handler that wants to 3053 * remove its address family, and have it unlinked from the 3054 * new socket creation. 3055 * 3056 * If protocol handler is a module, then it can use module reference 3057 * counts to protect against new references. If protocol handler is not 3058 * a module then it needs to provide its own protection in 3059 * the ops->create routine. 3060 */ 3061 void sock_unregister(int family) 3062 { 3063 BUG_ON(family < 0 || family >= NPROTO); 3064 3065 spin_lock(&net_family_lock); 3066 RCU_INIT_POINTER(net_families[family], NULL); 3067 spin_unlock(&net_family_lock); 3068 3069 synchronize_rcu(); 3070 3071 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3072 } 3073 EXPORT_SYMBOL(sock_unregister); 3074 3075 bool sock_is_registered(int family) 3076 { 3077 return family < NPROTO && rcu_access_pointer(net_families[family]); 3078 } 3079 3080 static int __init sock_init(void) 3081 { 3082 int err; 3083 /* 3084 * Initialize the network sysctl infrastructure. 3085 */ 3086 err = net_sysctl_init(); 3087 if (err) 3088 goto out; 3089 3090 /* 3091 * Initialize skbuff SLAB cache 3092 */ 3093 skb_init(); 3094 3095 /* 3096 * Initialize the protocols module. 3097 */ 3098 3099 init_inodecache(); 3100 3101 err = register_filesystem(&sock_fs_type); 3102 if (err) 3103 goto out; 3104 sock_mnt = kern_mount(&sock_fs_type); 3105 if (IS_ERR(sock_mnt)) { 3106 err = PTR_ERR(sock_mnt); 3107 goto out_mount; 3108 } 3109 3110 /* The real protocol initialization is performed in later initcalls. 3111 */ 3112 3113 #ifdef CONFIG_NETFILTER 3114 err = netfilter_init(); 3115 if (err) 3116 goto out; 3117 #endif 3118 3119 ptp_classifier_init(); 3120 3121 out: 3122 return err; 3123 3124 out_mount: 3125 unregister_filesystem(&sock_fs_type); 3126 goto out; 3127 } 3128 3129 core_initcall(sock_init); /* early initcall */ 3130 3131 #ifdef CONFIG_PROC_FS 3132 void socket_seq_show(struct seq_file *seq) 3133 { 3134 seq_printf(seq, "sockets: used %d\n", 3135 sock_inuse_get(seq->private)); 3136 } 3137 #endif /* CONFIG_PROC_FS */ 3138 3139 /* Handle the fact that while struct ifreq has the same *layout* on 3140 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3141 * which are handled elsewhere, it still has different *size* due to 3142 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3143 * resulting in struct ifreq being 32 and 40 bytes respectively). 3144 * As a result, if the struct happens to be at the end of a page and 3145 * the next page isn't readable/writable, we get a fault. To prevent 3146 * that, copy back and forth to the full size. 3147 */ 3148 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3149 { 3150 if (in_compat_syscall()) { 3151 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3152 3153 memset(ifr, 0, sizeof(*ifr)); 3154 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3155 return -EFAULT; 3156 3157 if (ifrdata) 3158 *ifrdata = compat_ptr(ifr32->ifr_data); 3159 3160 return 0; 3161 } 3162 3163 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3164 return -EFAULT; 3165 3166 if (ifrdata) 3167 *ifrdata = ifr->ifr_data; 3168 3169 return 0; 3170 } 3171 EXPORT_SYMBOL(get_user_ifreq); 3172 3173 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3174 { 3175 size_t size = sizeof(*ifr); 3176 3177 if (in_compat_syscall()) 3178 size = sizeof(struct compat_ifreq); 3179 3180 if (copy_to_user(arg, ifr, size)) 3181 return -EFAULT; 3182 3183 return 0; 3184 } 3185 EXPORT_SYMBOL(put_user_ifreq); 3186 3187 #ifdef CONFIG_COMPAT 3188 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3189 { 3190 compat_uptr_t uptr32; 3191 struct ifreq ifr; 3192 