xref: /openbmc/linux/net/socket.c (revision a8fe58ce)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 			 int flags, const char *dev_name, void *data)
325 {
326 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 		&sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333 	.name =		"sockfs",
334 	.mount =	sockfs_mount,
335 	.kill_sb =	kill_anon_super,
336 };
337 
338 /*
339  *	Obtains the first available file descriptor and sets it up for use.
340  *
341  *	These functions create file structures and maps them to fd space
342  *	of the current process. On success it returns file descriptor
343  *	and file struct implicitly stored in sock->file.
344  *	Note that another thread may close file descriptor before we return
345  *	from this function. We use the fact that now we do not refer
346  *	to socket after mapping. If one day we will need it, this
347  *	function will increment ref. count on file by 1.
348  *
349  *	In any case returned fd MAY BE not valid!
350  *	This race condition is unavoidable
351  *	with shared fd spaces, we cannot solve it inside kernel,
352  *	but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 	struct qstr name = { .name = "" };
358 	struct path path;
359 	struct file *file;
360 
361 	if (dname) {
362 		name.name = dname;
363 		name.len = strlen(name.name);
364 	} else if (sock->sk) {
365 		name.name = sock->sk->sk_prot_creator->name;
366 		name.len = strlen(name.name);
367 	}
368 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 	if (unlikely(!path.dentry))
370 		return ERR_PTR(-ENOMEM);
371 	path.mnt = mntget(sock_mnt);
372 
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 
375 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 		  &socket_file_ops);
377 	if (IS_ERR(file)) {
378 		/* drop dentry, keep inode */
379 		ihold(d_inode(path.dentry));
380 		path_put(&path);
381 		return file;
382 	}
383 
384 	sock->file = file;
385 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 	file->private_data = sock;
387 	return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390 
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 	struct file *newfile;
394 	int fd = get_unused_fd_flags(flags);
395 	if (unlikely(fd < 0))
396 		return fd;
397 
398 	newfile = sock_alloc_file(sock, flags, NULL);
399 	if (likely(!IS_ERR(newfile))) {
400 		fd_install(fd, newfile);
401 		return fd;
402 	}
403 
404 	put_unused_fd(fd);
405 	return PTR_ERR(newfile);
406 }
407 
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 	if (file->f_op == &socket_file_ops)
411 		return file->private_data;	/* set in sock_map_fd */
412 
413 	*err = -ENOTSOCK;
414 	return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417 
418 /**
419  *	sockfd_lookup - Go from a file number to its socket slot
420  *	@fd: file handle
421  *	@err: pointer to an error code return
422  *
423  *	The file handle passed in is locked and the socket it is bound
424  *	too is returned. If an error occurs the err pointer is overwritten
425  *	with a negative errno code and NULL is returned. The function checks
426  *	for both invalid handles and passing a handle which is not a socket.
427  *
428  *	On a success the socket object pointer is returned.
429  */
430 
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 	struct file *file;
434 	struct socket *sock;
435 
436 	file = fget(fd);
437 	if (!file) {
438 		*err = -EBADF;
439 		return NULL;
440 	}
441 
442 	sock = sock_from_file(file, err);
443 	if (!sock)
444 		fput(file);
445 	return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448 
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 	struct fd f = fdget(fd);
452 	struct socket *sock;
453 
454 	*err = -EBADF;
455 	if (f.file) {
456 		sock = sock_from_file(f.file, err);
457 		if (likely(sock)) {
458 			*fput_needed = f.flags;
459 			return sock;
460 		}
461 		fdput(f);
462 	}
463 	return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 			       const char *name, void *value, size_t size)
471 {
472 	const char *proto_name;
473 	size_t proto_size;
474 	int error;
475 
476 	error = -ENODATA;
477 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 		proto_name = dentry->d_name.name;
479 		proto_size = strlen(proto_name);
480 
481 		if (value) {
482 			error = -ERANGE;
483 			if (proto_size + 1 > size)
484 				goto out;
485 
486 			strncpy(value, proto_name, proto_size + 1);
487 		}
488 		error = proto_size + 1;
489 	}
490 
491 out:
492 	return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 				size_t size)
497 {
498 	ssize_t len;
499 	ssize_t used = 0;
500 
501 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 	if (len < 0)
503 		return len;
504 	used += len;
505 	if (buffer) {
506 		if (size < used)
507 			return -ERANGE;
508 		buffer += len;
509 	}
510 
511 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 	used += len;
513 	if (buffer) {
514 		if (size < used)
515 			return -ERANGE;
516 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 		buffer += len;
518 	}
519 
520 	return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524 	.getxattr = sockfs_getxattr,
525 	.listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *	sock_alloc	-	allocate a socket
530  *
531  *	Allocate a new inode and socket object. The two are bound together
532  *	and initialised. The socket is then returned. If we are out of inodes
533  *	NULL is returned.
534  */
535 
536 static struct socket *sock_alloc(void)
537 {
538 	struct inode *inode;
539 	struct socket *sock;
540 
541 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 	if (!inode)
543 		return NULL;
544 
545 	sock = SOCKET_I(inode);
546 
547 	kmemcheck_annotate_bitfield(sock, type);
548 	inode->i_ino = get_next_ino();
549 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 	inode->i_uid = current_fsuid();
551 	inode->i_gid = current_fsgid();
552 	inode->i_op = &sockfs_inode_ops;
553 
554 	this_cpu_add(sockets_in_use, 1);
555 	return sock;
556 }
557 
558 /**
559  *	sock_release	-	close a socket
560  *	@sock: socket to close
561  *
562  *	The socket is released from the protocol stack if it has a release
563  *	callback, and the inode is then released if the socket is bound to
564  *	an inode not a file.
565  */
566 
567 void sock_release(struct socket *sock)
568 {
569 	if (sock->ops) {
570 		struct module *owner = sock->ops->owner;
571 
572 		sock->ops->release(sock);
573 		sock->ops = NULL;
574 		module_put(owner);
575 	}
576 
577 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
578 		pr_err("%s: fasync list not empty!\n", __func__);
579 
580 	this_cpu_sub(sockets_in_use, 1);
581 	if (!sock->file) {
582 		iput(SOCK_INODE(sock));
583 		return;
584 	}
585 	sock->file = NULL;
586 }
587 EXPORT_SYMBOL(sock_release);
588 
589 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
590 {
591 	u8 flags = *tx_flags;
592 
593 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
594 		flags |= SKBTX_HW_TSTAMP;
595 
596 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
597 		flags |= SKBTX_SW_TSTAMP;
598 
599 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
600 		flags |= SKBTX_SCHED_TSTAMP;
601 
602 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
603 		flags |= SKBTX_ACK_TSTAMP;
604 
605 	*tx_flags = flags;
606 }
607 EXPORT_SYMBOL(__sock_tx_timestamp);
608 
609 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
610 {
611 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
612 	BUG_ON(ret == -EIOCBQUEUED);
613 	return ret;
614 }
615 
616 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
617 {
618 	int err = security_socket_sendmsg(sock, msg,
619 					  msg_data_left(msg));
620 
621 	return err ?: sock_sendmsg_nosec(sock, msg);
622 }
623 EXPORT_SYMBOL(sock_sendmsg);
624 
625 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
626 		   struct kvec *vec, size_t num, size_t size)
627 {
628 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
629 	return sock_sendmsg(sock, msg);
630 }
631 EXPORT_SYMBOL(kernel_sendmsg);
632 
633 /*
634  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635  */
636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 	struct sk_buff *skb)
638 {
639 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 	struct scm_timestamping tss;
641 	int empty = 1;
642 	struct skb_shared_hwtstamps *shhwtstamps =
643 		skb_hwtstamps(skb);
644 
645 	/* Race occurred between timestamp enabling and packet
646 	   receiving.  Fill in the current time for now. */
647 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 		__net_timestamp(skb);
649 
650 	if (need_software_tstamp) {
651 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 			struct timeval tv;
653 			skb_get_timestamp(skb, &tv);
654 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 				 sizeof(tv), &tv);
656 		} else {
657 			struct timespec ts;
658 			skb_get_timestampns(skb, &ts);
659 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
660 				 sizeof(ts), &ts);
661 		}
662 	}
663 
664 	memset(&tss, 0, sizeof(tss));
665 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
666 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
667 		empty = 0;
668 	if (shhwtstamps &&
669 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
670 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
671 		empty = 0;
672 	if (!empty)
673 		put_cmsg(msg, SOL_SOCKET,
674 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
675 }
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
677 
678 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
679 	struct sk_buff *skb)
680 {
681 	int ack;
682 
683 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
684 		return;
685 	if (!skb->wifi_acked_valid)
686 		return;
687 
688 	ack = skb->wifi_acked;
689 
690 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
691 }
692 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
693 
694 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
695 				   struct sk_buff *skb)
696 {
697 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
698 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
699 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
700 }
701 
702 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	sock_recv_timestamp(msg, sk, skb);
706 	sock_recv_drops(msg, sk, skb);
707 }
708 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
709 
710 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
711 				     size_t size, int flags)
712 {
713 	return sock->ops->recvmsg(sock, msg, size, flags);
714 }
715 
716 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
717 		 int flags)
718 {
719 	int err = security_socket_recvmsg(sock, msg, size, flags);
720 
721 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
722 }
723 EXPORT_SYMBOL(sock_recvmsg);
724 
725 /**
726  * kernel_recvmsg - Receive a message from a socket (kernel space)
727  * @sock:       The socket to receive the message from
728  * @msg:        Received message
729  * @vec:        Input s/g array for message data
730  * @num:        Size of input s/g array
731  * @size:       Number of bytes to read
732  * @flags:      Message flags (MSG_DONTWAIT, etc...)
733  *
734  * On return the msg structure contains the scatter/gather array passed in the
735  * vec argument. The array is modified so that it consists of the unfilled
736  * portion of the original array.
737  *
738  * The returned value is the total number of bytes received, or an error.
