1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * too is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 /* 656 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 657 */ 658 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 659 struct sk_buff *skb) 660 { 661 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 662 struct scm_timestamping tss; 663 int empty = 1; 664 struct skb_shared_hwtstamps *shhwtstamps = 665 skb_hwtstamps(skb); 666 667 /* Race occurred between timestamp enabling and packet 668 receiving. Fill in the current time for now. */ 669 if (need_software_tstamp && skb->tstamp == 0) 670 __net_timestamp(skb); 671 672 if (need_software_tstamp) { 673 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 674 struct timeval tv; 675 skb_get_timestamp(skb, &tv); 676 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 677 sizeof(tv), &tv); 678 } else { 679 struct timespec ts; 680 skb_get_timestampns(skb, &ts); 681 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 682 sizeof(ts), &ts); 683 } 684 } 685 686 memset(&tss, 0, sizeof(tss)); 687 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 688 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 689 empty = 0; 690 if (shhwtstamps && 691 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 692 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 693 empty = 0; 694 if (!empty) { 695 put_cmsg(msg, SOL_SOCKET, 696 SCM_TIMESTAMPING, sizeof(tss), &tss); 697 698 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS)) 699 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 700 skb->len, skb->data); 701 } 702 } 703 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 704 705 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707 { 708 int ack; 709 710 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 711 return; 712 if (!skb->wifi_acked_valid) 713 return; 714 715 ack = skb->wifi_acked; 716 717 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 718 } 719 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 720 721 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 722 struct sk_buff *skb) 723 { 724 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 725 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 726 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 727 } 728 729 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 730 struct sk_buff *skb) 731 { 732 sock_recv_timestamp(msg, sk, skb); 733 sock_recv_drops(msg, sk, skb); 734 } 735 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 736 737 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 738 int flags) 739 { 740 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 741 } 742 743 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 744 { 745 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 746 747 return err ?: sock_recvmsg_nosec(sock, msg, flags); 748 } 749 EXPORT_SYMBOL(sock_recvmsg); 750 751 /** 752 * kernel_recvmsg - Receive a message from a socket (kernel space) 753 * @sock: The socket to receive the message from 754 * @msg: Received message 755 * @vec: Input s/g array for message data 756 * @num: Size of input s/g array 757 * @size: Number of bytes to read 758 * @flags: Message flags (MSG_DONTWAIT, etc...) 759 * 760 * On return the msg structure contains the scatter/gather array passed in the 761 * vec argument. The array is modified so that it consists of the unfilled 762 * portion of the original array. 763 * 764 * The returned value is the total number of bytes received, or an error. 765 */ 766 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 767 struct kvec *vec, size_t num, size_t size, int flags) 768 { 769 mm_segment_t oldfs = get_fs(); 770 int result; 771 772 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 773 set_fs(KERNEL_DS); 774 result = sock_recvmsg(sock, msg, flags); 775 set_fs(oldfs); 776 return result; 777 } 778 EXPORT_SYMBOL(kernel_recvmsg); 779 780 static ssize_t sock_sendpage(struct file *file, struct page *page, 781 int offset, size_t size, loff_t *ppos, int more) 782 { 783 struct socket *sock; 784 int flags; 785 786 sock = file->private_data; 787 788 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 789 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 790 flags |= more; 791 792 return kernel_sendpage(sock, page, offset, size, flags); 793 } 794 795 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 796 struct pipe_inode_info *pipe, size_t len, 797 unsigned int flags) 798 { 799 struct socket *sock = file->private_data; 800 801 if (unlikely(!sock->ops->splice_read)) 802 return -EINVAL; 803 804 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 805 } 806 807 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 808 { 809 struct file *file = iocb->ki_filp; 810 struct socket *sock = file->private_data; 811 struct msghdr msg = {.msg_iter = *to, 812 .msg_iocb = iocb}; 813 ssize_t res; 814 815 if (file->f_flags & O_NONBLOCK) 816 msg.msg_flags = MSG_DONTWAIT; 817 818 if (iocb->ki_pos != 0) 819 return -ESPIPE; 820 821 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 822 return 0; 823 824 res = sock_recvmsg(sock, &msg, msg.msg_flags); 825 *to = msg.msg_iter; 826 return res; 827 } 828 829 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 830 { 831 struct file *file = iocb->ki_filp; 832 struct socket *sock = file->private_data; 833 struct msghdr msg = {.msg_iter = *from, 834 .msg_iocb = iocb}; 835 ssize_t res; 836 837 if (iocb->ki_pos != 0) 838 return -ESPIPE; 839 840 if (file->f_flags & O_NONBLOCK) 841 msg.msg_flags = MSG_DONTWAIT; 842 843 if (sock->type == SOCK_SEQPACKET) 844 msg.msg_flags |= MSG_EOR; 845 846 res = sock_sendmsg(sock, &msg); 847 *from = msg.msg_iter; 848 return res; 849 } 850 851 /* 852 * Atomic setting of ioctl hooks to avoid race 853 * with module unload. 854 */ 855 856 static DEFINE_MUTEX(br_ioctl_mutex); 857 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 858 859 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 860 { 861 mutex_lock(&br_ioctl_mutex); 862 br_ioctl_hook = hook; 863 mutex_unlock(&br_ioctl_mutex); 864 } 865 EXPORT_SYMBOL(brioctl_set); 866 867 static DEFINE_MUTEX(vlan_ioctl_mutex); 868 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 869 870 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 871 { 872 mutex_lock(&vlan_ioctl_mutex); 873 vlan_ioctl_hook = hook; 874 mutex_unlock(&vlan_ioctl_mutex); 875 } 876 EXPORT_SYMBOL(vlan_ioctl_set); 877 878 static DEFINE_MUTEX(dlci_ioctl_mutex); 879 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 880 881 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 882 { 883 mutex_lock(&dlci_ioctl_mutex); 884 dlci_ioctl_hook = hook; 885 mutex_unlock(&dlci_ioctl_mutex); 886 } 887 EXPORT_SYMBOL(dlci_ioctl_set); 888 889 static long sock_do_ioctl(struct net *net, struct socket *sock, 890 unsigned int cmd, unsigned long arg) 891 { 892 int err; 893 void __user *argp = (void __user *)arg; 894 895 err = sock->ops->ioctl(sock, cmd, arg); 896 897 /* 898 * If this ioctl is unknown try to hand it down 899 * to the NIC driver. 900 */ 901 if (err == -ENOIOCTLCMD) 902 err = dev_ioctl(net, cmd, argp); 903 904 return err; 905 } 906 907 /* 908 * With an ioctl, arg may well be a user mode pointer, but we don't know 909 * what to do with it - that's up to the protocol still. 910 */ 911 912 static struct ns_common *get_net_ns(struct ns_common *ns) 913 { 914 return &get_net(container_of(ns, struct net, ns))->ns; 915 } 916 917 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 918 { 919 struct socket *sock; 920 struct sock *sk; 921 void __user *argp = (void __user *)arg; 922 int pid, err; 923 struct net *net; 924 925 sock = file->private_data; 926 sk = sock->sk; 927 net = sock_net(sk); 928 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 929 err = dev_ioctl(net, cmd, argp); 930 } else 931 #ifdef CONFIG_WEXT_CORE 932 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 933 err = dev_ioctl(net, cmd, argp); 934 } else 935 #endif 936 switch (cmd) { 937 case FIOSETOWN: 938 case SIOCSPGRP: 939 err = -EFAULT; 940 if (get_user(pid, (int __user *)argp)) 941 break; 942 f_setown(sock->file, pid, 1); 943 err = 0; 944 break; 945 case FIOGETOWN: 946 case SIOCGPGRP: 947 err = put_user(f_getown(sock->file), 948 (int __user *)argp); 949 break; 950 case SIOCGIFBR: 951 case SIOCSIFBR: 952 case SIOCBRADDBR: 953 case SIOCBRDELBR: 954 err = -ENOPKG; 955 if (!br_ioctl_hook) 956 request_module("bridge"); 957 958 mutex_lock(&br_ioctl_mutex); 959 if (br_ioctl_hook) 960 err = br_ioctl_hook(net, cmd, argp); 961 mutex_unlock(&br_ioctl_mutex); 962 break; 963 case SIOCGIFVLAN: 964 case SIOCSIFVLAN: 965 err = -ENOPKG; 966 if (!vlan_ioctl_hook) 967 request_module("8021q"); 968 969 mutex_lock(&vlan_ioctl_mutex); 970 if (vlan_ioctl_hook) 971 err = vlan_ioctl_hook(net, argp); 972 mutex_unlock(&vlan_ioctl_mutex); 973 break; 974 case SIOCADDDLCI: 975 case SIOCDELDLCI: 976 err = -ENOPKG; 977 if (!dlci_ioctl_hook) 978 request_module("dlci"); 979 980 mutex_lock(&dlci_ioctl_mutex); 981 if (dlci_ioctl_hook) 982 err = dlci_ioctl_hook(cmd, argp); 983 