void __user *saved; 3193 int err; 3194 3195 if (get_user_ifreq(&ifr, NULL, uifr32)) 3196 return -EFAULT; 3197 3198 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3199 return -EFAULT; 3200 3201 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3202 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3203 3204 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3205 if (!err) { 3206 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3207 if (put_user_ifreq(&ifr, uifr32)) 3208 err = -EFAULT; 3209 } 3210 return err; 3211 } 3212 3213 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3214 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3215 struct compat_ifreq __user *u_ifreq32) 3216 { 3217 struct ifreq ifreq; 3218 void __user *data; 3219 3220 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3221 return -EFAULT; 3222 ifreq.ifr_data = data; 3223 3224 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3225 } 3226 3227 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3228 * for some operations; this forces use of the newer bridge-utils that 3229 * use compatible ioctls 3230 */ 3231 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3232 { 3233 compat_ulong_t tmp; 3234 3235 if (get_user(tmp, argp)) 3236 return -EFAULT; 3237 if (tmp == BRCTL_GET_VERSION) 3238 return BRCTL_VERSION + 1; 3239 return -EINVAL; 3240 } 3241 3242 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3243 unsigned int cmd, unsigned long arg) 3244 { 3245 void __user *argp = compat_ptr(arg); 3246 struct sock *sk = sock->sk; 3247 struct net *net = sock_net(sk); 3248 3249 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3250 return sock_ioctl(file, cmd, (unsigned long)argp); 3251 3252 switch (cmd) { 3253 case SIOCSIFBR: 3254 case SIOCGIFBR: 3255 return old_bridge_ioctl(argp); 3256 case SIOCWANDEV: 3257 return compat_siocwandev(net, argp); 3258 case SIOCGSTAMP_OLD: 3259 case SIOCGSTAMPNS_OLD: 3260 if (!sock->ops->gettstamp) 3261 return -ENOIOCTLCMD; 3262 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3263 !COMPAT_USE_64BIT_TIME); 3264 3265 case SIOCETHTOOL: 3266 case SIOCBONDSLAVEINFOQUERY: 3267 case SIOCBONDINFOQUERY: 3268 case SIOCSHWTSTAMP: 3269 case SIOCGHWTSTAMP: 3270 return compat_ifr_data_ioctl(net, cmd, argp); 3271 3272 case FIOSETOWN: 3273 case SIOCSPGRP: 3274 case FIOGETOWN: 3275 case SIOCGPGRP: 3276 case SIOCBRADDBR: 3277 case SIOCBRDELBR: 3278 case SIOCGIFVLAN: 3279 case SIOCSIFVLAN: 3280 case SIOCGSKNS: 3281 case SIOCGSTAMP_NEW: 3282 case SIOCGSTAMPNS_NEW: 3283 case SIOCGIFCONF: 3284 return sock_ioctl(file, cmd, arg); 3285 3286 case SIOCGIFFLAGS: 3287 case SIOCSIFFLAGS: 3288 case SIOCGIFMAP: 3289 case SIOCSIFMAP: 3290 case SIOCGIFMETRIC: 3291 case SIOCSIFMETRIC: 3292 case SIOCGIFMTU: 3293 case SIOCSIFMTU: 3294 case SIOCGIFMEM: 3295 case SIOCSIFMEM: 3296 case SIOCGIFHWADDR: 3297 case SIOCSIFHWADDR: 3298 case SIOCADDMULTI: 3299 case SIOCDELMULTI: 3300 case SIOCGIFINDEX: 3301 case SIOCGIFADDR: 3302 case SIOCSIFADDR: 3303 case SIOCSIFHWBROADCAST: 3304 case SIOCDIFADDR: 3305 case SIOCGIFBRDADDR: 3306 case SIOCSIFBRDADDR: 3307 case SIOCGIFDSTADDR: 3308 case SIOCSIFDSTADDR: 3309 case SIOCGIFNETMASK: 3310 case SIOCSIFNETMASK: 3311 case SIOCSIFPFLAGS: 3312 case SIOCGIFPFLAGS: 3313 case SIOCGIFTXQLEN: 3314 case SIOCSIFTXQLEN: 3315 case SIOCBRADDIF: 3316 case SIOCBRDELIF: 3317 case SIOCGIFNAME: 3318 case SIOCSIFNAME: 3319 case SIOCGMIIPHY: 3320 case SIOCGMIIREG: 3321 case SIOCSMIIREG: 3322 case SIOCBONDENSLAVE: 3323 case SIOCBONDRELEASE: 3324 case SIOCBONDSETHWADDR: 3325 case SIOCBONDCHANGEACTIVE: 3326 case SIOCSARP: 3327 case