739  */
740 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
741 		   struct kvec *vec, size_t num, size_t size, int flags)
742 {
743 	mm_segment_t oldfs = get_fs();
744 	int result;
745 
746 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
747 	set_fs(KERNEL_DS);
748 	result = sock_recvmsg(sock, msg, size, flags);
749 	set_fs(oldfs);
750 	return result;
751 }
752 EXPORT_SYMBOL(kernel_recvmsg);
753 
754 static ssize_t sock_sendpage(struct file *file, struct page *page,
755 			     int offset, size_t size, loff_t *ppos, int more)
756 {
757 	struct socket *sock;
758 	int flags;
759 
760 	sock = file->private_data;
761 
762 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
763 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
764 	flags |= more;
765 
766 	return kernel_sendpage(sock, page, offset, size, flags);
767 }
768 
769 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
770 				struct pipe_inode_info *pipe, size_t len,
771 				unsigned int flags)
772 {
773 	struct socket *sock = file->private_data;
774 
775 	if (unlikely(!sock->ops->splice_read))
776 		return -EINVAL;
777 
778 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
779 }
780 
781 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
782 {
783 	struct file *file = iocb->ki_filp;
784 	struct socket *sock = file->private_data;
785 	struct msghdr msg = {.msg_iter = *to,
786 			     .msg_iocb = iocb};
787 	ssize_t res;
788 
789 	if (file->f_flags & O_NONBLOCK)
790 		msg.msg_flags = MSG_DONTWAIT;
791 
792 	if (iocb->ki_pos != 0)
793 		return -ESPIPE;
794 
795 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
796 		return 0;
797 
798 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
799 	*to = msg.msg_iter;
800 	return res;
801 }
802 
803 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
804 {
805 	struct file *file = iocb->ki_filp;
806 	struct socket *sock = file->private_data;
807 	struct msghdr msg = {.msg_iter = *from,
808 			     .msg_iocb = iocb};
809 	ssize_t res;
810 
811 	if (iocb->ki_pos != 0)
812 		return -ESPIPE;
813 
814 	if (file->f_flags & O_NONBLOCK)
815 		msg.msg_flags = MSG_DONTWAIT;
816 
817 	if (sock->type == SOCK_SEQPACKET)
818 		msg.msg_flags |= MSG_EOR;
819 
820 	res = sock_sendmsg(sock, &msg);
821 	*from = msg.msg_iter;
822 	return res;
823 }
824 
825 /*
826  * Atomic setting of ioctl hooks to avoid race
827  * with module unload.
828  */
829 
830 static DEFINE_MUTEX(br_ioctl_mutex);
831 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
832 
833 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
834 {
835 	mutex_lock(&br_ioctl_mutex);
836 	br_ioctl_hook = hook;
837 	mutex_unlock(&br_ioctl_mutex);
838 }
839 EXPORT_SYMBOL(brioctl_set);
840 
841 static DEFINE_MUTEX(vlan_ioctl_mutex);
842 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
843 
844 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
845 {
846 	mutex_lock(&vlan_ioctl_mutex);
847 	vlan_ioctl_hook = hook;
848 	mutex_unlock(&vlan_ioctl_mutex);
849 }
850 EXPORT_SYMBOL(vlan_ioctl_set);
851 
852 static DEFINE_MUTEX(dlci_ioctl_mutex);
853 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
854 
855 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
856 {
857 	mutex_lock(&dlci_ioctl_mutex);
858 	dlci_ioctl_hook = hook;
859 	mutex_unlock(&dlci_ioctl_mutex);
860 }
861 EXPORT_SYMBOL(dlci_ioctl_set);
862 
863 static long sock_do_ioctl(struct net *net, struct socket *sock,
864 				 unsigned int cmd, unsigned long arg)
865 {
866 	int err;
867 	void __user *argp = (void __user *)arg;
868 
869 	err = sock->ops->ioctl(sock, cmd, arg);
870 
871 	/*
872 	 * If this ioctl is unknown try to hand it down
873 	 * to the NIC driver.
874 	 */
875 	if (err == -ENOIOCTLCMD)
876 		err = dev_ioctl(net, cmd, argp);
877 
878 	return err;
879 }
880 
881 /*
882  *	With an ioctl, arg may well be a user mode pointer, but we don't know
883  *	what to do with it - that's up to the protocol still.
884  */
885 
886 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
887 {
888 	struct socket *sock;
889 	struct sock *sk;
890 	void __user *argp = (void __user *)arg;
891 	int pid, err;
892 	struct net *net;
893 
894 	sock = file->private_data;
895 	sk = sock->sk;
896 	net = sock_net(sk);
897 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
898 		err = dev_ioctl(net, cmd, argp);
899 	} else
900 #ifdef CONFIG_WEXT_CORE
901 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
902 		err = dev_ioctl(net, cmd, argp);
903 	} else
904 #endif
905 		switch (cmd) {
906 		case FIOSETOWN:
907 		case SIOCSPGRP:
908 			err = -EFAULT;
909 			if (get_user(pid, (int __user *)argp))
910 				break;
911 			f_setown(sock->file, pid, 1);
912 			err = 0;
913 			break;
914 		case FIOGETOWN:
915 		case SIOCGPGRP:
916 			err = put_user(f_getown(sock->file),
917 				       (int __user *)argp);
918 			break;
919 		case SIOCGIFBR:
920 		case SIOCSIFBR:
921 		case SIOCBRADDBR:
922 		case SIOCBRDELBR:
923 			err = -ENOPKG;
924 			if (!br_ioctl_hook)
925 				request_module("bridge");
926 
927 			mutex_lock(&br_ioctl_mutex);
928 			if (br_ioctl_hook)
929 				err = br_ioctl_hook(net, cmd, argp);
930 			mutex_unlock(&br_ioctl_mutex);
931 			break;
932 		case SIOCGIFVLAN:
933 		case SIOCSIFVLAN:
934 			err = -ENOPKG;
935 			if (!vlan_ioctl_hook)
936 				request_module("8021q");
937 
938 			mutex_lock(&vlan_ioctl_mutex);
939 			if (vlan_ioctl_hook)
940 				err = vlan_ioctl_hook(net, argp);
941 			mutex_unlock(&vlan_ioctl_mutex);
942 			break;
943 		case SIOCADDDLCI:
944 		case SIOCDELDLCI:
945 			err = -ENOPKG;
946 			if (!dlci_ioctl_hook)
947 				request_module("dlci");
948 
949 			mutex_lock(&dlci_ioctl_mutex);
950 			if (dlci_ioctl_hook)
951 				err = dlci_ioctl_hook(cmd, argp);
952 			mutex_unlock(&dlci_ioctl_mutex);
953 			break;
954 		default:
955 			err = sock_do_ioctl(net, sock, cmd, arg);
956 			break;
957 		}
958 	return err;
959 }
960 
961 int sock_create_lite(int family, int type, int protocol, struct socket **res)
962 {
963 	int err;
964 	struct socket *sock = NULL;
965 
966 	err = security_socket_create(family, type, protocol, 1);
967 	if (err)
968 		goto out;
969 
970 	sock = sock_alloc();
971 	if (!sock) {
972 		err = -ENOMEM;
973 		goto out;
974 	}
975 
976 	sock->type = type;
977 	err = security_socket_post_create(sock, family, type, protocol, 1);
978 	if (err)
979 		goto out_release;
980 
981 out:
982 	*res = sock;
983 	return err;
984 out_release:
985 	sock_release(sock);
986 	sock = NULL;
987 	goto out;
988 }
989 EXPORT_SYMBOL(sock_create_lite);
990 
991 /* No kernel lock held - perfect */
992 static unsigned int sock_poll(struct file *file, poll_table *wait)
993 {
994 	unsigned int busy_flag = 0;
995 	struct socket *sock;
996 
997 	/*
998 	 *      We can't return errors to poll, so it's either yes or no.
999 	 */
1000 	sock = file->private_data;
1001 
1002 	if (sk_can_busy_loop(sock->sk)) {
1003 		/* this socket can poll_ll so tell the system call */
1004 		busy_flag = POLL_BUSY_LOOP;
1005 
1006 		/* once, only if requested by syscall */
1007 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1008 			sk_busy_loop(sock->sk, 1);
1009 	}
1010 
1011 	return busy_flag | sock->ops->poll(file, sock, wait);
1012 }
1013 
1014 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1015 {
1016 	struct socket *sock = file->private_data;
1017 
1018 	return sock->ops->mmap(file, sock, vma);
1019 }
1020 
1021 static int sock_close(struct inode *inode, struct file *filp)
1022 {
1023 	sock_release(SOCKET_I(inode));
1024 	return 0;
1025 }
1026 
1027 /*
1028  *	Update the socket async list
1029  *
1030  *	Fasync_list locking strategy.
1031  *
1032  *	1. fasync_list is modified only under process context socket lock
1033  *	   i.e. under semaphore.
1034  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1035  *	   or under socket lock
1036  */
1037 
1038 static int sock_fasync(int fd, struct file *filp, int on)
1039 {
1040 	struct socket *sock = filp->private_data;
1041 	struct sock *sk = sock->sk;
1042 	struct socket_wq *wq;
1043 
1044 	if (sk == NULL)
1045 		return -EINVAL;
1046 
1047 	lock_sock(sk);
1048 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1049 	fasync_helper(fd, filp, on, &wq->fasync_list);
1050 
1051 	if (!wq->fasync_list)
1052 		sock_reset_flag(sk, SOCK_FASYNC);
1053 	else
1054 		sock_set_flag(sk, SOCK_FASYNC);
1055 
1056 	release_sock(sk);
1057 	return 0;
1058 }
1059 
1060 /* This function may be called only under rcu_lock */
1061 
1062 int sock_wake_async(struct socket_wq *wq, int how, int band)
1063 {
1064 	if (!wq || !wq->fasync_list)
1065 		return -1;
1066 
1067 	switch (how) {
1068 	case SOCK_WAKE_WAITD:
1069 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1070 			break;
1071 		goto call_kill;
1072 	case SOCK_WAKE_SPACE:
1073 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1074 			break;
1075 		/* fall through */
1076 	case SOCK_WAKE_IO:
1077 call_kill:
1078 		kill_fasync(&wq->fasync_list, SIGIO, band);
1079 		break;
1080 	case SOCK_WAKE_URG:
1081 		kill_fasync(&wq->fasync_list, SIGURG, band);
1082 	}
1083 
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL(sock_wake_async);
1087 
1088 int __sock_create(struct net *net, int family, int type, int protocol,
1089 			 struct socket **res, int kern)
1090 {
1091 	int err;
1092 	struct socket *sock;
1093 	const struct net_proto_family *pf;
1094 
1095 	/*
1096 	 *      Check protocol is in range
1097 	 */
1098 	if (family < 0 || family >= NPROTO)
1099 		return -EAFNOSUPPORT;
1100 	if (type < 0 || type >= SOCK_MAX)
1101 		return -EINVAL;
1102 
1103 	/* Compatibility.
1104 
1105 	   This uglymoron is moved from INET layer to here to avoid
1106 	   deadlock in module load.
1107 	 */
1108 	if (family == PF_INET && type == SOCK_PACKET) {
1109 		static int warned;
1110 		if (!warned) {
1111 			warned = 1;
1112 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1113 				current->comm);
1114 		}
1115 		family = PF_PACKET;
1116 	}
1117 
1118 	err = security_socket_create(family, type, protocol, kern);
1119 	if (err)
1120 		return err;
1121 
1122 	/*
1123 	 *	Allocate the socket and allow the family to set things up. if
1124 	 *	the protocol is 0, the family is instructed to select an appropriate
1125 	 *	default.