mutex_unlock(&dlci_ioctl_mutex); 984 break; 985 case SIOCGSKNS: 986 err = -EPERM; 987 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 988 break; 989 990 err = open_related_ns(&net->ns, get_net_ns); 991 break; 992 default: 993 err = sock_do_ioctl(net, sock, cmd, arg); 994 break; 995 } 996 return err; 997 } 998 999 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1000 { 1001 int err; 1002 struct socket *sock = NULL; 1003 1004 err = security_socket_create(family, type, protocol, 1); 1005 if (err) 1006 goto out; 1007 1008 sock = sock_alloc(); 1009 if (!sock) { 1010 err = -ENOMEM; 1011 goto out; 1012 } 1013 1014 sock->type = type; 1015 err = security_socket_post_create(sock, family, type, protocol, 1); 1016 if (err) 1017 goto out_release; 1018 1019 out: 1020 *res = sock; 1021 return err; 1022 out_release: 1023 sock_release(sock); 1024 sock = NULL; 1025 goto out; 1026 } 1027 EXPORT_SYMBOL(sock_create_lite); 1028 1029 /* No kernel lock held - perfect */ 1030 static unsigned int sock_poll(struct file *file, poll_table *wait) 1031 { 1032 unsigned int busy_flag = 0; 1033 struct socket *sock; 1034 1035 /* 1036 * We can't return errors to poll, so it's either yes or no. 1037 */ 1038 sock = file->private_data; 1039 1040 if (sk_can_busy_loop(sock->sk)) { 1041 /* this socket can poll_ll so tell the system call */ 1042 busy_flag = POLL_BUSY_LOOP; 1043 1044 /* once, only if requested by syscall */ 1045 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1046 sk_busy_loop(sock->sk, 1); 1047 } 1048 1049 return busy_flag | sock->ops->poll(file, sock, wait); 1050 } 1051 1052 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1053 { 1054 struct socket *sock = file->private_data; 1055 1056 return sock->ops->mmap(file, sock, vma); 1057 } 1058 1059 static int sock_close(struct inode *inode, struct file *filp) 1060 { 1061 sock_release(SOCKET_I(inode)); 1062 return 0; 1063 } 1064 1065 /* 1066 * Update the socket async list 1067 * 1068 * Fasync_list locking strategy. 1069 * 1070 * 1. fasync_list is modified only under process context socket lock 1071 * i.e. under semaphore. 1072 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1073 * or under socket lock 1074 */ 1075 1076 static int sock_fasync(int fd, struct file *filp, int on) 1077 { 1078 struct socket *sock = filp->private_data; 1079 struct sock *sk = sock->sk; 1080 struct socket_wq *wq; 1081 1082 if (sk == NULL) 1083 return -EINVAL; 1084 1085 lock_sock(sk); 1086 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1087 fasync_helper(fd, filp, on, &wq->fasync_list); 1088 1089 if (!wq->fasync_list) 1090 sock_reset_flag(sk, SOCK_FASYNC); 1091 else 1092 sock_set_flag(sk, SOCK_FASYNC); 1093 1094 release_sock(sk); 1095 return 0; 1096 } 1097 1098 /* This function may be called only under rcu_lock */ 1099 1100 int sock_wake_async(struct socket_wq *wq, int how, int band) 1101 { 1102 if (!wq || !wq->fasync_list) 1103 return -1; 1104 1105 switch (how) { 1106 case SOCK_WAKE_WAITD: 1107 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1108 break; 1109 goto call_kill; 1110 case SOCK_WAKE_SPACE: 1111 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1112 break; 1113 /* fall through */ 1114 case SOCK_WAKE_IO: 1115 call_kill: 1116 kill_fasync(&wq->fasync_list, SIGIO, band); 1117 break; 1118 case SOCK_WAKE_URG: 1119 kill_fasync(&wq->fasync_list, SIGURG, band); 1120 } 1121 1122 return 0; 1123 } 1124 EXPORT_SYMBOL(sock_wake_async); 1125 1126 int __sock_create(struct net *net, int family, int type, int protocol, 1127 struct socket **res, int kern) 1128 { 1129 int err; 1130 struct socket *sock; 1131 const struct net_proto_family *pf; 1132 1133 /* 1134 * Check protocol is in range 1135 */ 1136 if (family < 0 || family >= NPROTO) 1137 return -EAFNOSUPPORT; 1138 if (type < 0 || type >= SOCK_MAX) 1139 return -EINVAL; 1140 1141 /* Compatibility. 1142 1143 This uglymoron is moved from INET layer to here to avoid 1144 deadlock in module load. 1145 */ 1146 if (family == PF_INET && type == SOCK_PACKET) { 1147 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1148 current->comm); 1149 family = PF_PACKET; 1150 } 1151 1152 err = security_socket_create(family, type, protocol, kern); 1153 if (err) 1154 return err; 1155 1156 /* 1157 * Allocate the socket and allow the family to set things up. if 1158 * the protocol is 0, the family is instructed to select an appropriate 1159 * default. 1160 */ 1161 sock = sock_alloc(); 1162 if (!sock) { 1163 net_warn_ratelimited("socket: no more sockets\n"); 1164 return -ENFILE; /* Not exactly a match, but its the 1165 closest posix thing */ 1166 } 1167 1168 sock->type = type; 1169 1170 #ifdef CONFIG_MODULES 1171 /* Attempt to load a protocol module if the find failed. 1172 * 1173 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1174 * requested real, full-featured networking support upon configuration. 1175 * Otherwise module support will break! 1176 */ 1177 if (rcu_access_pointer(net_families[family]) == NULL) 1178 request_module("net-pf-%d", family); 1179 #endif 1180 1181 rcu_read_lock(); 1182 pf = rcu_dereference(net_families[family]); 1183 err = -EAFNOSUPPORT; 1184 if (!pf) 1185 goto out_release; 1186 1187 /* 1188 * We will call the ->create function, that possibly is in a loadable 1189 * module, so we have to bump that loadable module refcnt first. 1190 */ 1191 if (!try_module_get(pf->owner)) 1192 goto out_release; 1193 1194 /* Now protected by module ref count */ 1195 rcu_read_unlock(); 1196 1197 err = pf->create(net, sock, protocol, kern); 1198 if (err < 0) 1199 goto out_module_put; 1200 1201 /* 1202 * Now to bump the refcnt of the [loadable] module that owns this 1203 * socket at sock_release time we decrement its refcnt. 1204 */ 1205 if (!try_module_get(sock->ops->owner)) 1206 goto out_module_busy; 1207 1208 /* 1209 * Now that we're done with the ->create function, the [loadable] 1210 * module can have its refcnt decremented 1211 */ 1212 module_put(pf->owner); 1213 err = security_socket_post_create(sock, family, type, protocol, kern); 1214 if (err) 1215 goto out_sock_release; 1216 *res = sock; 1217 1218 return 0; 1219 1220 out_module_busy: 1221 err = -EAFNOSUPPORT; 1222 out_module_put: 1223 sock->ops = NULL; 1224 module_put(pf->owner); 1225 out_sock_release: 1226 sock_release(sock); 1227 return err; 1228 1229 out_release: 1230 rcu_read_unlock(); 1231 goto out_sock_release; 1232 } 1233 EXPORT_SYMBOL(__sock_create); 1234 1235 int sock_create(int family, int type, int protocol, struct socket **res) 1236 { 1237 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1238 } 1239 EXPORT_SYMBOL(sock_create); 1240 1241 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1242 { 1243 return __sock_create(net, family, type, protocol, res, 1); 1244 } 1245 EXPORT_SYMBOL(sock_create_kern); 1246 1247 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1248 { 1249 int retval; 1250 struct socket *sock; 1251 int flags; 1252 1253 /* Check the SOCK_* constants for consistency. */ 1254 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1255 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1256 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1257 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1258 1259 flags = type & ~SOCK_TYPE_MASK; 1260 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1261 return -EINVAL; 1262 type &= SOCK_TYPE_MASK; 1263 1264 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1265 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1266 1267 retval = sock_create(family, type, protocol, &sock); 1268 if (retval < 0) 1269 goto out; 1270 1271 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1272 if (retval < 0) 1273 goto out_release; 1274 1275 out: 1276 /* It may be already another descriptor 8) Not kernel problem. */ 1277 return retval; 1278 1279 out_release: 1280 sock_release(sock); 1281 return retval; 1282 } 1283 1284 /* 1285 * Create a pair of connected sockets. 1286 */ 1287 1288 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1289 int __user *, usockvec) 1290 { 1291 struct socket *sock1, *sock2; 1292 int fd1, fd2, err; 1293 struct file *newfile1, *newfile2; 1294 int flags; 1295 1296 flags = type & ~SOCK_TYPE_MASK; 1297 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1298 return -EINVAL; 1299 type &= SOCK_TYPE_MASK; 1300 1301 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1302 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1303 1304 /* 1305 * Obtain the first socket and check if the underlying protocol 1306 * supports the socketpair call. 1307 */ 1308 1309 err = sock_create(family, type, protocol, &sock1); 1310 if (err < 0) 1311 goto out; 1312 1313 err = sock_create(family, type, protocol, &sock2); 1314 if (err < 0) 1315 goto out_release_1; 1316 1317 err = sock1->ops->socketpair(sock1, sock2); 1318 if (err < 0) 1319 goto out_release_both; 1320 1321 fd1 = get_unused_fd_flags(flags); 1322 if (unlikely(fd1 < 0)) { 1323 err = fd1; 1324 goto out_release_both; 1325 } 1326 1327 fd2 = get_unused_fd_flags(flags); 1328 if (unlikely(fd2 < 0)) { 1329 err = fd2; 1330 goto out_put_unused_1; 1331 } 1332 1333 newfile1 = sock_alloc_file(sock1, flags, NULL); 1334 if (IS_ERR(newfile1)) { 1335 err = PTR_ERR(newfile1); 1336 goto out_put_unused_both; 1337 } 1338 1339 newfile2 = sock_alloc_file(sock2, flags, NULL); 1340 if (IS_ERR(newfile2)) { 1341 err = PTR_ERR(newfile2); 1342 goto out_fput_1; 1343 } 1344 1345 err = put_user(fd1, &usockvec[0]); 1346 if (err) 1347 goto out_fput_both; 1348 1349 err = put_user(fd2, &usockvec[1]); 1350 if (err) 1351 goto out_fput_both; 1352 1353 audit_fd_pair(fd1, fd2); 1354 1355 fd_install(fd1, newfile1); 1356 fd_install(fd2, newfile2); 1357 /* fd1 and fd2 may be already another descriptors. 