1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 int fd; 355 356 fd = get_unused_fd_flags(flags); 357 if (unlikely(fd < 0)) 358 return fd; 359 360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 361 if (unlikely(!path.dentry)) { 362 put_unused_fd(fd); 363 return -ENOMEM; 364 } 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(!file)) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 put_unused_fd(fd); 377 return -ENFILE; 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 385 *f = file; 386 return fd; 387 } 388 389 int sock_map_fd(struct socket *sock, int flags) 390 { 391 struct file *newfile; 392 int fd = sock_alloc_file(sock, &newfile, flags); 393 394 if (likely(fd >= 0)) 395 fd_install(fd, newfile); 396 397 return fd; 398 } 399 EXPORT_SYMBOL(sock_map_fd); 400 401 static struct socket *sock_from_file(struct file *file, int *err) 402 { 403 if (file->f_op == &socket_file_ops) 404 return file->private_data; /* set in sock_map_fd */ 405 406 *err = -ENOTSOCK; 407 return NULL; 408 } 409 410 /** 411 * sockfd_lookup - Go from a file number to its socket slot 412 * @fd: file handle 413 * @err: pointer to an error code return 414 * 415 * The file handle passed in is locked and the socket it is bound 416 * too is returned. If an error occurs the err pointer is overwritten 417 * with a negative errno code and NULL is returned. The function checks 418 * for both invalid handles and passing a handle which is not a socket. 419 * 420 * On a success the socket object pointer is returned. 421 */ 422 423 struct socket *sockfd_lookup(int fd, int *err) 424 { 425 struct file *file; 426 struct socket *sock; 427 428 file = fget(fd); 429 if (!file) { 430 *err = -EBADF; 431 return NULL; 432 } 433 434 sock = sock_from_file(file, err); 435 if (!sock) 436 fput(file); 437 return sock; 438 } 439 EXPORT_SYMBOL(sockfd_lookup); 440 441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 442 { 443 struct file *file; 444 struct socket *sock; 445 446 *err = -EBADF; 447 file = fget_light(fd, fput_needed); 448 if (file) { 449 sock = sock_from_file(file, err); 450 if (sock) 451 return sock; 452 fput_light(file, *fput_needed); 453 } 454 return NULL; 455 } 456 457 /** 458 * sock_alloc - allocate a socket 459 * 460 * Allocate a new inode and socket object. The two are bound together 461 * and initialised. The socket is then returned. If we are out of inodes 462 * NULL is returned. 463 */ 464 465 static struct socket *sock_alloc(void) 466 { 467 struct inode *inode; 468 struct socket *sock; 469 470 inode = new_inode_pseudo(sock_mnt->mnt_sb); 471 if (!inode) 472 return NULL; 473 474 sock = SOCKET_I(inode); 475 476 kmemcheck_annotate_bitfield(sock, type); 477 inode->i_ino = get_next_ino(); 478 inode->i_mode = S_IFSOCK | S_IRWXUGO; 479 inode->i_uid = current_fsuid(); 480 inode->i_gid = current_fsgid(); 481 482 this_cpu_add(sockets_in_use, 1); 483 return sock; 484 } 485 486 /* 487 * In theory you can't get an open on this inode, but /proc provides 488 * a back door. Remember to keep it shut otherwise you'll let the 489 * creepy crawlies in. 490 */ 491 492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 493 { 494 return -ENXIO; 495 } 496 497 const struct file_operations bad_sock_fops = { 498 .owner = THIS_MODULE, 499 .open = sock_no_open, 500 .llseek = noop_llseek, 501 }; 502 503 /** 504 * sock_release - close a socket 505 * @sock: socket to close 506 * 507 * The socket is released from the protocol stack if it has a release 508 * callback, and the inode is then released if the socket is bound to 509 * an inode not a file. 510 */ 511 512 void sock_release(struct socket *sock) 513 { 514 if (sock->ops) { 515 struct module *owner = sock->ops->owner; 516 517 sock->ops->release(sock); 518 sock->ops = NULL; 519 module_put(owner); 520 } 521 522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 523 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 524 525 this_cpu_sub(sockets_in_use, 1); 526 if (!sock->file) { 527 iput(SOCK_INODE(sock)); 528 return; 529 } 530 sock->file = NULL; 531 } 532 EXPORT_SYMBOL(sock_release); 533 534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 535 { 536 *tx_flags = 0; 537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 538 *tx_flags |= SKBTX_HW_TSTAMP; 539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 540 *tx_flags |= SKBTX_SW_TSTAMP; 541 if (sock_flag(sk, SOCK_WIFI_STATUS)) 542 *tx_flags |= SKBTX_WIFI_STATUS; 543 return 0; 544 } 545 EXPORT_SYMBOL(sock_tx_timestamp); 546 547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 548 struct msghdr *msg, size_t size) 549 { 550 struct sock_iocb *si = kiocb_to_siocb(iocb); 551 552 sock_update_classid(sock->sk); 553 554 sock_update_netprioidx(sock->sk); 555 556 si->sock = sock; 557 si->scm = NULL; 558 si->msg = msg; 559 si->size = size; 560 561 return sock->ops->sendmsg(iocb, sock, msg, size); 562 } 563 564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 565 struct msghdr *msg, size_t size) 566 { 567 int err = security_socket_sendmsg(sock, msg, size); 568 569 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 570 } 571 572 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 573 { 574 struct kiocb iocb; 575 struct sock_iocb siocb; 576 int ret; 577 578 init_sync_kiocb(&iocb, NULL); 579 iocb.private = &siocb; 580 ret = __sock_sendmsg(&iocb, sock, msg, size); 581 if (-EIOCBQUEUED == ret) 582 ret = wait_on_sync_kiocb(&iocb); 583 return ret; 584 } 585 EXPORT_SYMBOL(sock_sendmsg); 586 587 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 588 { 589 struct kiocb iocb; 590 struct sock_iocb siocb; 591 int ret; 592 593 init_sync_kiocb(&iocb, NULL); 594 iocb.private = &siocb; 595 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 596 if (-EIOCBQUEUED == ret) 597 ret = wait_on_sync_kiocb(&iocb); 598 return ret; 599 } 600 601 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 602 struct kvec *vec, size_t num, size_t size) 603 { 604 mm_segment_t oldfs = get_fs(); 605 int result; 606 607 set_fs(KERNEL_DS); 608 /* 609 * the following is safe, since for compiler definitions of kvec and 610 * iovec are identical, yielding the same in-core layout and alignment 611 */ 612 msg->msg_iov = (struct iovec *)vec; 613 msg->msg_iovlen = num; 614 result = sock_sendmsg(sock, msg, size); 615 set_fs(oldfs); 616 return result; 617 } 618 EXPORT_SYMBOL(kernel_sendmsg); 619 620 static int ktime2ts(ktime_t kt, struct timespec *ts) 621 { 622 if (kt.tv64) { 623 *ts = ktime_to_timespec(kt); 624 return 1; 625 } else { 626 return 0; 627 } 628 } 629 630 /* 631 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 632 */ 633 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 634 struct sk_buff *skb) 635 { 636 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 637 struct timespec ts[3]; 638 int empty = 1; 639 struct skb_shared_hwtstamps *shhwtstamps = 640 skb_hwtstamps(skb); 641 642 /* Race occurred between timestamp enabling and packet 643 receiving. Fill in the current time for now. */ 644 if (need_software_tstamp && skb->tstamp.tv64 == 0) 645 __net_timestamp(skb); 646 647 if (need_software_tstamp) { 648 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 649 struct timeval tv; 650 skb_get_timestamp(skb, &tv); 651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 652 sizeof(tv), &tv); 653 } else { 654 skb_get_timestampns(skb, &ts[0]); 655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 656 sizeof(ts[0]), &ts[0]); 657 } 658 } 659 660 661 memset(ts, 0, sizeof(ts)); 662 if (skb->tstamp.tv64 && 663 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 664 skb_get_timestampns(skb, ts + 0); 665 empty = 0; 666 } 667 if (shhwtstamps) { 668 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 669 ktime2ts(shhwtstamps->syststamp, ts + 1)) 670 empty = 0; 671 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 672 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 673 empty = 0; 674 } 675 if (!empty) 676 put_cmsg(msg, SOL_SOCKET, 677 SCM_TIMESTAMPING, sizeof(ts), &ts); 678 } 679 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 680 681 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 682 struct sk_buff *skb) 683 { 684 int ack; 685 686 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 687 return; 688 if (!skb->wifi_acked_valid) 689 return; 690 691 ack = skb->wifi_acked; 692 693 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 694 } 695 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 696 697 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 698 struct sk_buff *skb) 699 { 700 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 701 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 702 sizeof(__u32), &skb->dropcount); 703 } 704 705 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707 { 708 sock_recv_timestamp(msg, sk, skb); 709 sock_recv_drops(msg, sk, skb); 710 } 711 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 712 713 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 714 struct msghdr *msg, size_t size, int flags) 715 { 716 struct sock_iocb *si = kiocb_to_siocb(iocb); 717 718 sock_update_classid(sock->sk); 719 720 si->sock = sock; 721 si->scm = NULL; 722 si->msg = msg; 723 si->size = size; 724 si->flags = flags; 725 726 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 727 } 728 729 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 730 struct msghdr *msg, size_t size, int flags) 731 { 732 int err = security_socket_recvmsg(sock, msg, size, flags); 733 734 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 735 } 736 737 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 738 size_t size, int flags) 739 { 740 struct kiocb iocb; 741 struct sock_iocb siocb; 742 int ret; 743 744 init_sync_kiocb(&iocb, NULL); 745 iocb.private = &siocb; 746 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 747 if (-EIOCBQUEUED == ret) 748 ret = wait_on_sync_kiocb(&iocb); 749 return ret; 750 } 751 EXPORT_SYMBOL(sock_recvmsg); 752 753 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 754 size_t size, int flags) 755 { 756 struct kiocb iocb; 757 struct sock_iocb siocb; 758 int ret; 759 760 init_sync_kiocb(&iocb, NULL); 761 iocb.private = &siocb; 762 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 763 if (-EIOCBQUEUED == ret) 764 ret = wait_on_sync_kiocb(&iocb); 765 return ret; 766 } 767 768 /** 769 * kernel_recvmsg - Receive a message from a socket (kernel space) 770 * @sock: The socket to receive the message from 771 * @msg: Received message 772 * @vec: Input s/g array for message data 773 * @num: Size of input s/g array 774 * @size: Number of bytes to read 775 * @flags: Message flags (MSG_DONTWAIT, etc...) 776 * 777 * On return the msg structure contains the scatter/gather array passed in the 778 * vec argument. The array is modified so that it consists of the unfilled 779 * portion of the original array. 