1126 	 */
1127 	sock = sock_alloc();
1128 	if (!sock) {
1129 		net_warn_ratelimited("socket: no more sockets\n");
1130 		return -ENFILE;	/* Not exactly a match, but its the
1131 				   closest posix thing */
1132 	}
1133 
1134 	sock->type = type;
1135 
1136 #ifdef CONFIG_MODULES
1137 	/* Attempt to load a protocol module if the find failed.
1138 	 *
1139 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1140 	 * requested real, full-featured networking support upon configuration.
1141 	 * Otherwise module support will break!
1142 	 */
1143 	if (rcu_access_pointer(net_families[family]) == NULL)
1144 		request_module("net-pf-%d", family);
1145 #endif
1146 
1147 	rcu_read_lock();
1148 	pf = rcu_dereference(net_families[family]);
1149 	err = -EAFNOSUPPORT;
1150 	if (!pf)
1151 		goto out_release;
1152 
1153 	/*
1154 	 * We will call the ->create function, that possibly is in a loadable
1155 	 * module, so we have to bump that loadable module refcnt first.
1156 	 */
1157 	if (!try_module_get(pf->owner))
1158 		goto out_release;
1159 
1160 	/* Now protected by module ref count */
1161 	rcu_read_unlock();
1162 
1163 	err = pf->create(net, sock, protocol, kern);
1164 	if (err < 0)
1165 		goto out_module_put;
1166 
1167 	/*
1168 	 * Now to bump the refcnt of the [loadable] module that owns this
1169 	 * socket at sock_release time we decrement its refcnt.
1170 	 */
1171 	if (!try_module_get(sock->ops->owner))
1172 		goto out_module_busy;
1173 
1174 	/*
1175 	 * Now that we're done with the ->create function, the [loadable]
1176 	 * module can have its refcnt decremented
1177 	 */
1178 	module_put(pf->owner);
1179 	err = security_socket_post_create(sock, family, type, protocol, kern);
1180 	if (err)
1181 		goto out_sock_release;
1182 	*res = sock;
1183 
1184 	return 0;
1185 
1186 out_module_busy:
1187 	err = -EAFNOSUPPORT;
1188 out_module_put:
1189 	sock->ops = NULL;
1190 	module_put(pf->owner);
1191 out_sock_release:
1192 	sock_release(sock);
1193 	return err;
1194 
1195 out_release:
1196 	rcu_read_unlock();
1197 	goto out_sock_release;
1198 }
1199 EXPORT_SYMBOL(__sock_create);
1200 
1201 int sock_create(int family, int type, int protocol, struct socket **res)
1202 {
1203 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1204 }
1205 EXPORT_SYMBOL(sock_create);
1206 
1207 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1208 {
1209 	return __sock_create(net, family, type, protocol, res, 1);
1210 }
1211 EXPORT_SYMBOL(sock_create_kern);
1212 
1213 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1214 {
1215 	int retval;
1216 	struct socket *sock;
1217 	int flags;
1218 
1219 	/* Check the SOCK_* constants for consistency.  */
1220 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1221 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1222 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1223 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1224 
1225 	flags = type & ~SOCK_TYPE_MASK;
1226 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1227 		return -EINVAL;
1228 	type &= SOCK_TYPE_MASK;
1229 
1230 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1231 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1232 
1233 	retval = sock_create(family, type, protocol, &sock);
1234 	if (retval < 0)
1235 		goto out;
1236 
1237 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1238 	if (retval < 0)
1239 		goto out_release;
1240 
1241 out:
1242 	/* It may be already another descriptor 8) Not kernel problem. */
1243 	return retval;
1244 
1245 out_release:
1246 	sock_release(sock);
1247 	return retval;
1248 }
1249 
1250 /*
1251  *	Create a pair of connected sockets.
1252  */
1253 
1254 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1255 		int __user *, usockvec)
1256 {
1257 	struct socket *sock1, *sock2;
1258 	int fd1, fd2, err;
1259 	struct file *newfile1, *newfile2;
1260 	int flags;
1261 
1262 	flags = type & ~SOCK_TYPE_MASK;
1263 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1264 		return -EINVAL;
1265 	type &= SOCK_TYPE_MASK;
1266 
1267 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1268 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1269 
1270 	/*
1271 	 * Obtain the first socket and check if the underlying protocol
1272 	 * supports the socketpair call.
1273 	 */
1274 
1275 	err = sock_create(family, type, protocol, &sock1);
1276 	if (err < 0)
1277 		goto out;
1278 
1279 	err = sock_create(family, type, protocol, &sock2);
1280 	if (err < 0)
1281 		goto out_release_1;
1282 
1283 	err = sock1->ops->socketpair(sock1, sock2);
1284 	if (err < 0)
1285 		goto out_release_both;
1286 
1287 	fd1 = get_unused_fd_flags(flags);
1288 	if (unlikely(fd1 < 0)) {
1289 		err = fd1;
1290 		goto out_release_both;
1291 	}
1292 
1293 	fd2 = get_unused_fd_flags(flags);
1294 	if (unlikely(fd2 < 0)) {
1295 		err = fd2;
1296 		goto out_put_unused_1;
1297 	}
1298 
1299 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1300 	if (IS_ERR(newfile1)) {
1301 		err = PTR_ERR(newfile1);
1302 		goto out_put_unused_both;
1303 	}
1304 
1305 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1306 	if (IS_ERR(newfile2)) {
1307 		err = PTR_ERR(newfile2);
1308 		goto out_fput_1;
1309 	}
1310 
1311 	err = put_user(fd1, &usockvec[0]);
1312 	if (err)
1313 		goto out_fput_both;
1314 
1315 	err = put_user(fd2, &usockvec[1]);
1316 	if (err)
1317 		goto out_fput_both;
1318 
1319 	audit_fd_pair(fd1, fd2);
1320 
1321 	fd_install(fd1, newfile1);
1322 	fd_install(fd2, newfile2);
1323 	/* fd1 and fd2 may be already another descriptors.
1324 	 * Not kernel problem.
1325 	 */
1326 
1327 	return 0;
1328 
1329 out_fput_both:
1330 	fput(newfile2);
1331 	fput(newfile1);
1332 	put_unused_fd(fd2);
1333 	put_unused_fd(fd1);
1334 	goto out;
1335 
1336 out_fput_1:
1337 	fput(newfile1);
1338 	put_unused_fd(fd2);
1339 	put_unused_fd(fd1);
1340 	sock_release(sock2);
1341 	goto out;
1342 
1343 out_put_unused_both:
1344 	put_unused_fd(fd2);
1345 out_put_unused_1:
1346 	put_unused_fd(fd1);
1347 out_release_both:
1348 	sock_release(sock2);
1349 out_release_1:
1350 	sock_release(sock1);
1351 out:
1352 	return err;
1353 }
1354 
1355 /*
1356  *	Bind a name to a socket. Nothing much to do here since it's
1357  *	the protocol's responsibility to handle the local address.
1358  *
1359  *	We move the socket address to kernel space before we call
1360  *	the protocol layer (having also checked the address is ok).
1361  */
1362 
1363 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1364 {
1365 	struct socket *sock;
1366 	struct sockaddr_storage address;
1367 	int err, fput_needed;
1368 
1369 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1370 	if (sock) {
1371 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1372 		if (err >= 0) {
1373 			err = security_socket_bind(sock,
1374 						   (struct sockaddr *)&address,
1375 						   addrlen);
1376 			if (!err)
1377 				err = sock->ops->bind(sock,
1378 						      (struct sockaddr *)
1379 						      &address, addrlen);
1380 		}
1381 		fput_light(sock->file, fput_needed);
1382 	}
1383 	return err;
1384 }
1385 
1386 /*
1387  *	Perform a listen. Basically, we allow the protocol to do anything
1388  *	necessary for a listen, and if that works, we mark the socket as
1389  *	ready for listening.
1390  */
1391 
1392 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1393 {
1394 	struct socket *sock;
1395 	int err, fput_needed;
1396 	int somaxconn;
1397 
1398 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1399 	if (sock) {
1400 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1401 		if ((unsigned int)backlog > somaxconn)
1402 			backlog = somaxconn;
1403 
1404 		err = security_socket_listen(sock, backlog);
1405 		if (!err)
1406 			err = sock->ops->listen(sock, backlog);
1407 
1408 		fput_light(sock->file, fput_needed);
1409 	}
1410 	return err;
1411 }
1412 
1413 /*
1414  *	For accept, we attempt to create a new socket, set up the link
1415  *	with the client, wake up the client, then return the new
1416  *	connected fd. We collect the address of the connector in kernel
1417  *	space and move it to user at the very end. This is unclean because
1418  *	we open the socket then return an error.
1419  *
1420  *	1003.1g adds the ability to recvmsg() to query connection pending
1421  *	status to recvmsg. We need to add that support in a way thats
1422  *	clean when we restucture accept also.
1423  */
1424 
1425 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1426 		int __user *, upeer_addrlen, int, flags)
1427 {
1428 	struct socket *sock, *newsock;
1429 	struct file *newfile;
1430 	int err, len, newfd, fput_needed;
1431 	struct sockaddr_storage address;
1432 
1433 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1434 		return -EINVAL;
1435 
1436 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1437 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1438 
1439 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1440 	if (!sock)
1441 		goto out;
1442 
1443 	err = -ENFILE;
1444 	newsock = sock_alloc();
1445 	if (!newsock)
1446 		goto out_put;
1447 
1448 	newsock->type = sock->type;
1449 	newsock->ops = sock->ops;
1450 
1451 	/*
1452 	 * We don't need try_module_get here, as the listening socket (sock)
1453 	 * has the protocol module (sock->ops->owner) held.