1358 * Not kernel problem. 1359 */ 1360 1361 return 0; 1362 1363 out_fput_both: 1364 fput(newfile2); 1365 fput(newfile1); 1366 put_unused_fd(fd2); 1367 put_unused_fd(fd1); 1368 goto out; 1369 1370 out_fput_1: 1371 fput(newfile1); 1372 put_unused_fd(fd2); 1373 put_unused_fd(fd1); 1374 sock_release(sock2); 1375 goto out; 1376 1377 out_put_unused_both: 1378 put_unused_fd(fd2); 1379 out_put_unused_1: 1380 put_unused_fd(fd1); 1381 out_release_both: 1382 sock_release(sock2); 1383 out_release_1: 1384 sock_release(sock1); 1385 out: 1386 return err; 1387 } 1388 1389 /* 1390 * Bind a name to a socket. Nothing much to do here since it's 1391 * the protocol's responsibility to handle the local address. 1392 * 1393 * We move the socket address to kernel space before we call 1394 * the protocol layer (having also checked the address is ok). 1395 */ 1396 1397 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1398 { 1399 struct socket *sock; 1400 struct sockaddr_storage address; 1401 int err, fput_needed; 1402 1403 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1404 if (sock) { 1405 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1406 if (err >= 0) { 1407 err = security_socket_bind(sock, 1408 (struct sockaddr *)&address, 1409 addrlen); 1410 if (!err) 1411 err = sock->ops->bind(sock, 1412 (struct sockaddr *) 1413 &address, addrlen); 1414 } 1415 fput_light(sock->file, fput_needed); 1416 } 1417 return err; 1418 } 1419 1420 /* 1421 * Perform a listen. Basically, we allow the protocol to do anything 1422 * necessary for a listen, and if that works, we mark the socket as 1423 * ready for listening. 1424 */ 1425 1426 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1427 { 1428 struct socket *sock; 1429 int err, fput_needed; 1430 int somaxconn; 1431 1432 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1433 if (sock) { 1434 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1435 if ((unsigned int)backlog > somaxconn) 1436 backlog = somaxconn; 1437 1438 err = security_socket_listen(sock, backlog); 1439 if (!err) 1440 err = sock->ops->listen(sock, backlog); 1441 1442 fput_light(sock->file, fput_needed); 1443 } 1444 return err; 1445 } 1446 1447 /* 1448 * For accept, we attempt to create a new socket, set up the link 1449 * with the client, wake up the client, then return the new 1450 * connected fd. We collect the address of the connector in kernel 1451 * space and move it to user at the very end. This is unclean because 1452 * we open the socket then return an error. 1453 * 1454 * 1003.1g adds the ability to recvmsg() to query connection pending 1455 * status to recvmsg. We need to add that support in a way thats 1456 * clean when we restucture accept also. 1457 */ 1458 1459 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1460 int __user *, upeer_addrlen, int, flags) 1461 { 1462 struct socket *sock, *newsock; 1463 struct file *newfile; 1464 int err, len, newfd, fput_needed; 1465 struct sockaddr_storage address; 1466 1467 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1468 return -EINVAL; 1469 1470 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1471 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1472 1473 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1474 if (!sock) 1475 goto out; 1476 1477 err = -ENFILE; 1478 newsock = sock_alloc(); 1479 if (!newsock) 1480 goto out_put; 1481 1482 newsock->type = sock->type; 1483 newsock->ops = sock->ops; 1484 1485 /* 1486 * We don't need try_module_get here, as the listening socket (sock) 1487 * has the protocol module (sock->ops->owner) held. 1488 */ 1489 __module_get(newsock->ops->owner); 1490 1491 newfd = get_unused_fd_flags(flags); 1492 if (unlikely(newfd < 0)) { 1493 err = newfd; 1494 sock_release(newsock); 1495 goto out_put; 1496 } 1497 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1498 if (IS_ERR(newfile)) { 1499 err = PTR_ERR(newfile); 1500 put_unused_fd(newfd); 1501 sock_release(newsock); 1502 goto out_put; 1503 } 1504 1505 err = security_socket_accept(sock, newsock); 1506 if (err) 1507 goto out_fd; 1508 1509 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1510 if (err < 0) 1511 goto out_fd; 1512 1513 if (upeer_sockaddr) { 1514 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1515 &len, 2) < 0) { 1516 err = -ECONNABORTED; 1517 goto out_fd; 1518 } 1519 err = move_addr_to_user(&address, 1520 len, upeer_sockaddr, upeer_addrlen); 1521 if (err < 0) 1522 goto out_fd; 1523 } 1524 1525 /* File flags are not inherited via accept() unlike another OSes. */ 1526 1527 fd_install(newfd, newfile); 1528 err = newfd; 1529 1530 out_put: 1531 fput_light(sock->file, fput_needed); 1532 out: 1533 return err; 1534 out_fd: 1535 fput(newfile); 1536 put_unused_fd(newfd); 1537 goto out_put; 1538 } 1539 1540 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1541 int __user *, upeer_addrlen) 1542 { 1543 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1544 } 1545 1546 /* 1547 * Attempt to connect to a socket with the server address. The address 1548 * is in user space so we verify it is OK and move it to kernel space. 1549 * 1550 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1551 * break bindings 1552 * 1553 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1554 * other SEQPACKET protocols that take time to connect() as it doesn't 1555 * include the -EINPROGRESS status for such sockets. 1556 */ 1557 1558 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1559 int, addrlen) 1560 { 1561 struct socket *sock; 1562 struct sockaddr_storage address; 1563 int err, fput_needed; 1564 1565 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1566 if (!sock) 1567 goto out; 1568 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1569 if (err < 0) 1570 goto out_put; 1571 1572 err = 1573 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1574 if (err) 1575 goto out_put; 1576 1577 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1578 sock->file->f_flags); 1579 out_put: 1580 fput_light(sock->file, fput_needed); 1581 out: 1582 return err; 1583 } 1584 1585 /* 1586 * Get the local address ('name') of a socket object. Move the obtained 1587 * name to user space. 1588 */ 1589 1590 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1591 int __user *, usockaddr_len) 1592 { 1593 struct socket *sock; 1594 struct sockaddr_storage address; 1595 int len, err, fput_needed; 1596 1597 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1598 if (!sock) 1599 goto out; 1600 1601 err = security_socket_getsockname(sock); 1602 if (err) 1603 goto out_put; 1604 1605 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1606 if (err) 1607 goto out_put; 1608 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1609 1610 out_put: 1611 fput_light(sock->file, fput_needed); 1612 out: 1613 return err; 1614 } 1615 1616 /* 1617 * Get the remote address ('name') of a socket object. Move the obtained 1618 * name to user space. 1619 */ 1620 1621 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1622 int __user *, usockaddr_len) 1623 { 1624 struct socket *sock; 1625 struct sockaddr_storage address; 1626 int len, err, fput_needed; 1627 1628 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1629 if (sock != NULL) { 1630 err = security_socket_getpeername(sock); 1631 if (err) { 1632 fput_light(sock->file, fput_needed); 1633 return err; 1634 } 1635 1636 err = 1637 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1638 1); 1639 if (!err) 1640 err = move_addr_to_user(&address, len, usockaddr, 1641 usockaddr_len); 1642 fput_light(sock->file, fput_needed); 1643 } 1644 return err; 1645 } 1646 1647 /* 1648 * Send a datagram to a given address. We move the address into kernel 1649 * space and check the user space data area is readable before invoking 1650 * the protocol. 1651 */ 1652 1653 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1654 unsigned int, flags, struct sockaddr __user *, addr, 1655 int, addr_len) 1656 { 1657 struct socket *sock; 1658 struct sockaddr_storage address; 1659 int err; 1660 struct msghdr msg; 1661 struct iovec iov; 1662 int fput_needed; 1663 1664 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1665 if (unlikely(err)) 1666 return err; 1667 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1668 if (!sock) 1669 goto out; 1670 1671 msg.msg_name = NULL; 1672 msg.msg_control = NULL; 1673 msg.msg_controllen = 0; 1674 msg.msg_namelen = 0; 1675 if (addr) { 1676 err = move_addr_to_kernel(addr, addr_len, &address); 1677 if (err < 0) 1678 goto out_put; 1679 msg.msg_name = (struct sockaddr *)&address; 1680 msg.msg_namelen = addr_len; 1681 } 1682 if (sock->file->f_flags & O_NONBLOCK) 1683 flags |= MSG_DONTWAIT; 1684 msg.msg_flags = flags; 1685 err = sock_sendmsg(sock, &msg); 1686 1687 out_put: 1688 fput_light(sock->file, fput_needed); 1689 out: 1690 return err; 1691 } 1692 1693 /* 1694 * Send a datagram down a socket. 