SIOCGARP: 3328 case SIOCDARP: 3329 case SIOCOUTQ: 3330 case SIOCOUTQNSD: 3331 case SIOCATMARK: 3332 return sock_do_ioctl(net, sock, cmd, arg); 3333 } 3334 3335 return -ENOIOCTLCMD; 3336 } 3337 3338 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3339 unsigned long arg) 3340 { 3341 struct socket *sock = file->private_data; 3342 int ret = -ENOIOCTLCMD; 3343 struct sock *sk; 3344 struct net *net; 3345 3346 sk = sock->sk; 3347 net = sock_net(sk); 3348 3349 if (sock->ops->compat_ioctl) 3350 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3351 3352 if (ret == -ENOIOCTLCMD && 3353 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3354 ret = compat_wext_handle_ioctl(net, cmd, arg); 3355 3356 if (ret == -ENOIOCTLCMD) 3357 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3358 3359 return ret; 3360 } 3361 #endif 3362 3363 /** 3364 * kernel_bind - bind an address to a socket (kernel space) 3365 * @sock: socket 3366 * @addr: address 3367 * @addrlen: length of address 3368 * 3369 * Returns 0 or an error. 3370 */ 3371 3372 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3373 { 3374 return sock->ops->bind(sock, addr, addrlen); 3375 } 3376 EXPORT_SYMBOL(kernel_bind); 3377 3378 /** 3379 * kernel_listen - move socket to listening state (kernel space) 3380 * @sock: socket 3381 * @backlog: pending connections queue size 3382 * 3383 * Returns 0 or an error. 3384 */ 3385 3386 int kernel_listen(struct socket *sock, int backlog) 3387 { 3388 return sock->ops->listen(sock, backlog); 3389 } 3390 EXPORT_SYMBOL(kernel_listen); 3391 3392 /** 3393 * kernel_accept - accept a connection (kernel space) 3394 * @sock: listening socket 3395 * @newsock: new connected socket 3396 * @flags: flags 3397 * 3398 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3399 * If it fails, @newsock is guaranteed to be %NULL. 3400 * Returns 0 or an error. 3401 */ 3402 3403 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3404 { 3405 struct sock *sk = sock->sk; 3406 int err; 3407 3408 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3409 newsock); 3410 if (err < 0) 3411 goto done; 3412 3413 err = sock->ops->accept(sock, *newsock, flags, true); 3414 if (err < 0) { 3415 sock_release(*newsock); 3416 *newsock = NULL; 3417 goto done; 3418 } 3419 3420 (*newsock)->ops = sock->ops; 3421 __module_get((*newsock)->ops->owner); 3422 3423 done: 3424 return err; 3425 } 3426 EXPORT_SYMBOL(kernel_accept); 3427 3428 /** 3429 * kernel_connect - connect a socket (kernel space) 3430 * @sock: socket 3431 * @addr: address 3432 * @addrlen: address length 3433 * @flags: flags (O_NONBLOCK, ...) 3434 * 3435 * For datagram sockets, @addr is the address to which datagrams are sent 3436 * by default, and the only address from which datagrams are received. 3437 * For stream sockets, attempts to connect to @addr. 3438 * Returns 0 or an error code. 3439 */ 3440 3441 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3442 int flags) 3443 { 3444 return sock->ops->connect(sock, addr, addrlen, flags); 3445 } 3446 EXPORT_SYMBOL(kernel_connect); 3447 3448 /** 3449 * kernel_getsockname - get the address which the socket is bound (kernel space) 3450 * @sock: socket 3451 * @addr: address holder 3452 * 3453 * Fills the @addr pointer with the address which the socket is bound. 3454 * Returns 0 or an error code. 3455 */ 3456 3457 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3458 { 3459 return sock->ops->getname(sock, addr, 0); 3460 } 3461 EXPORT_SYMBOL(kernel_getsockname); 3462 3463 /** 3464 * kernel_getpeername - get the address which the socket is connected (kernel space) 3465 * @sock: socket 3466 * @addr: address holder 3467 * 3468 * Fills the @addr pointer with the address which the socket is connected. 