1454 	 */
1455 	__module_get(newsock->ops->owner);
1456 
1457 	newfd = get_unused_fd_flags(flags);
1458 	if (unlikely(newfd < 0)) {
1459 		err = newfd;
1460 		sock_release(newsock);
1461 		goto out_put;
1462 	}
1463 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1464 	if (IS_ERR(newfile)) {
1465 		err = PTR_ERR(newfile);
1466 		put_unused_fd(newfd);
1467 		sock_release(newsock);
1468 		goto out_put;
1469 	}
1470 
1471 	err = security_socket_accept(sock, newsock);
1472 	if (err)
1473 		goto out_fd;
1474 
1475 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1476 	if (err < 0)
1477 		goto out_fd;
1478 
1479 	if (upeer_sockaddr) {
1480 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1481 					  &len, 2) < 0) {
1482 			err = -ECONNABORTED;
1483 			goto out_fd;
1484 		}
1485 		err = move_addr_to_user(&address,
1486 					len, upeer_sockaddr, upeer_addrlen);
1487 		if (err < 0)
1488 			goto out_fd;
1489 	}
1490 
1491 	/* File flags are not inherited via accept() unlike another OSes. */
1492 
1493 	fd_install(newfd, newfile);
1494 	err = newfd;
1495 
1496 out_put:
1497 	fput_light(sock->file, fput_needed);
1498 out:
1499 	return err;
1500 out_fd:
1501 	fput(newfile);
1502 	put_unused_fd(newfd);
1503 	goto out_put;
1504 }
1505 
1506 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 		int __user *, upeer_addrlen)
1508 {
1509 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1510 }
1511 
1512 /*
1513  *	Attempt to connect to a socket with the server address.  The address
1514  *	is in user space so we verify it is OK and move it to kernel space.
1515  *
1516  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1517  *	break bindings
1518  *
1519  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1520  *	other SEQPACKET protocols that take time to connect() as it doesn't
1521  *	include the -EINPROGRESS status for such sockets.
1522  */
1523 
1524 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1525 		int, addrlen)
1526 {
1527 	struct socket *sock;
1528 	struct sockaddr_storage address;
1529 	int err, fput_needed;
1530 
1531 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1532 	if (!sock)
1533 		goto out;
1534 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1535 	if (err < 0)
1536 		goto out_put;
1537 
1538 	err =
1539 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1540 	if (err)
1541 		goto out_put;
1542 
1543 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1544 				 sock->file->f_flags);
1545 out_put:
1546 	fput_light(sock->file, fput_needed);
1547 out:
1548 	return err;
1549 }
1550 
1551 /*
1552  *	Get the local address ('name') of a socket object. Move the obtained
1553  *	name to user space.
1554  */
1555 
1556 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1557 		int __user *, usockaddr_len)
1558 {
1559 	struct socket *sock;
1560 	struct sockaddr_storage address;
1561 	int len, err, fput_needed;
1562 
1563 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1564 	if (!sock)
1565 		goto out;
1566 
1567 	err = security_socket_getsockname(sock);
1568 	if (err)
1569 		goto out_put;
1570 
1571 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1572 	if (err)
1573 		goto out_put;
1574 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1575 
1576 out_put:
1577 	fput_light(sock->file, fput_needed);
1578 out:
1579 	return err;
1580 }
1581 
1582 /*
1583  *	Get the remote address ('name') of a socket object. Move the obtained
1584  *	name to user space.
1585  */
1586 
1587 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1588 		int __user *, usockaddr_len)
1589 {
1590 	struct socket *sock;
1591 	struct sockaddr_storage address;
1592 	int len, err, fput_needed;
1593 
1594 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 	if (sock != NULL) {
1596 		err = security_socket_getpeername(sock);
1597 		if (err) {
1598 			fput_light(sock->file, fput_needed);
1599 			return err;
1600 		}
1601 
1602 		err =
1603 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1604 				       1);
1605 		if (!err)
1606 			err = move_addr_to_user(&address, len, usockaddr,
1607 						usockaddr_len);
1608 		fput_light(sock->file, fput_needed);
1609 	}
1610 	return err;
1611 }
1612 
1613 /*
1614  *	Send a datagram to a given address. We move the address into kernel
1615  *	space and check the user space data area is readable before invoking
1616  *	the protocol.
1617  */
1618 
1619 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1620 		unsigned int, flags, struct sockaddr __user *, addr,
1621 		int, addr_len)
1622 {
1623 	struct socket *sock;
1624 	struct sockaddr_storage address;
1625 	int err;
1626 	struct msghdr msg;
1627 	struct iovec iov;
1628 	int fput_needed;
1629 
1630 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1631 	if (unlikely(err))
1632 		return err;
1633 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1634 	if (!sock)
1635 		goto out;
1636 
1637 	msg.msg_name = NULL;
1638 	msg.msg_control = NULL;
1639 	msg.msg_controllen = 0;
1640 	msg.msg_namelen = 0;
1641 	if (addr) {
1642 		err = move_addr_to_kernel(addr, addr_len, &address);
1643 		if (err < 0)
1644 			goto out_put;
1645 		msg.msg_name = (struct sockaddr *)&address;
1646 		msg.msg_namelen = addr_len;
1647 	}
1648 	if (sock->file->f_flags & O_NONBLOCK)
1649 		flags |= MSG_DONTWAIT;
1650 	msg.msg_flags = flags;
1651 	err = sock_sendmsg(sock, &msg);
1652 
1653 out_put:
1654 	fput_light(sock->file, fput_needed);
1655 out:
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Send a datagram down a socket.
1661  */
1662 
1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1664 		unsigned int, flags)
1665 {
1666 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1667 }
1668 
1669 /*
1670  *	Receive a frame from the socket and optionally record the address of the
1671  *	sender. We verify the buffers are writable and if needed move the
1672  *	sender address from kernel to user space.
1673  */
1674 
1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1676 		unsigned int, flags, struct sockaddr __user *, addr,
1677 		int __user *, addr_len)
1678 {
1679 	struct socket *sock;
1680 	struct iovec iov;
1681 	struct msghdr msg;
1682 	struct sockaddr_storage address;
1683 	int err, err2;
1684 	int fput_needed;
1685 
1686 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1687 	if (unlikely(err))
1688 		return err;
1689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 	if (!sock)
1691 		goto out;
1692 
1693 	msg.msg_control = NULL;
1694 	msg.msg_controllen = 0;
1695 	/* Save some cycles and don't copy the address if not needed */
1696 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1697 	/* We assume all kernel code knows the size of sockaddr_storage */
1698 	msg.msg_namelen = 0;
1699 	msg.msg_iocb = NULL;
1700 	if (sock->file->f_flags & O_NONBLOCK)
1701 		flags |= MSG_DONTWAIT;
1702 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1703 
1704 	if (err >= 0 && addr != NULL) {
1705 		err2 = move_addr_to_user(&address,
1706 					 msg.msg_namelen, addr, addr_len);
1707 		if (err2 < 0)
1708 			err = err2;
1709 	}
1710 
1711 	fput_light(sock->file, fput_needed);
1712 out:
1713 	return err;
1714 }
1715 
1716 /*
1717  *	Receive a datagram from a socket.
1718  */
1719 
1720 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1721 		unsigned int, flags)
1722 {
1723 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1724 }
1725 
1726 /*
1727  *	Set a socket option. Because we don't know the option lengths we have
1728  *	to pass the user mode parameter for the protocols to sort out.
1729  */
1730 
1731 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1732 		char __user *, optval, int, optlen)
1733 {
1734 	int err, fput_needed;
1735 	struct socket *sock;
1736 
1737 	if (optlen < 0)
1738 		return -EINVAL;
1739 
1740 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1741 	if (sock != NULL) {
1742 		err = security_socket_setsockopt(sock, level, optname);
1743 		if (err)
1744 			goto out_put;
1745 
1746 		if (level == SOL_SOCKET)
1747 			err =
1748 			    sock_setsockopt(sock, level, optname, optval,
1749 					    optlen);
1750 		else
1751 			err =
1752 			    sock->ops->setsockopt(sock, level, optname, optval,
1753 						  optlen);
1754 out_put:
1755 		fput_light(sock->file, fput_needed);
1756 	}
1757 	return err;
1758 }
1759 
1760 /*
1761  *	Get a socket option. Because we don't know the option lengths we have
1762  *	to pass a user mode parameter for the protocols to sort out.
1763  */
1764 
1765 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1766 		char __user *, optval, int __user *, optlen)
1767 {
1768 	int err, fput_needed;
1769 	struct socket *sock;
1770 
1771 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 	if (sock != NULL) {
1773 		err = security_socket_getsockopt(sock, level, optname);
1774 		if (err)
1775 			goto out_put;
1776 
1777 		if (level == SOL_SOCKET)
1778 			err =
1779 			    sock_getsockopt(sock, level, optname, optval,
1780 					    optlen);
1781 		else
1782 			err =
1783 			    sock->ops->getsockopt(sock, level, optname, optval,
1784 						  optlen);
1785 out_put:
1786 		fput_light(sock->file, fput_needed);
1787 	}
1788 	return err;
1789 }
1790 
1791 /*
1792  *	Shutdown a socket.
1793  */
1794 
1795 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1796 {
1797 	int err, fput_needed;
1798 	struct socket *sock;
1799 
1800 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1801 	if (sock != NULL) {
1802 		err = security_socket_shutdown(sock, how);
1803 		if (!err)
1804 			err = sock->ops->shutdown(sock, how);
1805 		fput_light(sock->file, fput_needed);
1806 	}
1807 	return err;
1808 }
1809 
1810 /* A couple of helpful macros for getting the address of the 32/64 bit
1811  * fields which are the same type (int / unsigned) on our platforms.
1812  */
1813 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1814 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1815 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1816 
1817 struct used_address {
1818 	struct sockaddr_storage name;
1819 	unsigned int name_len;
1820 };
1821 
1822 static int copy_msghdr_from_user(struct msghdr *kmsg,
1823 				 struct user_msghdr __user *umsg,
1824 				 struct sockaddr __user **save_addr,
1825 				 struct iovec **iov)
1826 {
1827 	struct sockaddr __user *uaddr;
1828 	struct iovec __user *uiov;
1829 	size_t nr_segs;
1830 	ssize_t err;
1831 
1832 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1833 	    __get_user(uaddr, &umsg->msg_name) ||
1834 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1835 	    __get_user(uiov, &umsg->msg_iov) ||
1836 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1837 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1838 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1839 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1840 		return -EFAULT;
1841 
1842 	if (!uaddr)
1843 		kmsg->msg_namelen = 0;
1844 
1845 	if (kmsg->msg_namelen < 0)
1846 		return -EINVAL;
1847 
1848 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1849 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1850 
1851 	if (save_addr)
1852 		*save_addr = uaddr;
1853 
1854 	if (uaddr && kmsg->msg_namelen) {
1855 		if (!save_addr) {
1856 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1857 						  kmsg->msg_name);
1858 			if (err < 0)
1859 				return err;
1860 		}
1861 	} else {
1862 		kmsg->msg_name = NULL;
1863 		kmsg->msg_namelen = 0;
1864 	}
1865 
1866 	if (nr_segs > UIO_MAXIOV)
1867 		return -EMSGSIZE;
1868 
1869 	kmsg->msg_iocb = NULL;
1870 
1871 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1872 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1873 }
1874 
1875 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1876 			 struct msghdr *msg_sys, unsigned int flags,
1877 			 struct used_address *used_address)
1878 {
1879 	struct compat_msghdr __user *msg_compat =
1880 	    (struct compat_msghdr __user *)msg;
1881 	struct sockaddr_storage address;
1882 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1883 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1884 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1885 	/* 20 is size of ipv6_pktinfo */
1886 	unsigned char *ctl_buf = ctl;
1887 	int ctl_len;
1888 	ssize_t err;
1889 
1890 	msg_sys->msg_name = &address;
1891 
1892 	if (MSG_CMSG_COMPAT & flags)
1893 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1894 	else
1895 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1896 	if (err < 0)
1897 		return err;
1898 
1899 	err = -ENOBUFS;
1900 
1901 	if (msg_sys->msg_controllen > INT_MAX)
1902 		goto out_freeiov;
1903 	ctl_len = msg_sys->msg_controllen;
1904 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 		err =
1906 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1907 						     sizeof(ctl));
1908 		if (err)
1909 			goto out_freeiov;
1910 		ctl_buf = msg_sys->msg_control;
1911 		ctl_len = msg_sys->msg_controllen;
1912 	} else if (ctl_len) {
1913 		if (ctl_len > sizeof(ctl)) {
1914 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 			if (ctl_buf == NULL)
1916 				goto out_freeiov;
1917 		}
1918 		err = -EFAULT;
1919 		/*
1920 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1921 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 		 * checking falls down on this.