1695 */ 1696 1697 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1698 unsigned int, flags) 1699 { 1700 return sys_sendto(fd, buff, len, flags, NULL, 0); 1701 } 1702 1703 /* 1704 * Receive a frame from the socket and optionally record the address of the 1705 * sender. We verify the buffers are writable and if needed move the 1706 * sender address from kernel to user space. 1707 */ 1708 1709 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1710 unsigned int, flags, struct sockaddr __user *, addr, 1711 int __user *, addr_len) 1712 { 1713 struct socket *sock; 1714 struct iovec iov; 1715 struct msghdr msg; 1716 struct sockaddr_storage address; 1717 int err, err2; 1718 int fput_needed; 1719 1720 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1721 if (unlikely(err)) 1722 return err; 1723 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1724 if (!sock) 1725 goto out; 1726 1727 msg.msg_control = NULL; 1728 msg.msg_controllen = 0; 1729 /* Save some cycles and don't copy the address if not needed */ 1730 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1731 /* We assume all kernel code knows the size of sockaddr_storage */ 1732 msg.msg_namelen = 0; 1733 msg.msg_iocb = NULL; 1734 if (sock->file->f_flags & O_NONBLOCK) 1735 flags |= MSG_DONTWAIT; 1736 err = sock_recvmsg(sock, &msg, flags); 1737 1738 if (err >= 0 && addr != NULL) { 1739 err2 = move_addr_to_user(&address, 1740 msg.msg_namelen, addr, addr_len); 1741 if (err2 < 0) 1742 err = err2; 1743 } 1744 1745 fput_light(sock->file, fput_needed); 1746 out: 1747 return err; 1748 } 1749 1750 /* 1751 * Receive a datagram from a socket. 1752 */ 1753 1754 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1755 unsigned int, flags) 1756 { 1757 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1758 } 1759 1760 /* 1761 * Set a socket option. Because we don't know the option lengths we have 1762 * to pass the user mode parameter for the protocols to sort out. 1763 */ 1764 1765 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1766 char __user *, optval, int, optlen) 1767 { 1768 int err, fput_needed; 1769 struct socket *sock; 1770 1771 if (optlen < 0) 1772 return -EINVAL; 1773 1774 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1775 if (sock != NULL) { 1776 err = security_socket_setsockopt(sock, level, optname); 1777 if (err) 1778 goto out_put; 1779 1780 if (level == SOL_SOCKET) 1781 err = 1782 sock_setsockopt(sock, level, optname, optval, 1783 optlen); 1784 else 1785 err = 1786 sock->ops->setsockopt(sock, level, optname, optval, 1787 optlen); 1788 out_put: 1789 fput_light(sock->file, fput_needed); 1790 } 1791 return err; 1792 } 1793 1794 /* 1795 * Get a socket option. Because we don't know the option lengths we have 1796 * to pass a user mode parameter for the protocols to sort out. 1797 */ 1798 1799 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1800 char __user *, optval, int __user *, optlen) 1801 { 1802 int err, fput_needed; 1803 struct socket *sock; 1804 1805 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1806 if (sock != NULL) { 1807 err = security_socket_getsockopt(sock, level, optname); 1808 if (err) 1809 goto out_put; 1810 1811 if (level == SOL_SOCKET) 1812 err = 1813 sock_getsockopt(sock, level, optname, optval, 1814 optlen); 1815 else 1816 err = 1817 sock->ops->getsockopt(sock, level, optname, optval, 1818 optlen); 1819 out_put: 1820 fput_light(sock->file, fput_needed); 1821 } 1822 return err; 1823 } 1824 1825 /* 1826 * Shutdown a socket. 1827 */ 1828 1829 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1830 { 1831 int err, fput_needed; 1832 struct socket *sock; 1833 1834 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1835 if (sock != NULL) { 1836 err = security_socket_shutdown(sock, how); 1837 if (!err) 1838 err = sock->ops->shutdown(sock, how); 1839 fput_light(sock->file, fput_needed); 1840 } 1841 return err; 1842 } 1843 1844 /* A couple of helpful macros for getting the address of the 32/64 bit 1845 * fields which are the same type (int / unsigned) on our platforms. 1846 */ 1847 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1848 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1849 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1850 1851 struct used_address { 1852 struct sockaddr_storage name; 1853 unsigned int name_len; 1854 }; 1855 1856 static int copy_msghdr_from_user(struct msghdr *kmsg, 1857 struct user_msghdr __user *umsg, 1858 struct sockaddr __user **save_addr, 1859 struct iovec **iov) 1860 { 1861 struct sockaddr __user *uaddr; 1862 struct iovec __user *uiov; 1863 size_t nr_segs; 1864 ssize_t err; 1865 1866 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1867 __get_user(uaddr, &umsg->msg_name) || 1868 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1869 __get_user(uiov, &umsg->msg_iov) || 1870 __get_user(nr_segs, &umsg->msg_iovlen) || 1871 __get_user(kmsg->msg_control, &umsg->msg_control) || 1872 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1873 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1874 return -EFAULT; 1875 1876 if (!uaddr) 1877 kmsg->msg_namelen = 0; 1878 1879 if (kmsg->msg_namelen < 0) 1880 return -EINVAL; 1881 1882 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1883 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1884 1885 if (save_addr) 1886 *save_addr = uaddr; 1887 1888 if (uaddr && kmsg->msg_namelen) { 1889 if (!save_addr) { 1890 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1891 kmsg->msg_name); 1892 if (err < 0) 1893 return err; 1894 } 1895 } else { 1896 kmsg->msg_name = NULL; 1897 kmsg->msg_namelen = 0; 1898 } 1899 1900 if (nr_segs > UIO_MAXIOV) 1901 return -EMSGSIZE; 1902 1903 kmsg->msg_iocb = NULL; 1904 1905 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1906 UIO_FASTIOV, iov, &kmsg->msg_iter); 1907 } 1908 1909 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1910 struct msghdr *msg_sys, unsigned int flags, 1911 struct used_address *used_address, 1912 unsigned int allowed_msghdr_flags) 1913 { 1914 struct compat_msghdr __user *msg_compat = 1915 (struct compat_msghdr __user *)msg; 1916 struct sockaddr_storage address; 1917 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1918 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1919 __aligned(sizeof(__kernel_size_t)); 1920 /* 20 is size of ipv6_pktinfo */ 1921 unsigned char *ctl_buf = ctl; 1922 int ctl_len; 1923 ssize_t err; 1924 1925 msg_sys->msg_name = &address; 1926 1927 if (MSG_CMSG_COMPAT & flags) 1928 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1929 else 1930 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1931 if (err < 0) 1932 return err; 1933 1934 err = -ENOBUFS; 1935 1936 if (msg_sys->msg_controllen > INT_MAX) 1937 goto out_freeiov; 1938 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1939 ctl_len = msg_sys->msg_controllen; 1940 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1941 err = 1942 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1943 sizeof(ctl)); 1944 if (err) 1945 goto out_freeiov; 1946 ctl_buf = msg_sys->msg_control; 1947 ctl_len = msg_sys->msg_controllen; 1948 } else if (ctl_len) { 1949 BUILD_BUG_ON(sizeof(struct cmsghdr) != 1950 CMSG_ALIGN(sizeof(struct cmsghdr))); 1951 if (ctl_len > sizeof(ctl)) { 1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1953 if (ctl_buf == NULL) 1954 goto out_freeiov; 1955 } 1956 err = -EFAULT; 1957 /* 1958 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1960 * checking falls down on this. 1961 */ 1962 if (copy_from_user(ctl_buf, 1963 (void __user __force *)msg_sys->msg_control, 1964 ctl_len)) 1965 goto out_freectl; 1966 msg_sys->msg_control = ctl_buf; 1967 } 1968 msg_sys->msg_flags = flags; 1969 1970 if (sock->file->f_flags & O_NONBLOCK) 1971 msg_sys->msg_flags |= MSG_DONTWAIT; 1972 /* 1973 * If this is sendmmsg() and current destination address is same as 1974 * previously succeeded address, omit asking LSM's decision. 1975 * used_address->name_len is initialized to UINT_MAX so that the first 1976 * destination address never matches. 