780 * 781 * The returned value is the total number of bytes received, or an error. 782 */ 783 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 784 struct kvec *vec, size_t num, size_t size, int flags) 785 { 786 mm_segment_t oldfs = get_fs(); 787 int result; 788 789 set_fs(KERNEL_DS); 790 /* 791 * the following is safe, since for compiler definitions of kvec and 792 * iovec are identical, yielding the same in-core layout and alignment 793 */ 794 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 795 result = sock_recvmsg(sock, msg, size, flags); 796 set_fs(oldfs); 797 return result; 798 } 799 EXPORT_SYMBOL(kernel_recvmsg); 800 801 static void sock_aio_dtor(struct kiocb *iocb) 802 { 803 kfree(iocb->private); 804 } 805 806 static ssize_t sock_sendpage(struct file *file, struct page *page, 807 int offset, size_t size, loff_t *ppos, int more) 808 { 809 struct socket *sock; 810 int flags; 811 812 sock = file->private_data; 813 814 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 815 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 816 flags |= more; 817 818 return kernel_sendpage(sock, page, offset, size, flags); 819 } 820 821 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 822 struct pipe_inode_info *pipe, size_t len, 823 unsigned int flags) 824 { 825 struct socket *sock = file->private_data; 826 827 if (unlikely(!sock->ops->splice_read)) 828 return -EINVAL; 829 830 sock_update_classid(sock->sk); 831 832 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 833 } 834 835 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 836 struct sock_iocb *siocb) 837 { 838 if (!is_sync_kiocb(iocb)) { 839 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 840 if (!siocb) 841 return NULL; 842 iocb->ki_dtor = sock_aio_dtor; 843 } 844 845 siocb->kiocb = iocb; 846 iocb->private = siocb; 847 return siocb; 848 } 849 850 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 851 struct file *file, const struct iovec *iov, 852 unsigned long nr_segs) 853 { 854 struct socket *sock = file->private_data; 855 size_t size = 0; 856 int i; 857 858 for (i = 0; i < nr_segs; i++) 859 size += iov[i].iov_len; 860 861 msg->msg_name = NULL; 862 msg->msg_namelen = 0; 863 msg->msg_control = NULL; 864 msg->msg_controllen = 0; 865 msg->msg_iov = (struct iovec *)iov; 866 msg->msg_iovlen = nr_segs; 867 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 868 869 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 870 } 871 872 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 873 unsigned long nr_segs, loff_t pos) 874 { 875 struct sock_iocb siocb, *x; 876 877 if (pos != 0) 878 return -ESPIPE; 879 880 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 881 return 0; 882 883 884 x = alloc_sock_iocb(iocb, &siocb); 885 if (!x) 886 return -ENOMEM; 887 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 888 } 889 890 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 891 struct file *file, const struct iovec *iov, 892 unsigned long nr_segs) 893 { 894 struct socket *sock = file->private_data; 895 size_t size = 0; 896 int i; 897 898 for (i = 0; i < nr_segs; i++) 899 size += iov[i].iov_len; 900 901 msg->msg_name = NULL; 902 msg->msg_namelen = 0; 903 msg->msg_control = NULL; 904 msg->msg_controllen = 0; 905 msg->msg_iov = (struct iovec *)iov; 906 msg->msg_iovlen = nr_segs; 907 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 908 if (sock->type == SOCK_SEQPACKET) 909 msg->msg_flags |= MSG_EOR; 910 911 return __sock_sendmsg(iocb, sock, msg, size); 912 } 913 914 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 915 unsigned long nr_segs, loff_t pos) 916 { 917 struct sock_iocb siocb, *x; 918 919 if (pos != 0) 920 return -ESPIPE; 921 922 x = alloc_sock_iocb(iocb, &siocb); 923 if (!x) 924 return -ENOMEM; 925 926 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 927 } 928 929 /* 930 * Atomic setting of ioctl hooks to avoid race 931 * with module unload. 932 */ 933 934 static DEFINE_MUTEX(br_ioctl_mutex); 935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 936 937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 938 { 939 mutex_lock(&br_ioctl_mutex); 940 br_ioctl_hook = hook; 941 mutex_unlock(&br_ioctl_mutex); 942 } 943 EXPORT_SYMBOL(brioctl_set); 944 945 static DEFINE_MUTEX(vlan_ioctl_mutex); 946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 947 948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 949 { 950 mutex_lock(&vlan_ioctl_mutex); 951 vlan_ioctl_hook = hook; 952 mutex_unlock(&vlan_ioctl_mutex); 953 } 954 EXPORT_SYMBOL(vlan_ioctl_set); 955 956 static DEFINE_MUTEX(dlci_ioctl_mutex); 957 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 958 959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 960 { 961 mutex_lock(&dlci_ioctl_mutex); 962 dlci_ioctl_hook = hook; 963 mutex_unlock(&dlci_ioctl_mutex); 964 } 965 EXPORT_SYMBOL(dlci_ioctl_set); 966 967 static long sock_do_ioctl(struct net *net, struct socket *sock, 968 unsigned int cmd, unsigned long arg) 969 { 970 int err; 971 void __user *argp = (void __user *)arg; 972 973 err = sock->ops->ioctl(sock, cmd, arg); 974 975 /* 976 * If this ioctl is unknown try to hand it down 977 * to the NIC driver. 978 */ 979 if (err == -ENOIOCTLCMD) 980 err = dev_ioctl(net, cmd, argp); 981 982 return err; 983 } 984 985 /* 986 * With an ioctl, arg may well be a user mode pointer, but we don't know 987 * what to do with it - that's up to the protocol still. 988 */ 989 990 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 991 { 992 struct socket *sock; 993 struct sock *sk; 994 void __user *argp = (void __user *)arg; 995 int pid, err; 996 struct net *net; 997 998 sock = file->private_data; 999 sk = sock->sk; 1000 net = sock_net(sk); 1001 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1002 err = dev_ioctl(net, cmd, argp); 1003 } else 1004 #ifdef CONFIG_WEXT_CORE 1005 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1006 err = dev_ioctl(net, cmd, argp); 1007 } else 1008 #endif 1009 switch (cmd) { 1010 case FIOSETOWN: 1011 case SIOCSPGRP: 1012 err = -EFAULT; 1013 if (get_user(pid, (int __user *)argp)) 1014 break; 1015 err = f_setown(sock->file, pid, 1); 1016 break; 1017 case FIOGETOWN: 1018 case SIOCGPGRP: 1019 err = put_user(f_getown(sock->file), 1020 (int __user *)argp); 1021 break; 1022 case SIOCGIFBR: 1023 case SIOCSIFBR: 1024 case SIOCBRADDBR: 1025 case SIOCBRDELBR: 1026 err = -ENOPKG; 1027 if (!br_ioctl_hook) 1028 request_module("bridge"); 1029 1030 mutex_lock(&br_ioctl_mutex); 1031 if (br_ioctl_hook) 1032 err = br_ioctl_hook(net, cmd, argp); 1033 mutex_unlock(&br_ioctl_mutex); 1034 break; 1035 case SIOCGIFVLAN: 1036 case SIOCSIFVLAN: 1037 err = -ENOPKG; 1038 if (!vlan_ioctl_hook) 1039 request_module("8021q"); 1040 1041 mutex_lock(&vlan_ioctl_mutex); 1042 if (vlan_ioctl_hook) 1043 err = vlan_ioctl_hook(net, argp); 1044 mutex_unlock(&vlan_ioctl_mutex); 1045 break; 1046 case SIOCADDDLCI: 1047 case SIOCDELDLCI: 1048 err = -ENOPKG; 1049 if (!dlci_ioctl_hook) 1050 request_module("dlci"); 1051 1052 mutex_lock(&dlci_ioctl_mutex); 1053 if (dlci_ioctl_hook) 1054 err = dlci_ioctl_hook(cmd, argp); 1055 mutex_unlock(&dlci_ioctl_mutex); 1056 break; 1057 default: 1058 err = sock_do_ioctl(net, sock, cmd, arg); 1059 break; 1060 } 1061 return err; 1062 } 1063 1064 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1065 { 1066 int err; 1067 struct socket *sock = NULL; 1068 1069 err = security_socket_create(family, type, protocol, 1); 1070 if (err) 1071 goto out; 1072 1073 sock = sock_alloc(); 1074 if (!sock) { 1075 err = -ENOMEM; 1076 goto out; 1077 } 1078 1079 sock->type = type; 1080 err = security_socket_post_create(sock, family, type, protocol, 1); 1081 if (err) 1082 goto out_release; 1083 1084 out: 1085 *res = sock; 1086 return err; 1087 out_release: 1088 sock_release(sock); 1089 sock = NULL; 1090 goto out; 1091 } 1092 EXPORT_SYMBOL(sock_create_lite); 1093 1094 /* No kernel lock held - perfect */ 1095 static unsigned int sock_poll(struct file *file, poll_table *wait) 1096 { 1097 struct socket *sock; 1098 1099 /* 1100 * We can't return errors to poll, so it's either yes or no. 1101 */ 1102 sock = file->private_data; 1103 return sock->ops->poll(file, sock, wait); 1104 } 1105 1106 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1107 { 1108 struct socket *sock = file->private_data; 1109 1110 return sock->ops->mmap(file, sock, vma); 1111 } 1112 1113 static int sock_close(struct inode *inode, struct file *filp) 1114 { 1115 /* 1116 * It was possible the inode is NULL we were 1117 * closing an unfinished socket. 1118 */ 1119 1120 if (!inode) { 1121 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1122 return 0; 1123 } 1124 sock_release(SOCKET_I(inode)); 1125 return 0; 1126 } 1127 1128 /* 1129 * Update the socket async list 1130 * 1131 * Fasync_list locking strategy. 1132 * 1133 * 1. fasync_list is modified only under process context socket lock 1134 * i.e. under semaphore. 