3469 * Returns 0 or an error code. 3470 */ 3471 3472 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3473 { 3474 return sock->ops->getname(sock, addr, 1); 3475 } 3476 EXPORT_SYMBOL(kernel_getpeername); 3477 3478 /** 3479 * kernel_sendpage - send a &page through a socket (kernel space) 3480 * @sock: socket 3481 * @page: page 3482 * @offset: page offset 3483 * @size: total size in bytes 3484 * @flags: flags (MSG_DONTWAIT, ...) 3485 * 3486 * Returns the total amount sent in bytes or an error. 3487 */ 3488 3489 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3490 size_t size, int flags) 3491 { 3492 if (sock->ops->sendpage) { 3493 /* Warn in case the improper page to zero-copy send */ 3494 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3495 return sock->ops->sendpage(sock, page, offset, size, flags); 3496 } 3497 return sock_no_sendpage(sock, page, offset, size, flags); 3498 } 3499 EXPORT_SYMBOL(kernel_sendpage); 3500 3501 /** 3502 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3503 * @sk: sock 3504 * @page: page 3505 * @offset: page offset 3506 * @size: total size in bytes 3507 * @flags: flags (MSG_DONTWAIT, ...) 3508 * 3509 * Returns the total amount sent in bytes or an error. 3510 * Caller must hold @sk. 3511 */ 3512 3513 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3514 size_t size, int flags) 3515 { 3516 struct socket *sock = sk->sk_socket; 3517 3518 if (sock->ops->sendpage_locked) 3519 return sock->ops->sendpage_locked(sk, page, offset, size, 3520 flags); 3521 3522 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3523 } 3524 EXPORT_SYMBOL(kernel_sendpage_locked); 3525 3526 /** 3527 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3528 * @sock: socket 3529 * @how: connection part 3530 * 3531 * Returns 0 or an error. 3532 */ 3533 3534 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3535 { 3536 return sock->ops->shutdown(sock, how); 3537 } 3538 EXPORT_SYMBOL(kernel_sock_shutdown); 3539 3540 /** 3541 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3542 * @sk: socket 3543 * 3544 * This routine returns the IP overhead imposed by a socket i.e. 3545 * the length of the underlying IP header, depending on whether 3546 * this is an IPv4 or IPv6 socket and the length from IP options turned 3547 * on at the socket. Assumes that the caller has a lock on the socket. 3548 */ 3549 3550 u32 kernel_sock_ip_overhead(struct sock *sk) 3551 { 3552 struct inet_sock *inet; 3553 struct ip_options_rcu *opt; 3554 u32 overhead = 0; 3555 #if IS_ENABLED(CONFIG_IPV6) 3556 struct ipv6_pinfo *np; 3557 struct ipv6_txoptions *optv6 = NULL; 3558 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3559 3560 if (!sk) 3561 return overhead; 3562 3563 switch (sk->sk_family) { 3564 case AF_INET: 3565 inet = inet_sk(sk); 3566 overhead += sizeof(struct iphdr); 3567 opt = rcu_dereference_protected(inet->inet_opt, 3568 sock_owned_by_user(sk)); 3569 if (opt) 3570 overhead += opt->opt.optlen; 3571 return overhead; 3572 #if IS_ENABLED(CONFIG_IPV6) 3573 case AF_INET6: 3574 np = inet6_sk(sk); 3575 overhead += sizeof(struct ipv6hdr); 3576 if (np) 3577 optv6 = rcu_dereference_protected(np->opt, 3578 sock_owned_by_user(sk)); 3579 if (optv6) 3580 overhead += (optv6->opt_flen + optv6->opt_nflen); 3581 return overhead; 3582 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3583 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3584 return overhead; 3585 } 3586 } 3587 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3588