1977 */ 1978 if (used_address && msg_sys->msg_name && 1979 used_address->name_len == msg_sys->msg_namelen && 1980 !memcmp(&used_address->name, msg_sys->msg_name, 1981 used_address->name_len)) { 1982 err = sock_sendmsg_nosec(sock, msg_sys); 1983 goto out_freectl; 1984 } 1985 err = sock_sendmsg(sock, msg_sys); 1986 /* 1987 * If this is sendmmsg() and sending to current destination address was 1988 * successful, remember it. 1989 */ 1990 if (used_address && err >= 0) { 1991 used_address->name_len = msg_sys->msg_namelen; 1992 if (msg_sys->msg_name) 1993 memcpy(&used_address->name, msg_sys->msg_name, 1994 used_address->name_len); 1995 } 1996 1997 out_freectl: 1998 if (ctl_buf != ctl) 1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2000 out_freeiov: 2001 kfree(iov); 2002 return err; 2003 } 2004 2005 /* 2006 * BSD sendmsg interface 2007 */ 2008 2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2010 { 2011 int fput_needed, err; 2012 struct msghdr msg_sys; 2013 struct socket *sock; 2014 2015 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2016 if (!sock) 2017 goto out; 2018 2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2020 2021 fput_light(sock->file, fput_needed); 2022 out: 2023 return err; 2024 } 2025 2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2027 { 2028 if (flags & MSG_CMSG_COMPAT) 2029 return -EINVAL; 2030 return __sys_sendmsg(fd, msg, flags); 2031 } 2032 2033 /* 2034 * Linux sendmmsg interface 2035 */ 2036 2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2038 unsigned int flags) 2039 { 2040 int fput_needed, err, datagrams; 2041 struct socket *sock; 2042 struct mmsghdr __user *entry; 2043 struct compat_mmsghdr __user *compat_entry; 2044 struct msghdr msg_sys; 2045 struct used_address used_address; 2046 unsigned int oflags = flags; 2047 2048 if (vlen > UIO_MAXIOV) 2049 vlen = UIO_MAXIOV; 2050 2051 datagrams = 0; 2052 2053 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2054 if (!sock) 2055 return err; 2056 2057 used_address.name_len = UINT_MAX; 2058 entry = mmsg; 2059 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2060 err = 0; 2061 flags |= MSG_BATCH; 2062 2063 while (datagrams < vlen) { 2064 if (datagrams == vlen - 1) 2065 flags = oflags; 2066 2067 if (MSG_CMSG_COMPAT & flags) { 2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2069 &msg_sys, flags, &used_address, MSG_EOR); 2070 if (err < 0) 2071 break; 2072 err = __put_user(err, &compat_entry->msg_len); 2073 ++compat_entry; 2074 } else { 2075 err = ___sys_sendmsg(sock, 2076 (struct user_msghdr __user *)entry, 2077 &msg_sys, flags, &used_address, MSG_EOR); 2078 if (err < 0) 2079 break; 2080 err = put_user(err, &entry->msg_len); 2081 ++entry; 2082 } 2083 2084 if (err) 2085 break; 2086 ++datagrams; 2087 if (msg_data_left(&msg_sys)) 2088 break; 2089 cond_resched(); 2090 } 2091 2092 fput_light(sock->file, fput_needed); 2093 2094 /* We only return an error if no datagrams were able to be sent */ 2095 if (datagrams != 0) 2096 return datagrams; 2097 2098 return err; 2099 } 2100 2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2102 unsigned int, vlen, unsigned int, flags) 2103 { 2104 if (flags & MSG_CMSG_COMPAT) 2105 return -EINVAL; 2106 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2107 } 2108 2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2110 struct msghdr *msg_sys, unsigned int flags, int nosec) 2111 { 2112 struct compat_msghdr __user *msg_compat = 2113 (struct compat_msghdr __user *)msg; 2114 struct iovec iovstack[UIO_FASTIOV]; 2115 struct iovec *iov = iovstack; 2116 unsigned long cmsg_ptr; 2117 int len; 2118 ssize_t err; 2119 2120 /* kernel mode address */ 2121 struct sockaddr_storage addr; 2122 2123 /* user mode address pointers */ 2124 struct sockaddr __user *uaddr; 2125 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2126 2127 msg_sys->msg_name = &addr; 2128 2129 if (MSG_CMSG_COMPAT & flags) 2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2131 else 2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2133 if (err < 0) 2134 return err; 2135 2136 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2138 2139 /* We assume all kernel code knows the size of sockaddr_storage */ 2140 msg_sys->msg_namelen = 0; 2141 2142 if (sock->file->f_flags & O_NONBLOCK) 2143 flags |= MSG_DONTWAIT; 2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2145 if (err < 0) 2146 goto out_freeiov; 2147 len = err; 2148 2149 if (uaddr != NULL) { 2150 err = move_addr_to_user(&addr, 2151 msg_sys->msg_namelen, uaddr, 2152 uaddr_len); 2153 if (err < 0) 2154 goto out_freeiov; 2155 } 2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2157 COMPAT_FLAGS(msg)); 2158 if (err) 2159 goto out_freeiov; 2160 if (MSG_CMSG_COMPAT & flags) 2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2162 &msg_compat->msg_controllen); 2163 else 2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2165 &msg->msg_controllen); 2166 if (err) 2167 goto out_freeiov; 2168 err = len; 2169 2170 out_freeiov: 2171 kfree(iov); 2172 return err; 2173 } 2174 2175 /* 2176 * BSD recvmsg interface 2177 */ 2178 2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2180 { 2181 int fput_needed, err; 2182 struct msghdr msg_sys; 2183 struct socket *sock; 2184 2185 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2186 if (!sock) 2187 goto out; 2188 2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2190 2191 fput_light(sock->file, fput_needed); 2192 out: 2193 return err; 2194 } 2195 2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2197 unsigned int, flags) 2198 { 2199 if (flags & MSG_CMSG_COMPAT) 2200 return -EINVAL; 2201 return __sys_recvmsg(fd, msg, flags); 2202 } 2203 2204 /* 2205 * Linux recvmmsg interface 2206 */ 2207 2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2209 unsigned int flags, struct timespec *timeout) 2210 { 2211 int fput_needed, err, datagrams; 2212 struct socket *sock; 2213 struct mmsghdr __user *entry; 2214 struct compat_mmsghdr __user *compat_entry; 2215 struct msghdr msg_sys; 2216 struct timespec64 end_time; 2217 struct timespec64 timeout64; 2218 2219 if (timeout && 2220 poll_select_set_timeout(&end_time, timeout->tv_sec, 2221 timeout->tv_nsec)) 2222 return -EINVAL; 2223 2224 datagrams = 0; 2225 2226 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2227 if (!sock) 2228 return err; 2229 2230 err = sock_error(sock->sk); 2231 if (err) { 2232 datagrams = err; 2233 goto out_put; 2234 } 2235 2236 entry = mmsg; 2237 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2238 2239 while (datagrams < vlen) { 2240 /* 2241 * No need to ask LSM for more than the first datagram. 2242 */ 2243 if (MSG_CMSG_COMPAT & flags) { 2244 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2245 &msg_sys, flags & ~MSG_WAITFORONE, 2246 datagrams); 2247 if (err < 0) 2248 break; 2249 err = __put_user(err, &compat_entry->msg_len); 2250 ++compat_entry; 2251 } else { 2252 err = ___sys_recvmsg(sock, 2253 (struct user_msghdr __user *)entry, 2254 &msg_sys, flags & ~MSG_WAITFORONE, 2255 datagrams); 2256 if (err < 0) 2257 break; 2258 err = put_user(err, &entry->msg_len); 2259 ++entry; 2260 } 2261 2262 if (err) 2263 break; 2264 ++datagrams; 2265 2266 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2267 if (flags & MSG_WAITFORONE) 2268 flags |= MSG_DONTWAIT; 2269 2270 if (timeout) { 2271 ktime_get_ts64(&timeout64); 2272 *timeout = timespec64_to_timespec( 2273 timespec64_sub(end_time, timeout64)); 2274 if (timeout->tv_sec < 0) { 2275 timeout->tv_sec = timeout->tv_nsec = 0; 2276 break; 2277 } 2278 2279 /* Timeout, return less than vlen datagrams */ 2280 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2281 break; 2282 } 2283 2284 /* Out of band data, return right away */ 2285 if (msg_sys.msg_flags & MSG_OOB) 2286 break; 2287 cond_resched(); 2288 } 2289 2290 if (err == 0) 2291 goto out_put; 2292 2293 if (datagrams == 0) { 2294 datagrams = err; 2295 goto out_put; 2296 } 2297 2298 /* 2299 * We may return less entries than requested (vlen) if the 2300 * sock is non block and there aren't enough datagrams... 2301 */ 2302 if (err != -EAGAIN) { 2303 /* 2304 * ... or if recvmsg returns an error after we 2305 * received some datagrams, where we record the 2306 * error to return on the next call or if the 2307 * app asks about it using getsockopt(SO_ERROR). 2308 */ 2309 sock->sk->sk_err = -err; 2310 } 2311 out_put: 2312 fput_light(sock->file, fput_needed); 2313 2314 return datagrams; 2315 } 2316 2317 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2318 unsigned int, vlen, unsigned int, flags, 2319 struct timespec __user *, timeout) 2320 { 2321 int datagrams; 2322 struct timespec timeout_sys; 2323 2324 if (flags & MSG_CMSG_COMPAT) 2325 return -EINVAL; 2326 2327 if (!timeout) 2328 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2329 2330 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2331 return -EFAULT; 2332 2333 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2334 2335 if (datagrams > 0 && 2336 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2337 datagrams = -EFAULT; 2338 2339 return datagrams; 2340 } 2341 2342 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2343 /* Argument list sizes for sys_socketcall */ 2344 #define AL(x) ((x) * sizeof(unsigned long)) 2345 static const unsigned char nargs[21] = { 2346 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2347 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2348 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2349 AL(4), AL(5), AL(4) 2350 }; 2351 2352 #undef AL 2353 2354 /* 2355 * System call vectors. 2356 * 2357 * Argument checking cleaned up. Saved 20% in size. 2358 * This function doesn't need to set the kernel lock because 2359 * it is set by the callees. 