1135 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1136 * or under socket lock 1137 */ 1138 1139 static int sock_fasync(int fd, struct file *filp, int on) 1140 { 1141 struct socket *sock = filp->private_data; 1142 struct sock *sk = sock->sk; 1143 struct socket_wq *wq; 1144 1145 if (sk == NULL) 1146 return -EINVAL; 1147 1148 lock_sock(sk); 1149 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1150 fasync_helper(fd, filp, on, &wq->fasync_list); 1151 1152 if (!wq->fasync_list) 1153 sock_reset_flag(sk, SOCK_FASYNC); 1154 else 1155 sock_set_flag(sk, SOCK_FASYNC); 1156 1157 release_sock(sk); 1158 return 0; 1159 } 1160 1161 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1162 1163 int sock_wake_async(struct socket *sock, int how, int band) 1164 { 1165 struct socket_wq *wq; 1166 1167 if (!sock) 1168 return -1; 1169 rcu_read_lock(); 1170 wq = rcu_dereference(sock->wq); 1171 if (!wq || !wq->fasync_list) { 1172 rcu_read_unlock(); 1173 return -1; 1174 } 1175 switch (how) { 1176 case SOCK_WAKE_WAITD: 1177 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1178 break; 1179 goto call_kill; 1180 case SOCK_WAKE_SPACE: 1181 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1182 break; 1183 /* fall through */ 1184 case SOCK_WAKE_IO: 1185 call_kill: 1186 kill_fasync(&wq->fasync_list, SIGIO, band); 1187 break; 1188 case SOCK_WAKE_URG: 1189 kill_fasync(&wq->fasync_list, SIGURG, band); 1190 } 1191 rcu_read_unlock(); 1192 return 0; 1193 } 1194 EXPORT_SYMBOL(sock_wake_async); 1195 1196 int __sock_create(struct net *net, int family, int type, int protocol, 1197 struct socket **res, int kern) 1198 { 1199 int err; 1200 struct socket *sock; 1201 const struct net_proto_family *pf; 1202 1203 /* 1204 * Check protocol is in range 1205 */ 1206 if (family < 0 || family >= NPROTO) 1207 return -EAFNOSUPPORT; 1208 if (type < 0 || type >= SOCK_MAX) 1209 return -EINVAL; 1210 1211 /* Compatibility. 1212 1213 This uglymoron is moved from INET layer to here to avoid 1214 deadlock in module load. 1215 */ 1216 if (family == PF_INET && type == SOCK_PACKET) { 1217 static int warned; 1218 if (!warned) { 1219 warned = 1; 1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1221 current->comm); 1222 } 1223 family = PF_PACKET; 1224 } 1225 1226 err = security_socket_create(family, type, protocol, kern); 1227 if (err) 1228 return err; 1229 1230 /* 1231 * Allocate the socket and allow the family to set things up. if 1232 * the protocol is 0, the family is instructed to select an appropriate 1233 * default. 1234 */ 1235 sock = sock_alloc(); 1236 if (!sock) { 1237 net_warn_ratelimited("socket: no more sockets\n"); 1238 return -ENFILE; /* Not exactly a match, but its the 1239 closest posix thing */ 1240 } 1241 1242 sock->type = type; 1243 1244 #ifdef CONFIG_MODULES 1245 /* Attempt to load a protocol module if the find failed. 1246 * 1247 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1248 * requested real, full-featured networking support upon configuration. 1249 * Otherwise module support will break! 1250 */ 1251 if (rcu_access_pointer(net_families[family]) == NULL) 1252 request_module("net-pf-%d", family); 1253 #endif 1254 1255 rcu_read_lock(); 1256 pf = rcu_dereference(net_families[family]); 1257 err = -EAFNOSUPPORT; 1258 if (!pf) 1259 goto out_release; 1260 1261 /* 1262 * We will call the ->create function, that possibly is in a loadable 1263 * module, so we have to bump that loadable module refcnt first. 1264 */ 1265 if (!try_module_get(pf->owner)) 1266 goto out_release; 1267 1268 /* Now protected by module ref count */ 1269 rcu_read_unlock(); 1270 1271 err = pf->create(net, sock, protocol, kern); 1272 if (err < 0) 1273 goto out_module_put; 1274 1275 /* 1276 * Now to bump the refcnt of the [loadable] module that owns this 1277 * socket at sock_release time we decrement its refcnt. 1278 */ 1279 if (!try_module_get(sock->ops->owner)) 1280 goto out_module_busy; 1281 1282 /* 1283 * Now that we're done with the ->create function, the [loadable] 1284 * module can have its refcnt decremented 1285 */ 1286 module_put(pf->owner); 1287 err = security_socket_post_create(sock, family, type, protocol, kern); 1288 if (err) 1289 goto out_sock_release; 1290 *res = sock; 1291 1292 return 0; 1293 1294 out_module_busy: 1295 err = -EAFNOSUPPORT; 1296 out_module_put: 1297 sock->ops = NULL; 1298 module_put(pf->owner); 1299 out_sock_release: 1300 sock_release(sock); 1301 return err; 1302 1303 out_release: 1304 rcu_read_unlock(); 1305 goto out_sock_release; 1306 } 1307 EXPORT_SYMBOL(__sock_create); 1308 1309 int sock_create(int family, int type, int protocol, struct socket **res) 1310 { 1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1312 } 1313 EXPORT_SYMBOL(sock_create); 1314 1315 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1316 { 1317 return __sock_create(&init_net, family, type, protocol, res, 1); 1318 } 1319 EXPORT_SYMBOL(sock_create_kern); 1320 1321 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1322 { 1323 int retval; 1324 struct socket *sock; 1325 int flags; 1326 1327 /* Check the SOCK_* constants for consistency. */ 1328 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1329 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1330 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1331 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1332 1333 flags = type & ~SOCK_TYPE_MASK; 1334 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1335 return -EINVAL; 1336 type &= SOCK_TYPE_MASK; 1337 1338 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1339 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1340 1341 retval = sock_create(family, type, protocol, &sock); 1342 if (retval < 0) 1343 goto out; 1344 1345 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1346 if (retval < 0) 1347 goto out_release; 1348 1349 out: 1350 /* It may be already another descriptor 8) Not kernel problem. */ 1351 return retval; 1352 1353 out_release: 1354 sock_release(sock); 1355 return retval; 1356 } 1357 1358 /* 1359 * Create a pair of connected sockets. 1360 */ 1361 1362 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1363 int __user *, usockvec) 1364 { 1365 struct socket *sock1, *sock2; 1366 int fd1, fd2, err; 1367 struct file *newfile1, *newfile2; 1368 int flags; 1369 1370 flags = type & ~SOCK_TYPE_MASK; 1371 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1372 return -EINVAL; 1373 type &= SOCK_TYPE_MASK; 1374 1375 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1376 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1377 1378 /* 1379 * Obtain the first socket and check if the underlying protocol 1380 * supports the socketpair call. 1381 */ 1382 1383 err = sock_create(family, type, protocol, &sock1); 1384 if (err < 0) 1385 goto out; 1386 1387 err = sock_create(family, type, protocol, &sock2); 1388 if (err < 0) 1389 goto out_release_1; 1390 1391 err = sock1->ops->socketpair(sock1, sock2); 1392 if (err < 0) 1393 goto out_release_both; 1394 1395 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1396 if (unlikely(fd1 < 0)) { 1397 err = fd1; 1398 goto out_release_both; 1399 } 1400 1401 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1402 if (unlikely(fd2 < 0)) { 1403 err = fd2; 1404 fput(newfile1); 1405 put_unused_fd(fd1); 1406 sock_release(sock2); 1407 goto out; 1408 } 1409 1410 audit_fd_pair(fd1, fd2); 1411 fd_install(fd1, newfile1); 1412 fd_install(fd2, newfile2); 1413 /* fd1 and fd2 may be already another descriptors. 1414 * Not kernel problem. 1415 */ 1416 1417 err = put_user(fd1, &usockvec[0]); 1418 if (!err) 1419 err = put_user(fd2, &usockvec[1]); 1420 if (!err) 1421 return 0; 1422 1423 sys_close(fd2); 1424 sys_close(fd1); 1425 return err; 1426 1427 out_release_both: 1428 sock_release(sock2); 1429 out_release_1: 1430 sock_release(sock1); 1431 out: 1432 return err; 1433 } 1434 1435 /* 1436 * Bind a name to a socket. Nothing much to do here since it's 1437 * the protocol's responsibility to handle the local address. 1438 * 1439 * We move the socket address to kernel space before we call 1440 * the protocol layer (having also checked the address is ok). 1441 */ 1442 1443 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1444 { 1445 struct socket *sock; 1446 struct sockaddr_storage address; 1447 int err, fput_needed; 1448 1449 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1450 if (sock) { 1451 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1452 if (err >= 0) { 1453 err = security_socket_bind(sock, 1454 (struct sockaddr *)&address, 1455 addrlen); 1456 if (!err) 1457 err = sock->ops->bind(sock, 1458 (struct sockaddr *) 1459 &address, addrlen); 1460 } 1461 fput_light(sock->file, fput_needed); 1462 } 1463 return err; 1464 } 1465 1466 /* 1467 * Perform a listen. Basically, we allow the protocol to do anything 1468 * necessary for a listen, and if that works, we mark the socket as 1469 * ready for listening. 1470 */ 1471 1472 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1473 { 1474 struct socket *sock; 1475 int err, fput_needed; 1476 int somaxconn; 1477 1478 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1479 if (sock) { 1480 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1481 if ((unsigned int)backlog > somaxconn) 1482 backlog = somaxconn; 1483 1484 err = security_socket_listen(sock, backlog); 1485 if (!err) 1486 err = sock->ops->listen(sock, backlog); 1487 1488 fput_light(sock->file, fput_needed); 1489 } 1490 return err; 1491 } 1492 1493 /* 1494 * For accept, we attempt to create a new socket, set up the link 1495 * with the client, wake up the client, then return the new 1496 * connected fd. We collect the address of the connector in kernel 1497 * space and move it to user at the very end. This is unclean because 1498 * we open the socket then return an error. 