1923 		 */
1924 		if (copy_from_user(ctl_buf,
1925 				   (void __user __force *)msg_sys->msg_control,
1926 				   ctl_len))
1927 			goto out_freectl;
1928 		msg_sys->msg_control = ctl_buf;
1929 	}
1930 	msg_sys->msg_flags = flags;
1931 
1932 	if (sock->file->f_flags & O_NONBLOCK)
1933 		msg_sys->msg_flags |= MSG_DONTWAIT;
1934 	/*
1935 	 * If this is sendmmsg() and current destination address is same as
1936 	 * previously succeeded address, omit asking LSM's decision.
1937 	 * used_address->name_len is initialized to UINT_MAX so that the first
1938 	 * destination address never matches.
1939 	 */
1940 	if (used_address && msg_sys->msg_name &&
1941 	    used_address->name_len == msg_sys->msg_namelen &&
1942 	    !memcmp(&used_address->name, msg_sys->msg_name,
1943 		    used_address->name_len)) {
1944 		err = sock_sendmsg_nosec(sock, msg_sys);
1945 		goto out_freectl;
1946 	}
1947 	err = sock_sendmsg(sock, msg_sys);
1948 	/*
1949 	 * If this is sendmmsg() and sending to current destination address was
1950 	 * successful, remember it.
1951 	 */
1952 	if (used_address && err >= 0) {
1953 		used_address->name_len = msg_sys->msg_namelen;
1954 		if (msg_sys->msg_name)
1955 			memcpy(&used_address->name, msg_sys->msg_name,
1956 			       used_address->name_len);
1957 	}
1958 
1959 out_freectl:
1960 	if (ctl_buf != ctl)
1961 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1962 out_freeiov:
1963 	kfree(iov);
1964 	return err;
1965 }
1966 
1967 /*
1968  *	BSD sendmsg interface
1969  */
1970 
1971 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1972 {
1973 	int fput_needed, err;
1974 	struct msghdr msg_sys;
1975 	struct socket *sock;
1976 
1977 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1978 	if (!sock)
1979 		goto out;
1980 
1981 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1982 
1983 	fput_light(sock->file, fput_needed);
1984 out:
1985 	return err;
1986 }
1987 
1988 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1989 {
1990 	if (flags & MSG_CMSG_COMPAT)
1991 		return -EINVAL;
1992 	return __sys_sendmsg(fd, msg, flags);
1993 }
1994 
1995 /*
1996  *	Linux sendmmsg interface
1997  */
1998 
1999 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2000 		   unsigned int flags)
2001 {
2002 	int fput_needed, err, datagrams;
2003 	struct socket *sock;
2004 	struct mmsghdr __user *entry;
2005 	struct compat_mmsghdr __user *compat_entry;
2006 	struct msghdr msg_sys;
2007 	struct used_address used_address;
2008 
2009 	if (vlen > UIO_MAXIOV)
2010 		vlen = UIO_MAXIOV;
2011 
2012 	datagrams = 0;
2013 
2014 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 	if (!sock)
2016 		return err;
2017 
2018 	used_address.name_len = UINT_MAX;
2019 	entry = mmsg;
2020 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021 	err = 0;
2022 
2023 	while (datagrams < vlen) {
2024 		if (MSG_CMSG_COMPAT & flags) {
2025 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 					     &msg_sys, flags, &used_address);
2027 			if (err < 0)
2028 				break;
2029 			err = __put_user(err, &compat_entry->msg_len);
2030 			++compat_entry;
2031 		} else {
2032 			err = ___sys_sendmsg(sock,
2033 					     (struct user_msghdr __user *)entry,
2034 					     &msg_sys, flags, &used_address);
2035 			if (err < 0)
2036 				break;
2037 			err = put_user(err, &entry->msg_len);
2038 			++entry;
2039 		}
2040 
2041 		if (err)
2042 			break;
2043 		++datagrams;
2044 		cond_resched();
2045 	}
2046 
2047 	fput_light(sock->file, fput_needed);
2048 
2049 	/* We only return an error if no datagrams were able to be sent */
2050 	if (datagrams != 0)
2051 		return datagrams;
2052 
2053 	return err;
2054 }
2055 
2056 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057 		unsigned int, vlen, unsigned int, flags)
2058 {
2059 	if (flags & MSG_CMSG_COMPAT)
2060 		return -EINVAL;
2061 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062 }
2063 
2064 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2066 {
2067 	struct compat_msghdr __user *msg_compat =
2068 	    (struct compat_msghdr __user *)msg;
2069 	struct iovec iovstack[UIO_FASTIOV];
2070 	struct iovec *iov = iovstack;
2071 	unsigned long cmsg_ptr;
2072 	int total_len, len;
2073 	ssize_t err;
2074 
2075 	/* kernel mode address */
2076 	struct sockaddr_storage addr;
2077 
2078 	/* user mode address pointers */
2079 	struct sockaddr __user *uaddr;
2080 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081 
2082 	msg_sys->msg_name = &addr;
2083 
2084 	if (MSG_CMSG_COMPAT & flags)
2085 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086 	else
2087 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088 	if (err < 0)
2089 		return err;
2090 	total_len = iov_iter_count(&msg_sys->msg_iter);
2091 
2092 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2093 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2094 
2095 	/* We assume all kernel code knows the size of sockaddr_storage */
2096 	msg_sys->msg_namelen = 0;
2097 
2098 	if (sock->file->f_flags & O_NONBLOCK)
2099 		flags |= MSG_DONTWAIT;
2100 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2101 							  total_len, flags);
2102 	if (err < 0)
2103 		goto out_freeiov;
2104 	len = err;
2105 
2106 	if (uaddr != NULL) {
2107 		err = move_addr_to_user(&addr,
2108 					msg_sys->msg_namelen, uaddr,
2109 					uaddr_len);
2110 		if (err < 0)
2111 			goto out_freeiov;
2112 	}
2113 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2114 			 COMPAT_FLAGS(msg));
2115 	if (err)
2116 		goto out_freeiov;
2117 	if (MSG_CMSG_COMPAT & flags)
2118 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2119 				 &msg_compat->msg_controllen);
2120 	else
2121 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2122 				 &msg->msg_controllen);
2123 	if (err)
2124 		goto out_freeiov;
2125 	err = len;
2126 
2127 out_freeiov:
2128 	kfree(iov);
2129 	return err;
2130 }
2131 
2132 /*
2133  *	BSD recvmsg interface
2134  */
2135 
2136 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2137 {
2138 	int fput_needed, err;
2139 	struct msghdr msg_sys;
2140 	struct socket *sock;
2141 
2142 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2143 	if (!sock)
2144 		goto out;
2145 
2146 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2147 
2148 	fput_light(sock->file, fput_needed);
2149 out:
2150 	return err;
2151 }
2152 
2153 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2154 		unsigned int, flags)
2155 {
2156 	if (flags & MSG_CMSG_COMPAT)
2157 		return -EINVAL;
2158 	return __sys_recvmsg(fd, msg, flags);
2159 }
2160 
2161 /*
2162  *     Linux recvmmsg interface
2163  */
2164 
2165 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2166 		   unsigned int flags, struct timespec *timeout)
2167 {
2168 	int fput_needed, err, datagrams;
2169 	struct socket *sock;
2170 	struct mmsghdr __user *entry;
2171 	struct compat_mmsghdr __user *compat_entry;
2172 	struct msghdr msg_sys;
2173 	struct timespec end_time;
2174 
2175 	if (timeout &&
2176 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2177 				    timeout->tv_nsec))
2178 		return -EINVAL;
2179 
2180 	datagrams = 0;
2181 
2182 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2183 	if (!sock)
2184 		return err;
2185 
2186 	err = sock_error(sock->sk);
2187 	if (err)
2188 		goto out_put;
2189 
2190 	entry = mmsg;
2191 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2192 
2193 	while (datagrams < vlen) {
2194 		/*
2195 		 * No need to ask LSM for more than the first datagram.
2196 		 */
2197 		if (MSG_CMSG_COMPAT & flags) {
2198 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2199 					     &msg_sys, flags & ~MSG_WAITFORONE,
2200 					     datagrams);
2201 			if (err < 0)
2202 				break;
2203 			err = __put_user(err, &compat_entry->msg_len);
2204 			++compat_entry;
2205 		} else {
2206 			err = ___sys_recvmsg(sock,
2207 					     (struct user_msghdr __user *)entry,
2208 					     &msg_sys, flags & ~MSG_WAITFORONE,
2209 					     datagrams);
2210 			if (err < 0)
2211 				break;
2212 			err = put_user(err, &entry->msg_len);
2213 			++entry;
2214 		}
2215 
2216 		if (err)
2217 			break;
2218 		++datagrams;
2219 
2220 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2221 		if (flags & MSG_WAITFORONE)
2222 			flags |= MSG_DONTWAIT;
2223 
2224 		if (timeout) {
2225 			ktime_get_ts(timeout);
2226 			*timeout = timespec_sub(end_time, *timeout);
2227 			if (timeout->tv_sec < 0) {
2228 				timeout->tv_sec = timeout->tv_nsec = 0;
2229 				break;
2230 			}
2231 
2232 			/* Timeout, return less than vlen datagrams */
2233 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2234 				break;
2235 		}
2236 
2237 		/* Out of band data, return right away */
2238 		if (msg_sys.msg_flags & MSG_OOB)
2239 			break;
2240 		cond_resched();
2241 	}
2242 
2243 out_put:
2244 	fput_light(sock->file, fput_needed);
2245 
2246 	if (err == 0)
2247 		return datagrams;
2248 
2249 	if (datagrams != 0) {
2250 		/*
2251 		 * We may return less entries than requested (vlen) if the
2252 		 * sock is non block and there aren't enough datagrams...