2360 */ 2361 2362 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2363 { 2364 unsigned long a[AUDITSC_ARGS]; 2365 unsigned long a0, a1; 2366 int err; 2367 unsigned int len; 2368 2369 if (call < 1 || call > SYS_SENDMMSG) 2370 return -EINVAL; 2371 2372 len = nargs[call]; 2373 if (len > sizeof(a)) 2374 return -EINVAL; 2375 2376 /* copy_from_user should be SMP safe. */ 2377 if (copy_from_user(a, args, len)) 2378 return -EFAULT; 2379 2380 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2381 if (err) 2382 return err; 2383 2384 a0 = a[0]; 2385 a1 = a[1]; 2386 2387 switch (call) { 2388 case SYS_SOCKET: 2389 err = sys_socket(a0, a1, a[2]); 2390 break; 2391 case SYS_BIND: 2392 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2393 break; 2394 case SYS_CONNECT: 2395 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2396 break; 2397 case SYS_LISTEN: 2398 err = sys_listen(a0, a1); 2399 break; 2400 case SYS_ACCEPT: 2401 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2402 (int __user *)a[2], 0); 2403 break; 2404 case SYS_GETSOCKNAME: 2405 err = 2406 sys_getsockname(a0, (struct sockaddr __user *)a1, 2407 (int __user *)a[2]); 2408 break; 2409 case SYS_GETPEERNAME: 2410 err = 2411 sys_getpeername(a0, (struct sockaddr __user *)a1, 2412 (int __user *)a[2]); 2413 break; 2414 case SYS_SOCKETPAIR: 2415 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2416 break; 2417 case SYS_SEND: 2418 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2419 break; 2420 case SYS_SENDTO: 2421 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2422 (struct sockaddr __user *)a[4], a[5]); 2423 break; 2424 case SYS_RECV: 2425 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2426 break; 2427 case SYS_RECVFROM: 2428 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2429 (struct sockaddr __user *)a[4], 2430 (int __user *)a[5]); 2431 break; 2432 case SYS_SHUTDOWN: 2433 err = sys_shutdown(a0, a1); 2434 break; 2435 case SYS_SETSOCKOPT: 2436 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2437 break; 2438 case SYS_GETSOCKOPT: 2439 err = 2440 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2441 (int __user *)a[4]); 2442 break; 2443 case SYS_SENDMSG: 2444 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2445 break; 2446 case SYS_SENDMMSG: 2447 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2448 break; 2449 case SYS_RECVMSG: 2450 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2451 break; 2452 case SYS_RECVMMSG: 2453 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2454 (struct timespec __user *)a[4]); 2455 break; 2456 case SYS_ACCEPT4: 2457 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2458 (int __user *)a[2], a[3]); 2459 break; 2460 default: 2461 err = -EINVAL; 2462 break; 2463 } 2464 return err; 2465 } 2466 2467 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2468 2469 /** 2470 * sock_register - add a socket protocol handler 2471 * @ops: description of protocol 2472 * 2473 * This function is called by a protocol handler that wants to 2474 * advertise its address family, and have it linked into the 2475 * socket interface. The value ops->family corresponds to the 2476 * socket system call protocol family. 2477 */ 2478 int sock_register(const struct net_proto_family *ops) 2479 { 2480 int err; 2481 2482 if (ops->family >= NPROTO) { 2483 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2484 return -ENOBUFS; 2485 } 2486 2487 spin_lock(&net_family_lock); 2488 if (rcu_dereference_protected(net_families[ops->family], 2489 lockdep_is_held(&net_family_lock))) 2490 err = -EEXIST; 2491 else { 2492 rcu_assign_pointer(net_families[ops->family], ops); 2493 err = 0; 2494 } 2495 spin_unlock(&net_family_lock); 2496 2497 pr_info("NET: Registered protocol family %d\n", ops->family); 2498 return err; 2499 } 2500 EXPORT_SYMBOL(sock_register); 2501 2502 /** 2503 * sock_unregister - remove a protocol handler 2504 * @family: protocol family to remove 2505 * 2506 * This function is called by a protocol handler that wants to 2507 * remove its address family, and have it unlinked from the 2508 * new socket creation. 2509 * 2510 * If protocol handler is a module, then it can use module reference 2511 * counts to protect against new references. If protocol handler is not 2512 * a module then it needs to provide its own protection in 2513 * the ops->create routine. 2514 */ 2515 void sock_unregister(int family) 2516 { 2517 BUG_ON(family < 0 || family >= NPROTO); 2518 2519 spin_lock(&net_family_lock); 2520 RCU_INIT_POINTER(net_families[family], NULL); 2521 spin_unlock(&net_family_lock); 2522 2523 synchronize_rcu(); 2524 2525 pr_info("NET: Unregistered protocol family %d\n", family); 2526 } 2527 EXPORT_SYMBOL(sock_unregister); 2528 2529 static int __init sock_init(void) 2530 { 2531 int err; 2532 /* 2533 * Initialize the network sysctl infrastructure. 2534 */ 2535 err = net_sysctl_init(); 2536 if (err) 2537 goto out; 2538 2539 /* 2540 * Initialize skbuff SLAB cache 2541 */ 2542 skb_init(); 2543 2544 /* 2545 * Initialize the protocols module. 2546 */ 2547 2548 init_inodecache(); 2549 2550 err = register_filesystem(&sock_fs_type); 2551 if (err) 2552 goto out_fs; 2553 sock_mnt = kern_mount(&sock_fs_type); 2554 if (IS_ERR(sock_mnt)) { 2555 err = PTR_ERR(sock_mnt); 2556 goto out_mount; 2557 } 2558 2559 /* The real protocol initialization is performed in later initcalls. 2560 */ 2561 2562 #ifdef CONFIG_NETFILTER 2563 err = netfilter_init(); 2564 if (err) 2565 goto out; 2566 #endif 2567 2568 ptp_classifier_init(); 2569 2570 out: 2571 return err; 2572 2573 out_mount: 2574 unregister_filesystem(&sock_fs_type); 2575 out_fs: 2576 goto out; 2577 } 2578 2579 core_initcall(sock_init); /* early initcall */ 2580 2581 #ifdef CONFIG_PROC_FS 2582 void socket_seq_show(struct seq_file *seq) 2583 { 2584 int cpu; 2585 int counter = 0; 2586 2587 for_each_possible_cpu(cpu) 2588 counter += per_cpu(sockets_in_use, cpu); 2589 2590 /* It can be negative, by the way. 8) */ 2591 if (counter < 0) 2592 counter = 0; 2593 2594 seq_printf(seq, "sockets: used %d\n", counter); 2595 } 2596 #endif /* CONFIG_PROC_FS */ 2597 2598 #ifdef CONFIG_COMPAT 2599 static int do_siocgstamp(struct net *net, struct socket *sock, 2600 unsigned int cmd, void __user *up) 2601 { 2602 mm_segment_t old_fs = get_fs(); 2603 struct timeval ktv; 2604 int err; 2605 2606 set_fs(KERNEL_DS); 2607 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2608 set_fs(old_fs); 2609 if (!err) 2610 err = compat_put_timeval(&ktv, up); 2611 2612 return err; 2613 } 2614 2615 static int do_siocgstampns(struct net *net, struct socket *sock, 2616 unsigned int cmd, void __user *up) 2617 { 2618 mm_segment_t old_fs = get_fs(); 2619 struct timespec kts; 2620 int err; 2621 2622 set_fs(KERNEL_DS); 2623 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2624 set_fs(old_fs); 2625 if (!err) 2626 err = compat_put_timespec(&kts, up); 2627 2628 return err; 2629 } 2630 2631 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2632 { 2633 struct ifreq __user *uifr; 2634 int err; 2635 2636 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2637 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2638 return -EFAULT; 2639 2640 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2641 if (err) 2642 return err; 2643 2644 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2645 return -EFAULT; 2646 2647 return 0; 2648 } 2649 2650 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2651 { 2652 struct compat_ifconf ifc32; 2653 struct ifconf ifc; 2654 struct ifconf __user *uifc; 2655 struct compat_ifreq __user *ifr32; 2656 struct ifreq __user *ifr; 2657 unsigned int i, j; 2658 int err; 2659 2660 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2661 return -EFAULT; 2662 2663 memset(&ifc, 0, sizeof(ifc)); 2664 if (ifc32.ifcbuf == 0) { 2665 ifc32.ifc_len = 0; 2666 ifc.ifc_len = 0; 2667 ifc.ifc_req = NULL; 2668 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2669 } else { 2670 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2671 sizeof(struct ifreq); 2672 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2673 ifc.ifc_len = len; 2674 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2675 ifr32 = compat_ptr(ifc32.ifcbuf); 2676 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2677 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2678 return -EFAULT; 2679 ifr++; 2680 ifr32++; 2681 } 2682 } 2683 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2684 return -EFAULT; 2685 2686 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2687 if (err) 2688 return err; 2689 2690 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2691 return -EFAULT; 2692 2693 ifr = ifc.ifc_req; 2694 ifr32 = compat_ptr(ifc32.ifcbuf); 2695 for (i = 0, j = 0; 2696 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2697 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2698 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2699 return -EFAULT; 2700 ifr32++; 2701 ifr++; 2702 } 2703 2704 if (ifc32.ifcbuf == 0) { 2705 /* Translate from 64-bit structure multiple to 2706 * a 32-bit one. 2707 */ 2708 i = ifc.ifc_len; 2709 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2710 ifc32.ifc_len = i; 2711 } else { 2712 ifc32.ifc_len = i; 2713 } 2714 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2715 return -EFAULT; 2716 2717 return 0; 2718 } 2719 2720 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2721 { 2722 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2723 bool convert_in = false, convert_out = false; 2724 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2725 struct ethtool_rxnfc __user *rxnfc; 2726 struct ifreq __user *ifr; 2727 u32 rule_cnt = 0, actual_rule_cnt; 2728 u32 ethcmd; 2729 u32 data; 2730 int ret; 2731 2732 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2733 return -EFAULT; 2734 2735 compat_rxnfc = compat_ptr(data); 2736 2737 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2738 return -EFAULT; 2739 2740 /* Most ethtool structures are defined without padding. 