1499 * 1500 * 1003.1g adds the ability to recvmsg() to query connection pending 1501 * status to recvmsg. We need to add that support in a way thats 1502 * clean when we restucture accept also. 1503 */ 1504 1505 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1506 int __user *, upeer_addrlen, int, flags) 1507 { 1508 struct socket *sock, *newsock; 1509 struct file *newfile; 1510 int err, len, newfd, fput_needed; 1511 struct sockaddr_storage address; 1512 1513 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1514 return -EINVAL; 1515 1516 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1517 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1518 1519 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1520 if (!sock) 1521 goto out; 1522 1523 err = -ENFILE; 1524 newsock = sock_alloc(); 1525 if (!newsock) 1526 goto out_put; 1527 1528 newsock->type = sock->type; 1529 newsock->ops = sock->ops; 1530 1531 /* 1532 * We don't need try_module_get here, as the listening socket (sock) 1533 * has the protocol module (sock->ops->owner) held. 1534 */ 1535 __module_get(newsock->ops->owner); 1536 1537 newfd = sock_alloc_file(newsock, &newfile, flags); 1538 if (unlikely(newfd < 0)) { 1539 err = newfd; 1540 sock_release(newsock); 1541 goto out_put; 1542 } 1543 1544 err = security_socket_accept(sock, newsock); 1545 if (err) 1546 goto out_fd; 1547 1548 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1549 if (err < 0) 1550 goto out_fd; 1551 1552 if (upeer_sockaddr) { 1553 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1554 &len, 2) < 0) { 1555 err = -ECONNABORTED; 1556 goto out_fd; 1557 } 1558 err = move_addr_to_user(&address, 1559 len, upeer_sockaddr, upeer_addrlen); 1560 if (err < 0) 1561 goto out_fd; 1562 } 1563 1564 /* File flags are not inherited via accept() unlike another OSes. */ 1565 1566 fd_install(newfd, newfile); 1567 err = newfd; 1568 1569 out_put: 1570 fput_light(sock->file, fput_needed); 1571 out: 1572 return err; 1573 out_fd: 1574 fput(newfile); 1575 put_unused_fd(newfd); 1576 goto out_put; 1577 } 1578 1579 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1580 int __user *, upeer_addrlen) 1581 { 1582 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1583 } 1584 1585 /* 1586 * Attempt to connect to a socket with the server address. The address 1587 * is in user space so we verify it is OK and move it to kernel space. 1588 * 1589 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1590 * break bindings 1591 * 1592 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1593 * other SEQPACKET protocols that take time to connect() as it doesn't 1594 * include the -EINPROGRESS status for such sockets. 1595 */ 1596 1597 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1598 int, addrlen) 1599 { 1600 struct socket *sock; 1601 struct sockaddr_storage address; 1602 int err, fput_needed; 1603 1604 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1605 if (!sock) 1606 goto out; 1607 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1608 if (err < 0) 1609 goto out_put; 1610 1611 err = 1612 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1613 if (err) 1614 goto out_put; 1615 1616 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1617 sock->file->f_flags); 1618 out_put: 1619 fput_light(sock->file, fput_needed); 1620 out: 1621 return err; 1622 } 1623 1624 /* 1625 * Get the local address ('name') of a socket object. Move the obtained 1626 * name to user space. 1627 */ 1628 1629 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1630 int __user *, usockaddr_len) 1631 { 1632 struct socket *sock; 1633 struct sockaddr_storage address; 1634 int len, err, fput_needed; 1635 1636 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1637 if (!sock) 1638 goto out; 1639 1640 err = security_socket_getsockname(sock); 1641 if (err) 1642 goto out_put; 1643 1644 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1645 if (err) 1646 goto out_put; 1647 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1648 1649 out_put: 1650 fput_light(sock->file, fput_needed); 1651 out: 1652 return err; 1653 } 1654 1655 /* 1656 * Get the remote address ('name') of a socket object. Move the obtained 1657 * name to user space. 1658 */ 1659 1660 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1661 int __user *, usockaddr_len) 1662 { 1663 struct socket *sock; 1664 struct sockaddr_storage address; 1665 int len, err, fput_needed; 1666 1667 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1668 if (sock != NULL) { 1669 err = security_socket_getpeername(sock); 1670 if (err) { 1671 fput_light(sock->file, fput_needed); 1672 return err; 1673 } 1674 1675 err = 1676 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1677 1); 1678 if (!err) 1679 err = move_addr_to_user(&address, len, usockaddr, 1680 usockaddr_len); 1681 fput_light(sock->file, fput_needed); 1682 } 1683 return err; 1684 } 1685 1686 /* 1687 * Send a datagram to a given address. We move the address into kernel 1688 * space and check the user space data area is readable before invoking 1689 * the protocol. 1690 */ 1691 1692 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1693 unsigned int, flags, struct sockaddr __user *, addr, 1694 int, addr_len) 1695 { 1696 struct socket *sock; 1697 struct sockaddr_storage address; 1698 int err; 1699 struct msghdr msg; 1700 struct iovec iov; 1701 int fput_needed; 1702 1703 if (len > INT_MAX) 1704 len = INT_MAX; 1705 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1706 if (!sock) 1707 goto out; 1708 1709 iov.iov_base = buff; 1710 iov.iov_len = len; 1711 msg.msg_name = NULL; 1712 msg.msg_iov = &iov; 1713 msg.msg_iovlen = 1; 1714 msg.msg_control = NULL; 1715 msg.msg_controllen = 0; 1716 msg.msg_namelen = 0; 1717 if (addr) { 1718 err = move_addr_to_kernel(addr, addr_len, &address); 1719 if (err < 0) 1720 goto out_put; 1721 msg.msg_name = (struct sockaddr *)&address; 1722 msg.msg_namelen = addr_len; 1723 } 1724 if (sock->file->f_flags & O_NONBLOCK) 1725 flags |= MSG_DONTWAIT; 1726 msg.msg_flags = flags; 1727 err = sock_sendmsg(sock, &msg, len); 1728 1729 out_put: 1730 fput_light(sock->file, fput_needed); 1731 out: 1732 return err; 1733 } 1734 1735 /* 1736 * Send a datagram down a socket. 1737 */ 1738 1739 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1740 unsigned int, flags) 1741 { 1742 return sys_sendto(fd, buff, len, flags, NULL, 0); 1743 } 1744 1745 /* 1746 * Receive a frame from the socket and optionally record the address of the 1747 * sender. We verify the buffers are writable and if needed move the 1748 * sender address from kernel to user space. 1749 */ 1750 1751 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1752 unsigned int, flags, struct sockaddr __user *, addr, 1753 int __user *, addr_len) 1754 { 1755 struct socket *sock; 1756 struct iovec iov; 1757 struct msghdr msg; 1758 struct sockaddr_storage address; 1759 int err, err2; 1760 int fput_needed; 1761 1762 if (size > INT_MAX) 1763 size = INT_MAX; 1764 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1765 if (!sock) 1766 goto out; 1767 1768 msg.msg_control = NULL; 1769 msg.msg_controllen = 0; 1770 msg.msg_iovlen = 1; 1771 msg.msg_iov = &iov; 1772 iov.iov_len = size; 1773 iov.iov_base = ubuf; 1774 msg.msg_name = (struct sockaddr *)&address; 1775 msg.msg_namelen = sizeof(address); 1776 if (sock->file->f_flags & O_NONBLOCK) 1777 flags |= MSG_DONTWAIT; 1778 err = sock_recvmsg(sock, &msg, size, flags); 1779 1780 if (err >= 0 && addr != NULL) { 1781 err2 = move_addr_to_user(&address, 1782 msg.msg_namelen, addr, addr_len); 1783 if (err2 < 0) 1784 err = err2; 1785 } 1786 1787 fput_light(sock->file, fput_needed); 1788 out: 1789 return err; 1790 } 1791 1792 /* 1793 * Receive a datagram from a socket. 1794 */ 1795 1796 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1797 unsigned int flags) 1798 { 1799 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1800 } 1801 1802 /* 1803 * Set a socket option. Because we don't know the option lengths we have 1804 * to pass the user mode parameter for the protocols to sort out. 1805 */ 1806 1807 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1808 char __user *, optval, int, optlen) 1809 { 1810 int err, fput_needed; 1811 struct socket *sock; 1812 1813 if (optlen < 0) 1814 return -EINVAL; 1815 1816 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1817 if (sock != NULL) { 1818 err = security_socket_setsockopt(sock, level, optname); 1819 if (err) 1820 goto out_put; 1821 1822 if (level == SOL_SOCKET) 1823 err = 1824 sock_setsockopt(sock, level, optname, optval, 1825 optlen); 1826 else 1827 err = 1828 sock->ops->setsockopt(sock, level, optname, optval, 1829 optlen); 1830 out_put: 1831 fput_light(sock->file, fput_needed); 1832 } 1833 return err; 1834 } 1835 1836 /* 1837 * Get a socket option. Because we don't know the option lengths we have 1838 * to pass a user mode parameter for the protocols to sort out. 1839 */ 1840 1841 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1842 char __user *, optval, int __user *, optlen) 1843 { 1844 int err, fput_needed; 1845 struct socket *sock; 1846 1847 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1848 if (sock != NULL) { 1849 err = security_socket_getsockopt(sock, level, optname); 1850 if (err) 1851 goto out_put; 1852 1853 if (level == SOL_SOCKET) 1854 err = 1855 sock_getsockopt(sock, level, optname, optval, 1856 optlen); 1857 else 1858 err = 1859 sock->ops->getsockopt(sock, level, optname, optval, 1860 optlen); 1861 out_put: 1862 fput_light(sock->file, fput_needed); 1863 } 1864 return err; 1865 } 1866 1867 /* 1868 * Shutdown a socket. 1869 */ 1870 1871 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1872 { 1873 int err, fput_needed; 1874 struct socket *sock; 1875 1876 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1877 if (sock != NULL) { 1878 err = security_socket_shutdown(sock, how); 1879 if (!err) 1880 err = sock->ops->shutdown(sock, how); 1881 fput_light(sock->file, fput_needed); 1882 } 1883 return err; 1884 } 1885 1886 /* A couple of helpful macros for getting the address of the 32/64 bit 1887 * fields which are the same type (int / unsigned) on our platforms. 