2253 		 */
2254 		if (err != -EAGAIN) {
2255 			/*
2256 			 * ... or  if recvmsg returns an error after we
2257 			 * received some datagrams, where we record the
2258 			 * error to return on the next call or if the
2259 			 * app asks about it using getsockopt(SO_ERROR).
2260 			 */
2261 			sock->sk->sk_err = -err;
2262 		}
2263 
2264 		return datagrams;
2265 	}
2266 
2267 	return err;
2268 }
2269 
2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 		unsigned int, vlen, unsigned int, flags,
2272 		struct timespec __user *, timeout)
2273 {
2274 	int datagrams;
2275 	struct timespec timeout_sys;
2276 
2277 	if (flags & MSG_CMSG_COMPAT)
2278 		return -EINVAL;
2279 
2280 	if (!timeout)
2281 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282 
2283 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284 		return -EFAULT;
2285 
2286 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287 
2288 	if (datagrams > 0 &&
2289 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290 		datagrams = -EFAULT;
2291 
2292 	return datagrams;
2293 }
2294 
2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2296 /* Argument list sizes for sys_socketcall */
2297 #define AL(x) ((x) * sizeof(unsigned long))
2298 static const unsigned char nargs[21] = {
2299 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302 	AL(4), AL(5), AL(4)
2303 };
2304 
2305 #undef AL
2306 
2307 /*
2308  *	System call vectors.
2309  *
2310  *	Argument checking cleaned up. Saved 20% in size.
2311  *  This function doesn't need to set the kernel lock because
2312  *  it is set by the callees.
2313  */
2314 
2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316 {
2317 	unsigned long a[AUDITSC_ARGS];
2318 	unsigned long a0, a1;
2319 	int err;
2320 	unsigned int len;
2321 
2322 	if (call < 1 || call > SYS_SENDMMSG)
2323 		return -EINVAL;
2324 
2325 	len = nargs[call];
2326 	if (len > sizeof(a))
2327 		return -EINVAL;
2328 
2329 	/* copy_from_user should be SMP safe. */
2330 	if (copy_from_user(a, args, len))
2331 		return -EFAULT;
2332 
2333 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334 	if (err)
2335 		return err;
2336 
2337 	a0 = a[0];
2338 	a1 = a[1];
2339 
2340 	switch (call) {
2341 	case SYS_SOCKET:
2342 		err = sys_socket(a0, a1, a[2]);
2343 		break;
2344 	case SYS_BIND:
2345 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346 		break;
2347 	case SYS_CONNECT:
2348 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349 		break;
2350 	case SYS_LISTEN:
2351 		err = sys_listen(a0, a1);
2352 		break;
2353 	case SYS_ACCEPT:
2354 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355 				  (int __user *)a[2], 0);
2356 		break;
2357 	case SYS_GETSOCKNAME:
2358 		err =
2359 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2360 				    (int __user *)a[2]);
2361 		break;
2362 	case SYS_GETPEERNAME:
2363 		err =
2364 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2365 				    (int __user *)a[2]);
2366 		break;
2367 	case SYS_SOCKETPAIR:
2368 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369 		break;
2370 	case SYS_SEND:
2371 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372 		break;
2373 	case SYS_SENDTO:
2374 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375 				 (struct sockaddr __user *)a[4], a[5]);
2376 		break;
2377 	case SYS_RECV:
2378 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379 		break;
2380 	case SYS_RECVFROM:
2381 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382 				   (struct sockaddr __user *)a[4],
2383 				   (int __user *)a[5]);
2384 		break;
2385 	case SYS_SHUTDOWN:
2386 		err = sys_shutdown(a0, a1);
2387 		break;
2388 	case SYS_SETSOCKOPT:
2389 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390 		break;
2391 	case SYS_GETSOCKOPT:
2392 		err =
2393 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394 				   (int __user *)a[4]);
2395 		break;
2396 	case SYS_SENDMSG:
2397 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398 		break;
2399 	case SYS_SENDMMSG:
2400 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401 		break;
2402 	case SYS_RECVMSG:
2403 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 		break;
2405 	case SYS_RECVMMSG:
2406 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407 				   (struct timespec __user *)a[4]);
2408 		break;
2409 	case SYS_ACCEPT4:
2410 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411 				  (int __user *)a[2], a[3]);
2412 		break;
2413 	default:
2414 		err = -EINVAL;
2415 		break;
2416 	}
2417 	return err;
2418 }
2419 
2420 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2421 
2422 /**
2423  *	sock_register - add a socket protocol handler
2424  *	@ops: description of protocol
2425  *
2426  *	This function is called by a protocol handler that wants to
2427  *	advertise its address family, and have it linked into the
2428  *	socket interface. The value ops->family corresponds to the
2429  *	socket system call protocol family.
2430  */
2431 int sock_register(const struct net_proto_family *ops)
2432 {
2433 	int err;
2434 
2435 	if (ops->family >= NPROTO) {
2436 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437 		return -ENOBUFS;
2438 	}
2439 
2440 	spin_lock(&net_family_lock);
2441 	if (rcu_dereference_protected(net_families[ops->family],
2442 				      lockdep_is_held(&net_family_lock)))
2443 		err = -EEXIST;
2444 	else {
2445 		rcu_assign_pointer(net_families[ops->family], ops);
2446 		err = 0;
2447 	}
2448 	spin_unlock(&net_family_lock);
2449 
2450 	pr_info("NET: Registered protocol family %d\n", ops->family);
2451 	return err;
2452 }
2453 EXPORT_SYMBOL(sock_register);
2454 
2455 /**
2456  *	sock_unregister - remove a protocol handler
2457  *	@family: protocol family to remove
2458  *
2459  *	This function is called by a protocol handler that wants to
2460  *	remove its address family, and have it unlinked from the
2461  *	new socket creation.
2462  *
2463  *	If protocol handler is a module, then it can use module reference
2464  *	counts to protect against new references. If protocol handler is not
2465  *	a module then it needs to provide its own protection in
2466  *	the ops->create routine.
2467  */
2468 void sock_unregister(int family)
2469 {
2470 	BUG_ON(family < 0 || family >= NPROTO);
2471 
2472 	spin_lock(&net_family_lock);
2473 	RCU_INIT_POINTER(net_families[family], NULL);
2474 	spin_unlock(&net_family_lock);
2475 
2476 	synchronize_rcu();
2477 
2478 	pr_info("NET: Unregistered protocol family %d\n", family);
2479 }
2480 EXPORT_SYMBOL(sock_unregister);
2481 
2482 static int __init sock_init(void)
2483 {
2484 	int err;
2485 	/*
2486 	 *      Initialize the network sysctl infrastructure.
2487 	 */
2488 	err = net_sysctl_init();
2489 	if (err)
2490 		goto out;
2491 
2492 	/*
2493 	 *      Initialize skbuff SLAB cache
2494 	 */
2495 	skb_init();
2496 
2497 	/*
2498 	 *      Initialize the protocols module.
2499 	 */
2500 
2501 	init_inodecache();
2502 
2503 	err = register_filesystem(&sock_fs_type);
2504 	if (err)
2505 		goto out_fs;
2506 	sock_mnt = kern_mount(&sock_fs_type);
2507 	if (IS_ERR(sock_mnt)) {
2508 		err = PTR_ERR(sock_mnt);
2509 		goto out_mount;
2510 	}
2511 
2512 	/* The real protocol initialization is performed in later initcalls.
2513 	 */
2514 
2515 #ifdef CONFIG_NETFILTER
2516 	err = netfilter_init();
2517 	if (err)
2518 		goto out;
2519 #endif
2520 
2521 	ptp_classifier_init();
2522 
2523 out:
2524 	return err;
2525 
2526 out_mount:
2527 	unregister_filesystem(&sock_fs_type);
2528 out_fs:
2529 	goto out;
2530 }
2531 
2532 core_initcall(sock_init);	/* early initcall */
2533 
2534 #ifdef CONFIG_PROC_FS
2535 void socket_seq_show(struct seq_file *seq)
2536 {
2537 	int cpu;
2538 	int counter = 0;
2539 
2540 	for_each_possible_cpu(cpu)
2541 	    counter += per_cpu(sockets_in_use, cpu);
2542 
2543 	/* It can be negative, by the way. 8) */
2544 	if (counter < 0)
2545 		counter = 0;
2546 
2547 	seq_printf(seq, "sockets: used %d\n", counter);
2548 }
2549 #endif				/* CONFIG_PROC_FS */
2550 
2551 #ifdef CONFIG_COMPAT
2552 static int do_siocgstamp(struct net *net, struct socket *sock,
2553 			 unsigned int cmd, void __user *up)
2554 {
2555 	mm_segment_t old_fs = get_fs();
2556 	struct timeval ktv;
2557 	int err;
2558 
2559 	set_fs(KERNEL_DS);
2560 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2561 	set_fs(old_fs);
2562 	if (!err)
2563 		err = compat_put_timeval(&ktv, up);
2564 
2565 	return err;
2566 }
2567 
2568 static int do_siocgstampns(struct net *net, struct socket *sock,
2569 			   unsigned int cmd, void __user *up)
2570 {
2571 	mm_segment_t old_fs = get_fs();
2572 	struct timespec kts;
2573 	int err;
2574 
2575 	set_fs(KERNEL_DS);
2576 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2577 	set_fs(old_fs);
2578 	if (!err)
2579 		err = compat_put_timespec(&kts, up);
2580 
2581 	return err;
2582 }
2583 
2584 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2585 {
2586 	struct ifreq __user *uifr;
2587 	int err;
2588 
2589 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2590 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2591 		return -EFAULT;
2592 
2593 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2594 	if (err)
2595 		return err;
2596 
2597 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2598 		return -EFAULT;
2599 
2600 	return 0;
2601 }
2602 
2603 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2604 {
2605 	struct compat_ifconf ifc32;
2606 	struct ifconf ifc;
2607 	struct ifconf __user *uifc;
2608 	struct compat_ifreq __user *ifr32;
2609 	struct ifreq __user *ifr;
2610 	unsigned int i, j;
2611 	int err;
2612 
2613 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2614 		return -EFAULT;
2615 
2616 	memset(&ifc, 0, sizeof(ifc));
2617 	if (ifc32.ifcbuf == 0) {
2618 		ifc32.ifc_len = 0;
2619 		ifc.ifc_len = 0;
2620 		ifc.ifc_req = NULL;
2621 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2622 	} else {
2623 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2624 			sizeof(struct ifreq);
2625 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2626 		ifc.ifc_len = len;
2627 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2628 		ifr32 = compat_ptr(ifc32.ifcbuf);
2629 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2630 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2631 				return -EFAULT;
2632 			ifr++;
2633 			ifr32++;
2634 		}
2635 	}
2636 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2637 		return -EFAULT;
2638 
2639 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2640 	if (err)
2641 		return err;
2642 
2643 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2644 		return -EFAULT;
2645 
2646 	ifr = ifc.ifc_req;
2647 	ifr32 = compat_ptr(ifc32.ifcbuf);
2648 	for (i = 0, j = 0;
2649 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2650 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2651 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2652 			return -EFAULT;
2653 		ifr32++;
2654 		ifr++;
2655 	}
2656 
2657 	if (ifc32.ifcbuf == 0) {
2658 		/* Translate from 64-bit structure multiple to
2659 		 * a 32-bit one.