2741 * Unfortunately struct ethtool_rxnfc is an exception. 2742 */ 2743 switch (ethcmd) { 2744 default: 2745 break; 2746 case ETHTOOL_GRXCLSRLALL: 2747 /* Buffer size is variable */ 2748 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2749 return -EFAULT; 2750 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2751 return -ENOMEM; 2752 buf_size += rule_cnt * sizeof(u32); 2753 /* fall through */ 2754 case ETHTOOL_GRXRINGS: 2755 case ETHTOOL_GRXCLSRLCNT: 2756 case ETHTOOL_GRXCLSRULE: 2757 case ETHTOOL_SRXCLSRLINS: 2758 convert_out = true; 2759 /* fall through */ 2760 case ETHTOOL_SRXCLSRLDEL: 2761 buf_size += sizeof(struct ethtool_rxnfc); 2762 convert_in = true; 2763 break; 2764 } 2765 2766 ifr = compat_alloc_user_space(buf_size); 2767 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2768 2769 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2770 return -EFAULT; 2771 2772 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2773 &ifr->ifr_ifru.ifru_data)) 2774 return -EFAULT; 2775 2776 if (convert_in) { 2777 /* We expect there to be holes between fs.m_ext and 2778 * fs.ring_cookie and at the end of fs, but nowhere else. 2779 */ 2780 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2781 sizeof(compat_rxnfc->fs.m_ext) != 2782 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2783 sizeof(rxnfc->fs.m_ext)); 2784 BUILD_BUG_ON( 2785 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2786 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2787 offsetof(struct ethtool_rxnfc, fs.location) - 2788 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2789 2790 if (copy_in_user(rxnfc, compat_rxnfc, 2791 (void __user *)(&rxnfc->fs.m_ext + 1) - 2792 (void __user *)rxnfc) || 2793 copy_in_user(&rxnfc->fs.ring_cookie, 2794 &compat_rxnfc->fs.ring_cookie, 2795 (void __user *)(&rxnfc->fs.location + 1) - 2796 (void __user *)&rxnfc->fs.ring_cookie) || 2797 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2798 sizeof(rxnfc->rule_cnt))) 2799 return -EFAULT; 2800 } 2801 2802 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2803 if (ret) 2804 return ret; 2805 2806 if (convert_out) { 2807 if (copy_in_user(compat_rxnfc, rxnfc, 2808 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2809 (const void __user *)rxnfc) || 2810 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2811 &rxnfc->fs.ring_cookie, 2812 (const void __user *)(&rxnfc->fs.location + 1) - 2813 (const void __user *)&rxnfc->fs.ring_cookie) || 2814 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2815 sizeof(rxnfc->rule_cnt))) 2816 return -EFAULT; 2817 2818 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2819 /* As an optimisation, we only copy the actual 2820 * number of rules that the underlying 2821 * function returned. Since Mallory might 2822 * change the rule count in user memory, we 2823 * check that it is less than the rule count 2824 * originally given (as the user buffer size), 2825 * which has been range-checked. 2826 */ 2827 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2828 return -EFAULT; 2829 if (actual_rule_cnt < rule_cnt) 2830 rule_cnt = actual_rule_cnt; 2831 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2832 &rxnfc->rule_locs[0], 2833 rule_cnt * sizeof(u32))) 2834 return -EFAULT; 2835 } 2836 } 2837 2838 return 0; 2839 } 2840 2841 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2842 { 2843 void __user *uptr; 2844 compat_uptr_t uptr32; 2845 struct ifreq __user *uifr; 2846 2847 uifr = compat_alloc_user_space(sizeof(*uifr)); 2848 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2849 return -EFAULT; 2850 2851 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2852 return -EFAULT; 2853 2854 uptr = compat_ptr(uptr32); 2855 2856 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2857 return -EFAULT; 2858 2859 return dev_ioctl(net, SIOCWANDEV, uifr); 2860 } 2861 2862 static int bond_ioctl(struct net *net, unsigned int cmd, 2863 struct compat_ifreq __user *ifr32) 2864 { 2865 struct ifreq kifr; 2866 mm_segment_t old_fs; 2867 int err; 2868 2869 switch (cmd) { 2870 case SIOCBONDENSLAVE: 2871 case SIOCBONDRELEASE: 2872 case SIOCBONDSETHWADDR: 2873 case SIOCBONDCHANGEACTIVE: 2874 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2875 return -EFAULT; 2876 2877 old_fs = get_fs(); 2878 set_fs(KERNEL_DS); 2879 err = dev_ioctl(net, cmd, 2880 (struct ifreq __user __force *) &kifr); 2881 set_fs(old_fs); 2882 2883 return err; 2884 default: 2885 return -ENOIOCTLCMD; 2886 } 2887 } 2888 2889 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2890 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2891 struct compat_ifreq __user *u_ifreq32) 2892 { 2893 struct ifreq __user *u_ifreq64; 2894 char tmp_buf[IFNAMSIZ]; 2895 void __user *data64; 2896 u32 data32; 2897 2898 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2899 IFNAMSIZ)) 2900 return -EFAULT; 2901 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2902 return -EFAULT; 2903 data64 = compat_ptr(data32); 2904 2905 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2906 2907 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2908 IFNAMSIZ)) 2909 return -EFAULT; 2910 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2911 return -EFAULT; 2912 2913 return dev_ioctl(net, cmd, u_ifreq64); 2914 } 2915 2916 static int dev_ifsioc(struct net *net, struct socket *sock, 2917 unsigned int cmd, struct compat_ifreq __user *uifr32) 2918 { 2919 struct ifreq __user *uifr; 2920 int err; 2921 2922 uifr = compat_alloc_user_space(sizeof(*uifr)); 2923 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2924 return -EFAULT; 2925 2926 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2927 2928 if (!err) { 2929 switch (cmd) { 2930 case SIOCGIFFLAGS: 2931 case SIOCGIFMETRIC: 2932 case SIOCGIFMTU: 2933 case SIOCGIFMEM: 2934 case SIOCGIFHWADDR: 2935 case SIOCGIFINDEX: 2936 case SIOCGIFADDR: 2937 case SIOCGIFBRDADDR: 2938 case SIOCGIFDSTADDR: 2939 case SIOCGIFNETMASK: 2940 case SIOCGIFPFLAGS: 2941 case SIOCGIFTXQLEN: 2942 case SIOCGMIIPHY: 2943 case SIOCGMIIREG: 2944 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2945 err = -EFAULT; 2946 break; 2947 } 2948 } 2949 return err; 2950 } 2951 2952 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2953 struct compat_ifreq __user *uifr32) 2954 { 2955 struct ifreq ifr; 2956 struct compat_ifmap __user *uifmap32; 2957 mm_segment_t old_fs; 2958 int err; 2959 2960 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2961 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2962 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2963 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2964 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2965 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2966 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2967 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2968 if (err) 2969 return -EFAULT; 2970 2971 old_fs = get_fs(); 2972 set_fs(KERNEL_DS); 2973 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2974 set_fs(old_fs); 2975 2976 if (cmd == SIOCGIFMAP && !err) { 2977 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2978 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2979 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2980 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2981 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2982 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2983 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2984 if (err) 2985 err = -EFAULT; 2986 } 2987 return err; 2988 } 2989 2990 struct rtentry32 { 2991 u32 rt_pad1; 2992 struct sockaddr rt_dst; /* target address */ 2993 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2994 struct sockaddr rt_genmask; /* target network mask (IP) */ 2995 unsigned short rt_flags; 2996 short rt_pad2; 2997 u32 rt_pad3; 2998 unsigned char rt_tos; 2999 unsigned char rt_class; 3000 short rt_pad4; 3001 short rt_metric; /* +1 for binary compatibility! */ 3002 /* char * */ u32 rt_dev; /* forcing the device at add */ 3003 u32 rt_mtu; /* per route MTU/Window */ 3004 u32 rt_window; /* Window clamping */ 3005 unsigned short rt_irtt; /* Initial RTT */ 3006 }; 3007 3008 struct in6_rtmsg32 { 3009 struct in6_addr rtmsg_dst; 3010 struct in6_addr