1888 */ 1889 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1890 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1891 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1892 1893 struct used_address { 1894 struct sockaddr_storage name; 1895 unsigned int name_len; 1896 }; 1897 1898 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1899 struct msghdr *msg_sys, unsigned int flags, 1900 struct used_address *used_address) 1901 { 1902 struct compat_msghdr __user *msg_compat = 1903 (struct compat_msghdr __user *)msg; 1904 struct sockaddr_storage address; 1905 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1906 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1907 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1908 /* 20 is size of ipv6_pktinfo */ 1909 unsigned char *ctl_buf = ctl; 1910 int err, ctl_len, total_len; 1911 1912 err = -EFAULT; 1913 if (MSG_CMSG_COMPAT & flags) { 1914 if (get_compat_msghdr(msg_sys, msg_compat)) 1915 return -EFAULT; 1916 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1917 return -EFAULT; 1918 1919 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1920 err = -EMSGSIZE; 1921 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1922 goto out; 1923 err = -ENOMEM; 1924 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 1925 GFP_KERNEL); 1926 if (!iov) 1927 goto out; 1928 } 1929 1930 /* This will also move the address data into kernel space */ 1931 if (MSG_CMSG_COMPAT & flags) { 1932 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 1933 } else 1934 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 1935 if (err < 0) 1936 goto out_freeiov; 1937 total_len = err; 1938 1939 err = -ENOBUFS; 1940 1941 if (msg_sys->msg_controllen > INT_MAX) 1942 goto out_freeiov; 1943 ctl_len = msg_sys->msg_controllen; 1944 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1945 err = 1946 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1947 sizeof(ctl)); 1948 if (err) 1949 goto out_freeiov; 1950 ctl_buf = msg_sys->msg_control; 1951 ctl_len = msg_sys->msg_controllen; 1952 } else if (ctl_len) { 1953 if (ctl_len > sizeof(ctl)) { 1954 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1955 if (ctl_buf == NULL) 1956 goto out_freeiov; 1957 } 1958 err = -EFAULT; 1959 /* 1960 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1961 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1962 * checking falls down on this. 1963 */ 1964 if (copy_from_user(ctl_buf, 1965 (void __user __force *)msg_sys->msg_control, 1966 ctl_len)) 1967 goto out_freectl; 1968 msg_sys->msg_control = ctl_buf; 1969 } 1970 msg_sys->msg_flags = flags; 1971 1972 if (sock->file->f_flags & O_NONBLOCK) 1973 msg_sys->msg_flags |= MSG_DONTWAIT; 1974 /* 1975 * If this is sendmmsg() and current destination address is same as 1976 * previously succeeded address, omit asking LSM's decision. 1977 * used_address->name_len is initialized to UINT_MAX so that the first 1978 * destination address never matches. 1979 */ 1980 if (used_address && msg_sys->msg_name && 1981 used_address->name_len == msg_sys->msg_namelen && 1982 !memcmp(&used_address->name, msg_sys->msg_name, 1983 used_address->name_len)) { 1984 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 1985 goto out_freectl; 1986 } 1987 err = sock_sendmsg(sock, msg_sys, total_len); 1988 /* 1989 * If this is sendmmsg() and sending to current destination address was 1990 * successful, remember it. 1991 */ 1992 if (used_address && err >= 0) { 1993 used_address->name_len = msg_sys->msg_namelen; 1994 if (msg_sys->msg_name) 1995 memcpy(&used_address->name, msg_sys->msg_name, 1996 used_address->name_len); 1997 } 1998 1999 out_freectl: 2000 if (ctl_buf != ctl) 2001 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2002 out_freeiov: 2003 if (iov != iovstack) 2004 kfree(iov); 2005 out: 2006 return err; 2007 } 2008 2009 /* 2010 * BSD sendmsg interface 2011 */ 2012 2013 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2014 { 2015 int fput_needed, err; 2016 struct msghdr msg_sys; 2017 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2018 2019 if (!sock) 2020 goto out; 2021 2022 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2023 2024 fput_light(sock->file, fput_needed); 2025 out: 2026 return err; 2027 } 2028 2029 /* 2030 * Linux sendmmsg interface 2031 */ 2032 2033 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2034 unsigned int flags) 2035 { 2036 int fput_needed, err, datagrams; 2037 struct socket *sock; 2038 struct mmsghdr __user *entry; 2039 struct compat_mmsghdr __user *compat_entry; 2040 struct msghdr msg_sys; 2041 struct used_address used_address; 2042 2043 if (vlen > UIO_MAXIOV) 2044 vlen = UIO_MAXIOV; 2045 2046 datagrams = 0; 2047 2048 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2049 if (!sock) 2050 return err; 2051 2052 used_address.name_len = UINT_MAX; 2053 entry = mmsg; 2054 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2055 err = 0; 2056 2057 while (datagrams < vlen) { 2058 if (MSG_CMSG_COMPAT & flags) { 2059 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2060 &msg_sys, flags, &used_address); 2061 if (err < 0) 2062 break; 2063 err = __put_user(err, &compat_entry->msg_len); 2064 ++compat_entry; 2065 } else { 2066 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2067 &msg_sys, flags, &used_address); 2068 if (err < 0) 2069 break; 2070 err = put_user(err, &entry->msg_len); 2071 ++entry; 2072 } 2073 2074 if (err) 2075 break; 2076 ++datagrams; 2077 } 2078 2079 fput_light(sock->file, fput_needed); 2080 2081 /* We only return an error if no datagrams were able to be sent */ 2082 if (datagrams != 0) 2083 return datagrams; 2084 2085 return err; 2086 } 2087 2088 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2089 unsigned int, vlen, unsigned int, flags) 2090 { 2091 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2092 } 2093 2094 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2095 struct msghdr *msg_sys, unsigned int flags, int nosec) 2096 { 2097 struct compat_msghdr __user *msg_compat = 2098 (struct compat_msghdr __user *)msg; 2099 struct iovec iovstack[UIO_FASTIOV]; 2100 struct iovec *iov = iovstack; 2101 unsigned long cmsg_ptr; 2102 int err, total_len, len; 2103 2104 /* kernel mode address */ 2105 struct sockaddr_storage addr; 2106 2107 /* user mode address pointers */ 2108 struct sockaddr __user *uaddr; 2109 int __user *uaddr_len; 2110 2111 if (MSG_CMSG_COMPAT & flags) { 2112 if (get_compat_msghdr(msg_sys, msg_compat)) 2113 return -EFAULT; 2114 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2115 return -EFAULT; 2116 2117 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2118 err = -EMSGSIZE; 2119 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2120 goto out; 2121 err = -ENOMEM; 2122 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2123 GFP_KERNEL); 2124 if (!iov) 2125 goto out; 2126 } 2127 2128 /* 2129 * Save the user-mode address (verify_iovec will change the 2130 * kernel msghdr to use the kernel address space) 2131 */ 2132 2133 uaddr = (__force void __user *)msg_sys->msg_name; 2134 uaddr_len = COMPAT_NAMELEN(msg); 2135 if (MSG_CMSG_COMPAT & flags) { 2136 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2137 } else 2138 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2139 if (err < 0) 2140 goto out_freeiov; 2141 total_len = err; 2142 2143 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2144 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2145 2146 if (sock->file->f_flags & O_NONBLOCK) 2147 flags |= MSG_DONTWAIT; 2148 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2149 total_len, flags); 2150 if (err < 0) 2151 goto out_freeiov; 2152 len = err; 2153 2154 if (uaddr != NULL) { 2155 err = move_addr_to_user(&addr, 2156 msg_sys->msg_namelen, uaddr, 2157 uaddr_len); 2158 if (err < 0) 2159 goto out_freeiov; 2160 } 2161 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2162 COMPAT_FLAGS(msg)); 2163 if (err) 2164 goto out_freeiov; 2165 if (MSG_CMSG_COMPAT & flags) 2166 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2167 &msg_compat->msg_controllen); 2168 else 2169 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2170 &msg->msg_controllen); 2171 if (err) 2172 goto out_freeiov; 2173 err = len; 2174 2175 out_freeiov: 2176 if (iov != iovstack) 2177 kfree(iov); 2178 out: 2179 return err; 2180 } 2181 2182 /* 2183 * BSD recvmsg interface 2184 */ 2185 2186 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2187 unsigned int, flags) 2188 { 2189 int fput_needed, err; 2190 struct msghdr msg_sys; 2191 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2192 2193 if (!sock) 2194 goto out; 2195 2196 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2197 2198 fput_light(sock->file, fput_needed); 2199 out: 2200 return err; 2201 } 2202 2203 /* 2204 * Linux recvmmsg interface 2205 */ 2206 2207 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2208 unsigned int flags, struct timespec *timeout) 2209 { 2210 int fput_needed, err, datagrams; 2211 struct socket *sock; 2212 struct mmsghdr __user *entry; 2213 struct compat_mmsghdr __user *compat_entry; 2214 struct msghdr msg_sys; 2215 struct timespec end_time; 2216 2217 if (timeout && 2218 poll_select_set_timeout(&end_time, timeout->tv_sec, 2219 timeout->tv_nsec)) 2220 return -EINVAL; 2221 2222 datagrams = 0; 2223 2224 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2225 if (!sock) 2226 return err; 2227 2228 err = sock_error(sock->sk); 2229 if (err) 2230 goto out_put; 2231 2232 entry = mmsg; 2233 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2234 2235 while (datagrams < vlen) { 2236 /* 2237 * No need to ask LSM for more than the first datagram. 2238 */ 2239 if (MSG_CMSG_COMPAT & flags) { 2240 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2241 &msg_sys, flags & ~MSG_WAITFORONE, 2242 datagrams); 2243 if (err < 0) 2244 break; 2245 err = __put_user(err, &compat_entry->msg_len); 2246 ++compat_entry; 2247 } else { 2248 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2249 &msg_sys, flags & ~MSG_WAITFORONE, 2250 datagrams); 2251 if (err < 0) 2252 break; 2253 err = put_user(err, &entry->msg_len); 2254 ++entry; 2255 } 2256 2257 if (err) 2258 break; 2259 ++datagrams; 2260 2261 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2262 if (flags & MSG_WAITFORONE) 2263 flags |= MSG_DONTWAIT; 2264 2265 if (timeout) { 2266 ktime_get_ts(timeout); 2267 *timeout = timespec_sub(end_time, *timeout); 2268 if (timeout->tv_sec < 0) { 2269 timeout->tv_sec = timeout->tv_nsec = 0; 2270 break; 2271 } 2272 2273 /* Timeout, return less than vlen datagrams */ 2274 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2275 break; 2276 } 2277 2278 /* Out of band data, return right away */ 2279 if (msg_sys.msg_flags & MSG_OOB) 2280 break; 2281 } 2282 2283 out_put: 2284 fput_light(sock->file, fput_needed); 2285 2286 if (err == 0) 2287 return datagrams; 2288 2289 if (datagrams != 0) { 2290 /* 2291 * We may return less entries than requested (vlen) if the 2292 * sock is non block and there aren't enough datagrams... 