2660 		 */
2661 		i = ifc.ifc_len;
2662 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2663 		ifc32.ifc_len = i;
2664 	} else {
2665 		ifc32.ifc_len = i;
2666 	}
2667 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2668 		return -EFAULT;
2669 
2670 	return 0;
2671 }
2672 
2673 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2674 {
2675 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2676 	bool convert_in = false, convert_out = false;
2677 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2678 	struct ethtool_rxnfc __user *rxnfc;
2679 	struct ifreq __user *ifr;
2680 	u32 rule_cnt = 0, actual_rule_cnt;
2681 	u32 ethcmd;
2682 	u32 data;
2683 	int ret;
2684 
2685 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 		return -EFAULT;
2687 
2688 	compat_rxnfc = compat_ptr(data);
2689 
2690 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2691 		return -EFAULT;
2692 
2693 	/* Most ethtool structures are defined without padding.
2694 	 * Unfortunately struct ethtool_rxnfc is an exception.
2695 	 */
2696 	switch (ethcmd) {
2697 	default:
2698 		break;
2699 	case ETHTOOL_GRXCLSRLALL:
2700 		/* Buffer size is variable */
2701 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2702 			return -EFAULT;
2703 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2704 			return -ENOMEM;
2705 		buf_size += rule_cnt * sizeof(u32);
2706 		/* fall through */
2707 	case ETHTOOL_GRXRINGS:
2708 	case ETHTOOL_GRXCLSRLCNT:
2709 	case ETHTOOL_GRXCLSRULE:
2710 	case ETHTOOL_SRXCLSRLINS:
2711 		convert_out = true;
2712 		/* fall through */
2713 	case ETHTOOL_SRXCLSRLDEL:
2714 		buf_size += sizeof(struct ethtool_rxnfc);
2715 		convert_in = true;
2716 		break;
2717 	}
2718 
2719 	ifr = compat_alloc_user_space(buf_size);
2720 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2721 
2722 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2723 		return -EFAULT;
2724 
2725 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2726 		     &ifr->ifr_ifru.ifru_data))
2727 		return -EFAULT;
2728 
2729 	if (convert_in) {
2730 		/* We expect there to be holes between fs.m_ext and
2731 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2732 		 */
2733 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2734 			     sizeof(compat_rxnfc->fs.m_ext) !=
2735 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2736 			     sizeof(rxnfc->fs.m_ext));
2737 		BUILD_BUG_ON(
2738 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2739 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2740 			offsetof(struct ethtool_rxnfc, fs.location) -
2741 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2742 
2743 		if (copy_in_user(rxnfc, compat_rxnfc,
2744 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2745 				 (void __user *)rxnfc) ||
2746 		    copy_in_user(&rxnfc->fs.ring_cookie,
2747 				 &compat_rxnfc->fs.ring_cookie,
2748 				 (void __user *)(&rxnfc->fs.location + 1) -
2749 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2750 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2751 				 sizeof(rxnfc->rule_cnt)))
2752 			return -EFAULT;
2753 	}
2754 
2755 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2756 	if (ret)
2757 		return ret;
2758 
2759 	if (convert_out) {
2760 		if (copy_in_user(compat_rxnfc, rxnfc,
2761 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2762 				 (const void __user *)rxnfc) ||
2763 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2764 				 &rxnfc->fs.ring_cookie,
2765 				 (const void __user *)(&rxnfc->fs.location + 1) -
2766 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2767 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2768 				 sizeof(rxnfc->rule_cnt)))
2769 			return -EFAULT;
2770 
2771 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2772 			/* As an optimisation, we only copy the actual
2773 			 * number of rules that the underlying
2774 			 * function returned.  Since Mallory might
2775 			 * change the rule count in user memory, we
2776 			 * check that it is less than the rule count
2777 			 * originally given (as the user buffer size),
2778 			 * which has been range-checked.
2779 			 */
2780 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2781 				return -EFAULT;
2782 			if (actual_rule_cnt < rule_cnt)
2783 				rule_cnt = actual_rule_cnt;
2784 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2785 					 &rxnfc->rule_locs[0],
2786 					 rule_cnt * sizeof(u32)))
2787 				return -EFAULT;
2788 		}
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2795 {
2796 	void __user *uptr;
2797 	compat_uptr_t uptr32;
2798 	struct ifreq __user *uifr;
2799 
2800 	uifr = compat_alloc_user_space(sizeof(*uifr));
2801 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2802 		return -EFAULT;
2803 
2804 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2805 		return -EFAULT;
2806 
2807 	uptr = compat_ptr(uptr32);
2808 
2809 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2810 		return -EFAULT;
2811 
2812 	return dev_ioctl(net, SIOCWANDEV, uifr);
2813 }
2814 
2815 static int bond_ioctl(struct net *net, unsigned int cmd,
2816 			 struct compat_ifreq __user *ifr32)
2817 {
2818 	struct ifreq kifr;
2819 	mm_segment_t old_fs;
2820 	int err;
2821 
2822 	switch (cmd) {
2823 	case SIOCBONDENSLAVE:
2824 	case SIOCBONDRELEASE:
2825 	case SIOCBONDSETHWADDR:
2826 	case SIOCBONDCHANGEACTIVE:
2827 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2828 			return -EFAULT;
2829 
2830 		old_fs = get_fs();
2831 		set_fs(KERNEL_DS);
2832 		err = dev_ioctl(net, cmd,
2833 				(struct ifreq __user __force *) &kifr);
2834 		set_fs(old_fs);
2835 
2836 		return err;
2837 	default:
2838 		return -ENOIOCTLCMD;
2839 	}
2840 }
2841 
2842 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2843 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2844 				 struct compat_ifreq __user *u_ifreq32)
2845 {
2846 	struct ifreq __user *u_ifreq64;
2847 	char tmp_buf[IFNAMSIZ];
2848 	void __user *data64;
2849 	u32 data32;
2850 
2851 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2852 			   IFNAMSIZ))
2853 		return -EFAULT;
2854 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2855 		return -EFAULT;
2856 	data64 = compat_ptr(data32);
2857 
2858 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2859 
2860 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2861 			 IFNAMSIZ))
2862 		return -EFAULT;
2863 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2864 		return -EFAULT;
2865 
2866 	return dev_ioctl(net, cmd, u_ifreq64);
2867 }
2868 
2869 static int dev_ifsioc(struct net *net, struct socket *sock,
2870 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2871 {
2872 	struct ifreq __user *uifr;
2873 	int err;
2874 
2875 	uifr = compat_alloc_user_space(sizeof(*uifr));
2876 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2877 		return -EFAULT;
2878 
2879 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2880 
2881 	if (!err) {
2882 		switch (cmd) {
2883 		case SIOCGIFFLAGS:
2884 		case SIOCGIFMETRIC:
2885 		case SIOCGIFMTU:
2886 		case SIOCGIFMEM:
2887 		case SIOCGIFHWADDR:
2888 		case SIOCGIFINDEX:
2889 		case SIOCGIFADDR:
2890 		case SIOCGIFBRDADDR:
2891 		case SIOCGIFDSTADDR:
2892 		case SIOCGIFNETMASK:
2893 		case SIOCGIFPFLAGS:
2894 		case SIOCGIFTXQLEN:
2895 		case SIOCGMIIPHY:
2896 		case SIOCGMIIREG:
2897 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2898 				err = -EFAULT;
2899 			break;
2900 		}
2901 	}
2902 	return err;
2903 }
2904 
2905 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2906 			struct compat_ifreq __user *uifr32)
2907 {
2908 	struct ifreq ifr;
2909 	struct compat_ifmap __user *uifmap32;
2910 	mm_segment_t old_fs;
2911 	int err;
2912 
2913 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2914 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2915 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2916 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2917 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2918 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2919 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2920 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2921 	if (err)
2922 		return -EFAULT;
2923 
2924 	old_fs = get_fs();
2925 	set_fs(KERNEL_DS);
2926 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2927 	set_fs(old_fs);
2928 
2929 	if (cmd == SIOCGIFMAP && !err) {
2930 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2931 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2935 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2936 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2937 		if (err)
2938 			err = -EFAULT;
2939 	}
2940 	return err;
2941 }
2942 
2943 struct rtentry32 {
2944 	u32		rt_pad1;
2945 	struct sockaddr rt_dst;         /* target address               */
2946 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2947 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2948 	unsigned short	rt_flags;
2949 	short		rt_pad2;
2950 	u32		rt_pad3;
2951 	unsigned char	rt_tos;
2952 	unsigned char	rt_class;
2953 	short		rt_pad4;
2954 	short		rt_metric;      /* +1 for binary compatibility! */
2955 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2956 	u32		rt_mtu;         /* per route MTU/Window         */
2957 	u32		rt_window;      /* Window clamping              */
2958 	unsigned short  rt_irtt;        /* Initial RTT                  */
2959 };
2960 
2961 struct in6_rtmsg32 {
2962 	struct in6_addr		rtmsg_dst;