rtmsg_src; 3011 struct in6_addr rtmsg_gateway; 3012 u32 rtmsg_type; 3013 u16 rtmsg_dst_len; 3014 u16 rtmsg_src_len; 3015 u32 rtmsg_metric; 3016 u32 rtmsg_info; 3017 u32 rtmsg_flags; 3018 s32 rtmsg_ifindex; 3019 }; 3020 3021 static int routing_ioctl(struct net *net, struct socket *sock, 3022 unsigned int cmd, void __user *argp) 3023 { 3024 int ret; 3025 void *r = NULL; 3026 struct in6_rtmsg r6; 3027 struct rtentry r4; 3028 char devname[16]; 3029 u32 rtdev; 3030 mm_segment_t old_fs = get_fs(); 3031 3032 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3033 struct in6_rtmsg32 __user *ur6 = argp; 3034 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3035 3 * sizeof(struct in6_addr)); 3036 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3037 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3038 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3039 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3040 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3041 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3042 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3043 3044 r = (void *) &r6; 3045 } else { /* ipv4 */ 3046 struct rtentry32 __user *ur4 = argp; 3047 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3048 3 * sizeof(struct sockaddr)); 3049 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3050 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3051 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3052 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3053 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3054 ret |= get_user(rtdev, &(ur4->rt_dev)); 3055 if (rtdev) { 3056 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3057 r4.rt_dev = (char __user __force *)devname; 3058 devname[15] = 0; 3059 } else 3060 r4.rt_dev = NULL; 3061 3062 r = (void *) &r4; 3063 } 3064 3065 if (ret) { 3066 ret = -EFAULT; 3067 goto out; 3068 } 3069 3070 set_fs(KERNEL_DS); 3071 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3072 set_fs(old_fs); 3073 3074 out: 3075 return ret; 3076 } 3077 3078 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3079 * for some operations; this forces use of the newer bridge-utils that 3080 * use compatible ioctls 3081 */ 3082 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3083 { 3084 compat_ulong_t tmp; 3085 3086 if (get_user(tmp, argp)) 3087 return -EFAULT; 3088 if (tmp == BRCTL_GET_VERSION) 3089 return BRCTL_VERSION + 1; 3090 return -EINVAL; 3091 } 3092 3093 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3094 unsigned int cmd, unsigned long arg) 3095 { 3096 void __user *argp = compat_ptr(arg); 3097 struct sock *sk = sock->sk; 3098 struct net *net = sock_net(sk); 3099 3100 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3101 return compat_ifr_data_ioctl(net, cmd, argp); 3102 3103 switch (cmd) { 3104 case SIOCSIFBR: 3105 case SIOCGIFBR: 3106 return old_bridge_ioctl(argp); 3107 case SIOCGIFNAME: 3108 return dev_ifname32(net, argp); 3109 case SIOCGIFCONF: 3110 return dev_ifconf(net, argp); 3111 case SIOCETHTOOL: 3112 return ethtool_ioctl(net, argp); 3113 case SIOCWANDEV: 3114 return compat_siocwandev(net, argp); 3115 case SIOCGIFMAP: 3116 case SIOCSIFMAP: 3117 return compat_sioc_ifmap(net, cmd, argp); 3118 case SIOCBONDENSLAVE: 3119 case SIOCBONDRELEASE: 3120 case SIOCBONDSETHWADDR: 3121 case SIOCBONDCHANGEACTIVE: 3122 return bond_ioctl(net, cmd, argp); 3123 case SIOCADDRT: 3124 case SIOCDELRT: 3125 return routing_ioctl(net, sock, cmd, argp); 3126 case SIOCGSTAMP: 3127 return do_siocgstamp(net, sock, cmd, argp); 3128 case SIOCGSTAMPNS: 3129 return do_siocgstampns(net, sock, cmd, argp); 3130 case SIOCBONDSLAVEINFOQUERY: 3131 case SIOCBONDINFOQUERY: 3132 case SIOCSHWTSTAMP: 3133 case SIOCGHWTSTAMP: 3134 return compat_ifr_data_ioctl(net, cmd, argp); 3135 3136 case FIOSETOWN: 3137 case SIOCSPGRP: 3138 case FIOGETOWN: 3139 case SIOCGPGRP: 3140 case SIOCBRADDBR: 3141 case SIOCBRDELBR: 3142 case SIOCGIFVLAN: 3143 case SIOCSIFVLAN: 3144 case SIOCADDDLCI: 3145 case SIOCDELDLCI: 3146 case SIOCGSKNS: 3147 return sock_ioctl(file, cmd, arg); 3148 3149 case SIOCGIFFLAGS: 3150 case SIOCSIFFLAGS: 3151 case SIOCGIFMETRIC: 3152 case SIOCSIFMETRIC: 3153 case SIOCGIFMTU: 3154 case SIOCSIFMTU: 3155 case SIOCGIFMEM: 3156 case SIOCSIFMEM: 3157 case SIOCGIFHWADDR: 3158 case SIOCSIFHWADDR: 3159 case SIOCADDMULTI: 3160 case SIOCDELMULTI: 3161 case SIOCGIFINDEX: 3162 case SIOCGIFADDR: 3163 case SIOCSIFADDR: 3164 case SIOCSIFHWBROADCAST: 3165 case SIOCDIFADDR: 3166 case SIOCGIFBRDADDR: 3167 case SIOCSIFBRDADDR: 3168 case SIOCGIFDSTADDR: 3169 case SIOCSIFDSTADDR: 3170 case SIOCGIFNETMASK: 3171 case SIOCSIFNETMASK: 3172 case SIOCSIFPFLAGS: 3173 case SIOCGIFPFLAGS: 3174 case SIOCGIFTXQLEN: 3175 case SIOCSIFTXQLEN: 3176 case SIOCBRADDIF: 3177 case SIOCBRDELIF: 3178 case SIOCSIFNAME: 3179 case SIOCGMIIPHY: 3180 case SIOCGMIIREG: 3181 case SIOCSMIIREG: 3182 return dev_ifsioc(net, sock, cmd, argp); 3183 3184 case SIOCSARP: 3185 case SIOCGARP: 3186 case SIOCDARP: 3187 case SIOCATMARK: 3188 return sock_do_ioctl(net, sock, cmd, arg); 3189 } 3190 3191 return -ENOIOCTLCMD; 3192 } 3193 3194 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3195 unsigned long arg) 3196 { 3197 struct socket *sock = file->private_data; 3198 int ret = -ENOIOCTLCMD; 3199 struct sock *sk; 3200 struct net *net; 3201 3202 sk = sock->sk; 3203 net = sock_net(sk); 3204 3205 if (sock->ops->compat_ioctl) 3206 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3207 3208 if (ret == -ENOIOCTLCMD && 3209 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3210 ret = compat_wext_handle_ioctl(net, cmd, arg); 3211 3212 if (ret == -ENOIOCTLCMD) 3213 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3214 3215 return ret; 3216 } 3217 #endif 3218 3219 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3220 { 3221 return sock->ops->bind(sock, addr, addrlen); 3222 } 3223 EXPORT_SYMBOL(kernel_bind); 3224 3225 int kernel_listen(struct socket *sock, int backlog) 3226 { 3227 return sock->ops->listen(sock, backlog); 3228 } 3229 EXPORT_SYMBOL(kernel_listen); 3230 3231 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3232 { 3233 struct sock *sk = sock->sk; 3234 int err; 3235 3236 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3237 newsock); 3238 if (err < 0) 3239 goto done; 3240 3241 err = sock->ops->accept(sock, *newsock, flags); 3242 if (err < 0) { 3243 sock_release(*newsock); 3244 *newsock = NULL; 3245 goto done; 3246 } 3247 3248 (*newsock)->ops = sock->ops; 3249 __module_get((*newsock)->ops->owner); 3250 3251 done: 3252 return err; 3253 } 3254 EXPORT_SYMBOL(kernel_accept); 3255 3256 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3257 int flags) 3258 { 3259 return sock->ops->connect(sock, addr, addrlen, flags); 3260 } 3261 EXPORT_SYMBOL(kernel_connect); 3262 3263 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3264 int *addrlen) 3265 { 3266 return sock->ops->getname(sock, addr, addrlen, 0); 3267 } 3268 EXPORT_SYMBOL(kernel_getsockname); 3269 3270 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3271 int *addrlen) 3272 { 3273 return sock->ops->getname(sock, addr, addrlen, 1); 3274 } 3275 EXPORT_SYMBOL(kernel_getpeername); 3276 3277 int kernel_getsockopt(struct socket *sock, int level, int optname, 3278 char *optval, int *optlen) 3279 { 3280 mm_segment_t oldfs = get_fs(); 3281 char __user *uoptval; 3282 int __user *uoptlen; 3283 int err; 3284 3285 uoptval = (char __user __force *) optval; 3286 uoptlen = (int __user __force *) optlen; 3287 3288 set_fs(KERNEL_DS); 3289 if (level == SOL_SOCKET) 3290 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3291 else 3292 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3293 uoptlen); 3294 set_fs(oldfs); 3295 return err; 3296 } 3297 EXPORT_SYMBOL(kernel_getsockopt); 3298 3299 int kernel_setsockopt(struct socket *sock, int level, int optname, 3300 char *optval, unsigned int optlen) 3301 { 3302 mm_segment_t oldfs = get_fs(); 3303 char __user *uoptval; 3304 int err; 3305 3306 uoptval = (char __user __force *) optval; 3307 3308 set_fs(KERNEL_DS); 3309 if (level == SOL_SOCKET) 3310 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3311 else 3312 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3313 optlen); 3314 set_fs(oldfs); 3315 return err; 3316 } 3317 EXPORT_SYMBOL(kernel_setsockopt); 3318 3319 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3320 size_t size, int flags) 3321 { 3322 if (sock->ops->sendpage) 3323 return sock->ops->sendpage(sock, page, offset, size, flags); 3324 3325 return sock_no_sendpage(sock, page, offset, size, flags); 3326 } 3327 EXPORT_SYMBOL(kernel_sendpage); 3328 3329 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3330 { 3331 mm_segment_t oldfs = get_fs(); 3332 int err; 3333 3334 set_fs(KERNEL_DS); 3335 err = sock->ops->ioctl(sock, cmd, arg); 3336 set_fs(oldfs); 3337 3338 return err; 3339 } 3340 EXPORT_SYMBOL(kernel_sock_ioctl); 3341 3342 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3343 { 3344 return sock->ops->shutdown(sock, how); 3345 } 3346 EXPORT_SYMBOL(kernel_sock_shutdown); 3347