2293 */ 2294 if (err != -EAGAIN) { 2295 /* 2296 * ... or if recvmsg returns an error after we 2297 * received some datagrams, where we record the 2298 * error to return on the next call or if the 2299 * app asks about it using getsockopt(SO_ERROR). 2300 */ 2301 sock->sk->sk_err = -err; 2302 } 2303 2304 return datagrams; 2305 } 2306 2307 return err; 2308 } 2309 2310 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2311 unsigned int, vlen, unsigned int, flags, 2312 struct timespec __user *, timeout) 2313 { 2314 int datagrams; 2315 struct timespec timeout_sys; 2316 2317 if (!timeout) 2318 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2319 2320 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2321 return -EFAULT; 2322 2323 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2324 2325 if (datagrams > 0 && 2326 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2327 datagrams = -EFAULT; 2328 2329 return datagrams; 2330 } 2331 2332 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2333 /* Argument list sizes for sys_socketcall */ 2334 #define AL(x) ((x) * sizeof(unsigned long)) 2335 static const unsigned char nargs[21] = { 2336 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2337 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2338 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2339 AL(4), AL(5), AL(4) 2340 }; 2341 2342 #undef AL 2343 2344 /* 2345 * System call vectors. 2346 * 2347 * Argument checking cleaned up. Saved 20% in size. 2348 * This function doesn't need to set the kernel lock because 2349 * it is set by the callees. 2350 */ 2351 2352 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2353 { 2354 unsigned long a[6]; 2355 unsigned long a0, a1; 2356 int err; 2357 unsigned int len; 2358 2359 if (call < 1 || call > SYS_SENDMMSG) 2360 return -EINVAL; 2361 2362 len = nargs[call]; 2363 if (len > sizeof(a)) 2364 return -EINVAL; 2365 2366 /* copy_from_user should be SMP safe. */ 2367 if (copy_from_user(a, args, len)) 2368 return -EFAULT; 2369 2370 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2371 2372 a0 = a[0]; 2373 a1 = a[1]; 2374 2375 switch (call) { 2376 case SYS_SOCKET: 2377 err = sys_socket(a0, a1, a[2]); 2378 break; 2379 case SYS_BIND: 2380 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2381 break; 2382 case SYS_CONNECT: 2383 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2384 break; 2385 case SYS_LISTEN: 2386 err = sys_listen(a0, a1); 2387 break; 2388 case SYS_ACCEPT: 2389 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2390 (int __user *)a[2], 0); 2391 break; 2392 case SYS_GETSOCKNAME: 2393 err = 2394 sys_getsockname(a0, (struct sockaddr __user *)a1, 2395 (int __user *)a[2]); 2396 break; 2397 case SYS_GETPEERNAME: 2398 err = 2399 sys_getpeername(a0, (struct sockaddr __user *)a1, 2400 (int __user *)a[2]); 2401 break; 2402 case SYS_SOCKETPAIR: 2403 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2404 break; 2405 case SYS_SEND: 2406 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2407 break; 2408 case SYS_SENDTO: 2409 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2410 (struct sockaddr __user *)a[4], a[5]); 2411 break; 2412 case SYS_RECV: 2413 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2414 break; 2415 case SYS_RECVFROM: 2416 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2417 (struct sockaddr __user *)a[4], 2418 (int __user *)a[5]); 2419 break; 2420 case SYS_SHUTDOWN: 2421 err = sys_shutdown(a0, a1); 2422 break; 2423 case SYS_SETSOCKOPT: 2424 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2425 break; 2426 case SYS_GETSOCKOPT: 2427 err = 2428 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2429 (int __user *)a[4]); 2430 break; 2431 case SYS_SENDMSG: 2432 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2433 break; 2434 case SYS_SENDMMSG: 2435 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2436 break; 2437 case SYS_RECVMSG: 2438 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2439 break; 2440 case SYS_RECVMMSG: 2441 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2442 (struct timespec __user *)a[4]); 2443 break; 2444 case SYS_ACCEPT4: 2445 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2446 (int __user *)a[2], a[3]); 2447 break; 2448 default: 2449 err = -EINVAL; 2450 break; 2451 } 2452 return err; 2453 } 2454 2455 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2456 2457 /** 2458 * sock_register - add a socket protocol handler 2459 * @ops: description of protocol 2460 * 2461 * This function is called by a protocol handler that wants to 2462 * advertise its address family, and have it linked into the 2463 * socket interface. The value ops->family coresponds to the 2464 * socket system call protocol family. 2465 */ 2466 int sock_register(const struct net_proto_family *ops) 2467 { 2468 int err; 2469 2470 if (ops->family >= NPROTO) { 2471 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2472 NPROTO); 2473 return -ENOBUFS; 2474 } 2475 2476 spin_lock(&net_family_lock); 2477 if (rcu_dereference_protected(net_families[ops->family], 2478 lockdep_is_held(&net_family_lock))) 2479 err = -EEXIST; 2480 else { 2481 rcu_assign_pointer(net_families[ops->family], ops); 2482 err = 0; 2483 } 2484 spin_unlock(&net_family_lock); 2485 2486 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2487 return err; 2488 } 2489 EXPORT_SYMBOL(sock_register); 2490 2491 /** 2492 * sock_unregister - remove a protocol handler 2493 * @family: protocol family to remove 2494 * 2495 * This function is called by a protocol handler that wants to 2496 * remove its address family, and have it unlinked from the 2497 * new socket creation. 2498 * 2499 * If protocol handler is a module, then it can use module reference 2500 * counts to protect against new references. If protocol handler is not 2501 * a module then it needs to provide its own protection in 2502 * the ops->create routine. 2503 */ 2504 void sock_unregister(int family) 2505 { 2506 BUG_ON(family < 0 || family >= NPROTO); 2507 2508 spin_lock(&net_family_lock); 2509 RCU_INIT_POINTER(net_families[family], NULL); 2510 spin_unlock(&net_family_lock); 2511 2512 synchronize_rcu(); 2513 2514 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2515 } 2516 EXPORT_SYMBOL(sock_unregister); 2517 2518 static int __init sock_init(void) 2519 { 2520 int err; 2521 /* 2522 * Initialize the network sysctl infrastructure. 2523 */ 2524 err = net_sysctl_init(); 2525 if (err) 2526 goto out; 2527 2528 /* 2529 * Initialize sock SLAB cache. 2530 */ 2531 2532 sk_init(); 2533 2534 /* 2535 * Initialize skbuff SLAB cache 2536 */ 2537 skb_init(); 2538 2539 /* 2540 * Initialize the protocols module. 2541 */ 2542 2543 init_inodecache(); 2544 2545 err = register_filesystem(&sock_fs_type); 2546 if (err) 2547 goto out_fs; 2548 sock_mnt = kern_mount(&sock_fs_type); 2549 if (IS_ERR(sock_mnt)) { 2550 err = PTR_ERR(sock_mnt); 2551 goto out_mount; 2552 } 2553 2554 /* The real protocol initialization is performed in later initcalls. 2555 */ 2556 2557 #ifdef CONFIG_NETFILTER 2558 netfilter_init(); 2559 #endif 2560 2561 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2562 skb_timestamping_init(); 2563 #endif 2564 2565 out: 2566 return err; 2567 2568 out_mount: 2569 unregister_filesystem(&sock_fs_type); 2570 out_fs: 2571 goto out; 2572 } 2573 2574 core_initcall(sock_init); /* early initcall */ 2575 2576 #ifdef CONFIG_PROC_FS 2577 void socket_seq_show(struct seq_file *seq) 2578 { 2579 int cpu; 2580 int counter = 0; 2581 2582 for_each_possible_cpu(cpu) 2583 counter += per_cpu(sockets_in_use, cpu); 2584 2585 /* It can be negative, by the way. 8) */ 2586 if (counter < 0) 2587 counter = 0; 2588 2589 seq_printf(seq, "sockets: used %d\n", counter); 2590 } 2591 #endif /* CONFIG_PROC_FS */ 2592 2593 #ifdef CONFIG_COMPAT 2594 static int do_siocgstamp(struct net *net, struct socket *sock, 2595 unsigned int cmd, void __user *up) 2596 { 2597 mm_segment_t old_fs = get_fs(); 2598 struct timeval ktv; 2599 int err; 2600 2601 set_fs(KERNEL_DS); 2602 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2603 set_fs(old_fs); 2604 if (!err) 2605 err = compat_put_timeval(up, &ktv); 2606 2607 return err; 2608 } 2609 2610 static int do_siocgstampns(struct net *net, struct socket *sock, 2611 unsigned int cmd, void __user *up) 2612 { 2613 mm_segment_t old_fs = get_fs(); 2614 struct timespec kts; 2615 int err; 2616 2617 set_fs(KERNEL_DS); 2618 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2619 set_fs(old_fs); 2620 if (!err) 2621 err = compat_put_timespec(up, &kts); 2622 2623 return err; 2624 } 2625 2626 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2627 { 2628 struct ifreq __user *uifr; 2629 int err; 2630 2631 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2632 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2633 return -EFAULT; 2634 2635 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2636 if (err) 2637 return err; 2638 2639 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2640 return -EFAULT; 2641 2642 return 0; 2643 } 2644 2645 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2646 { 2647 struct compat_ifconf ifc32; 2648 struct ifconf ifc; 2649 struct ifconf __user *uifc; 2650 struct compat_ifreq __user *ifr32; 2651 struct ifreq __user *ifr; 2652 unsigned int i, j; 2653 int err; 2654 2655 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2656 return -EFAULT; 2657 2658 if (ifc32.ifcbuf == 0) { 2659 ifc32.ifc_len = 0; 2660 ifc.ifc_len = 0; 2661 ifc.ifc_req = NULL; 2662 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2663 } else { 2664 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2665 sizeof(struct ifreq); 2666 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2667 ifc.ifc_len = len; 2668 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2669 ifr32 = compat_ptr(ifc32.ifcbuf); 