2963 	struct in6_addr		rtmsg_src;
2964 	struct in6_addr		rtmsg_gateway;
2965 	u32			rtmsg_type;
2966 	u16			rtmsg_dst_len;
2967 	u16			rtmsg_src_len;
2968 	u32			rtmsg_metric;
2969 	u32			rtmsg_info;
2970 	u32			rtmsg_flags;
2971 	s32			rtmsg_ifindex;
2972 };
2973 
2974 static int routing_ioctl(struct net *net, struct socket *sock,
2975 			 unsigned int cmd, void __user *argp)
2976 {
2977 	int ret;
2978 	void *r = NULL;
2979 	struct in6_rtmsg r6;
2980 	struct rtentry r4;
2981 	char devname[16];
2982 	u32 rtdev;
2983 	mm_segment_t old_fs = get_fs();
2984 
2985 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2986 		struct in6_rtmsg32 __user *ur6 = argp;
2987 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2988 			3 * sizeof(struct in6_addr));
2989 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2990 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2991 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2992 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2993 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2994 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2995 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2996 
2997 		r = (void *) &r6;
2998 	} else { /* ipv4 */
2999 		struct rtentry32 __user *ur4 = argp;
3000 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3001 					3 * sizeof(struct sockaddr));
3002 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3003 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3004 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3005 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3006 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3007 		ret |= get_user(rtdev, &(ur4->rt_dev));
3008 		if (rtdev) {
3009 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3010 			r4.rt_dev = (char __user __force *)devname;
3011 			devname[15] = 0;
3012 		} else
3013 			r4.rt_dev = NULL;
3014 
3015 		r = (void *) &r4;
3016 	}
3017 
3018 	if (ret) {
3019 		ret = -EFAULT;
3020 		goto out;
3021 	}
3022 
3023 	set_fs(KERNEL_DS);
3024 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3025 	set_fs(old_fs);
3026 
3027 out:
3028 	return ret;
3029 }
3030 
3031 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3032  * for some operations; this forces use of the newer bridge-utils that
3033  * use compatible ioctls
3034  */
3035 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3036 {
3037 	compat_ulong_t tmp;
3038 
3039 	if (get_user(tmp, argp))
3040 		return -EFAULT;
3041 	if (tmp == BRCTL_GET_VERSION)
3042 		return BRCTL_VERSION + 1;
3043 	return -EINVAL;
3044 }
3045 
3046 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3047 			 unsigned int cmd, unsigned long arg)
3048 {
3049 	void __user *argp = compat_ptr(arg);
3050 	struct sock *sk = sock->sk;
3051 	struct net *net = sock_net(sk);
3052 
3053 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3054 		return compat_ifr_data_ioctl(net, cmd, argp);
3055 
3056 	switch (cmd) {
3057 	case SIOCSIFBR:
3058 	case SIOCGIFBR:
3059 		return old_bridge_ioctl(argp);
3060 	case SIOCGIFNAME:
3061 		return dev_ifname32(net, argp);
3062 	case SIOCGIFCONF:
3063 		return dev_ifconf(net, argp);
3064 	case SIOCETHTOOL:
3065 		return ethtool_ioctl(net, argp);
3066 	case SIOCWANDEV:
3067 		return compat_siocwandev(net, argp);
3068 	case SIOCGIFMAP:
3069 	case SIOCSIFMAP:
3070 		return compat_sioc_ifmap(net, cmd, argp);
3071 	case SIOCBONDENSLAVE:
3072 	case SIOCBONDRELEASE:
3073 	case SIOCBONDSETHWADDR:
3074 	case SIOCBONDCHANGEACTIVE:
3075 		return bond_ioctl(net, cmd, argp);
3076 	case SIOCADDRT:
3077 	case SIOCDELRT:
3078 		return routing_ioctl(net, sock, cmd, argp);
3079 	case SIOCGSTAMP:
3080 		return do_siocgstamp(net, sock, cmd, argp);
3081 	case SIOCGSTAMPNS:
3082 		return do_siocgstampns(net, sock, cmd, argp);
3083 	case SIOCBONDSLAVEINFOQUERY:
3084 	case SIOCBONDINFOQUERY:
3085 	case SIOCSHWTSTAMP:
3086 	case SIOCGHWTSTAMP:
3087 		return compat_ifr_data_ioctl(net, cmd, argp);
3088 
3089 	case FIOSETOWN:
3090 	case SIOCSPGRP:
3091 	case FIOGETOWN:
3092 	case SIOCGPGRP:
3093 	case SIOCBRADDBR:
3094 	case SIOCBRDELBR:
3095 	case SIOCGIFVLAN:
3096 	case SIOCSIFVLAN:
3097 	case SIOCADDDLCI:
3098 	case SIOCDELDLCI:
3099 		return sock_ioctl(file, cmd, arg);
3100 
3101 	case SIOCGIFFLAGS:
3102 	case SIOCSIFFLAGS:
3103 	case SIOCGIFMETRIC:
3104 	case SIOCSIFMETRIC:
3105 	case SIOCGIFMTU:
3106 	case SIOCSIFMTU:
3107 	case SIOCGIFMEM:
3108 	case SIOCSIFMEM:
3109 	case SIOCGIFHWADDR:
3110 	case SIOCSIFHWADDR:
3111 	case SIOCADDMULTI:
3112 	case SIOCDELMULTI:
3113 	case SIOCGIFINDEX:
3114 	case SIOCGIFADDR:
3115 	case SIOCSIFADDR:
3116 	case SIOCSIFHWBROADCAST:
3117 	case SIOCDIFADDR:
3118 	case SIOCGIFBRDADDR:
3119 	case SIOCSIFBRDADDR:
3120 	case SIOCGIFDSTADDR:
3121 	case SIOCSIFDSTADDR:
3122 	case SIOCGIFNETMASK:
3123 	case SIOCSIFNETMASK:
3124 	case SIOCSIFPFLAGS:
3125 	case SIOCGIFPFLAGS:
3126 	case SIOCGIFTXQLEN:
3127 	case SIOCSIFTXQLEN:
3128 	case SIOCBRADDIF:
3129 	case SIOCBRDELIF:
3130 	case SIOCSIFNAME:
3131 	case SIOCGMIIPHY:
3132 	case SIOCGMIIREG:
3133 	case SIOCSMIIREG:
3134 		return dev_ifsioc(net, sock, cmd, argp);
3135 
3136 	case SIOCSARP:
3137 	case SIOCGARP:
3138 	case SIOCDARP:
3139 	case SIOCATMARK:
3140 		return sock_do_ioctl(net, sock, cmd, arg);
3141 	}
3142 
3143 	return -ENOIOCTLCMD;
3144 }
3145 
3146 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3147 			      unsigned long arg)
3148 {
3149 	struct socket *sock = file->private_data;
3150 	int ret = -ENOIOCTLCMD;
3151 	struct sock *sk;
3152 	struct net *net;
3153 
3154 	sk = sock->sk;
3155 	net = sock_net(sk);
3156 
3157 	if (sock->ops->compat_ioctl)
3158 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3159 
3160 	if (ret == -ENOIOCTLCMD &&
3161 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3162 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3163 
3164 	if (ret == -ENOIOCTLCMD)
3165 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3166 
3167 	return ret;
3168 }
3169 #endif
3170 
3171 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3172 {
3173 	return sock->ops->bind(sock, addr, addrlen);
3174 }
3175 EXPORT_SYMBOL(kernel_bind);
3176 
3177 int kernel_listen(struct socket *sock, int backlog)
3178 {
3179 	return sock->ops->listen(sock, backlog);
3180 }
3181 EXPORT_SYMBOL(kernel_listen);
3182 
3183 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3184 {
3185 	struct sock *sk = sock->sk;
3186 	int err;
3187 
3188 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3189 			       newsock);
3190 	if (err < 0)
3191 		goto done;
3192 
3193 	err = sock->ops->accept(sock, *newsock, flags);
3194 	if (err < 0) {
3195 		sock_release(*newsock);
3196 		*newsock = NULL;
3197 		goto done;
3198 	}
3199 
3200 	(*newsock)->ops = sock->ops;
3201 	__module_get((*newsock)->ops->owner);
3202 
3203 done:
3204 	return err;
3205 }
3206 EXPORT_SYMBOL(kernel_accept);
3207 
3208 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3209 		   int flags)
3210 {
3211 	return sock->ops->connect(sock, addr, addrlen, flags);
3212 }
3213 EXPORT_SYMBOL(kernel_connect);
3214 
3215 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3216 			 int *addrlen)
3217 {
3218 	return sock->ops->getname(sock, addr, addrlen, 0);
3219 }
3220 EXPORT_SYMBOL(kernel_getsockname);
3221 
3222 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3223 			 int *addrlen)
3224 {
3225 	return sock->ops->getname(sock, addr, addrlen, 1);
3226 }
3227 EXPORT_SYMBOL(kernel_getpeername);
3228 
3229 int kernel_getsockopt(struct socket *sock, int level, int optname,
3230 			char *optval, int *optlen)
3231 {
3232 	mm_segment_t oldfs = get_fs();
3233 	char __user *uoptval;
3234 	int __user *uoptlen;
3235 	int err;
3236 
3237 	uoptval = (char __user __force *) optval;
3238 	uoptlen = (int __user __force *) optlen;
3239 
3240 	set_fs(KERNEL_DS);
3241 	if (level == SOL_SOCKET)
3242 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3243 	else
3244 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3245 					    uoptlen);
3246 	set_fs(oldfs);
3247 	return err;
3248 }
3249 EXPORT_SYMBOL(kernel_getsockopt);
3250 
3251 int kernel_setsockopt(struct socket *sock, int level, int optname,
3252 			char *optval, unsigned int optlen)
3253 {
3254 	mm_segment_t oldfs = get_fs();
3255 	char __user *uoptval;
3256 	int err;
3257 
3258 	uoptval = (char __user __force *) optval;
3259 
3260 	set_fs(KERNEL_DS);
3261 	if (level == SOL_SOCKET)
3262 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3263 	else
3264 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3265 					    optlen);
3266 	set_fs(oldfs);
3267 	return err;
3268 }
3269 EXPORT_SYMBOL(kernel_setsockopt);
3270 
3271 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3272 		    size_t size, int flags)
3273 {
3274 	if (sock->ops->sendpage)
3275 		return sock->ops->sendpage(sock, page, offset, size, flags);
3276 
3277 	return sock_no_sendpage(sock, page, offset, size, flags);
3278 }
3279 EXPORT_SYMBOL(kernel_sendpage);
3280 
3281 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3282 {
3283 	mm_segment_t oldfs = get_fs();
3284 	int err;
3285 
3286 	set_fs(KERNEL_DS);
3287 	err = sock->ops->ioctl(sock, cmd, arg);
3288 	set_fs(oldfs);
3289 
3290 	return err;
3291 }
3292 EXPORT_SYMBOL(kernel_sock_ioctl);
3293 
3294 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3295 {
3296 	return sock->ops->shutdown(sock, how);
3297 }
3298 EXPORT_SYMBOL(kernel_sock_shutdown);
3299