2670 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2671 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2672 return -EFAULT; 2673 ifr++; 2674 ifr32++; 2675 } 2676 } 2677 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2678 return -EFAULT; 2679 2680 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2681 if (err) 2682 return err; 2683 2684 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2685 return -EFAULT; 2686 2687 ifr = ifc.ifc_req; 2688 ifr32 = compat_ptr(ifc32.ifcbuf); 2689 for (i = 0, j = 0; 2690 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2691 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2692 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2693 return -EFAULT; 2694 ifr32++; 2695 ifr++; 2696 } 2697 2698 if (ifc32.ifcbuf == 0) { 2699 /* Translate from 64-bit structure multiple to 2700 * a 32-bit one. 2701 */ 2702 i = ifc.ifc_len; 2703 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2704 ifc32.ifc_len = i; 2705 } else { 2706 ifc32.ifc_len = i; 2707 } 2708 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2709 return -EFAULT; 2710 2711 return 0; 2712 } 2713 2714 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2715 { 2716 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2717 bool convert_in = false, convert_out = false; 2718 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2719 struct ethtool_rxnfc __user *rxnfc; 2720 struct ifreq __user *ifr; 2721 u32 rule_cnt = 0, actual_rule_cnt; 2722 u32 ethcmd; 2723 u32 data; 2724 int ret; 2725 2726 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2727 return -EFAULT; 2728 2729 compat_rxnfc = compat_ptr(data); 2730 2731 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2732 return -EFAULT; 2733 2734 /* Most ethtool structures are defined without padding. 2735 * Unfortunately struct ethtool_rxnfc is an exception. 2736 */ 2737 switch (ethcmd) { 2738 default: 2739 break; 2740 case ETHTOOL_GRXCLSRLALL: 2741 /* Buffer size is variable */ 2742 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2743 return -EFAULT; 2744 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2745 return -ENOMEM; 2746 buf_size += rule_cnt * sizeof(u32); 2747 /* fall through */ 2748 case ETHTOOL_GRXRINGS: 2749 case ETHTOOL_GRXCLSRLCNT: 2750 case ETHTOOL_GRXCLSRULE: 2751 case ETHTOOL_SRXCLSRLINS: 2752 convert_out = true; 2753 /* fall through */ 2754 case ETHTOOL_SRXCLSRLDEL: 2755 buf_size += sizeof(struct ethtool_rxnfc); 2756 convert_in = true; 2757 break; 2758 } 2759 2760 ifr = compat_alloc_user_space(buf_size); 2761 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2762 2763 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2764 return -EFAULT; 2765 2766 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2767 &ifr->ifr_ifru.ifru_data)) 2768 return -EFAULT; 2769 2770 if (convert_in) { 2771 /* We expect there to be holes between fs.m_ext and 2772 * fs.ring_cookie and at the end of fs, but nowhere else. 2773 */ 2774 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2775 sizeof(compat_rxnfc->fs.m_ext) != 2776 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2777 sizeof(rxnfc->fs.m_ext)); 2778 BUILD_BUG_ON( 2779 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2780 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2781 offsetof(struct ethtool_rxnfc, fs.location) - 2782 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2783 2784 if (copy_in_user(rxnfc, compat_rxnfc, 2785 (void *)(&rxnfc->fs.m_ext + 1) - 2786 (void *)rxnfc) || 2787 copy_in_user(&rxnfc->fs.ring_cookie, 2788 &compat_rxnfc->fs.ring_cookie, 2789 (void *)(&rxnfc->fs.location + 1) - 2790 (void *)&rxnfc->fs.ring_cookie) || 2791 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2792 sizeof(rxnfc->rule_cnt))) 2793 return -EFAULT; 2794 } 2795 2796 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2797 if (ret) 2798 return ret; 2799 2800 if (convert_out) { 2801 if (copy_in_user(compat_rxnfc, rxnfc, 2802 (const void *)(&rxnfc->fs.m_ext + 1) - 2803 (const void *)rxnfc) || 2804 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2805 &rxnfc->fs.ring_cookie, 2806 (const void *)(&rxnfc->fs.location + 1) - 2807 (const void *)&rxnfc->fs.ring_cookie) || 2808 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2809 sizeof(rxnfc->rule_cnt))) 2810 return -EFAULT; 2811 2812 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2813 /* As an optimisation, we only copy the actual 2814 * number of rules that the underlying 2815 * function returned. Since Mallory might 2816 * change the rule count in user memory, we 2817 * check that it is less than the rule count 2818 * originally given (as the user buffer size), 2819 * which has been range-checked. 2820 */ 2821 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2822 return -EFAULT; 2823 if (actual_rule_cnt < rule_cnt) 2824 rule_cnt = actual_rule_cnt; 2825 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2826 &rxnfc->rule_locs[0], 2827 rule_cnt * sizeof(u32))) 2828 return -EFAULT; 2829 } 2830 } 2831 2832 return 0; 2833 } 2834 2835 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2836 { 2837 void __user *uptr; 2838 compat_uptr_t uptr32; 2839 struct ifreq __user *uifr; 2840 2841 uifr = compat_alloc_user_space(sizeof(*uifr)); 2842 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2843 return -EFAULT; 2844 2845 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2846 return -EFAULT; 2847 2848 uptr = compat_ptr(uptr32); 2849 2850 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2851 return -EFAULT; 2852 2853 return dev_ioctl(net, SIOCWANDEV, uifr); 2854 } 2855 2856 static int bond_ioctl(struct net *net, unsigned int cmd, 2857 struct compat_ifreq __user *ifr32) 2858 { 2859 struct ifreq kifr; 2860 struct ifreq __user *uifr; 2861 mm_segment_t old_fs; 2862 int err; 2863 u32 data; 2864 void __user *datap; 2865 2866 switch (cmd) { 2867 case SIOCBONDENSLAVE: 2868 case SIOCBONDRELEASE: 2869 case SIOCBONDSETHWADDR: 2870 case SIOCBONDCHANGEACTIVE: 2871 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2872 return -EFAULT; 2873 2874 old_fs = get_fs(); 2875 set_fs(KERNEL_DS); 2876 err = dev_ioctl(net, cmd, 2877 (struct ifreq __user __force *) &kifr); 2878 set_fs(old_fs); 2879 2880 return err; 2881 case SIOCBONDSLAVEINFOQUERY: 2882 case SIOCBONDINFOQUERY: 2883 uifr = compat_alloc_user_space(sizeof(*uifr)); 2884 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2885 return -EFAULT; 2886 2887 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2888 return -EFAULT; 2889 2890 datap = compat_ptr(data); 2891 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2892 return -EFAULT; 2893 2894 return dev_ioctl(net, cmd, uifr); 2895 default: 2896 return -ENOIOCTLCMD; 2897 } 2898 } 2899 2900 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2901 struct compat_ifreq __user *u_ifreq32) 2902 { 2903 struct ifreq __user *u_ifreq64; 2904 char tmp_buf[IFNAMSIZ]; 2905 void __user *data64; 2906 u32 data32; 2907 2908 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2909 IFNAMSIZ)) 2910 return -EFAULT; 2911 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2912 return -EFAULT; 2913 data64 = compat_ptr(data32); 2914 2915 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2916 2917 /* Don't check these user accesses, just let that get trapped 2918 * in the ioctl handler instead. 2919 */ 2920 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2921 IFNAMSIZ)) 2922 return -EFAULT; 2923 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2924 return -EFAULT; 2925 2926 return dev_ioctl(net, cmd, u_ifreq64); 2927 } 2928 2929 static int dev_ifsioc(struct net *net, struct socket *sock, 2930 unsigned int cmd, struct compat_ifreq __user *uifr32) 2931 { 2932 struct ifreq __user *uifr; 2933 int err; 2934 2935 uifr = compat_alloc_user_space(sizeof(*uifr)); 2936 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2937 return -EFAULT; 2938 2939 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2940 2941 if (!err) { 2942 switch (cmd) { 2943 case SIOCGIFFLAGS: 2944 case SIOCGIFMETRIC: 2945 case SIOCGIFMTU: 2946 case SIOCGIFMEM: 2947 case SIOCGIFHWADDR: 2948 case SIOCGIFINDEX: 2949 case SIOCGIFADDR: 2950 case SIOCGIFBRDADDR: 2951 case SIOCGIFDSTADDR: 2952 case SIOCGIFNETMASK: 2953 case SIOCGIFPFLAGS: 2954 case SIOCGIFTXQLEN: 2955 case SIOCGMIIPHY: 2956 case SIOCGMIIREG: 2957 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2958 err = -EFAULT; 2959 break; 2960 } 2961 } 2962 return err; 2963 } 2964 2965 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2966 struct compat_ifreq __user *uifr32) 2967 { 2968 struct ifreq ifr; 2969 struct compat_ifmap __user *uifmap32; 2970 mm_segment_t old_fs; 2971 int err; 2972 2973 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2974 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2975 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2976 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2977 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2978 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2979 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2980 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2981 if (err) 2982 return -EFAULT; 2983 2984 old_fs = get_fs(); 2985 set_fs(KERNEL_DS); 2986 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2987 set_fs(old_fs); 2988 2989 if (cmd == SIOCGIFMAP && !err) { 2990 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2991 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2992 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2993 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2994 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2995 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2996 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2997 if (err) 2998 err = -EFAULT; 2999 } 3000 return err; 3001 } 3002 3003 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3004 { 3005 void __user *uptr; 3006 compat_uptr_t uptr32; 3007 struct ifreq __user *uifr; 3008 3009 uifr = compat_alloc_user_space(sizeof(*uifr)); 3010 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3011 return -EFAULT; 3012 3013 if (get_user(uptr32, &uifr32->ifr_data)) 3014 return -EFAULT; 3015 3016 uptr = compat_ptr(uptr32); 3017 3018 if (put_user(uptr, &uifr->ifr_data)) 3019 return -EFAULT; 3020 3021 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3022 } 3023 3024 struct rtentry32 { 3025 u32 rt_pad1; 3026 struct sockaddr rt_dst; /* target address */ 3027 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3028 struct sockaddr rt_genmask; /* target network mask (IP) */ 3029 unsigned short rt_flags; 3030 short rt_pad2; 3031 u32 rt_pad3; 3032 unsigned char rt_tos; 3033 unsigned char rt_class; 3034 short rt_pad4; 3035 short rt_metric; /* +1 for binary compatibility! */ 3036 /* char * */ u32 rt_dev; /* forcing the device at add */ 3037 u32 rt_mtu; /* per route MTU/Window */ 3038 u32 rt_window; /* Window clamping */ 3039 unsigned short rt_irtt; /* Initial RTT */ 3040 }; 3041 3042 struct in6_rtmsg32 { 3043 struct in6_addr rtmsg_dst; 3044 struct in6_addr rtmsg_src; 3045 struct in6_addr rtmsg_gateway; 3046 u32 rtmsg_type; 3047 u16 rtmsg_dst_len; 3048 u16 rtmsg_src_len; 3049 u32 rtmsg_metric; 3050 u32 rtmsg_info; 3051 u32 rtmsg_flags; 3052 s32 rtmsg_ifindex; 3053 }; 3054 3055 static int routing_ioctl(struct net *net, struct socket *sock, 3056 unsigned int cmd, void __user *argp) 3057 { 3058 int ret; 3059 void *r = NULL; 3060 struct in6_rtmsg r6; 3061 struct rtentry r4; 3062 char devname[16]; 3063 u32 rtdev; 3064 mm_segment_t old_fs = get_fs(); 3065 3066 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3067 struct in6_rtmsg32 __user *ur6 = argp; 3068 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3069 3 * sizeof(struct in6_addr)); 3070 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3071 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3072 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3073 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3074 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3075 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3076 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3077 3078 r = (void *) &r6; 3079 } else { /* ipv4 */ 3080 struct rtentry32 __user *ur4 = argp; 3081 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3082 3 * sizeof(struct sockaddr)); 3083 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3084 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3085 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3086 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3087 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3088 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3089 if (rtdev) { 3090 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3091 r4.rt_dev = (char __user __force *)devname; 3092 devname[15] = 0; 3093 } else 3094 r4.rt_dev = NULL; 3095 3096 r = (void *) &r4; 3097 } 3098 3099 if (ret) { 3100 ret = -EFAULT; 3101 goto out; 3102 } 3103 3104 set_fs(KERNEL_DS); 3105 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3106 set_fs(old_fs); 3107 3108 out: 3109 return ret; 3110 } 3111 3112 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3113 * for some operations; this forces use of the newer bridge-utils that 3114 * use compatible ioctls 3115 */ 3116 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3117 { 3118 compat_ulong_t tmp; 3119 3120 if (get_user(tmp, argp)) 3121 return -EFAULT; 3122 if (tmp == BRCTL_GET_VERSION) 3123 return BRCTL_VERSION + 1; 3124 return -EINVAL; 3125 } 3126 3127 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3128 unsigned int cmd, unsigned long arg) 3129 { 3130 void __user *argp = compat_ptr(arg); 3131 struct sock *sk = sock->sk; 3132 struct net *net = sock_net(sk); 3133 3134 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3135 return siocdevprivate_ioctl(net, cmd, argp); 3136 3137 switch (cmd) { 3138 case SIOCSIFBR: 3139 case SIOCGIFBR: 3140 return old_bridge_ioctl(argp); 3141 case SIOCGIFNAME: 3142 return dev_ifname32(net, argp); 3143 case SIOCGIFCONF: 3144 return dev_ifconf(net, argp); 3145 case SIOCETHTOOL: 3146 return ethtool_ioctl(net, argp); 3147 case SIOCWANDEV: 3148 return compat_siocwandev(net, argp); 3149 case SIOCGIFMAP: 3150 case SIOCSIFMAP: 3151 return compat_sioc_ifmap(net, cmd, argp); 3152 case SIOCBONDENSLAVE: 3153 case SIOCBONDRELEASE: 3154 case SIOCBONDSETHWADDR: 3155 case SIOCBONDSLAVEINFOQUERY: 3156 case SIOCBONDINFOQUERY: 3157 case SIOCBONDCHANGEACTIVE: 3158 return bond_ioctl(net, cmd, argp); 3159 case SIOCADDRT: 3160 case SIOCDELRT: 3161 return routing_ioctl(net, sock, cmd, argp); 3162 case SIOCGSTAMP: 3163 return do_siocgstamp(net, sock, cmd, argp); 3164 case SIOCGSTAMPNS: 3165 return do_siocgstampns(net, sock, cmd, argp); 3166 case SIOCSHWTSTAMP: 3167 return compat_siocshwtstamp(net, argp); 3168 3169 case FIOSETOWN: 3170 case SIOCSPGRP: 3171 case FIOGETOWN: 3172 case SIOCGPGRP: 3173 case SIOCBRADDBR: 3174 case SIOCBRDELBR: 3175 case SIOCGIFVLAN: 3176 case SIOCSIFVLAN: 3177 case SIOCADDDLCI: 3178 case SIOCDELDLCI: 3179 return sock_ioctl(file, cmd, arg); 3180 3181 case SIOCGIFFLAGS: 3182 case SIOCSIFFLAGS: 3183 case SIOCGIFMETRIC: 3184 case SIOCSIFMETRIC: 3185 case SIOCGIFMTU: 3186 case SIOCSIFMTU: 3187 case SIOCGIFMEM: 3188 case SIOCSIFMEM: 3189 case SIOCGIFHWADDR: 3190 case SIOCSIFHWADDR: 3191 case SIOCADDMULTI: 3192 case SIOCDELMULTI: 3193 case SIOCGIFINDEX: 3194 case SIOCGIFADDR: 3195 case SIOCSIFADDR: 3196 case SIOCSIFHWBROADCAST: 3197 case SIOCDIFADDR: 3198 case SIOCGIFBRDADDR: 3199 case SIOCSIFBRDADDR: 3200 case SIOCGIFDSTADDR: 3201 case SIOCSIFDSTADDR: 3202 case SIOCGIFNETMASK: 3203 case SIOCSIFNETMASK: 3204 case SIOCSIFPFLAGS: 3205 case SIOCGIFPFLAGS: 3206 case SIOCGIFTXQLEN: 3207 case SIOCSIFTXQLEN: 3208 case SIOCBRADDIF: 3209 case SIOCBRDELIF: 3210 case SIOCSIFNAME: 3211 case SIOCGMIIPHY: 3212 case SIOCGMIIREG: 3213 case SIOCSMIIREG: 3214 return dev_ifsioc(net, sock, cmd, argp); 3215 3216 case SIOCSARP: 3217 case SIOCGARP: 3218 case SIOCDARP: 3219 case SIOCATMARK: 3220 return sock_do_ioctl(net, sock, cmd, arg); 3221 } 3222 3223 return -ENOIOCTLCMD; 3224 } 3225 3226 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3227 unsigned long arg) 3228 { 3229 struct socket *sock = file->private_data; 3230 int ret = -ENOIOCTLCMD; 3231 struct sock *sk; 3232 struct net *net; 3233 3234 sk = sock->sk; 3235 net = sock_net(sk); 3236 3237 if (sock->ops->compat_ioctl) 3238 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3239 3240 if (ret == -ENOIOCTLCMD && 3241 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3242 ret = compat_wext_handle_ioctl(net, cmd, arg); 3243 3244 if (ret == -ENOIOCTLCMD) 3245 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3246 3247 return ret; 3248 } 3249 #endif 3250 3251 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3252 { 3253 return sock->ops->bind(sock, addr, addrlen); 3254 } 3255 EXPORT_SYMBOL(kernel_bind); 3256 3257 int kernel_listen(struct socket *sock, int backlog) 3258 { 3259 return sock->ops->listen(sock, backlog); 3260 } 3261 EXPORT_SYMBOL(kernel_listen); 3262 3263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3264 { 3265 struct sock *sk = sock->sk; 3266 int err; 3267 3268 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3269 newsock); 3270 if (err < 0) 3271 goto done; 3272 3273 err = sock->ops->accept(sock, *newsock, flags); 3274 if (err < 0) { 3275 sock_release(*newsock); 3276 *newsock = NULL; 3277 goto done; 3278 } 3279 3280 (*newsock)->ops = sock->ops; 3281 __module_get((*newsock)->ops->owner); 3282 3283 done: 3284 return err; 3285 } 3286 EXPORT_SYMBOL(kernel_accept); 3287 3288 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3289 int flags) 3290 { 3291 return sock->ops->connect(sock, addr, addrlen, flags); 3292 } 3293 EXPORT_SYMBOL(kernel_connect); 3294 3295 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3296 int *addrlen) 3297 { 3298 return sock->ops->getname(sock, addr, addrlen, 0); 3299 } 3300 EXPORT_SYMBOL(kernel_getsockname); 3301 3302 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3303 int *addrlen) 3304 { 3305 return sock->ops->getname(sock, addr, addrlen, 1); 3306 } 3307 EXPORT_SYMBOL(kernel_getpeername); 3308 3309 int kernel_getsockopt(struct socket *sock, int level, int optname, 3310 char *optval, int *optlen) 3311 { 3312 mm_segment_t oldfs = get_fs(); 3313 char __user *uoptval; 3314 int __user *uoptlen; 3315 int err; 3316 3317 uoptval = (char __user __force *) optval; 3318 uoptlen = (int __user __force *) optlen; 3319 3320 set_fs(KERNEL_DS); 3321 if (level == SOL_SOCKET) 3322 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3323 else 3324 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3325 uoptlen); 3326 set_fs(oldfs); 3327 return err; 3328 } 3329 EXPORT_SYMBOL(kernel_getsockopt); 3330 3331 int kernel_setsockopt(struct socket *sock, int level, int optname, 3332 char *optval, unsigned int optlen) 3333 { 3334 mm_segment_t oldfs = get_fs(); 3335 char __user *uoptval; 3336 int err; 3337 3338 uoptval = (char __user __force *) optval; 3339 3340 set_fs(KERNEL_DS); 3341 if (level == SOL_SOCKET) 3342 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3343 else 3344 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3345 optlen); 3346 set_fs(oldfs); 3347 return err; 3348 } 3349 EXPORT_SYMBOL(kernel_setsockopt); 3350 3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3352 size_t size, int flags) 3353 { 3354 sock_update_classid(sock->sk); 3355 3356 if (sock->ops->sendpage) 3357 return sock->ops->sendpage(sock, page, offset, size, flags); 3358 3359 return sock_no_sendpage(sock, page, offset, size, flags); 3360 } 3361 EXPORT_SYMBOL(kernel_sendpage); 3362 3363 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3364 { 3365 mm_segment_t oldfs = get_fs(); 3366 int err; 3367 3368 set_fs(KERNEL_DS); 3369 err = sock->ops->ioctl(sock, cmd, arg); 3370 set_fs(oldfs); 3371 3372 return err; 3373 } 3374 EXPORT_SYMBOL(kernel_sock_ioctl); 3375 3376 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3377 { 3378 return sock->ops->shutdown(sock, how); 3379 } 3380 EXPORT_SYMBOL(kernel_sock_shutdown); 3381